WorldWideScience

Sample records for boron neutron capture

  1. Clinical aspects of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is potentially useful in treating malignant tumors of the central nervous system and is technically possible. Additional in vitro and in vivo testing is required to determine toxicities, normal tissue tolerances and tissue responses to treatment parameters. Adequate tumor uptake of the capture agent can be evaluated clinically prior to implementation of a finalized treatment protocol. Phase I and Phase II protocol development, clinical pharmacokinetic studies and neutron beam development

  2. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  3. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  4. Synovectomy by neutron capture in boron

    International Nuclear Information System (INIS)

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, α) in the 10 B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a 239 Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the blood tissue

  5. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  6. Boron thermal/epithermal neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the /sup 10/B(n, ..cap alpha..)/sup 7/Li reaction is approx. 10..mu.., or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor.

  7. Boron neutron capture therapy; Radioterapia per cattura neutronica del boro

    Energy Technology Data Exchange (ETDEWEB)

    Mattioda, F. [Turin Politecnico, Turin (Italy); Merlone, A. [Pisa Univ., Pisa (Italy); Agosteo, S. [Milan Politecnico, Milan (Italy); Istituto Nazionale di Fisica Nucleare, Milan (Italy); Burn, K.W.; Tinti, R. [ENEA, Bologna (Italy). Dipt. energia; Capannesi, G.; Rosi, G. [ENEA, Casaccia (Italy). Dipt. innovazione; Casali, F.; Nava, E. [Bologna UNiv., Bologna (Italy); Gambarini, G. [Milan Univ., Milan (Italy)

    1999-08-01

    Boron radiotherapy in cancer treatment and the feasibility of using the Tapiro reactor as a neutron source is discussed. In particle, the article aims to focus attention on the possibility using ENEA's (National Agency for New Technology, Energy and the Environment) Tapiro reactor, appropriately modified, as a suitable neutron source for the experimental phase of boron neutron capture therapy in Italy. [Italian] Sono presentati gli studi sulla radioterapia per cattura neutronica del boro nella cura di alcune neoplasie e l'utilizzo del reattore Tapiro come sorgente di neutroni nel progetto italiano di ricerca condotto dall'ENEA.

  8. Medical and biological requirements for boron neutron capture therapy

    International Nuclear Information System (INIS)

    In conventional radiation therapy, tumor doses applied to most solid tumors are limited by the tolerance of normal tissues. The promise of Boron Neutron Capture Therapy lies in its potential to deposit high doses of radiation very specifically to tumor tissue. Theoretically ratios of tumor to normal tissue doses can be achieved significantly higher than conventional radiotherapeutic techniques would allow. Effective dose distributions obtainable are a complex function of the neutron beam characteristics and the macro and micro distributions of boron in tumor and normal tissues. Effective RBE doses are calculated in tumors and normal tissue for thermal, epithermal and 2 keV neutrons

  9. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf;

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre...

  10. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  11. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  12. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  13. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  14. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  15. Dosimetry methods in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  16. PGNAA of human arthritic synovium for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, E.; Yanch, J.C. [Massashucetts Institute of Technology, Cambridge, MA (United States); Shortkroff, S. [Brigham and Women`s Hospital, Boston, MA (United States)

    1997-12-01

    Boron neutron capture synovectomy (BNCS), is a proposed new therapy modality for the treatment of rheumatoid arthritis, an autoimmune disease afflicting the joints. The synovium, which is the membrane lining the joint, becomes inflamed and represents the target tissue for therapy. When a joint is unresponsive to drug treatment, physical removal of the synovium, termed synovectomy, becomes necessary. Existing options include surgery and radiation synovectomy. BNCS has advantages over these options in that it is noninvasive and does not require the administration of radioactive substances. Previous studies have shown that the uptake of {sup 10}B by human arthritic synovium ex vivo is high, ranging from 194 to 545 ppm with an unenriched boron compound. While tissue samples remain viable up to 1 week, ex vivo conditions do not accurately reflect those in vivo. This paper presents results from experiments assessing the washout of boron from the tissue and examines the implications for in vivo studies.

  17. Boron neutron capture therapy (BNCT) using fast neutrons: Effects in two human tumor cell lines

    International Nuclear Information System (INIS)

    The results demonstrate that the effect of fast neutrons on cell survival in cell culture can be enhanced by boron neutron capture reaction. Even with lower enhancement ratios, the concept of NCT assisted fast neutron therapy may successfully be applied for tumor treatment with the Essen cyclotron. (orig.)

  18. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na210B12H11SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author)

  19. Carborane derivative development for boron neutron capture therapy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barnum, Beverly A.; Yan Hao; Moore, Roger; Hawthorne, M. Frederick; Baum, Kurt

    1999-04-01

    Boron Neutron Capture Therapy [BNCT] is a binary method of cancer therapy based on the capture of neutrons by a boron-10 atom [{sup 10}B]. Cytotoxic {sup 7}Li nuclei and {alpha}-particles are emitted, with a range in tissue of 9 and 5 {micro}m, respectively, about one cell diameter. The major obstacle to clinically viable BNCT is the selective localization of 5-30 ppm {sup 10}B in tumor cells required for effective therapy. A promising approach to BNCT is based on hydrophilic boron-rich oligomeric phosphate diesters, or ''trailers'' that have been shown to concentrate selectively in tumor tissue. Examples of these compounds were prepared previously at high cost using an automated DNA synthesizer. Direct synthesis methods are needed for the production of gram-scale quantities for further biological evaluation. The work accomplished as a result of the collaboration between Fluorochem, Inc. and UCLA demonstrates that short oligomers containing at least five carborane units with four phosphodiester linkages can be prepared in substantial quantities. This work was accomplished by the application of standard phosphoramidite coupling chemistry.

  20. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  1. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.); Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  2. Medical aspects of boron-slow neutron capture therapy

    International Nuclear Information System (INIS)

    Earlier radiations of patients with cerebral tumors disclosed the need: (1) to find a carrier of the boron compound which would leave the blood and concentrate in the tumor, (2) to use a more penetrating neutron beam, and (3) to develop a much faster method for assaying boron in blood and tissue. To some extent number1 has been accomplished in the form of Na2 B12 H11 SH, number2 has yet to be achieved, and number3 has been solved by the measurement of the 478-keV gamma ray when the 10B atom disintegrates following its capture of a slow neutron. The hitherto unreported data in this paper describe through the courtesy of Professor Hiroshi Hatanaka his studies on the pharmacokinetics and quality control of Na2 B12 H11SH based on 96 boron infusions in 86 patients. Simultaneous blood and tumor data are plotted here for 30 patients with glioblastomas (Grade III-IV gliomas), illustrating remarkable variability. Detailed autopsy findings on 18 patients with BNCT showed radiation injury in only 1. Clinical results in 12 of the most favorably situated glioblastomas reveal that 5 are still alive with a 5-year survival rate of 58% and the excellent Karnofsky performance rating of 87%. For the first time evidence is presented that slow-growing astrocytomas may benefit from BNCT. 10 references, 8 figures, 5 tables

  3. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  4. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  5. Boron neutron capture therapy in cancer: past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Pisarev, Mario A.; Dagrosa, Maria Alejandra; Juvenal, Guilermo J. [National Atomic Energy Commission, Buenos Aires (Argentina). Div. of Nuclear Biochemistry; University of Buenos Aires (Argentina). School of Medicine. Dept. of Human Biochemistry

    2007-07-15

    Undifferentiated thyroid cancer (UTC) is a very aggressive tumor with no effective treatment, since it lacks iodine uptake and does not respond to radio or chemotherapy. The prognosis of these patients is bad, due to the rapid growth of the tumor and the early development of metastasis. Boron neutron capture therapy (BNCT) is based on the selective uptake of certain boron non-radioactive compounds by a tumor, and the subsequent irradiation of the area with an appropriate neutron beam. {sup 10}B is then activated to {sup 11}B, which will immediately decay releasing alpha particles and {sup 7}Li, of high linear energy transfer (LET) and limited reach. Clinical trials are being performed in patients with glioblastoma multiform and melanoma. We have explored its possible application to UTC. Our results demonstrated that a cell line of human UTC has a selective uptake of borophenylalanine (BPA) both in vitro and after transplantation to nude mice. Treatment of mice by BNCT led to a complete control of growth and cure of 100% of the animals. Moreover dogs with spontaneous UTC also have a selective uptake of BPA. At the present we are studying the biodistribution of BPA in patients with UTC before its application in humans. (author)

  6. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  7. Determination Of Natural Boron Concentration In Coffee Leaves, Using de Autobiography by Neutron Capture Technique

    International Nuclear Information System (INIS)

    Determination of natural boron concentration in coffee leaves, using the autoradiography, by neutron capture technique. The boron absorption coefficient in young coffee leaves was measured using autoradiography by neutron capture. In two experiments carried out in April and November, 1996, it was found that the coefficient varies between 0.9 and 5.3 nmol/h. the concentration of natural boron in coffee leaves in regard to age, symptoms and treatment received was also studied, using the same technique. (Author)

  8. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    Science.gov (United States)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  9. Isodose Curves and Treatment Planning for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Liu, Hungyuan B.

    The development of Boron Neutron Capture Therapy (BNCT) has been progressing in both ^{10 }B compound development and testing and neutron beam delivery. Animal tests are now in progress with several ^{10}B compounds and once the results of these animal tests are promising, patient trials can be initiated. The objective of this study is to create a treatment planning method based on the dose calculations by a Monte Carlo code of a mixed radiation field to provide linkage between phantom dosimetry and patient irradiation. The research started with an overall review of the development of BNCT. Three epithermal neutron facilities are described, including the operating Brookhaven Medical Research Reactor (BMRR) beam, the designed Missouri University Research Reactor (MURR) beam, and a designed accelerator based neutron source. The flux and dose distributions in a head model have been calculated for irradiation by these neutron beams. Different beam parameters were inter -compared for effectiveness. Dosimetric measurements in an elliptical lucite phantom and a cylindrical water phantom were made and compared to the MCNP calculations for irradiation by the BMRR beam. Repeated measurements were made and show consistent. To improve the statistical results calculated by MCNP, a neutron source plane was designed to start neutrons at the BMRR irradiation port. The source plane was used with the phantoms for dosimetric calculations. After being verified by different phantom dosimetry and in-air flux measurements at the irradiation port, the source plane was used to calculate the flux and dose distributions in the head model. A treatment planning program was created for use on a PC which uses the MCNP calculated results as input. This program calculates the thermal neutron flux and dose distributions of each component of radiation in the central coronal section of the head model for irradiation by a neutron beam. Different combinations of head orientations and irradiation

  10. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu

    2006-08-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm{sup 2} treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm{sup 2} collimation was 21.9% per 100-ppm {sup 10}B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm{sup 2} fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm{sup 2} collimator. Five 1.0-cm thick 20x20 cm{sup 2} tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm {sup 10}B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth

  11. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  12. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  13. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg 10B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague–Dawley (SD) rats were studied by administrating 25 mg 10B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4–6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  14. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 5th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 22 in 1993. The solubility of the boron carrier play an important role in the BNCT. New water-soluble p-boronophenylalanine derivatives are synthesized and their biological activities are investigated (Chap. 2 and 3). Some chemical problems on the BNCT were discussed, and the complex formation reaction of hydroxylboryl compounds were studied by the paper electrophoresis (Chap. 4). The results of the medical investigation on the BNCT using BSH compounds are shown in Chap. 5. Syntheses of o- and m-boronophenylalanine were done and their optical resolution was tried (Chap. 6). The complex formation reaction of p-boronophenylalanine (BPA) with L-DOPA and the oxidation reaction of the analogs are found in Chap. 7. The pka of BPA were determined by the isotachophoresis (Chap. 8). The chemical nature of dihydroxyboryl compounds were investigated by an infrared spectroscopy and electrophoresis (Chap. 9). New synthetic methods of BPA and p-boronophenylserine using ester of isocyanoacetic acid are described in Chap. 10. The induction of chromosomal aberations by neutron capture reaction are discussed from a point of the biological view. The a of the presented papers are indexed individually. (J.P.N.)

  15. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    To avoid severe impairment of oro-facial structures and functions, it is necessary to explore new treatments for recurrent head and neck malignancies (HNM). Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. So far for 4 years and 3 months, we have treated with 37 times of BNCT for 21 patients (14 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results are (1) 10B concentration of tumor/normal tissue ratio (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 6cases, PR: 11cases, PD: 3cases NE (not evaluated): 1case. Response rate was 81%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-51 months (mean: 9.8 months). 4-year survival rate was 39% by Kaplan-Meier analysis. (5) A few adverse-effects such as transient mucositis, alopecia were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM. (author)

  16. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a tumor-cell targeted radiotherapy. When 10B absorbs thermal neutrons, the alpha and 7Li particles generated by the 10B (n, α) 7Li reaction are high linear energy transfer (LET) particles, and carry high kinetic energy (2.34 MeV), and have short ranges (4-9 micron-meters) of approximately one-cell diameter, resulting in a large relative biological effectiveness (RBE) and selective destruction of tumor cells containing 10B. We have, for the first time in the world, used BNCT to treat 11 patients with recurrent head and neck malignancies (HNM) after a standard primary therapy since 2001. The 11 patients were composed of 6 squamous cell carcinomas, 3 salivary gland tumors and 2 sarcomas. The results of BNCT were as follows. Regression rates (volume %) were complete response (CR): 2 cases, >90%: 5 cases, 73%: 1 case, 54%: 1 case, progressive disease (PD): 1 case, NE (not evaluated): 1 case. The response rate was 82%. Improvement of quality of life (QOL) was recognized, such as disappearance of tumor ulceration and covering with normal skin: relief of severe pain, bleeding, trismus and dyspnea: improvement of performance status (PS) (from 4 to 2) allowing the patients to return to work and elongate his survival period. Survival periods after BNCT were 1-38 months (mean: 8.5 months). The survival rate was 36% (4 cases). There are a few side-effects such as transient mucositis and alopecia less than Grade-2. These results indicate that BNCT represents a new and promising treatment approach even for a huge or far-advanced HNM. (author)

  17. New carbon-carbon linked amphiphilic carboranyl-porphyrins as boron neutron capture agents

    International Nuclear Information System (INIS)

    Novel amphiphilic carboranyl-porphyrins have been synthesized for Boron Neutron Capture Therapy (BNCT). These compounds have carbon-carbon bonds between the carborane residues and the porphyrin meso-phenyl groups, and contain 28-31% boron by weight . (author)

  18. For boron neutron capture therapy,synthesizing boron-polymer compounds and testing in laboratory conditions

    International Nuclear Information System (INIS)

    The aim of this project is to establish a focus point at Turkish Atomic Energy Authority (TAEA) in the field of Boron Neutron Capture Therapy which is a binary radiotherapy method for brain tumours. Moreover in the scope of the project, a new alternative of 10B-carrier compounds will be synthesized, the neutron source will be determined and the infrastructure to start the clinical trials of BNCT in our country will be established. BNCT is a binary radiotherapy method and the successful of this method is depend on the synthesized boron compounds which have the selective targeting property with tumour cells and neutron optimization. The water-soluble polymer based boron compounds having biochemical and physiological properties will be synthesized and cell culture experiment will be done. In addition, after the neutron source is set up in our country, the infrastructure studies will be started in order to start the clinical trials of BNCT. In this project, there are three different groups as boron compounds, neutron physics and medical group. Neutron physics group is starting the calculations of neutron beam parameters using in BNCT application. But, medical group has no active studies yet. Boron compounds group has been carried out two different experimental studies. In the first experimental study, functional groups have been bound to boron containing polymers to enhance the selectively targeting property and characterized by various analysis methods. Later, cell culture experiment will be done. The first study has been carried out with Hacettepe University. Up to present, completed studies are listed as: -Maleic anhydride oligomer was synthesized and then 2-aminoethyl diphenyl borate (2-AEPB) and monomethoxy poly(ethylene glycol) (PEG) was bound to this oligomer, respectively. Thus, [MAH]n-g1-2-AEPB-g2-PEG was synthesized. -2-AEPB compound were bound to poly(acrylic acid) polymer at different three mole ratio.Then, the selected Poli(Ac)-g1-2-AEPB polymer was

  19. Synovectomy by neutron capture in boron; Sinovectomia por captura de neutrones en boro

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R. [Unidades Academicas de Estudios Nucleares, Ingenieria Electrica y Matematicas, Universidad Autonoma de Zacatecas, A.P. 336, C.P. 98000 Zacatecas (Mexico)

    2002-07-01

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, {alpha}) in the {sup 10} B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a {sup 239} Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the

  20. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  1. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  2. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  3. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  4. Epithermal neutron beam adoption for liver cancer treatment by boron and gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Comparative evaluation was made on depth-dose distribution in boron neutron capture therapy (B-NCT) and gadolinium one (Gd-NCT) for the treatments of liver cancers. At present, epithermal neutron beam is expected to be applicable to the treatment of deep and widespread tumors. ICRU computational model of ADAM and EVA was used as a liver phantom loading a tumor at depth of 6 cm in its central region. Epithermal neutron beam of Musashi reactor was used as the primary neutron beam for the depth-dose calculation. Calculation was conducted using the three-dimensional continuous-energy Monte Carlo code MCNP4A. The doses observed in both NCTs were bumped over the tumor region but the dose for Gd-NCT was not so tumor-specific compared with that for BNCT because radiation in Gd-NCT was due to γ-ray. The mean physical dose was 4 Gy/h for boron 30 ppm and 5 Gy/h for Gd 1000 ppm when exposed to an epithermal neutron flux of 5x108 n/cm-2/sec and the dose ratio of tumor-to normal tissue was 2.7 for boron and 2.5 for Gd. The lethal dose of 50 Gy for the liver can be accomplished under conditions where the dose has not reached 25 Gy, the tolerance dose of the normal tissue. This seems very encouraging and indicating that both B-NCT and Gd-NCT are applicable for the treatment for liver cancer. However, if normal tissue contain 1/4 of the tumor concentration of boron or Gd, the BNCT would still possible when considering a large RBE value for 10B(n, α) reaction but the Gd-NCT would impossible for deep liver treatment. (M.N.)

  5. Epithermal neutron beam adoption for liver cancer treatment by boron and gadolinium neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tetsuo [Musashi Inst. of Tech., Kawasaki, Kanagawa (Japan). Atomic Energy Research Lab

    2001-06-01

    Comparative evaluation was made on depth-dose distribution in boron neutron capture therapy (B-NCT) and gadolinium one (Gd-NCT) for the treatments of liver cancers. At present, epithermal neutron beam is expected to be applicable to the treatment of deep and widespread tumors. ICRU computational model of ADAM and EVA was used as a liver phantom loading a tumor at depth of 6 cm in its central region. Epithermal neutron beam of Musashi reactor was used as the primary neutron beam for the depth-dose calculation. Calculation was conducted using the three-dimensional continuous-energy Monte Carlo code MCNP4A. The doses observed in both NCTs were bumped over the tumor region but the dose for Gd-NCT was not so tumor-specific compared with that for BNCT because radiation in Gd-NCT was due to {gamma}-ray. The mean physical dose was 4 Gy/h for boron 30 ppm and 5 Gy/h for Gd 1000 ppm when exposed to an epithermal neutron flux of 5x10{sup 8} n/cm{sup -2}/sec and the dose ratio of tumor-to normal tissue was 2.7 for boron and 2.5 for Gd. The lethal dose of 50 Gy for the liver can be accomplished under conditions where the dose has not reached 25 Gy, the tolerance dose of the normal tissue. This seems very encouraging and indicating that both B-NCT and Gd-NCT are applicable for the treatment for liver cancer. However, if normal tissue contain 1/4 of the tumor concentration of boron or Gd, the BNCT would still possible when considering a large RBE value for {sup 10}B(n, {alpha}) reaction but the Gd-NCT would impossible for deep liver treatment. (M.N.)

  6. Proton nuclear magnetic resonance measurement of p-boronophenylalanine (BPA): A therapeutic agent for boron neutron capture therapy

    OpenAIRE

    Zuo, C. S.; Prasad, P V; Busse, Paul; L. Tang; Zamenhof, R. G.

    1999-01-01

    Noninvasive in vivo quantitation of boron is necessary for obtaining pharmacokinetic data on candidate boronated delivery agents developed for boron neutron capture therapy (BNCT). Such data, in turn, would facilitate the optimization of the temporal sequence of boronated drug infusion and neutron irradiation. Current approaches to obtaining such pharmacokinetic data include: positron emission tomography employing F-18 labeled boronated delivery agents (e.g., p-boronophenylalanine), ex vivo n...

  7. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  8. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    Science.gov (United States)

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations. PMID:18196797

  9. A suggestion for B-10 imaging during boron neutron capture therapy

    OpenAIRE

    Cortesi, M.

    2007-01-01

    Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake ...

  10. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  11. Implications for clinical treatment from the micrometer site dosimetric calculations in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Trent L. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37901 (United States)], E-mail: tnichol2@utk.edu; Kabalka, George W. [Department of Chemistry, University of Tennessee, Knoxville, TN 37901 (United States); Miller, Laurence F. [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN 37901 (United States); McCormack, Michael T. [Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920 (United States); Johnson, Andrew [Rush University Medical Center, Chicago, IL 60612 (United States)

    2009-07-15

    Boron neutron capture therapy has now been used for several malignancies. Most clinical trials have addressed its use for the treatment of glioblastoma multiforme. A few trials have focused on the treatment of malignant melanoma with brain metastases. Trial results for the treatment of glioblastoma multiforme have been encouraging, but have not achieved the success anticipated. Results of trials for the treatment of malignant melanoma have been very promising, though with too few patients for conclusions to be drawn. Subsequent to these trials, regimens for undifferentiated thyroid carcinoma, hepatic metastases from adenocarcinoma of the colon, and head and neck malignancies have been developed. These tumors have also responded well to boron neutron capture therapy. Glioblastoma is an infiltrative tumor with distant individual tumor cells that might create a mechanism for therapeutic failure though recurrences are often local. The microdosimetry of boron neutron capture therapy can provide an explanation for this observation. Codes written to examine the micrometer scale energy deposition in boron neutron capture therapy have been used to explore the effects of near neighbor cells. Near neighbor cells can contribute a significantly increased dose depending on the geometric relationships. Different geometries demonstrate that tumors which grow by direct extension have a greater near neighbor effect, whereas infiltrative tumors lose this near neighbor dose which can be a significant decrease in dose to the cells that do not achieve optimal boron loading. This understanding helps to explain prior trial results and implies that tumors with small, closely packed cells that grow by direct extension will be the most amenable to boron neutron capture therapy.

  12. Dose calculation from a D-D-reaction-based BSA for boron neutron capture synovectomy

    International Nuclear Information System (INIS)

    Monte Carlo simulations were carried out to calculate dose in a knee phantom from a D-D-reaction-based Beam Shaping Assembly (BSA) for Boron Neutron Capture Synovectomy (BNCS). The BSA consists of a D(d,n)-reaction-based neutron source enclosed inside a polyethylene moderator and graphite reflector. The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield at the knee phantom. Then neutron dose was calculated at various depths in a knee phantom loaded with boron and therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose were determined. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values.

  13. Dose calculation from a D-D-reaction-based BSA for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Khalid [Department of Physics, Hail University, Hail (Saudi Arabia)], E-mail: khalidafnan@uoh.edu.sa; Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals and Center for Applied Physical Sciences, Box No. 1815, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Maalej, N.; Elshahat, B. [Department of Physics, King Fahd University of Petroleum and Minerals and Center for Applied Physical Sciences, Box No. 1815, Dhahran 31261 (Saudi Arabia)

    2010-04-15

    Monte Carlo simulations were carried out to calculate dose in a knee phantom from a D-D-reaction-based Beam Shaping Assembly (BSA) for Boron Neutron Capture Synovectomy (BNCS). The BSA consists of a D(d,n)-reaction-based neutron source enclosed inside a polyethylene moderator and graphite reflector. The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield at the knee phantom. Then neutron dose was calculated at various depths in a knee phantom loaded with boron and therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose were determined. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values.

  14. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.;

    2011-01-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed at Pavia (Italy) a few...

  15. Early clinical experience of boron neutron capture therapy for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. BNCT uses drugs containing a stable isotope of boron. 10B, to sensitize tumor cells to irradiation by low energy (thermal) neutrons. The interaction of the 10B with a thermal neutron (neutron capture) causes the 10B nucleus to split, releasing an alpha particle and a lithium nucleus. These products of the 10B(n, α)7Li reaction are very damaging to cells but have a combined path length in tissue of approximately 14 μm, or roughly the diameter of one or two cells. Thus, most of the ionizing energy imparted to tissue is localized to 10B-loaded cells

  16. Formulation and preliminary evaluation of delivery vehicles for the boron neutron capture therapy of cancer

    OpenAIRE

    Olusanya, Temidayo; Stich, Theresia; Higgins, Samantha Caroline; Lloyd, Rhiannon Eleanor Iris; Smith, James Richard; Fatouros, Dimitrios; Calabrese, Gianpiero; Pilkington, Geoffrey John; Tsibouklis, John

    2015-01-01

    Boron neutron capture therapy (BNCT) is a method for selectively destroying malignant (normally glioma) cells whilst sparing normal tissue1. Irradiation of 10B (large neutron capture cross-section) with thermal neutrons effects the nuclear fission reaction: 10B + 1n → → 7Li+ + α + γ; where the penetration of α-particles and 7Li+ is only 8 and 5 µm, respectively, i.e., within a single cell thickness, assuming 10B can be preferentially located within glioma cells2. Poor selectivity is the main ...

  17. Formulation and preliminary evaluation of delivery vehicles for the boron neutron capture therapy of cancer

    OpenAIRE

    Olusanya, Temidayo Olajumoke Bolanle

    2015-01-01

    Boron neutron capture therapy (BNCT) is a method for selectively destroying malignant (normally glioma) cells whilst sparing normal tissue. Irradiation of 10B (large neutron capture cross-section) with thermal neutrons effects the nuclear fission reaction: 10B + 1n → → 7Li+ + α + γ; where the penetration of -particles and 7Li+ is only 8 and 5 μm, respectively, i.e., within a single cell thickness, assuming 10B can be preferentially located within glioma cells. Poor selectivity is the main r...

  18. Synthesis and biological evaluation of boronated polyglycerol dendrimers as potential agent for neutron capture therapy

    International Nuclear Information System (INIS)

    In this work, the polyglycerol dendrimer (PGLD) generation 5 was used to obtain a boronated macromolecule for boron neutron capture therapy. The PGLD dendrimer was synthesized by the ring opening polymerization of deprotonated glycidol using polyglycerol as core functionality in a step-growth processes denominated divergent synthesis. The PGLD dendritic structure was confirmed by gel permeation chromatography, nuclear magnetic resonance (1H-NMR, 13C-NMR) and matrix assisted laser desorption/ionization techniques. The synthesized dendrimer presented low dispersion in molecular weights (Mw/Mn = 1.05) and a degree of branching of 0.82, which characterize the polymer dendritic structure. Quantitative neutron capture radiography was used to investigate the boron-10 enrichment of the polyglycerol dendrimer. The in vitro cytotoxicity to Chinese hamster ovary cells of 10B-PGLD dendrimer indicate lower cytotoxicity, suggesting that the macromolecule is a biocompatible material. (author)

  19. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.;

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...

  20. Optimal timing of neutron irradiation for boron neutron capture therapy after intravenous infusion of sodium borocaptate in patients with glioblastoma

    International Nuclear Information System (INIS)

    Purpose: A cooperative study in Europe and Japan was conducted to determine the pharmacokinetics and boron uptake of sodium borocaptate (BSH: Na2B12H11SH), which has been introduced clinically as a boron carrier for boron neutron capture therapy in patients with glioblastoma. Methods and Materials: Data from 56 patients with glioblastoma who received BSH intravenous infusion were retrospectively reviewed. The pharmacokinetics were evaluated in 50 patients, and boron uptake was investigated in 47 patients. Patients received BSH doses between 12 and 100 mg/kg of body weight. For the evaluation, the infused boron dose was scaled linearly to 100 mg/kg BSH. Results: In BSH pharmacokinetics, the average value for total body clearance, distribution volume of steady state, and mean residence time was 3.6±1.5 L/h, 223.3±160.7 L, and 68.0±52.5 h, respectively. The average values of the boron concentration in tumor adjusted to 100 mg/kg BSH, the boron concentration in blood adjusted to 100 mg/kg BSH, and the tumor/blood boron concentration ratio were 37.1±35.8 ppm, 35.2±41.8 ppm, and 1.53±1.43, respectively. A good correlation was found between the logarithmic value of Tadj and the interval from BSH infusion to tumor tissue sampling. About 12-19 h after infusion, the actual values for Tadj and tumor/blood boron concentration ratio were 46.2±36.0 ppm and 1.70±1.06, respectively. The dose ratio between tumor and healthy tissue peaked in the same interval. Conclusion: For boron neutron capture therapy using BSH administered by intravenous infusion, this work confirms that neutron irradiation is optimal around 12-19 h after the infusion is started

  1. Dose Determination using alanine detectors in a Mixed Neutron and Gamma Field for Boron Neutron Capture Therapy of Liver Malignancies

    DEFF Research Database (Denmark)

    Schmitz, T.; Blaickner, M.; Ziegner, M.;

    2011-01-01

    Introduction Boron Neutron Capture Therapy for liver malignancies is being investigated at the University of Mainz. One important aim is the set-up of a reliable dosimetry system. Alanine dosimeters have previously been applied for dosimetry of mixed radiation fields in antiproton therapy, and may...

  2. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-03-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10{sup 12}nvt for BMGP and 2x10{sup 13}nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the {alpha}-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author).

  3. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  4. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    Energy Technology Data Exchange (ETDEWEB)

    A. Monti Hughes; ECC Pozzi; S. Thorp; M. A. Garabalino; R. O. Farias; S. J. Gonzalez; E. M. Heber; M. E. Itoiz; R. F. Aromando; A. J. Molinari; M. Miller; D. W. Nigg; P. Curotto; V. A. Trivillin; A. E. Schwint

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  5. Online detection of radiation produced in Boron-10 neutron capture reaction: preliminary studies

    International Nuclear Information System (INIS)

    Boron microdistribution in both tumor and normal tissue sections can be studied by the autoradiography technique in solid state nuclear track detectors (SSNTD). A measurement of boron concentration in tissue is obtained through the evaluation of the density of tracks produced by alpha and lithium ions generated in the neutron capture reaction 10B(n,α) 7Li. This knowledge is pivotal when a BNCT (Boron Neutron Capture Therapy) protocol is considered. A new methodology is proposed in order to record alpha and lithium events in real time, as light spots superimposed to the tissue section image. CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) are used as detectors, with the advantage of avoiding the superposition of events. Commercial web cams were employed for the preliminary experiments. They were partially disassembled in order to get the sensor chip uncovered. These devices were exposed to different radiation sources: 6.118 MeV alpha particles (252Cf), 0.662 MeV gamma rays (137Cs) and thermal neutrons (moderated 241Am-Be source, 103n.cm2.seg-1), to analyze the characteristics of the respective images. Pictures from tissue sections put in contact with the sensor surface were also acquired. A software was developed in Matlab to perform the image capture and processing. Early results show the feasibility of using these devices to study the distribution 10B in tissue samples. (author)

  6. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  7. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies

  8. Biodistribution of Boron compounds in an experimental model of liver metastases for Boron Neutron Capture (BNCT) Studies

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with thermal or epithermal neutrons. The high linear energy transfer alpha particles and recoiling 7Li nuclei emitted during the capture of a thermal neutron by a 10B nucleus have a short range and a high biological effectiveness. Thus, BNCT would potentially target neoplastic tissue selectively. In previous studies we demonstrated the therapeutic efficacy of different BNCT protocols in an experimental model of oral cancer. More recently we performed experimental studies in normal rat liver that evidenced the feasibility of treating liver metastases employing a novel BNCT protocol proposed by JEC based on ex-situ treatment and partial liver auto-transplant. The aim of the present study was to perform biodistribution studies with different boron compounds and different administration protocols to determine the protocols that would be therapeutically useful in 'in vivo' BNCT studies at the RA-3 Nuclear Reactor in an experimental model of liver metastases in rats. Materials and Methods. A total of 70 BDIX rats (Charles River Lab., MA, USA) were inoculated in the liver with syngeneic colon cancer cells DH/DK12/TRb (ECACC, UK) to induce the development of subcapsular metastatic nodules. 15 days post-inoculation the animals were used for biodistribution studies. A total of 11 protocols were evaluated employing the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B1-0H10), alone or combined employing different doses and administration routes. Tumor, normal tissue and blood samples were processed for boron measurement by ICP-OES. Results. Several protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue, i.e. BPA 15.5 mg 10B/kg iv + GB-10 50 mg 10B/kg iv; BPA 46.5 mg 10B/kg ip; BPA 46.5 mg 10B/kg ip + iv; BPA 46

  9. Single photon image from position emission tomography with insertable collimator for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo Young; Yoo, Do Kun; Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Molecular Imaging Program at Stanford (MIPS), Dept. of Radiology, Stanford University, Stanford (United States)

    2014-04-15

    The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the boron neutron capture therapy (BNCT). The BNCT theory and conceptual diagram of our proposed system are shown fig.1. Data from the PET module, neutron source, and collimator was entered in the Monte Carlon-particle extende source code. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector.

