WorldWideScience

Sample records for boron polylactide nanoparticles

  1. Lymphatic Biodistribution of Polylactide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Eric J. Chaney

    2010-05-01

    Full Text Available Tumor metastases occur through both the cardiovascular and lymphatic circulations. However, the majority of nanoparticle biodistribution studies have been focused on the cardiovascular circulation. In this study, we report the formulation of Cy5-labeled polylactide (Cy5-PLA nanoparticles with controlled size and surface features and the subsequent evaluation of their lymphatic biodistribution. Cy5-PLA nanoparticles were formulated through Cy5/(BDIZnN(TMS2-mediated [(BDI = 2-((2,6-diisopropylphenyl amido-4-((2,6-diisopropylphenyl-imino-2-pentene] ring-opening polymerization of lactide followed by nanoprecipitation. Their lymphatic biodistribution was evaluated by using whole-body fluorescence imaging of nude mice and ex vivo fluorescence imaging of the resected organs. This technique has the potential for providing optical contrast and drug delivery through the lymphatic circulation for the treatment of metastatic cancer.

  2. POLYLACTIDE-CO-GLYCOLIDE NANOPARTICLES THERAPEUTIC BENEFITS IN CANCER

    Directory of Open Access Journals (Sweden)

    Pramod V. Burakle

    2013-02-01

    Full Text Available Anticancer therapy majorly hindered by drug low water solubility, poor drug permeability, and high efflux of drug from cells. Nanotechnology is severing as an important tool to overcome these problems of cancer drug therapy. Nanomaterials have been used to enhance drug delivery at targeted site with less toxicity to healthy cells. Biodegradable polyester, polylactide-co-glycolide is approved for use for humans. Review is focusing on recent developments concerning polylactide-co-glycolide nanoparticles prepared for cancer treatment. We have reviewed, methods used for the preparation and characterization of polylactide-co-glycolide nanoparticles and their applications in the delivery of a number of active agents. Polylactide-co-glycolide nanoparticles have provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects.

  3. Folate-conjugated chitosan-polylactide nanoparticles for enhanced intracellular uptake of anticancer drug

    Science.gov (United States)

    Huang, Shengtang; Wan, Ying; Wang, Zheng; Wu, Jiliang

    2013-12-01

    Chitosan was conjugated with folic acid (FA) and the resulting chitosan derivatives with a FA-substitution degree of around 6 % was used to synthesize FA-conjugated chitosan-polylactide (FA-CH-PLA) copolymers to build a drug carrier with active targeting characteristics for the anticancer drug of paclitaxel (PTX). Selected FA-CH-PLAs with various polylactide percentages of about 40 wt% or lower were employed to fabricate nanoparticles using sodium tripolyphosphate as a crosslinker, and different types of nanoparticles were endued with similar average particle-sizes located in a range between 100 and 200 nm. Certain types of PTX-loaded FA-CH-PLA nanoparticles having encapsulation efficiency of around 90 % and initial load of about 12 % were able to release PTX in a controlled manner with significant regulation by polylactide content in FA-CH-PLAs. Targeting characteristic of achieved nanoparticles was confirmed using FA-receptor-expressed MCF-7 breast cancer cells. The uptake of PTX revealed that optimized FA-CH-PLA nanoparticles with an equivalent PTX-dose of around 1 μg/mL could have more than sixfold increasing abilities to facilitate intracellular paclitaxel accumulation in MCF-7 cells after 24 h treatment as compared to free PTX. At a relatively safe equivalent PTX-dose for normal MCF-10A mammary epithelial cells, the obtained results from Hoechst 33342 staining indicated that optimized PTX-loaded FA-CH-PLA nanoparticles had more than threefold increasing abilities to induce MCF-7 cell apoptosis in comparison to free PTX.

  4. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    Directory of Open Access Journals (Sweden)

    Rouhani H

    2011-04-01

    Full Text Available R Dinarvand1,2, N Sepehri1, S Manoochehri1, H Rouhani1, F Atyabi1,21Department of Pharmaceutics, Faculty of Pharmacy, 2Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, IranAbstract: The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA, a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects.Keywords: nanotechnology, polymeric nanocarriers, targeting, anticancer agents, surface modification

  5. Synthesis and characterization of polylactide/doxorubicin/magnetic nanoparticles composites for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Mhlanga, Nikiwe; Ray, Suprakas Sinha [Department of Applied Chemistry, University of Johannesburg, Doornforntein, 2028, Johannesburg (South Africa); DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa)

    2015-05-22

    Magnetic iron oxide nanoparticles have potential to transform conventional therapeutics, through targeted delivery by external magnetic field modulation. Conventional drug delivery lacks specificity; both normal and infected cells are exposed to toxic drugs. Consequently, the toxicity towards healthy cells leads to detrimental side effects which are formidable. However, iron oxide research in biomedicine has been hindered by their lack of stability. This study reports on the stabilization of iron oxide by polylactide (PLA). Besides affording stable iron oxide, PLA is also good for sustained delivery of the drug. PLA/doxorubicin/magnetic nanoparticles (PLA/DOX/MNPs) spheres were synthesized by solvent evaporation method and DOX anticancer drug was encapsulated. The spheres were characterized using scanning electron microscope, Fourier transform infrared microscope, thermogravimetric analyzer and UV-visible spectroscopy, which ascertained formation of the anticipated spheres and incorporation of DOX. In vitro drug release studies were carried out in both phosphate buffer (pH 7.4) and acetate buffer (pH 4.6) and they showed the same trend in both mediums. Drug release kinetics followed Higuchi model, which proved drug release by diffusion via a diffusion gradient.

  6. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...... with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy....

  7. Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro

    Science.gov (United States)

    Satishkumar, R.; Vertegel, A. A.

    2011-12-01

    The objective of this paper was to study the effect of antibody-directed targeting of S. aureus by comparing the activities of lysostaphin conjugated to biodegradable polylactide nanoparticles (NPs) in the presence and in the absence of co-immobilized anti-S. aureus antibody. Lysostaphin-antibody-NP conjugates were synthesized through physical adsorption at different enzyme:antibody:NP ratios. The synthesized enzyme-NP conjugates were characterized by means of dynamic light scattering and zeta potential analysis, and the total protein binding yield on the NPs was characterized using Alexa Fluor 350 and 594 dyes for the S. aureus antibody and lysostaphin respectively. We observed enhanced antimicrobial activity for both enzyme-coated and enzyme-antibody-coated NPs for lysostaphin coatings corresponding to ~ 40% of the initial monolayer and higher compared to the free enzyme case (p < 0.05). At the highest antibody coating concentration, bacterial lysis rates for antibody-coated samples were significantly higher than for lysostaphin-coated samples lacking the antibody (p < 0.05). Such enzyme-NP conjugates thus have the potential for becoming novel therapeutic agents for treating antibiotic-resistant S. aureus infections.

  8. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf;

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre......-incubated with boron nanoparticles for 12 hours, were injected subcutaneously into C57BL16J mice. The tumour sites were exposed to different doses of neutron radiation one, four, or eight days after tumour cell inoculation. Results: When the tumour site was irradiated with thermal neutrons one day after injection......, tumour growth was delayed and the treated mice survived longer than untreated controls (median survival time 20 days (N=8) compared with 10 days (N=7) for untreated mice). Conclusion: Boron nanoparticles significantly delay the growth of an aggressive B16-OVA tumour in vivo by boron neutron capture...

  9. Aggregation and deposition behavior of boron nanoparticles in porous media.

    Science.gov (United States)

    Liu, Xuyang; Wazne, Mahmoud; Christodoulatos, Christos; Jasinkiewicz, Kristin L

    2009-02-01

    New kinds of solid fuels and propellants comprised of nanomaterials are making their way into civilian and military applications yet the impact of their release on the environment remains largely unknown. One such material is nano boron, a promising solid fuel and propellant. The fate and transport of nano boron under various aquatic systems was investigated in aggregation and deposition experiments. Column experiments were performed to examine the effects of electrolyte concentration and flow velocity on the transport of boron nanoparticles under saturated conditions, whereas aggregation tests were conducted to assess the effects of electrolytes on the aggregation of the boron nanoparticles. Aggregation tests indicated the presence of different reaction-controlled and diffusion-controlled regimes and yielded critical coagulation concentrations (CCC) of 200 mM, 0.7 mM and 1.5 mM for NaCl, CaCl(2), and MgCl(2), respectively. Aggregation and deposition experimental data corresponded with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) model and the constant attachment efficiency filtration model, respectively. Theoretical calculations indicated that both the primary and secondary energy minima play important roles in the deposition of nano boron in sand columns.

  10. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles

    Science.gov (United States)

    Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir

    2017-02-01

    In the presented work, amphiphilic nanoparticles based on chitosan and carboxy-enriched polylactic acid have been prepared to improve the stability of the pro-drug temozolomide in physiological media by encapsulation. The carrier, with a diameter in the range of 150-180 nm, was able to accommodate up to 800 μg of temozolomide per mg of polymer. The obtained formulation showed good stability in physiological condition and preparation media up to 1 month. Temozolomide loaded inside the carrier exhibited greater stability than the free drug, in particular in simulated physiological solution at pH 7.4 where the hydrolysis in the inactive metabolite was clearly delayed. CS-SPLA nanoparticles demonstrated a pH-dependent TMZ release kinetics with the opportunity to increase or decrease the rate. Mass spectroscopy, UV-Vis analysis, and in vitro cell tests confirmed the improvement in temozolomide stability and effectiveness when loaded into the polymeric carrier, in comparison with the free drug.

  11. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  12. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.;

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...

  13. Preparation of Boron Suboxide Nanoparticles and Their Processing

    Directory of Open Access Journals (Sweden)

    Jānis GRABIS

    2012-03-01

    Full Text Available Crystalline boron suboxide B6O particles with size in the range of 1.5 µm – 2 µm and crystallite size in the range of 32 nm – 40 nm were prepared by calcination at 1400 °C for one or two hours of precursors obtained by mixing X-ray amorphous boron with water solution of B2O3 followed by evaporation and drying. Decrease of molar ratio B/B2O3 from 16 to 14 in the precursor mixture reduced nonstoichiometry of prepared B6O although simultaneously it increased admixture of B2O3. Particulate composites of B6O with TiN or Ni nanoparticles were prepared by mechanical mixing. The spark plasma sintering process intensified the densification of prepared boron suboxide nanoparticles at 1900 °C and allowed manufacturing of fully dense bodies (98 % during five minutes. Additives of TiN or Ni nanoparticles reduced sintering temperature to 1700 °C and their promoted formation of Ti or Ni borides.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1345

  14. Aerolization During Boron Nanoparticle Multi-Component Fuel Group Burning Studies

    Science.gov (United States)

    2014-02-03

    nanoparticle addition (~2.5% weight loading) on aerosol droplet size and velocity distribution fields in the wet , or no flame, condition. Results did suggest...in the presence of boron nanoparticles, suggesting enhanced combustion and increased droplet evaporation in the JP-5 carrier fuel. Additionally, there...no effect of boron nanoparticle addition (~ 2.5 % weight loading) on aerosol droplet size and velocity distribution fields in the wet , or no flame

  15. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    Science.gov (United States)

    Liu, Min; Zhang, De-Xiang; Chen, Shumei; Wen, Tian

    2016-05-01

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB).

  16. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  17. A thermo dynamical model for the shape and size effect on melting of boron carbide nanoparticles.

    Science.gov (United States)

    Antoniammal, Paneerselvam; Arivuoli, Dakshanamoorthy

    2012-02-01

    The size and shape dependence of the melting temperature of Boron Carbide (B4C) nanoparticles has been investigated with a numerical thermo dynamical approach. The problem considered in this paper is the inward melting of nanoparticles with spherical and cylindrical geometry. The cylindrical Boron Carbide (B4C) nanoparticles, whose melting point has been reported to decrease with decreasing particle radius, become larger than spherical shaped nanoparticle. Comparative investigation of the size dependence of the melting temperature with respect to the two shapes is also been done. The melting temperature obtained in the present study is approximately a dealing function of radius, in a good agreement with prediction of thermo dynamical model.

  18. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    Science.gov (United States)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  19. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  20. Boron containing magnetic nanoparticles for neutron capture therapy--an innovative approach for specifically targeting tumors.

    Science.gov (United States)

    Tietze, Rainer; Unterweger, Harald; Dürr, Stephan; Lyer, Stefan; Canella, Lea; Kudejova, Petra; Wagner, Franz M; Petry, Winfried; Taccardi, Nicola; Alexiou, Christoph

    2015-12-01

    The selective delivery of (10)B into the tumor tissue remains to be further improved for successful and reliable Boron Neutron Capture Therapy applications. Magnetic Drug Targeting using intraarterially administered superparamagnetic nanoparticles and external magnetic fields already exhibited convincing results in terms of highly efficient and selective drug deposition. Using the same technique for the targeted (10)B delivery is a promising new approach. Here, systematic irradiation experiments of phantom cubes containing different concentrations of boron and nanoparticles as well as varying three-dimensional arrangements have been performed.

  1. Rational design of gold nanoparticles functionalized with carboranes for application in Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciani, Laura; Bortolussi, Silva; Postuma, Ian; Cansolino, Laura; Ferrari, Cinzia; Panza, Luigi; Altieri, Saverio; Ristori, Sandra

    2013-12-31

    In this paper we propose a bottom-up approach to obtain new boron carriers built with ortho-carborane functionalized gold nanoparticles (GNPs) for applications in Boron Neutron Capture Therapy. The interaction between carboranes and the gold surface was assured by one or two SH-groups directly linked to the boron atoms of the B10C2 cage. This allowed obtaining stable, nontoxic systems, though optimal biological performance was hampered by low solubility in aqueous media. To improve cell uptake, the hydrophilic character of carborane functionalized GNPs was enhanced by further coverage with an appropriately tailored diblock copolymer (PEO-b-PCL). This polymer also contained pendant carboranes to provide anchoring to the pre-functionalized GNPs. In vitro tests, carried out on osteosarcoma cells, showed that the final vectors possessed excellent biocompatibility joint to the capacity of concentrating boron atoms in the target, which is encouraging evidenced to pursue applications in vivo.

  2. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  3. Hyaluronan/Tannic Acid Nanoparticles Via Catechol/Boronate Complexation as a Smart Antibacterial System.

    Science.gov (United States)

    Montanari, Elita; Gennari, Arianna; Pelliccia, Maria; Gourmel, Charlotte; Lallana, Enrique; Matricardi, Pietro; McBain, Andrew J; Tirelli, Nicola

    2016-12-01

    Nanoparticles based on hyaluronic acid (HA) are designed to deliver tannic acid (TA) as an antimicrobial agent. The presence of HA makes these particles potentially useful to target bacteria that colonize cells presenting HA membrane receptors (e.g. CD44), such as macrophages. HA bearing 3-aminophenyl boronic acid groups (HA-APBA) is reacted with TA, yielding nanoparticles with a size that decreases with decreasing HA molecular weight (e.g. 200 nm for 44 kDa, 400 nm for 737 kDa). The boronate esters make the nanoparticles stable at physiological pH, but their hydrolysis in an acidic environment (pH = 5) leads to swelling/solubilization, therefore potentially allowing TA release in endosomal compartments. We have assessed the nanoparticle toxicity profile (on RAW 264.7 macrophages) and their antimicrobial activity (on E. coli and on both methicillin-sensitive and -resistant S. aureus). The antibacterial effect of HA-APBA/TA nanoparticles was significantly higher than that of TA alone, and has very similar activity to TA coformulated with a reducing agent (ascorbic acid), which indicates both the nanoparticles to protect TA catechols from oxidation, and the effective release of TA after nanoparticle internalization. Therefore, there is potential for these nanoparticles to be used in stable, effective, and potentially targetable nanoparticle-based antimicrobial formulations.

  4. Thiadiazole molecules and poly(ethylene glycol)-block-polylactide self-assembled nanoparticles as effective photothermal agents.

    Science.gov (United States)

    Sun, Tingting; Qi, Ji; Zheng, Min; Xie, Zhigang; Wang, Zhiyuan; Jing, Xiabin

    2015-12-01

    A new photothermal nano-agent was obtained by the coprecipitation of 2,5-Bis(2,5-bis(2-thienyl)-N-dodecyl pyrrole) thieno[3,4-b][1,2,5] thiadiazole (TPT-TT) and a biodegradable amphiphilic block copolymer, methoxypoly(ethylene glycol)2K-block-poly(D,L-lactide)2K (mPEG2K-PDLLA2K). TPT-TT, a donor-acceptor-donor (D-A-D) type small molecule, with bis(2-thienyl)-N-alkylpyrrole (TPT) as the donor and thieno[3,4-b]thiadiazole (TT) as the acceptor was a strong near infrared (NIR) absorber, which could convert the absorbed light energy into heat. The formation of TPT-TT nanoparticles (TPT-NPs), which possessed high stability in water, was confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). TPT-NPs showed high photothermal conversion efficiency (32%) and excellent photostability and heating reproducibility. The photostability of TPT-TT NPs was much better than that of indocyanine green (ICG), a federal drug administration (FDA) approved NIR dye. Besides, TPT-TT NPs exhibited significant photothermal therapeutic effect toward human cervical carcinoma (HeLa) and human liver hepatocellular carcinoma (HepG2) cells, while no appreciable dark cytotoxicity was observed. These results highlight the potential of TPT-TT NPs as an effective photothermal agent for cancer therapy.

  5. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coate

  6. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides, relev

  7. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  8. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rasel, Md. Alim Iftekhar; Li, Tong; Nguyen, Trung Dung; Singh, Sanjleena [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia); Zhou, Yinghong; Xiao, Yin [Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (Australia); Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia)

    2015-11-15

    Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.

  9. Characterization of boron carbide nanoparticles prepared by a solid state thermal reaction

    Science.gov (United States)

    Chang, B.; Gersten, B. L.; Szewczyk, S. T.; Adams, J. W.

    2007-01-01

    The production of boron carbide (B4C) nanoparticles was investigated in a conventional high temperature furnace reactor. The reaction was carried out by heating a mixture of amorphous carbon and amorphous boron at 1550 °C to efficiently obtain a quantity of B4C. Scanning electron microscopy studies showed the average size of B4C particles was 200 nm, ranging from 50 nm to 350 nm. X-ray diffraction transmission electron microscopy and electron diffraction studies indicated that the prepared nanoparticles were crystalline B4C with a high density twin structure. High resolution transmission electron microscopy and selected area diffraction were also used to further characterize the structure of the prepared B4C particles, while energy dispersive spectroscopy and electron energy loss spectroscopy were used to determine the stoichiometry of the product. A solid state diffusion reaction mechanism is proposed.

  10. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization

    Science.gov (United States)

    Rasel, Md. Alim Iftekhar; Li, Tong; Nguyen, Trung Dung; Singh, Sanjleena; Zhou, Yinghong; Xiao, Yin; Gu, YuanTong

    2015-11-01

    Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100-250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.

  11. Dyes with high affinity for polylactide

    Institute of Scientific and Technical Information of China (English)

    Liang He; Shu Fen Zhang; Bing Tao Tang; Li Li Wang; Jin Zong Yang

    2007-01-01

    Attempts were made to develop dyes with high affinity for polylactide as an alternative to the existent commercial disperse dyes.The dyes synthesized according to the affinity concept of dye to polylactide exhibited excellent dyeing properties on polylactide compared with the commercial disperse dyes.

  12. Facile preparation of boronic acid functionalized Fe-core/Au-shell magnetic nanoparticles for covalent immobilization of adenosine

    NARCIS (Netherlands)

    Pham, Tuan Anh; Kumar, Nanjundan Ashok; Jeong, Yeon Tae

    2010-01-01

    The synthesis of biocompatible magnetic nanoparticles is one of the important topics in nanoscience because such materials have potential biomedical applications. Herein, we report a facile approach for surface functionalization of magnetic nanoparticles (MNPs) with boronic acid and their use for th

  13. Nanoparticle-enhanced fluorescence emission for non-separation assays of carbohydrates using a boronic acid-alizarin complex.

    Science.gov (United States)

    Li, Qianjin; Kamra, Tripta; Ye, Lei

    2016-03-01

    Addition of crosslinked polymer nanoparticles into a solution of a 3-nitrophenylboronic acid-alizarin complex leads to significant enhancement of fluorescence emission. Using the nanoparticle-enhanced boronic acid-alizarin system has improved greatly the sensitivity and extended the dynamic range of separation-free fluorescence assays for carbohydrates.

  14. Characteristics of Boron Decorated TiO2 Nanoparticles for Dye-Sensitized Solar Cell Photoanode

    Directory of Open Access Journals (Sweden)

    Ching-Yuan Ho

    2015-01-01

    Full Text Available Different boron weight percents on mixed-phase (anatase and rutile TiO2 nanoparticles were synthesized to investigate structure morphology, defect states, luminescence properties, and energy conversion. The measured results indicate that boron doping of TiO2 both increases the crystallite size and rutile-phase percent in an anatase matrix. Decreasing the band gap by boron doping can extend the absorption to the visible region, while undoped TiO2 exhibits high UV absorption. Oxygen vacancy defects generated by boron ions reduce Ti+4 and affect electron transport in dye-sensitized solar cells. Excess electrons originating from the oxygen vacancies of doped TiO2 downward shift in the conduction band edge and prompt the transfer of photoelectrons from the conduction band of the rutile phase to the lower energy anatase trapping sites; they then separate charges to enhance the photocurrent and Jsc. Although the resistance of the electron recombination (Rk between doped TiO2 photoanode and the electrolyte for the doped TiO2 sample is lower, a longer electron lifetime (τ of 19.7 ms with a higher electron density (ns of 2.1 × 1018 cm−3 contributes to high solar conversion efficiency.

  15. Polylactides in additive biomanufacturing.

    Science.gov (United States)

    Poh, Patrina S P; Chhaya, Mohit P; Wunner, Felix M; De-Juan-Pardo, Elena M; Schilling, Arndt F; Schantz, Jan-Thorsten; van Griensven, Martijn; Hutmacher, Dietmar W

    2016-12-15

    New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed.

  16. Evolution of magnetism by rolling up hexagonal boron nitride nanosheets tailored with superparamagnetic nanoparticles.

    Science.gov (United States)

    Hwang, Da Young; Choi, Kyoung Hwan; Park, Jeong Eon; Suh, Dong Hack

    2017-02-01

    Controlling tunable properties by rolling up two dimensional nanomaterials is an exciting avenue for tailoring the electronic and magnetic properties of materials at the nanoscale. We demonstrate the tailoring of a magnetic nanocomposite through hybridization with magnetic nanomaterials using hexagonal boron nitride (h-BN) templates as an effective way to evolve magnetism for the first time. Boron nitride nanosheets exhibited their typical diamagnetism, but rolled-up boron nitride sheets (called nanoscrolls) clearly have para-magnetism in the case of magnetic susceptibility. Additionally, the Fe3O4 NP sample shows a maximum ZFC curve at about 103 K, which indicates well dispersed superparamagnetic nanoparticles. The ZFC curve for the h-BN-Fe3O4 NP scrolls exhibited an apparent rounded maximum blocking temperature at 192 K compared to the Fe3O4 NPs, leading to a dramatic increase in TB. These magnetic nanoscroll derivatives are remarkable materials and should be suitable for high-performance composites and nano-, medical- and electromechanical-devices.

  17. One-pot synthesis of biocompatible boronic acid-functionalized poly(methyl methacrylate) nanoparticles at sub-100 nm scale for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sakalak, Huseyin [Selcuk University, Metallurgy and Materials Engineering (Turkey); Ulasan, Mehmet; Yavuz, Emine [Selcuk University, Advanced Technology Research and Application Center (Turkey); Camli, Sevket Tolga, E-mail: tolgacamli@gmail.com [Biyotez Machinery Chemistry R& D Co. Ltd. (Turkey); Yavuz, Mustafa Selman, E-mail: selmanyavuz@selcuk.edu.tr [Selcuk University, Metallurgy and Materials Engineering (Turkey)

    2014-12-15

    Poly(methyl methacrylate) nanoparticles containing 4-vinylphenyl boronic acid were synthesized in one pot by surfactant-free emulsion polymerization. The nanoparticles were characterized by scanning electron microscopy and dynamic light scattering. Boron content in the nanoparticles was confirmed by electron-dispersive X-ray spectroscopy. In polymerization process, several co-monomer ratios were studied in order to obtain optimum nanoparticle size. Average hydrodynamic diameter and polydispersity index of nanoparticles versus variation of acetone percentage in the solvent mixture and total monomer concentration were investigated. The effect of boronic acid concentration in the monomer mixture on nanoparticle size and size distribution was also reported. Without further functionalization to the nanoparticles, the catechol dye, alizarin red S, was bound to boronic acid-containing nanoparticles. These nanoparticles behave as a nanosensor by which glucose or fructose can be easily detected. Dye-containing nanoparticles were undertaken displacement reaction by glucose or fructose. The glucose or fructose content was also monitored by UV–Visible spectrophotometer. Furthermore, cytotoxicity studies of boronic acid-carrying poly(methyl methacrylate) nanoparticles were carried out in 3T3 cells, which showed no toxicity effect on the cells.

  18. Investigation of boron modified graphene nanostructures; optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets

    Science.gov (United States)

    Armaković, Stevan; Armaković, Sanja J.

    2016-11-01

    In this work we investigated optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets and the consequences on these properties after modifications with boron atoms. Within the framework of density functional theory (DFT) several important optoelectronic quantities have been calculated for graphene nanoparticles: oxidation and reduction potentials, hole and electron reorganization energies, while thermally activated delayed fluorescence was assessed by calculations of energy separation between the lowest excited singlet (S1) and triplet (T1) state, Δ E (S1 -T1) . Obtained results show that optoelectronic properties of graphene nanoparticles are significantly improved by the modification with boron atoms and that investigated structures can be considered as a promising organic light emitting diode (OLED) materials. Influence of boron atoms to charge and heat transport properties of graphene nanosheets was investigated as well, employing the self-consistent non-equilibrium Green's functions with DFT. On the other side it is shown that charge transport of graphene nanosheets is not influenced by the introduction of boron atoms, while influence to the phonon subsystem is minimal.

  19. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites.

    Science.gov (United States)

    Frasconi, Marco; Tel-Vered, Ran; Riskin, Michael; Willner, Itamar

    2010-03-15

    Au nanoparticles (NPs) are functionalized with thioaniline electropolymerizable groups and (mercaptophenyl)boronic acid. The antibiotic substrates neomycin (NE), kanamycin (KA), and streptomycin (ST) include vicinal diol functionalities and, thus, bind to the boronic acid ligands. The electropolymerization of the functionalized Au NPs in the presence of NE, KA, or ST onto Au surfaces yields bisaniline-cross-linked Au NP composites that, after removal of the ligated antibiotics, provide molecularly imprinted matrixes which reveal high sensitivities toward the sensing of the imprinted antibiotic analytes (detection limits for analyzing NE, KA, and ST correspond to 2.00 +/- 0.21 pM, 1.00 +/- 0.10 pM, and 200 +/- 30 fM, respectively). The antibiotics are sensed by surface plasmon resonance (SPR) spectroscopy, where the coupling between the localized plasmon of the NPs and the surface plasmon wave associated with the Au surface is implemented to amplify the SPR responses. The imprinted Au NP composites are, then, used to analyze the antibiotics in milk samples.

  20. Synthesis and characterization of boron nitride sponges as a novel support for metal nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a simple synthetic route for the synthesis of hexagonal boron nitride (h-BN) powders with high specific surface area, in which BBr3, NH4Cl and Al powders are used as starting materials. The structure and composition of the powders were characterized by electron diffraction, Fourier transformation infrared spectroscopy and X-ray photoelectron spectroscopy in the selected area. X-ray diffraction shows wide peaks of crystalline h-BN with the particle size on the nanometer scale, and transmission electron microscopy reveals that the products have a novel spongy morphology. Silver nanoparticles loaded h-BN sponges were prepared via a one-step synthesis method. Different reaction conditions for the formation of h-BN sponges were also investigated.

  1. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    Science.gov (United States)

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea.

  2. Synthesis and characterization of boron nitride sponges as a novel support for metal nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHENG MingTao; LIU YingLiang; GU YunLe; XU ZiLin

    2008-01-01

    This paper describes a simple synthetic route for the synthesis of hexagonal boron nitride (h-BN) powders with high specific surface area, in which BBr3, NH4Cl and Al powders are used as starting materials. The structure and composition of the powders were characterized by electron diffraction, Fourier transformation infrared spectroscopy and X-ray photoelectron spectroscopy in the selected area. X-ray diffraction shows wide peaks of crystalline h-BN with the particle size on the nanometer scale, and transmission electron microscopy reveals that the products have a novel spongy morphol-ogy. Silver nanoparticles loaded h-BN sponges were prepared via a one-step synthesis method. Dif-ferent reaction conditions for the formation of h-BN sponges were also investigated.

  3. Cross-Linked Dependency of Boronic Acid-Conjugated Chitosan Nanoparticles by Diols for Sustained Insulin Release

    Directory of Open Access Journals (Sweden)

    Nabil A. Siddiqui

    2016-10-01

    Full Text Available Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes.

  4. Biodistribution of Amine-Amide Chlorin e6 Derivative Conjugate with a Boron Nanoparticle for Boron Neutron-Capture Therapy

    OpenAIRE

    А.B. Volovetsky; N.Y. Shilyagina; V.V. Dudenkova; S.О. Pasynkova; М.А. Grin; А.F. Mironov; А.V. Feofanov; I.V. Balalaeva; А.V. Maslennikova

    2016-01-01

    The aim of the investigation was to study the biodistribution of amino-amide chlorin e6 derivative conjugate with cobalt bis-dicarbollide as a potential boron transporter for the tasks of boron neutron-capture therapy. Materials and Methods. The experiments were carried out on Balb/c mice with induced murine colon carcinoma CT-26. Amino-amide chlorin e6 derivative conjugate with cobalt bis-dicarbollide was administered intravenously, the dose being 5 and 10 mg/kg body mass. The sampling for m...

  5. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    Science.gov (United States)

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  6. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy

    KAUST Repository

    Cai, Qiran

    2015-01-01

    Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement. This journal is © the Owner Societies 2015.

  7. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  8. Measurements of nanoparticle size distribution produced by laser ablation of tungsten and boron-carbide in N 2 ambient

    Science.gov (United States)

    Bereznai, Miklós; Heszler, Péter; Tóth, Zsolt; Wilhelmsson, Ola; Boman, Mats

    2006-04-01

    Nanoparticles (NPs) were produced by ablating tungsten and boron-carbide (B 4C) target materials in atmospheric pressure nitrogen ambient using ArF excimer laser pulses. The size distributions of the NPs formed during the ablation were monitored—within a 7-133 nm size window—by a condensation particle counter connected to a differential mobility analyzer. The laser repetition rate was varied between 1-50 Hz, and the fluence was systematically changed in the range of 0.5-15 J/cm 2, for both materials, allowing a comparative study in an extended laser parameter regime. The multishot ablation threshold ( Φth) of B 4C was determined to be ˜1.9 J/cm 2 for the laser used (ArF excimer, λ = 193 nm). Similarly to earlier studies, it was shown that the size distributions consist of mainly small nanoparticles (<˜20 nm) attributed to a non-thermal ablation mechanism below Φth. An additional broad peak appears (between 20 and 40 nm) above Φth as a consequence of the thermally induced macroscopic ablation. Chemical composition of deposited polydisperse nanoparticles was studied by X-ray photoelectron spectroscopy showing nitrogen incorporation into the boron-carbide.

  9. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    Science.gov (United States)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was

  10. Facile synthesis of boronate-decorated polyethyleneimine-grafted hybrid magnetic nanoparticles for the highly selective enrichment of modified nucleosides and ribosylated metabolites.

    Science.gov (United States)

    Li, Hua; Shan, Yuanhong; Qiao, Lizhen; Dou, Abo; Shi, Xianzhe; Xu, Guowang

    2013-12-03

    Ribosylated metabolites, especially modified nucleosides, have been extensively evaluated as cancer-related biomarkers. Boronate adsorbents are considered to be promising materials for extracting them from complex matrices. However, the enrichment of ribosylated metabolites in low abundance is still a challenge due to the limited capacity and selectivity of the existing boronate adsorbents. In this study, a novel type of magnetic nanoparticles named Fe3O4@SiO2@PEI-FPBA was synthesized by grafting polyethyleneimine (PEI) onto the surface of Fe3O4@SiO2 before modification by boronate groups. The high density of the amino groups on the PEI chains supplied a large number of binding sites for boronate groups. Thus, the adsorption capacity (1.34 ± 0.024 mg/g) of the nanoparticles, which is 6- to 7-fold higher than that of analogous materials, was greatly improved. The unreacted secondary amines and tertiary amines of the PEI enhanced the aqueous solubility of the nanoparticles, which could efficiently reduce nonspecific adsorption. The nanoparticles were able to capture 1,2 cis-diol nucleosides from 1000-fold interferences. Moreover, the flexible chains of PEI were favorable for effective enrichment and quick equilibration (nanoparticles. Among them, 43 were identified to be nucleosides and other ribosylated metabolites. Nine low abundance modified nucleosides were detected for the first time. In conclusion, Fe3O4@SiO2@PEI-FPBA is an attractive candidate material for the highly selective enrichment of 1,2-cis-diol compounds.

  11. Method and device to synthesize boron nitride nanotubes and related nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.

    2016-07-19

    Methods and apparatus for producing chemical nanostructures having multiple elements, such as boron and nitride, e.g. boron nitride nanotubes, are disclosed. The method comprises creating a plasma jet, or plume, such as by an arc discharge. The plasma plume is elongated and has a temperature gradient along its length. It extends along its length into a port connector area having ports for introduction of feed materials. The feed materials include the multiple elements, which are introduced separately as fluids or powders at multiple ports along the length of the plasma plume, said ports entering the plasma plume at different temperatures. The method further comprises modifying a temperature at a distal portion of or immediately downstream of said plasma plume; and collecting said chemical nanostructures after said modifying.

  12. Size-Dependent Electrocatalytic Activity of Gold Nanoparticles on HOPG and Highly Boron-Doped Diamond Surfaces

    Directory of Open Access Journals (Sweden)

    Tine Brülle

    2011-12-01

    Full Text Available Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  13. Preparation and responsive behaviors of chitosan-functionalized nanoparticles via a boronic acid-related reaction.

    Science.gov (United States)

    Wang, Yanxia; Chai, Zhihua; Wang, Na; Ren, Xuejun; Gao, Ming

    2015-01-01

    We presented here a facile strategy for constructing chitosan-functionalized nanoparticles through the coordinating interaction between phenylboronic acids in poly(3-methacrylamido phenylboronic acid) and amine groups in chitosan. The formation of nanoparticles was confirmed by Fourier transform infrared spectrometer, thermal analysis, dynamic light scattering, and transmission electron micrographs, and the nanoparticles were stable over three days in aqueous solution. The pH-sensitivity of the nanoparticles was revealed by the light scattering intensity ratio (I/I0) at different pH values. I/I0 kept constant at pH 7.0 and 8.0. When the pH value was further increased in the range of 8.0-10, I/I0 reduced. As the pH value increased above 10, I/I0 kept constant. The nanoparticles were also sensitive to glucose, and the glucose-responsive behavior was dependent on the pH values, nanoparticle concentrations, and nanoparticle compositions.

  14. The study of new anticancer drug delivery system based on the boron nitride nanoparticles

    Directory of Open Access Journals (Sweden)

    I. Yu. Zhitnyak

    2016-01-01

    Full Text Available The main problem in the treatment of many cancers is multidrug resistance due to tumor progression. Using nanosized drug delivery systems allows to overcome the mechanisms of multidrug resistance of cancer, in this case, chemotherapeutic agents can effectively introduce into cancer cells by endocytosis and accumulate near the nucleus and far from ATP-binding cassette transporters. Creation of boron nitridebased drug delivery nanocarriers with high chemical and oxidative stability is one of the perspective ways. Using chemical vapor deposition spherical boron nitride particles,100–150 nm in diameter (BNNPs, with peculiar petal-like surfaces or smooth surfaces were fabricated. BNNPs were loaded with doxorubicin. Drug loading efficacy of BNNPs-DOX was about 0.095 mg/mg of particles. BNNPs-DOX were relatively stable at neutral pH, whereas DOX is effectively released from the BNNPs at acidic pH (pH 4.5–5.5. Using confocal microscopy, the uptake of BNNPs-DOX by IAR-6-1, KB-3-1, К562 cells and multidrug resistant КВ-8-5 и IS-9 cells was studied. Most of BNNPs-DOX had been co-localized with LysoTracker, indicating that BNNPs-DOX are located in the endosomes/lysosomes after intracellular delivery.

  15. Anodic stripping voltammetry of gold nanoparticles at boron-doped diamond electrodes and its application in immunochromatographic strip tests.

    Science.gov (United States)

    Ivandini, Tribidasari A; Wicaksono, Wiyogo P; Saepudin, Endang; Rismetov, Bakhadir; Einaga, Yasuaki

    2015-03-01

    Anodic stripping voltammetry (ASV) of colloidal gold-nanoparticles (AuNPs) was investigated at boron-doped diamond (BDD) electrodes in 50 mM HClO4. A deposition time of 300 s at-0.2 V (vs. Ag/AgCl) was fixed as the condition for the ASV. The voltammograms showed oxidation peaks that could be attributed to the oxidation of gold. These oxidation peaks were then investigated for potential application in immunochromatographic strip tests for the selective and quantitative detection of melamine, in which AuNPs were used as the label for the antibody of melamine. Linear regression of the oxidation peak currents appeared in the concentration range from 0.05-0.6 μg/mL melamine standard, with an estimated LOD of 0.069 μg/mL and an average relative standard deviation of 8.0%. This indicated that the method could be considered as an alternative method for selective and quantitative immunochromatographic applications. The validity was examined by the measurements of melamine injected into milk samples, which showed good recovery percentages during the measurements.

  16. Electrophoretic analysis of biomarkers using capillary modification with gold nanoparticles embedded in a polycation and boron doped diamond electrode.

    Science.gov (United States)

    Zhou, Lin; Glennon, Jeremy D; Luong, John H T

    2010-08-15

    Field-amplified sample stacking using a fused silica capillary coated with gold nanoparticles (AuNPs) embedded in poly(diallyl dimethylammonium) chloride (PDDA) has been investigated for the electrophoretic separation of indoxyl sulfate, homovanillic acid (HVA), and vanillylmandelic acid (VMA). AuNPs (27 nm) exhibit ionic and hydrophobic interactions, as well as hydrogen bonding with the PDDA network to form a stable layer on the internal wall of the capillary. This approach reverses electro-osmotic flow allowing for fast migration of the analytes while retarding other endogenous compounds including ascorbic acid, uric acid, catecholamines, and indoleamines. Notably, the two closely related biomarkers of clinical significance, HVA and VMA, displayed differential interaction with PDDA-AuNPs which enabled the separation of this pair. The detection limit of the three analytes obtained by using a boron doped diamond electrode was approximately 75 nM, which was significantly below their normal physiological levels in biological fluids. This combined separation and detection scheme was applied to the direct analysis of these analytes and other interfering chemicals including uric and ascorbic acids in urine samples without off-line sample treatment or preconcentration.

  17. Electrolyte influence on the Cu nanoparticles electrodeposition onto boron doped diamond electrode; Influencia do eletrolito na eletrodeposicao de nanoparticulas de Cu sobre eletrodo de diamante dopado com boro

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Jorge Tadao; Santos, Laura Camila Diniz; Couto, Andrea Boldarini; Baldan, Mauricio Ribeiro; Ferreira, Neidenei Gomes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2012-07-01

    This paper presents the electrolyte influence on deposition and dissolution processes of Cu nanoparticles on boron doped diamond electrodes (DDB). Morphological, structural and electrochemical analysis showed BDD films with good reproducibility, quality and reversible in a specific redox system. Electrodeposition of Cu nanoparticles on DDB electrodes in three different solutions was influenced by pH and ionic strength of the electrolytic medium. Analyzing the process as function of the scan rate, it was verified a better efficiency in 0,5 mol L{sup -1} Na{sub 2}SO{sub 4} solution. Under the influence of the pH and ionic strength, Cu nanoparticles on DDB may be obtained with different morphologies and it was important for defining the desired properties. (author)

  18. Polylactide-Poly(6-methyl-ε-caprolactone)-Polylactide Thermoplastic Elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Martello, Mark T; Hillmyer, Marc A [UMM

    2012-11-14

    Amorphous ABA type block aliphatic polyesters can be useful as degradable and biorenewable thermoplastic elastomers. These materials can be prepared by sequential ring-opening transesterification polymerization (ROTEP) reactions and can exhibit a range of physical properties and morphologies. In this work a set of amorphous polylactide-poly(6-methyl-ε-caprolactone)-polylactide aliphatic polyester ABA triblock copolymers were prepared by consecutive controlled ring-opening polymerizations. Ring-opening polymerization of neat 6-methyl-ε-caprolactone in the presence of 1,4-benzenedimethanol and tin(II) octoate afforded α,ω-hydroxyl-terminated poly(6-methyl-ε-caprolactone). High conversions of 6-methyl-ε-caprolactone (>96%) afforded polymers with molar masses ranging from 12 to 98 kg mol-1, depending on monomer-to-initiator ratios, polymers with narrow, monomodal molecular weight distributions. An array of polylactide-poly(6-methyl-ε-caprolactone)-polylactide triblock copolymers with controlled molecular weights and narrow molecular weight distributions were synthesized using the telechelic poly(6-methyl-ε-caprolactone) samples as macroinitiators for the ring-opening polymerization of D,L-lactide. The morphological, thermal, and mechanical behaviors of these materials were explored. Several triblocks adopted well-ordered microphase-separated morphologies, and both hexagonally packed cylindrical and lamellar structures were observed. The Flory-Huggins interaction parameter was determined, x(T) = 61.2 T-1 - 0.1, based on the order-to-disorder transition temperatures of two symmetric triblocks using the calculated mean field theory result. The elastomeric mechanical behavior of two high molecular weight triblocks was characterized by tensile and elastic recovery experiments.