  10. Biological models in vivo for boron neutronic capture studies as tumors therapy

    International Nuclear Information System (INIS)

    The use of experimental models for Boron Neutronic Capture studies as Tumors Therapy have as two main objectives: 1) To contribute to the basic knowledge of the biological mechanisms involved to increase the method therapeutical advantage, and 2) To explore the possible application of this therapeutic method to other pathologies. In this frame it was studied the carcinogenesis model of hamster cheek pouch, a type of human buccal cancer. Biodistribution studies of boron compound were performed in tumor, blood and in different precancerous and normal tissues as well as BNCT studies. Results validated this method for BNCT studies and show the capacity of the oral mucosa tumors of selectively concentrate the boron compound, showing a deleterious clear effect on the tumor after 24 hours with BNCT treatment. (author)

  11. Incorporation and characterization of boron neutron capture therapy agents into mesoporous silicon and silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ke; Coffer, Jeffery L. [Department of Chemistry, Texas Christian University, Fort Worth, TX 76129 (United States); Loni, Armando; Canham, Leigh T. [PSi Medica Ltd., Malvern, Worcestershire, WR14 3SZ (United Kingdom); Intrinsiq Materials Ltd., Malvern, Worcestershire, WR14 3SZ (United Kingdom)

    2009-06-15

    The tunable pore size, biodegradability, and surface chemistry of mesoporous silicon (BioSilicon trademark) are important to a broad spectrum of uses for drug delivery. For the case of Boron Neutron Capture Therapy (BNCT), encapsulation of a given boron-containing drug molecule within a porous BioSilicon trademark microparticle provides a vehicle for a brachytherapy method that avoids the necessity of drug modification. In this work, the loading and characterization of three clinically approved BNCT drugs into mesoporous Si is demonstrated. Because of difficulties associated with light element detection, a method based on a Beer's Law analysis of selected FTIR vibrational bands has been developed to estimate boron-containing drug loading in these materials. As a complementary nanostructural platform, a cathodic deposition process for the surface enriched growth of selected drugs onto the surface of silicon nanowires is also described. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    International Nuclear Information System (INIS)

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report

  13. Application of HVJ envelope system to boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) has been used clinically for the treatment of malignant tumors. Two drugs, p-boronophenylalanine (BPA) and sulfhydral borane (BSH), have been used as boron delivery agents. These drugs seem to be taken up preferentially in solid tumors, but it is uncertain whether therapeutic quantities of boron atoms are taken up by micro-invasive or distant tumor cells. High accumulation and high selective delivery of boron into tumor tissues are the most important requirements to achieve efficient BNCT for malignant tumor. The HVJ envelope (HVJ-E) vector system is a novel fusion-mediated gene delivery system based on inactivated hemagglutinating virus of Japan (HVJ; Sendai virus). Although we developed this vector system for gene transfer, it can also deliver proteins, synthetic oligonucleotides, and drugs. HVJ-liposome, which is liposome fused with HVJ-E, has higher boron trapping efficiency than HVJ-E alone. We report the boron delivery into cultured cells with HVJ-liposome systems. The cellular 10B concentration after 60 min incubation with HVJ-E containing BSH was 24.9 μg/g cell pellet for BHK-21 cells (baby hamster kidney cells) and 19.4 μg/g cell pellet for SCC VII cells (murine squamous cell carcinoma). These concentrations are higher than that of 60 min incubated cells with BSH containing (100μg 10B/ml) medium. These results indicate the HVJ-E fused with tumor cell membrane and rapidly delivered boron agents, and that the HVJ-E-mediated delivery system could be applicable to BNCT. Plans are underway to begin neutron radiation experiments in vivo and in vitro. (author)

  14. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick [Univ. of California, Los Angeles, CA (United States)

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  15. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  16. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Valente, M. [Department of Physics of the University and INFN, Via Celoria 16, I-20133 Milan (Italy); Moss, R.L.; Daquino, G.G.; Nievaart, V.A. [Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755ZG Petten, The Netherlands (Netherlands); Mariani, M.; Vanossi, E. [Department of Nuclear Engineering of Polytechnic, CESNEF, Via Ponzio, 34/3 - I-20133 Milan (Italy); Carrara, M. [Medical Physics Department, National Cancer Institute, Via Venezian 1, I-20131, Milan (Italy)

    2006-07-01

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  17. New concepts for compact accelerator/target for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Two new target concepts, NIFTI and DISCOS, that enable a large reduction in the proton beam current needed to produce epithermal neutrons for BNCT (Boron Neutron Capture Therapy) are described. In the NIFTI concept, high energy neutrons produced by (p, n) reactions of 2.5 MeV protons on Li are down scattered to treatment energies (∼ 20 keV) by relatively thin layers of PbF2 and iron. In the DISCOS concept, treatment energy neutrons are produced directly in a succession of thin (∼ 1 micron) liquid Li films on rotating Be foils. These foils interact with a proton beam that operates just above threshold for the (p, n) reaction, with an applied DC field to re-accelerate the proton beam between the target foils

  18. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  19. Improvement of dose distribution by central beam shielding in boron neutron capture therapy

    Science.gov (United States)

    Sakurai, Yoshinori; Ono, Koji

    2007-12-01

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  20. Epithermal neutron beam adoption for lung and pancreatic cancer treatment by boron neutron capture therapy

    International Nuclear Information System (INIS)

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreatic cancers using an epithermal neutron beam. The Monte Carlo Neutron Photon (MCNP) calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5 x 108 ncm-2s-1. The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT using an epithermal neutron beam could be applied for both lung and pancreatic cancer treatment. (author)

  1. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  2. Hemorrhage in mouse tumors induced by dodecaborate cluster lipids intended for boron neutron capture therapy

    Directory of Open Access Journals (Sweden)

    Schaffran T

    2014-07-01

    Full Text Available Tanja Schaffran,1 Nan Jiang,1 Markus Bergmann,2,3 Ekkehard Küstermann,4 Regine Süss,5 Rolf Schubert,5 Franz M Wagner,6 Doaa Awad,7 Detlef Gabel1,2,8 1Department of Chemistry, University of Bremen, 2Institute of Neuropathology, Klinikum Bremen-Mitte; 3Cooperative Center Medicine, University of Bremen, 4“In-vivo-MR” AG, FB2, University of Bremen, Bremen, 5Pharmaceutical Technology, University of Freiburg, Freiburg im Breisgau, 6Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II, Technische Unversitaet Muenchen, Garching, Germany; 7Department of Biochemistry, Alexandria University, Alexandria, Egypt; 8School of Engineering and Science, Jacobs University Bremen, Bremen, Germany Abstract: The potential of boron-containing lipids with three different structures, which were intended for use in boron neutron capture therapy, was investigated. All three types of boron lipids contained the anionic dodecaborate cluster as the headgroup. Their effects on two different tumor models in mice following intravenous injection were tested; for this, liposomes with boron lipid, distearoyl phosphatidylcholine, and cholesterol as helper lipids, and containing a polyethylene glycol lipid for steric protection, were administered intravenously into tumor-bearing mice (C3H mice for SCCVII squamous cell carcinoma and BALB/c mice for CT26/WT colon carcinoma. With the exception of one lipid (B-THF-14, the lipids were well tolerated, and no other animal was lost due to systemic toxicity. The lipid which led to death was not found to be much more toxic in cell culture than the other boron lipids. All of the lipids that were well tolerated showed hemorrhage in both tumor models within a few hours after administration. The hemorrhage could be seen by in vivo magnetic resonance and histology, and was found to occur within a few hours. The degree of hemorrhage depended on the amount of boron administered and on the tumor model. The observed unwanted effect of the lipids

  3. Selective uptake of p-boronophenylalanine by osteosarcoma cells for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Osteosarcoma is the most common non-hematologic primary cancer type that develops in bone. Current osteosarcoma treatments combine multiagent chemotherapy with extensive surgical resection, which in some cases makes necessary the amputation of the entire limb. Nevertheless its infiltrative growth leads to a high incidence of local and distant recurrences that reduce the percentage of cured patients to less than 60%. These poor data required to set up a new therapeutic approach aimed to restrict the surgical removal meanwhile performing a radical treatment. Boron neutron capture therapy (BNCT), a particular radiotherapy based on the nuclear capture and fission reactions by atoms of 10B, when irradiated with thermal neutrons, could be a valid alternative or integrative option in case of osteosarcoma management, thanks to its peculiarity in selectively destroying neoplastic cells without damaging normal tissues. Aim of the present work is to investigate the feasibility of employing BNCT to treat the limb osteosarcoma. Boronophenylalanine (BPA) is used to carry 10B inside the neoplastic cells. As a first step the endocellular BPA uptake is tested in vitro on the UMR-106 osteosarcoma cell line. The results show an adequate accumulation capability. For the in vivo experiments, an animal tumor model is developed in Sprague-Dawley rats by means of an intrafemoral injection of UMR-106 cells at the condyle site. The absolute amounts of boron loading and the tumor to normal tissue 10B ratio are evaluated 2 h after the i.v. administration of BPA. The boron uptake by the neoplastic tissue is almost twice the normal one. However, higher values of boron concentration in tumor are requested before upholding BNCT as a valid therapeutic option in the treatment of osteosarcoma.

  4. Neutron capture therapy of murine melanoma on new boron carriers with use of capillary neutron optics

    Science.gov (United States)

    Borisov, G. I.; Naidenov, M. G.; Koldaeva, E. Y.; Petrov, S. A.; Zhizhin, K. Y.; Kuznettsov, N. T.; Brattsev, V. A.; Grigorieva, E. Y.

    2005-07-01

    The Boron-10 NCT is one of the most perspective methods of human anticancer treatment. The introduction of this efficient method into medical practice makes possible more selective and precise destruction of tumour cells without any damage of normal tissues. The basis of NCT method is destructive effect of products of nuclear reaction 10B(n,α,γ)7Li. This reaction produces particles-helium nuclei (alpha-particles) and lithium nuclei-with too high linear energetic loss in animal tissues and poor integrated sweep (to 14 μm) what is comparable with single cell diameter. Actual use of BNCT for treatment of human malignant tumours is dependent on resolution of various and complex scientific and technical problems. Namely: the development of novel boron preparations selectively carrying 10B into cancer cells, providing optimal concentration and microdistribution of 10B in these and remaining there during all necessary irradiation time; formation of therapeutic neutron fluxes of needed power, spectrum and intensity; provision of adequate planning and monitoring methods for current 10B-NCT making possible to evaluate a boron concentration in animal tissues in real time, to see macro- and microdistribution of the same, allowing precise microdosimetry; optimization of irradiation regimens and of drug administration schedules conformably to concrete neutron flux in different objects.

  5. Can epithermal boron neutron capture therapy treat primary and metastatic liver cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, S.A. [Austin Repatriation Medical Centre, Heidelberg (Australia); Carolan, M.C. [Illawarra Cancer Care Centre, Wollongong (Australia); Allen, B.J. [St George Cancer Care Centre, Kogarah (Australia)

    1996-12-31

    Full text: The poor prognosis of metastatic cancer to the liver calls for the investigation of alternative treatment modalities. This paper analyses the possible use of epithermal boron neutron capture therapy for the palliative treatment of these cancers. We examine possible treatment planning scenarios for selected tumour to liver boron ratios, and specifically for the epithermal beam at the HFR, Petten. It is required that a therapeutic ratio> 1 be achieved over the entire organ. Monte Carlo calculations were performed using the radiation transport code MCNP. The geometrical model used a `variable voxel` technique to reconstruct an anthropomorphic phantom from CT scans. Regions of interest such as the liver were modelled to a resolution of a few millimetres, whereas surrounding regions were modelled with lesser detail thereby facilitating faster computation time. Three dimensional dose distributions were calculated for a frontal beam directed at the liver, and found to be in satisfactory agreement with measurements using bare and cadmium covered gold foils, PIN and MOSFET dosimeters for fast neutron and gamma measurements respectively. Dose distributions were calculated for orthogonal epithermal neutron beams to the front and side, using the parameters of the epithermal beam at Petten, and assumed tumour and normal tissue boron-10 concentrations of 30 ppm and 7.5 ppm boron-10 respectively. The therapeutic ratio (i e the dose to the tumour relative to the maximum dose to normal tissue) was found to be about 1.8, reducing to unity for the limiting condition of a tumour in the posterior liver. This result opens up the possibility of palliative therapy for the management of primary and metastatic liver cancer.

  6. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy.

    Science.gov (United States)

    Altieri, S; Balzi, M; Bortolussi, S; Bruschi, P; Ciani, L; Clerici, A M; Faraoni, P; Ferrari, C; Gadan, M A; Panza, L; Pietrangeli, D; Ricciardi, G; Ristori, S

    2009-12-10

    Boron neutron capture therapy (BNCT) is an anticancer therapy based on the incorporation of (10)B in tumors, followed by neutron irradiation. Recently, the synthesis and delivery of new boronated compounds have been recognized as some of the main challenges in BNCT application. Here, we report on the use of liposomes as carriers for BNCT active compounds. Two carborane derivatives, i.e., o-closocarboranyl beta-lactoside (LCOB) and 1-methyl-o-closocarboranyl-2-hexylthioporphyrazine (H(2)PzCOB), were loaded into liposomes bearing different surface charges. The efficacy of these formulations was tested on model cell cultures, that is, DHD/K12/TRb rat colon carcinoma and B16-F10 murine melanoma. These induce liver and lung metastases, respectively, and are used to study the uptake of standard BNCT drugs, including borophenylalanine (BPA). Boron concentration in treated cells was measured by alpha spectrometry at the TRIGA mark II reactor (University of Pavia). Results showed high performance of the proposed formulations. In particular, the use of cationic liposomes increased the cellular concentration of (10)B by at least 30 times more than that achieved by BPA. PMID:19954249

  7. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV. PMID:26573366

  8. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  9. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    CERN Document Server

    Kumada, H; Matsumura, A; Nakagawa, Y; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, K; Yamamoto, T

    2003-01-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is...

  10. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas

    2011-07-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  11. Noble gas excimer scintillation following neutron capture in boron thin films

    CERN Document Server

    McComb, Jacob C; al-Sheikhly, Mohamed; Thompson, Alan K; Vest, Robert E; Clark, Charles W

    2014-01-01

    Far-ultraviolet (FUV) scintillation signals have been measured in heavy noble gases (argon, krypton, xenon) following boron-neutron capture ($^{10}$B($n,\\alpha$)$^7$Li) in $^{10}$B thin films. The observed scintillation yields are comparable to the yields from some liquid and solid neutron scintillators. At noble gas pressures of 10$^7$ kPa, the number of photons produced per neutron absorbed following irradiation of a 1200 nm thick $^{10}$B film was 14,000 for xenon, 11,000 for krypton, and 6000 for argon. The absolute scintillation yields from the experimental configuration were calculated using data from (1) experimental irradiations, (2) thin-film characterizations, (3) photomultiplier tube calibrations, and (4) photon collection modeling. Both the boron films and the photomultiplier tube were characterized at the National Institute of Standards and Technology. Monte Carlo modeling of the reaction cell provided estimates of the photon collection efficiency and the transport behavior of $^{10}$B($n,\\alpha$...

  12. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC): application for photodynamic therapy and boron neutron capture therapy.

    Science.gov (United States)

    Hiramatsu, Ryo; Kawabata, Shinji; Tanaka, Hiroki; Sakurai, Yoshinori; Suzuki, Minoru; Ono, Koji; Miyatake, Shin-ichi; Kuroiwa, Toshihiko; Hao, Erhong; Vicente, M Graça H

    2015-03-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC's applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm(2) ) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 10(12) n/cm(2) ) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37-43 days).

  13. Boron neutron capture therapy for advanced and/or recurrent cancers in the oral cavity

    International Nuclear Information System (INIS)

    This preliminary study of 5 patients with advanced and/or recurrent cancer in the oral cavity was performed to evaluate the effectiveness of Boron Neutron Capture Therapy (BNCT). The patients received therapy with the 10B-carrier p-boronophenylalanine (BPA) with or without borocaptate sodium (BSH) and irradiation thereafter with epithermal neutrons. All underwent 18F-BPA PET studies before receiving BNCT to determine the accumulation ratios of BPA in tumor and normal tissues. The tumor mass was decreased in size and at minimum a transient partial response was achieved in all cases, though rapid tumor re-growth was observed in 2. Although tentative clinical responses and improvements in quality of life were recognized, obliteration of the tumor was not obtained in any of the cases. Additional studies are required to determine the utility and indication of BNCT for oral cancer. (author)

  14. Study of characteristics for heavy water photoneutron source in boron neutron capture therapy

    CERN Document Server

    Salehi, Danial; Sardari, Dariush

    2013-01-01

    Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Ev...

  15. Determination of boron in biological samples for the needs of neutron capture therapy

    International Nuclear Information System (INIS)

    Monitoring the actual concentration of 10B in a patient's blood is a prerequisite for determining the start and length of patient irradiation. The Prompt Gamma Ray Analysis (PGRA) method enables this nuclide to be determined rapidly and reliably within the region of 1 to 100 ppm. In this method, the characteristic line at 478 keV from the nuclear reaction 10B+n → 7Li+α+γ during sample exposure to thermal neutrons is used to determine boron. The facility which has been built up for this purpose comprises, in particular, a large-volume semiconductor detector for recording gamma rays emerging from the radiative neutron capture on the target

  16. A suggestion for B-10 imaging during boron neutron capture therapy

    CERN Document Server

    Cortesi, M

    2007-01-01

    Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake of B-10 compound. In this work, experimental methods are proposed and evaluated for the determination in vivo of B-10 compound in biological samples, in particular based on neutron radiography and gammaray spectroscopy by telescopic system. Measures and Monte Carlo calculations have been performed to investigate the possibility of executing imaging of the 10B distribution, both by radiography with thermal neutrons, using 6LiF/ZnS:Ag scintillator screen and a CCD camera, and by spectroscopy, based on the revelation of gamm...

  17. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  18. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material FluentalTM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  19. Comparison of the radiobiological effects of Boron neutron capture therapy (BNCT) and conventional Gamma Radiation

    International Nuclear Information System (INIS)

    BNCT is an experimental radiotherapeutic modality that uses the capacity of the isotope 10B to capture thermal neutrons leading to the production of 4He and 7Li, particles with high linear energy transfer (LET). The aim was to evaluate and compare in vitro the mechanisms of response to the radiation arising of BNCT and conventional gamma therapy. We measured the survival cell fraction as a function of the total physical dose and analyzed the expression of p27/Kip1 and p53 by Western blotting in cells of colon cancer (ARO81-1). Exponentially growing cells were distributed into the following groups: 1) BPA (10 ppm 10B) + neutrons; 2) BOPP (10 ppm 10B) + neutrons; 3) neutrons alone; 4) gamma-rays. A control group without irradiation for each treatment was added. The cells were irradiated in the thermal neutron beam of the RA-3 (flux= 7.5 109 n/cm2 sec) or with 60Co (1Gy/min) during different times in order to obtain total physical dose between 1-5 Gy (±10 %). A decrease in the survival fraction as a function of the physical dose was observed for all the treatments. We also observed that neutrons and neutrons + BOPP did not differ significantly and that BPA was the more effective compound. Protein extracts of irradiated cells (3Gy) were isolated to 24 h and 48 h post radiation exposure. The irradiation with neutrons in presence of 10BPA or 10BOPP produced an increase of p53 at 24 h maintain until 48 h. On the contrary, in the groups irradiated with neutrons alone or gamma the peak was observed at 48 hr. The level of expression of p27/Kip1 showed a reduction of this protein in all the groups irradiated with neutrons (neutrons alone or neutrons plus boron compound), being more marked at 24 h. These preliminary results suggest different radiobiological response for high and low let radiation. Future studies will permit establish the role of cell cycle in the tumor radio sensibility to BNCT. (author)

  20. Potential of para-boronophenylalaninol as a boron carrier in boron neutron capture therapy, referring to that of its enantiomers

    International Nuclear Information System (INIS)

    We evaluated the potential of a newly developed 10B-containing alpha-amino alcohol of para-boronophenylalanine-10B (BPA), para-boronophenylalaninol (BPAol), as a boron carrier in boron neutron capture therapy. C57BL mice bearing EL4 tumors and C3H/He mice bearing SCC VII tumors received 5-bromo-2'-deoxyuridine (BrdU) continuously via implanted mini-osmotic pumps to label all proliferating (P) cells. After oral administration of L-BPA or D-BPA, or intraperitoneal injection of L-BPAol or D-BPAol, the tumors were irradiated with reactor thermal neutron beams. For the combination with mild temperature hyperthermia (MTH) and/or tirapazamine (TPZ), the tumors were heated at 40 degrees centigrade for 30 minutes right before neutron exposure, and/or TPZ was intraperitoneally injected 30 minutes before irradiation. The tumors were then excised, minced and trypsinized. The tumor cell suspensions thus obtained were incubated with cytochalasin-B (a cytokinesis blocker), and the micronucleus (MN) frequency in cells without BrdU labeling ( = quiescent (Q) cells) was determined using immunofluorescence staining for BrdU. Meanwhile, 6 hours after irradiation, tumor cell suspensions obtained in the same manner were used for determining the apoptosis frequency in Q cells. The apoptosis and MN frequency in total (P + Q) tumor cells were determined from the tumors that were not pretreated with BrdU. Without TPZ or MTH, L- and D-BPAol increased both frequencies markedly, especially for total cells. Although not significantly, L-BPA and D-BPAol increased both frequencies slightly more remarkably than D-BPA and L-BPAol, respectively. On combined treatment with both MTH and TPZ, the sensitivity difference between total and Q cells was markedly reduced. MTH increased the 10B uptake of all 10B-carriers into both tumor cells to some degree. Both L- and D-BPAol have potential as 10B-carriers in neutron capture therapy, especially when combined with both MTH and TPZ

  1. Dosimetry and dose planning in boron neutron capture therapy : Monte Carlo studies

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H.

    2012-07-01

    Boron neutron capture therapy (BNCT) is a biologically targeted radiotherapy modality. So far, 249 cancer patients have received BNCT at the Finnish Research Reactor 1 (FiR 1) in Finland. The effectiveness and safety of radiotherapy are dependent on the radiation dose delivered to the tumor and healthy tissues, and on the accuracy of the doses. At FiR 1, patient dose calculations are performed with the Monte Carlo (MC) -based treatmentplanning system (TPS), Simulation Environment for Radiotherapy Applications (SERA). Initially, BNCT was applied to head and neck cancer, brain tumors, and malignant melanoma. To evaluate the applicability of the new target tumors for BNCT, calculation dosimetry studies are needed. So far, clinical BNCT has been performed with the neutrons from a nuclear reactor, while an accelerator based neutron sources applicable for hospital operation would be preferable. In this thesis, BNCT patient dose calculation practice in Finland was evaluated against reference calculations and experimental data in several cases. Calculations with two TPSs applied in clinical BNCT were compared. The suitability of the deuterium-deuterium (DD) and deuterium-tritium (D-T) fusion reaction-based compact neutron sources for BNCT were evaluated. In addition, feasibility of BNCT for noninvasive liver tumor treatments was examined. The deviation between SERA and the reference calculations was within 4% in the phantoms studied and in a brain cancer patient model elsewhere, except on the phantom or skin surface, for the boron, nitrogen, and photon dose components. These dose components produce 99% of the tumor dose and > 90% of the healthy tissue dose at points of relevance for treatment at the FiR 1 facility. The reduced voxel cell size ({<=} 0.5 cm) in the SERA edit mesh improved calculation accuracy on the surface. The erratic biased fastneutron run option in SERA led to significant underestimation (up to 30-60%) of the fastneutron dose, while more accurate fast-neutron

  2. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    Science.gov (United States)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  3. In-phantom two-dimensional thermal neutron distribution for intraoperative boron neutron capture therapy of brain tumours

    International Nuclear Information System (INIS)

    The aim of this study was to determine the in-phantom thermal neutron distribution derived from neutron beams for intraoperative boron neutron capture therapy (IOBNCT). Gold activation wires arranged in a cylindrical water phantom with (void-in-phantom) or without (standard phantom) a cylinder styrene form placed inside were irradiated by using the epithermal beam (ENB) and the mixed thermal-epithermal beam (TNB-1) at the Japan Research Reactor No 4. With ENB, we observed a flattened distribution of thermal neutron flux and a significantly enhanced thermal flux delivery at a depth compared with the results of using TNB-1. The thermal neutron distribution derived from both the ENB and TNB-1 was significantly improved in the void-in-phantom, and a double high dose area was formed lateral to the void. The flattened distribution in the circumference of the void was observed with the combination of ENB and the void-in-phantom. The measurement data suggest that the ENB may provide a clinical advantage in the form of an enhanced and flattened dose delivery to the marginal tissue of a post-operative cavity in which a residual and/or microscopically infiltrating tumour often occurs. The combination of the epithermal neutron beam and IOBNCT will improve the clinical results of BNCT for brain tumours. (author)

  4. Accelerator based-boron neutron capture therapy (BNCT)-clinical QA and QC

    International Nuclear Information System (INIS)

    Alpha-particle and recoil Li atom yielded by the reaction (10B, n), due to their high LET properties, efficiently and specifically kill the cancer cell that has incorporated the boron. Efficacy of this boron neutron capture therapy (BNCT) has been demonstrated mainly in the treatment of recurrent head/neck and malignant brain cancers in Kyoto University Research Reactor Institute (KUR). As the clinical trial of BNCT is to start from 2009 based on an accelerator (not on the Reactor), this paper describes the tentative outline of the standard operation procedure of BNCT for its quality assurance (QA) and quality control (QC) along the flow of its clinical practice. Personnel concerned in the practice involve the attending physician, multiple physicians in charge of BNCT, medical physicists, nurses and reactor stuff. The flow order of the actual BNCT is as follows: Pre-therapeutic evaluation mainly including informed consent and confirmation of the prescription; Therapeutic planning including setting of therapy volume, and of irradiation axes followed by meeting for stuffs' agreement, decision of irradiating field in the irradiation room leading to final decision of the axis, CT for the planning, decision of the final therapeutic plan according to Japan Atomic Energy Agency-Computational Dosimetry System (JCDS) and meeting of all related personnel for the final confirmation of therapeutic plan; and BNCT including the transport of patient to KUR, dripping of boronophenylalanine, setting up of the patient on the machine, blood sampling for pharmacokinetics, boron level measurement for decision of irradiating time, switch on/off of the accelerator, confirmation of patient's movement in the irradiated field after the neutron irradiation, blood sampling for confirmation of the boron level, and patient's leave from the room. The QA/QC check is principally to be conducted with the two-person rule. The purpose of the clinical trial is to establish the usefulness of BNCT, and

  5. Relative biological effectiveness of the boron neutron-capture beam for the inactivation of biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masahiro (Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.)

    1993-12-01

    The r.b.e. values of the boron neutron-capture beam (BNCB) for inactivation of yeast alcohol dehydrogenase (YADH) and the coenzyme NADH were determined in aqueous and air-saturated state. The r.b.e. value for YADH was 0.24 at a protein concentration of 0.2 mg/ml and that for NADH at the same concentration was 0.4. These r.b.e. values are less than unity in contrast to the r.b.e. values of BNCB for cell killing and mutagenesis which usually exceed 2. The small r.b.e. values for biological macromolecules is mainly explained from a relatively low yield of the radical species OH and H produced by high LET radiations compared to low LET radiations. Dithiothreitol protected YADH efficiently against inactivation by BNCB. It was suggested that radical repair process is the major cause of the observed radioprotective effect. (author).

  6. FiR 1 Reactor in Service for Boron Neutron Capture Therapy (BNCT) and Isotope Production

    International Nuclear Information System (INIS)

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). Although BNCT dominates the current utilization of the reactor, it also has an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics, etc. with isotope produc- tion and activation analysis services. The whole reactor building has been renovated, creating a dedicated clinical BNCT facility at the reactor. Close to 30 patients have been treated since May 1999, when the licence for patient treatment was granted to the responsible BNCT treatment organization. The treatment organization has a close connection to the Helsinki University Central Hospital. (author)

  7. Boron neutron capture therapy as new treatment for clear cell sarcoma: Trial on different animal model

    International Nuclear Information System (INIS)

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS. - Highlights: • BNCT with the use of L-BPA was applied for three human clear cell sarcoma (CCS) cell lines. • BNCT trial was performed on a newly established intramuscularly CCS-bearing animal model. • A significant decrease of the tumor-volume was seen by single BNCT with the use of L-BPA. • A multiple BNCT application would be required for controlling the growth of any residual tumors

  8. Growth inhibition of human pancreatic cancer grafts in nude mice by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between 10B and thermal neutrons to release alpha-particles (4He) and lithium-7 ions (7Li). The 4He kills cells in the range of 10 μm from the site of 4He generation. Therefore, it is theoretically possible to kill tumor cells without affecting adjacent healthy tissues, if 10B-compounds could be selectively delivered. We have described that 10B atoms delivered by immunoliposomes exerted cytotoxic effect on human pancreatic carcinoma cells (AsPC-1) in a dose-dependent manner by thermal neutron irradiation in vitro as reported previously. In the present study, the cytotoxic effect of a locally injected 10B compound solution or multilamellar liposomes containing a 10B compound to human pancreatic carcinoma xenograft in nude mice was evaluated after thermal neutron irradiation. AsPC-1 cells (1 x 107) injected subcutaneously into a nude mouse grew to a tumor weighing 100-300 mg after 2 weeks. At this time 200 μg 10B compounds was locally injected in the tumor and irradiated with 2 x 1012 n/cm2 thermal neutron. Tumor growth of 10B-treated groups was suppressed as compared with control group. Histopathologically, hyalinization and necrosis were found in the tumor tissues. For effective tumor destruction, 10B dose more than 60 μg was necessary. The tumor tissue injected with saline only and irradiated showed neither destruction nor necrosis. These data indicate that the accumulation of 10B atoms to the tumor site is mandatory for the cytotoxic effect by thermal neutron irradiation. (author)

  9. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsumura, Akira; Yamamoto, Tetsuya; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan); Nakagawa, Yoshinobu [National Sanatorium Kagawa-Children' s Hospital, Kagawa (Japan); Kageji, Teruyoshi [Tokushima Univ., Tokushima (Japan)

    2003-03-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal in the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System which can support to set the patient to an actual irradiation position swiftly and accurately. This report describes basic design of JCDS and functions in several processing, calculation methods, characteristics and performance of JCDS. (author)

  10. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications.

    Science.gov (United States)

    Deagostino, Annamaria; Protti, Nicoletta; Alberti, Diego; Boggio, Paolo; Bortolussi, Silva; Altieri, Saverio; Crich, Simonetta Geninatti

    2016-05-01

    Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome. PMID:27195428

  11. NIFTI and DISCOS: New concepts for a compact accelerator neutron source for boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin (∼ 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs

  12. Antiproliferative effect and apoptosis induction in melanoma treatment by boron neutron capture therapy (BCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, Fernanda; Coelho, Paulo; Arruda-Neto, Joao; Maria, Durvanei [University of Sao Paulo (USP), SP (Brazil)

    2011-07-01

    Full text: Introduction: Boron neutron capture therapy (BNCT) is an experimental radiotherapy where a compound having {sup 10}B is administered to cancer patients and is accumulated in tumor tissues. Thus, the tumor is irradiated with thermal neutrons, {sup 10}B absorbs and destroys them, producing alpha radiation. Boronophenylalanine (BPA) is the agent responsible for delivering boron to the tumor tissue. After BPA administration, BNCT is used as a localized radiotherapy for many tumors treatment, mainly melanoma, which has a high mortality rate among all types of tumors. The aim of this study was to evaluate in vitro antiproliferative and antitumor effects of BNCT application in human melanoma treatment. Materials and Methods: MEWO cells (human melanoma) were cultured and treated with different concentrations of BPA (8.36 to 0.52 mg/ml). After 90 minutes, they were irradiated with thermal neutron flux up to a dose of 8.4 Gy. The parameters analyzed were free radical production, cell cycle progression, cell death signaling pathways, cycling D1, caspase-3 and extracellular matrix synthesis produced, beyond the mitochondrial electric potential analysis. Results: After BNCT treatment, MEWO cells showed an amount of free radical increase about 10 times. Still, there was a significant decrease of cyclin D1, G0/G1 proliferation, synthesis and G2/M cell cycle phases. BNCT induced a mitochondrial electrical potential decrease, as well as fibrillar proteins of extracellular matrix. BNCT had a significant number of dead cell increase, mainly by necrosis. However, BNCT induced phosphorylated caspase 3 increase. Discussion/Conclusion: BNCT induced cell death increase by necrosis, mitochondrial electric potential decrease and free radical production increase. BNCT is cytotoxic to melanoma cells. Besides necrosis, phosphorylated caspase 3 increase was observed, accompanied by a proliferative response decrease regulated by the G1/S checkpoint and matrix extracellular synthesis

  13. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    Science.gov (United States)

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study. PMID:16475772

  14. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels

  15. A novel reactor concept for boron neutron capture therapy: annular low-low power reactor (ALLPR)

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, B.; Levine, S.H. [Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    1998-07-01

    Boron Neutron Capture Therapy (BNC), originally proposed in 50's, has been getting renewed attention over the last {approx}10 years. This is in particular due to its potential for treating deep-seated brain tumors by employing epithermal neutron beams. Large (several MW) research reactors are currently used to obtain epithermal beams for BNCT, but because of cost and licensing issues it is not likely that such high-power reactors can be placed in regular medical centers. This paper describes a novel reactor concept for BNCT devised to overcome this obstacle. The design objective was to produce a beam of epithermal neutrons of sufficient intensity for BNCT at <50 kW using low enriched uranium. It is achieved by the annular reactor design, which is called Annular Low-Low Power Reactor (ALLPR). Preliminary studies using Monte Carlo simulations are summarized in this paper. The ALLPR should be relatively economical to build, and safe and easy to operate. This novel concept may increase the viability of using BNCT in medical centers worldwide. (author)

  16. Gamma/neutron dose evaluation using Fricke gel and alanine gel dosimeters to be applied in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Full text: Radiosurgery is a non-invasive surgery carried out by means of directed beams of ionizing radiation. This procedure was developed since there are many diseases for which conventional surgical treatment can not be applied, due to difficult or vital structures being damaged. Neutron radiation from nuclear reactors is used in a kind of radiosurgery called Boron Neutron Capture Therapy (BNCT) for the treatment of brain tumours which depends on the interaction of slow neutrons with 10B isotope injected in the tumour to produce alpha particles. Gel Dosimetry allows three-dimensional (3D) measurement of absorbed dose in tissueequivalent dosimeter phantoms. The measure technique is based on the transformation of ferrous ions (Fe2+) and ferric ions (Fe3+). The ferric ions concentration can be measured by spectrophotometry technique comparing the two wavelengths, 457 nm band that corresponds to ferrous ions concentration and 588 nm band that corresponds to ferric ions concentration. This work aims to study the gamma/neutron reactor dose relationship to be applied in BNCT using gel dosimeters. The Fricke Xylenol Gel (FXG) and Alanine Gel (AG) gel solutions produced at IPEN using gelatine 300 bloom were mixed with Na2B4O7 salt containing 19,9% of 10B isotope. This solutions were used to evaluate thermal and epithermal neutrons and gamma doses at an irradiation cell on BH3 of the IEA-R1 research reactor of IPEN

  17. Boron determination in biological samples - Intercomparison of three analytical methods to assist development of a treatment protocol for neoplastic diseases of the liver with Boron Neutron Capture Therapy

    OpenAIRE

    Schütz, Christian L.

    2012-01-01

    Die Bor-Neuroneneinfang-Therapie (engl.: Boron Neutron Capture Therapy, BNCT) ist eine indirekte Strahlentherapie, welche durch die gezielte Freisetzung von dicht ionisierender Strahlung Tumorzellen zerstört. Die freigesetzten Ionen sind Spaltfragmente einer Kernreaktion, bei welcher das Isotop 10B ein niederenergetisches (thermisches) Neutron einfängt. Das 10B wird durch ein spezielles Borpräparat in den Tumorzellen angereichert, welches selbst nicht radioaktiv ist. rnAn der Johannes Gutenbe...