  19. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    Science.gov (United States)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  20. Measurements of nanoparticle size distribution produced by laser ablation of tungsten and boron-carbide in N{sub 2} ambient

    Energy Technology Data Exchange (ETDEWEB)

    Bereznai, Miklos [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, 6720 Szeged (Hungary) and Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, PO Box 538, SE-75121 Uppsala (Sweden)]. E-mail: bereznai@physx.u-szeged.hu; Heszler, Peter [Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, PO Box 534, SE-75121 Uppsala (Sweden); Research Group on Laser Physics of the Hungarian Academy of Sciences, University of Szeged, Dom ter 9, 6720 Szeged (Hungary); Toth, Zsolt [Research Group on Laser Physics of the Hungarian Academy of Sciences, University of Szeged, Dom ter 9, 6720 Szeged (Hungary); Wilhelmsson, Ola [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, PO Box 538, SE-75121 Uppsala (Sweden); Boman, Mats [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, PO Box 538, SE-75121 Uppsala (Sweden)

    2006-04-30

    Nanoparticles (NPs) were produced by ablating tungsten and boron-carbide (B{sub 4}C) target materials in atmospheric pressure nitrogen ambient using ArF excimer laser pulses. The size distributions of the NPs formed during the ablation were monitored-within a 7-133 nm size window-by a condensation particle counter connected to a differential mobility analyzer. The laser repetition rate was varied between 1-50 Hz, and the fluence was systematically changed in the range of 0.5-15 J/cm{sup 2}, for both materials, allowing a comparative study in an extended laser parameter regime. The multishot ablation threshold ({phi} {sub th}) of B{sub 4}C was determined to be {approx}1.9 J/cm{sup 2} for the laser used (ArF excimer, {lambda} = 193 nm). Similarly to earlier studies, it was shown that the size distributions consist of mainly small nanoparticles (<{approx}20 nm) attributed to a non-thermal ablation mechanism below {phi} {sub th}. An additional broad peak appears (between 20 and 40 nm) above {phi} {sub th} as a consequence of the thermally induced macroscopic ablation. Chemical composition of deposited polydisperse nanoparticles was studied by X-ray photoelectron spectroscopy showing nitrogen incorporation into the boron-carbide.

  1. Phase Segregation in Polystyrene?Polylactide Blends

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  2. Boron nitride ultrathin fibrous nanonets: one-step synthesis and applications for ultrafast adsorption for water treatment and selective filtration of nanoparticles.

    Science.gov (United States)

    Lian, Gang; Zhang, Xiao; Si, Haibin; Wang, Jun; Cui, Deliang; Wang, Qilong

    2013-12-26

    Novel boron nitride (BN) ultrathin fibrous networks are firstly synthesized via an one-step solvothermal process. The average diameter of BN nanofibers is only ~8 nm. This nanonets exhibit excellent performance for water treatment. The maximum adsorption capacity for methyl blue is 327.8 mg g(-1). Especially, they present the property of ultrafast adsorption for dye removal. Only ~1 min is enough to almost achieve the adsorption equilibrium. In addition, the BN fibrous nanonets could be applied for the size-selective separation of nanoparticles via a filtration process.

  3. Polylactide-based bionanocomposites: a promising class of hybrid materials.

    Science.gov (United States)

    Sinha Ray, Suprakas

    2012-10-16

    Polylactide (PLA) is the oldest and potentially one of the most interesting and useful biodegradable man-made polymers because of its renewable origin, controlled synthesis, good mechanical properties, and inherent biocompatibility. The blending of PLA with functional nanoparticles can yield a new class of hybrid materials, commonly known as bionanocomposites, where 1-5% nanoparticles by volume are molecularly dispersed within the PLA matrix. The dispersed nanoparticles with their large surface areas and low percolation thresholds both can improve the properties significantly in comparison with neat PLA and can introduce new value-added properties. Recently, researchers have made extraordinary progress in the practical processing and development of products from PLA bionanocomposites. The variation of the nanofillers with different functionalities can lead to many bionanocomposite applications including environmentally friendly packaging, materials for construction, automobiles, and tissue regeneration, and load-bearing scaffolds for bone reconstruction. This Account focuses on these recent research efforts, processing techniques, and key research challenges in the development of PLA-based bionanocomposites for use in applications from green plastics to biomedical applications. Growing concerns over environmental issues and high demand for advanced polymeric materials with balanced properties have led to the development of bionanocomposites of PLA and natural origin fillers, such as nanoclays. The combination of nanoclays with the PLA matrix allows us to develop green nanocomposites that possess several superior properties. For example, adding ∼5 vol % clay to PLA improved the storage modulus, tensile strength, break elongation, crystallization rate, and other mechanical properties. More importantly, the addition of clay decreases the gas and water vapor permeation, increases the heat distortion temperature and scratch resistance, and controls the biodegradation

  4. DOXORUBICIN-LOADED BORON-RICH POLYMER NANOPARTICLES FOR ORTHOTOPICALLY IMPLANTED LIVER TUMOR TREATMENT

    Institute of Scientific and Technical Information of China (English)

    Lu-zhong Zhang; Ya-jun Zhang; Wei Wu; Xi-qun Jiang

    2013-01-01

    The in vivo behaviors of doxorubicin (DOX)-loaded dextran-poly(3-acrylamidophenylboronic acid) (DextranPAPBA) nanoparticles (NPs) were studied.The DOX-loaded NPs had a narrowly distributed diameter of ca.74 nm and mainly accumulated in liver of tumor-bearing mice after intravenous injection as demonstrated by in vivo real-time near infrared fluorescent imaging.The DOX contents in various tissues were quantified and consisted well with the results of fluorescent imaging.The biodistribution pattern of DOX-loaded NPs encourages us to investigate their liver tumor treatment by using an orthotopically implanted liver tumor model,revealing that the DOX-loaded NPs formulation had better antitumor effect than free DOX.

  5. Study on the Degradation of Polylactide Microsphere In Vitro

    Institute of Scientific and Technical Information of China (English)

    HeYing; WeiShuli

    2001-01-01

    This report concentrated on the rules and mechanism of the degradation of polylactide and the microspheres. The rate of degradation was assessed with five methods: observation of microsphere surface morphology by SEM, determination of the weight loss of the microspheres, determination of the molecular mass of the polymers by GPC, determination of pH and determination of the contents of lactic acid by UV spectrophotometry. The degradation of polylactide microspheres showed two-phase characteristics. At the early stage of the degradation, the high molecular mass polymers were cleaved into lower molecular mass fractions and at the late stage, there was a period of erosion and weight loss of the microspheres. The degradation was much slower for polymers with a higher molecular mass. The polylactide degradation showed good regularity.

  6. Polylactide nanocomposites for packaging materials: A review

    Science.gov (United States)

    Widiastuti, Indah

    2016-02-01

    This review aims at highlighting on an attempt for improving the properties of polylactide (PLA) as packaging material by application of nanocomposite technology. PLA is attracting considerable interest because of more eco-friendliness from its origin as contrast to the petrochemical-based polymers and its biodegradability. Despite possessing good mechanical and optical properties, deterioration of the material properties in PLA materials during their service time could occur after prolonged exposure to humidity and high temperature condition. Limited gas barrier is another drawback of PLA material that should be overcome to satisfy the requirement for packaging application. To further extend the range of mechanical and thermal properties achievable, several attempts have been made in modifying the material such as blending with other polymers, use of plasticizing material and development of PLA nanocomposites. Nanocomposite is a fairly new type of composite that has emerged in which the reinforcing filler has nanometer scale dimensions (at least one dimension of the filler is less than 100 nm). In this review, the critical properties of PLA as packaging materials and its degradation mechanism are presented. This paper discusses the current effort and key research challenges in the development of nanocomposites based on biodegradable polymer matrices and nano-fillers. The PLA layered silicate nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modification, frequently exhibits remarkable improvements of mechanical strength, gas barrier and thermal stability.

  7. Expanded polylactide bead foaming - A new technology

    Science.gov (United States)

    Nofar, M.; Ameli, A.; Park, C. B.

    2015-05-01

    Bead foaming technology with double crystal melting peak structure has been recognized as a promising method to produce low-density foams with complex geometries. During the molding stage of the bead foams, the double peak structure generates a strong bead-to-bead sintering and maintains the overall foam structure. During recent years, polylactide (PLA) bead foaming has been of the great interest of researchers due to its origin from renewable resources and biodegradability. However, due to the PLA's low melt strength and slow crystallization kinetics, the attempts have been limited to the manufacturing methods used for expanded polystyrene. In this study, for the first time, we developed microcellular PLA bead foams with double crystal melting peak structure. Microcellular PLA bead foams were produced with expansion ratios and average cell sizes ranging from 3 to 30-times and 350 nm to 15 µm, respectively. The generated high melting temperature crystals during the saturation significantly affected the expansion ratio and cell density of the PLA bead foams by enhancing the PLA's poor melt strength and promoting heterogeneous cell nucleation around the crystals.

  8. Compositional, physical and chemical modification of polylactide

    Directory of Open Access Journals (Sweden)

    M. Żenkiewicz

    2010-11-01

    Full Text Available Purpose: The purpose of this article was to review some of the modification methods applied to improve mechanical, barrier and/or surface properties of polylactide (PLA.Design/methodology/approach: The presented modification methods were classified into three groups due to the dominant role of compositional, physical or chemical factor effecting the most PLA properties.Findings: It was found that incorporation of small amounts of montmorillonite up to 5% leads to formation of a nanocomposite with enhanced tensile strength and improved barrier properties. Corona treatment of pure PLA and PLA contained MMT nanofiller causes a significant decrease in the water contact angle and does not essentially affect the diiodomethane contact angle. This treatment leads to an increase in surface free energy that is much more significant for pure PLA than for PLA containing MMT nanofiller. It was also found that with increasing number up to 1000 of laser pulses of energies 5 mJ/cm2 an increase in surface free energy was observed, while the next laser pulses caused decrease of this energy. The determination and comparison of the influence of 3 wt.% of trimethylopropane trimethacylate (TMPTA and 3 wt.% of trially isocyanurate (TAIC crosslinking agents on the thermomechanical properties of electron beam irradiated PLA was reported.Research limitations/implications: A number of various modification methods are widely reported in literature. In this article a review of only such modification methods is presented, which are in line with the newest trends in polymer industry and science.Practical implications: There are a number of PLA properties, which need to be improved to satisfy specific application conditions. For that reasons researches are leading to find suitable modification methods to improve selected properties of PLA.Originality/value: This article presents some of modification methods, which are in line with the newest trends in polymer industry and

  9. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    Science.gov (United States)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  10. Biodegradable composites based on L-polylactide and jute fibres

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, T.; Batsberg Pedersen, W.;

    2003-01-01

    in the 180-220 degreesC range were significantly higher than those of polylactide alone. Composite samples failed in a brittle fashion under tensile load and showed little sign of fibre pull-out. Examination of composite fracture surfaces using electron microscopy showed voids occurring between the jute...

  11. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  12. Non-catalytic facile synthesis of superhard phase of boron carbide (B13C2) nanoflakes and nanoparticles.

    Science.gov (United States)

    Xie, Sky Shumao; Su, Liap Tat; Guo, Jun; Vasylkiv, Oleg; Borodianska, Hanna; Xi, Zhu; Krishnan, Gireesh M; Su, Haibin; Tokl, Alfred I Y

    2012-01-01

    Boron Carbide is one the hardest and lightest material that is also relatively easier to synthesis as compared to other superhard ceramics like cubic boron nitride and diamond. However, the brittle nature of monolithic advanced ceramics material hinders its use in various engineering applications. Thus, strategies that can toughen the material are of fundamental and technological importance. One approach is to use nanostructure materials as building blocks, and organize them into a complex hierarchical structure, which could potentially enhance its mechanical properties to exceed that of the monolithic form. In this paper, we demonstrated a simple approach to synthesize one- and two-dimension nanostructure boron carbide by simply changing the mixing ratio of the initial compound to influence the saturation condition of the process at a relatively low temperature of 1500 degrees C with no catalyst involved in the growing process. Characterization of the resulting nano-structures shows B13C2, which is a superhard phase of boron carbide as its hardness is almost twice as hard as the commonly known B4C. Using ab-initio density functional theory study on the elastic properties of both B12C3 and B13C2, the high hardness of B13C2 is consistent to our calculation results, where bulk modulus of B13C2 is higher than that of B4C. High resolution transmission electron microscopy of the nanoflakes also reveals high density of twinning defects which could potentially inhibit the crack propagation, leading to toughening of the materials.

  13. A Review on the Preparation of Borazine-derived Boron Nitride Nanoparticles and Nanopolyhedrons by Spray-pyrolysis and Annealing Process

    Directory of Open Access Journals (Sweden)

    Vincent Salles

    2016-01-01

    Full Text Available Boron nitride (BN nanostructures (= nanoBN are struc‐ tural analogues of carbon nanostructures but display different materials chemistry and physics, leading to a wide variety of structural, thermal, electronic, and optical applications. Proper synthesis routes and advanced structural design are among the great challenges for preparing nanoBN with such properties. This review provides an insight into the preparation and characteriza‐ tion of zero dimensional (0D nanoBN including nanopar‐ ticles and nanopolyhedrons from borazine, an economically competitive and attractive (from a technical point of view molecule, beginning with a concise intro‐ duction to hexagonal BN, followed by an overview on the past and current state of research on nanoparticles. Thus, a review of the spray-pyrolysis of borazine to form BN nanoparticles is firstly presented. The use of BN nanopar‐ ticles as precursors of BN nanopolyhedrons is then de‐ tailed. Applications and research perspectives for these 0D nanoBN are discussed in the conclusion.

  14. Preparation of Stereocomplex Polylactide Bioplastics from Star-shaped/Linear Polylactide Blending

    Directory of Open Access Journals (Sweden)

    Supasin Pasee

    2015-09-01

    Full Text Available The stereocomplex polylactide (scPLA films of star-shaped poly(L-lactide (PLLA/linear poly(D-lactide (1PDLA blends were prepared by solution blending before film casting. The influences of the PLLA/1PDLA blend ratios (75/25, 50/50 and 25/75 w/w, 1PDLA molecular weights (30,000 and 60,000 g/mol and PLLA arm numbers (1-, 4- and 16-arm on the crystallinity and mechanical properties of the scPLA films were investigated. The stereocomplex crystallinity (csc, stress at break and elongation at break of the scPLA films were the highest in the 50/50 (w/w blend ratio. The csc of the scPLA films decreased and the mechanical properties slightly increased as the 1PDLA molecular weight increased. For the same blend ratio and 1PDLA molecular weight, the scPLA films prepared from the 16PLLA blending had the highest csc values.

  15. Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation

    Science.gov (United States)

    Sun, Liang; Pitto-Barry, Anaïs; Kirby, Nigel; Schiller, Tara L.; Sanchez, Ana M.; Dyson, M. Adam; Sloan, Jeremy; Wilson, Neil R.; O'Reilly, Rachel K.; Dove, Andrew P.

    2014-12-01

    Co-crystallization of polymers with different configurations/tacticities provides access to materials with enhanced performance. The stereocomplexation of isotactic poly(L-lactide) and poly(D-lactide) has led to improved properties compared with each homochiral material. Herein, we report the preparation of stereocomplex micelles from a mixture of poly(L-lactide)-b-poly(acrylic acid) and poly(D-lactide)-b-poly(acrylic acid) diblock copolymers in water via crystallization-driven self-assembly. During the formation of these stereocomplex micelles, an unexpected morphological transition results in the formation of dense crystalline spherical micelles rather than cylinders. Furthermore, mixture of cylinders with opposite homochirality in either THF/H2O mixtures or in pure water at 65 °C leads to disassembly into stereocomplexed spherical micelles. Similarly, a transition is also observed in a related PEO-b-PLLA/PEO-b-PDLA system, demonstrating wider applicability. This new mechanism for morphological reorganization, through competitive crystallization and stereocomplexation and without the requirement for an external stimulus, allows for new opportunities in controlled release and delivery applications.

  16. New developments on the ring opening polymerisation of polylactide

    OpenAIRE

    Jacobsen, Sven; Fritz, Hans-Gerhard; Degée, Philippe; Dubois, Philippe; Jérôme, Robert

    2000-01-01

    Polylactides (PLA), biodegradable aliphatic polyesters, produced solely from renewable resources may substitute petrochemically based polymers in a broad range of applications in the near future, if we manage to produce them at lower cost and higher efficiency as nowadays. Possible applications include food packaging for meat and soft drinks, films for agro-industry and non-wovens in hygienic products. The authors developed, based on a new catalytic system, a reactive extrusion polymerisation...

  17. Study on synthesis of polylactide from kitchen garbage

    Institute of Scientific and Technical Information of China (English)

    WANG Qunhui; SUN Xiaohong; Ma Rui; ZHAO Wenchao

    2005-01-01

    Polylactide is regarded as the most promising biodegradable plastics because of its high quality in physical properties as well as chemical recyclability and compostability. Furthermore, lactic acid (LA) as a raw material of this polymer can be produced from organic wastes. In this study, recovery LA from fermentation broth of kitchen garbage was carried out by esterification of ammonium lactate in fermentation broth with the butanol to produce butyl lactate, purification of butyl lactate and subsequent hydrolysis of the purified butyl lactate. The purity of recovered LA was 90%. Then the recovered LA was used to produce lactide as an intermediate of polylactide. Through an orthogonal-design experiment, the optimum condition of synthesizing lactide was determined and under this condition the yield of synthesizing lactide was 75%. And moreover, polylactide was conventionally obtained by a ring-opening polymerazation from the above lactide, and the viscosity average molecular weight was up to 9.2×104, which could meet requirement to produce biodegradable plastics. In the present process, the neutral ammonium lactate in the fermentation broth was employed as a starting material, thereby eliminating the need to use a reactor with acid resistance properties. In addition, the liberated butanol in hydrolysis process and unreacted butanol in esterification process can be recycled to the above esterification. Therefore, the present process is economic.

  18. Function of NaOH hydrolysis in electrospinning ZnO nanofibers via using polylactide as templates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mengzhu, E-mail: liumengzhu125@163.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Wang, Yongpeng, E-mail: wyp4889@gmail.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Cheng, Zhiqiang, E-mail: czq5974@163.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); College of Resources and Environment, Jilin Agriculture University, Changchun, Jilin Province 130118 (China); Song, Lihua, E-mail: 120836684@qq.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Shenyang Institute of Geology and Mineral Resources, CGS, Shenyang, Liaoning Province 110034 (China); Zhang, Mingyue, E-mail: zhangmingyue8803@163.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Hu, Meijuan, E-mail: 442675083@qq.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Li, Junfeng, E-mail: jfli@jlu.edu.cn [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China)

    2014-09-15

    Graphical abstract: - Highlights: • PLA was used as templates to electrospin ZnO nanofibers for the first time. • Without NaOH hydrolysis, only ZnO film was prepared. • Under function of NaOH, ZnO nanofibers were obtained. • The function of NaOH was discussed. • ZnO nanofibers showed much higher photocatalytical efficiency than ZnO film. - Abstract: Mixture of polylactide (8 wt%), zinc acetate (6 wt%) and hexafluoroisopropanol was first used as electrospinning solution to fabricate ZnO nanofibers. Unfortunately, after direct calcination of the precursor polylactide/zinc acetate nanofibers, only ZnO film was prepared. Surprisingly, when the precursor fibers were pre-hydrolyzed with NaOH, ZnO nanofibers with diameter of 678 nm were obtained. The mechanism analysis showed that the preserve of fiber structure was attributed to the formation of zinc polylactic acid in the process of hydrolyzation. After characterized by scanning electron microscope and transmission electron microscope, the ZnO film was found to be an aggregation of irregular nanoparticles and the ZnO nanofiber was a necklace-like arrangement of cylindrical grains. X-ray diffraction and photoluminescence measurements indicated that the crystalline quality of the ZnO nanofibers was higher than the film. Furthermore, photocatalytic performance of the ZnO samples was investigated. Comparing with ZnO film, ZnO nanofibers exhibited much higher activity.

  19. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  20. Direct electrochemistry of Shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique.

    Science.gov (United States)

    Wu, Wenguo; Xie, Ronggang; Bai, Linling; Tang, Zuming; Gu, Zhongze

    2012-05-01

    Microbial Fuel Cells (MFCs) are robust devices capable of taping biological energy, converting pollutants into electricity through renewable biomass. The fabrication of nanostructured electrodes with good bio- and electrochemical activity, play a profound role in promoting power generation of MFCs. Au nanoparticles (AuNPs)-modified Boron-Doped Diamond (BDD) electrodes are fabricated by layer-by-layer (LBL) self-assembly technique and used for the direct electrochemistry of Shewanella loihica PV-4 in an electrochemical cell. Experimental results show that the peak current densities generated on the Au/PAH multilayer-modified BDD electrodes increased from 1.25 to 2.93 microA/cm(-2) as the layer increased from 0 to 6. Different cell morphologies of S. loihica PV-4 were also observed on the electrodes and the highest density of cells was attached on the (Au/PAH)6/BDD electrode with well-formed three-dimensional nanostructure. The electrochemistry of S. loihica PV-4 was enhanced on the (Au/PAH)4/BDD electrode due to the appropriate amount of AuNPsand thickness of PAH layer.

  1. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  2. Doping Silicon Wafers with Boron by Use of Silicon Paste

    Institute of Scientific and Technical Information of China (English)

    Yu Gao; Shu Zhou; Yunfan Zhang; Chen Dong; Xiaodong Pi; Deren Yang

    2013-01-01

    In this work we introduce recently developed silicon-paste-enabled p-type doping for silicon.Boron-doped silicon nanoparticles are synthesized by a plasma approach.They are then dispersed in solvents to form silicon paste.Silicon paste is screen-printed at the surface of silicon wafers.By annealing,boron atoms in silicon paste diffuse into silicon wafers.Chemical analysis is employed to obtain the concentrations of boron in silicon nanoparticles.The successful doping of silicon wafers with boron is evidenced by secondary ion mass spectroscopy (SIMS) and sheet resistance measurements.

  3. A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Nantaphol, Siriwan [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Siangproh, Weena, E-mail: weenasi@hotmail.com [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattanna, Bangkok 10110 (Thailand)

    2015-09-03

    A novel paper-based analytical device (PAD) coupled with a silver nanoparticle-modified boron-doped diamond (AgNP/BDD) electrode was first developed as a cholesterol sensor. The AgNP/BDD electrode was used as working electrode after modification by AgNPs using an electrodeposition method. Wax printing was used to define the hydrophilic and hydrophobic areas on filter paper, and then counter and reference electrodes were fabricated on the hydrophilic area by screen-printing in house. For the amperometric detection, cholesterol and cholesterol oxidase (ChOx) were directly drop-cast onto the hydrophilic area, and H{sub 2}O{sub 2} produced from the enzymatic reaction was monitored. The fabricated device demonstrated a good linearity (0.39 mg dL{sup −1} to 270.69 mg dL{sup −1}), low detection limit (0.25 mg dL{sup −1}), and high sensitivity (49.61 μA mM{sup −1} cm{sup −2}). The precision value for ten replicates was 3.76% RSD for 1 mM H{sub 2}O{sub 2}. In addition, this biosensor exhibited very high selectivity for cholesterol detection and excellent recoveries for bovine serum analysis (in the range of 99.6–100.8%). The results showed that this new sensing platform will be an alternative tool for cholesterol detection in routine diagnosis and offers the advantages of low sample/reagent consumption, low cost, portability, and short analysis time. - Highlights: • Novel PAD coupled with AgNP/BDDE for cholesterol determination was developed. • Wide linear range, low detection limit and high selectivity were achieved. • This sensor was successfully applied for cholesterol determination in bovine serum. • This platform offers the advantages of low sample/reagent consumption and low cost.

  4. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties

    Science.gov (United States)

    Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu

    2014-04-01

    In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.

  5. Optimizing supercritical antisolvent process parameters to minimize the particle size of paracetamol nanoencapsulated in L-polylactide

    Directory of Open Access Journals (Sweden)

    Kalani M

    2011-05-01

    Full Text Available Mahshid Kalani, Robiah Yunus, Norhafizah AbdullahChemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Selangor Darul Ehsan, MalaysiaBackground: The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated.Methods and results: The optimized process parameters resulted in production of nanoencapsulated paracetamol in L-polylactide with a mean diameter of approximately 300 nm at 120 bar, 30°C, and a polymer concentration of 16 ppm. Thermogravimetric analysis illustrated the thermal characteristics of the nanoparticles. The high electrical charge on the surface of the nanoparticles caused the particles to repel each other, with the high negative zeta potential preventing flocculation.Conclusion: Our results illustrate the effect of different process parameters on particle size and morphology, and validate results obtained via RSM statistical software. Furthermore, the in vitro drug-release profile is consistent with a Korsmeyer–Peppas kinetic model.Keywords: supercritical, antisolvent, encapsulation, nanoparticles, biodegradable polymer, optimization, drug delivery

  6. 阿克拉霉素A聚乳酸毫微粒冻干针剂在兔体内的血浆药动学研究%Study on Pharmacokinetics of Aclacinomycin A Polylactide Lyophilized Nanoparticle in Plasma of Rabbit

    Institute of Scientific and Technical Information of China (English)

    何林; 蒋学华

    2001-01-01

    OBJECTIVE:To study the pharmacokinetics of aclacinomycin A polylactide lyophilized nanopartical (ACM-A-PLA-NP) in plasma of rabbit.METHODS:HPLC was selected to determine the concentration of aclacinomycin A in plasma after a single dose of ACM-A-PLA-NP and lyophilized ACM-A.RESULTS:The pharmacokinetic parameters of these two dosage forms were obtained by 3p87.CONCLUSION:The lyophilized ACM-A-PLA-NP has a more sustained release character comparing with the lyophilized ACM-A.%目的:研究阿克拉霉素A聚乳酸毫微粒冻干针剂在兔体内的血浆药代动力学。方法:采用HPLC法测定给药后的血浆药物浓度。结果:经3p87药动学程序处理,得到两种制剂的药代动力学参数。结论:与阿克拉霉素A相比,阿克拉霉素A聚乳酸毫微粒具有显著的缓释特性。

  7. Nanoporous poly(lactide) by olefin metathesis degradation.

    Science.gov (United States)

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy.

  8. An overview of the recent developments in polylactide (PLA) research.

    Science.gov (United States)

    Madhavan Nampoothiri, K; Nair, Nimisha Rajendran; John, Rojan Pappy

    2010-11-01

    The concept of biodegradable plastics is of considerable interest with respect to solid waste accumulation. Greater efforts have been made in developing degradable biological materials without any environmental pollution to replace oil-based traditional plastics. Among numerous kinds of degradable polymers, polylactic acid sometimes called polylactide, an aliphatic polyester and biocompatible thermoplastic, is currently a most promising and popular material with the brightest development prospect and was considered as the 'green' eco friendly material. Biodegradable plastics like polyglycolic acid, polylactic acid, polycaprolactone, polyhydroxybutyrate, etc. are commercially available for controlled drug releases, implantable composites, bone fixation parts, packaging and paper coatings, sustained release systems for pesticides and fertilizers and compost bags etc. This review will provide information on current PLA market, brief account on recent developments in the synthesis of lactic acid (monomer of PLA) through biological route, PLA synthesis, unique material properties of PLA and modification of those by making copolymers and composites, PLA degradation and its wide spectrum applications.

  9. Study on Tough Blends of Polylactide and Acrylic Impact Modifier

    Directory of Open Access Journals (Sweden)

    Xiaoli Song

    2014-02-01

    Full Text Available Acrylic impact modifiers (ACRs with different soft/hard monomer ratios (mass ratios were prepared by semi-continuous seed emulsion copolymerization using the soft monomer butyl acrylate and the hard monomer methyl methacrylate, which were used to toughen polylactide (PLA. The effect of soft/hard ACR monomer ratio on the mechanical properties of PLA/ACR blends was investigated. The results showed that the impact strength and the elongation at break of PLA/ACR blends increased with increasing soft/hard ACR monomer ratio, while the tensile and flexural strengths of PLA had little change. The impact strength of PLA/ACR blends could be increased about 4 times more than that of pure PLA when the soft/hard monomer ratio of ACR was 90/10, which was the optimal ratio for good mechanical properties of PLA. Additionally, the possible mechanism of ACR toughening in PLA was discussed through impact fracture phase morphology analysis.

  10. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  11. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  12. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  13. Tuning field emission properties of boron nanocones with catalyst concentration

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Tian Yuan; Wang Deng-Ke; Shi Xue-Zhao; Hui Chao; Shen Cheng-Min; Gao Hong-Jun

    2011-01-01

    Single crystalline boron nanocones are prepared by using a simple spin spread method in which Fe3O4 nanoparticles are pre-manipulated on Si(111) to form catalyst patterns of different densities. The density of boron nanocones can be tuned by changing the concentration of catalyst nanoparticles. High-resolution transmission electron microscopy analysis shows that the boron nanocone has a β-tetragonal structure with good crystallization. The field emission behaviour is optimal when the spacing distance is close to the nanocone length, which indicates that this simple spin spread method has great potential applications in electron emission nanodevices.

  14. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    Science.gov (United States)

    Bhardwaj, Rahul

    Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The

  15. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  16. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  17. Characterisation of low-odour emissive polylactide/cellulose fibre biocomposites for car interior

    Directory of Open Access Journals (Sweden)

    D. Rusu

    2013-09-01

    Full Text Available Low odour-emissive polylactide/cellulose fibre biocomposites, intended for car interior, were prepared and characterised. The impact of the different stages of processing (drying cycles, compounding, injection moulding on the extent of polylactide degradation and on biocomposites properties was investigated by size exclusion chromatography, thermogravimetry, differential scanning calorimetry. In parallel, the odour emission of these materials was quantified via dynamic dilution olfactometry and Field of odours® method. The changes in molecular weight and global odour emission indicated that compounding had a strong impact on polylactide degradation and odour emission, while injection moulding had no significant impact. Adding 0.5 wt% of an absorbent agent based on poly(1-methylpyrrol-2-ylsquaraine could divide the global odour concentration by a factor 2. The morphology, mechanical and thermal properties of injection moulded PLAbiocomposites were not affected by the presence of the absorbent agent.

  18. Research on Flax Fiber Reinforced Polylactide Environmental Friendly Composite

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-hong; WANG Rui; LIU Ming; SHEN Lu; BIAN Dong-cai

    2006-01-01

    Biodegradable polylactide acid (PLA) resin can be combined with flax fibers to produce biodegradable composite materials. In our study, commercial PLA fibers were mixed with flax fibers by a non-woven method so as to make nonwoven pre-forms, which can be generated into flax fiber reinforced PLA environmental friendly composites by heat pressing technology. The tensile, flexural and impact properties are tested in order to evaluate the basic physical properties of the composites, and the influenced factors listed as making technology of the pre-forms, weight ratio of flax fibers and heat pressing technology are discussed and optimized, which can be described as weight ratio of flax fibers and PLA fibers is 50/50, heating temperature, time and pressure are respectively 195℃, 20 min and 12.5 Mpa.Preliminary results show that mechanical properties of the flax/PLA composites are quite promising compared with flax/PP composites in common commercial automotive use.Scanning electron microscope (SEM) is used to analyze the tensile specimen fracture surfaces, which shows voids and gaps occurring between flax fibers and PLA matrix and sign of fiber pull-out, the strength of flax/PLA interface can be further improved.

  19. Fabrication of polylactide nanocomposite scaffolds for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Mkhabela, Vuyiswa J.; Ray, Suprakas Sinha [Department of Applied Chemistry, University of Johannesburg, Doornfontein 2028 (South Africa); DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa)

    2015-05-22

    Highly porous three-dimensional polylactide (PLA) scaffolds were obtained from PLA incorporated with different amounts of chitosan-modified montmorillonite (CS-MMT), through solvent casting and particulate leaching method. The processed scaffolds were tested in vitro for their possible application in bone tissue engineering. Scaffolds were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB SEM), Fourier Transform Infra-Red (FTIR), and X-Ray Diffraction (XRD) to study their structure and intermolecular interactions. Bioresorbability tests in simulated body fluid (pH 7.4) were conducted to assess the response of the scaffolds in a simulated physiological condition. The FIB SEM images of the scaffolds showed a porous architecture with gradual change in morphology with increasing CS-MMT concentration. FTIR analysis revealed the presence of both PLA and CS-MMT particles on the surface of the scaffolds. XRD showed that the crystalline unit cell type was the same for all the scaffolds, and crystallinity decreased with an increase in CS-MMT concentration. The scaffolds were found to be bioresorbable, with rapid bioresorbability on the scaffolds with a high CS-MMT concentration.

  20. Moisture curable toughened poly(lactide utilizing vinyltrimethoxysilane based crosslinks

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-10-01

    Full Text Available Vinyltrimethoxysilane (VTMOS was grafted on to the backbone of poly(lactide (PLA through a free radical grafting reaction using reactive extrusion (REX processing. The methoxy groups of the silane provide the modified PLA sites for crosslinking through a moisture induced pathway. VTMOS grafting efficiencies of up to 90% were obtained. The newly created methoxy functionality of the modified PLA readily undergoes hydrolysis and condensation forming siloxane crosslinks in the material. Crosslinking with VTMOS exhibited improved modulus, strength, and impact toughness while showing a decrease in ductility. Incorporating silanol-terminated poly(dimethylsiloxane (OH-PDMS resulted in the formation of longer siloxane crosslinks. These samples showed an increase in modulus and impact toughness due to the crosslinking, while the longer siloxane linkages resulted in improved ductility and tensile toughness. This is unusual for polymers toughened through crosslinking reactions. Scanning Electron Microscopy (SEM of the fractured surfaces showed the presence of these elongated siloxane crosslinks. This enhanced ability for the modified PLA to deform and absorb energy results in the increase in both impact and tensile toughness.

  1. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  2. Amphiphilic chitosan-grafted-functionalized polylactic acid based nanoparticles as a delivery system for doxorubicin and temozolomide co-therapy.

    Science.gov (United States)

    Di Martino, Antonio; Sedlarik, Vladimir

    2014-10-20

    The aim of this work was to investigate the potential of an amphiphilic system comprising chitosan-grafted polylactide and carboxyl-functionalized polylactide acid as a carrier for the controlled release and co-release of two DNA alkylating drugs: doxorubicin and temozolomide. Polylactide and carboxyl-functionalized polylactide acid were obtained through direct melt polycondensation reaction, using methanesulfonic acid as a non-toxic initiator, and subsequently these were grafted to the chitosan backbone through a coupling reaction, utilizing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as a condensing agent. ATR-FTIR analysis and conductometric titration confirmed that a reaction between CS and PLA, PLACA2% and PLACA5% occurred. Chitosan-grafted-polylactide and polylactide-citric acid nanoparticles were prepared via the polyelectrolyte complex technique, applying dextran sulphate as a polyanion, and loaded with doxorubicin and temozolomide. The diameter of particles, ζ-potential and their relationship to temperature and pH were analysed in all formulations. Encapsulation, co-encapsulation efficiency and release studies were conducted in different physiological simulated environments and human serum. Results showed the continuous release of drugs without an initial burst in different physiological media.

  3. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites.

    Science.gov (United States)

    Goffin, Anne-Lise; Raquez, Jean-Marie; Duquesne, Emmanuel; Siqueira, Gilberto; Habibi, Youssef; Dufresne, Alain; Dubois, Philippe

    2011-07-11

    In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of l-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. It was clearly evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.

  4. Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Katiyar, Vimal; Plackett, David

    2011-01-01

    Melt-extruded L-polylactide (PLA) nanocomposite films were prepared from commercially available PLA and laurate-modified Mg–Al layered double hydroxide (LDH-C12). Three films were tested for total migration as well as specific migration of LDH, tin, laurate and low molecular weight PLA oligomers ...... detected arises from the use of organotin catalysts in the manufacture of PLA....

  5. Water transport and clustering behavior in homopolymer and graft copolymer polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Du, An; Koo, Donghun; Theryo, Grayce; Hillmyer, Marc A.; Cairncross, Richard A. (Drexel); (UMM)

    2015-02-19

    Polylactide is a bio-based and biodegradable polymer well-known for its renewable origins. Water sorption and clustering behavior in both a homopolymer polylactide and a graft copolymer of polylactide was studied using the quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) technique. The graft copolymer, poly(1,5-cyclooctadiene-co-5-norbornene-2-methanol-graft-D,L-lactide), contained polylactide chains (95 wt.%) grafted onto a hydrophobic rubbery backbone (5 wt.%). Clustering is an important phenomenon in the study of water transport properties in polymers since the presence of water clusters can affect the water diffusivity. The HCC method using the thermal power signals and Van't Hoff's law were both employed to estimate the water sorption enthalpy. Sorption enthalpy of water in both polymers was determined to be approximately -40 kJ/mol for all water activity levels. Zimm-Lundberg analysis showed that water clusters start to form at a water activity of 0.4. The engaged species induced clustering (ENSIC) model was used to curve fit sorption isotherms and showed that the affinity among water molecules is higher than that between water molecules and polymer chains. All the methods used indicate that clustering of water molecules exists in both polymers.

  6. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  7. Dyeability of Polylactide Fabric with Hydrophobic Anthraquinone Dyes%疏水性葸醌染料在聚乳酸织物上的染色性能

    Institute of Scientific and Technical Information of China (English)

    何亮; 张淑芬; 唐炳涛; 王丽丽; 杨锦宗

    2009-01-01

    The dyeability of polylactide fabric has been investigated with the substituted aminoanthraquinone hydrophobic dyes. Their application to the polylactide fabric led to good exhaustion values and good wash fastness between 4 and 5. Microscopic assessment of cross-sections of the dyed polylactide fibres confirmed that these dyes could penetrate into the fibres. The nature of the substituted amino groups showed little influence on the wash fastness, but clearly influenced the exhaustion and light fastness.

  8. New nanoforms of carbon and boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Pokropivny, V V [Institute for Problems of Materials Science of National Academy of Sciences of Ukraine (Ukraine); Ivanovskii, A L [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)], e-mail: Ivanovskii@ihim.uran.ru

    2008-10-31

    Data on new carbon nanostructures including those based on fullerenes, nanotubes as well monolithic diamond-like nanoparticles, nanofibres, various nanocomposites, etc., published in the last decade are generalised. The experimental and theoretical data on their atomic and electronic structures, the nature of chemical bonds and physicochemical properties are discussed. These data are compared with the results obtained in studies of nanoforms of boron nitride, an isoelectronic analogue of carbon. Potential fields of applications of the new nanostructures are considered.

  9. New nanoforms of carbon and boron nitride

    Science.gov (United States)

    Pokropivny, V. V.; Ivanovskii, A. L.

    2008-10-01

    Data on new carbon nanostructures including those based on fullerenes, nanotubes as well monolithic diamond-like nanoparticles, nanofibres, various nanocomposites, etc., published in the last decade are generalised. The experimental and theoretical data on their atomic and electronic structures, the nature of chemical bonds and physicochemical properties are discussed. These data are compared with the results obtained in studies of nanoforms of boron nitride, an isoelectronic analogue of carbon. Potential fields of applications of the new nanostructures are considered.

  10. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-05

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite.

  11. Cytotoxic and Immunochemical Properties of Viscumin Encapsulated 
in Polylactide Microparticles.

    Science.gov (United States)

    Kolotova, E S; Egorova, S G; Ramonova, A A; Bogorodski, S E; Popov, V K; Agapov, I I; Kirpichnikov, M P

    2012-01-01

    Biodegradable polylactide microparticles with encapsulated cytotoxic protein viscumin were obtained via the ultrasound-assisted supercritical fluid technique. The size of the microparticles was 10-50 µM, as shown by electron microscopy. The time course of viscumin release from microparticles was studied using an immunoenzyme test system with anti-viscumin monoclonal antibodies. It was found that 99.91% of the cytotoxic protein was incorporated into polymer microparticles. Only 0.08% of the initially encapsulated viscumin was released from the microparticles following incubation for 120 h in a phosphate-buffered saline at neutral pH. Importantly, the method of ultrasonic dry supercritical fluid encapsulation failed to alter both the cytotoxic potency and the immunochemical properties of the encapsulated viscumin. Thus, this procedure can be used to generate biodegradable polylactide microparticles with encapsulated bioactive substances.

  12. Preparation and in vitro studies of surface modified polylactide aniracetam-loaded nanoparticles for intranasal delivery%表面修饰的鼻用聚乳酸载药纳米粒的制备及体外性质研究

    Institute of Scientific and Technical Information of China (English)

    边俊杰; 徐超群; 袁志翔; 陈晓亮

    2013-01-01

    OBJECTIVE To prepare ehitosan hydrochloride, Tween - 80, PEG20000, borneol/mentholum eutectic mixture multiple modified aniracetam loaded polylactic acid nanoparticles for nasal administration, and evaluate its stability preliminarily in vitro. METHODS Aniracetam - loaded multiple modified nanoparticles were prepared using solvent diffusion - evaporation combined with magnetic stirring method, and its prescription influence factors were screened and optimized. Then, particle size distribution, Zeta potential, encapsulation efficiency, stability in vitro and the cumulative release rate were measured. RESULTS The multiple modified nanoparticles were generally spherical with a mean diameter of 141.5 ± 30.4 nm, and a potential of 20. 4 mV. The encapsulation efficiency was up to 98. 14% and the drug loading was 11.57% . It was stable in lysozyme and rat nasal washes after incubation for 2 h at 37 ℃. Cumulative release percentage was less than 88% within 24 hours in pH7.4 and pH4.0 PBS. CONCLUSION Multiple modified drug - loaded nanoparticles had high encapsulation efficiency and prefect stability.%目的 研究壳聚糖盐酸盐、吐温80、聚乙二醇20000、冰片薄荷低共溶物多重修饰的茴拉西坦聚乳酸鼻腔给药脑靶向纳米粒的制备工艺,并初步评价其体外稳定性.方法 采用溶剂扩散-蒸发法制备多重修饰的载药纳米粒,筛选并优化了其处方,考察了粒径分布、Zeta电位、包封率、载药量、稳定性及体外累积释药百分率.结果 壳聚糖盐酸盐、吐温80、聚乙二醇20000三重修饰的纳米粒形态圆整,粒径分布141.5±30.4 nm,Zeta电位20.4 mV,包封率98.14%,载药量为11.57%.所制纳米粒在溶菌酶和大鼠鼻洗液中稳定,在pH7.4和pH4.0的磷酸盐缓冲液中的24 h内累计释药百分率小于88%.结论 壳聚糖盐酸盐、吐温80、聚乙二醇20000、冰片薄荷低共溶物多重修饰的载药纳米粒包封率较高,性质稳定.

  13. Impact du polylactide (PLA) sur la qualité des bioproduits au contact

    OpenAIRE

    Salazar Gonzalez, Romulo Vinicio

    2013-01-01

    Packaging plays a major role in the preservation of food but mass transfer between the packaging material and foodstuff occurs during shelf life leading to the quality deterioration. Polylactide (PLA) is a novel packaging material; therefore its interaction with food was investigated at service conditions. The sorption of ethyl esters, benzaldehyde and 2-nonanone at low concentrations and in mixture and the effects on the thermal properties of PLA were studied. Multiple Headspace Extraction (...

  14. Multi-scale analysis of the impact of polylactide morphology on gas barrier properties

    OpenAIRE

    Fernandes Nassar, Samira; Guinault, Alain; Delpouve, Nicolas; Divry, Véronique; Sollogoub, Cyrille

    2017-01-01

    Semicrystalline polylactide (PLA) films with controlled morphology were produced by thermal crystallization to optimize the oxygen barrier properties. The crystalline morphology of PLA at the scales of the lamella and the spherulite was investigated and the mobile amorphous phase dynamics were studied. The crystalline morphology had a negligible impact on the oxygen diffusion coefficient. The occurrence of a rigid amorphous fraction (RAF) in the amorphous phase due to its insufficient decoupl...

  15. 聚乳酸的合成及应用%Preparation and Application of Polylactide

    Institute of Scientific and Technical Information of China (English)

    刘俊; 刘义荣

    2001-01-01

    Polylactide and its copolymers are polymer materials that can be degraded by organisms and have good biocompatibility. Since the polymer materials have no toxicity and can be absorbed, greater and greater attention has been paid to the related researches and development, and they are increasingly applied in various areas, especially medicine and pharmacy. There are three methods for preparing polylactide and its copolymers. The tests for evaluating the degraded property of polylactide and its copolymers have been existing for more than thirty years, but all of them have their defects. The property and technological level of polylactide and its copolymers remain to be improved for use in some areas. Once the manufacture of poly actide is industrialized, it can be of wide application in the fields of medicine and degraded plastics.%聚乳酸及其共聚物是具有优良的生物相容性和可生物降解的高分子材料,无毒,可吸收。其研制与开发日益受到人们的重视,在各个领域尤其是医药领域得到越来越广泛的应用。制备的方法有直接缩聚法、开环聚合法、共聚法。对聚乳酸及其共聚物降解性的试验评价已有三十多年,但都有缺陷。在有些方面它们的性能和制造工艺还有待改进。作为可生物降解的高分子材料,聚乳酸一旦工业化,它在医用及降解塑料方面将会有难以估量的应用前景。

  16. Polyurethane/Polylactide-Blend Films Doped with Zinc Ions for the Growth and Expansion of Human Olfactory Ensheathing Cells (OECs and Adipose-Derived Mesenchymal Stromal Stem Cells (ASCs for Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-04-01

    Full Text Available Polymeric biomaterials based on polyurethane and polylactide blends are promising candidates for regenerative medicine applications as biocompatible, bioresorbable carriers. In current research we showed that 80/20 polyurethane/polylactide blends (PU/PLDL with confirmed biological properties in vitro may be further improved by the addition of ZnO nanoparticles for the delivery of bioactive zinc oxide for cells. The PU/PLDL blends were doped with different concentrations of ZnO (0.001%, 0.01%, 0.05% and undertaken for in vitro biological evaluation using human adipose stromal stem cells (ASCs and olfactory ensheathing cells (OECs. The addition of 0.001% of ZnO to the biomaterials positively influenced the morphology, proliferation, and phenotype of cells cultured on the scaffolds. Moreover, the analysis of oxidative stress markers revealed that 0.001% of ZnO added to the material decreased the stress level in both cell lines. In addition, the levels of neural-specific genes were upregulated in OECs when cultured on sample 0.001 ZnO, while the apoptosis-related genes were downregulated in OECs and ASCs in the same group. Therefore, we showed that PU/PLDL blends doped with 0.001% of ZnO exert beneficial influence on ASCs and OECs in vitro and they may be considered for future applications in the field of regenerative medicine.

  17. Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland); Tracz, Adam [Centre for Molecular and Macromolecular Studies of the Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź (Poland); Żenkiewicz, Marian [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland)

    2015-03-01

    The paper presents the results of studies to determine the applicability of plasma modification in the process of polylactide (PLA) surface preparation prior to the autocatalytic metallization. The polylactide plasma modification was carried out in an oxygen or nitrogen chemistry. The samples were tested with the following methods: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and electron spectrophotometry (XPS). Scanning electron microscopy and atomic force microscopy images were demonstrated. The results of surface free energy calculations, performed based on the results of the contact angle measurements have been presented. The results of the qualitative (degree of oxidation or nitridation) and quantitative analysis of the chemical composition of the polylactide surface layer have also been described. The results of the studies show that the DC plasma modification performed in the proposed condition is a suitable as a method of surface preparation for the polylactide metallization. - Highlights: • We modified polylactide surface layer with plasma generated in oxygen or nitrogen. • We tested selected properties and surface structure of modified samples. • DC plasma modification can be used to prepare the PLA surface for metallization. • For better results metallization should be preceded by sonication process.

  18. Development of natural fiber reinforced polylactide-based biocomposites

    Science.gov (United States)

    Arias Herrera, Andrea Marcela

    Polylactide or PLA is a biodegradable polymer that can be produced from renewable resources. This aliphatic polyester exhibits good mechanical properties similar to those of polyethylene terephthalate (PET). Since 2003, bio-based high molecular weight PLA is produced on an industrial scale and commercialized under amorphous and semicrystalline grades for various applications. Enhancement of PLA crystallization kinetics is crucial for the competitiveness of this biopolymer as a commodity material able to replace petroleum-based plastics. On the other hand, the combination of natural fibers with polymer matrices made from renewable resources, to produce fully biobased and biodegradable polymer composite materials, has been a strong trend in research activities during the last decade. Nevertheless, the differences related to the chemical structure, clearly observed in the marked hydrophilic/hydrophobic character of the fibers and the thermoplastic matrix, respectively, represent a major drawback for promoting strong fiber/matrix interactions. The aim of the present study was to investigate the intrinsic fiber/matrix interactions of PLAbased natural fiber composites prepared by melt-compounding. Short flax fibers presenting a nominal length of ˜1 mm were selected as reinforcement and biocomposites containing low to moderate fiber loading were processed by melt-mixing. Fiber bundle breakage during processing led to important reductions in length and diameter. The mean aspect ratio was decreased by about 50%. Quiescent crystallization kinetics of PLA and biocomposite systems was examined under isothermal and non-isothermal conditions. The nucleating nature of the flax fibers was demonstrated and PLA crystallization was effectively accelerated as the natural reinforcement content increased. Such improvement was controlled by the temperature at which crystallization took place, the liquid-to-solid transition being thermodynamically promoted by the degree of supercooling

  19. nanoparticles

    Science.gov (United States)

    Zhao, Yu; Li, Hui; Liu, Xu-Jun; Guan, Lei-Lei; Li, Yan-Li; Sun, Jian; Ying, Zhi-Feng; Wu, Jia-Da; Xu, Ning

    2014-06-01

    Evenly separated crystalline CuIn0.8Ga0.2Se2 (CIGS) nanoparticles are deposited on ITO-glass substrate by pulsed laser deposition. Such CIGS layers are introduced between conjugated polymer layers and ITO-glass substrates for enhancing light absorbance of polymer solar cells. The P3HT:PCBM absorbance between 300 and 650 nm is enhanced obviously due to the introduction of CIGS nanoparticles. The current density-voltage curves of a P3HT:PCBM/CIGS solar cell demonstrate that the short-circuit current density is improved from 0.77 to 1.20 mA/cm2. The photoluminescence spectra show that the excitons in the polymer are obviously quenched, suggesting that the charge transfer between the P3HT:PCBM and CIGS occurred. The results reveal that the CIGS nanoparticles may exhibit the localized surface plasmon resonance effect just as metallic nanostructures.

  20. Selective modification of polylactide by introducing acrylate groups: IR spectroscopy, gel permeation chromatography, and differential thermal analysis

    Science.gov (United States)

    Shashkova, V. T.; Matveeva, I. A.; Glagolev, N. N.; Zarkhina, T. S.; Timashev, P. S.; Bagratashvili, V. N.; Solov'eva, A. B.

    2016-10-01

    One-stage modification of polylactide has been performed to obtain the acrylate derivatives of the polymer capable of further polymerization and preparation of cross-linked polymer materials suitable for creating implants. The reaction mechanism was determined by IR spectroscopy, gel permeation chromatography, and differential thermal analysis. It was shown for the first time that the reaction path changes depending on the ratio of components so that the desired product polylactide acrylate forms with a ~90% yield only in the presence of large (approximately tenfold) excesses of the isocyanate and acrylate components; at the equimolar ratio of components generally used in urethane formation, a mixture of the desired product (~30%), oligourethane diacrylates, and unchanged polylactide forms.

  1. Oxygen Sensing Difluoroboron β-Diketonate Polylactide Materials with Tunable Dynamic Ranges for Wound Imaging.

    Science.gov (United States)

    DeRosa, Christopher A; Seaman, Scott A; Mathew, Alexander S; Gorick, Catherine M; Fan, Ziyi; Demas, James N; Peirce, Shayn M; Fraser, Cassandra L

    2016-11-23

    Difluoroboron β-diketonate poly(lactic acid) materials exhibit both fluorescence (F) and oxygen sensitive room-temperature phosphorescence (RTP). Introduction of halide heavy atoms (Br and I) is an effective strategy to control the oxygen sensitivity in these materials. A series of naphthyl-phenyl (nbm) dye derivatives with hydrogen, bromide and iodide substituents were prepared for comparison. As nanoparticles, the hydrogen derivative was hypersensitive to oxygen (0-0.3%), while the bromide analogue was suited for hypoxia detection (0-3% O2). The iodo derivative, BF2nbm(I)PLA, showed excellent F to RTP peak separation and an 0-100% oxygen sensitivity range unprecedented for metal-free RTP emitting materials. Due to the dual emission and unconventionally long RTP lifetimes of these O2 sensing materials, a portable, cost-effective camera was used to quantify oxygen levels via lifetime and red/green/blue (RGB) ratiometry. The hypersensitive H dye was well matched to lifetime detection, simultaneous lifetime and ratiometric imaging was possible for the bromide analogue, whereas the iodide material, with intense RTP emission and a shorter lifetime, was suited for RGB ratiometry. To demonstrate the prospects of this camera/material design combination for bioimaging, iodide boron dye-PLA nanoparticles were applied to a murine wound model to detect oxygen levels. Surprisingly, wound oxygen imaging was achieved without covering (i.e. without isolating from ambient conditions, air). Additionally, would healing was monitored via wound size reduction and associated oxygen recovery, from hypoxic to normoxic. These single-component materials provide a simple tunable platform for biological oxygen sensing that can be deployed to spatially resolve oxygen in a variety of environments.

  2. Boron and the kidney.

    Science.gov (United States)

    Pahl, Madeleine V; Culver, B Dwight; Vaziri, Nosratola D

    2005-10-01

    Boron, the fifth element in the periodic table, is ubiquitous in nature. It is present in food and in surface and ocean waters, and is frequently used in industrial, cosmetic, and medical settings. Exposure to boron and related compounds has been recently implicated as a potential cause of chronic kidney disease in Southeast Asia. This observation prompted the present review of the published data on the effects of acute and chronic exposure to boron on renal function and structure in human beings and in experimental animals.

  3. Innovative method for boron extraction from iron ore containing boron

    Science.gov (United States)

    Wang, Guang; Wang, Jing-song; Yu, Xin-yun; Shen, Ying-feng; Zuo, Hai-bin; Xue, Qing-guo

    2016-03-01

    A novel process for boron enrichment and extraction from ludwigite based on iron nugget technology was proposed. The key steps of this novel process, which include boron and iron separation, crystallization of boron-rich slag, and elucidation of the boron extraction behavior of boron-rich slag by acid leaching, were performed at the laboratory. The results indicated that 95.7% of the total boron could be enriched into the slag phase, thereby forming a boron-rich slag during the iron and slag melting separation process. Suanite and kotoite were observed to be the boron-containing crystalline phases, and the boron extraction properties of the boron-rich slag depended on the amounts and grain sizes of these minerals. When the boron-rich slag was slowly cooled to 1100°C, the slag crystallized well and the efficiency of extraction of boron (EEB) of the slag was the highest observed in the present study. The boron extraction property of the slow-cooled boron-rich slag obtained in this study was much better than that of szaibelyite ore under the conditions of 80% of theoretical sulfuric acid amount, leaching time of 30 min, leaching temperature of 40°C, and liquid-to-solid ratio of 8 mL/g.

  4. On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis.

    Science.gov (United States)

    Tang, Jia; Liu, Yingchao; Qi, Dawei; Yao, Guoping; Deng, Chunhui; Zhang, Xiangmin

    2009-11-01

    In this study, an on-plate-selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless-steel plate, then modified with 4-mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI-MS simply by deposition of 2,5-dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on-plate strategy promising for online enrichment of glycopeptides, which could be applied in high-throughput proteome research.

  5. Boron-Based Drug Design.

    Science.gov (United States)

    Ban, Hyun Seung; Nakamura, Hiroyuki

    2015-06-01

    The use of the element boron, which is not generally observed in a living body, possesses a high potential for the discovery of new biological activity in pharmaceutical drug design. In this account, we describe our recent developments in boron-based drug design, including boronic acid containing protein tyrosine kinase inhibitors, proteasome inhibitors, and tubulin polymerization inhibitors, and ortho-carborane-containing proteasome activators, hypoxia-inducible factor 1 inhibitors, and topoisomerase inhibitors. Furthermore, we applied a closo-dodecaborate as a water-soluble moiety as well as a boron-10 source for the design of boron carriers in boron neutron capture therapy, such as boronated porphyrins and boron lipids for a liposomal boron delivery system.

  6. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  7. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  8. Preparation and Characterization of Biodegradable Polylactide(PLA) Microspheres Encapsulating Ginsenoside Rg3

    Institute of Scientific and Technical Information of China (English)

    LIU Cheng-bai; ZHANG Di; LI De-guan; JIANG Dan; CHEN Xia

    2008-01-01

    In this study,the process of a biodegradable polylactide(PLA) microsphere encapsulating ginsenoside Rg3 was first studied by the emulsion solvent evaporation method,for enhancing solubility and stability of ginsenoside Rg3.Alabum was also first used as a modifier in this method.The mean diameter of the prepared PLA microspheres containing Rg3 was 40 μm.Ginsenoside Rg3 released from the microspheres was studied by HPLC and detected by UV.It was found that the drug release curve fitted the Model Heller-Baker best.

  9. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    Science.gov (United States)

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  10. Tailor-Made Boronic Acid Functionalized Magnetic Nanoparticles with a Tunable Polymer Shell-Assisted for the Selective Enrichment of Glycoproteins/Glycopeptides.

    Science.gov (United States)

    Zhang, Xihao; Wang, Jiewen; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2015-11-11

    Biomedical sciences, and in particular biomarker research, demand efficient glycoproteins enrichment platforms. In this work, we present a facile and time-saving method to synthesize phenylboronic acid and copolymer multifunctionalized magnetic nanoparticles (NPs) using a distillation-precipitation polymerization (DPP) technique. The polymer shell is obtained through copolymerization of two monomers-affinity ligand 3-acrylaminophenylboronic acid (AAPBA) and a hydrophilic functional monomer. The resulting hydrophilic Fe3O4@P(AAPBA-co-monomer) NPs exhibit an enhanced binding capacity toward glycoproteins by an additional functional monomer complementary to the surface presentation of the target protein. The effects of monomer ratio of AAPBA to hydrophilic comonomers on the binding of glycoproteins are systematically investigated. The morphology, structure, and composition of all the synthesized microspheres are characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The hydrophilic Fe3O4@P(AAPBA-co-monomer) microspheres show an excellent performance in the separation of glycoproteins with high binding capacity; And strong magnetic response allows them to be easily separated from solution in the presence of an external magnetic field. Moreover, both synthetic Fe3O4@P(AAPBA) and copolymeric NPs show good adsorption to glycoproteins in physiological conditions (pH 7.4). The Fe3O4@P(AAPBA-co-monomer) NPs are successfully utilized to selectively capture and identify the low-abundance glycopeptides from the tryptic digest of horseradish peroxidase (HRP). In addition, the selective isolation and enrichment of glycoproteins from the egg white samples at physiological condition is obtained by Fe3O4@P(AAPBA-co-monomer) NPs as adsorbents.

  11. Thermo-Responsive Polyurethane Hydrogels Based on Poly(ε-caprolactone Diol and Amphiphilic Polylactide-Poly(Ethylene Glycol Block Copolymers

    Directory of Open Access Journals (Sweden)

    Shan-hui Hsu

    2016-07-01

    Full Text Available Waterborne polyurethane (PU based on poly(ε-caprolactone (PCL diol and an amphiphilic polylactide-poly(ethylene glycol (PLA-PEG diblock copolymer was synthesized. The molar ratio of PCL/PLA-PEG was 9:1 with different PLA chain lengths. The PU nanoparticles were characterized by dynamic light scattering (DLS, small angle X-ray scattering (SAXS and rheological analysis. The water contact angle measurement, infrared spectroscopy, wide angle X-ray scattering (WAXS, thermal and mechanical analyses were conducted on PU films. Significant changes in physio-chemical properties were observed for PUs containing 10 mol % of amphiphilic blocks. The water contact angle was reduced to 12°–13°, and the degree of crystallinity was 5%–10%. The PU dispersions underwent sol-gel transition upon the temperature rise to 37 °C. The gelation time increased as the PLA chain length increased. In addition, the fractal dimension of each gel was close to that of a percolation cluster. Moreover, PU4 with a solid content of 26% could support the proliferation of human mesenchymal stem cells (hMSCs. Therefore, thermo-responsive hydrogels with tunable properties are promising injectable materials for cell or drug delivery.

  12. A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites

    DEFF Research Database (Denmark)

    Trifol Guzman, Jon; Plackett, David; Sillard, Cecile

    2016-01-01

    Partially acetylated cellulose nanofibers (CNF) were chemically extracted from sisal fibers and the performance of those CNF as nanofillers for polylactide (PLA) for food packaging applications was evaluated. Three PLA nanocomposites; PLA/CNF (cellulose nanofibers), PLA/CNC (nanocrystalline cellu...

  13. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer.

    Science.gov (United States)

    Fang, Huagao; Jiang, Feng; Wu, Qianghua; Ding, Yunsheng; Wang, Zhigang

    2014-08-27

    Supertough biocompatible and biodegradable polylactide materials were fabricated by applying a novel and facile method involving reactive blending of polylactide (PLA) and poly(ethylene glycol) diacylate (PEGDA) monomer with no addition of exogenous radical initiators. Torque analysis and FT-IR spectra confirm that cross-linking reaction of acylate groups occurs in the melt blending process according to the free radical polymerization mechanism. The results from differential scanning calorimetry, phase contrast optical microscopy and transmission electron microscopy indicate that the in situ polymerization of PEGDA leads to a phase separated morphology with cross-linked PEGDA (CPEGDA) as the dispersed particle phase domains and PLA matrix as the continuous phase, which leads to increasing viscosity and elasticity with increasing CPEGDA content and a rheological percolation CPEGDA content of 15 wt %. Mechanical properties of the PLA materials are improved significantly, for example, exhibiting improvements by a factor of 20 in tensile toughness and a factor of 26 in notched Izod impact strength at the optimum CPEGDA content. The improvement of toughness in PLA/CPEGDA blends is ascribed to the jointly contributions of crazing and shear yielding during deformation. The toughening strategy in fabricating supertoughened PLA materials in this work is accomplished using biocompatible PEG-based polymer as the toughening modifier with no toxic radical initiators involved in the processing, which has a potential for biomedical applications.

  14. Obtaining of biodegradable polylactide films and fibers filled hydroxyapatite for medical purposes

    Science.gov (United States)

    Lytkina, D. N.; Shapovalova, Y. G.; Rasskazova, L. A.; Kurzina, I. A.; Filimoshkin, A. G.

    2015-11-01

    Relevance of the work is due to the need for new materials that are used in medicine (orthopedics, surgery, dentistry, and others) as a substitute for natural bone tissue injuries, fractures, etc. The aim of presented work is developing of a method of producing biocompatible materials based on polyesters of hydroxycarboxylic acids and calcium phosphate ceramic (hydroxyapatite, HA) with homogeneous distribution of the inorganic component. Bioactive composites based on poly-L-lactide (PL) and hydroxyapatite with homogeneous distribution were prepared. The results of scanning electron microscopy confirm homogeneous distribution of the inorganic filler in the polymer matrix. The positive effect of ultrasound on the homogeneity of the composites was determined. The rate of hydrolysis of composites was evaluated. The rate of hydrolysis of polylactide as an individual substance is 7 times lower than the rate of hydrolysis of the polylactide as a part of the composite. It was found that materials submarines HA composite and do not cause a negative response in the cells of the immune system, while contributing to anti-inflammatory cytokines released by cells.

  15. Synchrotron X-ray Scattering Studies of Poly(lactide) Electrospun Fibers Containing Carbon Nanotubes

    Science.gov (United States)

    Zhu, Yazhe; Cebe, Peggy

    2014-03-01

    Carbon nanotubes(CNTs) often serve as an effective nucleating agent that facilitates the crystallization of semicrystalline polymers. Here we study the influence of CNTs on thermal and structural properties of Poly-lactide (PLA), which is well-known as a biodegradable and biocompatible thermoplastic polymer. The effect of CNTs on the crystallization and melting behavior of electrospun fibers of poly (L-lactide) (PLLA, with 100% L-isomer) and poly (D-lactide) (PDLA, containing 4% D-isomer) was systemically studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform spectroscopy(FT-IR) and real time synchrotron wide-angle X-ray scattering (WAXS) . Multi-walled CNTs were co-electrospun with the poly(lactides) in weight ratios ranging from 0.1 to 4.0 wt% MW-CNT. PLA/carbon nanotubes composite electrospun fibers were successfully produced by appropriate choice of processing conditions and solution concentration. The morphologies of neat and CNT-filled electrospun nanofibers were observed by scanning electron microscopy. WAXS and DSC results show that lower content of CNTs contributes to higher speed of crystallization. However the results also showed that at the highest concentration of CNTs the ultimate crystallinity was reduced. FTIR and X-ray results show that PLA fibers have different crystal forms at high and low crystallization temperature. DSC results also show that D-lactide has reduced crystallinity compared to L-lactide.

  16. Obtaining of biodegradable polylactide films and fibers filled hydroxyapatite for medical purposes

    Energy Technology Data Exchange (ETDEWEB)

    Lytkina, D. N., E-mail: darya-lytkina@yandex.ru; Shapovalova, Y. G., E-mail: elena.shapovalova@ro.ru; Rasskazova, L. A., E-mail: ly-2207@mail.ru; Kurzina, I. A., E-mail: kurzina99@mail.ru; Filimoshkin, A. G., E-mail: filag05@rambler.ru [National Research Tomsk State University 36, Lenina Avenue, Tomsk, 634050 (Russian Federation)

    2015-11-17

    Relevance of the work is due to the need for new materials that are used in medicine (orthopedics, surgery, dentistry, and others) as a substitute for natural bone tissue injuries, fractures, etc. The aim of presented work is developing of a method of producing biocompatible materials based on polyesters of hydroxycarboxylic acids and calcium phosphate ceramic (hydroxyapatite, HA) with homogeneous distribution of the inorganic component. Bioactive composites based on poly-L-lactide (PL) and hydroxyapatite with homogeneous distribution were prepared. The results of scanning electron microscopy confirm homogeneous distribution of the inorganic filler in the polymer matrix. The positive effect of ultrasound on the homogeneity of the composites was determined. The rate of hydrolysis of composites was evaluated. The rate of hydrolysis of polylactide as an individual substance is 7 times lower than the rate of hydrolysis of the polylactide as a part of the composite. It was found that materials submarines HA composite and do not cause a negative response in the cells of the immune system, while contributing to anti-inflammatory cytokines released by cells.

  17. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Stepczyńska, Magdalena [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87‐100 Toruń (Poland); Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2016-07-30

    Highlights: • Plasma modification affects surface roughness, wettability and surface energy. • Polylactide and polycaprolactone aging causes decay of the modification effects. • Changes in the surface characteristic and wettability deterioration were observed. • The decay occurs due to migration of low molecular weight molecules to the surface. • Plasma modification effect lasts longer in the case of polycaprolactone. - Abstract: The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  18. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  19. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  20. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  1. Plasma boron and the effects of boron supplementation in males.

    Science.gov (United States)

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  2. Bright prospects for boron

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  3. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  4. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires

    Institute of Scientific and Technical Information of China (English)

    FU Xin; JIANG Jun; LIU Chao; YU Zhi-Yang; Steffan LEA; YUAN Jun

    2009-01-01

    We report a preferential growth of boron carbide nanowires with a Eve-fold twinned internal structure.The nanowires are found to grow catalytically via iron boron nanoparticles,but unusually the catalytic particle is in contact with the low-energy surfaces of boron carbide with V-shaped contact lines.We propose that this catalytical growth may be caused by preferential nucleation at the re-entrant grooves due to the twinning planes,followed by rapid spreading of atomic steps.This is consistent with the observed temperature dependence of the five-fold twinned nanowire growth.

  5. Bacterial cellulose nanopaper as reinforcement for polylactide composites: renewable thermoplastic NanoPaPreg.

    Science.gov (United States)

    Montrikittiphant, Thanit; Tang, Min; Lee, Koon-Yang; Williams, Charlotte K; Bismarck, Alexander

    2014-10-01

    Bacterial cellulose (BC) is often regarded as a prime candidate nano-reinforcement for the production of renewable nanocomposites. However, the mechanical performance of most BC nanocomposites is often inferior compared with commercially available polylactide (PLLA). Here, the manufacturing concept of paper-based laminates is used, i.e., "PaPreg," to produce BC nanopaper reinforced PLLA, which has been called "nanoPaPreg" by the authors. It is demon-strated that high-performance nanoPaPreg (vf = 65 vol%) with a tensile modulus and strength of 6.9 ± 0.5 GPa and 125 ± 10 MPa, respectively, can be fabricated. It is also shown that the tensile properties of nanoPaPreg are predominantly governed by the mechanical performance of BC nanopaper instead of the individual BC nanofibers, due to difficulties impregnating the dense nanofibrous BC network.

  6. Preparation and Enzymatic Degradation of Porous Crosslinked Polylactides of Biomass Origin

    Directory of Open Access Journals (Sweden)

    Yuya Kido

    2014-06-01

    Full Text Available To understand the enzymatic degradation behavior of crosslinked polylactide (PLA, the preparation and enzymatic degradation of both thermoplastic (linear and crosslinked PLAs that have pore structures with different dimensions were carried out. The porous structures of the linear PLA samples were of micro and nanoporous nature, and prepared by batch foaming with supercritical CO2 and compared with the porous structures of crosslinked PLA (Lait-X created by the salt leaching method. The surface and cross-sectional morphologies of the porous structures were investigated by using scanning electron microscopy. The morphological analysis of porous Lait-X showed a rapid loss of physical features within 120 h of exposure to proteinase-K enzymatic degradation at 37 °C. Due to the higher affinity for water, enhanced enzymatic activity as compared to the linear PLA porous structures in the micro and nanoporous range was observed.

  7. Polystyrene-Polylactide Bottlebrush Block Copolymer at the Air/Water Interface

    Science.gov (United States)

    Zhao, Lei; Byun, Myunghwan; Rzayev, Javid; Lin, Zhiqun

    2010-03-01

    Hydrophobic ultrahigh molecular weight bottlebrush block copolymer and linear block copolymer of polystyrene-polylactide (PS-PLA) were shown to be capable of forming Langmuir monolayers and exhibiting unique assembly behaviors at the air/water interface, which cannot be addressed by the classic theory of Langmuir monolayer of amphiphilic copolymers. New models were proposed to illustrate these intriguing surface behaviors. The self-assembled structure of Langmuir monolayer of bottlebrush block copolymer was determined by a combination of AFM measurement, thermal annealing, and enzymatic degradation experiment. To the best of our knowledge, this is among few studies on hydrophobic block copolymers at the air/water interface. As such, it not only complements the well-known models of self-assembly of amphiphilic block copolymers at the air/water interface but also expands the use of Langmuir-Blodgett (LB) technique to hydrophobic block copolymers.

  8. Repair and reconstruction of common bile duct by poly(lactide stent

    Directory of Open Access Journals (Sweden)

    Xiaoyi Xu

    2010-01-01

    Full Text Available To investigate the effect of repair of bioabsorbable poly(lactide (PLA biliary stent in common bile duct (CBD transection injury in canine prior to the clinical application. Circular tubing CBD stent was prepared by melt extraction technique using PLA. A transection incision was made on CBD of the normal canine, and then closed the incision with laser welding followed the implantation of PLA tubular stent into it. The stent was obtained to determine degradation of PLA in vivo at postoperative week 1, 4, and 12, respectively. The changes of outer diameter and burst pressure of CBD were investigated. Furthermore, serum liver enzyme values and CBD histopathological analysis were examined in the animals. The results noted that the polymer stent exhibited the same biomedical functions as T tubes and no significant tissue response. Therefore, biodegradable PLA stent matches the requirements in repair and reconstruction of CBD to support the duct, guide bile drainage and reduce T-tube-related complications.

  9. Hybrid Fibre Polylactide Acid Composite with Empty Fruit Bunch: Chopped Glass Strands

    Directory of Open Access Journals (Sweden)

    K. Y. Tshai

    2014-01-01

    Full Text Available Hybrid polylactide acid (PLA composites reinforced with palm empty fruit bunch (EFB and chopped strand E-glass (GLS fibres were investigated. The hybrid fibres PLA composite was prepared through solution casting followed by pelletisation and subsequent hot compression press into 1 mm thick specimen. Chloroform and dichloromethane were used as solvent and their effectiveness in dissolving PLA was reported. The overall fibre loading was kept constant at volume fraction, Vf, of 20% while the ratio of EFB to GLS fibre was varied between Vf of 0 : 20 to 20 : 0. The inclusion of GLS fibres improved the tensile and flexural performance of the hybrid composites, but increasing the glass fibre length from 3 to 6 mm has a negative effect on the mechanical properties of the hybrid composites. Moreover, the composites that were prepared using chloroform showed superior tensile and flexural properties compared to those prepared with dichloromethane.

  10. Interaction of Boron Clusters with Oxygen: a DFT Study

    Science.gov (United States)

    Salavitabar, Kamron; Boggavarapu, Kiran; Kandalam, Anil

    A controlled combustion involving aluminum nanoparticles has often been the focus of studies in the field of solid fuel propellants. However very little focus has been given to the study of boron nanoparticles in controlled combustion. In contrast to aluminum nanoclusters, boron nanoclusters (Bn) are known to exhibit a planar geometries even at the size of n = 19 - 20, and thus offer a greater surface area for interaction with oxygen. Earlier experimental studies have shown that boron nanoclusters exhibit different reactivity with oxygen depending on their size and charge. In this poster, we present our recent density functional theory based results, focusing on the reactivity patterns of neutral and negatively charged B5 cluster with On, where n = 1 - 5; and B6 cluster with On (n = 1 - 2). The effect of charge on the reactivity of boron cluster, variation in the stability of product clusters, i e., neutral and negatively charged B5On (n = 1 - 5) and B6On (n = 1 - 2) are also examined. Financial Support from West Chester University Foundation under FaStR grant is acknowledged.

  11. Multidimensional potential of boron-containing molecules in functional materials

    Indian Academy of Sciences (India)

    Wolfgang Kaim; Narayan S Hosmane

    2010-01-01

    Boron-containing molecular systems have received much attention under theoretical aspects and from the side of synthetic organic chemistry. However, their potential for further applications such as optically interesting effects such as Non-Linear Optics (NLO), medical uses for Boron Neutron Capture Therapy (BNCT), or magnetism has been recognised only fairly recently. Molecular systems containing boron offer particular mechanisms to accommodate unpaired electrons which may result in stable radicals as spin-bearing materials. Among such materials are organoboron compounds in which the prototypical electron deficient (10B, 11B) boron vs. carbon centers can accept and help to delocalise added electrons in a 2-dimensionally conjugated system. Alternatively, oligoboron clusters B$_{n}$X$_{n}^{k}$ and the related carboranes or metallacarboranes are capable of adding or losing single electrons to form paramagnetic clusters with 3-dimensionally delocalised spin, according to combined experimental studies and quantum chemical calculations. The unique nuclear properties of 10B are of therapeutic value if their selective transport via appended carbon nanotubes, boron nanotubes, or magnetic nanoparticles can be effected.

  12. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R.; Sleytr, U. B.; Toca-Herrera, José L.

    2013-09-01

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (Tg) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below Tg. The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm2), followed by PDLLA (0.034 μm2), and PLGA (0.039 μm2), and the largest size for PLCL (0.09 μm2). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (˜1800 ng cm-2) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest Tg). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  13. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films.

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R; Sleytr, U B; Toca-Herrera, José L

    2013-09-28

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (T(g)) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below T(g). The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm(2)), followed by PDLLA (0.034 μm(2)), and PLGA (0.039 μm(2)), and the largest size for PLCL (0.09 μm(2)). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (~1800 ng cm(-2)) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest T(g)). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  14. Oxidation of Silicon and Boron in Boron Containing Molten Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new process of directly smelting boron steel from boron-containing pig iron has been established. The starting material boron-containing pig iron was obtained from ludwigite ore, which is very abundant in the eastern area of Liaoning Province of China. The experiment was performed in a medium-frequency induction furnace, and Fe2O3 powder was used as the oxidizing agent. The effects of temperature, addition of Fe2O3, basicity, stirring, and composition of melt on the oxidation of silicon and boron were investigated respectively. The results showed that silicon and boron were oxidized simultaneously and their oxidation ratio exceeded 90% at 1 400 ℃. The favorable oxidation temperature of silicon was about 1 300-1 350 C. High oxygen potential of slag and strong stirring enhanced the oxidation of silicon and boron.

  15. Boronic acid shell-crosslinked dextran-b-PLA micelles for acid-responsive drug delivery.

    Science.gov (United States)

    Zhao, Ziwei; Yao, Xuemei; Zhang, Zhe; Chen, Li; He, Chaoliang; Chen, Xuesi

    2014-11-01

    Herein, 3-carboxy-5-nitrophenylboronic acid (CNPBA) shell-crosslinked micelles based on amphiphilic dextran-block-polylactide (Dex-b-PLA) are prepared and used for efficient intracellular drug deliveries. Due to the reversible pH-dependent binding with diols to form boronate esters, CNPBA modified Dex-b-PLA shows excellent pH-sensitivity. In neutral aqueous conditions, CNPBA-Dex-b-PLA forms shell-crosslinked micelles to enable DOX loading, while in acid conditions, the boronate esters hydrolyze and the micelles de-crosslink to release loaded DOX. In vitro release studies indicate that the release of the DOX cargo is minimized at physiological conditions, while there is a burst release in response to low pHs. The cell viability of CNPBA-Dex-b-PLA investigated by MTT assay was more than 90%, indicating that, as a drug delivery system, CNPBA-Dex-b-PLA has good cytocompatibility. These features suggest that the pH-responsive biodegradable CNPBA-Dex-b-PLA can efficiently load and deliver DOX into tumor cells and enhance the inhibition of cellular proliferation in vitro, providing a favorable platform as a drug delivery system for cancer therapy.

  16. Theranostic nanoparticles for the treatment of cancer

    Science.gov (United States)

    Moore, Thomas Lee

    The main focus of this research was to evaluate the ability of a novel multifunctional nanoparticle to mediate drug delivery and enable a non-invasive approach to measure drug release kinetics in situ for the treatment of cancer. These goals were approached by developing a nanoparticle consisting of an inorganic core (i.e. gadolinium sulfoxide doped with europium ions or carbon nanotubes). This was coated with an external amphiphilic polymer shell comprised of a biodegradable polyester (i.e. poly(lactide) or poly(glycolide)), and poly(ethylene glycol) block copolymer. In this system, the inorganic core mediates the imaging aspect, the relatively hydrophobic polyester encapsulates hydrophobic anti-cancer drugs, and poly(ethylene glycol) stabilizes the nanoparticle in an aqueous environment. The synthesis of this nanoparticle drug delivery system utilized a simple one-pot room temperature ring-opening polymerization that neglected the use of potentially toxic catalysts and reduced the number of washing steps. This functionalization approach could be applied across a number of inorganic nanoparticle platforms. Coating inorganic nanoparticles with biodegradable polymer was shown to decrease in vitro and in vivo toxicity. Nanoparticles could be further coated with multiple polymer layers to better control drug release characteristics. Finally, loading polymer coated radioluminescent nanoparticles with photoactive drugs enabled a mechanism for measuring drug concentration in situ. The work presented here represents a step forward to developing theranostic nanoparticles that can improve the treatment of cancer.

  17. Encapsulated boron as an osteoinductive agent for bone scaffolds.

    Science.gov (United States)

    Gümüşderelioğlu, Menemşe; Tunçay, Ekin Ö; Kaynak, Gökçe; Demirtaş, Tolga T; Aydın, Seda Tığlı; Hakkı, Sema S

    2015-01-01

    The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells.

  18. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; J. X. Zhong

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  19. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  20. Fabrication and anti-microbial evaluation of drug loaded polylactide space filler intended for ridge preservation following tooth extraction

    Directory of Open Access Journals (Sweden)

    Nebu George Thomas

    2011-01-01

    Full Text Available Background: The preservation or reduction of alveolar ridge resorption following tooth extraction is important in patients especially for those intended for implants at a later stage. One way to achieve this is by using membranes, graft materials, and biodegradable space fillers to prevent alveolar bone resorption and promote regeneration. A major attraction for using biodegradable and biocompatible polymers as space fillers for ridge preservation is their safety profile in comparison to xenograft materials like lyophilized bone and collagen. Materials and Methods: Biocompatible polylactide space fillers were fabricated by fusing porous polylactide particles. The sponges were loaded with drugs by placing them in the respective solutions. Pseudomonas aeruginosa was isolated from a chronic periodontitis patient and in vitro anti-microbial evaluation was done with the drug loaded sponges. Results: Chlorhexidine loaded space filler showed significant anti microbial effect against multiple drug resistant Pseudomonas aeruginosa isolated from a patient with chronic periodontitis. Conclusion: The results of this study indicate that biodegradable drug releasing polylactide space fillers has the potential to be used for ridge preservation following tooth extraction. Release of drugs in the socket may prove useful in preventing development of alveolar osteitis post extraction which can interfere with normal healing of the socket. Synthetic biodegradable polymers also exhibit a controlled degradation rate to achieve complete resorption within the intended time.

  1. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Danilevicius, Paulius; Georgiadi, Leoni [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Pateman, Christopher J.; Claeyssens, Frederik [Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Chatzinikolaidou, Maria, E-mail: mchatzin@materials.uoc.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Department of Materials Science and Technology, University of Crete, PO Box 2208, 71303 Heraklion (Greece); Farsari, Maria, E-mail: mfarsari@iesl.forth.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece)

    2015-05-01

    Highlights: • We studied the porosity of laser-made 3D scaffolds on MC3T3-E1 pre-osteoblastic cells. • We made polylactide 3D scaffolds with pores 25–110 μm. - Abstract: The aim of this study is to demonstrate the accuracy required for the investigation of the role of solid scaffolds’ porosity in cell proliferation. We therefore present a qualitative investigation into the effect of porosity on MC3T3-E1 pre-osteoblastic cell ingrowth of three-dimensional (3D) scaffolds fabricated by direct femtosecond laser writing. The material we used is a purpose made photosensitive pre-polymer based on polylactide. We designed and fabricated complex, geometry-controlled 3D scaffolds with pore sizes ranging from 25 to 110 μm, representing porosities 70%, 82%, 86%, and 90%. The 70% porosity scaffolds did not support cell growth initially and in the long term. For the other porosities, we found a strong adhesion of the pre-osteoblastic cells from the first hours after seeding and a remarkable proliferation increase after 3 weeks and up to 8 weeks. The 86% porosity scaffolds exhibited a higher efficiency compared to 82% and 90%. In addition, bulk material degradation studies showed that the employed, highly-acrylated polylactide is degradable. These findings support the potential use of the proposed material and the scaffold fabrication technique in bone tissue engineering.