  18. Modelling collimator of radial beam port Kartini reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    One of the cancer therapy methods is BNCT (Boron Neutron Capture Therapy). BNCT utilizes neutron nature by 10B deposited on cancer cells. The superiority of BNCT compared to the radiation therapy is the high level of selectivity since its level is within cell. This study was carried out on collimator modelling in radial beam port of reactor Kartini for BNCT. The modelling was conducted by simulation using software of Monte Carlo N-Particle version 5 (MCNP 5). MCNP5 is a package of the programs for both simulating and calculating the problem of particle transport by following the life cycle of a neutron since its birth from fission reaction, transport on materials, until eventually lost due to the absorption reaction or out from the system. The collimator modelling used materials which varied in size in order to generate the value of each of the parameters in accordance with the recommendation of the IAEA, the epithermal neutron flux (ϕepi) > 1.0 x 109n.cm-2s-1, the ratio between the neutron dose rate fast and epithermal neutron flux (Df/ϕepi) < 2.0 x 10-13 Gy.cm2.n-1, the ratio of gamma dose rate and epithermal neutron flux (Dγ/ϕepi) < 2.0 X10-13 Gy.cm2.n-1, the ratio between the thermal and epithermal neutron flux (ϕTh/ϕepi)< 0.05 and the ratio between the current and flux of the epithermal neutron (J/ϕepi) > 0.7. Based on the results of the optimization of the modeling, the materials and sizes of the collimator construction obtained were 0.75 cm Ni as collimator wall, 22 cm Al as a moderator and 4.5 cm Bi as a gamma shield. The outputs of the radiation beam generated from collimator modeling of the radial beam port were ϕepi = 5.25 x 106 n.cm-2.s-1, Df/ϕepi = 1.17 x 10-13Gy.cm2.n-1, Dγ/ϕepi = 1.70 x 10-12 Gy.cm2.n-1, ϕTh/ϕepi = 1.51 and J/ϕepi = 0.731. Based on this study, the result of the beam radiation coming out of the radial beam port dis not fully meet the criteria recommended by IAEA so need to continue this study to get the criteria of IAEA

  19. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations

  20. Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer

    International Nuclear Information System (INIS)

    We retrospectively review outcomes of applying boron neutron capture therapy (BNCT) to unresectable advanced or recurrent head and neck cancers. Patients who were treated with BNCT for either local recurrent or newly diagnosed unresectable head or neck cancers between December 2001 and September 2007 were included. Clinicopathological characteristics and clinical outcomes were retrieved from hospital records. Either a combination of borocaptate sodium and boronophenylalanine (BPA) or BPA alone were used as boron compounds. In all the treatment cases, the dose constraint was set to deliver a dose <10–12 Gy-eq to the skin or oral mucosa. There was a patient cohort of 62, with a median follow-up of 18.7 months (range, 0.7–40.8). A total of 87 BNCT procedures were performed. The overall response rate was 58% within 6 months after BNCT. The median survival time was 10.1 months from the time of BNCT. The 1- and 2-year overall survival (OS) rates were 43.1% and 24.2%, respectively. The major acute Grade 3 or 4 toxicities were hyperamylasemia (38.6%), fatigue (6.5%), mucositis/stomatitis (9.7%) and pain (9.7%), all of which were manageable. Three patients died of treatment-related toxicity. Three patients experienced carotid artery hemorrhage, two of whom had coexistent infection of the carotid artery. This study confirmed the feasibility of our dose-estimation method and that controlled trials are warranted. (author)

  1. Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats Introduction: Boron Neutron Capture Therapy (BNCT) is based on selective tumor uptake of boron compounds, followed by neutron irradiation. BNCT was proposed for the treatment of unresectable, diffuse lung metastases. The aim of the present study was to perform BNCT studies in an experimental model of lung metastases. Materials and Methods: 3 x 106/0.5 ml colon carcinoma cells (DHD/K12/TRb) were injected iv in syngeneic BDIX rats. Three weeks post-inoculation, rats with diffuse lung metastases were used for in vivo BNCT studies in the RA-3 Nuclear Reactor. Based on previous biodistribution studies and computational dosimetry with Monte Carlo simulation, 2 doses were prescribed, i.e. 4 Gy and 8 Gy minimum absorbed dose to tumor. The animals were assigned to 5 experimental groups (n= 4 to 8) at each dose level: T0 (euthanized pre-treatment), BPA-BNCT, Comb-BNCT (BPA+GB-10), Beam only (background dose) and Sham (same manipulation, no treatment). Boron concentration was measured in a blood sample taken pre-irradiation to verify that the value was in the range established in previous biodistribution studies. The animals were followed clinically for 2 weeks after neutron irradiation and then euthanized to assess the response of tumor and normal lung, macroscopically and histologically. To date we have evaluated the end-point weight of lung (normal lung + metastases) and % lung weight/body weight as an indicator of tumor growth. Results: The statistical analysis (ANOVA) of % lung weight/body weight showed statistically significant differences (p<0.05) between groups T0 (0.79 ± 0.38) and Sham (1.87 ± 0.91). No statistically significant differences were observed between the Beam only groups (at both dose levels) and Sham. Similar and statistically significant tumor control was induced in the groups BPA-BNCT Low dose (LD) (0.56 ± 0.11), BPA-BNCT High dose (HD) (0.80 ± 0.16), Comb

  2. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    The resulting neutron captures in 10B are used for radiation therapy. The occurrence point of the characteristic 478 keV prompt gamma rays agrees with the neutron capture point. If these prompt gamma rays are detected by external instruments such as a gamma camera or single photon emission computed tomography (SPECT), the therapy region can be monitored during the treatment using images. A feasibility study and analysis of a reconstructed image using many projections (128) were conducted. The optimization of the detection system and a detailed neutron generator simulation were beyond the scope of this study. The possibility of extracting a 3D BNCT-SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The quality of the prompt gamma ray SPECT image obtained from BNCT was evaluated quantitatively using three different boron uptake regions and was shown to depend on the location and size relations. The prospects for obtaining an actual BNCT-SPECT image were also estimated from the quality of the simulated image and the simulation conditions. When multi tumor regions should be treated using the BNCT method, a reasonable model to determine how many useful images can be obtained from SPECT can be provided to the BNCT facilities based on the preceding imaging research. However, because the scope of this research was limited to checking the feasibility of 3D BNCT-SPECT image reconstruction using multiple projections, along with an evaluation of the image, some simulation conditions were taken from previous studies. In the future, a simulation will be conducted that includes optimized conditions for an actual BNCT facility, along with an imaging process for motion correction in BNCT. Although an excessively long simulation time was required to obtain enough events for image reconstruction, the feasibility of acquiring a 3D BNCT-SPECT image using multiple projections was confirmed using a Monte Carlo simulation, and a quantitative image analysis was

  3. Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

    Science.gov (United States)

    Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro

    2015-01-01

    MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.

  4. Three-dimensional radiation dose distribution analysis for boron neutron capture therapy

    International Nuclear Information System (INIS)

    This paper reports that calculation of physically realistic radiation dose distributions for boron neutron capture therapy (BNCT) is a complex, three-dimensional problem. Traditional one-dimensional (slab) and two-dimensional (cylindrical) models, while useful for neutron beam design and performance analysis, do not provide sufficient accuracy for actual clinical use because the assumed symmetries inherent in such models do not ordinarily exist in the real world. Fortunately, however, it is no longer necessary to make these types of simplifying assumptions. Recent dramatic advances in computing technology have brought full three-dimensional dose distribution calculations for BNCT into the realm of practicality for a wide variety of routine applications. Once a geometric model and the appropriate material compositions have been determined, either stochastic (Monte Carlo) or deterministic calculations of all dose components of interest can now be performed more rapidly and inexpensively for the true three-dimensional geometries typical of actual clinical applications of BNCT. Demonstrations of both Monte Carlo and Deterministic techniques for performing three-dimensional dose distribution analysis for BNCT are provided. Calculated results are presented for a three-dimensional Lucite canine-head phantom irradiated in the epithermal neutron beam available at the Brookhaven Medical Research Reactor. The deterministic calculations are performed using the three-dimensional discrete ordinates method. The Monte Carlo calculations employ a novel method for obtaining spatially detailed radiation flux and dose distributions without the use of flux-at-a-point estimators. The calculated results are in good agreement with each other and with thermal neutron flux measurements taken using copper-gold flux wires placed at various locations in the phantom

  5. Investigation of current status in Europe and USA on boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report describes on the spot investigation results of current status of medical irradiation in Europe and USA at Feb. 1999. In HFR (Netherlands), the phase 1 study with the Joint Research Centre (JRC) of the EU had been already finished in those days, at the same time, an improvement of medical irradiation field of VTT(Finland) had been finishing and then clinical trial research had been about to start. On the other hand, phase 1 studies by two groups of BNL (Brook heaven National Laboratory) and MIT (Nuclear Engineering of Massachusetts Institute of Technology) in US were now in almost final stage, and they would start on phase 2 study. Either reactors of MIT and BNL were in modification to increase neutron flux, especially that employing fission converter into the irradiation facility and installation of irradiation room were carrying out in the former. In Europe and USA, the accelerator-based BNCT planes are now in progress vigorously, and will have reality. A reform of dynamitron accelerator at University of Birmingham was progressed, and the clinical treatment would be started from September 2000. The accelerator group at MIT has a small type of tandem accelerator, and they were performing basic experiment for BNCS (Boron Neutron Capture Synovectomy) with this accelerator. The concept design for an accelerator and a moderator had been finished at Lawrence Berkeley National Laboratory and University of Berkeley. (author)

  6. Investigation of current status in Europe and USA on boron neutron capture therapy

    International Nuclear Information System (INIS)

    This report describes on the spot investigation results of current status of medical irradiation in Europe and USA at Feb. 1999. In HFR (Netherlands), the phase 1 study with the Joint Research Centre (JRC) of the EU had been already finished in those days, at the same time, an improvement of medical irradiation field of VTT(Finland) had been finishing and then clinical trial research had been about to start. On the other hand, phase 1 studies by two groups of BNL (Brook heaven National Laboratory) and MIT (Nuclear Engineering of Massachusetts Institute of Technology) in US were now in almost final stage, and they would start on phase 2 study. Either reactors of MIT and BNL were in modification to increase neutron flux, especially that employing fission converter into the irradiation facility and installation of irradiation room were carrying out in the former. In Europe and USA, the accelerator-based BNCT planes are now in progress vigorously, and will have reality. A reform of dynamitron accelerator at University of Birmingham was progressed, and the clinical treatment would be started from September 2000. The accelerator group at MIT has a small type of tandem accelerator, and they were performing basic experiment for BNCS (Boron Neutron Capture Synovectomy) with this accelerator. The concept design for an accelerator and a moderator had been finished at Lawrence Berkeley National Laboratory and University of Berkeley. (author)

  7. Characteristics of a heavy water photoneutron source in boron neutron capture therapy

    Institute of Scientific and Technical Information of China (English)

    Danial Salehi; Dariush Sardari; M.Salehi Jozani

    2013-01-01

    Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors.Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head,patient's body,and treatment room ambient.Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons,the energy spectrum of which shows an end point equal to the electron beam energy.By varying the target thickness,an optimum thickness exists for which,at the given electron energy,maximum photon flux is achievable.If a source of high-energy photons i.e.bremsstrahlung,is conveniently directed to a suitable D2O target,a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible.This study consists of two parts.1.Comparison and assessment of deuterium photonuclear cross section data.2.Evaluation of the heavy water photonuclear source.

  8. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  9. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    International Nuclear Information System (INIS)

    The cytotoxic effects of locally injected 10B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with 10B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in 10B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of 10B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin (10B-PEG-BSA). 10B concentrations in AsPC-1, human pancreatic cancer cells (2 x 105 /well) obtained 24 hrs after incubation with 10B-PEG-BSA was 13.01 ± 1.74 ppm. The number of 10B atoms delivered to the tumor cells was calculated to be 7.83 x 1011 at 24 hrs after incubation with 10B-PEG-BSA. These data indicated that the 10B-PEG-BSA could deliver a sufficient amount of 10B atoms (more than 109 atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of 10B-PEG BSA or 10B-cationic liposome. We had demonstrated the 10B-PEG BSA or 10B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  10. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu [Tokyo Univ. (Japan). Inst. of Medical Science

    1997-02-01

    The cytotoxic effects of locally injected {sup 10}B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with {sup 10}B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in {sup 10}B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of {sup 10}B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin ({sup 10}B-PEG-BSA). {sup 10}B concentrations in AsPC-1, human pancreatic cancer cells (2 x 10{sup 5} /well) obtained 24 hrs after incubation with {sup 10}B-PEG-BSA was 13.01 {+-} 1.74 ppm. The number of {sup 10}B atoms delivered to the tumor cells was calculated to be 7.83 x 10{sup 11} at 24 hrs after incubation with {sup 10}B-PEG-BSA. These data indicated that the {sup 10}B-PEG-BSA could deliver a sufficient amount of {sup 10}B atoms (more than 10{sup 9} atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of {sup 10}B-PEG BSA or {sup 10}B-cationic liposome. We had demonstrated the {sup 10}B-PEG BSA or {sup 10}B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  11. Design of a plate type fuel based - low power medical reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    The interest in the boron neutron capture therapy (BNCT) has been renewed for cancer therapy with some indication of its potential efficacy in recent years. To solve the most important problem that thermal neutrons are attenuated rapidly in tissue due to absorption and scattering, thermal neutron beams are replaced by epithermal neutron beams. Thus, epithermal neutron beams are directed towards a patient's head, during their passage through tissue these neutrons rapidly lose energy by elastic scattering until they end up as thermal neutrons in target tumor volume. The thermal neutrons thus formed, are captured by the 10B atoms which become 11B atoms in the excited state for a very short time 10-12 sec. The 11B atoms then decay producing alpha particles, 7Li recoil nuclei and gamma rays. Tumor cells are killed selectively by the energetic alpha particles and 7Li fission products. We propose a 300kW slab type reactor core having thin and large surface areas so that most of the neutrons emerging from the faces and entering moderator region are fission spectrum neutrons to acquire high intense epithermal neutron beam with high quality. All faces of the slab core, East-West region and North-South region, were considered for epithermal neutron beam collimators. Plate-type U3Si2-Al dispersion fuel having high uranium density is very compatible with composing of a slab type core. The reactor core is loaded with 3.89kg U235 and has the dimension of about 23.46cm width, 31.28cm length and 64.8cm height, with 216 locations to place 204 fuel elements, eight control plates and four safety plates. The general-purpose MCNP 4B code was used to carry out the neutron and photon transport computations. Both keff criticality and fixed source problems were computed. We could reduce at least 7 times long computer time (105 to 140 h in a run) needed to initiate enough neutrons in a run ( 6000 to 8000 cycles in a run with 3000 neutrons per cycle) using the PVM (Parallel Virtual

  12. Dosimetric analysis of BNCT - Boron Neutron Capture Therapy - coupled to 252Cf brachytherapy

    International Nuclear Information System (INIS)

    The incidence of brain tumors is increasing in world population; however, the treatments employed in this type of tumor have a high rate of failure and in some cases have been considered palliative, depending on histology and staging of tumor. Its necessary to achieve the control tumor dose without the spread irradiation cause damage in the brain, affecting patient neurological function. Stereotactic radiosurgery is a technique that achieves this; nevertheless, other techniques that can be used on the brain tumor control must be developed, in order to guarantee lower dose on health surroundings tissues other techniques must be developing. The 252Cf brachytherapy applied to brain tumors has already been suggested, showing promising results in comparison to photon source, since the active source is placed into the tumor, providing greater dose deposition, while more distant regions are spared. BNCT - Boron Neutron Capture Therapy - is another technique that is in developing to brain tumors control, showing theoretical superiority on the rules of conventional treatments, due to a selective irradiation of neoplasics cells, after the patient receives a borate compound infusion and be subjected to a epithermal neutrons beam. This work presents dosimetric studies of the coupling techniques: BNCT with 252Cf brachytherapy, conducted through computer simulation in MCNP5 code, using a precise and well discretized voxel model of human head, which was incorporated a representative Glioblastoma Multiform tumor. The dosimetric results from MCNP5 code were exported to SISCODES program, which generated isodose curves representing absorbed dose rate in the brain. Isodose curves, neutron fluency, and dose components from BNCT and 252Cf brachytherapy are presented in this paper. (author)

  13. Simultaneous Observation of Cells and Nuclear Tracks from the Boron Neutron Capture Reaction by UV-C Sensitization of Polycarbonate.

    Science.gov (United States)

    Portu, Agustina; Rossini, Andrés Eugenio; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Granell, Pablo; Golmar, Federico; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2015-08-01

    The distribution of boron in tissue samples coming from boron neutron capture therapy protocols can be determined through the analysis of its autoradiography image on a nuclear track detector. A more precise knowledge of boron atom location on the microscopic scale can be attained by the observation of nuclear tracks superimposed on the sample image on the detector. A method to produce an "imprint" of cells cultivated on a polycarbonate detector was developed, based on the photodegradation properties of UV-C radiation on this material. Optimal conditions to generate an appropriate monolayer of Mel-J cells incubated with boronophenylalanine were found. The best images of both cells and nuclear tracks were obtained for a neutron fluence of 1013 cm-2, 6 h UV-C (254 nm) exposure, and 4 min etching time with a KOH solution. The imprint morphology was analyzed by both light and scanning electron microscopy. Similar samples, exposed to UV-A (360 nm) revealed no cellular imprinting. Etch pits were present only inside the cell imprints, indicating a preferential boron uptake (about threefold the incubation concentration). Comparative studies of boron absorption in different cell lines and in vitro evaluation of the effect of diverse boron compounds are feasible with this methodology. PMID:26155721

  14. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  15. Conceptual study of a compact accelerator-driven neutron source for radioisotope production, boron neutron capture therapy and fast neutron therapy

    CERN Document Server

    Angelone, M; Rollet, S

    2002-01-01

    The feasibility of a compact accelerator-driven device for the generation of neutron spectra suitable for isotope production by neutron capture, boron neutron capture therapy and fast neutron therapy, is analyzed by Monte Carlo simulations. The device is essentially an extension of the activator proposed by Rubbia left bracket CERN/LHC/97-04(EET) right bracket , in which fast neutrons are diffused and moderated within a properly sized lead block. It is shown that by suitable design of the lead block, as well as of additional elements of moderating and shielding materials, one can generate and exploit neutron fluxes with the spectral features required for the above applications. The linear dimensions of the diffusing-moderating device can be limited to about 1 m. A full-scale device for all the above applications would require a fast neutron source of about 10**1**4 s**-**1, which could be produced by a 1 mA, 30 MeV proton beam impinging on a Be target. The concept could be tested at the Frascati Neutron Gener...

  16. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  17. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira [Kyoto University Research Reactor Institute, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  18. Indication and possibility of boron neutron capture therapy in head and neck cancer

    International Nuclear Information System (INIS)

    Background: Boron neutron capture therapy (BNCT) is a targeted type of radiotherapy that has a number of significant advantages over conventional external beam photon irradiation, especially in that radiation can be selectively delivered to tumor cells. We had, first in the world, treated with BNCT for a patient with recurrent head and neck cancer (HNC) in 2001. Methods : From December, 2001 to February, 2013, we had treated 37 patients with recurrent HNC by means of 54 applications of BNCT at Kyoto University Research Reactor Institute (KURRI) and Japan Atomic Energy Agency (JAEA). All of them had received standard therapy and subsequently developed recurrent disease for which there were no other treatment options. Results : All of the (1) Regression rates were complete response (CR) : 19 patients (51%), partial response (PR) : 14(38%), progressive disease (PD) : 3(8%), and not evaluated (NE) : 1(3%) patient. (2) The overall patient response rate was 91%, though all the patients had advanced disease. The 4-year and 7-year OS rates were 42% and 36%, respectively. (3) BNCT improved quality of life (QOL), performance status (PS) and survival times. (4) The primary adverse events were brain necrosis, osteomyelitis and transient mucositis and alopecia. Conclusions : Our results indicate that we could make sure that safety and effectiveness of BNCT, and BNCT represents a new and promising treatment modality in patients for whom there are no other treatment options. (author)

  19. Boron neutron capture therapy for advanced salivary gland carcinoma in head and neck

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a among the radiation treatments known to have a selective lethal effect on tumor cells. This study summarizes the tumor responses and the acute and late adverse effects of BNCT in the treatment of patients with both recurrent and newly diagnosed T4 salivary gland carcinoma. Two patients with recurrent cancer and 3 with newly diagnosed T4 advanced malignancy were registered between October 2003 and September 2007, with the approval of the medical ethics committees of Kawasaki Medical School and Kyoto University. BNCT was performed, in a single fraction using an epithermal beam, at Japan Research Reactor 4. All patients achieved a complete response within 6 months of treatment. The median duration of the complete response was 24.0 months; the median overall survival time was 32.0 months. Three of the 5 patients are still alive; the other 2 died of distant metastatic disease. Open biopsy of the parotid gland after BNCT was performed in 1 patient and revealed no residual viable cancer cells and no serious damage to the normal glandular system. Although mild alopecia, xerostomia, and fatigue occurred in all patients, there were no severe adverse effects of grade 3 or greater. Our preliminary results demonstrate that BNCT is a potential curative therapy for patients with salivary gland carcinoma. The treatment does not cause any serious adverse effects, and may be used regardless of whether the primary tumor has been previously treated. (author)

  20. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Itsuro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan)], E-mail: katoitsu@dent.osaka-u.ac.jp; Fujita, Yusei [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Maruhashi, Akira [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Kumada, Hiroaki [Japan Atomic Energy Agency, Tokai Research and Development Center, Ibaraki (Japan); Ohmae, Masatoshi [Department of Oral and Maxillofacial Surgery, Izimisano Municipal Hospital, Rinku General Hospital, Izumisano, Osaka (Japan); Kirihata, Mitsunori [Graduate School of Environment and Life Science, Osaka prefectural University, Osaka (Japan); Imahori, Yoshio [Department of Neurosurgery, Kyoto Prefectural University, Kyoto (Japan); CEO of Cancer Intelligence Care Systems, Inc., Tokyo (Japan); Suzuki, Minoru [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Sakrai, Yoshinori [Graduate School of Medicine, Sapporo Medical University of Medicine, Hokkaido (Japan); Sumi, Tetsuro; Iwai, Soichi; Nakazawa, Mitsuhiro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University (Japan); Ono, Koji [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan)

    2009-07-15

    It is necessary to explore new treatments for recurrent head and neck malignancies (HNM) to avoid severe impairment of oro-facial structures and functions. Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. We have treated with BNCT 42 times for 26 patients (19 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results of (1) {sup 10}B concentration of tumor/normal tissue ratios (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 12 cases, PR: 10 cases, PD: 3 cases NE (not evaluated): 1 case. Response rate was 85%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-72 months (mean: 13.6 months). Six-year survival rate was 24% by Kaplan-Meier analysis. (5) Adverse-events were transient mucositis and alopecia in most of the cases; three osteomyelitis and one brain necrosis were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM.

  1. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  2. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    International Nuclear Information System (INIS)

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models

  3. The radiobiology of boron neutron capture therapy: Are ''photon-equivalent'' doses really photon-equivalent?

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) produces a mixture of radiation dose components. The high-linear energy transfer (LET) particles are more damaging in tissue than equal doses of low-LET radiation. Each of the high-LET components can multiplied by an experimentally determined factor to adjust for the increased biological effectiveness and the resulting sum expressed in photon-equivalent units (Gy-Eq). BNCT doses in photon-equivalent units are based on a number of assumptions. It may be possible to test the validity of these assumptions and the accuracy of the calculated BNCT doses by 1) comparing the effects of BNCT in other animal or biological models where the effects of photon radiation are known, or 2) if there are endpoints reached in the BNCT dose escalation clinical trials that can be related to the known response to photons of the tissue in question. The calculated Gy-Eq BNCT doses delivered to dogs and to humans with BPA and the epithermal neutron beam of the Brookhaven Medical Research Reactor were compared to expected responses to photon irradiation. The data indicate that Gy-Eq doses in brain may be underestimated. Doses to skin are consistent with the expected response to photons. Gy-Eq doses to tumor are significantly overestimated. A model system of cells in culture irradiated at various depths in a lucite phantom using the epithermal beam is under development. Preliminary data indicate that this approach can be used to detect differences in the relative biological effectiveness of the beam. The rat 9L gliosarcoma cell survival data was converted to photon-equivalent doses using the same factors assumed in the clinical studies. The results superimposed on the survival curve derived from irradiation with Cs-137 photons indicating the potential utility of this model system. (author)

  4. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  5. In-phantom dosimetry using the 13C(d,n)14N reaction for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    The use of the 13 C(d,n)14 N reaction at Ed =1.5 MeV for accelerator-based boron neutron capture therapy is investigated. The 13 C(d,n)14 N reaction presents the advantages of carbon as a target material and its large cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications. The resulting neutron spectra were evaluated in terms of RBE-dose rates at different depths inside a water-filled brain phantom using a heavy water moderator and lead reflector assembly. All results were simulated using the code MCNP. (author)

  6. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer.

    Science.gov (United States)

    Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji

    2012-08-29

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials

  7. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  8. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical

  9. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P. de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  10. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    Science.gov (United States)

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance. PMID:27467416

  11. The combined effect of electroporation and borocaptate in boron neutron capture therapy for murine solid tumors

    International Nuclear Information System (INIS)

    10B-Enriched borocaptate (BSH) was administered intraperitoneally to SCCVII tumor-bearing C3H/He mice. Electroporation (EP) was conducted by using a tweezers-type electrode. The 10B contents in tumors were measured by prompt γ-ray spectrometry. The colony formation assay was applied to investigate the antitumor effects of boron neutron capture therapy (BNCT) and thereby to estimate the intratumor localization of BSH. The 10B concentrations in tumors decreased with time following BSH administration, falling to 5.4(±0.1) ppm at 3 h, whereas EP treatment (3 repetitions) 15 min after BSH injection delayed the clearance of BSH from tumors, and the 10B level remained at 19.4(±0.9) ppm at 3 h. The effect of BNCT increased with the 10B concentration in tumors, and the combination with EP showed a remarkably large cell killing effect even at 3 h after BSH injection. The effect of BNCT, i.e., slope coefficient of the cell survival curve of tumors, without EP was proportional to tumor 10B level (r=0.982), and that of BSH-BNCT combined with EP lay close to the same correlation line. However, tumors subjected to EP after BSH injection did not show high radiosensitivity when irradiated after conversion to a single cell suspension by enzymatic digestion. This indicates that the increase of the BNCT effect by EP was a consequence of enclosure of BSH in the interstitial space of tumor tissue and not within tumor cells. This is different from a previous in vitro study. The combination of EP and BNCT may be clinically useful, if a procedure to limit EP to the tumor region becomes available or if an alternative similar method is employed. (author)

  12. The relationship between boron neutron capture therapy (BNCT) and positron emission tomography (PET) for malignant brain tumors

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a particle irradiation therapy that is theoretically available for selective radiation of tumor cells. Boronophenylalanine-positron emission tomography (18F-BPA-PET) was used in this study. Boron is used as a tracer compound for the neutron capture reaction and has been particularly useful for the recent noncraniotomy BNCT. In this report, we introduce this type of PET as a principal axis in BNCT and relationship with PET. We calculated the drug accumulation to the tumor before neutron irradiation to individualize the treatment. We decided the indication for BNCT on the basis of a PET study and are now expanding the indications to other systemic cancers, including head and neck, lung, and liver cancers. In addition, other irradiation modalities have developed a radiation plan on the basis of a PET study, and several studies attempted improving the results; however, the lesion is exposed to high radiation doses and appear as high accumulation on BPA-PET during BNCT. We determined the neutron exposure time from the dosage for normal tissue in the actual treatment, but the lesion/normal tissue ratio obtained from BPA-PET is for evaluating the tumor dose and following the treatment plan. We also found that a PET study was useful in the follow-up stage to aid in diagnosis of pathologic conditions such as increase in tumor volume, recurrence, or radiation necrosis and for patients who had already been treated for malignant brain tumor. (author)

  13. Dynamic infrared imaging of the skin reaction in melanoma patients treated with boron neutron capture therapy

    International Nuclear Information System (INIS)

    As part of the Boron Neutron Capture Therapy (BNCT) project conducted jointly by the Comision Nacional de Energia Atomica and the oncology institute A. Roffo, Argentina, we have recently started a program designed to investigate the ability of dynamic infrared imaging for following-up our cutaneous melanoma patients. BNCT offers a unique opportunity to study the response of the integumentary system to single fractions and high doses of neutrons and heavy ions, providing information that could be potentially important in radiation accidents for people exposed to these kinds of radiation fields. Medical infrared thermography is a non-invasive and functional imaging method, that provides information on the normal and abnormal status and response of the nervous and vascular systems, as well as the local metabolic rate and inflammatory processes that appear as differences in the skin infrared emission. Although it is highly sensitive, it is unspecific, like other conventional imaging techniques. For this reason, infrared thermography must be employed as an adjunct method to other diagnostic procedures and the clinical observation. An infrared camera is employed, with an uncooled ferroelectric focal plane array of 320x240 detector elements, providing a video signal of the infrared emission in the 8-14 μm wavelength band. After patient preparation and acclimation, a basal study of the irradiated region is performed, including high and low dose areas, as well as normal and tumor tissues, and eventually other detectable structures (e.g. scars and veins). Thereafter, a provocation test (a cold stimulus) is applied and the temperature recovery is registered as a function of time. In addition, a 3D computational dosimetry of the irradiated region is performed, which allows a complete representation of the isodose contours mapped onto the 3D reconstruction representing the skin. This reconstruction permits selecting regions of different doses for studying the local response

  14. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    International Nuclear Information System (INIS)

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  15. Dosimetry and stability studies of the boron neutron capture therapy agent F-BPA-Fr using PET and MRI

    Science.gov (United States)

    Dyke, Jonathan Paul

    The treatment of deep seated brain tumors such as glioblastoma Multiforme has been unsuccessful for many patients. Surgical debulking, chemotherapy and standard radiotherapy have met with limited success. Boron neutron capture therapy offers a binary mode brachytherapy based on the following capture reaction that may provide an innovative alternative to standard forms of treatment:10B + n /to/ 11B /to 7Li + 4He + 2.31 MeVBoron is chemically attached to a tumor binding compound creating a non-toxic neutron absorber. A dose of epithermal neutrons provides the catalyst to produce the lithium and alpha particles which destroy any tissue within a length of one cell diameter from the boron compound. This dissertation uses 19F-MRI and 18F-PET to provide answers to the localization and biodistribution questions that arise in such a treatment modality. Practical patient dosimetry and actual treatment planning using the PET data is also examined. Finally, theoretical work done in the areas of compartmental modelling dealing with pharmacokinetic uptake of the PET radiotracer and dose analysis in microdosimetry is also presented.

  16. Sodium borocaptate (BSH) for Boron Neutron Capture Therapy (BNCT) in the hamster cheek pouch oral cancer model: boron biodistribution at 9 post administration time-points

    International Nuclear Information System (INIS)

    The therapeutic success of Boron Neutron Capture Therapy (BNCT) depends centrally on boron concentration in tumor and healthy tissue. We previously demonstrated the therapeutic efficacy of boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) as boron carriers for BNCT in the hamster cheek pouch oral cancer model. Given the clinical relevance of sodium mercaptoundecahydro-closo-dodecaborate (BSH) as a boron carrier, the aim of the present study was to expand the ongoing BSH biodistribution studies in the hamster cheek pouch oral cancer model. In particular, we studied 3 additional post-administration time-points and increased the sample size corresponding to the time-points evaluated previously, to select more accurately the post-administration time at which neutron irradiation would potentially confer the greatest therapeutic advantage. BSH was dissolved in saline solution in anaerobic conditions to avoid the formation of the dimer BSSB and its oxides which are toxic. The solution was injected intravenously at a dose of 50 mg 10 B/kg (88 mg BSH / kg). Different groups of animals were killed humanely at 7, 8, and 10 h after administration of BSH. The sample size corresponding to the time-points 3, 4, 6, 9 and 12 h was increased. Samples of blood, tumor, precancerous tissue, normal pouch tissue, cheek mucosa, parotid gland, palate, skin, tongue, spinal cord marrow, brain, liver, kidney, spleen and lung were processed for boron measurement by Optic Emission Spectroscopy (ICP-OES). Boron concentration in tumor peaked to 24-34 ppm, 3-10 h post-administration of BSH, with a spread in values that resembled that previously reported in other experimental models and human subjects. The boron concentration ratios tumor/normal pouch tissue and tumor/blood ranged from 1.3 to 1.8. No selective tumor uptake was observed at any of the time points evaluated. The times post-administration of BSH that would be therapeutically most useful would be 5, 7 and 9 h. The

  17. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples

    International Nuclear Information System (INIS)

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. (orig.)

  18. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    Science.gov (United States)

    Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

  19. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, C.L. [University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Johannes Gutenberg-University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Brochhausen, C. [University of Mainz, Institute of Pathology, Mainz (Germany); Hampel, G.; Iffland, D.; Schmitz, T.; Stieghorst, C.; Kratz, J.V. [University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Kuczewski, B. [Regional Council Darmstadt, Darmstadt (Germany); Otto, G. [University of Mainz, Department of Hepatobiliary, Pancreatic and Transplantation Surgery, Mainz (Germany)

    2012-10-15

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. (orig.)

  20. Boron neutron capture therapy for undifferentiated thyroid carcinoma: preliminary results with the combined use of BPA and BOPP

    Energy Technology Data Exchange (ETDEWEB)

    Viaggi, M. E-mail: viaggi@cnea.gov.ar; Dagrosa, M.A.; Longhino, J.; Blaumann, H.; Calzetta, O.; Kahl, S.B.; Juvenal, G.J.; Pisarev, M.A

    2004-11-01

    We have shown the selective uptake of borophenylalanine (BPA) by undifferentiated human thyroid cancer (UTC) ARO cells both in vitro and in vivo. Moreover, a 50% histologic cure of mice bearing the tumor was observed when the complete boron neutron capture therapy was applied. More recently we have analyzed the biodistribution of BOPP (tetrakis-carborane carboxylate ester of 2,4-bis-({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX) and showed that when BOPP was injected 5 days before BPA, and the animals were sacrificed 60 min after the i.p. injection of BPA, a significant increase in boron uptake by the tumor was found (38-45 ppm with both compounds vs. 20 ppm with BPA alone). Five days post the i.p BOPP injection and 1 h after BPA the ratios were: tumor/blood 3.75; tumor/distal skin 2. Other important ratios were tumor/thyroid 6.65 and tumor/lung 3.8. The present studies were performed in mice transplanted with ARO cells and injected with BOPP and BPA. Only in mice treated with the neutron beam and injected with the boronated compounds we observed a 100% control of tumor growth. Two groups of mice received different total absorbed doses: 3.00 and 6.01 Gy, but no further improvement in the outcome was found compared to the previous results using BPA alone (4.3 Gy)

  1. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    This reaction can be applied to the therapy and diagnosis about the tumor simultaneously. After the compound labeled with the boron is accumulated at the tumor site, the alpha particle induced by the reaction between the thermal neutron and the boron induces tumor cell death. Also, the 478 keV prompt gamma ray is emitted from the same reaction point. If this single prompt photon is detected by single photon emission computed tomography (SPECT), the tomographic image of the therapy region can be monitored during the radiation treatment. However, in order to confirm the therapy region using the image during the treatment, the image needs to be provided promptly. Due to a relatively long acquisition time required to get SPECT images, both reduced number of projections and the fast image reconstruction schemes are needed to provide the images during radiation treatment. The computation time for image reconstruction using the GPU with the modified OSEM algorithm was measured and compared with the computation time using CPU. Through the results, we confirmed the feasibility of the image reconstruction for prompt gamma ray image using GPU for the BNCT. In the further study, the development of the algorithm for faster reconstruction of the prompt gamma ray image during the BNCT using the GPU computation will be conducted. Also, the analysis of the target to background level about the reconstructed image will be performed using the extracted image profile

  2. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk [College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of)

    2015-05-15

    This reaction can be applied to the therapy and diagnosis about the tumor simultaneously. After the compound labeled with the boron is accumulated at the tumor site, the alpha particle induced by the reaction between the thermal neutron and the boron induces tumor cell death. Also, the 478 keV prompt gamma ray is emitted from the same reaction point. If this single prompt photon is detected by single photon emission computed tomography (SPECT), the tomographic image of the therapy region can be monitored during the radiation treatment. However, in order to confirm the therapy region using the image during the treatment, the image needs to be provided promptly. Due to a relatively long acquisition time required to get SPECT images, both reduced number of projections and the fast image reconstruction schemes are needed to provide the images during radiation treatment. The computation time for image reconstruction using the GPU with the modified OSEM algorithm was measured and compared with the computation time using CPU. Through the results, we confirmed the feasibility of the image reconstruction for prompt gamma ray image using GPU for the BNCT. In the further study, the development of the algorithm for faster reconstruction of the prompt gamma ray image during the BNCT using the GPU computation will be conducted. Also, the analysis of the target to background level about the reconstructed image will be performed using the extracted image profile.

  3. Boron neutron capture therapy applied to advanced breast cancers: Engineering simulation and feasibility study of the radiation treatment protocol

    Science.gov (United States)

    Sztejnberg Goncalves-Carralves, Manuel Leonardo

    This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT

  4. Boron neutron capture irradiation: setting up a clinical programme in Nice; Irradiation par capture de neutrons: mise en place d`un programme clinique a Nice

    Energy Technology Data Exchange (ETDEWEB)

    Pignol, J.P.; Chauvel, P.; Courdi, A.; Iborra-Brassart, N.; Frenay, M.; Herault, J.; Bensadoun, R.J.; Milano, G.; Demard, F. [Centre de Lutte Contre le Cancer Antoine Lacassagne, 06 - Nice (France); Paquis, P.; Lonjon, M.; Lebrun-Frenay, C.; Grellier, P.; Chatel, M. [Hopital Pasteur, 06 - Nice (France); Nepveu, F.; Patau, J.P. [Toulouse-3 Univ., 31 (France); Breteau, N. [Hopital de la Source, 45 - Orleans (France)

    1996-12-31

    Neutron capture irradiation aims to selectively destroy tumor tumor cell using {sup 10}B(n,{alpha}){sup 7}Li nuclear reactions produced within themselves. Following the capture reaction, an {alpha} particle and a, {sup 7}Li ion are emitted. Carrying an energy of 2.79 MeV, they destroy all molecular structures along their path close to 10 {mu}m. These captures, used exclusively with a `slow` neutron irradiation, provide a neutron capture therapy (BNCT). If they are used in addition to a fast neutron beam irradiation, they provide a neutron capture potentiation (NCP). The Centre Antoine-Lacassagne in Nice is actively involved in the European Demonstration project for BNCT of grade IV glioblastomas (GBM) after surgical excision and BSH administration. Taking into account the preliminary results obtained in Japan, work on an `epithermal` neutron target compatible with various cyclotron beams is in progress to facilitate further developments of this technique. For NCP, thermalized neutron yield has been measured in phantoms irradiated in the fast neutron beam of the biomedical cyclotron in Nice. A thermal peak appears after 5 cm depth in the tissues, delayed after the fast neutron peak at 1.8 cm depth. Thus, a physical overdosage of 10 % may be obtained if 100 ppm of {sup 10}B are assumed in the tissues. Our results using CAL 58 GBM cell line demonstrate a dose modification factor (DMF) of 1.19 when 100 ppm of boric acid are added to the growth medium. Thus for the particles, issued from neutron capture, a biological efficiency at least twice that of fast neutrons can be derived. These results, compared with historical data on fast neutron irradiation of glioblastoma, suggest that a therapeutic window may be obtained for GBM. (author). 26 refs.