  2. 纳米金颗粒在掺硼金刚石薄膜电极表面的自组装及其电化学性能分析∗%Self-assembly of gold nanoparticles onto boron-doped diamond electrode and its electrochemical properties

    Institute of Scientific and Technical Information of China (English)

    崔凯; 汪家道; 冯东; 陈大融

    2015-01-01

    Citrate-coated gold nanoparticles (diameter about 18 nm)were absorbed onto boron-doped diamond (BDD)film electrode through a self-assembly process after the surface of the anodized BDD film was animated. By changing the pH of gold nanoparticles solution,we synthesized gold nanoparticles modified BDD electrode with uniform distribution and high coverage (about 30%) of gold nanoparticles.In the system of [Fe (CN)6 ]3 -/4- ,through AC impedance analysis and cyclic voltammetry analysis,we find that heterogeneous elec-tron transfer rate constant (K app )of gold nanoparticles modified BDD electrode increased from 2.8 × 10 -4 to 8.9×10 -4 .After the BDD electrode was modified with gold nanoparticles,the oxidation potential of dopamine (DA)reduced from 0.54 to 0.3 V,and the oxidation peak was improved,confirming that gold nanoparticles have catalytic effect on DA.%对阳极氧化后的掺硼金刚石(BDD)薄膜进行表面氨基化处理,使柠檬酸根包裹的纳米金颗粒(粒径约18 nm)自组装到 BDD 薄膜的表面.通过改变纳米金溶液的 pH 值,在 BDD 薄膜表面制备出二维形貌分布均匀且相对覆盖度高(约30%)的纳米金颗粒.在[Fe(CN)6]3-/4-体系中,通过循环伏安分析和交流阻抗分析实验发现,纳米金颗粒修饰后的 BDD 电极表面异相电子转移速率常数(K app )由2.8×10-4提高到8.9×10-4.纳米金颗粒修饰的 BDD 电极对多巴胺的氧化电位由0.54 V 减小到0.3 V,且氧化峰峰值得到提高,证实了纳米金颗粒对多巴胺的催化作用.

  3. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick [Univ. of California, Los Angeles, CA (United States)

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  4. Preparation of poly(ethylene glycol/polylactide hybrid fibrous scaffolds for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Ni P

    2011-11-01

    Full Text Available PeiYan Ni, ShaoZhi Fu, Min Fan, Gang Guo, Shuai Shi, JinRong Peng, Feng Luo, ZhiYong QianState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of ChinaAbstract: Polylactide (PLA electrospun fibers have been reported as a scaffold for bone tissue engineering application, however, the great hydrophobicity limits its broad application. In this study, the hybrid amphiphilic poly(ethylene glycol (PEG/hydrophobic PLA fibrous scaffolds exhibited improved morphology with regular and continuous fibers compared to corresponding blank PLA fiber mats. The prepared PEG/PLA fibrous scaffolds favored mesenchymal stem cell (MSC attachment and proliferation by providing an interconnected porous extracellular environment. Meanwhile, MSCs can penetrate into the fibrous scaffold through the interstitial pores and integrate well with the surrounding fibers, which is very important for favorable application in tissue engineering. More importantly, the electrospun hybrid PEG/PLA fibrous scaffolds can enhance MSCs to differentiate into bone-associated cells by comprehensively evaluating the representative markers of the osteogenic procedure with messenger ribonucleic acid quantitation and protein analysis. MSCs on the PEG/PLA fibrous scaffolds presented better differentiation potential with higher messenger ribonucleic acid expression of the earliest osteogenic marker Cbfa-1 and mid-stage osteogenic marker Col I. The significantly higher alkaline phosphatase activity of the PEG/PLA fibrous scaffolds indicated that these can enhance the differentiation of MSCs into osteoblast-like cells. Furthermore, the higher messenger ribonucleic acid level of the late osteogenic differentiation markers OCN (osteocalcin and OPN (osteopontin, accompanied by the positive Alizarin red S staining, showed better maturation of osteogenic induction on the PEG/PLA fibrous scaffolds at the

  5. Ultrahard nanotwinned cubic boron nitride.

    Science.gov (United States)

    Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan

    2013-01-17

    Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.

  6. Boron effects on the ductility of a nano-cluster-strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.W. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849 (United States); Liu, C.T., E-mail: mmct8tc@inet.polyu.edu.hk [Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849 (United States); Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Guo, S. [Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Cheng, J.L.; Chen, G. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Fujita, Takeshi; Chen, M.W. [Institute for Materials Research, and World Premier International Research Center for Atoms, Molecules and Materials, Tohoku University, Sendai 980-8577 (Japan); Chung, Yip-Wah; Vaynman, Semyon; Fine, Morris E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Chin, Bryan A. [Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849 (United States)

    2011-01-25

    Research highlights: {yields} Cu-rich nano-particle precipitation strengthens the ferritic steels. {yields} Boron doping suppresses brittle intergranular fracture. {yields} Moisture-induced environmental embrittlement can be alleviated by surface coating. - Abstract: The mechanical properties of Cu-rich nano-cluster-strengthened ferritic steels with and without boron doping were investigated. Tensile tests at room temperature in air showed that the B-doped ferritic steel has similar yield strength but a larger elongation than that without boron doping after extended aging at 500 deg. C. There are three mechanisms affecting the ductility and fracture of these steels: brittle cleavage fracture, week grain boundaries, and moisture-induced hydrogen embrittlement. Our study reveals that boron strengthens the grain boundary and suppresses the intergranular fracture. Furthermore, the moisture-induced embrittlement can be alleviated by surface coating with vacuum oil.

  7. Chronic boron exposure and human semen parameters.

    Science.gov (United States)

    Robbins, Wendie A; Xun, Lin; Jia, Juan; Kennedy, Nola; Elashoff, David A; Ping, Liu

    2010-04-01

    Boron found as borates in soil, food, and water has important industrial and medical applications. A panel reviewing NTP reproductive toxicants identified boric acid as high priority for occupational studies to determine safe versus adverse reproductive effects. To address this, we collected boron exposure/dose measures in workplace inhalable dust, dietary food/fluids, blood, semen, and urine from boron workers and two comparison worker groups (n=192) over three months and determined correlations between boron and semen parameters (total sperm count, sperm concentration, motility, morphology, DNA breakage, apoptosis and aneuploidy). Blood boron averaged 499.2 ppb for boron workers, 96.1 and 47.9 ppb for workers from high and low environmental boron areas (pBoron concentrated in seminal fluid. No significant correlations were found between blood or urine boron and adverse semen parameters. Exposures did not reach those causing adverse effects published in animal toxicology work but exceeded those previously published for boron occupational groups.

  8. Characterization of Olfactory Ensheathing Glial Cells Cultured on Polyurethane/Polylactide Electrospun Nonwovens

    Directory of Open Access Journals (Sweden)

    Jakub Grzesiak

    2015-01-01

    Full Text Available The aim of this research was to evaluate novel biomaterials for neural regeneration. The investigated materials were composed of polyurethane (PU and polylactide (PLDL blended at three different w/w ratios, that is, 5/5, 6/4, and 8/2 of PU/PLDL. Ultrathin fibrous scaffolds were prepared using electrospinning. The scaffolds were investigated for their applicability for nerve regeneration by culturing rat olfactory ensheathing glial cells. Cells were cultured on the materials for seven days, during which cellular morphology, phenotype, and metabolic activity were analysed. SEM analysis of the fabricated fibrous scaffolds showed fibers of a diameter mainly lower than 600 μm with unimportant volume of protrusions situated along the fibers, with nonsignificant differences between all analysed materials. Cells cultured on the materials showed differences in their morphology and metabolic activity, depending on the blend composition. The most proper morphology, with numerous p75+ and GFAP+ cells present, was observed in the sample 6/4, whereas the highest metabolic activity was measured in the sample 5/5. However, none of the investigated samples showed cytotoxicity or negatively influenced cellular morphology. Therefore, the novel electrospun fibrous materials may be considered for regenerative medicine applications, and especially when contacting with highly sensitive nervous cells.

  9. Toughening polylactide with polyether-block-amide and thermoplastic starch acetate: Influence of starch esterification degree.

    Science.gov (United States)

    Zhou, Linyao; Zhao, Guiyan; Feng, Yulin; Yin, Jinghua; Jiang, Wei

    2015-01-01

    Native corn starch was esterified with acetic anhydride and plasticized with glycerol to give the thermoplastic starch acetate (TPSA). TPSA was blended with polylactide (PLA) and polyether-block-amide-graft-glycidyl methacrylate (PEBA-g-GMA) to obtain biodegradable PLA/PEBA-g-GMA/TPSA blends with high notched impact resistance and low cost. Compared with PLA/PEBA-g-GMA blends, as much as 9 wt% expensive PEBA-g-GMA elastomer could be substituted by the slightly acetylated thermoplastic starch while retaining high impact strength. The mechanical properties depended on the esterification degree of starch acetate. The impact strength, tensile strength and elongation at break increased to the peak value with increasing the esterification degree from 0 to 0.04, thereafter they decreased on further increasing the esterification degree. The morphological results showed that the TPSA particles were smaller and more uniform at the optimum esterification degree of 0.04, leading to the peak value of the mechanical properties.

  10. Polylactide-based renewable composites from natural products residues by encapsulated film bag: characterization and biodegradability.

    Science.gov (United States)

    Wu, Chin-San

    2012-09-01

    In the present study, the biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted polylactide (PLA-g-AA) and natural products residues (corn starch, CS) were evaluated. Composites containing acrylic acid-grafted PLA (PLA-g-AA/CS) exhibited noticeably superior mechanical properties due to their greater compatibility with CS compared with PLA/CS. The feasibility of using PLA-g-AA/CS as a film bag material to facilitate the controlled release of an encapsulated phosphate-solubilizing bacterium (PSB) Burkholderia cepacia as a fertilizer use promoter was then evaluated. For purposes of comparison and accurate characterization, a PLA film bag was also assessed. The results showed that the bacterium completely degraded both the PLA and the PLA-g-AA/CS composite film bags, resulting in cell release. The PLA-g-AA/CS (20 wt%) film bags were more biodegradable than those made of PLA, and displayed a higher loss of molecular weight and intrinsic viscosity, indicating a strong connection between these characteristics and biodegradability.

  11. Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures.

    Science.gov (United States)

    Guo, Shuang-Zhuang; Heuzey, Marie-Claude; Therriault, Daniel

    2014-02-01

    Solvent-cast printing is a highly versatile microfabrication technique that can be used to construct various geometries such as filaments, towers, scaffolds, and freeform circular spirals by the robotic deposition of a polymer solution ink onto a moving stage. In this work, we have performed a comprehensive characterization of the solvent-cast printing process using polylactide (PLA) solutions by analyzing the flow behavior of the solutions, the solvent evaporation kinetics, and the effect of process-related parameters on the crystallization of the extruded filaments. Rotational rheometry at low to moderate shear rates showed a nearly Newtonian behavior of the PLA solutions, while capillary flow analysis based on process-related data indicated shear thinning at high shear rates. Solvent vaporization tests suggested that the internal diffusion of the solvent through the filaments controlled the solvent removal of the extrudates. Different kinds of three-dimensional (3D) structures including a layer-by-layer tower, nine-layer scaffold, and freeform spiral were fabricated, and a processing map was given to show the proper ranges of process-related parameters (i.e., polymer content, applied pressure, nozzle diameter, and robot velocity) for the different geometries. The results of differential scanning calorimetry revealed that slow solvent evaporation could increase the ability of PLA to complete its crystallization process during the filament drying stage. The method developed here offers a new perspective for manufacturing complex structures from polymer solutions and provides guidelines to optimize the various parameters for 3D geometry fabrication.

  12. Investigation of Pectin/Chitosan Multilayers Build-up on Corona Charged Polylactide Substrates

    Science.gov (United States)

    Yovcheva, T. A.; Marudova, M. G.; Viraneva, A. P.; Gencheva, E. A.; Mekishev, G. A.; Sainov, S. H.

    2010-01-01

    The aim of the present research is to investigate the formation and stability of pectin/chitosan multilayer films on preliminary corona charged polylactide substrate with different polarity. For this purpose two different multilayer structures with alternative ordering of polycation and polyanion layers were prepared. Layer-by-layer (LbL) deposition technique was used for multilayer build-up. The FT-IR transmittance spectra of the substrates with multilayers indicated of the presence of pectin and chitosan. The intensity of the typical bands was found to increase with increasing of the number of the deposited layers. The stability and physico-chemical properties of the multilayer structures were investigated by determination of surface refractive index and swelling behaviour. Multilayers are stable enough in distilled water and their equilibrium degree of swelling increases with the increase of build-up layers. This relation is correlated with the increased amount of hydrophilic biopolymers. It was found out that chitosan/pectin multilayers buil-up on negatively charged substrate consist of higher amount of polyelectrolytes and are more stable in distilled water.

  13. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    Science.gov (United States)

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.

  14. Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility

    Directory of Open Access Journals (Sweden)

    L. J. del Valle

    2012-04-01

    Full Text Available Mechanical properties and drug release behavior were studied for three biodegradable polyester matrices (polycaprolactone, poly(nonamethylene azelate and the copolymer derived from 1,9-nonanediol and an equimolar mixture of azelaic and pimelic acids reinforced with polylactide (PLA fibers. Electrospinning was used to produce suitable mats constituted by fibers of different diameters (i.e. from micro- to nanoscale and a homogeneous dispersion of a representative hydrophobic drug (i.e. triclosan. Fabrics were prepared by a molding process, which allowed cold crystallization of PLA micro/nanofibers and hot crystallization of the polyester matrices. The orientation of PLA molecules during electrospinning favored the crystallization process, which was slightly enhanced when the diameter decreased. Incorporation of PLA micro/nanofibers led to a significant increase in the elastic modulus and tensile strength, and in general to a decrease in the strain at break. The brittle fracture was clearer when high molecular weight samples with high plastic deformation were employed. Large differences in the release behavior were detected depending on the loading process, fiber diameter size and hydrophobicity of the polyester matrix. The release of samples with the drug only loaded into the reinforcing fibers was initially fast and then became slow and sustained, resulting in longer lasting antimicrobial activity. Biocompatibility of all samples studied was demonstrated by adhesion and proliferation assays using HEp-2 cell cultures.

  15. Biofilm formation on the surface of polylactide during its biodegradation in different environments.

    Science.gov (United States)

    Walczak, Maciej; Swiontek Brzezinska, Maria; Sionkowska, Alina; Michalska, Marta; Jankiewicz, Urszula; Deja-Sikora, Edyta

    2015-12-01

    The research was aimed at determining the abundance and viability of biofilm formed on the surface of polylactide (PLA) during its biodegradation in different environments. It was also aimed at isolating biofilm forming bacteria, determining their hydrolytic activity and taxonomic status. The first step was to evaluate PLA biodegradability in lake water, compost and soil, using OxiTop Control. The next step was to assess the ability of isolated bacteria to form biofilm in the investigated environments and to evaluate the biofilm structure. The results indicate that PLA is sensitive to biodegradation in any environment, particularly in compost. During this process biofilm of high viability was observed on the surface of PLA. Based on the 16S rRNA gene sequence, the biofilm-forming bacteria were classified as the following species: Acidovorax sp. LW9, Chryseobacterium sp. LW2, Aeromonas veronii LW8, Arthrobacter aurescens LG2, Arthrobacter sp. LG12, A. aurescens LG9, Elizabethkingia meningoseptica LK3, A. aurescens LK9, A. aurescens and LK7. The results show that different bacterial species formed biofilm of different abundance and hydrolytic activitiy levels.

  16. Activation of lactoperoxidase system in milk by glucose oxidase immobilized in electrospun polylactide microfibers.

    Science.gov (United States)

    Zhou, Y; Lim, L-T

    2009-03-01

    In this study, glucose oxidase (GOX) was immobilized in polylactide (PLA) fibers that were used to activate the lactoperoxidase (LP) system in milk. The GOX-containing microfibers were electrospun from emulsions prepared by dispersing aqueous GOX in PLA dissolved in a chloroform and N,N-dimethylformamide blend, using sorbitan monopalmitate as an emulsifier. The enzymatic activity of GOX-in-PLA fibers (1100 +/- 400 nm diameter) was more than 19 times higher than that of the GOX-in-PLA membrane formed by direct casting, due to the larger surface area of the electrospun fibers. The activation of LP in model solutions using GOX-in-PLA fibers provided a more sustained generation of antimicrobial OSCN(-) than direct activation using H(2)O(2). Preliminary evaluation on milk samples showed that the electrospun GOX-in-PLA microfibers are capable of activating the naturally present LP system, indicating that they may be promising for active food packaging applications to extend the shelf life of milk.

  17. Industrial vegetable oil by-products increase the ductility of polylactide

    Directory of Open Access Journals (Sweden)

    A. Ruellan

    2015-12-01

    Full Text Available The use of industrial by-products of the vegetable oil industry as ductility increasing additives of polylactide (PLA was investigated. Vegetable oil deodorization condensates were melt-blended by twin-screw extrusion up to a maximum inclusion quantity of 20 wt% without preliminary purification. Sample films were obtained by single screw cast extrusion. Compounded PLA films featured largely improved ductility in tensile testing with an elongation at break up to 180%. The glass transition temperature remained higher than room temperature. The native mixture of molecules, which composed the deodorization condensates, had superior performance compared to a synthetic mixture of main compounds. The investigation of the correlation between composition of the additives and the ductility of the PLA blends by Principal Component Analysis showed synergy in property improvement between fatty acids having a melting point below and beyond the room temperature. Furthermore, a compatibilizing effect of molecules present in the native mixture was evidenced. Oil deodorization condensates, which are a price competitive by-product of the vegetable oil industry, are therefore a very promising biobased and biodegradable additive for improving the ductility of PLA.

  18. Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle.

    Science.gov (United States)

    Shen, Kexin; Li, Di; Guan, Jingjing; Ding, Jianxun; Wang, Zhongtang; Gu, Jingkai; Liu, Tongjun; Chen, Xuesi

    2017-01-05

    A c(RGDfC)-decorated polylactide stereocomplex micelle (cRGD-SCM) was prepared through the stereocomplex and hydrophobic interactions among 4-arm poly(ethylene glycol)-block-poly(D-lactide) (4-arm PEG-b-PDLA), methoxy poly(ethylene glycol)-block-poly(L-lactide) (mPEG-b-PLLA), and c(RGDfC)-poly(ethylene glycol)-block-poly(L-lactide) (cRGD-PEG-b-PLLA) for targeted treatment of αvβ3 integrin-positive C26 colon cancer. Doxorubicin (DOX), a model antitumor drug, was loaded into cRGD-SCM with a diameter of approximately 100nm, and the drug loading efficiency was 45.9wt.%. cRGD-SCM/DOX with a sustained release pattern exhibited prolonged circulation time, upregulated accumulation in tumor, enhanced tumor inhibition, and decreased side effects compared with free DOX and non-targeting SCM/DOX in vivo. More interestingly, the targeting ligand in the terminal of PEG can be easily replaced with other targeting groups according to the different types of malignancies. Therefore, the cRGD-decorated platform might be a promising targeted drug delivery system for personal chemotherapy clinically.

  19. A path for synthesis of boron-nitride nanostructures in volume of arc plasma

    Science.gov (United States)

    Han, Longtao; Krstić, Predrag

    2017-02-01

    We find a possible channel for direct nanosynthesis of boron-nitride (BN) nanostructures, including growth of BN nanotubes from a mixture of BN diatomic molecules by quantum-classical molecular dynamics simulations. No catalyst or boron nanoparticle is needed for this synthesis, however the conditions for the synthesis of each of the nanostructures, such as temperature and flux of the BN feedstock are identified and are compatible with the conditions in an electric arc at high pressure. We also find that BN nanostructures can be synthetized by feeding a boron nanoparticle by BN diatomic molecules, however if hydrogen rich molecules like NH3 or HBNH are used as a feedstock, two-dimensional nanoflake stable structures are formed.

  20. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  1. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  2. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine Core and Poly(lactide Multiarms

    Directory of Open Access Journals (Sweden)

    Frida Román

    2017-02-01

    Full Text Available Multiarm star polymers, denoted PEIx-PLAy and containing a hyperbranched poly(ethyleneimine (PEI core of different molecular weights x and poly(lactide (PLA arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and dielectric relaxation spectroscopy (DRS. The glass transition temperature, Tg, is between 48 and 50 °C for all the PEIx-PLAy samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α′ in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub-Tg γ- and β-relaxations and the Vogel–Fulcher–Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the –OH groups of the poly(lactide chains, the β-relaxation with motions of the main chain of poly(lactide, the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α′-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell–Wagner–Sillars type ionic peak because the material may have nano-regions of different conductivity.

  3. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  4. Facile synthesis of boron nitride nanotubes and improved electrical conductivity.

    Science.gov (United States)

    Chen, Yongjun; Luo, Lijie; Zhou, Longchang; Mo, Libin; Tong, Zhangfa

    2010-02-01

    A layer of catalyst film on substrate is usually required during the vapor-liquid-solid (VLS) growth of one-dimensional (1D) nanomaterials. In this work, however, a novel approach for synthesizing high-purity bamboo-like boron nitride (BN) nanotubes directly on commercial stainless steel foils was demonstrated. Synthesis was realized by heating boron and zinc oxide (ZnO) powders at 1200 degrees C under a mixture gas flow of nitrogen and hydrogen. The stainless steel foils played an additional role of catalyst besides the substrate during the VLS growth of the nanotubes. In addition, the electrical conductivity of the BN nanotubes was efficiently improved in a simple way by coating with Au and Pd nanoparticles. The decorated BN nanotubes may find potential applications in catalysts, sensors and nanoelectronics.

  5. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  6. Combustion of boron containing compositions

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Y.; Pivkina, A. [Institute of Chemical Physics, Russian Academy of Science, Moscow (Russian Federation)

    1996-12-31

    Boron is one of the most energetic components for explosives, propellants and for heterogeneous condensed systems in common. The combustion process of mixtures of boron with different oxidizers was studied. The burning rate, concentration combustion limits, the agglomeration and dispersion processes during reaction wave propagation were analysed in the respect of the percolation theory. The linear dependence of the burning rate on the contact surface value was demonstrated. The percolative model for the experimental results explanation is proposed. (authors) 5 refs.

  7. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  8. Continuous microcellular foaming of polyvinyl chloride and compatibilization of polyvinyl chloride and polylactide composites

    Science.gov (United States)

    Shah, Bhavesh

    This dissertation focuses on overcoming existing limitations of WPCs which prevent them from realizing their full market potential. These limitations include: (i) lack of a continuous extrusion process for microcellular foaming of polyvinyl chloride (PVC) and its composites using supercritical fluids to reduce the high density of the WPCs, (ii) need for an efficient coupling agent for WPCs to overcome the poor compatibility between wood and plastic, and (iii) unproven use of wood as a filler for the biopolymer polylactide (PLA) to make "green" composites. These limitations were addressed through experimentation to develop a continuous extrusion process for microcellular foaming, and through surface modification of wood flour using natural coupling agents. The effects of wood flour, acrylic modifier and plasticizer content on the rheological properties of PVC based WPCs were studied using an extrusion capillary rheometer and a two-level factorial design. Wood flour content and acrylic modifier content were the major factors affecting the die swell ratio. Addition of plasticizer decreased the true viscosity of unfilled and filled PVC, irrespective of the acrylic modifier content. However, the addition of acrylic modifier significantly increased the viscosity of unfilled PVC but decreased the composite viscosity. Results of the rheological study were used to set baseline conditions for the continuous extrusion foaming of PVC WPCs using supercritical CO 2. Effects of material composition and processing conditions on the morphology of foamed samples were investigated. Foamed samples were produced using various material compositions and processing conditions, but steady-state conditions could not be obtained for PVC. Thus the relationships could not be determined. Incompatibility between wood flour and PVC was the focus of another study. The natural polymers chitin and chitosan were used as novel coupling agents to improve interfacial adhesion between the polymer matrix

  9. Quantifying the Solubility of Boron Nitride Nanotubes and Sheets with Static Light Scattering and Refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, M [The University of Tennessee; Eastwood, Eric Allen [ORNL; Dadmun, Mark D [ORNL

    2013-01-01

    The dissolution of nanoparticles, particularly those containing boron, is an important area of interest for polymer nanocomposite formation and material development. In this work, the solubility of boron nitride nanotubes (BNNT), functionalized boron nitride nanotubes (FBNNT), and boron nitride sheets (BNZG) is quantified in toluene and THF with static light scattering, refractometry, UV vis spectroscopy, and physical observations. UV vis spectroscopy provides a method to determine the concentration and solubility limits of the solutions tested. Using light scattering, the second virial coefficient, A2, is determined and used to calculate , the solute solvent interaction parameter. The Hildebrand solubility parameter, , is then extracted from this data using the Hildebrand Scatchard Solution Theory. A list of potential good solvents based on the estimated value is provided for each nanoparticle. Single-walled carbon nanotubes (SWNTs) and prepolymers (EN4 and EN8) used to synthesize polyurethanes were also tested, because the published and molar attraction constants of these materials provided a selfconsistent check. The dn/dc of SWNTs and boron-containing particles was measured for the first time in this work. A solvent screen for BN-ZG provides additional information that supports the obtained and . Three systems were found to have values below 0.5 and were thermodynamically soluble: BNNT in THF, EN8 in THF, and EN8 in toluene.

  10. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    Science.gov (United States)

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells.

  11. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  12. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency.

    Science.gov (United States)

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-02-03

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240-260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180-210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time.

  13. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  14. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency

    Science.gov (United States)

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-01-01

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240–260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180–210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time. PMID:26837848

  15. Boron Drug Delivery via Encapsulated Magnetic Nanocomposites: A New Approach for BNCT in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yinghuai Zhu

    2010-01-01

    Full Text Available Ortho-carborane cages have been successfully attached to modified magnetic nanoparticles via catalytic azide-alkyne cycloadditions between 1-R-2-butyl-Ortho-C2B10H10(R=Me,3;Ph,4 and propargyl group-enriched magnetic nanoparticles. A loading amount of 9.83 mmol boron atom/g starch-matrixed magnetic nanoparticles has been reached. The resulting nanocomposites have been found to be highly tumor-targeted vehicles under the influence of an external magnetic field (1.14T, yielding a high boron concentration of 51.4 μg/g tumor and ratios of around 10 : 1 tumor to normal tissues.

  16. Preparation of High Purity Amorphous Boron Powder

    Directory of Open Access Journals (Sweden)

    K.V. Tilekar

    2005-10-01

    Full Text Available Amorphous boron powder of high purity (92-94 % with a particle size of l-2 mm is preferred as a fuel for fuel-rich propellants for integrated rocket ramjets and for igniter formulations. Thispaper describes the studies on process optimisation of two processes, ie, oxidative roasting of boron (roasting boron in air and roasting boron with zinc in an inert medium for preparing high purity boron. Experimental studies reveal that roasting boron with zinc at optimised process conditions yields boron of purity more than 93 per cent, whereas oxidative roasting method yields boron of purity - 92 per cent. Oxidative roasting has comparative edge over the other processes owing to its ease of scale-up and simplicity

  17. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Grzesiak, Jakub, E-mail: grzesiak.kuba@gmail.com [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Marycz, Krzysztof [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Szarek, Dariusz [Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Center, Traugutta 116, 50-420 Wroclaw (Poland); Bednarz, Paulina [State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów (Poland); Laska, Jadwiga [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków (Poland)

    2015-07-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology.

  18. Grain refining of aluminium alloys and silicon by means of boron-nitride particles

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Eric; Seitz, Jan-Marten; Schaper, Mirko; Bach, Friedrich-Wilhelm [Leibniz Univ. of Hannover, Garbsen (Germany). Inst. of Materials Science; Alphei, Lukas David; Westphal, David; Becker, Joerg August; Feldhoff, Armin [Leibniz Univ. of Hannover, Garbsen (Germany). Inst. of Physical Chemistry and Electrochemistry

    2013-03-15

    Investigations were carried out to grain refine the aluminium alloys Al-6Si (all compositions given in wt.%) and Al-12Si as well as pure silicon by means of inoculation using boron nitride nano-particles. Comparative tests were performed using both conventional grain refiners based on titanium as well as without inoculants. Analyses were performed using scanning electron microscopy, tensile testing, thermographic and metallographic techniques. In doing this, a significant effect on grain refining is verified by inoculating using boron nitride which exceeds the effect of conventional grain refiners. (orig.)

  19. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries.

    Science.gov (United States)

    Li, Zibiao; Yuan, Du; Jin, Guorui; Tan, Beng H; He, Chaobin

    2016-01-27

    A highly tunable nanoparticle (NP) system with multifunctionalities was developed as drug nanocarrier via a facile layer-by-layer (LbL) stereocomplex (SC) self-assembly of enantiomeric poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) in solution using silica-coated magnetite (Fe3O4@SiO2) as template. The poly(lactide) (PLA) SC coated NPs (Fe3O4@SiO2@-SC) were further endowed with different stimuli-responsiveness by controlling the outermost layer coatings with respective pH-sensitive poly(lactic acid)-poly(2-dimethylaminoethyl methacrylate) (PLA-D) and temperature-sensitive poly(lactic acid)-poly(N-isopropylacrylamide) (PLA-N) diblock copolymers to yield Fe3O4@SiO2@SC-D and Fe3O4@SiO2@SC-N NPs, respectively, while the superparamagnetic properties of Fe3O4 were maintained. TEM images show a clearly resolved core-shell structure with a silica layer and sequential PLA SC co/polymer coating layers in the respective NPs. The well-designed NPs possess a size distribution in a range of 220-270 nm and high magnetization of 70.8-72.1 emu/g [Fe3O4]. More importantly, a drug release study from the as-constructed stimuli-responsive NPs exhibited sustained release profiles and the rates of release can be tuned by variation of external environments. Further cytotoxicity and cell culture studies revealed that PLA SC coated NPs possessed good cell biocompatibility and the doxorubicin (DOX)-loaded NPs showed enhanced drug delivery efficiency toward MCF-7 cancer cells. Together with the strong magnetic sensitivity, the developed hybrid NPs demonstrate a great potential of control over the drug release at a targeted site. The developed coating method can be further optimized to finely tune the nanocarrier size and operating range of pHs and temperatures for in vivo applications.

  20. Boron nitride nanotubes for boron neutron capture therapy as contrast agents in magnetic resonance imaging at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L., E-mail: luca.menichetti@ifc.cnr.it [CNR-National Research Council of Italy, Institute of Clinical Physiology, via G. Moruzzi 1, 56124 Pisa (Italy); De Marchi, D. [Fondazione Toscana Gabriele Monasterio per la Ricerca Medica e la Sanita Pubblica, CNR-Regione Toscana, via Trieste 41, 56126 Pisa (Italy); Calucci, L. [CNR-National Research Council of Italy, ICCOM-Institute of OrganoMetallic Chemistry, via G. Moruzzi 1, 56124 Pisa (Italy); Ciofani, G.; Menciassi, A. [Italian Institute of Technology c/o Scuola Superiore Sant' Anna, viale R. Piaggio 34, 56025 Pontedera (Italy); Forte, C. [CNR-National Research Council of Italy, ICCOM-Institute of OrganoMetallic Chemistry, via G. Moruzzi 1, 56124 Pisa (Italy)

    2011-12-15

    The applicability of boron nitride nanotubes (BNNTs) containing Fe paramagnetic impurities as contrast agents in magnetic resonance imaging (MRI) was investigated. The measurement of longitudinal and transverse relaxation times of water protons in homogeneous aqueous dispersions of BNNTs wrapped with poly(L-lysine) at different concentrations allowed longitudinal (r{sub 1}) and transverse (r{sub 2}) relaxivities to be determined at 3 T. The r{sub 2} value was comparable to those of commercial superparamagnetic iron oxide nanoparticles, indicating that Fe-containing BNNTs have the potential to be used as T{sub 2} contrast-enhancement agents in MRI at 3 T.

  1. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  2. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  3. Structural and functional characterization of proteins adsorbed on hydrophilized polylactide-co-glycolide microfibers

    Directory of Open Access Journals (Sweden)

    Vasita R

    2011-12-01

    Full Text Available Rajesh Vasita, Dhirendra S KattiDepartment of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, IndiaBackground: Hydrophobic biopolymers such as polylactide-co-glycolide (PLGA, 85:15 have been extensively explored as scaffolding materials for tissue engineering applications. More recently, electrospun microfiber-based and nanofiber-based scaffolds of PLGA have received increased attention because they act as physical mimics of the fibrillar extracellular matrix. However, the hydrophobicity of the PLGA microfiber surface can limit its use in biomedical applications. Therefore, in a previous study, we fabricated Pluronic® F-108 (PF-108-blended PLGA microfibrous scaffolds that alleviated the hydrophobicity associated with PLGA by enriching the surface of microfibers with the ethylene oxide units present in PF-108.Methods: In this study, we report the influence of the extent of surface enrichment of PLGA microfibers on their interaction with two model proteins, ie, bovine serum albumin (BSA and lysozyme. BSA and lysozyme were adsorbed onto PLGA microfiber meshes (unmodified and modified and studied for the amount, secondary structure conformation, and bioactivity of released protein.Results: Irrespective of the type of protein, PF-108-blended PLGA microfibers showed significantly greater protein adsorption and release than the unblended PLGA samples. However, in comparison with BSA, lysozyme showed a 7–9-fold increase in release. The Fourier transform infrared spectroscopy studies for secondary structure determination demonstrated that irrespective of type of microfiber surface (unblended or blended, adsorbed BSA and lysozyme did not show any significant change in secondary structure (α-helical content as compared with BSA and/or lysozyme in the free powder state. Further, the bioactivity assay of lysozyme released from blended PLGA microfiber meshes demonstrated 80%–85% bioactivity, indicating that

  4. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  5. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  6. Thermal properties and physicochemical behavior in aqueous solution of pyrene-labeled poly(ethylene glycol-polylactide conjugate

    Directory of Open Access Journals (Sweden)

    Chen WL

    2015-04-01

    Full Text Available Wei-Lin Chen,1,2 Yun-Fen Peng,1,3 Sheng-Kuo Chiang,1 Ming-Hsi Huang1–3 1National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; 2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; 3PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan Abstract: A fluorescence-labeled bioresorbable polymer was prepared by a coupling reaction of poly(ethylene glycol-polylactide (PEG-PLA with carboxyl pyrene, using N,N’-diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole (DIC/HOAt as a coupling agent and 4-dimethylaminopyridine (DMAP as a catalyst. The obtained copolymer, termed PEG-PLA-pyrene, was characterized using various analytical techniques, such as gel permeation chromatography (GPC, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS, proton nuclear magnetic resonance (1H-NMR, infrared spectroscopy (IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA, to identify the molecular structure and to monitor the thermal property changes before and after the reaction. The presence of a pyrene moiety at the end of polylactide (PLA did not alter the crystallization ability of the poly(ethylene glycol (PEG blocks, indicating that the conjugate preserved the inherent thermal properties of PEG-PLA. However, the presence of PEG-PLA blocks strongly reduced the melting of pyrene, indicating that the thermal characteristics were sensitive to PEG-PLA incorporation. Regarding the physicochemical behavior in aqueous solution, a higher concentration of PEG-PLA-pyrene resulted in a higher ultraviolet-visible (UV-vis absorbance and fluorescence emission intensity. This is of great interest for the use of this conjugate as a fluorescence probe to study the in vivo distribution as well as the internalization and intracellular localization of polymeric micelles

  7. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes.

    Science.gov (United States)

    Walczak, Maciej; Richert, Agnieszka; Burkowska-But, Aleksandra

    2014-11-01

    The present study was aimed at investigating bactericidal properties of polylactide (PLA) films containing three different polyhexamethylene guanidine hydrochloride (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. All PHMG derivatives had a slightly stronger bactericidal effect on Staphylococcus aureus than on E. coli but only PHMG granular polyethylene wax (at the concentration of at least 0.6 %) has a bactericidal effect. PHMG derivatives introduced into PLA affected the activity of microbial hydrolases to a small extent. This means that the introduction of PHMG derivatives into PLA will not reduce its enzymatic biodegradation significantly. On the other hand, PHMG derivatives introduced into PLA strongly affected dehydrogenases activity in S. aureus than in E. coli.

  8. Effect of high energy β-radiation and addition of triallyl isocyanurate on the selected properties of polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Rafał, E-mail: malinowskirafal@gmail.com

    2016-06-15

    Comparison of some changes occurring in polylactide (PLA) due to high energy β-radiation and addition of triallyl isocyanurate (TAIC) was the main objective of the present study. It was found that irradiation of PLA by high energy β-radiation causes essential changes in its properties, that undergoes mainly degradation, to form a porous structure. The PLA degradation can be diminished by introduction into the polymer matrix of a low-molecular mass multifunctional compound like TAIC. Upon the electron radiation, effective crosslinking of PLA by TAIC occurs. Application of TAIC favorably influences hindering of the PLA degradation or, when the doses are very large, diminishes worsening of the PLA functional qualities. It was also found that the optimum crosslinking of PLA is obtained when the electron radiation doses of the range of 40–200 kGy are applied and the amount of TAIC equal 3–5 wt% is used.

  9. Effect of high energy β-radiation and addition of triallyl isocyanurate on the selected properties of polylactide

    Science.gov (United States)

    Malinowski, Rafał

    2016-06-01

    Comparison of some changes occurring in polylactide (PLA) due to high energy β-radiation and addition of triallyl isocyanurate (TAIC) was the main objective of the present study. It was found that irradiation of PLA by high energy β-radiation causes essential changes in its properties, that undergoes mainly degradation, to form a porous structure. The PLA degradation can be diminished by introduction into the polymer matrix of a low-molecular mass multifunctional compound like TAIC. Upon the electron radiation, effective crosslinking of PLA by TAIC occurs. Application of TAIC favorably influences hindering of the PLA degradation or, when the doses are very large, diminishes worsening of the PLA functional qualities. It was also found that the optimum crosslinking of PLA is obtained when the electron radiation doses of the range of 40-200 kGy are applied and the amount of TAIC equal 3-5 wt% is used.

  10. Synthesis and physical properties of new layered double hydroxides based on ionic liquids: Application to a polylactide matrix

    KAUST Repository

    Livi, Sébastien

    2012-12-01

    Ionic liquids based on tetraalkylphosphonium salts combined with different anions (decanoate and dodecylsulfonate) have been used as intercalating agents of layered double hydroxides (LDHs) by ion exchange. The synthesized phosphonium-treated LDHs display a dramatically improved thermal degradation and a significant increase in the interlayer distance as confirmed by thermogravimetric analysis (TGA) and X-ray Diffraction (XRD), respectively. To highlight the effect of thermostable ionic liquids, a very low amount of LDHs has been introduced within a polylactide (PLA) matrix and PLA/LDHs nanocomposites have been processed in melt by twin-screw extrusion. Then, transmission electron microscopy (TEM) analysis has been used to investigate the influence of ILs on the different morphologies of these nanocomposites. Even though the thermal stability of PLA matrix decreased, an excellent stiffness-toughness compromise has been obtained. © 2012 Elsevier Inc.

  11. Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: A phase interface-property relation study.

    Science.gov (United States)

    Xu, Chunjiang; Chen, Jianxiang; Wu, Defeng; Chen, Yang; Lv, Qiaolian; Wang, Mengqi

    2016-08-01

    A 'continuous route' was developed in this work for the preparation of nanocrystalline cellulose (NCC) filled polylactide (PLA) composites. It combines several separated steps, including extraction of NCC, surface acetylation of NCC, and final composite preparation, into a continuous process, without traditional freeze drying. The obtained PLA composites were then studied in terms of phase interface structure, rheological and mechanical properties. The results reveal that surface acetylation of NCC can improve its affinity to PLA evidently. The thickened interfacial layer makes the system filled with modified NCC show lower percolation threshold than the one filled with pristine NCC; and the former presents a typical strain-scaling stress overshoot behavior in the start-up shear flow because the network structure of modified NCC presents stronger characteristics of self-similarity. The phase interface adhesion also plays an important role in the mechanical behavior of PLA/NCC composites, which is further revealed by the nanomechanical analysis using atom force microscopy.

  12. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  13. Characterization of boron doped diamond-like carbon film by HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.J., E-mail: lixj@alum.imr.ac.cn [College of Material Science and Engineering, Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012 (China); He, L.L., E-mail: llhe@imr.ac.cn [Shenyang National Lab of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Y.S. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada)

    2015-12-01

    Graphical abstract: - Highlights: • The microstructure of B-DLC film is studied by HRTEM in cross-sectional observation. • Many crystalline nanoparticles dispersed in the amorphous matrix film are observed. • Through composition and structure analysis, the nanoparticles are identified as B{sub 2}O. • The work implies the doped B element exists as oxide state in the B-DLC film. - Abstract: Boron doped diamond-like carbon (B-DLC) film was synthesized on silicon (1 0 0) wafer by biased target ion beam deposition. High-resolution transmission electron microscopy (HRTEM) is employed to investigate the microstructure of the B-DLC thin film in cross-sectional observation. Many crystalline nanoparticles randomly dispersed and embedded in the amorphous matrix film are observed. Through chemical compositional analysis of the B-DLC film, some amount of O element is confirmed to be contained. And also, some nanoparticles with near zone axes are indexed, which are accordance with B{sub 2}O phase. Therefore, the contained O element causing the B element oxidized is proposed, resulting in the formation of the nanoparticles. Our work indicates that in the B-DLC film a significant amount of the doped B element exists as boron suboxide nanoparticles.

  14. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  15. Design of biobased and biodegradable - compostable engineered plastics based on poly(lactide)

    Science.gov (United States)

    Schneider, Jeffrey Samuelson

    Poly(lactide) (PLA) is a biobased and biodegradable - compostable plastic that is derived from renewable resources such as corn and sugar cane. It possesses excellent strength and stiffness properties and is recognized as safe for biomedical and food packaging applications. Commercially, it costs $1/lb and is now competitive with petroleum based polymers that have dominated the industry for decades. However, the material has some inherently weak properties that prevent it from certain applications - most notably, its rheological properties, brittleness, and poor high temperature performance. Cost effective modifications of the polymer to enhance these deficiencies could allow for increased applications and further its commercial growth. Multiple synthetic strategies have been developed to address PLA's performance property deficiencies. PLA typically exhibits poor melt strength and does not have the ability to strain harden, partially a result of its highly linear nature. Strain hardening and high melt strength are crucial elements of a material when producing blown films, a large untapped market for PLA. By increasing molecular weight and introducing long-chain branching into the material, these properties can be improved. Epoxy-functionalized PLA (EF-PLA) was synthesized by reacting PLA with a multifunctional epoxy polymer (MEP) using reactive extrusion processing (REX). These modified PLA polymers can function as a rheology modifier for PLA and a compatibilizer for blends with other biopolyesters. The modified PLA showed an increased melt strength and exhibited significant strain hardening, thus making it more suited for blown film applications. Blown films comprised of PLA and poly(butylene adipate-co-terephthalate) (PBAT) were produced using EF-PLA as a reactive modifier for rheological enhancement and compatibilization. This resulted in films with better processability (as seen by increased bubble stability) and improved mechanical properties, compared to a

  16. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Shalaby KS

    2014-10-01

    Full Text Available Karim S Shalaby,1 Mahmoud E Soliman,1 Luca Casettari,2 Giulia Bonacucina,3 Marco Cespi,3 Giovanni F Palmieri,3 Omaima A Sammour,1 Abdelhameed A El Shamy1,† 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; 2Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Urbino, Italy; 3School of Pharmacy, University of Camerino, Camerino, Italy †Abdel Hameed El-Shamy passed away on August 25, 2013 Abstract: In this study, di- and triblock copolymers based on polyethylene glycol and polylactide were synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance and gel permeation chromatography. Nanoparticles containing noscapine were prepared from these biodegradable and biocompatible copolymers using the nanoprecipitation method. The prepared nanoparticles were characterized for size and drug entrapment efficiency, and their morphology and size were checked by transmission electron microscopy imaging. Artificial neural networks were constructed and tested for their ability to predict particle size and entrapment efficiency of noscapine within the formed nanoparticles using different factors utilized in the preparation step, namely polymer molecular weight, ratio of polymer to drug, and number of blocks that make up the polymer. Using these networks, it was found that the polymer molecular weight has the greatest effect on particle size. On the other hand, polymer to drug ratio was found to be the most influential factor on drug entrapment efficiency. This study demonstrated the ability of artificial neural networks to predict not only the particle size of the formed nanoparticles but also the drug entrapment efficiency. This may have a great impact on the design of polyethylene glycol and polylactide-based copolymers, and can be used to customize the required target formulations. Keywords: noscapine, polyethylene glycol (PEG

  17. Research Progress in Completely Biodegradable Polylactide Blends%完全降解聚乳酸共混复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    吴涛; 赵西坡; 林真; 张恩瑞; 彭少贤

    2013-01-01

    聚乳酸(PLA)是可完全生物降解的材料,广泛应用于包装、纺织、生物医用等领域.但其具有性脆,价格较高,疏水性大等缺点,限制了应用发展.近年来对聚乳酸共混改性已成为研究热点.根据共混组分的生物降解性,聚乳酸共混体系分为完全生物降解体系和部分生物降解体系.文中综述了近年来完全生物降解聚乳酸共混体系的研究,主要阐述了PLA/淀粉、PLA/天然纤维复合材料,并简要介绍了PLA/甲壳素、PLA/蛋白等PLA/天然高分子复合材料,以及PLA/PCL、PLA/PPC、PLA/PEO等PLA/合成高分子复合材料.%Polylactide (PL A) is the completely biodegradable materials, widely used in packaging, textile, biomedical fields, etc. But it has some shortcomings, such as brittleness, the higher price, hydrophobicity, development of PLA is limited, Polylactide blending modification has become a hotspot. According to the biodegradable properties of the other composition in the blends, polylactide blends are divided into two varieties of completely biodegradable blends and partially biodegradable blends. This paper described the research of completely biodegradable polylactide blend system in recent years, mainly introduced PLA/starch, PLA/natural fiber , and briefly introduced the other PLA blending composite materials with natural polymer(PLA/chitin, PLA/protein) and PLA blending composite materials with synthetic polymer (PCL, PEO, etc).

  18. Isothermal Cold Crystallization, Heat Resistance, and Tensile Performance of Polylactide/Thermoplastic Polyester Elastomer (PLA/TPEE) Blends: Effects of Annealing and Reactive Compatibilizer

    OpenAIRE

    Sisi Wang; Sujuan Pang; Lisha Pan; Nai Xu; Tan Li

    2016-01-01

    The combined influences of crystallinity and reactive compatibilizer—a multifunctional epoxide (ADR)—on morphology, tensile performance, and heat resistance of polylactide/thermoplastic polyester elastomer (PLA/TPEE) (80/20) blends were investigated. Annealing involved an isothermal cold crystallization of PLA matrix was performed to increase crystallinity of the samples. First, isothermal cold crystallization kinetics were investigated using differential scanning calorimetry measurement. It ...

  19. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    Science.gov (United States)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  20. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  1. Composite Reinforcement using Boron Nitride Nanotubes

    Science.gov (United States)

    2014-05-09

    Final 3. DATES COVERED (From - To) 11-Mar-2013 to 10-Mar-2014 4. TITLE AND SUBTITLE Composite Reinforcement using Boron Nitride Nanotubes...AVAILABILITY STATEMENT Approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Boron nitride nanotubes have been proposed as a...and titanium (Ti) metal clusters with boron nitride nanotubes (BNNT). First-principles density-functional theory plus dispersion (DFT-D) calculations

  2. Oxygen radical functionalization of boron nitride nanosheets

    OpenAIRE

    MAY, PETER; Coleman, Jonathan; MCGOVERN, IGNATIUS; GOUNKO, IOURI; Satti, Amro

    2012-01-01

    PUBLISHED The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalisation of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-Vis, F...

  3. Boron-10 ABUNCL Active Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  4. Boron deposition from fused salts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.L.

    1980-08-01

    A partial evaluation of the feasibility of a process to electrodeposit pure coherent coatings of elemental boron from molten fluorides has been performed. The deposit produced was powdery and acicular, unless the fluoride melt was purified to have very low oxygen concentration. When the oxygen activity was reduced in the melt by addition of crystalline elemental boron, dense, amorphous boron deposit was produced. The boron deposits produced had cracks but were otherwise pure and dense and ranged up to 0.35 mm thick. Information derived during this project suggests that similar deposits might be obtained crack-free up to 1.00 mm thick by process modifications and improvements.

  5. Mineral resource of the month: boron

    Science.gov (United States)

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  6. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  7. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  8. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  9. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  10. An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery

    Energy Technology Data Exchange (ETDEWEB)

    Dorati, Rossella; DeTrizio, Antonella; Genta, Ida; Grisoli, Pietro; Merelli, Alessia [Department of Drug Sciences, Viale Taramelli 12, University of Pavia, 27100, Pavia (Italy); Tomasi, Corrado [IENI CNR Lecco Unit, Via Promessi Sposi 29, 23900, Lecco (Italy); Conti, Bice, E-mail: bice.conti@unipv.it [Department of Drug Sciences, Viale Taramelli 12, University of Pavia, 27100, Pavia (Italy)

    2016-01-01

    The present paper takes into account the DOE application to the preparation process of biodegradable microspheres for osteomyelitis local therapy. With this goal gentamicin loaded polylactide-co-glycolide-co-polyethyleneglycol (PLGA-PEG) microspheres were prepared and investigated. Two preparation protocols (o/w and w/o/w) with different process conditions, and three PLGA-PEG block copolymers with different compositions of lactic and glycolic acids and PEG, were tested. A Design Of Experiment (DOE) screening design was applied as an approach to scale up manufacturing step. The results of DOE screening design confirmed that w/o/w technique, the presence of salt and the 15%w/v polymer concentration positively affected the EE% (72.1–97.5%), and span values of particle size distribution (1.03–1.23), while salt addition alone negatively affected the yield process. Process scale up resulted in a decrease of gentamicin EE% that can be attributed to the high volume of water used to remove PVA and NaCl residues. The results of in vitro gentamicin release study show prolonged gentamicin release up to three months from the microspheres prepared with salt addition in the dispersing phase; the behavior being consistent with their highly compact structure highlighted by scanning electron microscopy analysis. The prolonged release of gentamicin is maintained even after embedding the biodegradable microspheres into a thermosetting composite gel made of chitosan and acellular bovine bone matrix (Orthoss® granules), and the microbiologic evaluation demonstrated the efficacy of the gentamicin loaded microspheres on Escherichia coli. The collected results confirm the feasibility of the scale up of microsphere manufacturing process and the high potential of the microparticulate drug delivery system to be used for the local antibiotic delivery to bone. - Highlights: • To get a more effective therapy for the prevention and treatment of osteomyelitis. • To exploit the local

  11. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  12. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  13. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  14. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  15. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  16. Boronated mesophase pitch coke for lithium insertion

    Science.gov (United States)

    Frackowiak, E.; Machnikowski, J.; Kaczmarska, H.; Béguin, F.

    Boronated carbons from mesophase pitch have been used as materials for lithium storage in Li/carbon cells. Doping by boron has been realized by co-pyrolysis of coal tar pitch with the pyridine-borane complex. Amount of boron in mesocarbon microbeads (MCMB) varied from 1.4 to 1.8 wt.% affecting the texture of carbon. Optical microscopy and X-ray diffractograms have shown tendency to more disordered structure for boron-doped carbon. The values of specific reversible capacity ( x) varied from 0.7 to 1.1 depending significantly on the final temperature of pyrolysis (700-1150°C). The optimal charge/discharge performance was observed for boronated carbon heated at 1000°C.

  17. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  18. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  19. Toward Edge-Defined Holey Boron Nitride Nanosheets

    Science.gov (United States)

    Lin, Yi; Liao, Yunlong; Chen, Zhongfan; Connell, John W.

    2015-01-01

    "Holey" two-dimensional (2D) nanosheets with well-defined holy morphology and edge chemistry are highly desirable for applications such as energy storage, catalysis, sensing, transistors, and molecular transport/separation. For example, holey grapheme is currently under extensive investigation for energy storage applications because of the improvement in ion transport due to through the thickness pathways provided by the holes. Without the holes, the 2D materials have significant limitations for such applications in which efficient ion transport is important. As part of an effort to apply this approach to other 2D nanomaterials, a method to etch geometrically defined pits or holes on the basal plane surface of hexagonal boron nitride (h-BN) nanosheets has been developed. The etching, conducted via heating in ambient air using metal nanoparticles as catalysts, was facile, controllable, and scalable. Starting h-BN layered crystals were etched and subsequently exfoliated into boron nitride nanosheets (BNNSs). The as-etched and exfoliated h-BN nanosheets possessed defined pit and hole shapes that were comprised of regulated nanostructures at the edges. The current finding are the first step toward the bulk preparation of holey BNNSs with defined holes and edges.

  20. Non inflammatory boronate based glucose-responsive insulin delivery systems.

    Directory of Open Access Journals (Sweden)

    Indrani Dasgupta

    Full Text Available Boronic acids, known to bind diols, were screened to identify non-inflammatory cross-linkers for the preparation of glucose sensitive and insulin releasing agglomerates of liposomes (Agglomerated Vesicle Technology-AVT. This was done in order to select a suitable replacement for the previously used cross-linker, ConcanavalinA (ConA, a lectin known to have both toxic and inflammatory effects in vivo. Lead-compounds were selected from screens that involved testing for inflammatory potential, cytotoxicity and glucose-binding. These were then conjugated to insulin-encapsulating nanoparticles and agglomerated via sugar-boronate ester linkages to form AVTs. In vitro, the particles demonstrated triggered release of insulin upon exposure to physiologically relevant concentrations of glucose (10 mmoles/L-40 mmoles/L. The agglomerates were also shown to be responsive to multiple spikes in glucose levels over several hours, releasing insulin at a rate defined by the concentration of the glucose trigger.

  1. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks.

    Science.gov (United States)

    Shalaby, Karim S; Soliman, Mahmoud E; Casettari, Luca; Bonacucina, Giulia; Cespi, Marco; Palmieri, Giovanni F; Sammour, Omaima A; El Shamy, Abdelhameed A

    2014-01-01

    In this study, di- and triblock copolymers based on polyethylene glycol and polylactide were synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance and gel permeation chromatography. Nanoparticles containing noscapine were prepared from these biodegradable and biocompatible copolymers using the nanoprecipitation method. The prepared nanoparticles were characterized for size and drug entrapment efficiency, and their morphology and size were checked by transmission electron microscopy imaging. Artificial neural networks were constructed and tested for their ability to predict particle size and entrapment efficiency of noscapine within the formed nanoparticles using different factors utilized in the preparation step, namely polymer molecular weight, ratio of polymer to drug, and number of blocks that make up the polymer. Using these networks, it was found that the polymer molecular weight has the greatest effect on particle size. On the other hand, polymer to drug ratio was found to be the most influential factor on drug entrapment efficiency. This study demonstrated the ability of artificial neural networks to predict not only the particle size of the formed nanoparticles but also the drug entrapment efficiency. This may have a great impact on the design of polyethylene glycol and polylactide-based copolymers, and can be used to customize the required target formulations.

  2. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    Science.gov (United States)

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity.

  3. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation

    Science.gov (United States)

    Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong

    2016-09-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.

  4. Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA).

    Science.gov (United States)

    Jia, Wei; Luo, Yiming; Yu, Jian; Liu, Bowen; Hu, Minglie; Chai, Lu; Wang, Chingyue

    2015-10-19

    The effects of femtosecond laser ablation, with 115 fs pulses at 1040 nm wavelength and 57 MHz repetition-rate, on the physical and chemical properties of polylactide (PLA) were studied in air and in water. The surface of the PLA sample ablated by high-repetition-rate femtosecond laser was analysed using field emission scanning electron microscopy, infrared spectroscopy, raman spectroscopy, as well as X-ray photoelectron spectroscopy. Compared with the experiments in the air at ambient temperature, melting resolidification was negligible for the experiments conducted under water. Neither in air nor under water did oxidation and crystallization process take place in the laser ablated surface. In addition, the intensity of some oxygen related peaks increased for water experiments, probably due to the hydrolysis. Meantime, the chemical shift to higher energies appeared in C1s XPS spectrum of laser processing in water. Interestingly, a large amount of defects were observed after laser processing in air, while no significant change was shown under water experiments. This indicates that thermal and mechanical effects by high-repetition-rate femtosecond laser ablation in water are quite limited, which could be even ignored.

  5. Recent advances in high performance poly(lactide: From green plasticization to super-tough materials via (reactive compounding

    Directory of Open Access Journals (Sweden)

    Georgio eKfoury

    2013-12-01

    Full Text Available Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide (PLA is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity (high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate (PET, high impact poly(styrene (HIPS and poly(propylene (PP, PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application.This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive blending PLA-based systems.

  6. Recent advances in high performance poly(lactide): From ``green'' plasticization to super-tough materials via (reactive) compounding

    Science.gov (United States)

    Kfoury, Georgio; Raquez, Jean-Marie; Hassouna, Fatima; Odent, Jérémy; Toniazzo, Valérie; Ruch, David; Dubois, Philippe

    2013-12-01

    Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide) (PLA) is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity (high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate) (PET), high impact poly(styrene) (HIPS) and poly(propylene) (PP)), PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application. This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive) blending PLA-based systems.

  7. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization.

    Science.gov (United States)

    Liu, Guang-Chen; He, Yi-Song; Zeng, Jian-Bing; Li, Qiu-Tong; Wang, Yu-Zhong

    2014-11-10

    A fully biobased and supertough thermoplastic vulcanizate (TPV) consisting of polylactide (PLA) and a biobased vulcanized unsaturated aliphatic polyester elastomer (UPE) was fabricated via peroxide-induced dynamic vulcanization. Interfacial compatibilization between PLA and UPE took place during dynamic vulcanization, which was confirmed by gel measurement and NMR analysis. After vulcanization, the TPV exhibited a quasi cocontinuous morphology with vulcanized UPE compactly dispersed in PLA matrix, which was different from the pristine PLA/UPE blend, exhibiting typically phase-separated morphology with unvulcanized UPE droplets discretely dispersed in matrix. The TPV showed significantly improved tensile and impact toughness with values up to about 99.3 MJ/m(3) and 586.6 J/m, respectively, compared to those of 3.2 MJ/m(3) and 16.8 J/m for neat PLA, respectively. The toughening mechanisms under tensile and impact tests were investigated and deduced as massive shear yielding of the PLA matrix triggered by internal cavitation of VUPE. The fully biobased supertough PLA vulcanizate could serve as a promising alternative to traditional commodity plastics.

  8. Recent advances in high performance poly(lactide): from "green" plasticization to super-tough materials via (reactive) compounding.

    Science.gov (United States)

    Kfoury, Georgio; Raquez, Jean-Marie; Hassouna, Fatima; Odent, Jérémy; Toniazzo, Valérie; Ruch, David; Dubois, Philippe

    2013-01-01

    Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide) (PLA) is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity [high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate) (PET), high impact poly(styrene) (HIPS) and poly(propylene) (PP)], PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application. This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive) blending PLA-based systems.

  9. Prevention of postoperative adhesions by a novel honeycomb-patterned poly(lactide) film in a rat experimental model.

    Science.gov (United States)

    Fukuhira, Yukako; Ito, Masaya; Kaneko, Hiroaki; Sumi, Yoshihiko; Tanaka, Masaru; Yamamoto, Sadaaki; Shimomura, Masatsugu

    2008-08-01

    Intraperitoneal adhesion is a serious problem concerning abdominal surgery. This study evaluated the performance of a honeycomb-patterned poly(lactide) (HCPLA) film as a physical barrier for preventing postoperative adhesion. HCPLA films were prepared using dioleoylphosphatidylethanolamine (DOPE) or a copolymer of dodecylacrylamide and omega-carboxyhexylacrylamide (CAP) as a surfactant (HCPLA-DOPE and HCPLA-CAP, respectively). In an in vivo adhesion prevention experiment, male Sprague-Dawley rats underwent standard cecum abrasion before midline laparotomy. We placed 2 cm x 2 cm HCPLA and flat films on the gliding interfaces; untreated rats formed the control group. After 1 week, adhesion was scored from 0 to 4. No significant difference was observed in the scores among groups, but macroscopic differences in adhesion prevention were observed. The adhesive strength of HCPLA-DOPE (18.1 +/- 1.2 g) to skinless chicken breast was significantly higher than that of the flat film (15.2 +/- 0.8 g, p score after 1 week for the HCPLA-DOPE group (1.6 +/- 0.2) was significantly lower than that for the control group (3.0 +/- 0.3, p < 0.05) but comparable to that for the Seprafilm group (1.4 +/- 0.3). These results demonstrated the potential of HCPLA-DOPE as a physical barrier for preventing postoperative adhesion.

  10. Preparation and Characterization of Copolymer Micelles Formed by Poly(ethylene glycol)-Polylactide Block Copolymers as Novel Drug Carriers

    Institute of Scientific and Technical Information of China (English)

    姜维; 王运东; 甘泉; 张建铮; 赵秀文; 费维扬; 贝建中; 王身国

    2006-01-01

    Diblock copolymer poly(ethylene glycol) methyl ether-polylactide (MePEG-PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEG-PLA micelles and IMC loaded MePEG-PLA micelles in a number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. The observation with transmission electron microscope and scanning electron microscope showed that the appearance of MePEG-PLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18% (ω). The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.

  11. Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization.

    Science.gov (United States)

    Ojijo, Vincent; Ray, Suprakas Sinha; Sadiku, Rotimi

    2013-05-22

    Polylactide and poly(butylene succinate-co-adipate) (PLA/PBSA) were melt-blended in the presence of triphenyl phosphite (TPP). An increase in the torque during melt mixing was used to monitor the changes in viscosity as compatibilization of the blends occurred. Scanning electron micrographs showed not only a reduction in the dispersed-phase size with increased TPP content but also fibrillated links between the PLA and PBSA phases, signifying compatibilization. Moreover, optimization of parameters such as the mixing sequence and time, TPP content, and PBSA concentration revealed that blends containing 30 and 10 wt % PBSA and 2 wt % TPP, which were processed for 30 min, were optimal in terms of thermomechanical properties. The impact strength increased from 6 kJ/m(2) for PLA to 11 and 16 kJ/m(2) for blends containing 30 and 10 wt % PBSA, respectively, whereas the elongation-at-break increased from 6% for PLA to 20 and 37% for blends containing 30 and 10 wt % PBSA, respectively. Upon compatibilization, the failure mode shifted from the brittle fracture of PLA to ductile deformation, effected by the debonding between the two phases. With improved phase adhesion, compatibilized blends not only were toughened but also did not significantly lose tensile strength and thermal stability.

  12. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  13. Autoionizing states of atomic boron

    Science.gov (United States)

    Argenti, Luca; Moccia, Roberto

    2016-04-01

    We present a B -spline K -matrix method for three-active-electron atoms in the presence of a polarizable core, with which it is possible to compute multichannel single-ionization scattering states with good accuracy. We illustrate the capabilities of the method by computing the parameters of several autoionizing states of the boron atom, with S2e, 2,o2P and D2e symmetry, up to at least the 2 p2(1S) excitation threshold of the B ii parent ion, as well as selected portions of the photoionization cross section from the ground state. Our results exhibit remarkable gauge consistency, they significantly extend the existing sparse record of data for the boron atom, and they are in good agreement with the few experimental and theoretical data available in the literature. These results open the way to extend to three-active-electron systems the spectral analysis of correlated wave packets in terms of accurate scattering states that has already been demonstrated for two-electron atoms in Argenti and Lindroth [Phys. Rev. Lett. 105, 053002 (2010), 10.1103/PhysRevLett.105.053002].

  14. Combustion synthesis of novel boron carbide

    Science.gov (United States)

    Harini, R. Saai; Manikandan, E.; Anthonysamy, S.; Chandramouli, V.; Eswaramoorthy, D.

    2013-02-01

    The solid-state boron carbide is one of the hardest materials known, ranking third behind diamond and cubic boron nitride. Boron carbide (BxCx) enriched in the 10B isotope is used as a control rod material in the nuclear industry due to its high neutron absorption cross section and other favorable physico-chemical properties. Conventional methods of preparation of boron carbide are energy intensive processes accompanied by huge loss of boron. Attempts were made at IGCAR Kalpakkam to develop energy efficient and cost effective methods to prepare boron carbide. The products of the gel combustion and microwave synthesis experiments were characterized for phase purity by XRD. The carbide formation was ascertained using finger-print spectroscopy of FTIR. Samples of pyrolized/microwave heated powder were characterized for surface morphology using SEM. The present work shows the recent advances in understanding of structural and chemical variations in boron carbide and their influence on morphology, optical and vibrational property results discussed in details.

  15. Method of synthesizing cubic system boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Yuzu, S.; Sumiya, H.; Degawa, J.

    1987-10-13

    A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.

  16. Next generation adoptive immunotherapy--human T cells as carriers of therapeutic nanoparticles.

    Science.gov (United States)

    Mortensen, M W; Kahns, L; Hansen, T; Sorensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2007-12-01

    An important step in adoptive immunotherapy in general and specifically with respect to cancer treatment is the initiation of an inflammatory T cell response at the tumor site. Here we suggest a new concept for a controlled inflammatory response in which the intrinsic cytotoxic properties of T cells are upgraded with the properties of nanoparticles transfected into the T cells during the ex vivo expansion process. We report in vitro upgrading of human T cells using PEGylated boron carbide nanoparticles functionalised with a translocation peptide aimed at Boron Neutron Capture Therapy (BNCT). A key finding is that the metabolism of such upgraded human T cells were not affected by a payload of 0.13 pg boron per cell and that the nanoparticles were retained in the cell population after several cell divisions. This is vital for transporting nanoparticles by T cells to the tumor site.

  17. 聚乳酸微球体外降解研究%Study on the Degradation of Polylactide Microsphere In Vitro

    Institute of Scientific and Technical Information of China (English)

    何应; 魏树礼

    2001-01-01

    This report concentrated on the rules and mechanism of the degradation of polylactide and themicrospheres. The rate of degradation was assessed with five methods: observation of microsphere surfacemorphology by SEM, determination of the weight loss of the microspheres, determination of the molecular mass ofthe polymers by GPC, determination of pH and determination of the contents of lactic acid by UV spectrophotometry.The degradation of polylactide microspheres showed two-phase characteristics. At the early stage of the degradation,the high molecular mass polymers were cleavetl into lower molecular mass fractions and at the late stage, there was aperiod of erosion and weight loss of the microspheres. The degradation was much slower for polymers with a highermolecular mass. The polylactide degradation showed good regularity.%本文研究了聚乳酸微球降解的规律及机理.用五种方法研究聚乳酸微球降解过程:扫描电子显微镜观察微球表面形态;测定失重;凝胶渗透色谱法测定聚合物的平均相对分子质量;测定pH;紫外分光光度法测定乳酸含量.聚乳酸微球的降解过程有两个阶段,初期主要发生聚合物分子链断裂和相对分子质量减小,后期主要发生聚合物片段溶蚀和重量减少.其降解速度随平均相对分子质量增加而减慢.聚乳酸是可生物降解材料,降解有规律,是优良的药物控制释放材料.

  18. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  19. From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

    OpenAIRE

    Hongsheng Liu; Junfeng Gao; Jijun Zhao

    2013-01-01

    As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster BN with increasing cluster size and low diffusion barrier for a single B atom on Cu(111) surface ensure cont...

  20. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  1. Bonding in boron: building high-pressure phases from boron sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kunstmann, Jens [Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology (Germany); Boeri, Lilia [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kortus, Jens [Institute for Theoretical Physics, TU Bergakademie Freiberg (Germany)

    2010-07-01

    We present the results of a study of the high pressure phase diagram of elemental boron, using full-potential density functional calculations. We show that at high pressures (P > 100 GPa) boron crystallizes in quasi-layered bulk phases, characterized by in-plane multicenter bonds and out-of-plane unidimensional sigma bonds. These structures are all metallic, in contrast to the low-pressure icosahedral ones, which are semiconducting. We show that the structure and bonding of layered bulk phases can be easily described in terms of single puckered boron sheets. Our results bridge the gap between boron nanostructures and bulk phases.

  2. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  3. Hydrogel Nanoparticles from Supercritical Technology for Pharmaceutical and Seismological Applications

    Science.gov (United States)

    Hemingway, Melinda Graham

    This research focuses on hydrogel nanoparticle formation using miniemulsion polymerization and supercritical carbon dioxide. Hydrogel nanopowder is produced by a novel combination of inverse miniemulsion polymerization and supercritical drying (MPSD) methods. Three drying methods of miniemulsions are examined: (1) a conventional freeze drying technique, and (2) two supercritical drying techniques: (2a) supercritical fluid injection into miniemulsions, and (2b) the polymerized miniemulsion injection into supercritical fluid. Method 2b can produce non-agglomerated hydrogel nanoparticles that are free of solvent or surfactant (Chapter 2). The optimized MPSD method was applied for producing an extended release drug formulation with mucoadhesive properties. Drug nanoparticles of mesalamine, were produced using supercritical antisolvent technology and encapsulation within two hydrogels, polyacrylamide and poly(acrylic acid-co-acrylamide). The encapsulation efficiency and release profile of drug nanoparticles is compared with commercial ground mesalamine particles. The loading efficiency is influenced by morphological compatibility (Chapter 3). The MPSD method was extended for encapsulation of zinc oxide nanoparticles for UV protection in sunscreens (Chapter 4). ZnO was incorporated into the inverse miniemulsion during polymerization. The effect of process parameters are examined on absorbency of ultraviolet light and transparency of visible light. For use of hydrogel nanoparticles in a seismological application, delayed hydration is needed. Supercritical methods extend MPSD so that a hydrophobic coating can be applied on the particle surface (Chapter 5). Multiple analysis methods and coating materials were investigated to elucidate compatibility of coating material to polyacrylamide hydrogel. Coating materials of poly(lactide), poly(sulphone), poly(vinyl acetate), poly(hydroxybutyrate), Geluice 50-13, Span 80, octadecyltrichlorosilane, and perfluorobutane sulfate (PFBS

  4. A Three-Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes).

    Science.gov (United States)

    Santos, Fábio M F; Rosa, João N; Candeias, Nuno R; Carvalho, Cátia Parente; Matos, Ana I; Ventura, Ana E; Florindo, Helena F; Silva, Liana C; Pischel, Uwe; Gois, Pedro M P

    2016-01-26

    The modular assembly of boronic acids with Schiff-base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99%) of structurally diverse and photostable dyes that exhibit a polarity-sensitive green-to-yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54,000 M(-1) cm(-1)). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non-cytotoxic, stable, and highly fluorescent poly(lactide-co-glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains.

  5. Boron-Based (Nano-Materials: Fundamentals and Applications

    Directory of Open Access Journals (Sweden)

    Umit B. Demirci

    2016-09-01

    Full Text Available The boron (Z = 5 element is unique. Boron-based (nano-materials are equally unique. Accordingly, the present special issue is dedicated to crystalline boron-based (nano-materials and gathers a series of nine review and research articles dealing with different boron-based compounds. Boranes, borohydrides, polyhedral boranes and carboranes, boronate anions/ligands, boron nitride (hexagonal structure, and elemental boron are considered. Importantly, large sections are dedicated to fundamentals, with a special focus on crystal structures. The application potentials are widely discussed on the basis of the materials’ physical and chemical properties. It stands out that crystalline boron-based (nano-materials have many technological opportunities in fields such as energy storage, gas sorption (depollution, medicine, and optical and electronic devices. The present special issue is further evidence of the wealth of boron science, especially in terms of crystalline (nano-materials.

  6. Catalytic Asymmetric Synthesis of Phosphine Boronates

    NARCIS (Netherlands)

    Hornillos, Valentin; Vila, Carlos; Otten, Edwin; Feringa, Ben L.

    2015-01-01

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of ,-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good y

  7. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  8. Boron-10 loaded inorganic shielding material

    Science.gov (United States)

    Baker, S. I.; Ryskiewicz, R. S.

    1972-01-01

    Shielding material containing Boron 10 and gadoliunium for neutron absorption has been developed to reduce interference from low energy neutrons in measurement of fission neutron spectrum using Li-6 fast neutron spectrometer.

  9. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  10. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  11. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study.

    Science.gov (United States)

    Muhonen, Virpi; Salonius, Eve; Haaparanta, Anne-Marie; Järvinen, Elina; Paatela, Teemu; Meller, Anna; Hannula, Markus; Björkman, Mimmi; Pyhältö, Tuomo; Ellä, Ville; Vasara, Anna; Töyräs, Juha; Kellomäki, Minna; Kiviranta, Ilkka

    2016-05-01

    The purpose of this study was to investigate the potential of a novel recombinant human type II collagen/polylactide scaffold (rhCo-PLA) in the repair of full-thickness cartilage lesions with autologous chondrocyte implantation technique (ACI). The forming repair tissue was compared to spontaneous healing (spontaneous) and repair with a commercial porcine type I/III collagen membrane (pCo). Domestic pigs (4-month-old, n = 20) were randomized into three study groups and a circular full-thickness chondral lesion with a diameter of 8 mm was created in the right medial femoral condyle. After 3 weeks, the chondral lesions were repaired with either rhCo-PLA or pCo together with autologous chondrocytes, or the lesion was only debrided and left untreated for spontaneous repair. The repair tissue was evaluated 4 months after the second operation. Hyaline cartilage formed most frequently in the rhCo-PLA treatment group. Biomechanically, there was a trend that both treatment groups resulted in better repair tissue than spontaneous healing. Adverse subchondral bone reactions developed less frequently in the spontaneous group (40%) and the rhCo-PLA treated group (50%) than in the pCo control group (100%). However, no statistically significant differences were found between the groups. The novel rhCo-PLA biomaterial showed promising results in this proof-of-concept study, but further studies will be needed in order to determine its effectiveness in articular cartilage repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:745-753, 2016.

  12. Combustion Behavior of Free Boron Slurry Droplets,

    Science.gov (United States)

    2014-09-26

    weak disruptive behavior while pure JP-1t burn quiescently, except for a flash extinction which occurs at the termination of combustion. The...I AD-R158 628 COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS(U) i/i I PRINCETON UNIV NJ DEPT OF MECHANICAL AND AEROSPACE ENINEERIN., F TAKAHASHI...COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS TAM by F. Takahashi, F.L. Dryer, and F.A. Williams Department of M~echanical and keyosase Engineering

  13. Study on Fine Denier Polylactide Draw Twist Filament by High-Speed Spinning%高速纺细旦聚乳酸拉伸丝的研制

    Institute of Scientific and Technical Information of China (English)

    兰平; 汪蔚; 吕佳

    2011-01-01

    Polylactide chip and self-made pilot equipment were applied to make fine denier draw twist polylactide filament by two-step method of high speed spinning and draw-twisting. The influence of technology parameters such as drying process of chip, spinning temperature, spinning speed, stretching temperature and draw ratio on performance of fine denier drawn fiber was studied. It can be concluded that drum drying and short spinning process were acceptable. When spinning speed was 3 200 m/min and stretching by 3.0 times, less than 1.1 denier per filament can be obtained. Fiber performance was good.%选用国产聚乳酸切片为原料,利用自行设计的中试设备,通过预取向-拉伸两步法制得聚乳酸细旦拉伸丝,研究了切片干燥条件、纺丝温度、纺丝速度、拉伸温度、拉伸倍数对聚乳酸细旦拉伸丝的影响.研究表明:采用转鼓干燥及短甬道熔纺工艺,纺丝速度3200m/min,经3.0倍拉伸后,制得单丝纤度小于1.1 dtex的聚乳酸细旦拉伸丝,纤维性能良好.

  14. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  15. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    Science.gov (United States)

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  16. Junctions between a boron nitride nanotube and a boron nitride sheet.

    Science.gov (United States)

    Baowan, Duangkamon; Cox, Barry J; Hill, James M

    2008-02-20

    For future nanoelectromechanical signalling devices, it is vital to understand how to connect various nanostructures. Since boron nitride nanostructures are believed to be good electronic materials, in this paper we elucidate the classification of defect geometries for combining boron nitride structures. Specifically, we determine possible joining structures between a boron nitride nanotube and a flat sheet of hexagonal boron nitride. Firstly, we determine the appropriate defect configurations on which the tube can be connected, given that the energetically favourable rings for boron nitride structures are rings with an even number of sides. A new formula E = 6+2J relating the number of edges E and the number of joining positions J is established for each defect, and the number of possible distinct defects is related to the so-called necklace and bracelet problems of combinatorial theory. Two least squares approaches, which involve variation in bond length and variation in bond angle, are employed to determine the perpendicular connection of both zigzag and armchair boron nitride nanotubes with a boron nitride sheet. Here, three boron nitride tubes, which are (3, 3), (6, 0) and (9, 0) tubes, are joined with the sheet, and Euler's theorem is used to verify geometrically that the connected structures are sound, and their relationship with the bonded potential energy function approach is discussed. For zigzag tubes (n,0), it is proved that such connections investigated here are possible only for n divisible by 3.

  17. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  18. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  19. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  20. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  1. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  2. DABO Boronates: Stable Heterocyclic Boronic Acid Complexes for Use in Suzuki-Miyaura Cross-Coupling Reactions.

    Science.gov (United States)

    Reilly, Maureen K; Rychnovsky, Scott D

    2011-10-01

    Diethanolamine complexed heterocyclic boronic acids (DABO boronates) are air-stable reagents that can be used directly in Suzuki-Miyaura reactions in the presence of water or a protic co-solvent. Interestingly, heterocyclic DABO boronates can be stored for extended periods of time at room temperature with no noticeable degradation, unlike their boronic acid counterparts. Heterocyclic DABO boronates constitute an operationally simple and efficient alternative to other boronic acid derivatives as coupling partners in palladium catalyzed cross-coupling reactions under standard Suzuki-Miyaura conditions.

  3. Protein-nanoparticle conjugates as potential therapeutic agents for the treatment of hyperlipidemia

    Energy Technology Data Exchange (ETDEWEB)

    Maximov, V D; Reukov, V V; Barry, J N; Vertegel, A A [Department of Bioengineering, Clemson University, Clemson, SC 29631 (United States); Cochrane, C, E-mail: vertege@clemson.edu [South Carolina Governor' s School for Science and Mathematics, Hartsville, SC 29550 (United States)

    2010-07-02

    Hyperlipidemia, a condition associated with atherosclerosis, can develop because of the lack of low density lipoprotein (LDL) receptors in hepatocytes. Since injected polymeric nanoparticles are quickly taken up by the liver Kupffer cells, we hypothesize that it is possible to enhance LDL delivery to the liver through the use of LDL-absorbing nanoparticles. Here, we demonstrate the feasibility of the proposed approach in vitro. We used biodegradable and biocompatible polylactide nanoparticles ({approx}100 nm in diameter) with covalently attached apolipoprotein B100 antibody to adsorb LDLs at physiologically relevant concentrations. We showed that up to sixfold decreases of LDL levels can be achieved in vitro upon treatment of LDL suspensions (500 mg dl{sup -1}) with anti-apoB100-nanoparticle conjugates. The study of the uptake of the antibody-nanoparticle-LDL complexes by cells was performed using a mouse macrophage cell line (RAW 264.7) as a model for liver Kupffer cells. We found that macrophages can quickly take up antibody-nanoparticle-LDL complexes and digest them within 24 h. No evidence of cytotoxicity was observed for the experimental conditions used in this study.

  4. Protein-nanoparticle conjugates as potential therapeutic agents for the treatment of hyperlipidemia

    Science.gov (United States)

    Maximov, V. D.; Reukov, V. V.; Barry, J. N.; Cochrane, C.; Vertegel, A. A.

    2010-07-01

    Hyperlipidemia, a condition associated with atherosclerosis, can develop because of the lack of low density lipoprotein (LDL) receptors in hepatocytes. Since injected polymeric nanoparticles are quickly taken up by the liver Kupffer cells, we hypothesize that it is possible to enhance LDL delivery to the liver through the use of LDL-absorbing nanoparticles. Here, we demonstrate the feasibility of the proposed approach in vitro. We used biodegradable and biocompatible polylactide nanoparticles (~100 nm in diameter) with covalently attached apolipoprotein B100 antibody to adsorb LDLs at physiologically relevant concentrations. We showed that up to sixfold decreases of LDL levels can be achieved in vitro upon treatment of LDL suspensions (500 mg dl - 1) with anti-apoB100-nanoparticle conjugates. The study of the uptake of the antibody-nanoparticle-LDL complexes by cells was performed using a mouse macrophage cell line (RAW 264.7) as a model for liver Kupffer cells. We found that macrophages can quickly take up antibody-nanoparticle-LDL complexes and digest them within 24 h. No evidence of cytotoxicity was observed for the experimental conditions used in this study.

  5. Preparation of PLA and PLGA nanoparticles by binary organic solvent diffusion method

    Institute of Scientific and Technical Information of China (English)

    蒋新宇; 周春山; 唐课文

    2003-01-01

    The nanoparticles of polylactide (PLA) and poly(lactide-co-glycolide) (PLGA) were prepared by the bi-nary organic solvent diffusion method. The yield, particle size and size distribution of these nanoparticles wereevaluated. The yield of nanoparticles prepared by this method is over 90%, and the average size of the nanoparticlesis between 130-180 nm. In order to clarify the effect of the organic solvent used in the system on nanoparticle yieldand size, the cloud points of PLA and PLGA were examined by cloud point titration. The results indicate that theyields of nanoparticles increase with the increase of ethanol in the acetone solution and attain the maximum at thecloud point of ethanol, while the size of nanoparticles decreases with the increase of ethanol in the acetone solutionand attains the minimum at the cloud point of ethanol. The optimal composition ratio of binary organic solvents coin-cides to that near the cloud point and the optimal condition of binary organic solvents can be predicted.

  6. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations.