  5. From radiation-induced chromosome damage to cell death: modelling basic mechanisms and applications to boron neutron capture therapy.

    Science.gov (United States)

    Ballarini, F; Bortolussi, S; Clerici, A M; Ferrari, C; Protti, N; Altieri, S

    2011-02-01

    Cell death is a crucial endpoint in radiation-induced biological damage: on one side, cell death is a reference endpoint to characterise the action of radiation in biological targets; on the other side, any cancer therapy aims to kill tumour cells. Starting from Lea's target theory, many models have been proposed to interpret radiation-induced cell killing; after briefly discussing some of these models, in this paper, a mechanistic approach based on an experimentally observed link between chromosome aberrations and cell death was presented. More specifically, a model and a Monte Carlo code originally developed for chromosome aberrations were extended to simulate radiation-induced cell death applying an experimentally observed one-to-one relationship between the average number of 'lethal aberrations' (dicentrics, rings and deletions) per cell and -ln S, S being the fraction of surviving cells. Although such observation was related to X rays, in the present work, the approach was also applied to protons and alpha particles. A good agreement between simulation outcomes and literature data provided a model validation for different radiation types. The same approach was then successfully applied to simulate the survival of cells enriched with boron and irradiated with thermal neutrons at the Triga Mark II reactor in Pavia, to mimic a typical treatment for boron neutron capture therapy. PMID:21159746

  6. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  7. Boron neutron capture therapy design calculation of a 3H(p,n reaction based BSA for brain cancer setup

    Directory of Open Access Journals (Sweden)

    Bassem Elshahat

    2015-09-01

    Full Text Available Purpose: Boron neutron capture therapy (BNCT is a promising technique for the treatment of malignant disease targeting organs of the human body. Monte Carlo simulations were carried out to calculate optimum design parameters of an accelerator based beam shaping assembly (BSA for BNCT of brain cancer setup.Methods: Epithermal beam of neutrons were obtained through moderation of fast neutrons from 3H(p,n reaction in a high density polyethylene moderator and a graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal / fast neutron intensity ratio as a function of geometric parameters of the setup. Results: The results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated peak therapeutic ratio for the setup was found to be 2.15. Conclusion: With further improvement in the polyethylene moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor.

  8. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    CERN Document Server

    Kumada, H

    2002-01-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to ...

  9. Synthesis of conjugates of polyhedral boron compounds with tumor-seeking molecules for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bregadze, V., E-mail: bre@ineos.ac.ru [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119991 (Russian Federation); Semioshkin, A.; Sivaev, I. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119991 (Russian Federation)

    2011-12-15

    Recent achievements in design and synthesis of boronated acids, amino acids, glycerols as well as conjugates of polyhedral boron hydrides (ortho-carborane, closo-dodecaborate and cobalt bis(dicarbollide)) with natural porphyrins, carbohydrates and nucleosides are described.

  10. Synovectomy by Neutron capture

    International Nuclear Information System (INIS)

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  11. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thatar Vento, V., E-mail: Vladimir.ThatarVento@gmail.com [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J.; Cartelli, D. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)

    2011-12-15

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  12. Correlation between radiation dose and histopathological findings in patients with gliblastoma treated with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The purpose of this study was to clarify the correlation between the radiation dose and histopathological findings in patients with glioblastoma multiforme (GBM) treated with boron neutron capture therapy (BNCT). Histopathological studies were performed on specimens from 8 patients, 3 had undergone salvage surgery and 5 were autopsied. For histopathological cure of GBM at the primary site, the optimal minimal dose to the gross tumor volume (GTV) and the clinical target volume (CTV) were 68 Gy(w) and 44 Gy(w), respectively. - Highlights: • It is very important to determine the curable BNCT radiation dose on histopathological aspect in BNCT. • Of 23 patients with GBM treated with BNCT, autopsy was performed in 5, salvage surgery in 3, and histopathological study in 8. • To achieve the histopathological cure of GBM at the primary site, the optimal minimal dose to the GTV and CTV was 68 Gy(w) and 44 Gy(w), respectively

  13. Use of fluorine-18-BPA PET images and image registration to enhance radiation treatment planning for boron neutron capture therapy

    Science.gov (United States)

    Khan, Mohammad Khurram

    The Monte-Carlo based simulation environment for radiation therapy (SERA) software is used to simulate the dose administered to a patient undergoing boron neutron capture therapy (BNCT). Point sampling of tumor tissue results in an estimate of a uniform boron concentration scaling factor of 3.5. Under conventional treatment protocols, this factor is used to scale the boron component of the dose linearly and homogenously within the tumor and target volumes. The average dose to the tumor cells by such a method could be improved by better methods of quantifying the in-vivo 10B biodistribution. A better method includes radiolabeling para-Boronophenylalanine (p-BPA) with 18F and imaging the pharmaceutical using positron emission tomography (PET). This biodistribution of 18F-BPA can then be used to better predict the average dose delivered to the tumor regions. This work uses registered 18F-BPA PET images to incorporate the in-vivo boron biodistribution within current treatment planning. The registered 18F-BPA PET images are then coupled in a new computer software, PET2MRI.m, to linearly scale the boron component of the dose. A qualititative and quantitative assessment of the dose contours is presented using the two approaches. Tumor volume, tumor axial extent, and target locations are compared between using MRI or PET images to define the tumor volume. In addition, peak-to-normal brain value at tumor axial center is determined for pre and post surgery patients using 18F-BPA PET images. The differences noted between the registered GBM tumor volumes (range: 34.04--136.36%), tumor axial extent (range: 20--150%), and the beam target location (1.27--4.29 cm) are significantly different. The peak-to-normal brain values are also determined at the tumor axial center using the 18F-BPA PET images. The peak-to-normal brain values using the last frame of the pre-surgery study for the GBM patients ranged from 2.05--3.4. For post surgery time weighted PET data, the peak

  14. Development and characteristics of the HANARO ex-core neutron irradiation facility for applications in the boron neutron capture therapy field

    CERN Document Server

    Kim, M S; Jun, B J; Kim, H; Lee, B C; Hwang, Sung-Yul; Jun, Byung-Jin; Kim, Heonil; Kim, Myong-Seop; Lee, Byung-Chul

    2006-01-01

    The HANARO ex-core neutron irradiation facility was developed for various applications in the boron neutron capture therapy (BNCT) field, and its characteristics have been investigated. In order to obtain a sufficient thermal neutron flux with a low level contamination of fast neutrons and gamma-rays, a radiation filtering method is adopted. The radiation filter has been designed by using a silicon single crystal cooled by liquid nitrogen and a bismuth crystal. The installation of the main components of the irradiation facility and the irradiation room are finished. Experimental measurements of the neutron beam characteristics have been performed by using bare and cadmium covered gold foils and wires. The in-phantom neutron flux distribution was measured for a flux mapping inside the phantom. The gamma-ray dose was determined by using TLD-700 thermoluminescence dosimeters. The thermal and fast neutron fluxes and the gamma-ray dose were calculated by using the MCNP code, and they were compared with experimenta...

  15. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    OpenAIRE

    Masunaga, S; Sakurai, Y.; Tanaka, H.; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M.; Kondo, N; Narabayashi, M.; Maruhashi, A; Ono, K.

    2013-01-01

    [Objectives] To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). [Methods] EL4 tumour-bearing C57BL/J mice received 5-bromo-2′-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of...

  16. Development of a method to extend by boron neutron capture process the therapeutic possibilities of a liver autograft

    Science.gov (United States)

    Pinelli, Tazio; Altieri, Saverio; Fossati, F.; Zonta, Aris; Prati, U.; Roveda, L.; Nano, Rosanna

    1997-02-01

    We present results on surgical technique, neutron filed and irradiation facility concerning the original treatment of the liver diffused metastases. Our method plans to irradiate the isolated organ at a thermal neutron field soon after having been explanted and boron enriched and before being grafted into the same donor. In particular the crucial point of boron uptake was investigated by a rat model with a relevant number of procedure. We give for the first time statistically significant results on the selective boron absorption by tumor tissues.

  17. Demonstration of three-dimensional deterministic radiation transport theory dose distribution analysis for boron neutron capture therapy

    International Nuclear Information System (INIS)

    The Monte Carlo stochastic simulation technique has traditionally been the only well-recognized method for computing three-dimensional radiation dose distributions in connection with boron neutron capture therapy (BNCT) research. A deterministic approach to this problem would offer some advantages over the Monte Carlo method. This paper describes an application of a deterministic method to analytically simulate BNCT treatment of a canine head phantom using the epithermal neutron beam at the Brookhaven medical research reactor (BMRR). Calculations were performed with the TORT code from Oak Ridge National Laboratory (ORNL), an implementation of the discrete ordinates, or Sn method. Calculations were from first principles and used no empirical correction factors. The phantom surface was modeled by flat facets of approximately 1 cm2. The phantom interior was homogeneous. Energy-dependent neutron and photon scalar fluxes were calculated on a 32x16x22 mesh structure with 96 discrete directions in angular phase space. The calculation took 670 min on an Apollo DN10000 workstation. The results were subsequently integrated over energy to obtain full three-dimensional dose distributions. Isodose contours and depth-dose curves were plotted for several separate dose components of interest. Phantom measurements were made by measuring neutron activation (and therefore neutron flux) as a function of depth in copper--gold alloy wires that were inserted through catheters placed in holes drilled in the phantom. Measurements agreed with calculations to within about 15%. The calculations took about an order of magnitude longer than comparable Monte Carlo calculations but provided various conveniences, as well as a useful check

  18. DNA double-strand break induction in Ku80-deficient CHO cells following Boron Neutron Capture Reaction

    Directory of Open Access Journals (Sweden)

    Masunaga Shinichiro

    2011-09-01

    Full Text Available Abstract Background Boron neutron capture reaction (BNCR is based on irradiation of tumors after accumulation of boron compound. 10B captures neutrons and produces an alpha (4He particle and a recoiled lithium nucleus (7Li. These particles have the characteristics of high linear energy transfer (LET radiation and have marked biological effects. The purpose of this study is to verify that BNCR will increase cell killing and slow disappearance of repair protein-related foci to a greater extent in DNA repair-deficient cells than in wild-type cells. Methods Chinese hamster ovary (CHO-K1 cells and a DNA double-strand break (DSB repair deficient mutant derivative, xrs-5 (Ku80 deficient CHO mutant cells, were irradiated by thermal neutrons. The quantity of DNA-DSBs following BNCR was evaluated by measuring the phosphorylation of histone protein H2AX (gamma-H2AX and 53BP1 foci using immunofluorescence intensity. Results Two hours after neutron irradiation, the number of gamma-H2AX and 53BP1 foci in the CHO-K1 cells was decreased to 36.5-42.8% of the levels seen 30 min after irradiation. In contrast, two hours after irradiation, foci levels in the xrs-5 cells were 58.4-69.5% of those observed 30 min after irradiation. The number of gamma-H2AX foci in xrs-5 cells at 60-120 min after BNCT correlated with the cell killing effect of BNCR. However, in CHO-K1 cells, the RBE (relative biological effectiveness estimated by the number of foci following BNCR was increased depending on the repair time and was not always correlated with the RBE of cytotoxicity. Conclusion Mutant xrs-5 cells show extreme sensitivity to ionizing radiation, because xrs-5 cells lack functional Ku-protein. Our results suggest that the DNA-DSBs induced by BNCR were not well repaired in the Ku80 deficient cells. The RBE following BNCR of radio-sensitive mutant cells was not increased but was lower than that of radio-resistant cells. These results suggest that gamma-ray resistant cells have

  19. A PC-based computer program for the estimation of the radiation dose in vitro and in vivo boron neutron capture irradiation experiments

    International Nuclear Information System (INIS)

    In Boron Neutron Capture Therapy (BNCT) microdosimetry of charged particle radiation depends on total boron concentration and intracellular boron distribution. Due to the inhomogeneity of boron distribution in cells, radiation doses to both tumor and normal tissue are influenced by boron and nitrogen concentrations and intracellular distributions, cell volume and shape, nuclear size and geometrical structure of the tissue. For correct calculation of the radiation dose in BNCT, these factors should be taken into account. Several computer models have been developed previously in order to estimate the absorbed dose from charged particles in BNCT (Gabel et al.; Kobayashi and Kanda). In these models, however, single values for mean Relative Biological Effectiveness (RBE) are used to convert high LET radiation doses to isoeffective photon equivalent doses. The RBE depends on both LET and endpoint, such as surviving fraction of tumor cells or normal tissue tolerance (Barendsen et al.). Since LET is not constant along the track of a charged particle, the RBE cannot be considered constant for particles generated by boron and nitrogen neutron capture. Experimental RBE data to be used in BNCT have been gathered, but without consensus (Gabel et al.; Fukuda et al.). A computer program designed to run on a microcomputer has been written in Turbo Pascal to determine energy deposition in cell nuclei resulting from charged particle emission after boron or nitrogen neutron capture in nuclear, cytoplasmic and extracellular compartments. This computer model goes beyond former models in estimating a microscopic RBE for each individual charged particle track segment that traverses a cell nucleus. Another refinement is the implementation of dynamic modelling, which offers a more realistic simulation of cell and tissue geometry. This was approached by varying cell geometry and arrangement parameters within a simulation

  20. Neutron source for Neutron Capture Synovectomy

    International Nuclear Information System (INIS)

    Monte Carlo calculations were performed to obtain a thermal neutron field from a 239PuBe neutron source inside a cylindrical heterogeneous moderators for Neutron Capture Synovectomy. Studied moderators were light water and heavy water, graphite and heavy water, lucite and polyethylene and heavy water. The neutron spectrum of polyethylene and heavy water moderator was used to determine neutron spectra inside a knee model. In this model the elemental composition of synovium and synovial liquid was assumed like blood. Kerma factors for synovium and synovial liquid were calculated to compare with water Kerma factors, in this calculations the synovium was loaded with two different concentrations of Boron

  1. Proton magnetic resonance spectroscopy of a boron neutron capture therapy 10B-carrier, L-p-boronophenylalanine-fructose complex

    Energy Technology Data Exchange (ETDEWEB)

    Timonen, M.

    2010-07-01

    Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of +- 5% and +- 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 x 20 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI, respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or

  2. Design calculations of an epithermal neutron beam and development of a treatment planning system for the renovation of thor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Tsing Hua University was recently granted by National Science Council a five-year project to renovate its Open-Pool reactor (THOR) for boron neutron capture therapy. With this support, the whole graphite blocks in the original thermal column region can be removed for redesigning and constructing a better epithermal neutron beam. THOR is a 1 MW research reactor. The cross section area of the core facing the thermal column is 60 cm x 50 cm. By using 60 cm FLUENTAL plus 10 cm Pb, with cross section area of 70 cm x 60 cm and surrounded by 6 cm thick PbF2 reflector, the epithermal neutron flux at the filter/moderator exit can reach ∼8.5 x 109 n/cm2/s. When the collimator is added, the epithermal neutron beam intensity at the beam exit is reduced to 3 x 109 n/cm2/sec, but is still six times higher than the previous beam. Facing the clinical trials scheduled 3 and half years from now, a preliminary version of treatment planning system is developed. It includes a pre-processor to read CT scan and post-processors to display dose distributions. (author)

  3. Study of the interaction of boron-containing amino acids for the neutron capture therapy with biologically interesting compounds by using 'three-spot zone electrophoresis'

    International Nuclear Information System (INIS)

    As the boron carriers for boron neutron capture therapy, p-borono phenylalanine (BPA) is the boron compound which has been clinically used together with sodium borocaptate. It was found by the electrophoresis behavior that the BPA interacted with organic carboxylic acids in its dissolved state. In this paper, the electrophoresis behavior of general amino acids as seen in three-spot zone electrophoresis and the peculiar interaction of the amino acids having dihydroxyboryl radical are described. Zone electrophoresis has been developed as separation means, and three-spot process excludes the errors due to accidental factors as far as possible. The behaviors of zone electrophoresis of ordinary neutral amino acids, orthoboric acid and p-BPA are reported. For utilizing the features of boron neutron capture therapy, it is necessary to develop the carrier which is singularly taken into cancer cells. There is not a good method for discriminating normal cells and cancer cells. As for the administration of BPA to patients, its solubility is insufficient, therefore, its fructose complex has been used. The research on the biochemical peculiarity of boron is important. (K.I.)

  4. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogs for boron neutron capture therapy of cancer.

    Science.gov (United States)

    Agarwal, Hitesh K; Khalil, Ahmed; Ishita, Keisuke; Yang, Weilian; Nakkula, Robin J; Wu, Lai-Chu; Ali, Tehane; Tiwari, Rohit; Byun, Youngjoo; Barth, Rolf F; Tjarks, Werner

    2015-07-15

    A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogs, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogs (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3-4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analog. Both 2 and 3 appeared to be 5'-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo. Biodistribution studies in rats bearing intracerebral RG2 glioma resulted in selective tumor uptake of 3 with an intratumoral concentration that was approximately 4 times higher than that of 2. The obtained results significantly advance the understanding of the binding interactions between TK1 and carboranyl pyrimidine nucleoside analogs and will profoundly impact future design strategies for these agents. PMID:26087030

  5. Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis

    International Nuclear Information System (INIS)

    Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The 1B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumors and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D05 and D95, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D05 to the normal ipsilateral lung was 5 Gy-Eq, the D95 and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D05 and D95 doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses

  6. Neutron Capture and Neutron Halos

    OpenAIRE

    A.Mengoni; Otsuka, T; Nakamura, T.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Ishihara, M.

    1996-01-01

    The connection between the neutron halo observed in light neutron rich nuclei and the neutron radiative capture process is outlined. We show how nuclear structure information such as spectroscopic factors and external components of the radial wave function of loosely bound states can be derived from the neutron capture cross section. The link between the direct radiative capture and the Coulomb dissociation process is elucidated.

  7. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.); Dorn, R.V. III.

    1990-09-01

    This monthly bulletin describes activities in the following project areas during this reporting period: supporting technology development, large animal model studies, neutron source and facility preparation, administration and common support, and PBF operations. (FI)

  8. Role of p53 mutation in the effect of boron neutron capture therapy on oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ohnishi Ken

    2009-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is a selective radiotherapy, being effective for the treatment of even advanced malignancies in head and neck regions as well as brain tumors and skin melanomas. To clarify the role of p53 gene, the effect of BNCT on oral squamous cell carcinoma (SCC cells showing either wild- (SAS/neo or mutant-type (SAS/mp53 p53 was examined. Methods Cells were exposed to neutron beams in the presence of boronophenylalanine (BPA at Kyoto University Research Reactor. Treated cells were monitored for modulations in colony formation, proliferation, cell cycle, and expression of cell cycle-associated proteins. Results When SAS/neo and SAS/mp53 cells were subjected to BNCT, more suppressive effects on colony formation and cell viability were observed in SAS/neo compared with SAS/mp53 cells. Cell cycle arrest at the G1 checkpoint was observed in SAS/neo, but not in SAS/mp53. Apoptotic cells increased from 6 h after BNCT in SAS/neo and 48 h in SAS/mp53 cells. The expression of p21 was induced in SAS/neo only, but G2 arrest-associated proteins including Wee1, cdc2, and cyclin B1 were altered in both cell lines. Conclusion These results indicate that oral SCC cells with mutant-type are more resistant to BNCT than those with wild-type p53, and that the lack of G1 arrest and related apoptosis may contribute to the resistance. At a physical dose affecting the cell cycle, BNCT inhibits oral SCC cells in p53-dependent and -independent manners.

  9. Neutron Capture Nucleosynthesis

    OpenAIRE

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these resu...

  10. Selective irradiation of the blood vessels by using boron neutron capture reaction - development and its utilization

    International Nuclear Information System (INIS)

    Full text: The purposes are development of the method to irradiate blood vessels selectively by using B-10(n, alpha) Li-7 reaction and examination of its effect on tumor and normal tissues. We made BSH-enclosed large size liposome (=300 nm) conjugated with PEG ; BSH-PEG-liposome. This type liposome is thought to escapes from macrophage in the liver, and can stay in the blood at high concentration level for long time. They are also considered not to be able to leak from the vessels into the surrounding tissues. If they receive neutron, B-10 emits extreme short-range (<9 micron) alpha-particle and recoil Li-7 nucleus. C3H/He mice and tumor model SCCVII were used to examine the character and effect of this type liposome. Thermal neutron irradiation was performed by KUR heavy water facility and B-10 concentrations in the blood or tissues were measured by prompt gamma-ray spectrometry. The B-10 concentration ratio between blood and tumor 30 minutes after BSH-PEG-liposome administration was 35- 40, and this ratio was stable for several hours. The effect on the tumors that received neutrons was examined by colony formation assay. The tumor cell survival rate of the BSH-PEG-liposome neutron group was very slightly suppressed in comparison with that of neutron alone group, however, the growth of the tumors was remarkably suppressed in BSH-PEG-liposome neutron group. In the mice that received whole body neutron irradiation after BSH-PEF-liposome injection, the mouse group of 50 Gy to the endothelium of the vessel did exhibit no death, and in the groups of 127 and 183 Gy, all individuals died. But diarrhea and bloody anal discharge that suggested radiation intestinal death were not observed at all. Cause of the death seemed to be bone marrow death

  11. Phantoms with 10BF3 detectors for boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Two acrylic cube phantoms have been constructed for BNCT applications that allow the depth distribution of neutrons to be measured with miniature 10BF3 detectors in 0.5-cm steps beginning at 1-cm depth. Sizes and weights of the cubes are 14 cm, 3.230 kg, and 11 cm, 1.567 kg. Tests were made with the epithermal neutron beam from the patient treatment port of the Brookhaven Medical Research Reactor. Thermal neutron depth profiles were measured with a bare 10BF3 detector at a reactor power of 50 W, and Cd-covered detector profiles were measured at a reactor power of 1 kW. The resulting plots of counting rate versus depth illustrate the dependence of neutron moderation on the size of the phantom. But more importantly the data can serve as benchmarks for testing the thermal and epithermal neutron profiles obtained with accelerator-based BNCT facilities. Such tests could be made with these phantoms at power levels about five orders of magnitude lower than that required for the treatment of patients with brain tumors. copyright 1998 American Association of Physicists in Medicine

  12. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 108 n/ cm2/ s. According to IAEA (2001) flux of 1.00 x 109 n/ cm2/ s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  13. Evaluation of carboranylporphyrins as boron delivery agents for neutron capture therapy

    International Nuclear Information System (INIS)

    The goals of the present study were two-fold. First, to determine the biodistribution of three carboranyl-porphyrins, designated H2DCP, H2TCP and H2TBP following intracerebral (i.c.) administration by means of convection enhanced delivery (CED) to F98 glioma bearing rats. Tumor boron concentrations immediately after CED were 36 and 88 μg/g for H2DCP and H2TCP, respectively, and were 103 and 62 μg/g for H2TCP and H2TBP, respectively, 24h after termination of CED. The corresponding normal brain concentrations were 5.2, 3.3 and 0.8 μg/g, and blood and liver concentrations all were 2TCP and H2TBP as boron delivery agents in F98 glioma bearing rats. BNCT was carried out at the Massachusetts Institute of Technology (MIT) Research Reactor (MITRR) 24 h after CED of 200 μl of either 0.5 mg of H2TCP or H2TBP. Untreated control rats all died within 29 days after tumor implantation and had a mean survival time (MST) of 23±3 days and irradiated controls had a MST of 27±3 days. Animals that received H2TCP by CED, followed by BNCT, had a MST of 35±4 days and animals received H2TBP had a MST of 44±10 days. Further studies were carried out using H2TBP at a dose of 0.2 mg administered by a Harvard pump, either alone or in combination with i.v. BPA, and the corresponding MSTs were 34±3 d and 43±9 d, respectively. Histopathologic examination of the brains of animals that died revealed large numbers of porphyrin laden macrophages and extracellular accumulations of free porphyrin indicating that tumor cell uptake was suboptimal. Further studies are planned to synthesize and evaluate new compounds that will have enhanced cellular uptake and efficacy as boron delivery agents for NCT. (author)

  14. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  15. Boron neutron capture irradiation of the mice hepatocytes. Evaluation of the difference between BSH and BPA

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Ono, Koji [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1998-02-01

    We evaluated the difference in the response of the hepatocytes to thermal neutron radiation between BSH and BPA by the micronucleus (MN) assay. The compound biological effectiveness (CBE) factor was estimated. The CBE factor value for BSH was 2.48, and that for BPA was 6.19. The results is supposed to be attributed to the difference of intracellular localization between BSH and BPA. (author)

  16. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  17. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kreiner, A.J., E-mail: kreiner@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina)] [CONICET, Buenos Aires (Argentina); Castell, W. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Di Paolo, H. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Baldo, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina)] [CONICET, Buenos Aires (Argentina)

    2011-12-15

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  18. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  19. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    Science.gov (United States)

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation.

  20. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model

    International Nuclear Information System (INIS)

    Unilamellar liposomes formulated with an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the lipid bilayer, and encapsulating Na3[ae-B10-H9)-2-NH3B10H8] were prepared by probe sonication and investigated in vivo. Microwave assisted digestion followed by inductively coupled plasma-optical emission spectroscopy was utilized to determine the biodistribution of boron in various tissues following either a single tail vein injection or two identical injections (separated by 24 hours) of the liposomal suspension in BALB/c mice bearing EMT6 mammary adenocarcinomas in their right flank. Double-injection protocols resulted in a boron content in the tumor exceeding 50 µg of boron per gram of tissue for 48 to 72 hours subsequent to the initial injection while tumor:blood boron ratios were more ideal from 54 hours (1.9:1) to 96 hours (5.7:1) subsequent to the initial injection. Tumor bearing mice were given a double-injection of liposomes containing the 10B-enriched analogs of the aforementioned agents and subjected to a 30 minute irradiation by thermal neutrons with a flux of 8.8 x 108 (±7%) neutrons/cm2 s integrated over the energy range of 0.0 - 0.414 eV. Significant tumor response for a single BNCT treatment was demonstrated by growth curves versus a control group. Vastly diminished tumor growth was witnessed at 14 days (186% increase versus 1551% in controls) in mice that were given a second injection/radiation treatment 7 days after the first. Mice given a one hour neutron irradiation following the double-injection of liposomes had a similar response (169% increase at 14 days) suggesting that neutron fluence is the limiting factor towards BNCT efficacy in this study.

  1. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors

    International Nuclear Information System (INIS)

    Purpose: To analyze the dose-volume histogram (DVH) of head-and-neck tumors treated with boron neutron capture therapy (BNCT) and to determine the advantage of the intra-arterial (IA) route over the intravenous (IV) route as a drug delivery system for BNCT. Methods and Materials: Fifteen BNCTs for 12 patients with recurrent head-and-neck tumors were included in the present study. Eight irradiations were done after IV administration of boronophenylalanine and seven after IA administration. The maximal, mean, and minimal doses given to the gross tumor volume were assessed using a BNCT planning system. Results: The results are reported as median values with the interquartile range. In the IA group, the maximal, mean, and minimal dose given to the gross tumor volume was 68.7 Gy-Eq (range, 38.8-79.9), 45.0 Gy-Eq (range, 25.1-51.0), and 13.8 Gy-Eq (range, 4.8-25.3), respectively. In the IV group, the maximal, mean, and minimal dose given to the gross tumor volume was 24.2 Gy-Eq (range, 21.5-29.9), 16.4 Gy-Eq (range, 14.5-20.2), and 7.8 Gy-Eq (range, 6.8-9.5), respectively. Within 1-3 months after BNCT, the responses were assessed. Of the 6 patients in the IV group, 2 had a partial response, 3 no change, and 1 had progressive disease. Of 4 patients in the IA group, 1 achieved a complete response and 3 a partial response. Conclusion: Intra-arterial administration of boronophenylalanine is a promising drug delivery system for head-and-neck BNCT

  2. Neutron capture therapy for melanoma

    International Nuclear Information System (INIS)

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs

  3. Neutron capture therapy

    International Nuclear Information System (INIS)

    The overall state of the art related with neutron capture therapy(NCT) is surveyed. Since the field related with NCT is very wide, it is not intended to survey all related subjects in depth. The primary objective of this report is to help those working for the installation of a NCT facility and a PGNAA(prompt gamma ray neutron activation analysis) system for the boron analysis understand overall NCT at Hanaro. Therefore, while the parts of reactor neutron source and PGNAA are dealt in detail, other parts are limited to the level necessary to understand related fields. For example, the subject of chemical compound which requires intensive knowledge on chemistry, is not dealt as a separated item. However, the requirement of a compound for NCT, currently available compounds, their characteristics, etc. could be understood through this report. Although the subject of cancer treated by NCT is out of the capability of the author, it is dealt focussing its characteristics related with the success of NCT. Each detailed subject is expected to be dealt more detail by specialists in future. This report would be helpful for the researchers working for the NCT to understand related fields. (author). 128 refs., 3 tabs., 12 figs

  4. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    International Nuclear Information System (INIS)

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single 7LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 (6LiF:Mg,Ti with 95.6% 6Li) and TLD-700 (7LiF:Mg,Ti with 99.9% 7LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom, with representative

  5. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single {sup 7}LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 ({sup 6}LiF:Mg,Ti with 95.6% {sup 6}Li) and TLD-700 ({sup 7}LiF:Mg,Ti with 99.9% {sup 7}LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom

  6. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  7. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  8. Boron neutron capture therapy for clear cell sarcoma (CCS): Biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, T. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Fujimoto, T. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Sudo, T. [Section of Translational Research, Hyogo Cancer Center, Akashi 673-0021 (Japan); Fujita, I.; Imabori, M. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Moritake, H. [Department of Pediatrics, Miyazaki University, Kiyotake 889-1692 (Japan); Sugimoto, T. [Department of Pediatrics, Saiseikai Shigaken Hospital, Ritto 520-3046 (Japan); Sakuma, Y. [Department of Pathology, Hyogo Cancer Center, Akashi 673-0021 (Japan); Takeuchi, T. [Department of Pathology, Kochi University, Nangoku 783-8505 (Japan); Kawabata, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Kirihata, M. [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531 (Japan); Akisue, T. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Yayama, K. [Laboratory of Cardiovascular Pharmacology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Kurosaka, M. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Miyatake, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Fukumori, Y. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Ichikawa, H., E-mail: ichikawa@pharm.kobegakuin.ac.jp [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan)

    2011-12-15

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake L-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of {sup 10}B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg).

  9. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model

    Energy Technology Data Exchange (ETDEWEB)

    Heber, Elisa M. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Hawthorne, M. Frederick [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Kueffer, Peter J. [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Garabalino, Marcela A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Thorp, Silvia I. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Pozzi, Emiliano C. C. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Hughes, Andrea Monti [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Maitz, Charles A. [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Jalisatgi, Satish S. [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Curotto, Paula [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Trivillin, Verónica A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Schwint, Amanda E. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina)

    2014-11-11

    Unilamellar liposomes formulated with an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the lipid bilayer, and encapsulating Na3[1-(2’-B10-H9)-2-NH3B10H8] were prepared by probe sonication and investigated in vivo. Microwave assisted digestion followed by inductively coupled plasma-optical emission spectroscopy was utilized to determine the biodistribution of boron in various tissues following either a single tail vein injection or two identical injections (separated by 24 hours) of the liposomal suspension in BALB/c mice bearing EMT6 mammary adenocarcinomas in their right flank. Double-injection protocols resulted in a boron content in the tumor exceeding 50 µg of boron per gram of tissue for 48 to 72 hours subsequent to the initial injection while tumor:blood boron ratios were more ideal from 54 hours (1.9:1) to 96 hours (5.7:1) subsequent to the initial injection. Tumor bearing mice were given a double-injection of liposomes containing the 10B-enriched analogs of the aforementioned agents and subjected to a 30 minute irradiation by thermal neutrons with a flux of 8.8 x 108 (±7%) neutrons/cm2 s integrated over the energy range of 0.0 – 0.414 eV. Significant tumor response for a single BNCT treatment was demonstrated by growth curves versus a control group. Vastly diminished tumor growth was witnessed at 14 days (186% increase versus 1551% in controls) in mice that were given a second injection/radiation treatment 7 days after the first. Mice given a one hour neutron irradiation following the double-injection of liposomes had a similar response (169% increase at 14 days) suggesting that neutron fluence is the limiting factor towards BNCT efficacy in this study.

  10. Transferrin-loaded nido-carborane liposomes. Synthesis and intracellular targeting to solid tumors for boron neutron capture therapy

    International Nuclear Information System (INIS)

    The boron ion cluster lipids, as a double-tailed boron lipid synthesized from heptadecanol, formed stable liposomes at 25% molar ratio toward DSPC with cholesterol. Transferrin was able to be introduced on the surface of boron liposomes (Tf-PEG-CL liposomes) by the coupling of transferrin to the PEG-CO2H moieties of PEG-CL liposomes. The biodistribution of Tf-PEG-CL liposomes showed that Tf-PEG-CL liposomes accumulated in tumor tissues and stayed there for a sufficiently long time to increase tumor:blood concentration ratio. A 10B concentration of 22 ppm in tumor tissues was achieved by the injection of Tf-PEG-CL liposome at 7.2 mg/kg body weight 10B in tumor-bearing mice. After neutron irradiation, the average survival rate of mice not treated with Tf-PEG-CL liposomes was 21 days, whereas that of the treated mice was 31 days. Longer survival rates were observed in the mice treated with Tf-PEG-CL liposomes; one of them even survived for 52 days after BNCT. (author)

  11. Workshop on neutron capture therapy

    International Nuclear Information System (INIS)

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior

  12. Workshop on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P. (eds.)

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  13. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Farías, R. O.; Trivillin, V. A.; Portu, A. M.; Schwint, A. E.; González, S. J., E-mail: srgonzal@cnea.gov.ar [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033 (Argentina); Garabalino, M. A.; Monti Hughes, A.; Pozzi, E. C. C.; Thorp, S. I.; Curotto, P.; Miller, M. E.; Santa Cruz, G. A.; Saint Martin, G. [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650 (Argentina); Ferraris, S.; Santa María, J.; Rovati, O.; Lange, F. [CIDME, Universidad Maimónides, Buenos Aires 1405 (Argentina); Bortolussi, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100 (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100, Italy and Dipartimento di Fisica, Università di Pavia, Pavia 27100 (Italy)

    2015-07-15

    Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect

  14. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    International Nuclear Information System (INIS)

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain-this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ∼10% in the presence of a 9% water volume increase (oedema)

  15. Boron labeled rabbit anti-rat fibrin and goat anti-rabbit gamma globulin antibodies and their potential for slow neutron capture therapy of tumors

    International Nuclear Information System (INIS)

    The therapeutic effectiveness of slow neutron capture therapy is currently dependent upon achieving a high concentration gradient of boron between tumor and normal tissue. Labeling of anti-tumor or anti-tumor site antibodies with boron containing compounds could provide this high therapeutic value. Anti-rat fibrin antibodies, which show considerable localization at the site of several transplantable rat tumors, were labeled with 4-boronophenylalanine (4-BPA) using the N-carboxy anhydride procedure. Activity of these labeled antibodies was studied by modifying the test for fibrinogen concentration of hemophiliac blood. The number of 4-BPAs bound to each active antibody was determined indirectly using the fluorimetric test for phenylalanine concentration in serum. These tests showed that labeled antibodies retained their activity, and it was possible to add up to fifty 4-BPAs per active antibody. The indirect approach to achieving a high therapeutic value of boron was also investigated. This procedure involves labeling anti-immunoglobulin antibodies that bind to anti-tumor antibodies which are already bound to their respective antigens. Indirect labeling has the potential of increasing the therapeutic value by a factor of ten over the direct approach. Activity of labeled goat anti-rabbit gamma globulin (RGG) antibodies was studied by radial immunodiffusion and passive hemagglutination. The number of 4-BPAs bound to each active antibody was determined indirectly by fluorimetry. These labeled antibodies also retained their activity, and it was possible to add upwards of forty 4-BPAs per active antibody

  16. ET-14OPTIMISATION OF BORONOPHENYLALANINE (BPA) DELIVERY AND LAT1 EXPRESSION FOR THE CLINICAL APPLICATION OF BORON NEUTRON CAPTURE THERAPY (BNCT) IN GLIOBLASTOMA

    Science.gov (United States)

    Cruickshank, Garth; Detta, Allah; Green, Stuart; Lockyer, Nick; Ngoga, Desire; Ghani, Zahir; Phoenix, Ben

    2014-01-01

    BNCT is a biologically targeted radiotherapy where preferential boron uptake interacts with a neutron beam in cancerous cells causing irreparable alpha DNA damage. This requires the delivery of at least 30 parts per million (ppm) of 10B into tumour tissue and 30ppm boron) indicates potential BNCT targeting after surgery. Tumour boron uptake is governed by LAT-1 behaviour rather than BBB penetration and explains previous variable clinical results, whilst supporting the LAT1 determined selection of patients for BNCT

  17. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Avagyan, R.H.; Kerobyan, I.A.