    Science.gov (United States)

    Liakopoulos, Georgios; Stavrianakou, Sotiria; Filippou, Manolis; Fasseas, Costas; Tsadilas, Christos; Drossopoulos, Ioannis; Karabourniotis, George

    2005-02-01

    For plant species in which a considerable portion of the photoassimilates are translocated in the phloem as sugar alcohols, boron is freely translocated from mature organs to growing tissues. However, the effects of decreased plant boron status on boron remobilization are poorly understood. We conducted a growth chamber experiment (CE) and a field experiment (FE) to study the effects of low boron supply on boron remobilization in olive (Olea europaea L.), a species that transports considerable amounts of mannitol in the phloem. For the CE, several physiological parameters were compared between control (B+) and boron-deficient olive plants (B-) during the expansion of new leaves. Boron remobilization was assessed by measuring boron content of selected leaves at the beginning and at the end of the CE. As expected, boron was remobilized from mature leaves to young leaves of B+ plants; however, considerable boron remobilization was also observed in B- plants, suggesting a mechanism whereby olive can sustain a minimum boron supply for growth of new tissues despite an insufficient external boron supply. Boron deficiency caused inhibition of new growth but had no effect on photosynthetic capacity per unit leaf surface area of young and mature leaves, thereby altering the carbon utilization pattern and resulting in carbon allocation to structures within the source leaves and accumulation of soluble carbohydrates. Specifically, in mature B- leaves in the CE and in B- leaves in the FE, mannitol concentration on a leaf water content basis increased by 48 and 27% respectively, compared with controls. Carbon export ability (assessed by both phloem anatomy and phloem exudate composition of FE leaves) was enhanced at low boron supply. We conclude that, at low boron supply, increased mannitol concentrations maintain boron remobilization from source leaves to boron-demanding sink leaves.

  7. Studies on Separation Process and Production Technology of Boron Isotope

    Directory of Open Access Journals (Sweden)

    LI Jian-ping

    2014-02-01

    Full Text Available The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material distillation purification is solved, boron isotopes feasibility with PTFE packing enrichment is verified in an exchange column. Also, effect of operating pressure, flow and other parameters on boron -10 isotopic enrichment experiments and the effect and properties of the PTFE packing have been investigated in the existing system. All the results are very useful for the industrialization of the boron isotopes separation system.

  8. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  9. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  10. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  11. Boron-Loaded Silicone Rubber Scintillators

    CERN Document Server

    Bell, Z W; Maya, L; Sloop, F V J

    2003-01-01

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon respons...

  12. First gaseous boronization during pulsed discharge cleaning

    Science.gov (United States)

    Ko, J.; Den Hartog, D. J.; Goetz, J. A.; Weix, P. J.; Limbach, S. T.

    2013-01-01

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  13. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  14. Axial residual stresses in boron fibers

    Science.gov (United States)

    Behrendt, D. R.

    1978-01-01

    A method of measuring axial residual stresses in boron fibers is presented. With this method, the axial residual stress distribution as a function of radius is determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diam fibers are similar, being compressive at the surface and changing monotonically to a region of tensile stress within the boron. At approximately 25% of the original radius, the stress reaches a maximum tensile stress of about 860 MN sq m and then decreases to a compressive stress near the tungsten boride core. Data are presented for 203-micron diam B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102-micron diam B/W and boron on carbon (B/C) show that the residual stresses are similar in the outer regions of the fibers, but that large differences near and in the core are observed. Fracture of boron fibers is discussed.

  15. Update on human health effects of boron.

    Science.gov (United States)

    Nielsen, Forrest H

    2014-10-01

    In vitro, animal, and human experiments have shown that boron is a bioactive element in nutritional amounts that beneficially affects bone growth and central nervous system function, alleviates arthritic symptoms, facilitates hormone action and is associated with a reduced risk for some types of cancer. The diverse effects of boron suggest that it influences the formation and/or activity of substances that are involved in numerous biochemical processes. Several findings suggest that this influence is through the formation of boroesters in biomolecules containing cis-hydroxyl groups. These biomolecules include those that contain ribose (e.g., S-adenosylmethionine, diadenosine phosphates, and nicotinamide adenine dinucleotide). In addition, boron may form boroester complexes with phosphoinositides, glycoproteins, and glycolipids that affect cell membrane integrity and function. Both animal and human data indicate that an intake of less than 1.0mg/day inhibits the health benefits of boron. Dietary surveys indicate such an intake is not rare. Thus, increasing boron intake by consuming a diet rich in fruits, vegetables, nuts and pulses should be recognized as a reasonable dietary recommendation to enhance health and well-being.

  16. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  17. Dietary boron: possible roles in human and animal physiology

    Science.gov (United States)

    Boron is a bioactive element of low molecular weight. Since discovery of the first boron biomolecule, boromycin, in 1967, several other similar biomolecules are now well-characterized. Most recently described was a bacterial cell-to-cell communication signal that requires boron, autoinducer-II. Boro...

  18. Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles

    Science.gov (United States)

    Abdalla, Mohamed O.; Aneja, Ritu; Dean, Derrick; Rangari, Vijay; Russell, Albert; Jaynes, Jessie; Yates, Clayton; Turner, Timothy

    2010-01-01

    The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe 3O 4 nanoparticles with an average size of 10±2.5 nm. These Fe 3O 4 NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252±6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe 3O 4 NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (l-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe 3O 4 NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces.

  19. Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Mohamed O. [Department of Biology, Tuskegee University, Tuskegee, AL 36088 (United States); Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 (United States); Aneja, Ritu [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Dean, Derrick [Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Rangari, Vijay [Tuskegee-Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088, United States, (United States); Russell, Albert [Department of Chemistry, Tuskegee University, Tuskegee, AL 36088, United States, (United States); Jaynes, Jessie [George Washington Carver Agricultural Experiment Station, Tuskegee University, Tuskegee, AL 36088 (United States); Yates, Clayton [Department of Biology, Tuskegee University, Tuskegee, AL 36088 (United States); Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 (United States); Turner, Timothy, E-mail: turner@tuskegee.ed [Department of Biology, Tuskegee University, Tuskegee, AL 36088 (United States); Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 (United States)

    2010-01-15

    The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe{sub 3}O{sub 4} nanoparticles with an average size of 10+-2.5 nm. These Fe{sub 3}O{sub 4} NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252+-6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe{sub 3}O{sub 4} NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (l-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe{sub 3}O{sub 4} NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces.

  20. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy

    Directory of Open Access Journals (Sweden)

    Maji R

    2014-06-01

    Full Text Available Ruma Maji, Niladri Shekhar Dey, Bhabani Sankar Satapathy, Biswajit Mukherjee, Subhasish MondalDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata (Calcutta, IndiaBackground: Four formulations of Tamoxifen citrate loaded polylactide-co-glycolide (PLGA based nanoparticles (TNPs were developed and characterized. Their internalization by Michigan Cancer Foundation-7 (MCF-7 breast cancer cells was also investigated.Methods: Nanoparticles were prepared by a multiple emulsion solvent evaporation method. Then the following studies were carried out: drug-excipients interaction using Fourier transform infrared spectroscopy (FTIR, surface morphology by field emission scanning electron micro­scopy (FESEM, zeta potential and size distribution using a Zetasizer Nano ZS90 and particle size analyzer, and in vitro drug release. In vitro cellular uptake of nanoparticles was assessed by confocal microscopy and their cell viability (% was studied.Results: No chemical interaction was observed between the drug and the selected excipients. TNPs had a smooth surface, and a nanosize range (250–380 nm with a negative surface charge. Drug loadings of the prepared particles were 1.5%±0.02% weight/weight (w/w, 2.68%±0.5% w/w, 4.09%±0.2% w/w, 27.16%±2.08% w/w for NP1–NP4, respectively. A sustained drug release pattern from the nanoparticles was observed for the entire period of study, ie, up to 60 days. Further, nanoparticles were internalized well by the MCF-7 breast cancer cells on a concentration dependent manner and were present in the cytoplasm. The nucleus was free from nanoparticle entry. Drug loaded nanoparticles were found to be more cytotoxic than the free drug.Conclusion: TNPs (NP4 showed the highest drug loading, released the drug in a sustained manner for a prolonged period of time and were taken up well by the MCF-7 breast cancer cell line in vitro. Thus the formulation may be suitable for breast cancer treatment due to the

  1. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  2. Depth resolved investigations of boron implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sztucki, M. E-mail: michael@sztucki.de; Metzger, T.H.; Milita, S.; Berberich, F.; Schell, N.; Rouviere, J.L.; Patel, J

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6x10{sup 15} ions/cm{sup -2} at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {l_brace}1 1 1{r_brace} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  3. Oxygen radical functionalization of boron nitride nanosheets.

    Science.gov (United States)

    Sainsbury, Toby; Satti, Amro; May, Peter; Wang, Zhiming; McGovern, Ignatius; Gun'ko, Yurii K; Coleman, Jonathan

    2012-11-14

    The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution-phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalization of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-vis, FTIR, NMR, and TGA was performed to investigate both the structure of the BNNSs and the covalent functionalization methodology. OH-BNNSs were used to prepare polymer nanocomposites and their mechanical properties analyzed. The influence of the functional groups grafted to the surface of the BNNSs is investigated by demonstrating the impact on mechanical properties of both noncovalent and covalent bonding at the interface between the nanofiller and polymer matrixes.

  4. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and co

  5. Boron-doped MnTe semiconductor-sensitized ZnO solar cells

    Indian Academy of Sciences (India)

    Auttasit Tubtimtae; Suwanna Sheangliw; Kritsada Hongsith; Supab Choopun

    2014-10-01

    We studied the photovoltaic performance of boron-doped MnTe semiconductor-sensitized solar cells (B-doped MnTe SSCs). The B-doped MnTe semiconductor was grown on ZnO using two stages of the successive ionic layer adsorption and reaction (SILAR) technique. The two phases of B-doped semiconductor nanoparticles (NPs), i.e. MnTe and MnTe2 were observed with a diameter range of approximately 15–30 nm. The result of the energy conversion efficiency of the sample with boron doping was superior compared to that of an undoped sample, due to the substantial change in the short-circuit current density and the open-circuit voltage. In addition, plots of ( ℎ )2 vs ℎ with band gaps of 1.30 and 1.27 eV were determined for the undoped and B-doped MnTe NPs, respectively. It can be noted that the boron doping effects with the change in the band gap and lead to an improvement in the crystalline quality and also intimate contact between the larger sizes of MnTe NPs. Hence, a noticeably improved photovoltaic performance resulted. However, this kind of semiconductor sensitizer can be further extended by experiments on yielding a higher power conversion efficiency and greater stability of the device.

  6. Boron difluoride complexes of 2‧-hydroxychalcones and curcuminoids as fluorescent dyes for photonic applications

    Science.gov (United States)

    D'Aléo, Anthony; Felouat, Abdellah; Fages, Frédéric

    2015-03-01

    The field of fluorescent boron complexes has witnessed tremendous developments in recent years. In that context, we have investigated two series of boron difluoride complexes based on 2‧-hydroxychalcone and curcuminoid ligands that represent naturally occurring pigment structures. The dyes display significantly large Stokes shift values, indicating that an ICT state is involved as lower-energy state in the singlet manifold. Remarkably they are also fluorescent in the solid-state, with emission wavelengths usually in the visible and mainly in the near infrared (NIR). It is especially intriguing that those dyes experience strong π-interactions in the crystal phase. We have observed that the formation of those highly stacked structures was not detrimental to solid-state emission and could even be exploited for the generation of efficient NIR emitters. For example, the boron complexes of curcuminoid ligands can be used to generate NIR fluorescent organic nanoparticles with large cross sections for two-photon absorption. The design of organic dyes displaying NIR emission in solution or in the solid-state remains challenging for applications in bioimaging and organic photonics. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  7. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water.

  8. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  9. Dietary boron: progress in establishing essential roles in human physiology.

    Science.gov (United States)

    Hunt, Curtiss D

    2012-06-01

    This review summarizes the progress made in establishing essential roles for boron in human physiology and assesses that progress in view of criteria for essentiality of elements. The evidence to date suggests that humans and at least some higher animals may use boron to support normal biological functions. These include roles in calcium metabolism, bone growth and maintenance, insulin metabolism, and completion of the life cycle. The biochemical mechanisms responsible for these effects are poorly understood but the nature of boron biochemistry suggests further characterization of the cell signaling molecules capable of complexing with boron. Such characterization may provide insights into the biochemical function(s) of boron in humans.

  10. Nuclear quadrupole resonance of boron in borate glasses

    Science.gov (United States)

    Gravina, Samuel J.; Bray, Phillip J.

    A continuous wave nuclear quadrupole resonance spectrometer that has a high sensitivity even at low frequencies has been built. Boron and aluminum NQR has been detected in the region 200 kHz to 1.4 MHz. For the first time, boron NQR has been detected in a glass. The NQR spectrum of pure B 20 3 glass is consistent with 85 ± 2% of the boron atoms belonging to boroxol rings. In sodium borate glasses, the number of borons in boroxol rings decreases with increasing sodium content, until when sodium oxide comprises 20 mol% of the glass less than 2% of the borons are in boroxol rings.

  11. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment

    Science.gov (United States)

    Li, Xia; Wang, Xiupeng; Zhang, Jun; Hanagata, Nobutaka; Wang, Xuebin; Weng, Qunhong; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri

    2017-01-01

    High global incidence of prostate cancer has led to a focus on prevention and treatment strategies to reduce the impact of this disease in public health. Boron compounds are increasingly recognized as preventative and chemotherapeutic agents. However, systemic administration of soluble boron compounds is hampered by their short half-life and low effectiveness. Here we report on hollow boron nitride (BN) spheres with controlled crystallinity and boron release that decrease cell viability and increase prostate cancer cell apoptosis. In vivo experiments on subcutaneous tumour mouse models treated with BN spheres demonstrated significant suppression of tumour growth. An orthotopic tumour growth model was also utilized and further confirmed the in vivo anti-cancer efficacy of BN spheres. Moreover, the administration of hollow BN spheres with paclitaxel leads to synergetic effects in the suppression of tumour growth. The work demonstrates that hollow BN spheres may function as a new agent for prostate cancer treatment.

  12. Studies on Preparation of Poly(3,4-Dihydroxyphenylalanine-Polylactide Copolymers and the Effect of the Structure of the Copolymers on Their Properties

    Directory of Open Access Journals (Sweden)

    Dongjian Shi

    2016-03-01

    Full Text Available Properties of copolymers are generally influenced by the structure of the monomers and polymers. For the purpose of understanding the effect of polymer structure on the properties, two kinds of copolymers, poly(3,4-dihydroxyphenylalanine-g-polylactide and poly(3,4-dihydroxyphenylalanine-b-polylactide (PDOPA-g-PLA and PDOPA-b-PLA were designed and prepared by ring-opening polymerization of lactide with pre-prepared PDOPA as the initiator and the amidation of the functional PLA and PDOPA oligomer, respectively. The molecular weight and composition of the copolymers could be adjusted by changing the molar ratio of LA and DOPA and were confirmed by gel permeation chromatography (GPC and proton nuclear magnetic resonance (1H NMR spectra. The obtained copolymers with graft and block structures showed high solubility even in common organic solvents. The effects of the graft and block structures on the thermal and degradation properties were also detected. The PDOPA-g-PLA copolymers showed higher thermal stability than the PDOPA-b-PLA copolymers, due to the PDOPA-g-PLA copolymers with regular structure and strong π-π stacking interactions among the intermolecular and intramolecular chains. In addition, the degradation results showed that the PDOPA-g-PLA copolymers and the copolymers with higher DOPA composition had quicker degradation speeds. Interestingly, both two kinds of copolymers, after degradation, became undissolved in the organic solvents because of the oxidation and crosslinking formation of the catechol groups in the DOPA units during degradation in alkaline solution. Moreover, fluorescent microscopy results showed good biocompatibility of the PDOPA-g-PLA and PDOPA-b-PLA copolymers. The PDOPA and PLA copolymers have the potential applications to the biomedical and industrial fields.

  13. Relationship Between Soil Boron Adsorption Kinetics and Rape Plant Boron Response

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; PIMEIMEI; 等

    1997-01-01

    The boron adsorption kinetic experiment in soil by means a flow displacement technique showed that the kinetic data could be described with some mathematic equations.The average values of the coorealtion coefficeint for zero-order,first-order,parabolic diffusion ,Elovich,power function and eponential equations were 0.957,0.982,0.981,0.984,0.981 and 0.902 ,respectively,The correlation between adsorbed boron or its other expression form and time were the highest for first-order ,parabloic diffusion Elovich,and pwer function equations,the second for the zeroorder equation,and the tlowest for the exponential equation.The parabloic diffusion equation fitted well the expermiental results,with the least standard error among the six kinetic equation,showing that the monvemetn of boron from soil solution to soil colloid surface may be controlled by boron diffusion speed.The boron content of rape seedling obtained from soil cultvation was correlated with the rate constants of the kinetic equations.The constants of first-order ,parabloic diffusion,and exponential equaitions were significanlty correlated with the boron content of the crop of NPK treatment at a 95% probaility level ,with correation coeffecients being 0.686,0.691 and 0.64 and 0.641,respectively.In the case of zero-order equation,it Was significant at 99% probability level(r=0.736),These results showed that the adsorption kinetic constants of soil boron were closely related with the rape plant response to boron.

  14. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  15. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Ozkan Emre, E-mail: ozdemir@psu.edu; Avramova, Maria N., E-mail: mna109@psu.edu

    2014-10-15

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis.

  16. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT)

    Science.gov (United States)

    Jung, Joo-Young; Yoon, Do-Kun; Lee, Heui Chang; Lu, Bo; Suh, Tae Suk

    2016-09-01

    We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT). Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0) simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR) thickness, BUR location, and boron concentration) with differing proton beam energy (60-90 MeV). We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60-70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  17. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  18. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  19. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT

    Directory of Open Access Journals (Sweden)

    Joo-Young Jung

    2016-09-01

    Full Text Available We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT. Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0 simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR thickness, BUR location, and boron concentration with differing proton beam energy (60–90 MeV. We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60–70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  20. Substitution reactions at boron atoms in metallacarboranes

    Energy Technology Data Exchange (ETDEWEB)

    Bregadze, Vladimir I; Timofeev, Sergei V; Sivaev, Igor B; Lobanova, Irina A [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-05-31

    Data on substitution reactions at boron atoms in 10-12-vertex metallacarboranes, which are of fundamental and applied significance, are generalised. The possible mechanisms of substitution reactions and the influence of the metal fragment on substitution positions in the polyhedron are discussed.

  1. Catalytic Asymmetric Synthesis of Phosphine Boronates.

    Science.gov (United States)

    Hornillos, Valentín; Vila, Carlos; Otten, Edwin; Feringa, Ben L

    2015-06-26

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of α,β-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good yields and high enantiomeric excess. The synthetic utility of the products is demonstrated through stereospecific transformations into multifunctional optically active compounds.

  2. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  3. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  4. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  5. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  6. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  7. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  8. Pechmann Reaction Promoted by Boron Trifluoride Dihydrate

    Directory of Open Access Journals (Sweden)

    J. Mezger

    2005-08-01

    Full Text Available The Pechmann reaction of substituted phenols 1a-e with methyl acetoacetate (2 can be activated by boron trifluoride dihydrate (3 to give the corresponding 4-methyl- coumarin derivatives 4a-e in excellent yield (98-99 %.

  9. Investigating the Boron Requirement of Plants.

    Science.gov (United States)

    Bohnsack, Charles W.

    1991-01-01

    This article describes a simple and rapid method for using summer squash to investigate born deficiency in plants. Author asserts that students are likely to feel challenged by laboratory exercises and projects that focus on the role boron plays in plant growth because it is an unresolved problem in biology. (PR)

  10. Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear

    Science.gov (United States)

    Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.

    2013-05-01

    A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.

  11. BCM6: New Generation of Boron Meter

    Energy Technology Data Exchange (ETDEWEB)

    Pirat, P. [Rolls-Royce Civil Nuclear SAS (France)

    2010-07-01

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  12. Polymerization kinetics of boron carbide/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Abenojar, J., E-mail: abenojar@ing.uc3m.es [Materials Performance Group, Materials Science and Engineering Department, IAAB, Universidad Carlos III de Madrid, Av. Universidad, 30, 28911 Leganés (Spain); Encinas, N. [Materials Performance Group, Materials Science and Engineering Department, IAAB, Universidad Carlos III de Madrid, Av. Universidad, 30, 28911 Leganés (Spain); Real, J.C. del [Department of Mechanical Engineering, Universidad Pontificia Comillas, C/ Alberto Aguilera 23, 28015 Madrid (Spain); Martínez, M.A. [Materials Performance Group, Materials Science and Engineering Department, IAAB, Universidad Carlos III de Madrid, Av. Universidad, 30, 28911 Leganés (Spain)

    2014-01-10

    Graphical abstract: - Highlights: • Conversion degree and rate reaction of the curing reaction increase with temperature. • At low temperature, the particles exhibit catalytic effect, similar to the OH groups. • At high temperature, B{sub 4}C micro-particles increase the n-order rate reaction. • The diffusion constant diminishes with temperature for all the studied materials. • The autocatalytic reaction is favored by the effect of 6% nanoparticles. - Abstract: This study employs Differential Scanning Calorimetry (DSC) technique and focuses on the curing kinetics and the activation energy of the commercial epoxy resin (which cures at room temperature for 12 h) filled with boron carbide particles (B{sub 4}C) in different amount (6 and 12 wt%) and particle size (60 nm, 7 and 23 μm). An isothermal dwell at different temperatures (25, 35 and 50 °C) was used for 180 min. Thereafter, the temperature is increased by 5 °C min{sup −1} up to 200 °C to complete the curing process. Conversion degree is calculated by combining both methods. The kinetic constant and the reaction order are calculated using Kamal's equation with diffusion control. Consequently, the activation energy is computed assuming Arrhenius’ equation.The results show a significant influence of the temperature on the reaction mechanism. Furthermore, polymerization kinetics is affected by B{sub 4}C additions depending on the amount and size of the added particles.

  13. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  14. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  15. Highly selective capture of nucleosides with boronic acid functionalized polymer brushes prepared by atom transfer radical polymerization.

    Science.gov (United States)

    Cheng, Ting; Zhu, Shuqiang; Zhu, Bin; Liu, Xiaoyan; Zhang, Haixia

    2016-04-01

    The nucleoside or modified nucleoside level in biological fluids reflects the pathological or physiological state of the body. Boronate affinity absorbents are widely used to selectively extract nucleosides from complex samples. In this work, a novel functionalized absorbent was synthesized by attaching 4-mercaptophenylboronic acid to gold nanoparticles on modified attapulgite. The surface of the attapulgite was modified by poly(acryloyloxyethyltrimethyl ammonium chloride) by atom transfer radical polymerization, creating many polymer brushes on the surface. The resultant material exhibited superior binding capacity (30.83 mg/g) for adenosine and was able to capture cis-diol nucleosides from 1000-fold interferences. Finally, to demonstrate its potential for biomolecule extraction, this boronate affinity material was used to preconcentrate nucleosides from human urine and plasma.

  16. Coupling reaction on gold nanoparticle to yield polythiophene/gold nanoparticle alternate network film.

    Science.gov (United States)

    Tanaka, Manabu; Fujita, Remi; Nishide, Hiroyuki

    2009-01-01

    The novel gold nanoparticle, which was stabilized with pi-conjugated molecules bearing functional groups at the terminals, was prepared via conventional procedure by using 5-bromo-2,2'-bithiophene-5'-thiol as a stabilizer. The gold nanoparticle (ca. 3 nm-diameter) showed good dispersion stability in various organic solvents, and its electrochemical and spectroscopic study revealed peculiar properties originated in the pi-conjugated molecular stabilizer, bithiophene derivative. The Pd-catalyzed coupling reaction on the gold nanoparticle was first achieved by using the gold nanoparticle bearing bromo groups at the particle surface and the model boronic acid molecule, 5-formyl-2-thiopheneboronic acid, to yield the terthiophene derivatives on the gold nanoparticle. The 1H-NMR, UV, and TGA analysis supported the progress of the coupling reaction on the gold nanoparticle. This Pd-catalyzed coupling reaction was applied with the borate-terminated polythiophene to form polythiophene/gold nanoparticle alternate network film. The electron microscopic images supported the formation of the network structure. The high electric conductivity on the network film suggested that the conductive characteristic of the film originated from that of the pi-conjugated polythiophene backbone connected with the gold nanoparticle.

  17. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    Science.gov (United States)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  18. Van Hove singularities of some icosahedral boron-rich solids by differential reflectivity spectra

    Science.gov (United States)

    Werheit, Helmut

    2015-09-01

    Differential reflectivity spectra of some icosahedral boron rich solids, β-rhombohedral boron, boron carbide and YB66-type crystals, were measured. The derivatives yield the van Hove singularities, which are compared with results obtained by other experimental methods.

  19. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Science.gov (United States)

    Mannix, Andrew J.; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D.; Alducin, Diego; Myers, Benjamin D.; Liu, Xiaolong; Fisher, Brandon L.; Santiago, Ulises; Guest, Jeffrey R.; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R.; Hersam, Mark C.; Guisinger, Nathan P.

    2016-01-01

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes.Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. PMID:26680195

  20. 11B nuclear magnetic resonance in boron-doped diamond

    Directory of Open Access Journals (Sweden)

    Miwa Murakami, Tadashi Shimizu, Masataka Tansho and Yoshihiko Takano

    2008-01-01

    Full Text Available This review summarizes recent results obtained by 11B solid-state nuclear magnetic resonance (NMR on boron-doped diamond, grown by the high-pressure high-temperature (HPHT or chemical vapor deposition techniques. Simple single-pulse experiments as well as advanced two-dimensional NMR experiments were applied to the boron sites in diamond. It is shown that magic-angle spinning at magnetic fields above 10 T is suitable for observation of high-resolution 11B spectra of boron-doped diamond. For boron-doped HPHT diamonds, the existence of the excess boron that does not contribute to electrical conductivity was confirmed and its 11B NMR signal was characterized. The point-defect structures (B+H complexes and -B-B-/-B-C-B- clusters, postulated previously for the excess boron, were discarded and graphite-like structures were assigned instead.

  1. Boron Rich Solids Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  2. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  3. The synthesis and characterization of iron nanoparticles

    Science.gov (United States)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  4. Application of Cycloaddition Reactions to the Syntheses of Novel Boron Compounds

    OpenAIRE

    Maguire, John A.; Hosmane, Narayan S; Yinghuai Zhu; Xiao Siwei

    2010-01-01

    This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT) in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-c...

  5. Synthesis of an orthorhombic high pressure boron phase

    Science.gov (United States)

    Zarechnaya, Evgeniya Yu; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Miyajima, Nobuyoshi; Filinchuk, Yaroslav; Chernyshov, Dmitry; Dmitriev, Vladimir

    2008-12-01

    The densest boron phase (2.52 g cm-3) was produced as a result of the synthesis under pressures above 9 GPa and temperatures up to ~1800 °C. The x-ray powder diffraction pattern and the Raman spectra of the new material do not correspond to those of any known boron phases. A new high-pressure high-temperature boron phase was defined to have an orthorhombic symmetry (Pnnm (No. 58)) and 28 atoms per unit cell.

  6. Successive Boronizing and Austempering for GGG-40 Grade Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    Murat Baydogan; Seckin Izzet Akray

    2009-01-01

    Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.

  7. Measurement of boron isotopes by negative thermal ionization mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The isobaric interference for boron isotopic measurement by negative thermal ionization mass spectrometry (NTIMS) has been studied. The result shows that the CNO- is not only from the organic material, but also from nitrate in loading reagent in NTIMS. Monitoring the mass 43 ion intensity and 43/42 ratio of blank are also necessary for the boron isotopic measurement by NTIMS, other than is only boron content.

  8. Apparatus for the production of boron nitride nanotubes

    Science.gov (United States)

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  9. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-01

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  10. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  11. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  12. Boron-10 ABUNCL Models of Fuel Testing

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, Edward R.; Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.

    2013-10-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNP simulations of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) active configuration model with fuel pins previously measured at Los Alamos National Laboratory. A comparison of the GE-ABUNCL simulations and simulations of 3He based UNCL-II active counter (the system for which the GE-ABUNCL was targeted to replace) with the same fuel pin assemblies is also provided.

  13. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  14. Characterization of boron doped nanocrystalline diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/{mu}m range.

  15. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  16. Laser Boronizing of Stainless Steel with Direct Diode Laser

    Science.gov (United States)

    Kusuhara, Takayoshi; Morimoto, Junji; Abe, Nobuyuki; Tsukamoto, Masahiro

    Boronizing is a thermo-chemical surface treatment in which boron atoms are diffused into the surface of a work piece to form borides with the base material. When applied to the metallic materials, boronizing provides wear and abrasion resistance comparable to sintered carbides. However conventional boronizing is carried out at temperatures ranging from 800°C to 1050°C and takes from one to several hours. The structure and properties of the base material is influenced considerably by the high temperature and long treatment time. In order to avoid these drawbacks of conventional boronizing, laser-assisted boronizing is investigated which activates the conventional boronizing material and the work piece with a high density laser power. In this study, effect of laser characteristics was examined on the laser boronizing of stainless steel. After laser boronizing, the microstructure of the boride layer was analyzed with an optical microscope, electron probe micro analyser(EPMA) and X-ray diffractometer (XRD). The mechanical properties of borided layer were evaluated using Vickers hardness tester and sand erosion tester. Results showed that the boride layer was composed of NiB, CrB, FeB and Fe2B, and get wear resistance.

  17. Switchable Surface Wettability by Using Boronic Ester Chemistry.

    Science.gov (United States)

    Taleb, Sabri; Noyer, Elisabeth; Godeau, Guilhem; Darmanin, Thierry; Guittard, Frédéric

    2016-01-18

    Here, we report for the first time the use of a boronic ester as an efficient tool for reversible surface post-functionalization. The boronic ester bond allows surfaces to be reversibly switched from hydrophilic to hydrophobic. Based on the well-known boronic acid/glycol affinity, this strategy offers the opportunity to play with surface hydrophobic properties by adding various boronic acids onto substrates bearing glycol groups. The post-functionalization can then be reversed to regenerate the starting glycol surface. This pathway allows for the preparation of various switchable surfaces for a large range of applications in biosensors, liquid transportation, and separation membranes.

  18. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  19. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, V., E-mail: V.Mohammadi@tudelft.nl; Nihtianov, S. [Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD, Delft (Netherlands)

    2016-02-15

    The lateral gas phase diffusion length of boron atoms, L{sub B}, along silicon and boron surfaces during chemical vapor deposition (CVD) using diborane (B{sub 2}H{sub 6}) is reported. The value of L{sub B} is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and confirmed analytically in the boron deposition temperature range from 700 °C down to 400 °C. For this temperature range the local loading effect of the boron deposition is investigated on the micro scale. A L{sub B} = 2.2 mm was determined for boron deposition at 700 °C, while a L{sub B} of less than 1 mm was observed at temperatures lower than 500 °C.

  20. Formation and Structure of Boron Nitride Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG; Zongquan LI; Jin XU

    2005-01-01

    Boron nitride (BN) nanotubes were simply synthesized by heating well-mixed boric acid, urea and iron nitrate powders at 1000℃. A small amount of BN nanowires was also obtained in the resultants. The morphological and structural characters of the BN nanostructures were studied using transmission electron microscopy. Other novel BN nanostructures, such as Y-junction nanotubes and bamboo-like nanotubes, were simultaneously observed. The growth mechanism of the BN nanotubes was discussed briefly.

  1. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  2. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  3. Critical Range of Soil Boron for Prognosis of Boron Deficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    WEIYOUZHANG

    2001-01-01

    Relationships between seed yields of oilseed rape(Brassica napus L.) and extractable boron concen-trations in three soil layers(A,P and W) were investigated through ten experiments on three types of soils(Alluvic Entisols,Udic Ferrisols and Sagnic Anthrosols) in northern,Western and middle Zhejing Province.Among several mathematical models used to described the relationships,the polynomial equation,y=a+bx+cx2+dx3,where y is the yield of oilseed rape seed and x the extractable boron concentration in P layer of soil,was the best one.The critical range of the concentrations corresponding to 90% of the maximum oilseed rape yield was 0.40-0.52 mg kg-1,The extractable boron concentration of the P layers of the soils was the most stable,The critical range determined was verified through the production practices of oilseed rape in Zhejiang and Anhui provinces.

  4. Critical Range of Soil Boron for Prognosis of Boron Deficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Relationships between seed yields of oilseed rape (Brassica napus L.) and extractable boron concen- trations in three soil layers (A, P and W) were investigated through ten experiments on three types of soils (Alluvic Entisols, Udic Ferrisols and Stagnic Anthrosols) in northern, western and middle Zhejiang Province. Among several mathematical models used to described the relationships, the polynomial equation, y = a + bx + cx2 + dx3, where y is the yield of oilseed rape seed and x the extractable boron concentration in P layer of soil, was the best one. The critical range of the concentrations corresponding to 90% of the maximum oilseed rape yield was 0.40~0.52 mg kg-1. The extractable boron concentration of the P layers of the soils was the most stable. The critical range determined was verified through the production practices of oilseed rape in Zhejiang and Anhui provinces.

  5. Boron impregnation treatment of Eucalyptus grandis wood.

    Science.gov (United States)

    Dhamodaran, T K; Gnanaharan, R

    2007-08-01

    Eucalyptus grandis is suitable for small timber purposes, but its wood is reported to be non-durable and difficult to treat. Boron compounds being diffusible, and the vacuum-pressure impregnation (VPI) method being more suitable for industrial-scale treatment, the possibility of boron impregnation of partially dry to green timber was investigated using a 6% boric acid equivalent (BAE) solution of boric acid and borax in the ratio 1:1.5 under different treatment schedules. It was found that E. grandis wood, even in green condition, could be pressure treated to desired chemical dry salt retention (DSR) and penetration levels using 6% BAE solution. Up to a thickness of 50mm, in order to achieve a DSR of 5 kg/m(3) boron compounds, the desired DSR level as per the Indian Standard for perishable timbers for indoor use, it was found that neither the moisture content of wood nor the treatment schedule posed any problem as far as the treatability of E. grandis wood was concerned.

  6. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  7. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  8. Low-dimensional boron structures based on icosahedron B12

    Science.gov (United States)

    Kah, C. B.; Yu, M.; Tandy, P.; Jayanthi, C. S.; Wu, S. Y.

    2015-10-01

    One-dimensional icosahedral boron chains and two-dimensional icosahedral boron sheets (icosahedral α, δ6, and δ4 sheets) that contain icosahedra B12 as their building units have been predicted in a computer simulation study using a state-of-the-art semi-empirical Hamiltonian. These novel low-dimensional icosahedral structures exhibit interesting bonding and electronic properties. Specifically, the three-center, two-electron bonding between icosahedra B12 of the boron bulk (rhombohedral boron) transforms into a two-center bonding in these new allotropes of boron sheets. In contrast to the previously reported stable buckled α and triangular boron monolayer sheets, these new allotropes of boron sheets form a planar network. Calculations of electronic density of states (DOS) reveal a semiconducting nature for both the icosahedral chain and the icosahedral δ6 and δ4 sheets, as well as a nearly gapless (or metallic-like) feature in the DOS for the icosahedral α sheet. The results for the energy barrier per atom between the icosahedral δ6 and α sheets (0.17 eV), the icosahedral δ6 and δ4 sheets (0.38 eV), and the icosahedral α and δ4 sheets (0.27 eV), as indicated in the respective parentheses, suggest that these new allotropes of boron sheets are relatively stable.

  9. Growing evidence for human health benefits of boron

    Science.gov (United States)

    Growing evidence from numerous laboratories using a variety of experimental models shows that boron is a bioactive beneficial, perhaps essential, element for humans. Reported beneficial actions of boron include arthritis alleviation or risk reduction; bone growth and maintenance; central nervous sys...

  10. Predicted phase diagram of boron-carbon-nitrogen

    Science.gov (United States)

    Zhang, Hantao; Yao, Sanxi; Widom, Michael

    2016-04-01

    Noting the structural relationships between phases of carbon and boron carbide with phases of boron nitride and boron subnitride, we investigate their mutual solubilities using a combination of first-principles total energies supplemented with statistical mechanics to address finite temperatures. Thus we predict the solid-state phase diagram of boron-carbon-nitrogen (B-C-N). Owing to the large energy costs of substitution, we find that the mutual solubilities of the ultrahard materials diamond and cubic boron nitride are negligible, and the same for the quasi-two-dimensional materials graphite and hexagonal boron nitride. In contrast, we find a continuous range of solubility connecting boron carbide to boron subnitride at elevated temperatures. An electron-precise ternary compound B13CN consisting of B12 icosahedra with NBC chains is found to be stable at all temperatures up to melting. It exhibits an order-disorder transition in the orientation of NBC chains at approximately T =500 K. We also propose that the recently discovered binary B13N2 actually has composition B12.67N2 .

  11. Phase diagrams and synthesis of cubic boron nitride

    CERN Document Server

    Turkevich, V Z

    2002-01-01

    On the basis of phase equilibria, the lowest temperatures, T sub m sub i sub n , above which at high pressures cubic boron nitride crystallization from melt solution is allowable in terms of thermodynamics have been found for a number of systems that include boron nitride.

  12. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  13. The investigation of parameters affecting boron removal by electrocoagulation method

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, 25240, Atatuerk University, Faculty of Engineering Erzurum (Turkey); Keskinler, Buelent [Department of Environmental Engineering, Gebze Institute of Technology, Gebze/Kocaeli 41400 (Turkey)

    2005-10-17

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm{sup 2}. The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl{sub 2}. Added CaCl{sub 2} increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions.

  14. Method for removal of phosgene from boron trichloride

    Science.gov (United States)

    Freund, S.M.

    1983-09-20

    Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this method. 5 figs.

  15. Finite Element Analysis Of Boron Diffusion In Wood

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;

    2002-01-01

    The coupled heat and mass transfer equations for air, water and heat transfer are supplemented with a conservation equation for an additional species representing the concentration of boron in wood. Boundary conditions for wood-air. wood-soil and wood-boron interfaces arc discussed and finally th...

  16. Recent advances in high performance poly(lactide): from “green” plasticization to super-tough materials via (reactive) compounding

    Science.gov (United States)

    Kfoury, Georgio; Raquez, Jean-Marie; Hassouna, Fatima; Odent, Jérémy; Toniazzo, Valérie; Ruch, David; Dubois, Philippe

    2013-01-01

    Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide) (PLA) is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity [high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate) (PET), high impact poly(styrene) (HIPS) and poly(propylene) (PP)], PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application. This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive) blending PLA-based systems. PMID:24790960

  17. Performance of functionally graded implants of polylactides and calcium phosphate/calcium carbonate in an ovine model for computer assisted craniectomy and cranioplasty.

    Science.gov (United States)

    Eufinger, Harald; Rasche, Christian; Lehmbrock, Jutta; Wehmöller, Michael; Weihe, Stephan; Schmitz, Inge; Schiller, Carsten; Epple, Matthias

    2007-01-01

    Biodegradable functionally graded skull implants on the basis of polylactides and calcium phosphate/calcium carbonate were prepared in an individual mould using a combination of different processing techniques. A geometrically corresponding resection template was designed to enable a craniectomy and cranioplasty with the prepared implant in the same operation. After various preliminary experiments concerning degradation kinetics, pH evolution during degradation, micromorphology, biocompatibility tests in human osteoblast cell cultures and surgery of cadaver heads, a new large-animal model was developed for long-term in vivo studies. In eight 12-months-old sheep, the surgical templates were used to create 4.5 x 5 cm(2) calvarial defects which were then filled with the corresponding degradable implants in the same operation. The animals were sacrificed after 2, 9, 12 and 18 months, and the implants and the surrounding tissues were analysed by computer tomography (CT), macroscopic examination and microscopy. The new animal model proved to be reliable and very suitable for large individual craniectomies and cranioplasties. The formation of new bone from the dural layer of the meninges corresponded well to the degradation of the porous inner layer of the implants whereas the skull contour was stabilised by the compact outer layer over the follow-up period.

  18. [Regeneration processes in bone defects after implantation of composite material of different density of polylactide origin filled with HAP (experimental-morphological study)].

    Science.gov (United States)

    Kulakov, A A; Grigor'ian, A S; Krotova, L I; Popov, V K; Volozhin, A I; Losev, V F

    2009-01-01

    In experimental-morphological study on 6 dogs the dynamics of regenerate formation in ulna and mandible defects after implantation in them composite material of different density (0.46-0.50 and 0.38-0.42 g/cm(3)) of polylactide (PL) origin filled with HAP was followed at the terms of 6 and 9 months. Histologic study and structural determinant distribution analysis in the content of regenerate showed that optimal results according to the bone defect substitution by bone regenerate criterion at 9th month of the experiment were received after composite material from PL and HAP with the density of 0.38-0.42 g/cm(3) implantation. Newly formed trabecular bone tissue was seen in the regenerate and as well as strong tendency for bone matrix maturation. It was confirmed by the appearance of lamellar structures in newly formed bone trabecules situated in peripheral zones of bone defect. In bone mandible defects the substitution process of the implants from PL with HAP by the bone tissue was much slower than in ulna defects.

  19. Influence of reprocessing on fibre length distribution, tensile strength and impact strength of injection moulded cellulose fibre-reinforced polylactide (PLA composites

    Directory of Open Access Journals (Sweden)

    N. Graupner

    2016-08-01

    Full Text Available The present study focuses on the reprocessing behaviour of recycled injection moulded polylactide (PLA composites. The composites are reinforced with regenerated cellulose fibres (lyocell of variable fineness and a fibre mass content of 30%. They were reprocessed up to three times. The influence of reprocessing on the fibre length distribution and the resulting composite mechanical properties (tensile and impact strength was analysed. While the first reprocessing cycle does not affect the mechanical characteristics of the neat PLA matrix, the strength of the composites decreases significantly due to a decreasing fibre aspect ratio. It was shown that fibres having a larger cross-sectional area display a lower aspect ratio than finer fibres, after reprocessing. This phenomenon leads to a larger decrease in tensile strength of composites reinforced with coarser fibres when compared to composites reinforced with finer fibres. A comparison of virgin composites and threefold reprocessed composites with a similar fibre length distribution resulted in a significantly higher tensile strength compared to the virgin sample. This result leads to the conclusion that not only the fibre length is drastically reduced by reprocessing but also that the fibres and the matrix were damaged.

  20. Attenuated total reflectance-mid infrared spectroscopy (ATR-MIR) coupled with independent components analysis (ICA): A fast method to determine plasticizers in polylactide (PLA).

    Science.gov (United States)

    Kassouf, Amine; Ruellan, Alexandre; Jouan-Rimbaud Bouveresse, Delphine; Rutledge, Douglas N; Domenek, Sandra; Maalouly, Jacqueline; Chebib, Hanna; Ducruet, Violette

    2016-01-15

    Compliance of plastic food contact materials (FCMs) with regulatory specifications in force, requires a better knowledge of their interaction phenomena with food or food simulants in contact. However these migration tests could be very complex, expensive and time-consuming. Therefore, alternative procedures were introduced based on the determination of potential migrants in the initial material, allowing the use of mathematical modeling, worst case scenarios and other alternative approaches, for simple and fast compliance testing. In this work, polylactide (PLA), plasticized with four different plasticizers, was considered as a model plastic formulation. An innovative analytical approach was developed, based on the extraction of qualitative and quantitative information from attenuated total reflectance (ATR) mid-infrared (MIR) spectral fingerprints, using independent components analysis (ICA). Two novel chemometric methods, Random_ICA and ICA_corr_y, were used to determine the optimal number of independent components (ICs). Both qualitative and quantitative information, related to the identity and the quantity of plasticizers in PLA, were retrieved through a direct and fast analytical method, without any prior sample preparations. Through a single qualitative model with 11 ICs, a clear and clean classification of PLA samples was obtained, according to the identity of plasticizers incorporated in their formulations. Moreover, a quantitative model was established for each formulation, correlating proportions estimated by ICA and known concentrations of plasticizers in PLA. High coefficients of determination (higher than 0.96) and recoveries (higher than 95%) proved the good predictability of the proposed models.

  1. Isothermal Cold Crystallization, Heat Resistance, and Tensile Performance of Polylactide/Thermoplastic Polyester Elastomer (PLA/TPEE Blends: Effects of Annealing and Reactive Compatibilizer

    Directory of Open Access Journals (Sweden)

    Sisi Wang

    2016-12-01

    Full Text Available The combined influences of crystallinity and reactive compatibilizer—a multifunctional epoxide (ADR—on morphology, tensile performance, and heat resistance of polylactide/thermoplastic polyester elastomer (PLA/TPEE (80/20 blends were investigated. Annealing involved an isothermal cold crystallization of PLA matrix was performed to increase crystallinity of the samples. First, isothermal cold crystallization kinetics were investigated using differential scanning calorimetry measurement. It was found that the addition of ADR decreased the crystallization rate of the samples. The maximum crystallinity of the annealed samples also decreased from 40% to 34% while ADR loading increased from zero to 1.0 phr. Furthermore, influence of crystallinity on mechanical performances of the PLA/TPEE sample was researched. The heat resistance of the sample showed a significant enhancement while increasing its crystallinity. Meanwhile, the tensile ductility of the crystallized PLA/TPEE sample became very poor due to the embrittlement with increased crystallinity and the incompatibility between PLA and TPEE. However, the annealed PLA/TPEE/ADR samples with high crystallinity kept a higher tensile ductility because ADR greatly improved the interfacial compatibility. Differences in tensile fracture behaviors of the quenched and annealed PLA/TPEE samples with and without ADR were discussed in detail. At last, crystallized PLA/TPEE/ADR blends with excellent heat resistance and high tensile ductility were obtained by annealing and reactive compatibilization.

  2. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate].

    Science.gov (United States)

    Ojijo, Vincent; Sinha Ray, Suprakas; Sadiku, Rotimi

    2012-12-01

    Binary blends of two biodegradable polymers: polylactide (PLA), which has high modulus and strength but is brittle, and poly[(butylene succinate)-co-adipate] (PBSA), which is flexible and tough, were prepared through batch melt mixing. The PLA/PBSA compositions were 100/0, 90/10, 70/30, 60/40, 50/50, 40/60, 30/70, 10/90, and 0/100. Fourier-transform infrared measurements revealed the absence of any chemical interaction between the two polymers, resulting in a phase-separated morphology as shown by scanning electron microscopy (SEM). SEM micrographs showed that PLA-rich blends had smaller droplet sizes when compared to the PBSA-rich blends, which got smaller with the reduction in PBSA content due to the differences in their melt viscosities. The interfacial area of PBSA droplets per unit volume of the blend reached a maximum in the 70PLA/30PBSA blend. Thermal stability and mechanical properties were not only affected by the composition of the blend, but also by the interfacial area between the two polymers. Through differential scanning calorimetry, it was shown that molten PBSA enhanced crystallization of PLA while the stiff PLA hindered cold crystallization of PBSA. Optimal synergies of properties between the two polymers were found in the 70PLA/30PBSA blend because of the maximum specific interfacial area of the PBSA droplets.

  3. Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites.

    Science.gov (United States)

    Ojijo, Vincent; Sinha Ray, Suprakas; Sadiku, Rotimi

    2012-05-01

    Polylactide/poly[(butylene succinate)-co-adipate] (PLA/PBSA)-organoclay composites were prepared via melt compounding in a batch mixer. The weight ratio of PLA to PBSA was kept at 70:30, while the weight fraction of the organoclay was varied from 0 to 9%. Small angle X-ray scattering patterns showed slightly better dispersion in PBSA than PLA, and there was a tendency of the silicate layers to delaminate in PBSA at low clay content. Thermal analysis revealed that crystallinity was dependent on the clay content as well its localization within the composite. On the other hand, thermal stability marginally improved for composites with 2 wt %. Tensile properties showed dependence on clay content and localization. Composite with 2 wt % clay content showed slight improvement in elongation at break. Overall, the optimum property was found for a composite with 2 wt % of the organoclay. This paper therefore has demonstrated the significance of the clay content and localization on the properties of the PLA/PBSA blends.

  4. Investigation on Polylactide (PLA/Poly(butylene adipate-co-terephthalate (PBAT/Bark Flour of Plane Tree (PF Eco-Composites

    Directory of Open Access Journals (Sweden)

    Qiang Dou

    2016-05-01

    Full Text Available Polylactide (PLA/poly(butylene adipate-co-terephthalate (PBAT/bark flour of plane tree (PF eco-composites were prepared via melt blending. The morphologies, mechanical properties, crystal structures and melting and crystallization behaviors of the eco-composites were investigated by means of scanning electron microscopy (SEM, mechanical tests, polarized light microscopy (PLM, wide angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC, respectively. It is shown that the interfacial adhesion between PLA matrix and PF is weak and the mechanical properties of PLA/PF eco-composites are poor. The titanate treatment improves the adhesion between the matrix and the filler and enhances the stiffness of the eco-composites. The toughness is improved by PBAT and ductile fractured surfaces can be found. The spherulitic size of PLA is decreased by the addition of PF. The α crystalline form of PLA remains in the composites. Compared with PF, T-PF (PF treated by a titanate coupling agent and PBAT have negative effects on the crystallization of PLA.

  5. Fast incorporation of primary amine group into polylactide surface for improving C₂C₁₂ cell proliferation using nitrogen-based atmospheric-pressure plasma jets.

    Science.gov (United States)

    Yang, Yi-Wei; Wu, Jane-Yii; Liu, Chih-Tung; Liao, Guo-Chun; Huang, Hsuan-Yu; Hsu, Ray-Quen; Chiang, Ming-Hung; Wu, Jong-Shinn

    2014-01-01

    In this article, we report the development of the fast incorporation of primary amine functional groups into a polylactide (PLA) surface using the post-discharge jet region of an atmospheric-pressure nitrogen-based dielectric barrier discharge (DBD). Plasma treatments were carried out in two sequential steps: (1) nitrogen with 0.1% oxygen addition, and (2) nitrogen with 5% ammonia addition. The analyses show that the concentration of N/C ratio, surface energy, contact angle, and surface roughness of the treated PLA surface can reach 19.1%, 70.5 mJ/m(2), 38° and 73.22 nm, respectively. In addition, the proposed two-step plasma treatment procedure can produce a PLA surface exhibiting almost the same C2C12 cell attachment and proliferation performance as that of the conventional gelatin coating method. Most importantly, the processing/preparation time is reduced from 13-15 h (gelatin coating method) to 5-15 min (two-step plasma treatment), which is very useful in practical applications.

  6. APPLICATION OF BORON MODIFIED SILICA SOL ON RETENTION AND DRAINAGE

    Institute of Scientific and Technical Information of China (English)

    JinxiaMa; YuxiuPeng; ZhongzhengLi

    2004-01-01

    In this paper it was studied that these dosage effectsof CPAM, cationic starch,boron modified silica sol(BMS), A12(SO4)3, pH value and electrolyte on theretention and drainage of different microparticulatesystems including CPAM, cationic starch and boronsilica sol. The research results indicated that CPAMhad no good retention when used with boron silicasol. The best retention efficiency was the micropar-ticulate system of CPAM + cationic starch withboron modified silica sol; Secondly was that ofcationic starch with boron modified silica sol; Theworst was that of CPAM with boron modified silicasol. The retention efficiency had no relation with theaddition order between CPAM and cationic starch. Itwas also found that the microparticulate retentionsystem of boron modified silica sol could be used inalum-rosin sizing and in acidity, neutral or alkalinepapermaking conditions. This system also could beused with close circulate water so that it could reducethe water pollution and waste.

  7. Safety Assessment of Boron Nitride as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations.

  8. A computational study of carbon dioxide adsorption on solid boron.

    Science.gov (United States)

    Sun, Qiao; Wang, Meng; Li, Zhen; Du, Aijun; Searles, Debra J

    2014-07-07

    Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results indicate CO2 capture on the boron phases is a kinetically and thermodynamically feasible process, and therefore from this perspective these boron materials are predicted to be good candidates for CO2 capture.

  9. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  10. Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids

    Science.gov (United States)

    Fal, Jacek; Cholewa, Marian; Gizowska, Magdalena; Witek, Adam; ŻyŁa, GaweŁ

    2017-02-01

    This paper presents the results of experimental investigation of the dielectric properties of ethylene glycol (EG) with various load of boron nitride (BN) nanoparticles. The nanofuids were prepared by using a two-step method on the basis of commercially available BN nanoparticles. The measurements were carried out using the Concept 80 System (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from 10 Hz to 10 MHz and temperatures from 278.15 K to 328.15 K. The frequency-dependent real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the complex permittivity (ɛ ^*) and the alternating current (AC) conductivity are presented. Also, the effect of temperature and mass concentrations on the dielectric properties of BN-EG nanofluids are demonstrated. The results show that the most significant increase can be achieved for 20 wt.% of BN nanoparticles at 283.15 K and 288.15 K, that is eleven times larger than in the case of pure EG.

  11. Huge nanodielectric effects in polyimide/boron nitride nanocomposites revealed by the nanofiller size

    Science.gov (United States)

    Diaham, S.; Saysouk, F.; Locatelli, M.-L.; Lebey, T.

    2015-09-01

    The dielectric properties of polyimide/boron nitride (PI/BN) nanocomposite films are investigated as a function of the BN nanofiller size from 20 to 350 °C and at low filler content (1-2 vol.%). The role of the BN nanofiller size on the large reduction of the electrode polarization relaxation phenomenon due to ionic movements is reported. For the two smallest BN nanoparticles (95 nm and 35 nm), the permittivity, dielectric losses and dc conductivity are strongly attenuated above 200 °C by a factor of 10 to 1000 compared to neat PI. Thus, the dc conductivity at 350 °C is reduced from 4   ×   10-8 Ω-1 cm-1 for neat PI to 3   ×   10-11 Ω-1 cm-1 for PI/BN (35 nm). Moreover, a further decrease is obtained by functionalizing the nanofiller surface with a silane coupling agent which improves the grafting of PI chains on those latter nanoparticles. These results highlight the trapping efficiency in the interphase region introduced by the small BN nanofillers (<100 nm) and provides evidence as to the huge nanodielectric effects on the charge carrier transport controlled by the nanoparticle diameter. This finding should be of great importance for advanced high temperature electrical insulation in the future.

  12. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice

    Science.gov (United States)

    Liu, Bo; Qi, Wei; Tian, Longlong; Li, Zhan; Miao, Guoying; An, Wenzhen; Liu, Dan; Lin, Jing; Zhang, Xiaoyong; Wu, Wangsuo

    2015-12-01

    The boron nitride (BN) nanoparticles, as the structural analogues of graphene, are the potential biomedicine materials because of the excellent biocompatibility, but their solubility and biosafety are the biggest obstacle for the clinic application. Here, we first synthesized the highly soluble BN nanoparticles coated by PEG (BN-PEG) with smaller size (~10 nm), then studied their biodistribution in vivo through radioisotope (Tc99mO4 -) labeling, and the results showed that BN-PEG nanoparticles mainly accumulated in the liver, lung, and spleen with the less uptake by the brain. Moreover, the pathological changes induced by BN-PEG could be significantly observed in the sections of the liver, lung, spleen, and heart, which can be also supported by the test of biochemical indexes in serum. More importantly, we first observed the biodistribution of BN-PEG in the heart tissues with high toxicity, which would give a warning about the cardiovascular disease, and provide some opportunities for the drug delivery and treatment.

  13. Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids

    Science.gov (United States)

    Fal, Jacek; Cholewa, Marian; Gizowska, Magdalena; Witek, Adam; ŻyŁa, GaweŁ

    2016-10-01

    This paper presents the results of experimental investigation of the dielectric properties of ethylene glycol (EG) with various load of boron nitride (BN) nanoparticles. The nanofuids were prepared by using a two-step method on the basis of commercially available BN nanoparticles. The measurements were carried out using the Concept 80 System (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from 10 Hz to 10 MHz and temperatures from 278.15 K to 328.15 K. The frequency-dependent real (ɛ ^' } ) and imaginary (ɛ ^' ' } ) parts of the complex permittivity (ɛ ^* ) and the alternating current (AC) conductivity are presented. Also, the effect of temperature and mass concentrations on the dielectric properties of BN-EG nanofluids are demonstrated. The results show that the most significant increase can be achieved for 20 wt.% of BN nanoparticles at 283.15 K and 288.15 K, that is eleven times larger than in the case of pure EG.

  14. Nanostructured Boron Nitride: From Molecular Design to Hydrogen Storage Application

    Directory of Open Access Journals (Sweden)

    Georges Moussa

    2014-07-01

    Full Text Available The spray-pyrolysis of borazine at 1400 °C under nitrogen generates boron nitride (BN nanoparticles (NPs. The as-prepared samples form elementary blocks containing slightly agglomerated NPs with sizes ranging from 55 to 120 nm, a Brunauer-Emmett-Teller (BET-specific surface area of 34.6 m2 g−1 and a helium density of 1.95 g cm−3. They are relatively stable in air below 850 °C in which only oxidation of the NP surface proceeds, whereas under nitrogen, their lower size affects their high temperature thermal behavior in the temperature range of 1450–2000 °C. Nitrogen heat-treated nanostructures have been carefully analyzed using X-ray diffraction, electron microscopy and energy-dispersive X-ray spectroscopy. The high temperature treatment (2000 °C gives hollow-cored BN-NPs that are strongly facetted, and after ball-milling, hollow core-mesoporous shell NPs displaying a BET-specific surface area of 200.5 m2·g−1 and a total pore volume of 0.287 cm3·g−1 were produced. They have been used as host material to confine, then destabilize ammonia borane (AB, thus improving its dehydrogenation properties. The as-formed AB@BN nanocomposites liberated H2 at 40 °C, and H2 is pure in the temperature range 40–80 °C, leading to a safe and practical hydrogen storage composite material.

  15. In Vivo Release of Isoniazide from Superparamagnetic Isoniazide PolylactidePolyethylene Glycol Copolymers Microspheres under Oscillating Magnetic Field%振荡磁场作用下超顺磁性异烟肼PELA微球体内药物释放规律

    Institute of Scientific and Technical Information of China (English)

    张玉坤; 朱朝敏; 罗聪; 黄华; 周恒

    2011-01-01

    Objective To investigate the principle of in vivo release of isoniazide (INH) from superparamagnetic isoniazide polylactide-polyethylene glycol copolymers (PELA) microspheres (spPM) under oscillating magnetic field and develop a HPLC method for INH. Methods Superparamagnetic Fe3O4 nanoparticles were prepared by chemical coprecipitation, based on which spIPMs were prepared by solvent evaporation with complex emulsification, then centrifuged, washed, determined for INH content by HPLC to calculate drug load and envelopment rate, and observed for surface characters. Eighteen New Zealand white rabbits were randomly divided into three groups. The rabbits in groups A and B were injected I. M. With gJPM, while those in group C with INH. However, the rabbits in group A were injected under oscillating magnetic field. Venous blood was collected every 15 min after injection and determined for INH concentration by HPLC. Results The load and envelopment rate of spIPM were (7. 5 ± 0. 5)% and (50 ± 1. 5)% respectively. The microspheres showed smooth surface, round and intact morphology, and good dispersiveness. The granularities were basically in normal distribution, and the particle sizes were distributed in a narrow range. Compared with that in group C, the release of INH was slowly in group B, and was further increased in group A. Conclusion Superparamagnetic isoniazide PELA microspheres were controlled-released, in which the release of INH was promoted significantly by oscillating magnetic field.%目的 探讨超顺磁性异烟肼( Isoniazide,INH)聚乳酸-聚乙二醇共聚物(Polylactide-polyethylene glycol copolymers,PELA)微球(Superparamagnetic isoniazide PELA microspheres,sPIPM)在振荡磁场作用下体内异烟肼的释放规律,并建立异烟肼HPLC检测方法.方法 采用化学共沉淀法制备超顺磁性Fe3O4纳米粒,复乳化(W/O/W)溶剂蒸发法制备SPIPM,离心,洗涤,HPLC法检测洗涤液中异烟肼的含量,计算载药量和包封率;

  16. Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Baofeng; Zhao, Fei; Du, Guodong; Porter, Spencer; Liu, Yong; Zhang, Peng; Cheng, Zhenxiang; Liu, Hua Kun; Huang, Zhenguo

    2016-06-29

    Pristine and boron-doped anatase TiO2 were prepared via a facile sol-gel method and the hydrothermal method for application as anode materials in sodium-ion batteries (SIBs). The sol-gel method leads to agglomerated TiO2, whereas the hydrothermal method is conducive to the formation of highly crystalline and discrete nanoparticles. The structure, morphology, and electrochemical properties were studied. The crystal size of TiO2 with boron doping is smaller than that of the nondoped crystals, which indicates that the addition of boron can inhibit the crystal growth. The electrochemical measurements demonstrated that the reversible capacity of the B-doped TiO2 is higher than that for the pristine sample. B-doping also effectively enhances the rate performance. The capacity of the B-doped TiO2 could reach 150 mAh/g at the high current rate of 2C and the capacity decay is only about 8 mAh/g over 400 cycles. The remarkable performance could be attributed to the lattice expansion resulting from B doping and the shortened Li(+) diffusion distance due to the nanosize. These results indicate that B-doped TiO2 can be a good candidate for SIBs.

  17. Numerical simulation of boron injection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2010-02-15

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of

  18. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.)

    Science.gov (United States)

    Soil pH is known to influence many important biochemical processes in plants and soils, however its role in salinity - boron interactions affecting plant growth and ion relations has not been examined. The purpose of this research was to evaluate the interactive effects of salinity, boron and soil ...

  19. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels.

    Directory of Open Access Journals (Sweden)

    Leonardo Ricotti

    Full Text Available In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa and a small thickness (∼ 12 µm. We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin. We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.

  20. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  1. Method for exfoliation of hexagonal boron nitride

    Science.gov (United States)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  2. Fe nanowire encapsulated in boron nitride nanotubes

    Science.gov (United States)

    Koi, Naruhiro; Oku, Takeo; Nishijima, Masahiko

    2005-11-01

    Boron nitride (BN) nanotubes, nanohorns, nanocoils were synthesized by annealing Fe 4N and B powders at 1000 °C for 1 h in nitrogen gas atmosphere. Especially, Fe-filled BN nanotubes were produced, and investigated by high-resolution electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy, which indicates that the [110] of Fe is parallel to the BN nanotube axis. Formation mechanism of Fe-filled BN nanotube was speculated based on these results.

  3. Synthesis of a boron modified phenolic resin

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2010-08-01

    Full Text Available Phenolic resin has long been used as matrix for composites mainly because of its flame retardant behavior and high char yield after pyrolysis, which results in a self supporting structure. The addition of ceramic powders, such as SiC and B4C, as fillers to the phenolic resin, results in better thermo-oxidative stability, but as drawbacks, it has poor homogeneity, adhesion and processing difficulties during molding of the composites. The addition of single elements, such as boron, silicon and phosphorus in the main backbone of the thermo-set resin is a new strategy to obtain special high performance resins, which results in higher mechanical properties, avoiding the drawbacks of simply adding fillers, which results in enhanced thermo-oxidative stability compared to conventional phenol-formaldehyde resins. Therefore, the product can have several applications, including the use as ablative thermal protection for thermo-structural composites. This work describes the preparation of a boron-modified phenolic resin (BPR using salicyl alcohol and boric acid. The reaction was performed in refluxing toluene for a period of four hours, which produced a very high viscosity amber resin in 90% yield.The final structure of the compound, the boric acid double, substituted at the hydroxyl group of the aromatic ring, was determined with the help of the Infrared Spectroscopy, ¹H-NMR, TGA-DSC and boron elemental analysis. The absorption band of the group B-O at 1349 cm ˉ¹ can be visualized at the FT-IR spectrum. ¹H-NMR spectra showed peaks at 4.97-5.04 ppm and 3.60-3.90 ppm assigned to belong to CH2OH groups from the alcohol. The elemental analysis was also performed for boron determination.The product has also been tested in carbon and silicon fibers composite for the use in thermal structure. The results of the tests showed composites with superior mechanical properties when compared with the conventional phenolic resin.

  4. The Adhesion Improvement of Cubic Boron Nitride Film on High Speed Steel Substrate Implanted by Boron Element

    Institute of Scientific and Technical Information of China (English)

    CAI Zhi-hai; ZHANG Ping; TAN Jun

    2005-01-01

    Cubic boron nitride(c-BN) films were deposited on W6Mo5Cr4V2 high speed steel(HSS) substrate implanted with boron ion by RF-magnetron sputtering. The films were analyzed by the bending beam method, scratch test, XPS and AFM. The experimental results show that the implantation of boron atom can reduce the in ternal stress and improve the adhesion strength of the films. The critical load of scratch test rises to 27.45 N, compared to 1.75 N of c-BN film on the unimplanted HSS. The AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. Then the composition of the boron implanted layer was analyzed by the XPS. And the influence of the boron implanted layer on the internal stress and adhesion strength of c-BN films were investigated.

  5. Influence of the composition of the boroning mixture on the dimension change of pressed and boroned samples from iron powder

    Directory of Open Access Journals (Sweden)

    Ivanov S.

    2008-01-01

    Full Text Available Volume changes occur during sintering and chemical-thermal treatments of metal powder samples. The results of the investigation of the volume change of pressed and boroned samples from an iron powder, depending on the mixture composition used for the boroning process, are presented in this paper. The basic mixture, used for boroning of the investigated samples from iron powder, is modified by the addition of activators with different chemical compositions and in different concentrations, of up to 4 wt %. Mixtures with ammonium bifluoride, ammonium chloride and boron potassium fluoride were investigated. The research results and the mathematical modelling enable the choice of mixture compositions for boroning based on the volume change given in advance.

  6. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  7. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  8. Application of cycloaddition reactions to the syntheses of novel boron compounds.

    Science.gov (United States)

    Zhu, Yinghuai; Siwei, Xiao; Maguire, John A; Hosmane, Narayan S

    2010-12-21

    This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT) in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-coupling reactions. In addition, the use of boron cage compounds in a number of cycloaddition reactions to synthesize unique aromatic species will be reviewed briefly.

  9. Application of Cycloaddition Reactions to the Syntheses of Novel Boron Compounds

    Directory of Open Access Journals (Sweden)

    John A. Maguire

    2010-12-01

    Full Text Available This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-coupling reactions. In addition, the use of boron cage compounds in a number of cycloaddition reactions to synthesize unique aromatic species will be reviewed briefly.

  10. Crystallography, semiconductivity, thermoelectricity, and other properties of boron and its compounds, especially B6O

    Science.gov (United States)

    Slack, G. A.; Morgan, K. E.

    2015-09-01

    Electron deficient and non-deficient boron compounds are discussed as potential thermoelectric generator materials. Particular attention is paid to carbon-doped beta-boron, high-carbon boron carbide, and the alpha-boron derivative compound boron suboxide. Stoichiometric B6O shows some promise, and may have a higher ZT than the other two compounds. Carbon saturated beta-boron appears to have a higher ZT than undoped samples. Carbon saturated boron carbide at B12C3 does exist. Its thermoelectric behavior is unknown.

  11. New insight in boron chemistry: Application in two-photon absorption

    Science.gov (United States)

    Bolze, F.; Hayek, A.; Sun, X. H.; Baldeck, P. L.; Bourgogne, C.; Nicoud, J.-F.

    2011-07-01

    Two groups of one-dimensional (1D) boron containing two-photon absorbing fluorophores have been prepared and characterized. One group includes boron atoms incorporated in the conjugated or pseudo conjugated central core and the other contain a boron cluster as an acceptor group at one end of the fluorophores. Two boron containing central cores (with two boron atoms) have been explored: the cyclodiborazane and the pyrazabole moieties. The chosen boron cluster, p-carborane, contains 10 boron atoms. All the prepared fluorophores present high two-photon absorption cross-sections. Some water-soluble as well as lipophylic dyes have been prepared and used in bio-imaging.

  12. Detection of boron removal capacities of different microorganisms in wastewater and effective removal process.

    Science.gov (United States)

    Laçin, Bengü; Ertit Taştan, Burcu; Dönmez, Gönül

    2015-01-01

    In this study boron removal capacities of different microorganisms were tested. Candida tropicalis, Rhodotorula mucilaginosa, Micrococcus luteus, Bacillus thuringiensis, Bacillus cereus, Bacillus megaterium, Bacillus pumilus, Pseudomonas aeruginosa and Aspergillus versicolor were examined for their boron bioaccumulation capacities in simulated municipal wastewater. A. versicolor and B. cereus were found as the most boron-tolerant microorganisms in the experiments. Also boron bioaccumulation yield of A. versicolor was 49.25% at 15 mg/L boron concentration. On the other hand biosorption experiments revealed that A. versicolor was more capable of boron removal in inactive form at the highest boron concentrations. In this paper maximum boron bioaccumulation yield was detected as 39.08% at 24.17 mg/L and the maximum boron biosorption yield was detected as 41.36% at 24.01 mg/L boron concentrations.

  13. Electrospun magnetic poly(L-lactide) (PLLA) nanofibers by incorporating PLLA-stabilized Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Dingying; Shi, Yuzhou; Duan, Shun [State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Beijing 100029 (China); Wei, Yan [Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081 (China); Cai, Qing, E-mail: caiqing@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Beijing 100029 (China); Yang, Xiaoping [State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-08-01

    Magnetic poly(L-lactide) (PLLA)/Fe{sub 3}O{sub 4} composite nanofibers were prepared with the purpose to develop a substrate for bone regeneration. To increase the dispersibility of Fe{sub 3}O{sub 4} nanoparticles (NPs) in the PLLA matrix, a modified chemical co-precipitation method was applied to synthesize Fe{sub 3}O{sub 4} NPs in the presence of PLLA. Trifluoroethanol (TFE) was used as the co-solvent for all the reagents, including Fe(II) and Fe(III) salts, sodium hydroxide, and PLLA. The co-precipitated Fe{sub 3}O{sub 4} NPs were surface-coated with PLLA and demonstrated good dispersibility in a PLLA/TFE solution. The composite nanofiber electrospun from the solution displayed a homogeneous distribution of Fe{sub 3}O{sub 4} NPs along the fibers using various contents of Fe{sub 3}O{sub 4} NPs. X-ray diffractometer (XRD) and vibration sample magnetization (VSM) analysis confirmed that the co-precipitation process had minor adverse effects on the crystal structure and saturation magnetization (Ms) of Fe{sub 3}O{sub 4} NPs. The resulting PLLA/Fe{sub 3}O{sub 4} composite nanofibers showed paramagnetic properties with Ms directly related to the Fe{sub 3}O{sub 4} NP concentration. The cytotoxicity of the magnetic composite nanofibers was determined using in vitro culture of osteoblasts (MC3T3-E1) in extracts and co-culture on nanofibrous matrixes. The PLLA/Fe{sub 3}O{sub 4} composite nanofibers did not show significant cytotoxicity in comparison with pure PLLA nanofibers. On the contrary, they demonstrated enhanced effects on cell attachment and proliferation with Fe{sub 3}O{sub 4} NP incorporation. The results suggested that this modified chemical co-precipitation method might be a universal way to produce magnetic biodegradable polyester substrates containing well-dispersed Fe{sub 3}O{sub 4} NPs. This new strategy opens an opportunity to fabricate various kinds of magnetic polymeric substrates for bone tissue regeneration. Highlights: • Polylactide coated Fe{sub 3

  14. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    Energy Technology Data Exchange (ETDEWEB)

    Ogitsu, Tadashi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galli, Giulia [Univ. of California, Davis, CA (United States)

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been known for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.

  15. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.); Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  16. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  17. Durability of tannin-boron-treated timber

    Directory of Open Access Journals (Sweden)

    Gianluca Tondi

    2012-11-01

    Full Text Available Tannin-boron wood preservatives were investigated for their resistance against outdoor agents. This work focused on the analysis of the causes that affect the durability of the tannin-hexamine-treated samples. In particular, dimensional stability, resistance to leaching, and resistance to biological agents were investigated. The combined effect of deterioration agents was evaluated by subjecting the treated samples to simulated and natural weathering tests. The study of the appearance and of the color components (L*, a*, and b* according to CIELAB space of the exposed samples was monitored to assess the efficacy of the tannin-boron formulations for outdoor applications. Significant resistance against the action of water (EN 84, ENV 1250-2 and insects (EN 47 has been demonstrated in specific tests. Conversely, the continuous stress due to artificial and natural weathering deteriorates the color and the visible features of the treated specimens. The combined effect of moisture modifications, solar exposition, and leaching cycles damages the structure of the tannin-based polymeric network and subsequently it negatively affects its preservation properties.

  18. Boron-10 ABUNCL Prototype Initial Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-12-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results of initial testing of an Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Several configurations of the ABUNCL models, which use 10B-lined proportional counters in place of 3He proportional counters for the neutron detection elements, were previously reported. The ABUNCL tested is of a different design than previously modeled. Initial experimental testing of the as-delivered passive ABUNCL was performed, and modeling will be conducted. Testing of the system reconfigured for active testing will be performed in the near future, followed by testing with nuclear fuel.

  19. Techniques for increasing boron fiber fracture strain

    Science.gov (United States)

    Dicarlo, J. A.

    1977-01-01

    Improvement in the strain-to-failure of chemical-vapor-deposition boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. Results of three methods are presented in which etching and thermal-processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment-induced surface flaws were removed from 203-micron (8-mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment-induced contraction on the core flaw. To date, average fracture strains and stresses greater than 1.4% and 5.5 GN/sq m (800 ksi), respectively, have been achieved. Commercial feasibility considerations suggest as the most cost-effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed with this technique are presented and discussed for both high-vacuum and argon-gas heat-treatment environments.

  20. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  1. APPLICATION OF BORON MODIFIED SILICA SOL ON RETENTION AND DRAINAGE

    Institute of Scientific and Technical Information of China (English)

    Jinxia Ma; Yuxiu Peng; Zhongzheng Li

    2004-01-01

    In this paper it was studied that these dosage effects of CPAM, cationic starch、boron modified silica sol (BMS), Al2(SO4)3, pH value and electrolyte on the retention and drainage of different microparticulate systems including CPAM, cationic starch and boron silica sol. The research results indicated that CPAM had no good retention when used with boron silica sol. The best retention efficiency was the microparticulate system of CPAM + cationic starch with boron modified silica sol; Secondly was that of cationic starch with boron modified silica sol; The worst was that of CPAM with boron modified silica sol. The retention efficiency had no relation with the addition order between CPAM and cationic starch. It was also found that the microparticulate retention system of boron modified silica sol could be used in alum-rosin sizing and in acidity, neutral or alkaline papermaking conditions. This system also could be used with close circulate water so that it could reduce the water pollution and waste.

  2. Boron Particle Ignition in Secondary Chamber of Ducted Rocket

    Directory of Open Access Journals (Sweden)

    J. X. Hu

    2012-01-01

    Full Text Available In the secondary chamber of ducted rocket, there exists a relative speed between boron particles and air stream. Hence, the ignition laws under static conditions cannot be simply applied to represent the actual ignition process of boron particles, and it is required to study the effect of forced convective on the ignition of boron particles. Preheating of boron particles in gas generator makes it possible to utilize the velocity difference between gas and particles in secondary chamber for removal of the liquid oxide layer with the aid of Stoke's forces. An ignition model of boron particles is formulated for the oxide layer removal by considering that it results from a boundary layer stripping mechanism. The shearing action exerted by the high-speed flow causes a boundary layer to be formed in the surface of the liquid oxide layer, and the stripping away of this layer accounts for the accelerated ignition of boron particles. Compared with the King model, as the ignition model of boron particles is formulated for the oxide layer removal by considering that it results from a boundary layer stripping mechanism, the oxide layer thickness thins at all times during the particle ignition and lower the ignition time.

  3. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  4. Characterization of a boron carbide-based polymer neutron sensor

    Science.gov (United States)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  5. Structure, nonstoichiometry, and geometrical frustration of α -tetragonal boron

    Science.gov (United States)

    Uemura, Naoki; Shirai, Koun; Eckert, Hagen; Kunstmann, Jens

    2016-03-01

    Recent discoveries of supposedly pure α -tetragonal boron require to revisit its structure. The system is also interesting with respect to a new type of geometrical frustration in elemental crystals, which was found in β -rhombohedral boron. Based on density functional theory calculations, the present study has resolved the structural and thermodynamic characteristics of pure α -tetragonal boron. Different from β -rhombohedral boron, the conditions for stable covalent bonding (a band gap and completely filled valence bands) are almost fulfilled at a composition B52 with two 4 c interstitial sites occupied. This indicates that the ground state of pure α -tetragonal boron is stoichiometric. However, the covalent condition is not perfectly fulfilled because nonbonding in-gap states exist that cannot be eliminated. The half occupation of the 4 c sites yields a macroscopic amount of residual entropy, which is as large as that of β -rhombohedral boron. Therefore α -tetragonal boron can be classified as an elemental crystal with geometrical frustration. Deviations from stoichiometry can occur only at finite temperatures. Thermodynamic considerations show that deviations δ from the stoichiometric composition (B52 +δ) are small and positive. For the reported high-pressure syntheses conditions δ is predicted to be about 0.1 to 0.2. An important difference between pure and C- or N-containing α -tetragonal boron is found in the occupation of interstitial sites: the pure form prefers to occupy the 4 c sites, whereas in C- or N-containing forms, a mixture of 2 a , 8 h , and 8 i sites are occupied. The present article provides relations of site occupation, δ values, and lattice parameters, which enable us to identify pure α -tetragonal boron and distinguish the pure form from other ones.

  6. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  7. Does excess boron affect malondialdehyde levels of potato cultivars?

    Directory of Open Access Journals (Sweden)

    Murat Kemal Avci

    2013-07-01

    Full Text Available Background: Malondialdehyde (MDA is a product of lipid peroxidation and a sign of oxidative stress in plants. Therefore, determining the responses of plants to a particular type of stress at a particular time will shed a light on clarifying the stress status of the plants. In this study, we report how MDA levels in potato cultivars changed under toxic concentrations of boron, an essential plant micronutrient. Materials and Methods: Eight different potato (Solanum tuberosum cultivars (cv. Konsul, cv. Morene, cv. Slaney, cv. Mona Lisa, cv. Jaerla, cv. Poroventa, cv. Yayla Kizi, cv. Armada were used as study material. Excess boron was applied for seven weeks in three concentrations (0.5, 2.5 and 5 mM to plants that were grown from tubers. Plants were harvested and malondialdehyde content analyses were carried out in leaf tissues. Results: MDA levels under excess boron in cv. Mona Lisa and Yayla Kizi steadily increased rose with increasing concentrations in all groups, compared to control. In cv. Morene, MDA decreased in 0.5 mM Boron and increased in 2.5 and 5 mM Boron applications. In cv. Armada, cv. Slaney, cv. Konsul and cv. Poroventa, MDA levels fluctuated in different groups of each cultivar. In cv. Jaerla, MDA decreased in all groups with increasing boron, compared to control. Conclusions: MDA levels under excess boron showed increase, fluctuation and decrease in each group of the cultivars, compared to control. Therefore, MDA levels in potato plants under excess boron might not be a clear sign to determine the level of stress. This is the first report of MDA levels in eight different potato cultivars subjected to three different excess boron concentrations.

  8. Synthesis of an orthorhombic high pressure boron phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zarechnaya, Evgeniya; Dubrovinsky, Leonid; Miyajima, Nobuyoshi [Bayerisches Geoinstitut, Universitaet Bayreuth, 95440 Bayreuth (Germany); Dubrovinskaia, Natalia [Institute of Earth Sciences, Universitaet Heidelberg, Im Neuenheimer Feld 236, 69120 Heidelberg (Germany); Filinchuk, Yaroslav; Chernyshov, Dmitry; Dmitriev, Vladimir [Swiss Norwegian Beam lines at ESRF, 38043 Gernoble (France)], E-mail: Evgeniya.Zarechnaya@uni-bayreuth.de

    2008-12-15

    The densest boron phase (2.52 g cm{sup -3}) was produced as a result of the synthesis under pressures above 9 GPa and temperatures up to {approx}1800 deg. C. The x-ray powder diffraction pattern and the Raman spectra of the new material do not correspond to those of any known boron phases. A new high-pressure high-temperature boron phase was defined to have an orthorhombic symmetry (Pnnm (No. 58)) and 28 atoms per unit cell.

  9. Synthesis of an orthorhombic high pressure boron phase

    Directory of Open Access Journals (Sweden)

    Evgeniya Yu Zarechnaya, Leonid Dubrovinsky, Natalia Dubrovinskaia, Nobuyoshi Miyajima, Yaroslav Filinchuk, Dmitry Chernyshov and Vladimir Dmitriev

    2008-01-01

    Full Text Available The densest boron phase (2.52 g cm-3 was produced as a result of the synthesis under pressures above 9 GPa and temperatures up to ~1800 °C. The x-ray powder diffraction pattern and the Raman spectra of the new material do not correspond to those of any known boron phases. A new high-pressure high-temperature boron phase was defined to have an orthorhombic symmetry (Pnnm (No. 58 and 28 atoms per unit cell.

  10. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N. (AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.)

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability constant of the complex is 1.12x10/sup 21/, the conditional molar absorptivitis 1.80x10/sup 0/. This complex formation reaction was used for photometric determination of boron in natural water.

  11. Boron-doped nanodiamonds as possible agents for local hyperthermia

    Science.gov (United States)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2–5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1–5 W cm‑2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  12. Analyses of beyond design basis accident homogeneous boron dilution scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Kereszturi, Andras; Hegyi, Gyoergy; Maraczy, Csaba; Trosztel, Istvan; Tota, Adam [Hungarian Academy of Sciences, Centre for Energy Research, Budapest (Hungary); Karsa, Zoltan [NUBIKI Nuclear Safety Research Institute, Ltd., Budapest (Hungary)

    2015-09-15

    Homogeneous boron dilution scenarios in a VVER-440 reactor were analyzed using the coupled KIKO3D-ATHLET code. The scenarios are named ''homogeneous'' because of the very slow dilution caused by a rupture in the heat exchanger of the makeup system. Without the presented analyses, a significant contribution of the homogeneous boron dilution to the Core Damage Frequency (CDF) had to be assumed in the Probabilistic Safety Analyses (PSA). According to the combined results of the presented deterministic and probabilistic analyses, the final conclusion is that boron dilution transients don't give significant contribution to the CDF for the investigated VVER-440 NPP.

  13. Advances in boron-10 isotope separation by chemical exchange distillation

    Energy Technology Data Exchange (ETDEWEB)

    Song Shuang, E-mail: chengruoyu2@sina.co [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Mu Yujun; Li Xiaofeng; Bai Peng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2010-01-15

    Advances in boron-10 isotope separation by chemical exchange distillation are reviewed in this article. With a brief introduction of the principle of the separation, the progress on the research of this method and the problems relating to the separation coefficient are discussed. Several new donors, including nitromethane, acetone, methyl isobutyl ketone (MIBK) and diisobutyl ketone (DIBK), which have large separation factors are introduced. The complexes of these new donors and boron trifluoride (BF{sub 3}) are more stable than those of using the donors examined before. Among these new donors nitromethane could be a promising substitute for donors in present use to develop new technology of separating boron-10.

  14. Iron-Catalyzed Boron Removal from Molten Silicon in Ammonia

    Science.gov (United States)

    Chen, Zhiyuan; Morita, Kazuki

    2016-12-01

    A high-temperature process of refining metallurgical-grade silicon to solar-grade silicon was developed. In this gas purging treatment, boron impurity in silicon reacts with ammonia and the products are removed as volatiles at high temperature. 1 mass pct metallic iron was added to molten silicon as a catalyst, improving the boron removal ratio from 14 to 80 pct at 1723 K (1450 °C). At 1823 K (1550 °C), this reaction could reduce boron concentration from more than 120 ppmw to activation energy of 329 ± 129 kJ mol-1 was calculated from experimental data.