    2015-07-15

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15–1.5 MeV/u) and LINAC2 (1.5–10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  18. Boron determination in liver tissue by combining quantitative neutron capture radiography (QNCR) and histological analysis for BNCT treatment planning at the TRIGA Mainz.

    Science.gov (United States)

    Schütz, C; Brochhausen, C; Altieri, S; Bartholomew, K; Bortolussi, S; Enzmann, F; Gabel, D; Hampel, G; Kirkpatrick, C J; Kratz, J V; Minouchehr, S; Schmidberger, H; Otto, G

    2011-09-01

    The typical primary malignancies of the liver are hepatocellular carcinoma and cholangiocarcinoma, whereas colorectal liver metastases are the most frequently occurring secondary tumors. In many cases, only palliative treatment is possible. Boron neutron capture therapy (BNCT) represents a technique that potentially destroys tumor tissue selectively by use of externally induced, locally confined secondary particle irradiation. In 2001 and 2003, BNCT was applied to two patients with colorectal liver metastases in Pavia, Italy. To scrutinize the rationale of BNCT, a clinical pilot study on patients with colorectal liver metastases was carried out at the University of Mainz. The distribution of the (10)B carrier (p-borono-phenylalanine) in the liver and its uptake in cancerous and tumor-free tissue were determined, focusing on a potential correlation between the uptake of p-borono-phenylalanine and the biological characteristics of cancerous tissue. Samples were analyzed using quantitative neutron capture radiography of cryosections combined with histological analysis. Methodological aspects of the combination of these techniques and results from four patients enrolled in the study are presented that indicate that the uptake of p-borono-phenylalanine strongly depends on the metabolic activity of cells. PMID:21692653

  19. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Nigg; Various Others

    2014-06-01

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.

  20. Biodistribution of boron after intravenous 4-dihydroxyborylphenylalanine-fructose (BPA-F) infusion in meningioma and schwannoma patients: A feasibility study for boron neutron capture therapy.

    Science.gov (United States)

    Kulvik, Martti; Kallio, Merja; Laakso, Juha; Vähätalo, Jyrki; Hermans, Raine; Järviluoma, Eija; Paetau, Anders; Rasilainen, Merja; Ruokonen, Inkeri; Seppälä, Matti; Jääskeläinen, Juha

    2015-12-01

    We studied the uptake of boron after 100 mg/kg BPA infusion in three meningioma and five schwannoma patients as a pre-BNCT feasibility study. With average tumour-to-whole blood boron concentrations of 2.5, we discuss why BNCT could, and probably should, be developed to treat severe forms of the studied tumours. However, analysing 72 tumour and 250 blood samples yielded another finding: the plasma-to-whole blood boron concentrations varied with time, suggesting that the assumed constant boron ratio of 1:1 between normal brain tissue and whole blood deserves re-assessment. PMID:26298436

  1. Assessment of Proton Microbeam Analysis of 11B for Quantitative Microdistribution Analysis of Boronated Neutron Capture Agent Analogs in Biological Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bench, G; Grant, P G; Ueda, D L; Autry-Conwell, S A; Hou, Y; Boggan, J E

    2002-12-04

    Purpose: To assess the {sup 11}B(p, {alpha}){sup 8}Be* nuclear reaction for quantitatively mapping the in-vivo sub-cellular distribution of boron within gliosarcoma tumors treated with boronated neutron capture therapy agent (NCTA) analogs. Materials and Methods: Intracranial tumors were produced in Fisher 344 rats using a 9L gliosarcoma model. Fourteen days later, the majority of rats were treated with f-boronophenylalanine and sacrificed 30 or 180 minutes after intravenous injection. Freeze dried tumor cryosections were imaged using the {sup 11}B(p, {alpha}){sup 8}Be* nuclear reaction and proton microbeams obtained from the nuclear microprobe at Lawrence Livermore National Laboratory. Results/Discussion: With{sup 11}B(p, {alpha}){sup 8}Be* analysis, {sup 11}B distributions within cells can be quantitatively imaged with spatial resolutions down to 1.5 {micro}m, minimum detection limits of 0.8 mg/kg and acquisition times of several hours. These capabilities offer advantages over alpha track autoradiography, electron energy loss spectroscopy and secondary ion mass spectrometry (SIMS) for 'B quantitation in tissues. However, the spatial resolution, multi-isotope capability and analysis times achieved with SIMS are superior to those achieved with {sup 11}B(p, {alpha}){sup 8}Be* analysis. Conclusions: When accuracy in quantitation is crucial, the assessing the microdistribution of {sup 11}B. {sup 11}B(p, {alpha}){sup 8}Be* reaction is well suited for Otherwise, SIMS may well be better suited to image the microdistribution of boron associated with NCTAs in biological tissues.

  2. Novel Boron Based Multilayer Thermal Neutron Detector

    CERN Document Server

    SCHIEBER, M

    2010-01-01

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accor...

  3. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    International Nuclear Information System (INIS)

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung. - Highlights: • We performed experimental boron biodistribution studies for lung metastases. • 3 protocols employing BPA and GB-10 would be therapeutically useful. • BNCT at RA-3 would be potentially therapeutic for experimental lung metastases

  4. Neutron capture therapy at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Application of the 10B(n,α)7Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since shortly after the discovery of the neutron. This paper summarizes data describing recently developed boronated compounds designed to serve as vehicles for boron transport to tumor. Whole-body (mouse) Neutron Capture Radiograms (NCR) of some of the most promising compounds are presented; these graphically demonstrate selective uptake in tumor, at times varying from hours to days post administration. Comparison is made to the ubiquitous distribution of inorganic boron compounds used in the first clinical trials of NCT. Since some compounds are now available that allow physiological targeting of boron to tumor at concentrations adequate for therapy, the NCR technique can be used to evaluate important questions concerning the microdistribution of boron within the tumor. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT by using band-pass filtered neutron beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 35 references, 12 figures, 4 tables

  5. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Carpano, Marina; Perona, Marina; Rodriguez, Carla [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A. [Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín (Argentina); Brandizzi, Daniel; Cabrini, Romulo [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); School of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Pisarev, Mario [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina); Juvenal, Guillermo Juan [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.ar [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina)

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  6. Experimental Studies of Boronophenylalanine (10BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    International Nuclear Information System (INIS)

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina (10BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 106 MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of 10B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R2 = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R2 = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT treatment for each individual

  7. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  8. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    International Nuclear Information System (INIS)

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  9. Direct thermal neutron capture

    International Nuclear Information System (INIS)

    We discuss the direct-capture theory pertaining to primary electric dipole (E1) transitions following slow-neutron capture. For light nuclides that we have studied (including 9Be, 12C, 13C, 24Mg, 25Mg, 26Mg, 32S, 33S, 34S, 40Ca, and 44Ca), estimates of direct-capture cross sections using optical-model potentials with physically realistic parameters, are in reasonable agreement with the data. Minor disagreements that exist are consistent with extrapolations to light nuclides of generally accepted formulations of compound-nucleus capture. We also discuss the channel-capture approximation which is, in general, a good representation of these cross sections in heavier nuclei particularly if the scattering lengths are not different from the corresponding potential radii. We also draw attention to cases where the use of this formula leads to inaccurate predictions. 9 refs., 1 fig., 2 tab

  10. Applicability of thermoluminescent dosimeters in X-ray organ dose determination and in the dosimetry of systemic and boron neutron capture radiotherapy

    International Nuclear Information System (INIS)

    The main detectors used for clinical dosimetry are ionisation chambers and semiconductors. Thermoluminescent (TL) dosimeters are also of interest because of their following advantages: (i) wide useful dose range, (ii) small physical size, (iii) no need for high voltage or cables, i.e. stand alone character, and (iv) tissue equivalence (LiF) for most radiation types. TL detectors can particularly be used for the absorbed dose measurements performed with the aim to investigate cases where dose prediction is difficult and not as part of a routine verification procedure. In this thesis, the applicability of TL detectors was studied in different clinical applications. Particularly, the major phenomena (e.g. energy dependence, sensitivity to high LET radiation, reproducibility) affecting on the precision and accuracy of TL detectors in the dose estimations were considered in this work. In organ dose determinations of diagnostic X-ray examinations, the TL detectors were found to be accurate within 5% (1 S.D.). For in viva studies using internal irradiation source, i.e. for systemic radiation therapy, a method for determining the absorbed doses to organs was introduced. The TL method developed was found to be able to estimate the absorbed doses to those critical organs near the body surface within 50%. In the mixed neutron-gamma field of boron neutron capture therapy (BNCT), TL detectors were used for gamma dose and neutron fluence measurements. They were found able to measure the neutron dose component with the accuracy of 16%, and therefore to be a useful addition to the activation foils in BNCT neutron dosimetry. The absorbed gamma doses can be measured with TL detectors within 20% in the mixed neutron-gamma field, which enables in viva measurements at BNCT beams with approximately the same accuracy. In this study, the uncertainties of TL dosimeters were found to be high but not essentially greater than those in other measurement techniques used for clinical dosimetry

  11. Comparison of intracerebral delivery of carboplatin and photon irradiation with an optimized regimen for boron neutron capture therapy of the F98 rat glioma

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rolf F., E-mail: rolf.barth@osumc.edu [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Yang Weilian; Huo Tianyao [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Riley, Kent J.; Binns, Peter J. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Grecula, John C., E-mail: john.grecula@osumc.edu [James Cancer Hospital and Solove Research Institute, Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210 (United States); Gupta, Nilendu, E-mail: nilendu.gupta@osumc.edu [James Cancer Hospital and Solove Research Institute, Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210 (United States); Rousseau, Julia, E-mail: julia.rousseau@yahoo.fr [INSERM, U836, Institute of Neurosciences, Grenoble (France); Elleaume, Helene, E-mail: h.elleaume@esrf.fr [INSERM, U836, Institute of Neurosciences, Grenoble (France)

    2011-12-15

    In this report we have summarized our studies to optimize the delivery of boronophenylalanine (BPA) and sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) of F98 glioma bearing rats. These results have been compared to a chemoradiotherapeutic approach using the same tumor model. The best survival data from our BNCT studies were obtained using a combination of BPA and sodium borocaptate BSH administered via the internal carotid artery, in combination with blood-brain barrier disruption (BBB-D). This treatment resulted in a mean survival time (MST) of 140 d with a 25% cure rate. The other approach combined intracerebral administration of carboplatin by either convection enhanced delivery (CED) or Alzet pump infusion, followed by external beam photon irradiation. This resulted in MSTs of 83 d and 112 d, respectively, with a cure rate of 40% for the latter. However, a significant problem that must be solved for both BNCT and this new chemoradiotherapeutic approach is how to improve drug uptake and microdistribution within the tumor.

  12. Effect of the p53 gene status on the sensitivity of oral squamous cell carcinoma cells to boron neutron capture therapy

    International Nuclear Information System (INIS)

    The role of the p53 gene in the sensitivity of oral squamous cell carcinoma (SCC) to boron neutron capture therapy (BNCT) had not been studied. We examined the effect of boronophenylalanine (BPA)-mediated BNCT on oral SCC cells showing either wild-type p53 (SAS/neo) or mutated-type p53 (SAS/mp53). Survival ratio of cells was determined by colony formation. Cell viability was measured by MTT assay. Apoptotic cells were evaluated by flow cytometric analysis and nuclear DNA staining. When SAS/neo and SAS/mp53 cells were subjected to BNCT, more suppressive effects on colony formation and cell viability were observed in SAS/neo cells as compared with SAS/mp53. The proportion of apoptotic cells with DNA fragmentation was also increased in the cells with functional p53. These results suggest that oral SCC cells with mutated p53 cells are more resistant to BNCT than those with wild-type p53. BNCT must inhibit oral SCC cells in p53-dependent and p53-independent mechanisms. (author)

  13. The potential of transferrin-pendant-type polyethyleneglycol liposomes encapsulating decahydrodecaborate-1B (GB-10) as 1B-carriers for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate GB-10-encapsulating transferrin (TF)-pendant-type polyethyleneglycol (PEG) liposomes as tumor-targeting 1B-carriers for boron neutron capture therapy. Methods and Materials: A free mercaptoundecahydrododecaborate-1B (BSH) or decahydrodecaborate-1B (GB-10) solution, bare liposomes, PEG liposomes, or TF-PEG liposomes were injected into SCC VII tumor-bearing mice, and 1B concentrations in the tumors and normal tissues were measured by γ-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all intratumor proliferating cells, then injected with these 1B-carriers containing BSH or GB-10 in the same manner. Right after thermal neutron irradiation, the response of quiescent (Q) cells was assessed in terms of the micronucleus frequency using immunofluorescence staining for BrdU. The frequency in the total tumor cells was determined from the BrdU nontreated tumors. Results: Transferrin-PEG liposomes showed a prolonged retention in blood circulation, low uptake by reticuloendothelial system, and the most enhanced accumulation of 1B in solid tumors. In general, the enhancing effects were significantly greater in total cells than Q cells. In both cells, the enhancing effects of GB-10-containing 1B-carriers were significantly greater than BSH-containing 1B-carriers, whether loaded in free solution or liposomes. In both cells, whether BSH or GB-10 was employed, the greatest enhancing effect was observed with TF-PEG liposomes followed in decreasing order by PEG liposomes, bare liposomes, and free BSH or GB-10 solution. In Q cells, the decrease was remarkable between PEG and bare liposomes. Conclusions: In terms of biodistribution characteristics and tumor cell-killing effect as a whole, including Q cells, GB-10 TF-PEG liposomes were regarded as promising 1B-carriers

  14. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion

    International Nuclear Information System (INIS)

    Introduction: Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of 10B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared 10BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), 10BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. Materials and methods: WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. Results and discussions: The 10B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that 10B entrapped WOW emulsion could be

  15. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu, E-mail: yanagie@n.t.u-tokyo.ac.jp [Dept of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kumada, Hiroaki [Proton Medical Research Center, University of Tsukuba, Ibaraki (Japan); Nakamura, Takemi [Japan Atomic Energy Research Institute, Ibaraki (Japan); Higashi, Syushi [Dept of Surgery, Ebihara Memorial Hospital, Miyazaki (Japan)] [Kyushu Industrial Sources Foundation, Miyazaki (Japan); Ikushima, Ichiro [Dept of Radiology, Miyakonojyo Metropolitan Hospital, Miyazaki (Japan); Morishita, Yasuyuki [Dept of Human and Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo (Japan); Shinohara, Atsuko [Dept of Humanities, Graduate School of Seisen University, Tokyo (Japan); Fijihara, Mitsuteru [SPG Techno Ltd. Co., Miyazaki (Japan); Suzuki, Minoru; Sakurai, Yoshinori [Research Reactor Institute, Kyoto University, Osaka (Japan); Sugiyama, Hirotaka [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kajiyama, Tetsuya [Kyushu Industrial Sources Foundation, Miyazaki (Japan); Nishimura, Ryohei [Dept of Veternary Surgery, University of Tokyo Veternary Hospital, Tokyo (Japan); Ono, Koji [Research Reactor Institute, Kyoto University, Osaka (Japan); Nakajima, Jun; Ono, Minoru [Dept of Cardiothracic Surgery, University of Tokyo Hospital, Tokyo (Japan); Eriguchi, Masazumi [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)] [Department of Surgery, Shin-Yamanote Hospital, Saitama (Japan); Takahashi, Hiroyuki [Dept of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)

    2011-12-15

    Introduction: Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between {sup 10}B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of {sup 10}B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared {sup 10}BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), {sup 10}BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. Materials and methods: WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. Results and discussions: The {sup 10}B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that {sup 10}B

  16. L-Phenylalanine preloading reduces the (10)B(n, α)(7)Li dose to the normal brain by inhibiting the uptake of boronophenylalanine in boron neutron capture therapy for brain tumours.

    Science.gov (United States)

    Watanabe, Tsubasa; Tanaka, Hiroki; Fukutani, Satoshi; Suzuki, Minoru; Hiraoka, Masahiro; Ono, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours.

  17. Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy.

    Science.gov (United States)

    Inoue, R; Hiraga, F; Kiyanagi, Y

    2014-06-01

    An accelerator based BNCT has been desired because of its therapeutic convenience. However, optimal design of a neutron moderator system is still one of the issues. Therefore, detailed studies on materials consisting of the moderator system are necessary to obtain the optimal condition. In this study, the epithermal neutron flux and the RBE dose have been calculated as the indicators to look for optimal materials for the filter and the moderator. As a result, it was found that a combination of MgF2 moderator with Fe filter gave best performance, and the moderator system gave a dose ratio greater than 3 and an epithermal neutron flux over 1.0×10(9)cm(-2)s(-1).

  18. Gadolinium-neutron capture reactions: A radiobiological assay

    International Nuclear Information System (INIS)

    Gadolinium neutron capture(GNC) takes advantage of its extraordinarily large cross section to thermal neutrons. In GNC reactions, prompt high energy gamma rays, x-rays and electrons are released. Because of the photons and electrons, the intracellular presence of gadolinium is not considered critical. This is an advantage over boron-neutron capture therapy where the intracellular presence of boron is required because of the short flight tracks of 2.4 MeV alpha particles. In this study, the radiation effect of GNC reactions was measured using Chinese hamster cells in an attempt to evaluate the contributions of neutrons, gamma rays and electrons on cell inactivation

  19. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of a 'single' application of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-1(Na210B10H10) or (GB-10+BPA) to treat hamster cheek pouch tumors with no normal tissue radiotoxicity. Based on these results, we developed a model of precancerous tissue in the hamster cheek pouch for long-term studies. Employing this model we evaluated the long-term potential inhibitory effect on the development of second primary tumors from precancerous tissue and eventual radiotoxicity of a single application of BNCT mediated by BPA, GB-10 or (GB-10+BPA), in the RA-6. The clinical rationale of this study was to search for a BNCT protocol that is therapeutic for tumor, not radio-toxic for the normal tissue that lies in the neutron beam path, and exerts the desired inhibitory effect on the development of second primary tumors, without exceeding the radio-tolerance of precancerous tissue, the dose limiting tissue in this case. Second primary tumors that arise in precancerous tissue (also called locoregional recurrences) are a frequent cause of therapeutic failure in head and neck tumors. Aim: Evaluate the radiotoxicity and inhibitory effect of a 'double' application of the same BNCT protocols that were proved therapeutically successful for tumor and precancerous tissue, with a long term follow up (8 months). A 'double' application of BNCT is a potentially useful strategy for the treatment of tumors, in particular the larger ones, but the cost in terms of side-effects in dose-limiting tissues might preclude its application and requires cautious evaluation. Materials and methods: We performed a double application of 1) BPA-BNCT; 2) (GB- 10+BPA

  20. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. PMID:24387907

  1. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

  2. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cartelli, D.; Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Av Rivadavia 1917 (1033), Buenos Aires (Argentina); Castell, W. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Di Paolo, H. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Kesque, J.M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Av Rivadavia 1917 (1033), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina)

    2011-12-15

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.

  3. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  4. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanranta, Leena [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Seppaelae, Tiina; Koivunoro, Hanna [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Saarilahti, Kauko [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Atula, Timo [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Collan, Juhani [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Salli, Eero; Kortesniemi, Mika [Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Uusi-Simola, Jouni [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Vaelimaeki, Petteri [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Maekitie, Antti [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Seppaenen, Marko [Turku PET Centre, Turku University Hospital, Turku (Finland); Minn, Heikki [Department of Oncology, Turku University Central Hospital, Turku (Finland); Revitzer, Hannu [Aalto University School of Science and Technology, Esopo (Finland); Kouri, Mauri [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo (Finland); Savolainen, Sauli [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Joensuu, Heikki, E-mail: heikki.joensuu@hus.fi [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland)

    2012-01-01

    Purpose: To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. Methods and Materials: In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29 carcinomas and 1 sarcoma) were treated with BNCT. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 50 to 98 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed by use of the RECIST (Response Evaluation Criteria in Solid Tumors) and adverse effects by use of the National Cancer Institute common terminology criteria version 3.0. Intravenously administered L-boronophenylalanine-fructose (400 mg/kg) was administered as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Twenty-six patients received BNCT twice; four were treated once. Of the 29 evaluable patients, 22 (76%) responded to BNCT, 6 (21%) had tumor growth stabilization for 5.1 and 20.3 months, and 1 (3%) progressed. The median progression-free survival time was 7.5 months (95% confidence interval, 5.4-9.6 months). Two-year progression-free survival and overall survival were 20% and 30%, respectively, and 27% of the patients survived for 2 years without locoregional recurrence. The most common acute Grade 3 adverse effects were mucositis (54% of patients), oral pain (54%), and fatigue (32%). Three patients were diagnosed with osteoradionecrosis (each Grade 3) and one patient with soft-tissue necrosis (Grade 4). Late Grade 3 xerostomia was present in 3 of the 15 evaluable patients (20%). Conclusions: Most patients who have inoperable, locally advanced head-and-neck carcinoma that has recurred at a previously irradiated site respond to boronophenylalanine-mediated BNCT, but cancer recurrence after BNCT remains frequent. Toxicity was

  5. Synthesis of PBAD-lipiodol nanoparticles for combination treatment with boric acid in boron neutron capture therapy for hepatoma in-vitro

    International Nuclear Information System (INIS)

    This study attempted to increase BNCT efficiency for hepatoma by a combined treatment of phenylboric acid derivative entrapped lipiodol nanoparticles (PBAD-L nanoparticles) with boric acid. The size of PBAD-L nanoparticles were 400-750 nm at the boron concentrations of 0.3-2.7 mg/ml. After 24 hours the boron concentration in PBAD-L nanoparticles treated human hepatoma HepG2 cells was 112 ppm, while that in rat liver Clone 9 cells was 52 ppm. With the use of 25 μg B/ml boric acid, after 6 hours the boron concentration in HepG2 and Clone 9 cells were 75 ppm and 40 ppm, respectively. In a combined treatment, boron concentration in HepG2 cells which were treated with PBAD-L nanoparticles for 18 hours and then combined with boric acid for 6 hours was 158 ppm. After neutron irradiation, the surviving fraction of HepG2 cells treated with PBAD-L nanoparticles was 12.6%, while that in the ones with a combined treatment was 1.3%. In conclusion, the combined treatment provided a higher boron concentration in HepG2 cells than treatments with either PBAD-L nanoparticles or boric acid, resulting in a higher therapeutic efficacy of BNCT in hepatoma cells. (author)

  6. Apoptosis of human melanoma cells induced by boron neutron capture therapy%硼中子俘获疗法促人黑色素瘤细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    孙婷; 丁大冬; 李斌; 陈桂林; 韦永新; 谢学顺; 杨天权; 吴庭枫; 周幽心

    2013-01-01

    目的 研究硼中子俘获疗法(BNCT)体外杀伤人黑色素瘤细胞的效应及机制.方法 首先检测黑色素瘤细胞A375吸收含硼化合物二羟基苯丙氨酸硼(BPA)的情况,然后采用医院中子照射器(IHNI-1)对含硼(10B)细胞进行照射.克隆存活实验检测细胞的放射敏感性,MTT法检测细胞增殖率,流式细胞术检测凋亡,Western blot检测胞质内细胞色素C表达和caspase-9的激活.结果 BPA孵育24 h,A375细胞10B浓度为(2.884±0.148)μg/107个细胞,达到了BNCT杀伤细胞的要求.富含10B的细胞经中子照射2.1 min后存活分数降低为对照组的58%(t=2.964,P<0.05),细胞经中子照射后24 h增殖率下降为对照组的83%(t=3.286,P<0.05),BNCT组细胞凋亡率达(55.2±7.9)%,明显高于对照组(t =9.754,P<0.05),胞质内细胞色素C水平上升且caspase-9激活程度增加(t=7.625、8.307,P<0.05).结论 BNCT能够杀伤黑色素瘤细胞,其机制可能通过线粒体途径诱导细胞凋亡.%Objective To study the effect and underlying mechanism of boron neutron capture therapy (BNCT) on human melanoma cells.Methods The situation of boronophenylalanine (BPA) uptake of human melanoma cells A375 was detected and then the boron-10 (10B) enriched cells were irradiated by an in-hospital neutron irradiator (IHNI-1).The radiation sensitivity was measured using clonogenic survival assay,the proliferation was examined by MTT assay,apoptosis was determined using flow cytometry,and the protein expression of cytochrome C in cytosol and activation of caspase-9 was detected by Western blot.Results 10B concentration in A375 cells approached to (2.884 ± 0.148)μg/107 cells after 24 h culture with BPA,which met the requirement of BNCT.At 2.1 min after neutron radiation,the survival fraction of BNCT group was decreased to 58% of control (t =2.964,P < 0.05).At 24 h after BNCT,the cell viability was decreased to 83% of control (t =3.286,P < 0.05),the apoptosis ratio was (55.2 ± 7

  7. Maleimide-functionalized closo-dodecaborate albumin conjugates (MID-AC): Unique ligation at cysteine and lysine residues enables efficient boron delivery to tumor for neutron capture therapy.

    Science.gov (United States)

    Kikuchi, Shunsuke; Kanoh, Daisuke; Sato, Shinichi; Sakurai, Yoshinori; Suzuki, Minoru; Nakamura, Hiroyuki

    2016-09-10

    Maleimide-conjugating closo-dodecaborate sodium form 5c (MID) synthesized by the nucleophilic ring-opening reaction of closo-dodecaborate-1,4-dioxane complex 2 with tetrabutylammonium (TBA) azide was found to conjugate to free SH of cysteine and lysine residues in BSA under physiological conditions, forming highly boronated BSA that showed high and selective accumulation in tumor and significant tumor growth inhibition in colon 26 tumor-bearing mice subjected to thermal neutron irradiation. PMID:27422608

  8. Identification of early and distinct glioblastoma response patterns treated by boron neutron capture therapy not predicted by standard radiographic assessment using functional diffusion map

    International Nuclear Information System (INIS)

    Radiologic response of brain tumors is traditionally assessed according to the Macdonald criteria 10 weeks from the start of therapy. Because glioblastoma (GB) responds in days rather than weeks after boron neutron capture therapy (BNCT) that is a form of tumor-selective particle radiation, it is inconvenient to use the Macdonald criteria to assess the therapeutic efficacy of BNCT by gadolinium-magnetic resonance imaging (Gd-MRI). Our study assessed the utility of functional diffusion map (fDM) for evaluating response patterns in GB treated by BNCT. The fDM is an image assessment using time-dependent changes of apparent diffusion coefficient (ADC) in tumors on a voxel-by-voxel approach. Other than time-dependent changes of ADC, fDM can automatically assess minimum/maximum ADC, Response Evaluation Criteria In Solid Tumors (RECIST), and the volume of enhanced lesions on Gd-MRI over time. We assessed 17 GB patients treated by BNCT using fDM. Additionally, in order to verify our results, we performed a histopathological examination using F98 rat glioma models. Only the volume of tumor with decreased ADC by fDM at 2 days after BNCT was a good predictor for GB patients treated by BNCT (P value = 0.022 by log-rank test and 0.033 by wilcoxon test). In a histopathological examination, brain sections of F98 rat glioma models treated by BNCT showed cell swelling of both the nuclei and the cytoplasm compared with untreated rat glioma models. The fDM could identify response patterns in BNCT-treated GB earlier than a standard radiographic assessment. Early detection of treatment failure can allow a change or supplementation before tumor progression and might lead to an improvement of GB patients’ prognosis

  9. Boron Neutron Capture Therapy (BNCT) in an Oral Precancer Model: Therapeutic Benefits and Potential Toxicity of a Double Application of BNCT with a Six-Week Interval

    International Nuclear Information System (INIS)

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA ((GB-10 + BPA)-BNCT) or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.

  10. Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas.

    Directory of Open Access Journals (Sweden)

    Subhash Chandra

    Full Text Available The development of new boron-delivery agents is a high priority for improving the effectiveness of boron neutron capture therapy. In the present study, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC as a mixture of its L- and D-enantiomers was evaluated in vivo using the B16 melanoma model for the human tumor and the F98 rat glioma as a model for human gliomas. A secondary ion mass spectrometry (SIMS based imaging instrument, CAMECA IMS 3F SIMS Ion Microscope, was used for quantitative imaging of boron at 500 nm spatial resolution. Both in vivo and in vitro studies in melanoma models demonstrated that boron was localized in the cytoplasm and nuclei with some cell-to-cell variability. Uptake of cis-ABCPC in B16 cells was time dependent with a 7.5:1 partitioning ratio of boron between cell nuclei and the nutrient medium after 4 hrs. incubation. Furthermore, cis-ABCPC delivered boron to cells in all phases of the cell cycle, including S-phase. In vivo SIMS studies using the F98 rat glioma model revealed an 8:1 boron partitioning ratio between the main tumor mass and normal brain tissue with a 5:1 ratio between infiltrating tumor cells and contiguous normal brain. Since cis-ABCPC is water soluble and can cross the blood-brain-barrier via the L-type amino acid transporters (LAT, it may accumulate preferentially in infiltrating tumor cells in normal brain due to up-regulation of LAT in high grade gliomas. Once trapped inside the tumor cell, cis-ABCPC cannot be metabolized and remains either in a free pool or bound to cell matrix components. The significant improvement in boron uptake by both the main tumor mass and infiltrating tumor cells compared to those reported in animal and clinical studies of p-boronophenylalanine strongly suggest that cis-ABCPC has the potential to become a novel new boron delivery agent for neutron capture therapy of gliomas and melanomas.

  11. Recent progress of basic studies for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Koji [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst

    2001-01-01

    Epi-thermal neutron irradiation for malignant brain tumors is the mainstream of recent studies in boron neutron capture therapy. To improve the depth dose distribution in water phantom, a LiF plate (5 mmt, 6 cm {phi}) is located in the front of center axis of KUR irradiation field. Thermal neutron flux at the center surface of the water phantom is shielded by the LiF plate. The depth and peripheral dose distribution of thermal neutron flux becomes to uniform. The boron dose at 6 cm in the depths of the phantom increases to about 1.71 times greater than the usual irradiation field. Two-kinds of nuclear medicines, Na{sub 2}B{sub 12}H{sub 11}SH(BSH) and Borono Phenyl Alanine (BPA), have been used for boron neutron capture therapy. BPA-ol, a new medicine of modified compound of the BPA can be used effectively on hyperthermia of cancer parts to 42 - 43degC. Cell death and mutagenesis of chinese hamster ovary cells (CHO) after pre-incubation with BPA and BSH are investigated for the validity of boron neutron capture therapy. The effects of BSH on the cell death and the mutagenesis are few in comparison with those of BPA. It is thought that the BSH is not accumulated in the cell. The effects of boron neutron capture therapy on sensitivity of intratumor quiescent and total cells are investigated. (Suetake, M.)

  12. Recent advances in neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.

    1985-01-01

    The application of the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since the discovery of the neutron. This paper briefly summarizes data describing recently developed boronated compounds with evident tumor specificity and extended biological half-lives. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT using band-pass filtered beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 24 refs., 3 figs., 3 tabs.

  13. Gadolinium as a Neutron Capture Therapy Agent

    Science.gov (United States)

    Shih, Jing-Luen Allen

    The clinical results of treating brain tumors with boron neutron capture therapy are very encouraging and researchers around the world are once again making efforts to develop this therapeutic modality. Boron-10 is the agent receiving the most attention for neutron capture therapy but ^{157}Gd is a nuclide that also holds interesting properties of being a neutron capture therapy agent. The objective of this study is to evaluate ^{157}Gd as a neutron capture therapy agent. In this study it is determined that tumor concentrations of about 300 mug ^{157}Gd/g tumor can be achieved in brain tumors with some FDA approved MRI contrast agents such as Gd-DTPA and Gd-DOTA, and up to 628 mug ^{157 }Gd/g tumor can be established in bone tumors with Gd-EDTMP. Monte Carlo calculations show that with only 250 ppm of ^{157}Gd in tumor, neutron capture therapy can deliver 2,000 cGy to a tumor of 2 cm diameter or larger with 5 times 10^{12} n/cm ^2 fluence at the tumor. Dose measurements which were made with films and TLD's in phantoms verified these calculations. More extended Monte Carlo calculations demonstrate that neutron capture therapy with Gd possesses comparable dose distribution to B neutron capture therapy. With 5 times 10^{12 } n/cm^2 thermal neutrons at the tumor, Auger electrons from the Gd produced an optical density enhancement on the films that is similar to the effect caused by about 300 cGy of Gd prompt gamma dose which will further enhance the therapeutic effects. A technique that combines brachytherapy with Gd neutron capture therapy has been evaluated. Monte Carlo calculations show that 5,000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm^3 with a 3-plane implant of a total of 9 Gd needles. The tumor to normal tissue advantage of this method is as good as ^{60} Co brachytherapy. Measurements of prompt gamma dose with films and TLD-700's in a lucite phantom verify the Monte Carlo evaluation. A technique which displays the Gd

  14. Neutron capture therapy. Principles and applications

    International Nuclear Information System (INIS)

    State of the art report on neutron capture therapy. Summarizes the progress made in recent decades. Multidisciplinary approach. Written by the most experienced specialists Neutron capture therapy (NCT) is based on the ability of the non-radioactive isotope boron-10 to capture thermal neutrons with very high probability and immediately to release heavy particles with a path length of one cell diameter. This in principle allows for tumor cell-selective high-LET particle radiotherapy. NCT is exciting scientifically but challenging clinically, and a key factor in success is close collaboration among very different disciplines. This book provides a comprehensive summary of the progress made in NCT in recent years. Individual sections cover all important aspects, including neutron sources, boron chemistry, drugs for NCT, dosimetry, and radiation biology. The use of NCT in a variety of malignancies and also some non-malignant diseases is extensively discussed. NCT is clearly shown to be a promising modality at the threshold of wider clinical application. All of the chapters are written by experienced specialists in language that will be readily understood by all participating disciplines.

  15. 用于硼中子俘获治疗的超热中子束理论设计%Theoretical design of an epithermal neutron beam for boron neutron capture therapy

    Institute of Scientific and Technical Information of China (English)

    张晓敏; 潘洁; 宁静; 谢向东; 杨国山

    2010-01-01

    Objective To design a scheme of epithermal neutron beam used for boron neutron capture therapy (BNCT).Methods Based on Tsinghua University experimental reactor and its No.1 passage,five schemes comprised of moderate materials,absorbing materials of thermal neutron and γ shielding materials were designed according to different locations of materials placed in No.1 passage.To select a proper scheme from five schemes,the neutron fluence rate,the neutron dose rate and γ dose rate at exit of beam in each scheme were calculated with Monte Carlo simulating methods and then contrasted with BNCT technique criterion.Results The scheme of epithermal neutron beam meeting technical requirements of BNCT was obtained,in which the thickness of moderate material,absorbing materials of thermal neutron and γ shielding materials are 53.5 cm,2 mm and 9 cm,respectively.Conclusions The theoretical scheme could provide some reference to realize BNCT on reactor.%目的 设计用于硼中子俘获治疗(BNCT)的超热中子束理论方案.方法 基于清华大学试验核反应堆,以其1号孔道为材料布放孔道,设计了由慢化材料、热中子吸收材料、γ屏蔽材料组成,但材料布放位置具有差异的5种理论方案;利用蒙特卡罗(MC)模拟方法,分别计算5种方案束出口处的中子注量率、剂量率及γ剂量率值,通过与BNCT技术指标对比,从5种方案中选择一种合适的方案.结果 得到了一个符合BNCT各项技术指标的超热中子束理论方案,其慢化材料厚度为53.5 cm、热中子吸收材料厚度为2 mm、γ屏蔽材料厚度为9 cm.结论 本研究给出的超热中子束理论方案为基于反应堆实现BNCT提供一定的理论参考.

  16. Neutron capture reactions at DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (> or approx.100 μg) and/or radioactive (241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data

  17. Phase II clinical study of boron neutron capture therapy combined with X-ray radiotherapy/temozolomide in patients with newly diagnosed glioblastoma multiforme-Study design and current status report

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shinji, E-mail: neu046@poh.osaka-med.ac.jp [Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 (Japan); Miyatake, Shin-Ichi; Hiramatsu, Ryo; Hirota, Yuki; Miyata, Shiro; Takekita, Yoko; Kuroiwa, Toshihiko [Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 (Japan); Kirihata, Mitsunori [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8931 (Japan); Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji [Kyoto University Research Reactor Institute, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-12-15

    Recently, we reported our clinical experiences of boron neutron capture therapy (BNCT) for the newly diagnosed glioblastoma. The major differences of our protocol from the other past studies were simultaneous use of both sodium borocapate and boronophenylalanine, and combination with fractionated X-ray irradiation. These results showed the efficacy of combination therapy with external beam X-ray irradiation and BNCT. For our future study, we planned the multi-centric phase II clinical study for newly diagnosed glioblastoma patients in Japan (OSAKA-TRIBRAIN0902, NCT00974987).

  18. Synovectomy by Neutron capture; Sinovectomia por captura de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Torres M, C. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    1998-12-31

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu{sup 239} Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  19. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  20. Neutron radiation capture

    International Nuclear Information System (INIS)

    For all stable and experimentally studied radionuclides evaluated data are presented on cross sections of thermal neutrons, on resonance integrals and medium neutron cross sections with energy of 30 KeV. Refs, figs and tabs

  1. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy

    OpenAIRE

    Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter

    2015-01-01

    Background Neutron capture therapy for glioblastoma has focused mainly on the use of 10B as neutron capture isotope. However, 157Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The f...

  2. Research needs for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted.

  3. Research needs for neutron capture therapy

    International Nuclear Information System (INIS)

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted

  4. Proceedings of the first international symposium on neutron capture therapy

    International Nuclear Information System (INIS)

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration

  5. Proceedings of the first international symposium on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Brownell, G.L. (eds.)

    1982-01-01

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

  6. Molecular medicine: Synthesis and in-vivo detection of agents for use in boron neutron capture therapy. Final report, May 1, 1993--April 30, 1996

    International Nuclear Information System (INIS)

    During the early stages of this project, the author developed the first whole-body boron MRI technique. They found that, for the first time, information concerning both the location and the quantity of boron present in living tissues could be obtained through the use of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) respectively. However, it was also discovered that boron MRI was not without problems. Both naturally occurring isotopes of boron (boron-10 and boron-11) possess magnetic moments, making them amenable to MR detection. The author found that there are difficulties in obtaining boron MRI images which are a consequence of the inherently poor magnetic resonance characteristics of the boron nucleus. The magnetogyric ratios of both boron-10 and boron-11 are smaller than those of hydrogen, which makes boron much less sensitive to magnetic resonance detection. In addition, both isotopes of boron posses nuclear electric quadrupole moments which serve to shorten their magnetization relaxation times; this causes the MR signal to broaden and decay rapidly, often before the receiver coils can collect the MR information. The rapid rate of signal decay is enhanced in biological systems which leads to further signal loss and a decrease in the signal to noise ratio (SNR)

  7. Molecular medicine: Synthesis and in-vivo detection of agents for use in boron neutron capture therapy. Final report, May 1, 1993--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.

    1997-08-01

    During the early stages of this project, the author developed the first whole-body boron MRI technique. They found that, for the first time, information concerning both the location and the quantity of boron present in living tissues could be obtained through the use of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) respectively. However, it was also discovered that boron MRI was not without problems. Both naturally occurring isotopes of boron (boron-10 and boron-11) possess magnetic moments, making them amenable to MR detection. The author found that there are difficulties in obtaining boron MRI images which are a consequence of the inherently poor magnetic resonance characteristics of the boron nucleus. The magnetogyric ratios of both boron-10 and boron-11 are smaller than those of hydrogen, which makes boron much less sensitive to magnetic resonance detection. In addition, both isotopes of boron posses nuclear electric quadrupole moments which serve to shorten their magnetization relaxation times; this causes the MR signal to broaden and decay rapidly, often before the receiver coils can collect the MR information. The rapid rate of signal decay is enhanced in biological systems which leads to further signal loss and a decrease in the signal to noise ratio (SNR).

  8. Monte-Carlo simulation of primary stochastic effects induced at the cellular level in boron neutron capture therapy; Simulation Monte-Carlo des effets stochastiques primaires induits au niveau cellulaire lors de la therapie par capture de neutrons sur le {sup 10}B

    Energy Technology Data Exchange (ETDEWEB)

    Cirioni, L.; Patau, J.P.; Nepveu, F. [Universite Paul Sabatier, 31 - Toulouse (France)

    1998-04-01

    A Monte Carlo code is developed to study the action of particles in Boron Neutron Capture Therapy (BNCT). Our aim is to calculate the probability of dissipating a lethal dose in cell nuclei. Cytoplasmic and nuclear membranes are considered as non-concentric ellipsoids. All geometrical parameters may be adjusted to fit actual configurations. The reactions {sup 10}B(n,{gamma} {alpha}){sup 7}Li and {sup 14}N(n,p) {sup 14}C create heavy ions which slow clown losing their energy. Their trajectories can be simulated taking into account path length straggling. The contribution of each reaction to the deposited dose in different cellular compartments can be studied and analysed for any distribution of {sup 10}B. (authors)

  9. Current status of neutron capture therapy

    International Nuclear Information System (INIS)

    There are about 6000 new glioblastoma multiform brain tumours diagnosed each year in the United States of America alone. This cancer is usually fatal within six months of diagnosis even with current standard treatments. Research on boron neutron capture therapy (BNCT) has been considered as a method of potentially curing such cancers. There is a great interest at under-utilised research reactors institutions to identify new medical utilization, attractive to the general public. Neutron capture therapy is a true multidisciplinary topic with a large variety of individuals involved. This publication attempts to provide current information for all those thinking about being involved with NCT, based on the knowledge and experience of those who have pioneered the treatment. It covers the whole range of NCT from designing reactor conversions or new facilities, through to clinical trials and their effectiveness. However, since most work has been done with boron capture therapy for brain tumours using modified thermal research reactors, this tends to be the focus of the report. One of the factors which need to be addressed at the beginning is the timing of the further development of NCT facilities. It should be emphasised that all current work is still at the research stage. Many of those now involved believe that there is little need for many more research facilities until such time as the treatment shows more promising results. For this and other reasons discussed in the report, very serious consideration should be given by research reactor owners and operators before spending large sums of money converting their facilities for NCT

  10. Tratamiento del cáncer por captura neutrónica de boro: Su aplicación al carcinoma indiferenciado de tiroides Boron neutron capture therapy applied to undifferentiated thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Mario A. Pisarev

    2006-12-01

    Full Text Available El cáncer indiferenciado de tiroides es un tumor muy agresivo, de muy mal pronóstico y sin tratamiento efectivo. La terapia por captura neutrónica de boro (BNCT podría ser una alternativa para el tratamiento de esta enfermedad. Se basa en la captación selectiva de boro por el tumor y su activación por un haz de neutrones. El boro activado libera un núcleo de litio-7 y una partícula alfa, las cuales tienen una alta transmisión linear de energía (linear energy transfer, LET y un alcance de 5-9 µm, destruyendo el tumor. En estudios previos hemos mostrado que la línea celular humana de cáncer indiferenciado de tiroides (ARO tiene una captación selectiva de borofenilalanina (10BPA tanto in vitro como después de ser implantada en ratones NIH nude. También demostramos en estos animales inyectados con BPA e irradiados con un haz de neutrones térmicos, un 100% de control sobre el crecimiento tumoral y un 50% de cura histológica. En trabajos posteriores mostramos que la porfirina 10BOPP tetrakis-carborane carboxylate ester de 2,4-bis-(a,b-dihydroxyethyl-deutero-porphyrin IX cuando es inyectada 5-7 días antes que el BPA se obtiene una concentración tumoral de boro de aproximadamente el doble que el BPA solo (45-38 ppm vs. 20 ppm. La posterior irradiación con neutrones mostró un 100% de remisión completa en animales con tumores cuyo volumen pre-tratamiento era de 50 mm³ o menor. Los perros padecen CIT espontáneo, con un comportamiento biológico similar al humano, y una captación selectiva de BPA, abriendo la posibilidad de su tratamiento por BNCT.Undifferentiated thyroid carcinoma (UTC is an aggressive tumor with a poor prognosis due to the lack of an effective treatment. Boron neutron capture therapy (BNCT is based on the selective uptake of boron by the tumor and its activation by a neutron beam, releasing lithium-7 and an alpha particle that will kill the tumor cells by their high linear energy transfer (LET. In previous

  11. SU-E-J-104: Single Photon Image From PET with Insertable SPECT Collimator for Boron Neutron Capture Therapy: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J; Yoon, D; Suh, T [The catholic University of Korea, College of Medicine/Graduate School of Medicine, Seoul (Korea, Republic of); Hong, K [Molecular Imaging Program at Stanford (MIPS), Palo Alto, CA (United States)

    2014-06-01

    Purpose: The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the BNCT. Methods: Data from the PET module, neutron source, and collimator was entered in the Monte Carlo n-particle extended (MCNPX) source code. The coincidence events were first compiled on the PET detector, and then, the events of the prompt gamma ray were collected after neutron emission by using a single photon emission computed tomography (SPECT) collimator on the PET. The obtaining of full width at half maximum (FWHM) values from the energy spectrum was performed to collect effective events for reconstructed image. In order to evaluate the images easily, five boron regions in a brain phantom were used. The image profiles were extracted from the region of interest (ROI) of a phantom. The image was reconstructed using the ordered subsets expectation maximization (OSEM) reconstruction algorithm. The image profiles and the receiver operating characteristic (ROC) curve were compiled for quantitative analysis from the two kinds of reconstructed image. Results: The prompt gamma ray energy peak of 478 keV appeared in the energy spectrum with a FWHM of 41 keV (6.4%). On the basis of the ROC curve in Region A to Region E, the differences in the area under the curve (AUC) of the PET and SPECT images were found to be 10.2%, 11.7%, 8.2% (center, Region C), 12.6%, and 10.5%, respectively. Conclusion: We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No

  12. SU-E-J-104: Single Photon Image From PET with Insertable SPECT Collimator for Boron Neutron Capture Therapy: A Feasibility Study

    International Nuclear Information System (INIS)

    Purpose: The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the BNCT. Methods: Data from the PET module, neutron source, and collimator was entered in the Monte Carlo n-particle extended (MCNPX) source code. The coincidence events were first compiled on the PET detector, and then, the events of the prompt gamma ray were collected after neutron emission by using a single photon emission computed tomography (SPECT) collimator on the PET. The obtaining of full width at half maximum (FWHM) values from the energy spectrum was performed to collect effective events for reconstructed image. In order to evaluate the images easily, five boron regions in a brain phantom were used. The image profiles were extracted from the region of interest (ROI) of a phantom. The image was reconstructed using the ordered subsets expectation maximization (OSEM) reconstruction algorithm. The image profiles and the receiver operating characteristic (ROC) curve were compiled for quantitative analysis from the two kinds of reconstructed image. Results: The prompt gamma ray energy peak of 478 keV appeared in the energy spectrum with a FWHM of 41 keV (6.4%). On the basis of the ROC curve in Region A to Region E, the differences in the area under the curve (AUC) of the PET and SPECT images were found to be 10.2%, 11.7%, 8.2% (center, Region C), 12.6%, and 10.5%, respectively. Conclusion: We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No

  13. Blood-brain barrier (BBB) toxicity and permeability assessment after L-(4-¹⁰Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model.

    Science.gov (United States)

    Roda, E; Nion, S; Bernocchi, G; Coccini, T

    2014-10-01

    Since brain tumours are the primary candidates for treatment by Boron Neutron Capture Therapy, one major challenge in the selective drug delivery to CNS is the crossing of the blood-brain barrier (BBB). The present pilot study investigated (i) the transport of a conventional B-containing product (i.e., L-(4-(10)Boronophenyl)alanine, L-(10)BPA), already used in medicine but still not fully characterized regarding its CNS interactions, as well as (ii) the effects of the L-(10)BPA on the BBB integrity using an in vitro model, consisting of brain capillary endothelial cells co-cultured with glial cells, closely mimicking the in vivo conditions. The multi-step experimental strategy (i.e. Integrity test, Filter study, Transport assay) checked L-(10)BPA toxicity at 80 µg Boron equivalent/ml, and its ability to cross the BBB, additionally by characterizing the cytoskeletal and TJ's proteins by immunocytochemistry and immunoblotting. In conclusion, a lack of toxic effects of L-(10)BPA was demonstrated, nevertheless accompanied by cellular stress phenomena (e.g. vimentin expression modification), paralleled by a low permeability coefficient (0.39 ± 0.01 × 10(-3)cm min(-1)), corroborating the scarce probability that L-(10)BPA would reach therapeutically effective cerebral concentration. These findings emphasized the need for novel strategies aimed at optimizing boron delivery to brain tumours, trying to ameliorate the compound uptake or developing new targeted products suitable to safely and effectively treat head cancer. Thus, the use of in vitro BBB model for screening studies may provide a useful early safety assessment for new effective compounds.

  14. Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose–response at five-week follow-up based on retrospective dose assessment in individual rats

    Energy Technology Data Exchange (ETDEWEB)

    Emiliano C. C. Pozzi; Veronica A. Trivilin; Lucas L. Colombo; Andrea Monti Hughes; Silvia I. Thorp; Jorge E. Cardoso; Marcel A. Garabalino; Ana J. Molinari; Elisa M. Heber; Paula Curotto; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Amanda E. Schwint

    2013-11-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 +/- 6.6 for Sham, 7.8 +/- 4.1 for Beam only, 4.4 +/- 5.6 for BPA-BNCT I and 0.45 +/- 0.20 for BPA-BNCT II; tumor nodule weight was 750 +/- 480 mg for Sham, 960 +/- 620 mg for Beam only, 380 +/- 720 mg for BPA-BNCT I and 7.3 +/- 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.

  15. Boron carbide neutron screen for GRR-1 neutron spectrum tailoring

    International Nuclear Information System (INIS)

    The presence of fast neutron spectra in new reactor concepts (such as Gas Cooled Fast Reactor, new generation Sodium Cooled Fast Reactor, Lead Fast Reactor, Accelerator Driven System and nuclear Fusion Reactors) is expected to induce a strong impact on the contained materials, including structural materials (e.g. steels), nuclear fuels, neutron reflecting materials (e.g. beryllium) and tritium breeding materials (for fusion reactors). Therefore, effective operation of these reactors will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Depending on the material, the requirements of a test irradiation can vary. In this work preliminary studies were performed to observe the behavior of the neutron spectrum within a boron carbide neutron screen inserted in a hypothetical reflector test hole of the Greek Research Reactor. Four different screen configurations were simulated with Monte Carlo code TRIPOLI-4. The obtained data showed that the insertion of boron carbide caused not only elimination of the thermal (E < 1 eV) component of the neutron energy spectrum but also absorption of a considerable proportion of the intermediate energy neutrons (1x10-6 MeV < E < 1 MeV). (author)

  16. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    OpenAIRE

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be u...

  17. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    OpenAIRE

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector ...

  18. Analytical applications of neutron capture gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Prompt gamma-rays from thermal induced nuclear reactions have been used to estimate the boron, chlorine and phosphorus contents in industrial and reference materials. A neutron capture gamma-ray spectroscopy facility for analytical purposes using 252-Cf sources has been designed and calibrated. The facility is principally designed for the measurement of the prompt gamma-ray spectra obtained due to thermal neutron capture by means of the internal target geometry. The capture spectra were recorded using a high resolution Ge(Li) system. The designed facility and the system used in this work are described in detail. A weight of 50 to 100 gm of each sample in a power or liquid form encapsulated in a polyethene container was used. Sensitivity curves using different standard concentration values of B, Cl and P, were constructed. The concentration range was from 0.005 to 30%. (orig.)

  19. SIMS ion microscopy imaging of boronophenylalanine (BPA) and 13C15N-labeled phenylalanine in human glioblastoma cells: Relevance of subcellular scale observations to BPA-mediated boron neutron capture therapy of cancer

    Science.gov (United States)

    Chandra, Subhash; Lorey, Daniel R., II

    2007-02-01

    p-Boronophenylalanine (BPA) is a clinically approved boron neutron capture therapy (BNCT) agent currently being used in clinical trials of glioblastoma multiforme, melanoma and liver metastases. Secondary ion mass spectrometry (SIMS) observations from the Cornell SIMS Laboratory provided support for using a 6 h infusion of BPA, instead of a 2 h infusion, for achieving higher levels of boron in brain tumor cells. These observations were clinically implemented in Phase II experimental trials of glioblastoma multiforme in Sweden. However, the mechanisms for higher BPA accumulation with longer infusions have remained unknown. In this work, by using 13C15N-labeled phenylalanine and T98G human glioblastoma cells, comparisons between the 10B-delivery of BPA and the accumulation of labeled phenylalanine after 2 and 6 h treatments were made with a Cameca IMS-3f SIMS ion microscope at 500 nm spatial resolution in fast frozen, freeze-fractured, freeze-dried cells. Due to the presence of the Na-K-ATPase in the plasma membrane of most mammalian cells, the cells maintain an approximately 10/1 ratio of K/Na in the intracellular milieu. Therefore, the quantitative imaging of these highly diffusible species in the identical cell in which the boron or labeled amino acid was imaged provides a rule-of-thumb criterion for validation of SIMS observations and the reliability of the cryogenic sampling. The labeled phenylalanine was detected at mass 28, as the 28(13C15N)- molecular ion. Correlative analysis with optical and confocal laser scanning microscopy revealed that fractured freeze-dried glioblastoma cells contained well-preserved ultrastructural details with three discernible subcellular regions: a nucleus or multiple nuclei, a mitochondria-rich perinuclear cytoplasmic region and the remaining cytoplasm. SIMS analysis revealed that the overall cellular signals of both 10B from BPA and 28CN- from labeled phenylalanine increased approximately 1.6-fold between the 2 and 6 h exposures

  20. Neutron capture cross section measurement techniques

    International Nuclear Information System (INIS)

    A review of currently-used techniques to measure neutron capture cross sections is presented. Measurements involving use of total absorption and Moxon-Rae detectors are based on low-resolution detection of the prompt γ-ray cascades following neutron captures. In certain energy ranges activation methods are convenient and useful. High resolution γ-ray measurements with germanium detectors can give information on the parameters of resonance capture states. The use of these techniques is described. (U.S.)

  1. A boron-coated ionization chamber for ultra-cold neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, D.J., E-mail: dsalvat@indiana.edu [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Morris, C.L.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Adamek, E.R. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Bacon, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Hickerson, K.P. [California Institute of Technology, Pasadena, CA 91125 (United States); Hoagland, J.; Holley, A.T. [North Carolina State University, Raleigh, NC 27695 (United States); Liu, C.-Y. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Makela, M.; Ramsey, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Reid, A. [North Carolina State University, Raleigh, NC 27695 (United States); Rios, R. [Idaho State University, Pocatello, ID 83209 (United States); Saunders, A.; Sjue, S.K.L. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); VornDick, B.; Young, A.R. [North Carolina State University, Raleigh, NC 27695 (United States)

    2012-11-01

    The design and performance of a boron-coated ionization chamber for the detection of ultra-cold neutrons (UCN) are presented. We detect UCN from the solid deuterium-based UCN source at the Los Alamos Neutron Science Center. Our results indicate comparable efficiency to {sup 3}He ionization chambers and proportional counters currently used at the UCN source. In addition, the ion chamber is used to detect thermal neutrons; a comparison of the thermal neutron and UCN pulse-height spectra indicates that UCN mostly capture near the layer surface.

  2. Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Elena; Enders, A.; Dowben, P.A. [University of Nebraska-Lincoln, Department of Physics and Astronomy, Lincoln, NE (United States); James, Robinson; Chiluwal, Umesh; Gapfizi, Richard; Tae, Jae-Do; Driver, M. Sky; Kelber, Jeffry A. [University of North Texas, Department of Chemistry, Denton, TX (United States); Pasquale, Frank L. [University of North Texas, Department of Chemistry, Denton, TX (United States); Lam Research Corporation, PECVD Business Unit, Tualatin, OR (United States); Colon Santana, Juan A. [Center for Energy Sciences Research, Lincoln, NE (United States)

    2014-09-19

    Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B{sub 10}C{sub 2}H{sub X}), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I-V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials. (orig.)

  3. Accelerator based neutron source for the neutron capture therapy at hospital

    International Nuclear Information System (INIS)

    Accelerator source of epithermal neutrons for the hospital-based boron neutron capture therapy is proposed and discussed. Kinematically collimated neutrons are produced via near-threshold 7Li(p, n)7Be reaction at proton energies of 1.883 - 1.9 MeV. Steady-state accelerator current of 40 mA allows to provide therapeutically useful beams with treatment times of tens of minutes. The basic components of the facility are a hydrogen negative ion source, an electrostatic tandem accelerator with vacuum insulation, a sectioned rectifier, and a thin lithium neutron generating target on the surface of tungsten disk cooled by liquid metal heat carrier. Design features of facility components are discussed. The possibility of stabilization of proton energy is considered. At proton energy of 2.5 MeV the neutron beam production for NCT usage after moderation is also considered. (author)

  4. The measurement of thermal neutron flux depression for determining the concentration of boron in blood

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a form of targeted radiotherapy that relies on the uptake of the capture element boron by the volume to be treated. The treatment procedure requires the measurement of boron in the patient's blood. The investigation of a simple and inexpensive method for determining the concentration of the capture element 10B in blood is described here. This method, neutron flux depression measurement, involves the determination of the flux depression of thermal neutrons as they pass through a boron-containing sample. It is shown via Monte Carlo calculations and experimental verification that, for a maximum count rate of 1x104 counts/s measured by the detector, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 32±2 min. For a source activity of less than 1.11x1011 Bq and a maximum count rate of less than 1x104 counts/s, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 58±3 min. It has also been shown that this technique can be applied to the measurement of the concentration of any element with a high thermal neutron cross section such as 157Gd. (author)

  5. Neutron beam monitor based on a boron-coated GEM

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian-Rong; LI Yi; SUN Zhi-Jia; LIU Ben; WANG Yan-Feng; YANG Gui-An; ZHOU Liang; XU Hong; DONG Jing; YANG Lei

    2011-01-01

    A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on one surface of the aluminum cathode plate as the neutron convertor. 96 channel pads with an area of 8 mm×8 mm each are used for fast signal readout.In order to study the basic characteristics of a boron-coated GEM, several irradiation tests were carried out with α source 239pu and neutron source 241Am(Be). The signal induced by the neutron source has a high signal-to-noise ratio. A clear image obtained from α source 239pu is presented, which shows that the neutron beam monitor based on a boron-coated GEM has a good two-dimensional imaging ability.

  6. Characterization of a boron carbide-based polymer neutron sensor

    Science.gov (United States)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  7. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  8. Nucleosynthesis involving mainly neutron capture processes IV

    International Nuclear Information System (INIS)

    Nucleosynthesis plays a crucial role in the physics of stellar evolution. Heavy nuclei abundances in the universe provide a concrete evidence for the operation of specific nucleosynthesis processes. The slow (s-) and rapid (r-) processes are the main processes responsible for the synthesis of nuclei beyond iron. i.e. synthesis of nuclei heavier than Fe by neutron capture. In the preceding papers, (Paper I, Paper II, Paper III) we have reviewed important neutron capture processes in investigating the mechanism of stellar nucleosynthesis, i.e. various neutron producing reactions (neutron sources) during stellar nucleosynthesis in different evolving stages - main sequence stage, red giant stage, supernova stage and neutron star stage. Neutrons produced in one stage come into next stage as remnant and play an active role to begin nucleosynthesis in the next stage, and ultimately to the formation of neutron star. We have indicated various constraints and unsolved problems in each stage. With the help of advanced observational technology and numerical simulations considerable efforts have been made to resolve the unsolved problems in nuclear astrophysics in recent years. Analysis of those observed parameters may give rise to significant improvement towards understanding the physics of stellar nucleosynthesis. In the present review, we have updated our previous attempt by incorporating those significant improvements in the theory of neutron capture nucleosynthesis based upon observations, theoretical calculations and numerical simulations. (author)

  9. A novel boron-loaded liquid scintillator for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Bentoumi, G.; Dai, X.; Pruszkowski, E.; Li, L.; Sur, B., E-mail: bentoumg@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-06-15

    A boron-loaded liquid scintillator (LS) has been optimized for neutron detection application in a high gamma field environment. It is composed of the solvent linear alkylbenzene (LAB), a boron containing material, o-carborane (C{sub 2}B{sub 10}H{sub 12}); a fluor, 2,5-diphenyloxazole (PPO); and a wavelength shifter, 1,4-bis[2-methylstyryl] benzene (bis-MSB). Preparation of the liquid scintillator and optimization of its chemical composition are described. The boron-loaded LS has been tested with a neutron beam at the National Research Universal (NRU) reactor. A peak at an equivalent energy of 60 keV is observed in the energy spectrum and is attributed to neutrons. The results confirm the possibility of using B-10 loaded scintillator as a sensitive medium for neutron detection in a relatively large background of gamma rays. (author)

  10. Boron-10 layers, Neutron Reflectometry and Thermal Neutron Gaseous Detectors

    CERN Document Server

    Piscitelli, Francesco

    2014-01-01

    Nowadays neutron facilities are going toward higher fluxes, e.g. the European Spallation Source (ESS) in Lund (Sweden), and this translates into a higher demand in the instrument performances. Because of its favorable properties,He-3 has been the main actor in thermal neutron detection for years. Starting in about 2001 the He-3 stockpile has been declining. The world is now experiencing the shortage of He-3. This makes the construction of large area detectors (several squared meters) not realistic anymore. A way to reduce the He-3 demand for those applications is to move users to alternative technologies, such as Boron-10. Although it is absolutely necessary to replace He-3 for large area applications, this is not the main issue for what concerns small area detectors for which the research is focused on improving their performances. Some technologies appear promising, though implementation would likely present technical challenges. There are several aspects that must be investigated in order to validate those...

  11. Neutron capture by hook or by crook

    Science.gov (United States)

    Mosby, Shea

    2016-03-01

    The neutron capture reaction is a topic of fundamental interest for both heavy element (A>60) nucleosynthesis and applications in such fields as nuclear energy and defense. The full suite of interesting isotopes ranges from stable nuclei to the most exotic, and it is not possible to directly measure all the relevant reaction rates. The DANCE instrument at Los Alamos provides direct access to the neutron capture reaction for stable and long-lived nuclei, while Apollo coupled to HELIOS at Argonne has been developed as an indirect probe for cases where a direct measurement is impossible. The basic techniques and their implications will be presented, and the status of ongoing experimental campaigns to address neutron capture in the A=60 and A=100 mass regions will be discussed.

  12. Neutron capture cross section of Am241

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for En<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. Γn neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553±7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  13. Cubic boron nitride- a new material for ultracold neutron application

    International Nuclear Information System (INIS)

    For the first time, the Fermi potential of cubic boron nitride (cBN) was measured at the ultra cold neutron source at the TRIGA reactor, Mainz using the time of flight method (TOF). The investigated samples have a Fermi potential of about 300 neV. Because of its good dielectric characteristics, cubic boron nitride could be used as suitable coating for insulator in storage chambers of future EDM projects. This talk presents recent results and an outlook on further investigations.

  14. Boron-Lined Multitube Neutron Proportional Counter Test

    Energy Technology Data Exchange (ETDEWEB)

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, “multitube” proportional counter manufactured by Centronic Ltd. (Surry, U.K. and Houston, TX). This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detector.

  15. Boron-lined proportional counters with improved neutron sensitivity

    CERN Document Server

    Dighe, P M; Prasad, K R; Kataria, S K; Athavale, S N; Pappachan, A L; Grover, A K

    2003-01-01

    Boron-lined proportional counters with higher neutron sensitivity have been developed by introducing baffle structures within the sensitive volume. the results are compared to devices developed with multiple cathode assemblies in a single enclosure. in either case, the increase in the boron-coated surface area results in higher neutron sensitivity. one of these counters has 51 annular baffles coated with natural boron with 10 mm hole for the anode wire to pass through. filled with p-10 gas at 20 cm hg, it has an overall diameter of 30 and 300 mm length. multiple dip coating method was employed for better uniformity in boron thickness. the neutron sensitivity of this counter is 1.6 cps/nv, which is 2.5 times that of a counter with standard electrode geometry. another counter was developed with three cathode assemblies (30 mm IDx300 mm) coated with 92% sup 1 sup 0 B while the third has seven assemblies coated with natural boron (16 mm IDx750 mm length). the neutron sensitivity is 10 and 5.5 cps/nv, respectively...

  16. Design of an accelerator-based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    The boron neutron capture therapy is mainly suited in the treatment of some tumor kinds which revealed ineffective to the traditional radiotherapy. In order to take advantage of such a therapeutic modality in hospital environments, neutron beams of suitable energy and flux levels provided by compact size facilities are needed. The advantages and drawbacks of several neutron beams are here analysed in terms of therapeutic gains. In detail the GEANT-3/MICAP simulations show that high tumor control probability, with sub-lethal dose at healthy tissues, can be achieved by using neutron beams of few keV energy having a flux of about 109 neutrons/(cm2 s). To produce such a neutron beam, the feasibility of a proton accelerator is investigated. In particular an appropriate choice of the radiofrequency parameters (modulation, efficiency of acceleration, phase shift, etc.) allows the development of relatively compact accelerators, having a proton beam current of 30 mA and an energy of 2 MeV, which could eventually lead to setting up of hospital-based neutron facilities.

  17. Neutron capture therapy of ocular melanoma: dosimetry and microdosimetry approaches; Therapie par capture de neutrons des melanomes oculaires: approches dosimetrique et microdosimetrique

    Energy Technology Data Exchange (ETDEWEB)

    Pignol, J.P.; Methlin, G. [Centre Paul Strauss, 67 - Strasbourg (France); Abbe, J.C. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Stampfler, A. [Strasbourg-1 Univ., 67 (France); Lefebvre, O. [Faculte de Medecine, 67 - Strasbourg (France); Sahel, J. [Centre Hospitalier Universitaire, 67 - Strasbourg (France)

    1994-06-01

    Neutron capture therapy (NCT) aims at destroying cancerous cells with the {alpha} and {sup 7}Li particles produced by the neutron capture reaction on {sup 10}B. This note reports on the study of the boron distribution in tissues on an animal model (nude mice) xenografted with a human ocular melanoma after an i.p.injection of 2g/kg of {sup 10}B-BPA and in cells cultured in the presence of 530 {mu}mol/l of {sup 10}B-BPA. A concentration of 64 ppm of {sup 10}B in the active part of the tumour with a ratio of concentrations versus the skin of 3.7 are observed. Investigations on cells reveal the presence of boron in the cytoplasm. The biological, dosimetric and microdosimetric consequences of these findings are discussed. (authors). 15 refs., 2 tabs., 2 figs.

  18. Neutron transmission and capture of 241Am

    International Nuclear Information System (INIS)

    A set of neutron transmission and capture experiments based on the Time Of Flight (TOF) technique, were performed in order to determine the 241Am capture cross section in the energy range from 0.01 eV to 1 keV. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the americium sample, while a Li-glass detector was used in the transmission setup. Results from the capture and transmission data acquired are consistent with each other, but appear to be inconsistent with the evaluated data files. Resonance parameters have been derived for the data up to the energy of 100 eV. (authors)

  19. Design of a γ-ray analysis system for determination of boron in a patient's head, during neutron irradiation

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) is a new radiation therapy in which thermal neutron capture by 10B is used for the selective destruction of a cancer tumour. At the High Flux Reactor (HFR) in Petten, Netherlands, a therapy facility is built for the neutron irradiations. In first instance, patients with a brain tumour will be treated. The doses delivered to the tumour and to the healthy tissue depend on the thermal neutron fluence and on the boron concentrations in these regions. Yet, both concentrations change in time after the administration of the tumour-seeking boron compound. An accurate determination of the patient's dose requires the knowledge of these time dependent concentrations during the therapy. For this reason, a γ-ray telescope system, together with a reconstruction tool, are developed. Two HPGe-detectors measure the 478 keV prompt γ-rays which are emitted at the boron neutron capture reaction, in a large background of γ-rays and neutrons. By using the detectors in a telescope configuration, only γ-rays emitted by a small specific region are detected. The best shielding of the detectors is obtained by performing the measurements through a small hole in the iron roof. A reconstruction tool is developed to calculate absolute boron concentrations using the measured boron γ-ray detection rates. Besides the boron γ-rays, a large component of 2.2 MeV γ-rays emitted at thermal neutron capture in hydrogen is measured. Since the hydrogen distribution is almost homogeneous over the head, this component can serve as a measure of the total number of thermal neutrons in the observed volume. By using the hydrogen γ-line for normalisation of the boron concentration, the reconstruction tool eliminates the greater part of the influence of the inhomogeneity of the thermal neutron distribution. MCNP calculations are used as a tool for the optimisation of the detector configuration. Experiments on a head phantom with 5 ppm 10B in healthy tissue and 62 ppm in

  20. Neutron resonance parameters of dysprosium isotopes using neutron capture yields

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National University, Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2015-10-15

    Dysprosium is used in the field of nuclear reactor system because it has a very large thermal neutron absorption cross-section. The dysprosium alloyed with special stainless steels is attractive for control in nuclear reactor because of the ability to absorb neutrons readily without swelling or contracting over time and its high melting point. Dysprosium is also one of fission products from the thermal fission of {sup 234}U, {sup 233}U, and {sup 239}Pu. The fission products are accumulated in the reactor core by the burn-up of the nuclear fuel and the poison effect is increased. Therefore, it is required to understand how Dysprosium as both a poison and an absorbing material in the control rod has an effect on the neutron population in a nuclear reactor system over all energy regions. Neutron Capture experiments on Dy isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.

  1. Neutron capture measurements on {sup 171}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Reifarth, R. E-mail: www.reifarth@lanl.gov; Haight, R.; Heil, M.; Fowler, M.M.; Kaeppeler, F.; Miller, G.G.; Rundberg, R.S.; Ullmann, J.L.; Wilhelmy, J.B

    2003-05-05

    A first proof of principal experiment of measuring neutron capture cross sections of radioactive isotopes was performed on {sup 171}Tm which has a half life of 1.92 years. This isotope was chosen for its ease of production and its radiation properties. The experiment was done at an 8 meter irradiation station at LANSCE using the pulse height weighting technique. A complemental activation measurement at FZK as well as a theoretical estimation indicated a significant background component above 1 keV neutron energy during the experiment at LANSCE.

  2. Neutron capture therapy for cancer: development at the National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) involves the concurrent presence of a flux of neutrons of adequate energy and Boron 10 as a capture agent. They interact to damage tumor cells but fail to produce significant damage to healthy tissue because the destructive effect occurs mainly in the tumor cells that have selectively accumulated boron. This technique is applied for the treatment of brain tumors of the glioblastoma multiform type and melanoma in different locations. The aim of this project at CNEA is to develop the technological, scientific, clinical know-how and facilities to undertake clinical trials in Argentina. The development of the irradiation facility, the clinical beam and dosimetry was developed at the RA-6 reactor, Bariloche Atomic Center. Treatment planning, instrumentation for the neutron beam, boron measurements, neutron beam for small animal irradiation at the RA-1 reactor and basic research in radiobiology, microdosimetry and autoradiography were developed at Constituyentes Atomic Center. It is also conducted an intense activity in accelerator based BNCT. The infusions to be injected to the patients are prepared at Ezeiza Atomic Center. The clinics of BNCT radiotherapy is developed at the Roffo Institute of Oncology and the neurosurgery at the Argerich Hospital. At present, the project is close to start in the following months to treat melanoma in the limbs, when the authorization procedure is completed. (author)

  3. Carborane compounds for neutron capture therapy of malignant melanoma

    International Nuclear Information System (INIS)

    The possibility of using thiouracil as a vehicle for stable nuclei such as 10B for neutron capture therapy (NCT) of melanoma was first discussed by Fairchild and co-workers in 1982. The author's research has been directed towards the design and synthesis of a number of o-carboranyl-thiouracils, the ten boron atoms of the carborane cage having a clear advantage for NCT. The first step was the preparation, previously reported, of thiouracils bearing an alkyl group continuing a triple bond for later elaboration to a carborane. The present paper describes the continuation of this work with the preparation of the carboranes of this series and its extension to the synthesis of a thiouracil in which a carboranylalkyl group is attached to the nitrogen in the 3-position

  4. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  5. Carboranyl Oligonucleotides for Neutron Capture Therapy Final Report

    International Nuclear Information System (INIS)

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-(β-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  6. Three-dimensional boron particle loaded thermal neutron detector

    Science.gov (United States)

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  7. Neutron capture cross sections from Surrogate measurements

    OpenAIRE

    Scielzo N.D.; Dietrich F.S.; Escher J.E.