  15. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    Science.gov (United States)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the

  16. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  17. INFLUENCE OF MICROALLOYING BY BORON ON HARDENABILITY OF STEEL

    Directory of Open Access Journals (Sweden)

    E. P. Baradyntseva

    2016-01-01

    Full Text Available The research conducted in laboratory of metallurgical science by which the factors exerting impact on hardenability of steel microalloyed by boron were analysed. The research was made because the implementation of this process in mass production is connected with the certain difficulties. The conducted researches have allowed to draw a conclusion that changing content of various chemical elements, such as nitrogen, boron, the titan and aluminum in steel containing boron, produced by JSC «BSW – Management Company of Holding «BMC» at the stage of preparation of chart flowsheet make it possible to predict terms of hardenability of the final product.

  18. Synthesis and characterization of boron-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ceragioli, H J; Peterlevitz, A C; Quispe, J C R; Pasquetto, M P; Sampaio, M A; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil); Larena, A [Department of Chemical Industrial Engineering and Environment, Universidad Politecnica de Madrid, E.T.S. Ingenieros Industriales, C/ Jose Gutierrez Abascal, Madrid (Spain)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Boron-doped carbon nanotubes have been prepared by chemical vapour deposition of ethyl alcohol doped with B{sub 2}O{sub 3} using a hot-filament system. Multi-wall carbon nanotubes of diameters in the range of 30-100 nm have been observed by field emission scanning electron microscopy (FESEM). Raman measurements indicated that the degree of C-C sp{sup 2} order decreased with boron doping. Lowest threshold fields achieved were 1.0 V/{mu}m and 2.1 V/{mu}m for undoped and boron-doped samples, respectively.

  19. Hugoniot equation of state and dynamic strength of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)

    2015-04-28

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable

  20. Hugoniot equation of state and dynamic strength of boron carbide

    Science.gov (United States)

    Grady, Dennis E.

    2015-04-01

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic

  1. Geometrical frustration in an element solid: (beta)-rhombohedral boron

    Energy Technology Data Exchange (ETDEWEB)

    Ogitsu, T; Gygi, F; Reed, J; Udagawa, M; Motome, Y; Schwegler, E; Galli, G

    2009-05-19

    Although a comprehensive understanding of the basic properties of most elemental solids has been achieved, there are still fundamental, open questions regarding simple substances, e.g. boron. Based on an Ising model that describes the intrinsic defect states in elemental boron, we show that this system is the only known element to exhibit geometrical frustration in its solid form. Interestingly, we find that the peculiar transport properties of boron that have been reported over the past forty years originate from the presence of geometrical frustration.

  2. Click Reactions and Boronic Acids: Applications, Issues, and Potential Solutions

    Directory of Open Access Journals (Sweden)

    Chaofeng Dai

    2010-08-01

    Full Text Available Boronic acids have been widely used in a wide range of organic reactions, in the preparation of sensors for carbohydrates, and as potential pharmaceutical agents. With the growing importance of click reactions, inevitably they are also applied to the synthesis of compounds containing the boronic acid moiety. However, such applications have unique problems. Chief among them is the issue of copper-mediated boronic acid degradation in copper-assisted [2,3]-cycloadditions involving an alkyne and an azido compound as the starting materials. This review summarizes recent developments, analyzes potential issues, and discusses known as well as possible solutions.

  3. Technology for boron-doped layers formation on the diamond

    Directory of Open Access Journals (Sweden)

    Zyablyuk K. N.

    2012-10-01

    Full Text Available The authors investigated natural type IIa diamond crystals and CVD diamond films. The article presents electrophysical parameters of the structures obtained in different modes of ion implantation of boron into the crystal with further annealing. Parameters of the crystals with a high nitrogen impurity density indicate that they can be used for the manufacture of microwave field-effect transistors operating at room temperature. CVD diamond films doped with boron during the growth process also have the required for MOSFET manufacture carrier mobility. However, due to the high activation energy of boron, the required channel conductivity is achieved at high operating temperatures.

  4. Defects involving interstitial boron in low-temperature irradiated silicon

    Science.gov (United States)

    Khirunenko, L. I.; Sosnin, M. G.; Duvanskii, A. V.; Abrosimov, N. V.; Riemann, H.

    2016-12-01

    Interstitial boron-related defects in silicon subjected to irradiation with 5 MeV electrons at a temperature of 80 K are investigated by Fourier-transform infrared absorption spectroscopy. This study demonstrates the radiation-enhanced annealing of interstitial boron during irradiation. We have revealed the interaction, which occurs in the course of irradiation, of diffusing interstitial boron atoms with one another and with interstitial oxygen. The local vibrational modes associated with these defects are identified, and the thermal stability of the defects is determined.

  5. A boron-boron coupling reaction between two ethyl cation analogues.

    Science.gov (United States)

    Litters, Sebastian; Kaifer, Elisabeth; Enders, Markus; Himmel, Hans-Jörg

    2013-12-01

    The design of larger architectures from smaller molecular building blocks by element-element coupling reactions is one of the key concerns of synthetic chemistry, so a number of strategies were developed for this bottom-up approach. A general scheme is the coupling of two elements with opposing polarity or that of two radicals. Here, we show that a B-B coupling reaction is possible between two boron analogues of the ethyl cation, resulting in the formation of an unprecedented dicationic tetraborane. The bonding properties in the rhomboid B₄ core of the product can be described as two B-B units connected by three-centre, two-electron bonds, sharing the short diagonal. Our discovery might lead the way to the long sought-after boron chain polymers with a structure similar to the silicon chains in β-SiB₃. Moreover, the reaction is a prime textbook example of the influence of multiple-centre bonding on reactivity.

  6. Residual stresses in boron/tungsten and boron/carbon fibers

    Science.gov (United States)

    Behrendt, D. R.

    1977-01-01

    Longitudinal residual stress distribution is determined for 102-micron diam B/W and B/C fibers. The 102-micron diam B/W fibers are deposited on a 12.7-micron diam tungsten wire resistively heated in a BCl3-H2 reactor. The 102-micron diam B/C fibers are made by deposition of boron on a pyrolytic graphite-coated carbon fiber. The longitudinal residual stress distribution is calculated from measurements of the change in length of the fiber produced by removal of the surface through electropolishing. It is found that for both types of fibers, the residual stress vary from a compressive stress at the surface to a tensile stress in the boron near the core. Closer to the core and in the core, significant differences in the residual stresses are observed for the B/W and B/C fibers.

  7. Residual stresses in boron/tungsten and boron/carbon fibers

    Science.gov (United States)

    Behrendt, D. R.

    1977-01-01

    By measuring the change in fracture stress of 203 micrometer diameter fibers of boron on tungsten (B/W) as a function of fiber diameter as reduced by chemical etching, it is shown that the flaws which limit B/W fiber strength are located at the surface and in the tungsten boride core. After etching to a diameter of 188 micrometers m virtually all fiber fractures were caused by core flaws, the average strength being 4.50 GN/sq m. If both the surface and core flaws are removed, the fracture strength, limited by flaws in the boron itself, is approximately 6.89 GN/sq m. This was measured on B/W fibers which were split longitudinally and had their cores removed by chemical etching. The longitudinal residual stress distribution was determined for 102 micrometer diameter B/W and B/C fibers.

  8. Biphasic Polyurethane/Polylactide Sponges Doped with Nano-Hydroxyapatite (nHAp Combined with Human Adipose-Derived Mesenchymal Stromal Stem Cells for Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-10-01

    Full Text Available Cartilage and bone tissue injuries are common targets in regenerative medicine. The degeneration of cartilage tissue results in tissue loss with a limited ability to regenerate. However, the application of mesenchymal stem cells in the course of such condition makes it possible to manage this disorder by improving the structure of the remaining tissue and even stimulating its regeneration. Nevertheless, in the case of significant tissue loss, standard local injection of cell suspensions is insufficient, due to the low engraftment of transplanted cells. Introduction of mesenchymal stem cells on the surface of a compatible biomaterial can be a promising tool for inducing the regeneration by both retaining the cells at the desired site and filling the tissue gap. In order to obtain such a cell-biomaterial hybrid, we developed complex, biphasic polymer blend biomaterials composed of various polyurethane (PU-to-polylactide (PLA ratios, and doped with different concentrations of nano-hydroxyapatite (nHAp. We have determined the optimal blend composition and nano-hydroxyapatite concentration for adipose mesenchymal stem cells cultured on the biomaterial. We applied biological in vitro techniques, including cell viability assay, determination of oxidative stress factors level, osteogenic and chondrogenic differentiation potentials as well as cell proteomic analysis. We have shown that the optimal composition of biphasic scaffold was 20:80 of PU:PLA with 20% of nHAp for osteogenic differentiation, and 80:20 of PU:PLA with 10% of nHAp for chondrogenic differentiation, which suggest the optimal composition of final biphasic implant for regenerative medicine applications.

  9. Preparation and characterization of polylactide/poly(ε-caprolactone-poly(ethylene glycol-poly(ε-caprolactone hybrid fibers for potential application in bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Wang YL

    2014-04-01

    Full Text Available YueLong Wang,1,2,* Gang Guo,1,* HaiFeng Chen,2 Xiang Gao,1 RangRang Fan,1 DongMei Zhang,1 LiangXue Zhou2 1State Key Laboratory of Biotherapy and Cancer Center, 2Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China *These authors contributed equally to this paper Abstract: The aim of this study was to develop a kind of osteogenic biodegradable composite graft consisting of human placenta-derived mesenchymal stem cell (hPMSC material for site-specific repair of bone defects and attenuation of clinical symptoms. The novel nano- to micro-structured biodegradable hybrid fibers were prepared by electrospinning. The characteristics of the hybrid membranes were investigated by a range of methods, including Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. Morphological study with scanning electron microscopy showed that the average fiber diameter and the number of nanoscale pores on each individual fiber surface decreased with increasing concentration of poly(ε-caprolactone-poly(ethylene glycol-poly(ε-caprolactone (PCEC. The prepared polylactide (PLA/PCEC fibrous membranes favored hPMSC attachment and proliferation by providing an interconnected, porous, three-dimensional mimicked extracellular environment. What is more, hPMSCs cultured on the electrospun hybrid PLA/PCEC fibrous scaffolds could be effectively differentiated into bone-associated cells by positive alizarin red staining. Given the good cellular response and excellent osteogenic potential in vitro, the electrospun PLA/PCEC fibrous scaffolds could be one of the most promising candidates for bone tissue engineering. Keywords: electrospinning, PLA, PCEC, hPMSCs, bone tissue engineering

  10. Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide.

    Science.gov (United States)

    Chen, Wei-Lin; Liu, Shih-Jen; Leng, Chih-Hsiang; Chen, Hsin-Wei; Chong, Pele; Huang, Ming-Hsi

    2014-02-01

    Vaccine adjuvant is conferred on the substance that helps to enhance antigen-specific immune response. Here we investigated the disintegration characteristics and immunotherapy potency of an emulsified delivery system comprising bioresorbable polymer poly(ethylene glycol)-polylactide (PEG-PLA), phosphate buffer saline (PBS), and metabolizable oil squalane. PEG-PLA-stabilized oil-in-water emulsions show good stability at 4 °C and at room temperature. At 37 °C, squalane/PEG-PLA/PBS emulsion with oil/aqueous weight ratio of 7/3 (denominated PELA73) was stable for 6 weeks without phase separation. As PEG-PLA being degraded, 30% of free oil at the surface layer and 10% of water at the bottom disassociated from the PELA73 emulsion were found after 3 months. A MALDI-TOF MS study directly on the DIOS plate enables us to identify low molecular weight components released during degradation. Our results confirm the loss of PLA moiety of the emulsifier PEG-PLA directly affected the stability of PEG-PLA-stabilized emulsion, leading to emulsion disintegration and squalane/water phase separation. As adjuvant for cancer immunotherapeutic use, an HPV16 E7 peptide antigen formulated with PELA73 plus immunostimulatory CpG molecules could strongly enhance antigen-specific T-cell responses as well as anti-tumor ability with respected to non-formulated or Alum-formulated peptide. Accordingly, these advances may be a potential immunoregulatory strategy in manipulating the immune responses induced by tumor-associated antigens.

  11. High Temperature Oxidation of Boron Nitride. Part 1; Monolithic Boron Nitride

    Science.gov (United States)

    Jacobson, Nathan; Farmer, Serene; Moore, Arthur; Sayir, Haluk

    1997-01-01

    High temperature oxidation of monolithic boron nitride (BN) is examined. Hot pressed BN and both low and high density CVD BN were studied. It is shown that oxidation rates are quite sensitive to microstructural factors such as orientation, porosity, and degree of crystallinity. In addition small amounts of water vapor lead to volatilization of the B2O3 oxide as H(x)B(y)O(z). For these reasons, very different oxidation kinetics were observed for each type of BN.

  12. Synthesis of boron nitride from boron containing poly(vinyl alcohol) as ceramic precursor

    Indian Academy of Sciences (India)

    M Das; S Ghatak

    2012-02-01

    A ceramic precursor, prepared by condensation reaction from poly(vinyl alcohol) (PVA) and boric acid (H3BO3) in 1:1, 2:1 and 4:1 molar ratios, was synthesized as low temperature synthesis route for boron nitride ceramic. Samples were pyrolyzed at 850°C in nitrogen atmosphere followed by characterization using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD).

  13. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm{sup 2}, initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10{sup 6}x[OH]{sup 0.11}x[CD]{sup 0.62}x[IBC]{sup -0.57}x[DSE]{sup -0.}= {sup 04}x[T]{sup -2.98}x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  14. Determination of Boron Trifluoride in Boron Trifluoride Complex by Fluoride Ion Selective Electrode

    Institute of Scientific and Technical Information of China (English)

    郎五可; 张卫江; 唐银; 徐姣; 张雷

    2016-01-01

    A method was proposed to determine boron trifluoride in boron trifluoride complex using fluoride ion selective electrode(ISE). Hydroxide was chosen to mask aluminum for the determination of 0.01—0.1 mol/L of fluoride. The simulation indicated that the permissible aluminum masked at a certain pH value was limited and hardly related to F-concentration and boric acid. It is better to control pH value below 11.5 and the aluminum con-centration within 0.025 mol/L to minimize the interference of hydroxide to the fluoride ISE. The decomposition conditions of boron trifluoride by aluminum chloride were investigated. It is found that the F-detection ratio will approach 1.0 if the Al/F molar ratio is 0.3—0.7 and aluminum concentration is no more than 0.02 mol/L when heated at 80℃ for 10 min. In one word, hydroxide is quite fit to mask aluminum for samples which contain high content of fluoride and aluminum and the BF3 content can be successfully determined by this method.

  15. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    Science.gov (United States)

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-10-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.

  16. Intermetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  17. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  18. Phonon transport in single-layer Boron nanoribbons

    CERN Document Server

    Zhang, Zhongwei; Peng, Qing; Chen, Yuanping

    2016-01-01

    Inspired by the successful synthesis of several allotropes, boron sheets have been one of the hottest spot areas of focus in various fields. Here, we study phonon transport in three types of boron nanoribbons with zigzag and armchair edges by using a non-equilibrium Green's function combined with first principles methods. Diverse transport properties are found in the nanoribbons. At the room temperature, their highest thermal conductance can be comparable with that of graphene, while the lowest thermal conductance is less than half of graphene's. The three boron sheets exhibit different anisotropic transport characteristics. Two of these sheets have stronger phonon transport abilities along the zigzag edges than the armchair edges, while in the case of the third, the results are reversed. With the analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Because all boron allotropes consists of hexagonal and tr...

  19. Effect of Boronization on Ohmic Plasmas in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H.; Kugel, H.; Maingi, R.; Wampler, W.R.; Blanchard, W.; Bell, M.; Bell, R.; LeBlanc, B.; Gates, D.; Kaye, S.; LaMarche, P.; Menard, J.; Mueller, D.; Na, H.K.; Nishino, N.; Paul, S.; Sabbagh, S.; Soukhanovskii, V.

    2001-03-27

    Boronization of the National Spherical Torus Experiment (NSTX) has enabled access to higher density, higher confinement plasmas. A glow discharge with 4 mTorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B+C areal density of 10 to the 18 (B+C) cm to the -2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by x15, carbon emission reduced by two and copper reduced to undetectable levels. After boronization, the plasma current flattop time increased by 70% enabling access to higher density, higher confinement plasmas.

  20. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, J.K.; Palmer, M.R.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  1. Boron isotope method for study of seawater intrusion

    Institute of Scientific and Technical Information of China (English)

    肖应凯; 尹德忠; 刘卫国; 王庆忠; 魏海珍

    2001-01-01

    A distinct difference in boron isotopes between seawater and terrestrial water is emphasized by δ11B values reported for seawater and groundwater, with an average of 38.8‰ and in the range of -8.9‰ to 9.8‰, respectively. The isotopic composition of boron in groundwater can be used to quantify seawater intrusion and identify intrusion types, e.g. seawater or brine intrusions with different chemical and isotopic characteristics, by using the relation of δ11B and chloride concentration. The feasibility of utilizing boron isotope in groundwater for studying seawater intrusion in Laizhou Bay Region, China, is reported in this study, which shows that boron isotope is a useful and excellent tool for the study of seawater intrusion.

  2. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  3. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  4. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-01

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  5. Molecular Dynamics Modeling of Piezoelectric Boron Nirtride Nanotubes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Boron-nitride nanotubes (BNNTs) exhibit electroactive behavior in response to mechanical deformation, but the origin of this phenomenon is not well understood. Our...

  6. Recent Advances in Boron-Containing Conjugated Porous Polymers

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2016-05-01

    Full Text Available Porous polymers, integrating the advantages of porous materials and conventional polymers, have been well developed and exhibited tremendous attention in the fields of material, chemistry and biology. Of these, boron-containing conjugated porous polymers, featuring tunable geometric structures, unique Lewis acid boron centers and very rich physical properties, such as high specific surface, chargeable scaffold, strong photoluminescence and intramolecular charge transfer, have emerged as one of the most promising functional materials for optoelectronics, catalysis and sensing, etc. Furthermore, upon thermal treatment, some of them can be effectively converted to boron-doped porous carbon materials with good electrochemical performance in energy storage and conversion, extensively enlarging the applicable scope of such kinds of polymers. In this review, the synthetic approaches, structure analyses and various applications of the boron-containing conjugated porous polymers reported very recently are summarized.

  7. Isotopic compositions of boron in sediments and their implications

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Yingkai, X.

    The abundance and isotopic compositions of boron in sediments from the salt lakes of Qaidam Basin, China have been determined by thermal ionization mass spectrometry of cesium borate. The results show large variations in the isotopic compositions...

  8. Quantum emission from hexagonal boron nitride monolayers

    Science.gov (United States)

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  9. Boronic acids for fluorescence imaging of carbohydrates.

    Science.gov (United States)

    Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D

    2016-02-28

    "Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.

  10. Boronized steels with corundum-baddeleyite coatings

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes preparation and properties of anti-corrosion and anti-abrasive coatings from corundum-baddeleyite ceramics deposited on surface of low-carbon boronized steel S235JRH-1.0038 (EN 10025-1 by plasma spraying method. Adhesive interlayers Fe2B reaches bond strength of up to 20 MPa in the pull-off tests, the ZrO2 - Al2O3 - SiO2 coatings have a value of fracture adhesion of 4 - 6 MPa. Hardness of these ceramic coatings on steel is as high as 1 800 HV100 and its polarization resistance is 1 600 Ω/cm2 to 4 000 Ω/cm2.

  11. Mechanical Hysteresis of Hexagonal Boron Nitride

    Institute of Scientific and Technical Information of China (English)

    ZHOU Aiguo; LI Haoran

    2011-01-01

    Hexagonal boron nitride (h-BN) is an important structural material with layered microstructure.Because of the plastic anisotropy,this material shows obvious mechanical hysteresis (nonlinear elastic deformation).There are hysteretic loops at the cyclical load-unload stress-strain curves of h-BN.Consequently,two hot-pressed h-BN cylinders with different textures were studied.The mechanical hysteresis is heavily texture-dependent.The area of hysteretic loop is linearly related with the square of loading stresslevel.Two minor loops attached on the hysteretic loops with the same extreme stresses have congruent shapes.It can be concluded that the mechanical hysteresis of h-BN can he explained by a Kink Nonlinear Elastic model developed from the study of a ternary carbide Ti3SiC2.

  12. Research in boron neutron capture synovectomy

    Science.gov (United States)

    Binello, E.; Shortkroff, S.; Jones, A.; Viveiros, C.; Ly, A.; Sledge, C. B.; Davison, A.; Shefer, Ruth E.; Yanch, Jacquelyn C.

    1997-02-01

    Boron Neutron Capture Synovectomy (BNCS) is a novel application of the 10B(n, (alpha) )7Li reaction for the treatment of Rheumatoid Arthritis. This potential treatment modality is in its developmental stages; in this paper results of research in two aspects of BNCS are presented. First, quantification of 10B-uptake in samples of human arthritic tissue by Prompt Gamma Neutron Activation Analysis is presented. 10B concentrations from 1625 to 2726 ppm are readily achieved. Second, ideal neutron beam studies have been undertaken and indicate that neutrons from thermal energies to 1 keV are useful for BNCS. This information is of use in designing practical therapy beams should this treatment modality be realized.

  13. Pure and doped boron nitride nanotubes

    Directory of Open Access Journals (Sweden)

    M. Terrones

    2007-05-01

    Full Text Available More than ten years ago, it was suggested theoretically that boron nitride (BN nanotubes could be produced. Soon after, various reports on their synthesis appeared and a new area of nanotube science was born. This review aims to cover the latest advances related to the synthesis of BN nanotubes. We show that these tubes can now be produced in larger amounts and, in particular, that the chemistry of BN tubes appears to be very important to the production of reinforced composites with insulating characteristics. From the theoretical standpoint, we also show that (BN-C heteronanotubes could have important implications for nanoelectronics. We believe that BN nanotubes (pure and doped could be used in the fabrication of novel devices in which pure carbon nanotubes do not perform very efficiently.

  14. Boron in Plants: Deficiency and Toxicity

    Institute of Scientific and Technical Information of China (English)

    Juan J. Camacho-Crist6bal; Jesus Rexach; Agustin González-Fontess

    2008-01-01

    Boron (B) is an essential nutrient for normal growth of higher plants, and B availability in soil and irrigation water is an important determinant of agricultural production. To date, a primordial function of B is undoubtedly its structural role in the cell wall; however, there is increasing evidence for a possible role of B in other processes such as the maintenance of plasma membrane function and several metabolic pathways. In recent years, the knowledge of the molecular basis of B deficiency and toxicity responses in plants has advanced greatly. The aim of this review is to provide an update on recent findings related to these topics, which can contribute to a better understanding of the role of B in plants.

  15. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  16. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility

    Science.gov (United States)

    2014-11-18

    Fracture Toughness in Nanostructured Diamond−SiC Composites. Appl . Phys. Lett. 2004, 84, 1356−1358. (8) Sigl, L. S.; Mataga, P. A.; Dalgleish, B. J...Commun. 2012, 3, 1052. (11) Sezer, A. O.; Brand , J. I. Chemical Vapor Deposition of Boron Carbide. Mater. Sci. Eng., B 2001, 79, 191−202. (12) Thevenot...23) Johnson, G. R.; Holmquist, T. J. Response of Boron Carbide Subjected to Large Strains, High Strain Rates, and High Pressures. J. Appl . Phys. 1999

  17. Synthesis and Characterization of Hexagonal Boron Nitride (h- BN) Films

    Science.gov (United States)

    2014-01-09

    Synthesis 1. Diborane- ammonia (B2H6-NH3- gases): Early results with these precursors were published in 2012. 5 Briefly, LPCVD growth of h-BN in a hot-wall...Approved for public release; distribution is unlimited. Synthesis and Characterization of Hexagonal Boron Nitride (h- BN) Films. The views, opinions and...1 ABSTRACT Number of Papers published in peer-reviewed journals: Synthesis and Characterization of Hexagonal Boron Nitride (h-BN) Films. Report Title

  18. Boron concentration measurement system for the Czech BNCT project

    Science.gov (United States)

    Honzátko, J.; Tomandl, I.

    2000-07-01

    In the framework of the Czech Boron Neutron Capture Therapy (BNCT) project a Prompt Gamma Ray Analysis (PGRA) facility for the determination of the boron concentration in biological samples was built at light-water reactor at Řež. The facility utilizes the beam of thermal neutrons from a neutron guide. The pure beam of thermal neutrons and background conditions enables the determination of 1 ppm with the reasonable statistical error 5% within 15 minutes.

  19. Manufacturing uniform field silicon drift detector using double boron layer

    Energy Technology Data Exchange (ETDEWEB)

    Golshani, Negin, E-mail: negingolshani@gmail.com; Beenakker, C.I.M; Ishihara, R.

    2015-09-11

    Novel SDDs with continuous junctions on both sides are fabricated using pure boron (PureB) depositions to create a shallow junction in the entrance window side and a continuous rectifying junction with different potentials as function of the drift coordinate in the device side. The SDDs made in this material offer lower leakage current. In addition, continuous SDD designed with two boron layers with different sheet resistances displays uniform electric field.

  20. Explicitly correlated wave function for a boron atom

    CERN Document Server

    Puchalski, Mariusz; Pachucki, Krzysztof

    2015-01-01

    We present results of high-precision calculations for a boron atom's properties using wave functions expanded in the explicitly correlated Gaussian basis. We demonstrate that the well-optimized 8192 basis functions enable a determination of energy levels, ionization potential, and fine and hyperfine splittings in atomic transitions with nearly parts per million precision. The results open a window to a spectroscopic determination of nuclear properties of boron including the charge radius of the proton halo in the $^8$B nucleus.

  1. Dynamic compaction of boron carbide by a shock wave

    Science.gov (United States)

    Buzyurkin, Andrey E.; Kraus, Eugeny I.; Lukyanov, Yaroslav L.

    2016-10-01

    This paper presents experiments on explosive compaction of boron carbide powder and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the boron carbide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  2. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  3. Structural Modification in Carbon Nanotubes by Boron Incorporation

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2009-01-01

    Full Text Available Abstract We have synthesized boron-incorporated carbon nanotubes (CNTs by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds.

  4. Boron uptake, localization, and speciation in marine brown algae.

    Science.gov (United States)

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  5. Boron concentration measurement in biological tissues by charged particle spectrometry.

    Science.gov (United States)

    Bortolussi, S; Altieri, S

    2013-11-01

    Measurement of boron concentration in biological tissues is a fundamental aspect of boron neutron capture therapy, because the outcome of the therapy depends on the distribution of boron at a cellular level, besides on its overall concentration. This work describes a measurement technique based on the spectroscopy of the charged particles emitted in the reaction (10)B(n,α)(7)Li induced by thermal neutrons, allowing for a quantitative determination of the boron concentration in the different components that may be simultaneously present in a tissue sample, such as healthy cells, tumor cells and necrotic cells. Thin sections of tissue containing (10)B are cut at low temperatures and irradiated under vacuum in a thermal neutron field. The charged particles arising from the sample during the irradiation are collected by a thin silicon detector, and their spectrum is used to determine boron concentration through relatively easy calculations. The advantages and disadvantages of this technique are here described, and validation of the method using tissue standards with known boron concentrations is presented.

  6. Boron Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review

    Science.gov (United States)

    Eisler, R.

    1990-01-01

    Ecological and toxicological aspects of boron (B) in the environment are reviewed, with emphasis on natural resources. Subtopics covered include environmental chemistry, background concentrations, effects, and current recommendations for the protection of living resources. Boron is not now considered essential in mammalian nutrition, although low dietary levels protect against fluorosis and bone demineralization. Excessive consumption (i.e., >1,000 mg B/kg diet, >15 mg B/kg body weight daily, >1.0 mg B/L drinking water, or >210 mg B/kg body weight in a single dose) adversely affects growth, survival, or reproduction in sensitive mammals. Boron and its compounds are potent teratogens when applied directly to the mammalian embryo, but there is no evidence of mutagenicity or carcinogenicity. Boron`s unique affinity for cancerous tissues has been exploited in neutron capture radiation therapy of malignant human brain tumors. Current boron criteria recommended for the protection of sensitive species include aquatic life, <5.0 mg B/L in livestock drinking waters, <30 mg B/kg in waterfowl diets, and <100 mg B/kg in livestock diets.

  7. Lattice vibrations of icosahedral boron-rich solids

    Energy Technology Data Exchange (ETDEWEB)

    Beckel, C.L.; Yousaf, M. (The University of New Mexico, Albuquerque, New Mexico 87131 (United States))

    1991-07-01

    The rhombohedral lattices for {alpha}-boron, boron arsenide, and boron phosphide are each of D{sub 3d} symmetry and have bases that include B{sub 12} icosahedra. Boron carbide with B{sub 4}C stoichiometry has near-D{sub 3d} symmetry and is almost certainly composed of B{sub 11}C icosahedra and C-B-C chains. Comparable classical force field models are applied to each of these crystals to correlate q=0 phonon structure with experimental Raman and IR spectra. We here describe our methods and contrast interaction strengths for different materials. Vibrations are correlated in the different crystals through normal mode eigenvector expansions. Acoustic wave velocities from Brillouin zone dispersion curves in two distinct symmetry-axis directions are presented and contrasted for {alpha}-boron and B{sub 12}As{sub 2}. The origin of lines with anomalous polarization and width in {alpha}-boron, B{sub 12}As{sub 2}, and B{sub 12}P{sub 2} is considered.

  8. Experimental realization of two-dimensional boron sheets.

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  9. Boron transport in Eucalyptus. 2. Identification in silico of a putative boron transporter for xylem loading in eucalypt

    Directory of Open Access Journals (Sweden)

    Douglas Silva Domingues

    2005-01-01

    Full Text Available Boron (B is a low mobility plant micronutrient whose molecular mechanisms of absorption and translocation are still controversial. Many factors are involved in tolerance to Boron excess or deficiency. Recently, the first protein linked to boron transport in biological systems, BOR1, was characterized in Arabidopsis thaliana. This protein is involved in boron xylem loading and is similar to bicarbonate transporters found in animals. There are indications that BOR1 is a member of a conserved protein family in plants. In this work, FORESTS database was used to identify sequences similar to this protein family, looking for a probable BOR1 homolog in eucalypt. We found five consensus sequences similar to BOR1; three of them were then used in multiple alignment analysis. Based on amino acid similarity and in silico expression patterns, a consensus sequence was identified as a candidate BOR1 homolog, helping deeper experimental assays that could identify the function of this protein family in Eucalyptus.

  10. Lattice dynamics of {alpha} boron and of boron carbide; Proprietes vibrationnelles du bore {alpha} et du carbure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Vast, N

    1999-07-01

    The atomic structure and the lattice dynamics of {alpha} boron and of B{sub 4}C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In {alpha} boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B{sub 4}C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  11. Effects of excess and deficient boron and niacin on the ultrastructure of root cells in Daucus carota cv. Nantes

    OpenAIRE

    DEMİRAY, Hatice; DEREBOYLU, Aylin EŞİZ

    2013-01-01

    The effects of excess and deficient boron and niacin on vascular tissues of carrot roots (Daucus carota L. cv. Nantes) were investigated in plants grown in medium both rich and poor in boron and also boron with niacin. Five media were investigated: control (MS medium), boron-deficient MS medium, MS medium with excess boron, niacin-deficient MS medium, MS medium with niacin excess, and MS medium with excess boron and niacin. In anatomical cross sections, lignification was seen in middle lamell...

  12. Improvements of Thermal, Mechanical, and Water-Resistance Properties of Polybenzoxazine/Boron Carbide Nanocomposites

    Science.gov (United States)

    Ramdani, Noureddine; Derradji, Mehdi; Wang, Jun; Mokhnache, El-Oualid; Liu, Wen-Bin

    2016-09-01

    Novel kinds of nanocomposites based on bisphenol A-aniline based polybenzoxazine matrix P(BA-a) and 0 wt.%-20 wt.% boron carbide (B4C) nanoparticles were produced and their properties were evaluated in terms of the nano-B4C content. The thermal conductivity of the P(BA-a) matrix was improved approximately three times from 0.18 W/m K to 0.86 W/m K at 20 wt.% nano-B4C loading, while its coefficient of thermal expansion (CTE) was deceased by 47% with the same nanofiller content. The microhardness properties were significantly improved by adding the B4C nanoparticles. At 20 wt.% of nano-B4C content, dynamic mechanical analysis (DMA) revealed a marked increase in the storage modulus and the glass transition temperature ( T g) of the nanocomposites, reaching 3.9 GPa and 204°C, respectively. Hot water uptake tests showed that the water-resistance of the polybenzoxazine matrix was increased by filling with nano-B4C nano-filler. The morphological analysis reflected that the improvements obtained in the mechanical and thermal properties are related to the uniform dispersion of the nano-B4C particles and their strong adhesion to the P(BA-a) matrix.

  13. Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification

    Science.gov (United States)

    Roy, Nitish; Hirano, Yuiri; Kuriyama, Haruo; Sudhagar, Pitchaimuthu; Suzuki, Norihiro; Katsumata, Ken-Ichi; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Serizawa, Izumi; Takayama, Tomoaki; Kudo, Akihiko; Fujishima, Akira; Terashima, Chiaki

    2016-11-01

    Competitive hydrogen evolution and multiple proton-coupled electron transfer reactions limit photoelectrochemical CO2 reduction in aqueous electrolyte. Here, oxygen-terminated lightly boron-doped diamond (BDDL) thin films were synthesized as a semiconductor electron source to accelerate CO2 reduction. However, BDDL alone could not stabilize the intermediates of CO2 reduction, yielding a negligible amount of reduction products. Silver nanoparticles were then deposited on BDDL because of their selective electrochemical CO2 reduction ability. Excellent selectivity (estimated CO:H2 mass ratio of 318:1) and recyclability (stable for five cycles of 3 h each) for photoelectrochemical CO2 reduction were obtained for the optimum silver nanoparticle-modified BDDL electrode at -1.1 V vs. RHE under 222-nm irradiation. The high efficiency and stability of this catalyst are ascribed to the in situ photoactivation of the BDDL surface during the photoelectrochemical reaction. The present work reveals the potential of BDDL as a high-energy electron source for use with co-catalysts in photochemical conversion.

  14. Boron Neutron Capture Therapy (BCNT) for the Treatment of Liver Metastases: Biodistribution Studies of Boron Compounds in an Experimental Model

    Energy Technology Data Exchange (ETDEWEB)

    Marcela A. Garabalino; Andrea Monti Hughes; Ana J. Molinari; Elisa M. Heber; Emiliano C. C. Pozzi; Maria E. Itoiz; Veronica A. Trivillin; Amanda E. Schwint; Jorge E. Cardoso; Lucas L. Colombo; Susana Nievas; David W. Nigg; Romina F. Aromando

    2011-03-01

    Abstract We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.

  15. The boron content in soils of solonetzic complexes in the Irtysh Region of Omsk oblast and the boron resistance of plants

    Science.gov (United States)

    Azarenko, Yu. A.

    2007-05-01

    Data on the boron content in the main soil types of solonetzic complexes in the Irtysh Region of Omsk oblast are given. They attest to the boron salinization of the soils. It is shown that there is a risk of excessive boron accumulation in natural plants and crops. The boron resistance of crops cultivated on the boronsaline soils has been examined in the field and in pot experiments. Approximate normal and toxic levels of the boron content in soils and in plants and the corresponding Ca-to-B ratios in the aboveground phytomass are suggested. Amelioration of solonetzes with application of gypsum and phosphogypsum reduces the degree of their boron salinization and the boron uptake by plants.

  16. Boron sorption from aqueous solution by hydrotalcite and its preliminary application in geothermal water deboronation.

    Science.gov (United States)

    Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide

    2013-11-01

    Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.

  17. Robust Nanoparticles

    Science.gov (United States)

    2015-01-21

    SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSOR/MONITOR’S ACRONYM(S) (ES) ARO U.S. Anny Research Office 11 . SPONSOR/MONITOR’S REPORT...Lawrence, Gregory M. Grason, Todd Emrick, Alfred J. Crosby. Stretching of assembled nanoparticle helical springs, Physical Chemistry Chemical...par with thermally sintered conductive adhesives. C. Examination of stretching of nanoparticle-based springs. This part of the project

  18. Construction of hydroxypropyl-β-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel

    Science.gov (United States)

    Miao, Qinghua; Li, Suping; Han, Siyuan; Wang, Zhi; Wu, Yan; Nie, Guangjun

    2012-08-01

    A novel amphiphilic copolymer with p-maleimidophenyl isocyanate-hydroxypropyl-β-cyclodextrin-polylactide-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine to generate copolymer nanoparticles (NPs) has been designed. In order to develop an active targeting system, integrin αvβ3-specific targeting peptide cyclo(Arg-Gly-Asp-D-Phe-Cys), cRGD, was conjugated to the surface of NPs (NPs-RGD). These NPs were used to encapsulate anti-tumor drug, paclitaxel. The resulting NPs exhibited high drug-loading capacity and controlled drug release in vitro at acidic pH. In vitro cytotoxicity assay demonstrates that paclitaxel-loaded NPs-RGD significantly inhibited B16 tumor cell (high αvβ3) proliferation relative to free paclitaxel and paclitaxel-loaded NPs at high concentrations. Paclitaxel-loaded NPs-RGD localized mainly in lysosomes in B16 cells as revealed by confocal microscopy. These results suggest a novel strategy for fabrication—functionalizing hydroxypropyl-β-cyclodextrin copolymer nanoparticles for targeting delivery of paclitaxel to integrin αvβ3-rich tumor cells. These nanocarriers can be readily extended to couple other bioactive molecules for active targeting and delivery of various chemotherapeutic drugs.

  19. Construction of hydroxypropyl-{beta}-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Miao Qinghua; Li Suping; Han Siyuan [National Center for Nanoscience and Technology of China, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (China); Wang Zhi, E-mail: wangzhi@jlu.edu.cn [Jilin University, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education (China); Wu Yan, E-mail: wuy@nanoctr.cn; Nie Guangjun, E-mail: niegj@nanoctr.cn [National Center for Nanoscience and Technology of China, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (China)

    2012-08-15

    A novel amphiphilic copolymer with p-maleimidophenyl isocyanate-hydroxypropyl-{beta}-cyclodextrin-polylactide-1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine to generate copolymer nanoparticles (NPs) has been designed. In order to develop an active targeting system, integrin {alpha}{sub v}{beta}{sub 3}-specific targeting peptide cyclo(Arg-Gly-Asp-D-Phe-Cys), cRGD, was conjugated to the surface of NPs (NPs-RGD). These NPs were used to encapsulate anti-tumor drug, paclitaxel. The resulting NPs exhibited high drug-loading capacity and controlled drug release in vitro at acidic pH. In vitro cytotoxicity assay demonstrates that paclitaxel-loaded NPs-RGD significantly inhibited B16 tumor cell (high {alpha}{sub v}{beta}{sub 3}) proliferation relative to free paclitaxel and paclitaxel-loaded NPs at high concentrations. Paclitaxel-loaded NPs-RGD localized mainly in lysosomes in B16 cells as revealed by confocal microscopy. These results suggest a novel strategy for fabrication-functionalizing hydroxypropyl-{beta}-cyclodextrin copolymer nanoparticles for targeting delivery of paclitaxel to integrin {alpha}{sub v}{beta}{sub 3}-rich tumor cells. These nanocarriers can be readily extended to couple other bioactive molecules for active targeting and delivery of various chemotherapeutic drugs.

  20. Ameliorative Effect of Curcumin-Encapsulated Hyaluronic Acid–PLA Nanoparticles on Thioacetamide-Induced Murine Hepatic Fibrosis

    Directory of Open Access Journals (Sweden)

    Yu-Nong Chen

    2016-12-01

    Full Text Available In this study, we developed curcumin-encapsulated hyaluronic acid–polylactide nanoparticles (CEHPNPs to be used for liver fibrosis amelioration. CD44, the hyaluronic acid (HA receptor, is upregulated on the surface of cancer cells and on activated hepatic stellate cells (aHSCs rather than normal cells. CEHPNPs could bind to CD44 and be internalized effectively through endocytosis to release curcumin, a poor water-soluble liver protective agent. Thus, CEHPNPs were potentially not only improving drug efficiency, but also targeting aHSCs. HA and polylactide (PLA were crosslinked by adipic acid dihydrazide (ADH. The synthesis of HA–PLA was monitored by Fourier-transform infrared (FTIR and Nuclear Magnetic Resonance (NMR. The average particle size was approximately 60–70 nm as determined by dynamic light scattering (DLS and scanning electron microscope (SEM. Zeta potential was around −30 mV, which suggested a good stability of the particles. This drug delivery system induced significant aHSC cell death without affecting quiescent HSCs, hepatic epithelial, and parenchymal cells. This system reduced drug dosage without sacrificing therapeutic efficacy. The cytotoxicity IC50 (inhibitory concentration at 50% value of CEHPNPs was approximately 1/30 to that of the free drug treated group in vitro. Additionally, the therapeutic effects of CEHPNPs were as effective as the group treated with the same curcumin dose intensity in vivo. CEHPNPs significantly reduced serum aspartate transaminase/alanine transaminase (ALT/AST significantly, and attenuated tissue collagen production and cell proliferation as revealed by liver biopsy. Conclusively, the advantages of superior biosafety and satisfactory therapeutic effect mean that CEHPNPs hold great potential for treating hepatic fibrosis.