    2010-01-01

    The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.

  8. Neutron capture cross sections from Surrogate measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2010-03-01

    Full Text Available The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.

  9. Radiative Neutron Capture on Lithium-7

    OpenAIRE

    Rupak, Gautam; Renato, Higa

    2011-01-01

    The radiative neutron capture on lithium-7 is calculated model independently using a low energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix element. The cross section depends on the poorly known p-wave effective range parameter r. This constitutes the leading order uncertainty in traditional model calculations. It is explicitly demonstrated by comparing with potential model calculations. A single parameter fit ...

  10. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells.

    Science.gov (United States)

    Hwang, Kuo Chu; Lai, Po Dong; Chiang, Chi-Shiun; Wang, Pei-Jen; Yuan, Chiun-Jye

    2010-11-01

    HeLa cells were incubated with neutron capture nuclei (boron-10 and gadolinium)-containing carbon nanoparticles, followed by irradiation of slow thermal neutron beam. Under a neutron flux of 6 x 10(11) n/cm(2) (or 10 min irradiation at a neutron flux of 1 x 10(9) n/cm(2) s), the percentages of acute cell death at 8 h after irradiation are 52, 55, and 28% for HeLa cells fed with BCo@CNPs, GdCo@CNPs, and Co@CNPs, respectively. The proliferation capability of the survived HeLa cells was also found to be significantly suppressed. At 48 h after neutron irradiation, the cell viability further decreases to 35 +/- 5% as compared to the control set receiving the same amount of neutron irradiation dose but in the absence of carbon nanoparticles. This work demonstrates "proof-of-concept" examples of neutron capture therapy using (10)B-, (157)Gd-, and (59)Co-containing carbon nanoparticles for effective destruction of cancer cells. It will also be reported the preparation and surface functionalization of boron or gadolinium doped core-shell cobalt/carbon nanoparticles (BCo@CNPs, GdCo@CNPs and Co@CNPs) using a modified DC pulsed arc discharge method, and their characterization by various spectroscopic measurements, including TEM, XRD, SQUID, FT-IR, etc. Tumor cell targeting ability was introduced by surface modification of these carbon nanoparticles with folate moieties.

  11. Measurement of thermal neutron capture cross section

    CERN Document Server

    Huang Xiao Long; LuHanLin; Yu Wei Xiang; Zhao Wen Rong

    2001-01-01

    The thermal neutron capture cross sections of sup 7 sup 1 Ga(n, gamma) sup 7 sup 2 Ga, sup 9 sup 4 Zr(n, gamma) sup 9 sup 5 Zr and sup 1 sup 9 sup 1 Ir(n, gamma) sup 1 sup 9 sup 2 Ir sup m sup 1 sup + sup g sup , sup m sup 2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of sup 7 sup 2 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  12. Neutron capture cross section of $^{93}$Zr

    CERN Multimedia

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  13. Atlas of neutron capture cross sections

    International Nuclear Information System (INIS)

    This report describes neutron capture cross sections in the range 10-5 eV - 20 MeV as evaluated and compiled in recent activation libraries. The selected subset comprise the (n,γ) cross sections for a total of 739 targets for the elements H (Z = 1, Z = 1) to Cm (Z = 96, A = 238) totaling 972 reactions. Plots of the point-wise data are shown and comparisons are made with the available experimental values at thermal energy, 30 keV and 14.5 MeV. 10 refs, 7 tabs

  14. Neutron Capture Experiments on Unstable Nuclei

    International Nuclear Information System (INIS)

    The overall objective of this project is the measurement of neutron capture cross sections of importance to stewardship science and astrophysical modeling of nucleosynthesis, while at the same time helping to train the next generation of scientists with expertise relevant to U.S. national nuclear security missions and to stewardship science. A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. Much of the information obtained will also be important in astrophysical modeling of nucleosynthesis. Measurements of these neutron capture cross sections are being conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the unique Detector for Advanced Neutron Capture Experiments (DANCE). In our early discussions with the DANCE group, decisions were made on the first cross sections to be measured and how our expertise in target preparation, radiochemical separations chemistry, and data analysis could best be applied. The initial emphasis of the project was on preparing suitable targets of both natural and separated stable europium isotopes in preparation for the ultimate goal of preparing a sufficiently large target of radioactive 155Eu (t1/2 = 4.7 years) and other radioactive and stable species for neutron cross-section measurements at DANCE. Our Annual Report, ''Neutron Capture Experiments on Unstable Nuclei'' by J. M. Schwantes, R. Sudowe, C. M. Folden III, H. Nitsche, and D. C. Hoffman, submitted to NNSA in December 2003, gives details about the initial considerations and scope of the project. During the current reporting period, electroplated targets of natural Eu together with valuable, stable, and isotopically pure 151Eu and 153Eu, and isotopically separated 154Sm were measured for

  15. Detector for advanced neutron capture experiments at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J. L. (John L.); Reifarth, R. (Rene); Haight, Robert C.; Hunt, L. F. (Lloyd F.); O' Donnell, J. M.; Bredeweg, T. A. (Todd A); Wilhelmy, J. B. (Jerry B.); Fowler, Malcolm M.; Vieira, D. J. (David J.); Wouters, J. M. (Jan Marc); Strottman, D.; Kaeppeler, F. (Franz K.); Heil, M.; Chamberlin, E. P. (Edwin P.)

    2002-01-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 159-element 4x barium fluoride array designed to study neutron capture on small quantities, 1 mg or less, of radioactive nuclides. It is being built on a 20 m neutron flight path which views the 'upper tier' water moderator at the Manuel J. Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. The detector design is based on Monte Carlo calculations which have suggested ways to minimize backgrounds due to neutron scattering events. A data acquisition system based on fast transient digitizers is bcing implemented

  16. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF2 scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  17. Boron-10 layers, Neutron Reflectometry and Thermal Neutron Gaseous Detectors

    OpenAIRE

    Piscitelli, Francesco

    2014-01-01

    Nowadays neutron facilities are going toward higher fluxes, e.g. the European Spallation Source (ESS) in Lund (Sweden), and this translates into a higher demand in the instrument performances. Because of its favorable properties,He-3 has been the main actor in thermal neutron detection for years. Starting in about 2001 the He-3 stockpile has been declining. The world is now experiencing the shortage of He-3. This makes the construction of large area detectors (several squared meters) not real...

  18. Quadrupole radiation strength in neutron capture

    International Nuclear Information System (INIS)

    A large wealth of data from recent neutron capture experiments has been used to estimate the E2 and M2 strength in primary transitions. The analysis of 24 uniquely assigned E2 primary γ-rays from 18 nuclei with A = 21-239 has given an evidence for the important role of the E2 giant resonance and resulted in an upper limit of k(E2) -16 MeV-sup(5.2) based on a 99.9 % confidence limit. The analysis of 69 circularly polarized γ-rays from 23 double-even targets with A = 41-239 has yielded an upper limit of delta(M2/E1) < 0.08 based again on a 99.9% confidence level. From this result an upper limit for M2 primary radiation of 1 W.u. has been estimated

  19. Measurement and analysis of neutron capture reaction rates of light neutron-rich nuclei

    OpenAIRE

    Mohr, P; Beer, H.; Herndl, H.; Oberhummer, H.

    1997-01-01

    Several neutron capture cross sections of light neutron-rich nuclei were measured in the astrophysically relevant energy region of 5 to 200 keV. The experimental data are compared to calculations using the direct capture model. The results are used for the calculation of neutron capture cross sections of unstable isotopes. Furthermore, neutron sources with energies below E_n \\approx 10 keV are discussed.

  20. Dosimetric evaluation of neutron capture therapy for local advanced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, H. [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)], E-mail: yanagie@n.t.u-tokyo.ac.jp; Kumada, H. [Japan Atomic Research Institute, Ibaraki (Japan); Sakurai, Y. [Research Reactor Institute, Kyoto University, Osaka (Japan); Nakamura, T. [Japan Atomic Research Institute, Ibaraki (Japan); Department of Nuclear Physics, Ibaraki University, Ibaraki (Japan); Furuya, Y. [Department of Surgery, Satukidai Hospital, Chiba (Japan); Sugiyama, H. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Ono, K. [Research Reactor Institute, Kyoto University, Osaka (Japan); Takamoto, S. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Cardiac Surgery, University of Tokyo Hospital, Tokyo (Japan); Eriguchi, M. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Microbiology, Syowa University School of Pharmaceutical Sciences, Tokyo (Japan); Takahashi, H. [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)

    2009-07-15

    Local recurrence breast cancer is one of the most difficult conditions to cure and there is a need for new therapy. If sufficient boron compound can be targeted to the tumor, boron neutron capture therapy (BNCT) can be applied to local recurrent breast cancer. In this study, we performed a preliminary dosimetry with a phantom model of the mammary gland at Kyoto University Research Reactor (KUR), and a feasibility dosimetry with JAERI Computational Dosimetry System (JCDS) at JRR4 reactor of Japan Atomic Research Institute. We performed preliminary dosimetry of a phantom model of the mammary gland with thermal neutron irradiation (OO-0011 mode) on LiF collimation at KUR. The thermal neutron flux was 5.16 E+08 cm{sup -2} s{sup -1} at the surface of phantom. The blood boron concentration is estimated to be 30 ppm; tumor boron concentration is also estimated to be 90 ppm according to tumor/blood ratio 3 and skin/blood ratio 1.2. Tumor RBE dose is estimated to be 47 Gy/h, and skin RBE dose is 12.4 Gy/h. In case of advanced breast cancer, we performed the feasibility estimation of 3D construction of tumor according to the MRI imaging of a patient with epithermal neutron mode at JRR4. The blood boron concentration (ppm) and tumor/normal tissue ratio are estimated to be 24 and 3.5, respectively. Skin RBE dose is restricted to 10 Gy/h, the maximum tumor RBE dose, minimum tumor RBE dose, and mean tumor RBE dose are 42.2, 11.3, and 28.9 Gy-Eq, respectively, in half hour irradiation. In this study, we showed the possibility to apply BNCT to local recurrent breast cancer. We can irradiate tumors selectively and as safely as possible, reducing the effects on neighboring healthy tissues.

  1. Neutron capture therapy: Years of experimentation---Years of reflection

    International Nuclear Information System (INIS)

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program

  2. Rapid neutron capture process in supernovae and chemical element formation

    NARCIS (Netherlands)

    Baruah, Rulee; Duorah, Kalpana; Duorah, H. L.

    2009-01-01

    The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half o

  3. An improved method for estimating the neutron background in measurements of neutron capture reactions

    OpenAIRE

    Žugec, P.; Bosnar, D; Colonna, N.; Gunsing, F.

    2016-01-01

    The relation between the neutron background in neutron capture measurements and the neutron sensitivity related to the experimental setup is examined. It is pointed out that a proper estimate of the neutron background may only be obtained by means of dedicated simulations taking into account the full framework of the neutron-induced reactions and their complete temporal evolution. No other presently available method seems to provide reliable results, in particular under the capture resonances...

  4. Radioactivity Induced by Neutrons: a Thermodynamic Approach to Radiative Capture

    OpenAIRE

    De Gregorio, Alberto

    2005-01-01

    When Enrico Fermi discovered slow neutrons, he accounted for their great efficiency in inducing radioactivity by merely mentioning the well-known scattering cross-section between neutrons and protons. He did not refer to capture cross-section, at that early stage. It is put forward that a thermodynamic approach to neutron-proton radiative capture then widely debated might underlie his early accounts. Fermi had already met with a similar approach, and repeatedly used it.

  5. Neutron Capture Cross Sections of 236U and 234U

    Science.gov (United States)

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; Kronenberg, A.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-π solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  6. Neutron Capture Experiments on Unstable Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Jon M. Schwantes; Ralf Sudowe; Heino Nitsche; Darleane C. Hoffman

    2003-12-16

    A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. The information obtained will also be important in astrophysical modeling of nucleosynthesis. During this reporting period, the emphasis has been on preparing a radioactive target of {sup 155}Eu (half-life = 4.7 years), and several stable targets, including isotopically separated {sup 154}Sm, {sup 151}Eu, and {sup 153}Eu. Measurements of their neutron capture cross sections will be conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the Detector for Advanced Neutron Capture Experiments (DANCE). A suitable backing material (beryllium) for the targets has been selected after careful calculations of its contribution to the background of the measurements. In addition, a high voltage plating procedure has been developed and optimized. Stable targets of {sup 151}Eu and {sup 153}Eu and a target of natural Eu ({approx}50% {sup 151}Eu and {approx}50% {sup 153}Eu) have each been plated to a mass thickness of >1 mg/cm{sup 2} and delivered to the DANCE collaboration at Los Alamos National Laboratory (LANL). Natural Eu targets will be tested first to confirm that the target dimensions and backing are appropriate prior to performing measurements on the extremely valuable targets of separated isotopes. In order to prepare a target of the radioactive {sup 155}Eu, it must first be separated from the {sup 154}Sm target material that was irradiated in a very high neutron flux of 1.5x1015 neutrons/cm{sup 2}/s for 50 days. The reaction is {sup 154}Sm (n,f){sup 155}Sm (half-life = 22 minutes) {sup 155}Eu. Considerable progress has been made in developing a suitable high-yield and high-purity separation method for separating Eu from targets

  7. An improved method for estimating the neutron background in measurements of neutron capture reactions

    CERN Document Server

    Žugec, P; Colonna, N; Gunsing, F

    2016-01-01

    The relation between the neutron background in neutron capture measurements and the neutron sensitivity related to the experimental setup is examined. It is pointed out that a proper estimate of the neutron background may only be obtained by means of dedicated simulations taking into account the full framework of the neutron-induced reactions and their complete temporal evolution. No other presently available method seems to provide reliable results, in particular under the capture resonances. An improved neutron background estimation technique is proposed, the main improvement regarding the treatment of the neutron sensitivity, taking into account the temporal evolution of the neutron-induced reactions. The technique is complemented by an advanced data analysis procedure based on relativistic kinematics of neutron scattering. The analysis procedure allows for the calculation of the neutron background in capture measurements, without requiring the time-consuming simulations to be adapted to each particular sa...

  8. Preliminary study of neutron absorption by concrete with boron carbide addition

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Ariffin, Fatin Nabilah Tajul; Ahmad, Sahrim [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Hamid, Roszilah [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Mohamed, Abdul Aziz [College of Engineering, Universiti Tenaga National, Jalan Ikram-Uniten, 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.

  9. Gamma scintillator system using boron carbide for neutron detection

    International Nuclear Information System (INIS)

    A new approach for neutron detection enhancement to scintillator gamma-ray detectors is suggested. By using a scintillator coupled with a boron carbide (B4C) disc, the 478 keV gamma-photon emitted from the excited Li in 94% of the 10B(n,α)7Li interactions was detected. This suggests that the performance of existing gamma detection systems in Homeland security applications can be improved. In this study, a B4C disc (2 in. diameter, 0.125 in. thick) with ∼19.8% 10B was used and coupled with a scintillator gamma-ray detector. In addition, the neutron thermalization moderator was studied in order to be able to increase the neutron sensitivity. An improvement in the detector which is easy to assemble, affordable and efficient was demonstrated. Furthermore, a tailored Monte-Carlo code written in MATLAB was developed for validation of the proposed application through efficiency estimation for thermal neutrons. Validation of the code was accomplished by showing that the MATLAB code results were well correlated to a Monte-Carlo MCNP code results. The measured efficiency of the assembled experimental model was observed to be in agreement with both models calculations

  10. Experimental Neutron Capture Rate Constraint Far from Stability

    Science.gov (United States)

    Liddick, S. N.; Spyrou, A.; Crider, B. P.; Naqvi, F.; Larsen, A. C.; Guttormsen, M.; Mumpower, M.; Surman, R.; Perdikakis, G.; Bleuel, D. L.; Couture, A.; Crespo Campo, L.; Dombos, A. C.; Lewis, R.; Mosby, S.; Nikas, S.; Prokop, C. J.; Renstrom, T.; Rubio, B.; Siem, S.; Quinn, S. J.

    2016-06-01

    Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on 69Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.

  11. Experimental Neutron Capture Rate Constraint Far from Stability.

    Science.gov (United States)

    Liddick, S N; Spyrou, A; Crider, B P; Naqvi, F; Larsen, A C; Guttormsen, M; Mumpower, M; Surman, R; Perdikakis, G; Bleuel, D L; Couture, A; Crespo Campo, L; Dombos, A C; Lewis, R; Mosby, S; Nikas, S; Prokop, C J; Renstrom, T; Rubio, B; Siem, S; Quinn, S J

    2016-06-17

    Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented. PMID:27367386

  12. Radiative neutron capture cross sections on 176Lu at DANCE

    Science.gov (United States)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  13. Neutron Capture Reactions on lu Isotopes at Dance

    Science.gov (United States)

    Roig, O.; Meot, V.; Daugas, J.-M.; Morel, P.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Wouters, J. M.

    2013-03-01

    The DANCE1 (Detector for Advanced Neutron Capture Experiments) array at LANSCE spallation neutron source in Los Alamos has been used to obtain the neutron radiative capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process.2,3 Three targets were used to perform these measurements. One was natural Lu foil of 31 mg/cm2 and the other two were isotope-enriched targets of 175Lu and 176Lu. Firstly, the cross sections were obtained by normalizing yield to a well-known cross section at the thermal neutron energy. Now, we want to obtain absolute cross sections of radiative capture through a precise neutron flux determination, an accurate target mass measurement and an efficiency determination of the DANCE array.

  14. Enhancing the detector for advanced neutron capture experiments

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons

  15. Neutron capture experiments with 4π DANCE Calorimeter

    Directory of Open Access Journals (Sweden)

    Krtička M.

    2012-02-01

    Full Text Available In recent years we have performed a series of neutron capture experiments with the DANCE detector array located at the Los Alamos Neutron Science Center. The radiative decay spectrum from the compound nucleus contains important information about nuclear structure and the reaction mechanism. The primary goals of the measurements are to obtain improved capture cross sections, to determine properties of the photon strength function, to improve neutron level densities and strength functions by determining the spin and parity of the capturing states. We shall present examples of our recent results.

  16. Neutron capture experiments with 4π DANCE calorimeter

    International Nuclear Information System (INIS)

    In recent years we have made a series of neutron capture experiments with the DANCE detector array located at the Los Alamos Neutron Science Center. The radiative decay spectrum from the compound nucleus contains important information about nuclear structure and the reaction mechanism.The primary goals of the measurements are to obtain improved capture cross sections, to determine properties of the photon strength function, to improve neutron level densities and strength functions by determining the spin and parity of the capturing states. We shall present examples of our recent results

  17. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy

    International Nuclear Information System (INIS)

    Neutron capture therapy for glioblastoma has focused mainly on the use of 10B as neutron capture isotope. However, 157Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with 157Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the

  18. Comparison of calculated and measured spectral response and intrinsic efficiency for a boron-loaded plastic neutron detector

    International Nuclear Information System (INIS)

    Boron-loaded scintillators offer the potential for neutron spectrometers with a simplified, peak-shaped response. The Monte Carlo code, MCNP, has been used to calculate the detector characteristics of a scintillator made of a boron-loaded plastic, BC454, for neutrons between 1 and 7 MeV. Comparisons with measurements are made of spectral response for neutron energies between 4 and 6 MeV and of intrinsic efficiencies for neutrons up to 7 MeV. In order to compare the calculated spectra with measured data, enhancements to MCNP were introduced to generate tallies of light output spectra for recoil events terminating in a final capture by 10B. The comparison of measured and calculated spectra shows agreement in response shape, full width at half maximum, and recoil energy deposition. Intrinsic efficiencies measured to 7 MeV are also in agreement with the MCNP calculations. These results validate the code predictions and affirm the value of MCNP as a useful tool for development of sensor concepts based on boron-loaded plastics. (orig.)

  19. CASCADE - a multi-layer Boron-10 neutron detection system

    CERN Document Server

    Köhli, M; Allmendinger, F; Perrevoort, A -K; Schröder, T; Martin, N; Schmidt, C J; Schmidt, U

    2016-01-01

    The globally increased demand for helium-3 along with the limited availability of this gas calls for the development of alternative technologies for the large ESS instrumentation pool. We report on the CASCADE Project - a novel detection system, which has been developed for the purposes of neutron spin echo spectroscopy. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid boron-10 coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard Argon-CO2 counting gas environment. This multi-layer setup efficiently increases the detection efficiency and serves as a helium-3 alternative. It has furthermore been possible to extract the signal of the charge traversing the stack to identify the very thin conversion layer of about 1 micrometer. This allows the precise determination of the time-of-flight, necessary for the application in MIEZE spin echo...

  20. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products

    International Nuclear Information System (INIS)

    Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for 10B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10−7 cm2/V for electrons and holes, which is comparable to the value of about 10−7 cm2/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products

  1. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products

    Science.gov (United States)

    Doan, T. C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2015-05-01

    Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for 10B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10-7 cm2/V for electrons and holes, which is comparable to the value of about 10-7 cm2/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products.

  2. Cosmogenic neutron-capture-produced nuclides in stony meteorites

    International Nuclear Information System (INIS)

    The distribution of neutrons with energies below 15 MeV in spherical stony meteoroids is calculated using the ANISN neutron-transport code. The source distributions and intensities of neutrons are calculated using cross sections for the production of tritium. The meteoroid's radius and chemical composition strongly influence the total neutron flux and the neutron energy spectrum, while the location within a meteoroid only affects the relative neutron intensities. Meteoroids need to have radii of more than 50 g/cm2 before they have appreciable fluxes of neutrons near thermal energies. Meteoroids with high hydrogen or low iron contents can thermalize neutrons better than chondrites. Rates for the production of 60Co, 59Ni, and 36Cl are calculated with evaluated neutron-capture cross sections and neutron fluxes determined for carbonaceous chondrites with high hydrogen contents, L-chondrites, and aubrites. For most meteoroids with radii 2, the production rates of these neutron-capture nuclides increase monotonically with depth. The highest calculated 60Co production rate in an ordinary chondrite is 375 atoms/(min g-Co) at the center of a meteoroid with a 250 g/cm2 radius. The production rates calculated for spallogenic 60Co and 59Ni are greater than the neutron-capture rates for radii less than approx.50-75 g/cm2. Only for very large meteoroids and chlorine-rich samples is the neutron-capture production of 36Cl important. The results of these calculations are compared with those of previous calculations and with measured activities in many meteorites. 44 refs., 15 figs., 1 tab

  3. Neutron Capture Measurements Using the Dance Detector at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J.L. [LANSCE Division, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2006-07-01

    Full text of publication follows: The Detector for Advanced Neutron Capture Measurements (DANCE) is a 160-element BaF{sub 2} gamma-ray detector located at the Los Alamos Neutron Science Centre's moderated neutron source. The high neutron flux, extending from thermal up to about 100 keV, enables neutron-capture measurements on small quantities of rare or radioactive nuclides. Targets of 1 mg and less have been studied. The performance of the detector will be discussed, and capture cross sections in the resonance region and at higher energies for several nuclides, including {sup 234,236}U will be reviewed. Los Alamos Technical Information Reference Number: LA-UR-06-4142. (authors)

  4. Neutron Capture Measurements Using the Dance Detector at Los Alamos

    International Nuclear Information System (INIS)

    Full text of publication follows: The Detector for Advanced Neutron Capture Measurements (DANCE) is a 160-element BaF2 gamma-ray detector located at the Los Alamos Neutron Science Centre's moderated neutron source. The high neutron flux, extending from thermal up to about 100 keV, enables neutron-capture measurements on small quantities of rare or radioactive nuclides. Targets of 1 mg and less have been studied. The performance of the detector will be discussed, and capture cross sections in the resonance region and at higher energies for several nuclides, including 234,236U will be reviewed. Los Alamos Technical Information Reference Number: LA-UR-06-4142. (authors)

  5. Partial radiative capture of resonance neutrons; Capture radiative partielle des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Samour, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. {sup 195}Pt + n and {sup 183}W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of < {gamma}{sub {gamma}{sub i}} > with E{sub {gamma}}. The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in {sup 195}Pt + n, {sup 197}Au + n and {sup 59}Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [French] La capture radiative des neutrons de resonance a ete etudiee pres de l'accelerateur lineaire de Saclay entre 0,5 et 700 eV a l'aide de la methode du temps-de-vol et d'un detecteur Ge(Li). Les noyaux {sup 195}Pt + n et {sup 183}W + n permettent l'analyse de la distribution de resonance en resonance des largeurs radiatives partielles {gamma}{sub {gamma}{sub i}} et de leur eventuelle correlation, ainsi que l'etude de la variation de < {gamma}{sub {gamma}{sub i}} > en fonction de E{sub {gamma}}. Les intensites moyennes des transitions Ml et El sont comparees pour quelques isotopes de l'etain. Des effets d'interference, soit entre resonances, soit entre capture directe et capture resonnante sont mis en evidence dans {sup 195}Pt + n, {sup 197}Au + n et {sup 59}Co + n. Enfin les schemas des etats excites d'un grand nombre de noyaux sont obtenus et compares avec les predictions theoriques. Cette etude a ete completee par une analyse des spectres thermiques. (auteur)

  6. Advances in neutron capture therapy 2006. Proceedings of 12th international congress on neutron capture therapy

    International Nuclear Information System (INIS)

    The Twelfth International Congress on Neutron Capture Therapy (ICNCT-12) is being held from October 9th to 13th, 2006 at the Kagawa International Congress Hall in Takamatsu, Kagawa, Japan. The main theme of the congress is From the past to the Future'. Five symposiums were organized to accommodate all the contributions from the international scientific committees of the International Society for Neutron Capture Therapy (ISNCT), and two symposiums were added to balance the number of fields of specialties. The seven symposiums for ICNCT-12 are as follows: 1) Clinical Results of BNCT for Brain Tumors, 2) Dosimetry, 3) Treatment Planning system, 4) Drug Delivery System, 5) Biomedical and General Matters, 6) BNCT Systems using Accelerators, 7) New Applications and Protocols for BNCT. There are a total of 195 presentations in this congress: 3 special lectures, 34 symposium presentations, 10 presentations in two special sessions from the recipients of the Ralph G. Fairchild Award, 70 presentations in the oral parallel sessions and 78 presentations in the poster sessions. A compilation of 169 papers are published in this proceedings. The 165 of the presented papers are indexed individually. (J.P.N.)

  7. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    Science.gov (United States)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  8. Initiation of a phase-I trial of neutron capture therapy at the MIT research reactor

    International Nuclear Information System (INIS)

    The Massachusetts Institute of Technology (MIT), the New England Medical Center (NEMC), and Boston University Medical Center (BUMC) initiated a phase-1 trial of boron neutron capture therapy (BNCT) on September 6, 1994, at the 5-MW(thermal) MIT research reactor (MITR). A novel form of experimental cancer therapy, BNCT is being developed for certain types of highly malignant brain tumors such as glioblastoma and melanoma. The results of the phase-1 trials on patients with tumors in the legs or feet are described

  9. Neutron Capture Reactions for Stockpile Stewardship and Basic Science

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W; Agvaanluvsan, U; Becker, J; Wilk, P; Wu, C; Bredeweg, T; Couture, A; Haight, R; Jandel, M; O' Donnell, J; Reifarth, R; Rundberg, R; Ullmann, J; Vieira, D; Wouters, J; Sheets, S; Mitchell, G; Becvar, F; Krticka, M

    2007-08-04

    The capture process is a nuclear reaction in which a target atom captures an incident projectile, e.g. a neutron. The excited-state compound nucleus de-excites by emitting photons. This process creates an atom that has one more neutron than the target atom, so it is a different isotope of the same element. With low energy (slow) neutron projectiles, capture is the dominant reaction, other than elastic scattering. However, with very heavy nuclei, fission competes with capture as a method of de-excitation of the compound nucleus. With higher energy (faster) incident neutrons, additional reactions are also possible, such as emission of protons or emission of multiple neutrons. The probability of a particular reaction occurring (such as capture) is referred to as the cross section for that reaction. Cross sections are very dependent on the incoming neutron's energy. Capture reactions can be studied either using monoenergetic neutron sources or 'white' neutron sources. A 'white' neutron source has a wide range of neutron energies in one neutron beam. The advantage to the white neutron source is that it allows the study of cross sections as they depend on neutron energies. The Los Alamos Neutron Science Center, located at Los Alamos National Laboratory, provides an intense white neutron source. Neutrons there are created by a high-energy proton beam from a linear accelerator striking a heavy metal (tungsten) target. The neutrons range in energy from subthermal up to very fast - over 100 MeV in energy. Low-energy neutron reaction cross sections fluctuate dramatically from one target to another, and they are very difficult to predict by theoretical modeling. The cross sections for particular capture reactions are important for defense sciences, advanced reactor concepts, transmutation of radioactive wastes and nuclear astrophysics. We now have a strong collaboration between Lawrence Livermore National Laboratory, Los Alamos National Laboratory

  10. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron

    OpenAIRE

    Fantidis, J. G.; Nicolaou, G. E.; C. Potolias; N. Vordos; Bandekas, D. V.

    2011-01-01

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were...

  11. Enhancing the Detector for Advanced Neutron Capture Experiments

    OpenAIRE

    Couture A.; Mosby S.; Baramsai B.; Bredeweg T. A.; Jandel M.; Macon K.; O’Donnell J.M.; Rusev G.; Taddeucci T. N; Ullmann J.L.; Walker C.L.

    2015-01-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detec...

  12. Thermal-neutron capture for A=36-44

    CERN Document Server

    Chunmei, Z

    2003-01-01

    A new evaluation has been undertaken of the level properties, prompt gamma rays and decay scheme properties of thermal neutron capture for nuclides with mass number A=36-44. The cutoff date is March 2002. This evaluation is effectively an update of the data table of the Prompt Gamma Rays from Thermal Neutron Capture as published in Atomic Data and Nuclear Data Tables 26, 511, (1981).

  13. Study of thermal neutron capture by /sup 32/S

    Energy Technology Data Exchange (ETDEWEB)

    Taichang, G.; Zongren, S.; Xiantang, Z.; Guohua, L.; Dazhao, D.

    1985-01-15

    The thermal neutron capture by /sup 32/S has been studied using a 140 cm/sup 3/ Ge(Li) detector at the thermal column of the heavy water moderated reactor at Institute of Atomic Energy. The thermal neutron flux at sample is 2 x 10/sup 6/n/cm/sup 2/-sec and the cadmium ratio (for gold) is 200.

  14. Neutron capture cross sections of 151,153Eu

    International Nuclear Information System (INIS)

    The neutron capture cross section of 151,153Eu nuclei was measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center (LANSCE). Neutrons were produced at the Lujan Neutron Scattering Center and their energies were determined by the time-of-flight technique. The relative yield versus neutron incident energy from 0.1 eV to 2.0 keV for both 151Eu(n,) and 153Eu(n,) reactions was derived from events gated on the total energy and multiplicity measured by the DANCE array. The absolute cross section was determined by scaling the relative yield to the measured cross sections of well-known resonances. The shape of the yield curve agrees well with previous measurements in the resonance region for both 151Eu and 153Eu capture cross sections. New data are reported for neutron incident energies between 100 eV and 2.0 keV. The trend of data in the 0.3 keV to 2.0 keV region of neutron incident energy is consistent with the ENDF/BVI and the measurements of Macklin and Young. Crucial skills, acquired from these measurements in the early implementation of DANCE, are important to plan future experiments, which will yield results up to a few hundred keV neutron incident energy

  15. New compounds for neutron capture therapy (NCT) and their significance

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Clearly the most effective tumor therapy would be obtained by the selective targeting of cytotoxic agents to tumor cells. Although many biomolecules are known to be taken up in tumors, the targeting of cytotoxic agents to tumors is limited by the fact that other essential cell pools compete with equal or even greater effectiveness. The approach of delivering stable non-toxic isotopes to tumor, with activation by means of an external radiation beam, is advantageous for two reasons: (1) it obviates problems associated with high uptake of isotopes in normal tissues, as these cell pools can be excluded from the radiation field, and (2) the general tumor area can be included in the activating beam field; thus, the possibility exists that all microscopic tumor extensions can be irradiated. As long as range of reaction products is short, dose will be restricted to the tumor, with a resultant high therapeutic ratio. This method can be accomplished with either photon activation therapy (PAT) or Neutron Capture Therapy (NCT), the latter will be emphasized here. The range of the high LET, low OER particles from the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is approx. 10 ..mu..m, or one cell diameter; hence this reaction is optimal for cell killing. A number of biomolecules have been investigated as possible vehicles for transport of boron to tumors, including phenothiazines, thiouracils, porphyrins, nucleosides, and amino acids. Biodistributions of these compounds show selective concentration in tumor adequate for therapy. The biological halflives are in the order of days, allowing the possibility of fractionated or protracted irradiations. The radiobiological and physical implication of these parameters on NCT are discussed. The possibility of using an approximately-monoenergetic, scandium-filtered beam of about 2 keV, to reduce the dose from background radiations by about 85%, is also discussed. (ERB)

  16. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    International Nuclear Information System (INIS)

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 x 107 n/cm2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values

  17. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    Science.gov (United States)

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2004-01-01

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 × 10 7 n/cm 2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values.

  18. Neutron capture studies of 206Pb at a cold neutron beam

    Science.gov (United States)

    Schillebeeckx, P.; Belgya, T.; Borella, A.; Kopecky, S.; Mengoni, A.; Quétel, C. R.; Szentmiklósi, L.; Trešl, I.; Wynants, R.

    2013-11-01

    Gamma-ray transitions following neutron capture in 206Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in 206Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed -rays have been incorporated into a decay scheme for neutron capture in 206Pb . Partial capture cross sections for 206Pb(n,) at thermal energy have been derived relative to the cross section for the 1884keV transition after neutron capture in 14N . From the average crossing sum a total thermal neutron capture cross section of mb was derived for the 206Pb(n,) reaction. The thermal neutron capture cross section for 206Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of mb was determined for the 207Pb(n,) reaction.

  19. Monte Carlo simulation on the application of boron-coated MRPC thermal neutron detector to the compensated neutron logging

    International Nuclear Information System (INIS)

    Background: The compensated neutron logging technology is widely used in oil exploration and development. The neutron detector commonly used in this technology is the helium-3 proportional counter. Due to the decreasing in supply of the helium-3 gas, the price of the helium-3 proportional counter rises quickly. Purpose: The aim is to develop a new type of neutron detector to replace the helium-3 tubes in the compensated neutron logging technology. Methods: A new thermal neutron detector coated with a layer of thermal neutron converter in the inner glass of the Multi-gap Resistive Plate Chamber (MRPC) was developed. Under the conventional and underbalanced conditions, Monte Carlo method was used to simulate the response of the boron-coated MRPC thermal neutron detector and helium-3 proportional counter employed in compensated neutron logging technology. Results: It is shown that the SS/LS increases with the rise of porosity using either the boron-coated MRPC thermal neutron detector or the helium-3 proportional counter, and the results of these two detectors are basically identical. Conclusion: It indicates that the boron-coated MRPC thermal neutron detector can be used for compensated neutron logging. (authors)

  20. The design, construction and performance of a variable collimator for epithermal neutron capture therapy beams

    Science.gov (United States)

    Riley, K. J.; Binns, P. J.; Ali, S. J.; Harling, O. K.

    2004-05-01

    A patient collimator for the fission converter based epithermal neutron beam (FCB) at the Massachusetts Institute of Technology Research Reactor (MITR-II) was built for clinical trials of boron neutron capture therapy (BNCT). A design was optimized by Monte Carlo simulations of the entire beam line and incorporates a modular construction for easy modifications in the future. The device was formed in-house by casting a mixture of lead spheres (7.6 mm diameter) in epoxy resin loaded with either 140 mg cm-3 of boron carbide or 210 mg cm-3 of lithium fluoride (95% enriched in 6Li). The cone shaped collimator allows easy field placement anywhere on the patient and is equipped with a laser indicator of central axis, beam's eye view optics and circular apertures of 80, 100, 120 and 160 mm diameter. Beam profiles and the collateral dose in a half-body phantom were measured for the 160 mm field using fission counters, activation foils as well as tissue equivalent (A-150) and graphite walled ionization chambers. Leakage radiation through the collimator contributes less than 10% to the total collateral dose up to 0.15 m beyond the edge of the aperture and becomes relatively more prominent with lateral displacement. The measured whole body dose equivalent of 24 ± 2 mSv per Gy of therapeutic dose is comparable to doses received during conventional therapy and is due principally (60-80%) to thermal neutron capture reactions with boron. These findings, together with the dose distributions for the primary beam, demonstrate the suitability of this patient collimator for BNCT.

  1. Neutron capture reactions on Lu isotopes at DANCE

    CERN Document Server

    Roig, O

    2010-01-01

    The DANCE (Detector for Advanced Neutron Capture Experiments) array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natLu foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured.

  2. Neutron capture reactions on Lu isotopes at DANCE

    International Nuclear Information System (INIS)

    The DANCE (Detector for Advanced Neutron Capture Experiments) array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for the 175Lu and 176Lu isotopes with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natural lutetium foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured. (authors)

  3. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  4. Neutron pair transfer in sub-barrier capture process

    CERN Document Server

    Sargsyan, V V; Adamian, G G; Antonenko, N V; Lacroix, D

    2013-01-01

    The sub-barrier capture reactions following the neutron pair transfer are proposed to be used for the indirect study of neutron-neutron correlation in the surface region of nucleus. The strong effect of the dineutron-like clusters transfer stemming from the surface of magic and non-magic nuclei $^{18}$O, $^{48}$Ca, $^{64}$Ni, $^{94,96}$Mo, $^{100,102,104}$Ru, $^{104,106,108}$Pd, and $^{112,114,116,118,120,124,132}$Sn is demonstrated. The dominance of two-neutron transfer channel at the vicinity of the Coulomb barrier is further supported by time-dependent mean-field approaches.

  5. A capture-gated fast neutron detection method

    Science.gov (United States)

    Liu, Yi; Yang, Yi-Gang; Tai, Yang; Zhang, Zhi

    2016-07-01

    To address the problem of the shortage of neutron detectors used in radiation portal monitors (RPMs), caused by the 3He supply crisis, research on a cadmium-based capture-gated fast neutron detector is presented in this paper. The detector is composed of many 1 cm × 1 cm × 20 cm plastic scintillator cuboids covered by 0.1 mm thick film of cadmium. The detector uses cadmium to absorb thermal neutrons and produce capture γ-rays to indicate the detection of neutrons, and uses plastic scintillator to moderate neutrons and register γ-rays. This design removes the volume competing relationship in traditional 3He counter-based fast neutron detectors, which hinders enhancement of the neutron detection efficiency. Detection efficiency of 21.66% ± 1.22% has been achieved with a 40.4 cm × 40.4 cm × 20 cm overall detector volume. This detector can measure both neutrons and γ-rays simultaneously. A small detector (20.2 cm × 20.2 cm × 20 cm) demonstrated a 3.3 % false alarm rate for a 252Cf source with a neutron yield of 1841 n/s from 50 cm away within 15 s measurement time. It also demonstrated a very low (Natural Science Foundation of China (11175098, 11375095)

  6. An improved method for estimating the neutron background in measurements of neutron capture reactions

    Science.gov (United States)

    Žugec, P.; Bosnar, D.; Colonna, N.; Gunsing, F.

    2016-08-01

    The relation between the neutron background in neutron capture measurements and the neutron sensitivity related to the experimental setup is examined. It is pointed out that a proper estimate of the neutron background may only be obtained by means of dedicated simulations taking into account the full framework of the neutron-induced reactions and their complete temporal evolution. No other presently available method seems to provide reliable results, in particular under the capture resonances. An improved neutron background estimation technique is proposed, the main improvement regarding the treatment of the neutron sensitivity, taking into account the temporal evolution of the neutron-induced reactions. The technique is complemented by an advanced data analysis procedure based on relativistic kinematics of neutron scattering. The analysis procedure allows for the calculation of the neutron background in capture measurements, without requiring the time-consuming simulations to be adapted to each particular sample. A suggestion is made on how to improve the neutron background estimates if neutron background simulations are not available.

  7. Neutron capture of $^{26}Mg$ at thermonuclear energies

    CERN Document Server

    Mohr, P J; Oberhummer, Heinz; Staudt, G

    1998-01-01

    The neutron capture cross section of 26Mg was measured relative to the known gold cross section at thermonuclear energies using the fast cyclic activation technique. The experiment was performed at the 3.75 MV Van-de-Graaff accelerator, Forschungszentrum Karlsruhe. The experimental capture cross section is the sum of resonant and direct contributions. For the resonance at E(n,lab) = 220 keV our new results are in disagreement with the data from Weigmann et al. An improved Maxwellian averaged capture cross section is derived from the new experimental data taking into account s- and p-wave capture and resonant contributions. The properties of so-called potential resonances which influence the p-wave neutron capture of 26}Mg are discussed in detail.

  8. Establishment of optimal thermal neutron capture therapy for 5 types of human malignant melanoma

    International Nuclear Information System (INIS)

    A series of boron neutron capture therapy (BNCT) studies has already germinated in 1972, with a view to establishing the BNCT particularly suited for the treatment of various types of malignant melanoma, and has been succeeded by research teams comprised of multi-disciplinary members. Twelve patients (7 men and 5 women, aged from 50 to 85 years) with malignant melanoma have been treated with BNCT; among them, six patients were completely cured, four had extremely reduced tumors, and two were still in the clinical process. The present Progress Report is a compilation of 39 research presentations for the recent two years. In this report, three patients are described. Of these, one patient had deep-seated lesions in right and left lymph nodes. These lesions were cured by the use of D2O that allowed neutron beams to reach them. Application of positron emission tomography to the diagnosis of melanoma is a highlight in this Report. (N.K.)

  9. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Stoyer, M. A.; Wu, C. Y.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Couture, A.; Haight, R. C.; Haslett, R. J.; Henderson, R. A.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2009-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on 242mAm will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,γ) events from (n,f) events. The first direct observation of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  10. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, Marian [Los Alamos National Laboratory

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  11. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    International Nuclear Information System (INIS)

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on 242mAm will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,γ) from (n,f) events. The first evidence of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  12. The 250 kW FiR 1 TRIGA research reactor - International role in Boron Neutron Capture Therapy (BNCT) and regional role in isotope production, education and training

    International Nuclear Information System (INIS)

    The Finnish TRIGA reactor, FiR 1, has been in operation since 1962. From its early days the reactor created versatile research to support both the national nuclear program as well as generally the industry and health care sector. The volume of neutron activation analysis was impressive in the 70's and 80's. In the 1990's a BNCT treatment facility was build at the FiR 1 reactor. The treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Over one hundred patient irradiations have been performed since May 1999. FiR 1 is one of the few facilities in the world providing this kind of treatments. Due to the BNCT project FiR 1 has become an important research and education unit for medical physics. Education and training play also a role at FiR 1 in the form of university courses and training of nuclear industry personnel. Isotopes for tracer studies are produced normally twice a week. The reactor is operated by four reactor operators and five shift supervisors; this in addition to their work as research scientists or research engineers. (author)

  13. Electroporation increases the effect of borocaptate (10B-BSH) in neutron capture therapy

    International Nuclear Information System (INIS)

    Purpose: The cell membrane permeability of borocaptate (10B-BSH) and its extent of accumulation in cells are controversial. This study was performed to elucidate these points. Methods and Materials: Two different treatments were applied to SCCVII tumor cells. The first group of tumor cells was incubated in culture medium with 10B-BSH or 10B-enriched boric acid, and was exposed to neutrons from the heavy water facility of the Kyoto University Reactor (KUR). More than 99% of neutrons were thermal neutrons at flux base. The second group was pretreated by electroporation in combination with 10B-BSH, and thereafter the cells were irradiated with neutrons. The cell killing effects of boron neutron capture therapy (BNCT) using BSH were investigated by colony formation assay. Results: Surviving cell fraction decreased exponentially with neutron fluence, and addition of BSH significantly enhanced the cell killing effect of neutron capture therapy (NCT) depending on 10B concentration. The effect of BSH-BNCT also increased with preincubation time of cells in the medium containing BSH. The electroporation of cells with BSH at 10 ppm 10B markedly enhanced BSH-BNCT effects in comparison with that of preincubation alone. The effect of BSH-BNCT with electroporation was equal to that of BNCT using 10B-boric acid at a same 10B concentration (10 ppm). Conclusions: BSH is suggested to penetrate the cells slowly and remained after washing. Electroporation can introduce BSH into the cells very efficiently, and BSH stays in the cells and is not lost by washing. Therefore, if electroporation is applied to tumors after BSH injection, 10B remains in tumors but is cleared from normal tissues, and selective accumulation of 10B in tumors will be achieved after an adequate waiting time

  14. Neutron capture strategy and technique developments for GNEP

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Laboratory

    2008-01-01

    The initial three years of neutron capture measurements have been very successful in providing data for the Advanced Fuel Cycle Initiative/Global Nuclear Energy Partnership (AFCI/GNEP) program. Now that the most straightforward measurements have been completed, additional technical challenges face future measurements. In particular, techniques are needed to perform measurements that exhibit at least one of three major problems -- large fission:capture ratios, large capture:capture ratios, and high intrinsic activity samples. This paper will set forward a plan for attacking these technical challenges and moving forward with future measurements.

  15. A Capture-gated Fast Neutron Detection Method

    CERN Document Server

    Liu, Yi; Tai, Yang; Zhang, Zhi

    2016-01-01

    To address the problem of the shortage of neutron detectors used in radiation portal monitors (RPMs), caused by the 3He supply crisis, research on a cadmium-based capture-gated fast neutron detector is presented in this paper. The detector is composed of many 1 cm * 1 cm * 20 cm plastic scintillator cuboids covered by 0.1 mm thick film of cadmium. The detector uses cadmium to absorb thermal neutrons and produce capture gamma-rays to indicate the detection of neutrons, and uses plastic scintillator to moderate neutrons and register gamma-rays. This design removes the volume competing relationship in traditional 3He counter-based fast neutron detectors, which hinders enhancement of the neutron detection efficiency. Detection efficiency of 21.66 +- 1.22% has been achieved with a 40.4 cm * 40.4 cm * 20 cm overall detector volume. This detector can measure both neutrons and gamma-rays simultaneously. A small detector (20.2 cm * 20.2 cm * 20 cm) demonstrated a 3.3 % false alarm rate for a 252Cf source with a neutro...

  16. Neutron Induced Capture and Fission Processes on 238U

    Directory of Open Access Journals (Sweden)

    Oprea Cristiana

    2016-01-01

    Full Text Available Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit – Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present evaluations are necessary in order to obtain the field of neutrons in the design of nuclear reactors and they are compared with experimental data from literature obtained from capture and (n,xn processes.

  17. Neutron Induced Capture and Fission Processes on 238U

    Science.gov (United States)

    Oprea, Cristiana; Oprea, Alexandru

    2016-03-01

    Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit - Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present evaluations are necessary in order to obtain the field of neutrons in the design of nuclear reactors and they are compared with experimental data from literature obtained from capture and (n,xn) processes.

  18. Progress on the europium neutron capture study using DANCE

    Science.gov (United States)

    Agvaanluvsan, U.; Becker, J. A.; Macri, R. A.; Parker, W.; Wilk, P.; Wu, C. Y.; Bredeweg, T. A.; Esch, E.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Mitchell, G. E.; Sheets, S.; Bečvář, F.; Krtička, M.

    2007-08-01

    The accurate measurement of neutron capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of 151,153Eu targets were measured recently using a 4π γ-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for En = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The γ-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The γ-ray multiplicity distribution is found to be the same for different neutron energies for both 151Eu and 153Eu. The statistical simulation to model the γ-ray decay cascade is summarized.

  19. Progress on the Europium Neutron-Capture Study using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Agvaanluvsan, U; Becker, J A; Macri, R A; Parker, W; Wilk, P; Wu, C Y; Bredeweg, T A; Esch, E; Haight, R C; O' Donnell, J M; Reifarth, R; Rundberg, R S; Schwantes, J M; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wouters, J M; Mitchell, G E; Sheets, S A; Becvar, F; Krticka, M

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  20. Progress on the europium neutron capture study using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Agvaanluvsan, U. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States)]. E-mail: agvaanluvsan1@llnl.gov; Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Parker, W. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Wilk, P. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Wu, C.Y. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Bredeweg, T.A.; Esch, E.; Haight, R.C.; O' Donnell, J.M.; Reifarth, R.; Rundberg, R.S.; Schwantes, J.M.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B.; Wouters, J.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mitchell, G.E.; Sheets, S. [North Carolina State University, Raleigh, NC 27695 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Becvar, F.; Krticka, M. [Charles University in Prague, CZ 180 00 Prague 8 (Czech Republic)

    2007-08-15

    The accurate measurement of neutron capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E {sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  1. Review of Livermore-led neutron capture studies using DANCE

    International Nuclear Information System (INIS)

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,γ) reactions on 94,95Mo, 152,154,157,160,natGd, 151,153Eu and 242mAm for neutron energies from 94,95Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei 95,96Mo. Future plans include measurements on actinide targets; our immediate interest is in 242mAm. (authors)

  2. Progress on the europium neutron capture study using DANCE

    International Nuclear Information System (INIS)

    The accurate measurement of neutron capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of 151,153Eu targets were measured recently using a 4π γ-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E n = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The γ-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The γ-ray multiplicity distribution is found to be the same for different neutron energies for both 151Eu and 153Eu. The statistical simulation to model the γ-ray decay cascade is summarized

  3. Review of Livermore-Led Neutron Capture Studies Using DANCE

    International Nuclear Information System (INIS)

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,γ) reactions on 94,95Mo, 152,154,157,160,natGd, 151,153Eu and 242mAm for neutron energies from 94,95Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei 95,96Mo. Future plans include measurements on actinide targets; our immediate interest is in 242mAm

  4. Progress on the Europium Neutron-Capture Study using DANCE

    International Nuclear Information System (INIS)

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of 151,153Eu targets were measured recently using a 4π γ-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for En = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The γ-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The γ-ray multiplicity distribution is found to be the same for different neutron energies for both 151Eu and 153Eu. The statistical simulation to model the γ-ray decay cascade is summarized

  5. Study of thermal neutron capture in /sup 32/S

    Energy Technology Data Exchange (ETDEWEB)

    GUO Taichang; SHI Zongren; ZENG Xiantang; LI Guohua; DING Dazhao

    1985-10-01

    The ..gamma..-ray spectrum of the /sup 32/S (n, ..gamma..) reaction at thermal neutron energy is measured by using a Ge(Li) detector. Among 86 ..gamma.. rays identified, 23 are recognized as primary ..gamma.. transitions. The excitation energies of 25 levels and the decay branching ratios are deduced. Three possible levels at 7505.0, 4473.1, and 2884.6 keV were not reported previously. The neutron separation energy of S is determined to be 8641.7 +- 0.6 keV. The thermal neutron capture cross section of /sup 32/S is determined to be 529 +- 26 mb by summing the transition intensities to the ground state of /sup 33/S and comparing with the well-known Au (n, ..gamma..) cross section. The partial capture cross sections of seven primary E1 transitions are calculated by the formula of the Lane-Lynn direct capture theory, and compared with measured values.

  6. Neutron Capture and Fission Measurement on ^238Pu at DANCE

    Science.gov (United States)

    Chyzh, Andrii; Wu, Ching-Yen; Kwan, Elaine; Henderson, Roger; Gostic, Jolie; Couture, Aaron; Young, Hye; Ullmann, John; O'Donnell, John; Jandel, Marian; Haight, Robert; Bredeweg, Todd

    2012-10-01

    Neutron capture and fission reactions on actinides are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study the neutron capture reactions in ^238Pu. Because of extreme spontaneous α-radioactivity in ^238Pu and associated safety issues, 3 separate experiments were performed in 2010-2012. The 1st measurement was done without fission tagging on a 396-μg thick target. The 2nd one was with PPAC on the same target. The 3rd final measurement was done on a thin target with a mass of 40 μg in order to reduce α-background load on PPAC. This was the first such measurement in a laboratory environment. The absolute ^238Pu(n,γ) cross section is presented together with the prompt γ-ray multiplicity in the ^238Pu(n,f) reaction.

  7. Fast neutron capture with a white neutron source

    International Nuclear Information System (INIS)

    A system has been developed at the Los Alamos National Laboratory to measure gamma-rays following fast neutron reactions. The neutron beam is produced by bombarding a thick tantalum target with the 800 MeV proton beam from the LAMPF accelerator. Incident neutron energies, from 1 to over 200 MeV, are determined by their times of flight over a 7.6-m flight path. The gamma-rays are detected in five 7.6 x 7.6-cm cylindrical bismuth germanate (BGO) detectors which span an angular range from 450 to 1450 in the reaction plane. With this system it is possible to simultaneously measure the cross section and angular distribution of gamma-rays as a function of neutron energy. The results for the cross section of the 12C(n,n'γ=4.44 MeV) reaction at 900 and 1250 show good agreement with previous measurements while the complete angular distributions show the need for a large a4 coefficient which was not previously observed. Preliminary results for the 12C(n,n'γ=15.1 MeV) reaction have also been obtained. The data obtained for the 40Ca(n,γ0) reaction in the region of the giant dipole resonance demonstrate the unique capabilities of this system. Future developments to the neutron source which will enhance the capabilities of the system are presented. 14 references

  8. Parity Violation in Neutron Capture Reactions

    CERN Document Server

    Hayes, A C; Zanini, Luca

    2001-01-01

    In the last decade, the scattering of polarized neutrons on compound nucleus resonances proved to be a powerful experimental technique for probing nuclear parity violation. Longitudinal analyzing powers in neutron transmission measurements on p-wave resonances in nuclei such as $^{139}$La and $^{232}$Th were found to be as large as 10%. Here we examine the possibilities of carrying out a parallel program to measure asymmetries in the $(n,\\gamma$) reaction on these same compound nuclear resonances. Symmetry-violating $(n,\\gamma$) studies can also show asymmetries as large as 10%, and have the advantage over transmission experiments of allowing parity-odd asymmetries in several different gamma-decay branches from the same resonance. Thus, studies of parity violation in the $(n,\\gamma)$ reaction using high efficiency germanium detectors at the Los Alamos Lujan facility, for example, could determine the parity-odd nucleon-nucleon matrix elements in complex nuclei with high accuracy. Additionally, simultaneous stu...

  9. Cubic boron nitride: a new prospective material for ultracold neutron application

    CERN Document Server

    Sobolev, Yu; Borisov, Yu; Daum, M; Fresne, N du; Goeltl, L; Hampel, G; Heil, W; Knecht, A; Keunecke, M; Kratz, J V; Lang, T; Meister, M; Plonka-Spehr, Ch; Pokotilovski, Yu; Reichert, P; Schmidt, U; Krist, Th; Wiehl, N; Zenner, J

    2009-01-01

    For the first time, the neutron optical wall-potential of natural cubic boron nitride (cBN) was measured at the ultracold neutron (UCN) source of the research reactor TRIGA Mainz using the time-of-flight method (TOF). The samples investigated had a wall-potential of (305 +/- 15) neV. This value is in good agreement with the result extracted from neutron reflectometry data and theoretical expectations. Because of its high critical velocity for UCN and its good dielectric characteristics, cubic boron nitride coatings (isotopically enriched) will be useful for a number of applications in UCN experiments.

  10. Study of thermal neutron capture in /sup 23/Na

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming; Shi Zongren; Zeng Xiantang; Li Guohua; Ding Dazhao

    1987-11-01

    Energies and intensities of 117 gamma-rays produced by the capture of thermal neutron in /sup 23/Na are measured by using a single Ge(Li) detector and a pair spectrometer. 107 gamma-rays are placed in the decay scheme consisting of 35 levels. The neutron binding energy is found to be 6959.51 (21) keV. The parameters of /sup 24/Na energy level density are determined with the Back-Shift Fermi Gas Model. The /sup 23/Na(n, ..gamma..)/sup 24/Na reaction is mainly a statistical process from the resonance capture of 2.85 keV state.

  11. Study of thermal neutron capture in /sup 23/Na

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming; Shi Zongren; Zeng Xiantang; Li Guohua; Ding Dazhao

    1989-04-01

    Energies and intensities of 117 gamma-rays produced by the capture of thermal neutrons in /sup 23/Na are measured by using a single Ge(Li) detector and a pair spectrometer. 107 gamma-rays are placed in a decay scheme consisting of 35 levels. The neutron binding energy is found to be 6959.51 (21) keV. The parameters of /sup 24/Na energy-level density are determined with the Back-Shift Fermi Gas Model. The /sup 23/Na(/ital n/,..gamma..) /sup 24/Na reaction is mainly a statistical process from the resonance capture of the 2.85 keV state.

  12. Resonance averaged channel radiative neutron capture cross sections

    International Nuclear Information System (INIS)

    In order to apply Lane amd Lynn's channel capture model in calculations with a realistic optical model potential, we have derived an approximate wave function for the entrance channel in the neutron-nucleus reaction, based on the intermediate interaction model. It is valid in the exterior region as well as the region near the nuclear surface, ans is expressed in terms of the wave function and reactance matrix of the optical model and of the near-resonance parameters. With this formalism the averaged channel radiative neutron capture cross section in the resonance region is written as the sum of three terms. The first two terms correspond to contribution of the optical model real and imaginary parts respectively, and together can be regarded as the radiative capture of the shape elastic wave. The third term is a fluctuation term, corresponding to the radiative capture of the compound elastic wave in the exterior region. On applying this theory in the resonance region, we obtain an expression for the average valence radiative width similar to that of Lane and Mughabghab. We have investigated the magnitude and energy dependence of the three terms as a function of the neutron incident energy. Calculated results for 98Mo and 55Mn show that the averaged channel radiative capture cross section in the giant resonance region of the neutron strength function may account for a considerable fraction of the total (n, γ) cross section; at lower neutron energies a large part of this channel capture arises from the fluctuation term. We have also calculated the partial capture cross section in 98Mo and 55Mn at 2.4 keV and 24 keV, respectively, and compared the 98Mo results with the experimental data. (orig.)

  13. Neutron Induced Capture and Fission Processes on 238U

    OpenAIRE

    Oprea Cristiana; Oprea Alexandru

    2016-01-01

    Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit – Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present...

  14. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.

  15. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. PMID:25464183

  16. A study on the behavior of boron in iron-base alloys by neutron induced autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Sung; Rhee, Chang Kyu; Cho, Hae Dong; Han, Chang Hee; Lee, Chang Hee; Jung, Jung Hwan; Kim, Yi Kyung; Lee, Yong Bok

    2001-02-01

    Boron is widely utilized in steel or alloy making to improve certain properties. However, due to its lightness boron is difficult to detect or characterize its behavior even through TEM/EDS or EELS techniques. Although many companies recognize the beneficial effects of boron, the role or mechanism of the boron is not yet clearly understood. Therefore it is required to develop the autoradiography technique to elucidate the boron behavior in alloys. As the only institute operating research reactor in the country, it would be the responsibility of the institute to develop the technique and provide it to the industries. Quantitative analyses of boron in type 316 L stainless steel by neutron induced autoradiography was attempted in this study. Nine experimental reference alloys with different amount of boron were prepared and reliable chemical composition data were obtained. Autoradiographs of reference materials with three different neutron fluences ( 1.9 10{sup 13}, 1.9 10{sup 14} and 1.9 10{sup 15}/cm{sup 2} ) were obtained and a trial calibration curve of boron content vs. track density was acquired.

  17. Radiative Neutron Capture on Carbon-14 in Effective Field Theory

    OpenAIRE

    Rupak, Gautam; Fernando, Lakma; Vaghani, Akshay

    2012-01-01

    The cross section for radiative capture of neutron on carbon-14 is calculated using the model-independent formalism of halo effective field theory. The dominant contribution from E1 transition is considered, and the cross section is expressed in terms of elastic scattering parameters of the effective range expansion. Contributions from both resonant and non-resonant interaction are calculated. Significant interference between these leads to a capture contribution that deviates from simple Bre...

  18. An investigation into a suitable scintillator for localising neutron capture within a detector

    OpenAIRE

    Balmer, Matthew; Gamage, Kelum; Taylor, Graeme

    2014-01-01

    Using Monte-Carlo modelling, an investigation into a suitable loaded scintillator for localising neutron capture in a novel neutron survey meter has been undertaken. A comparison of estimated neutron capture location in a scintillator with Geant4 and MCNP simulations was undertaken and a good general agreement between the two models was observed. The interactions of γ emissions from neutron capture in the scintillator are investigated. The results show that the γ emission from neutron capture...

  19. Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital

    Science.gov (United States)

    Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.

    The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.

  20. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    International Nuclear Information System (INIS)

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility nTOF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed

  1. Neutron capture in s-wave resonances of nickel-64

    International Nuclear Information System (INIS)

    The neutron capture widths of the s-wave resonances at 13.9 and 33.8 keV in 64Ni have been determined using a setup with extremely low neutron sensitivity completely different from all previous experiments on this isotope. This feature is important because these resonances exhibit a very large scattering-to-capture ratio. A pulsed 3-MV Van de Graaff accelerator and a kinematically collimated neutron beam, produced via the 7Li(p,n) reaction, was used in the experiments. Capture gamma rays were observed by three Moxon-Rae detectors with a graphite, a bismuth-graphite, and a bismuth converter, respectively. The samples were positioned at a neutron flight path of only 6 to 8 cm. Thus, events due to capture of resonance-scattered neutrons in the detectors or in surrounding materials are completely discriminated by their additional time of flight. The short flight path and the high neutron flux at the sample position allowed for a signal-to-background ratio of approximately unity even for the broad resonance at 33.8 keV. The data obtained with the individual detectors were corrected for the efficiency of the different converter materials. For that purpose, detailed theoretical calculations of the capture gamma-ray spectra of the measured isotope and of gold, which was used as a standard, were performed. The final radiative widths are GAMMAγ (13.9 keV) = 1.01 + or - 0.07 eV and GAMMAγ (33.8 keV) = 1.16 + or - 0.08 eV, considerably smaller than the rough estimates obtained in previous work

  2. Neutron capture in s-wave resonances of 64Ni

    International Nuclear Information System (INIS)

    The neutron capture widths of the s-wave resonances at 13.9 and 33.8 keV in 64Ni have been determined using a setup with extremely low neutron sensitivity completely different from all previous experiments on this isotope. This feature is important because these resonances exhibit a very large scattering to capture ratio. A pulsed 3-MV Van de Graaff accelerator and a kinematically collimated neutron beam, produced via the 7Li (p, n) reaction, was used in the experiments. Capture gamma-rays were observed by three Moxon-Rae detectors with graphite-, bismuth-graphite-, and bismuth-converter, respectively. The samples were positioned at a neutron flight path of only 6-8 cm. Thus events due to capture of resonance scattered neutrons in the detectors or in surrounding materials are completely discriminated by their additional time of flight. The short flight path and the high neutron flux at the sample position allowed for a signal to background ratio of approx.= 1 even for the broad resonance at 33.8 keV. The data obtained with the individual detectors were corrected for the efficiency of the different converter materials. For that purpose, detailed theoretical calculations of the capture gamma-ray spectra of the measured isotope and of gold, which was used as a standard, were performed. The final radiative widths are GAMMAsub(γ)(13.9 keV) = 1.01 +- 0.07 eV and GAMMAsub(γ) (33.8 keV) = 1.16 +- 0.08 eV, considerably smaller than the rough estimates obtained in previous work. (orig.)

  3. MOSFET with a boron-loaded gate as a low-energy neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gavelle, M. [CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4 (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse (France); Sarrabayrouse, G., E-mail: sarra@laas.fr [CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4 (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse (France); Scheid, E. [CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4 (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse (France); Siskos, S.; Fragopoulou, M.; Zamani, M. [Aristotle University of Thessaloniki, Physics Department, 54124 Thessaloniki (Greece)

    2011-12-15

    A MOSFET-based low-energy neutron dosimeter has been fabricated using a {sup 10}B loaded gate electrode as (n,{alpha}) converter. The response to thermal neutrons has been studied. - Highlights: > Feasibility of a metal-oxide-semiconductor thermal neutron dosimeter is investigated. > Monolithically integrated boron-loaded gate electrode acts as a (n,{alpha}) converter. > Sensitivity of 2 V/Sv is obtained.

  4. Boron content in type 316 L stainless steel by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Boron is effective to the improvement of various properties of alloys, but it is difficult to characterize its behavior during the alloy processing. Neutron induced autoradiography (or called as F.T.E: Fission Track Etching) technique was attempted to quantitatively analyze boron content in type 316 L austenitic stainless steel. Reference samples with nine different boron contents were prepared and analyzed by conventional analysis method as well as by autoradiography technique using 'HANARO', a 30 MW research reactor in K.A.E.R.I. (Korea Atomic Energy Research Institute). Cd ratio of the neutron flux was about 200 and thermal neutron flux was around 2x1013/cm2/sec. A Kodak CN-85TM detector with an alloy sample was irradiated with two different thermal neutron fluences of 1013 and 1014/cm2. Track densities on the autoradiographs were measured using image analyzer. Within the range of 10 to 50 ppm of boron, track densities from autoradiography showed the linear relationship with results from conventional analyses. When complementarily applied with other analysis technique like E.B.S.D. (Electron Backscattered Diffraction) or E.D.S. (Energy Dispersive Spectroscopy) neutron induced autoradiography technique was found very useful in distinguishing and identifying phases with the different distribution coefficient of boron. (author)

  5. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    Science.gov (United States)

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, S. D.; Peters, W. A.; Adekola, A.; Allen, J.; Bardayan, D. W.; Becker, J. A.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Erikson, L.; Gaddis, A.; Harlin, C.; Hatarik, R.; Howard, J.; Jandel, M.; Johnson, M. S.; Kapler, R.; Krolas, W.; Liang, F.; Livesay, R. J.; Ma, Z.; Matei, C.; Matthews, C.; Moazen, B.; Nesaraja, C. D.; O'Malley, P.; Patterson, N.; Paulauskas, S. V.; Pelham, T.; Pittman, S. T.; Radford, D.; Rogers, J.; Schmitt, K.; Shapira, D.; Shriner, J. F.; Sissom, D. J.; Smith, M. S.; Swan, T.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, G. L.

    2009-03-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on 130,132Sn, 134Te and 75As are discussed.

  6. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee; Kozub, R. L. [Tennessee Technological University; Pain, Steven D [ORNL; Peters, W. A. [Rutgers University; Adekola, Aderemi S [ORNL; Allen, J. [Rutgers University; Bardayan, Daniel W [ORNL; Becker, J. [Lawrence Livermore National Laboratory (LLNL); Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee; Chipps, K. [Colorado School of Mines, Golden; Erikson, Luke [Colorado School of Mines, Golden; Gaddis, A. L. [Furman University; Harlin, Christopher W [ORNL; Hatarik, Robert [Rutgers University; Howard, Joshua A [ORNL; Jandel, M. [Los Alamos National Laboratory (LANL); Johnson, Micah [ORNL; Kapler, R. [University of Tennessee; Krolas, W. [University of Warsaw; Liang, J Felix [ORNL; Livesay, Jake [ORNL; Ma, Zhanwen [ORNL; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Matthews, C. [Rutgers University; Moazen, Brian [University of Tennessee; Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Patterson, N. P. [University of Surrey, UK; Paulauskas, Stanley [University of Tennessee; Pelham, T. [University of Surrey, UK; Pittman, S. T. [University of Tennessee, Knoxville (UTK); Radford, David C [ORNL; Rogers, J. [Tennessee Technological University; Schmitt, Kyle [University of Tennessee; Shapira, Dan [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Sissom, D. J. [Tennessee Technological University; Smith, Michael Scott [ORNL; Swan, T. P. [University of Surrey, UK; Thomas, J. S. [Rutgers University; Vieira, D. J. [Los Alamos National Laboratory (LANL); Wilhelmy, J. B. [Los Alamos National Laboratory (LANL); Wilson, Gemma L [ORNL

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  7. Neutron-capture nucleosynthesis in the first stars

    Energy Technology Data Exchange (ETDEWEB)

    Roederer, Ian U. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Preston, George W.; Thompson, Ian B.; Shectman, Stephen A. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sneden, Christopher, E-mail: iur@umich.edu [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States)

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  8. Neutron-capture nucleosynthesis in the first stars

    International Nuclear Information System (INIS)

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  9. Prompt gamma-ray neutron activation analysis methodology for determination of boron from trace to major contents

    International Nuclear Information System (INIS)

    Prompt gamma ray neutron activation analysis methodologies were standardized using a reflected neutron beam and Compton suppressed γ-ray spectrometer to quantify boron from trace to major concentrations. Neutron self-shielding correction factors for higher boron contents (0.2-10 mg) in samples were obtained from the sensitivity of chlorine by irradiating KCl with and without boron. This method was validated by determining boron concentrations in six boron compounds and applied to three borosilicate glass samples with boron contents in the range of 1-10 mg. Low concentrations of boron (10-58 mg kg-1) were also determined in two samples and five reference materials from NIST and IAEA. (author)

  10. Neutron Capture Measurements on Unstable Nuclei at LANSCE

    International Nuclear Information System (INIS)

    Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on 169Tm and 171Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements

  11. Neutron capture measurements on unstable nuclei at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J.L.; Haight, R.C. [LANSCE-3, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fowler, M.M.; Miller, G.G.; Rundberg, R.S.; Wilhelmy, J.B. [CST-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-06-01

    Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements. {copyright} {ital 1999 American Institute of Physics.}

  12. Neutron Capture Measurements on Unstable Nuclei at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J.; Haight, R.; Wilhelmy, J.; Fowler, M.; Rundberg, R.; Miller, G.

    1998-11-04

    Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements.

  13. Gamma Spectrum from Neutron Capture on Tungsten Isotopes

    International Nuclear Information System (INIS)

    An evaluation of thermal neutron capture on the stable tungsten isotopes is presented, with preliminary results for the compound systems 183,184,185,187W. The evaluation procedure compares the γ-ray cross-section data collected at the Budapest reactor, with Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process. The statistical-decay code DICEBOX was used for the Monte Carlo simulations. The evaluation yields new gamma rays in 185W and the confirmation of spins in 187W, raising the number of levels below which the level schemes are considered complete, thus increasing the number of levels that can be used in neutron data libraries.

  14. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  15. A fundamental study on hyper-thermal neutrons for neutron capture therapy.

    Science.gov (United States)

    Sakurai, Y; Kobayashi, T; Kanda, K

    1994-12-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.

  16. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron

    International Nuclear Information System (INIS)

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources (241Am/Be, 252Cf, 241Am/B, and DT neutron generator). Among the different systems the 252Cf neutron based PGNAA system has the best performance. (author)

  17. Novel dodecaborate cluster lipids for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lipids containing the closo-dodecaborate cluster have been developed. Two examples, S-(N,N-(2-dimyristoyloxyethyl) -acetamido)-thioundecahydro-closo-dodecaborate (2-) (B-6-14) and S-(N,N-(2-dipalmitoyloxyethyl) -acetamido)-thioundecahydro-closo-dodecaborate (2-) (B-6-16) have been prepared. With helper lipids, stable liposomes were obtained. (author)

  18. Boron neutron capture therapy: An interdisciplinary co-operation

    International Nuclear Information System (INIS)

    The international (European) undertaking in BNCT in the Netherlands has required close scrutiny of the organisational structure required to establish BNCT facilities. The multidisciplinary co-operation and the tasks of the participants in the hospital (Radiation Oncologist, Medical Physicist, Pharmacist and other medical and paramedical staff) and those attached to the reactor) are described. The organisational structure and regulatory aspects required for the international functioning of the Petten treatment facility are provided for guidance to new projects in this field. (author)

  19. Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent.

    Science.gov (United States)

    Dewi, Novriana; Yanagie, Hironobu; Zhu, Haito; Demachi, Kazuyuki; Shinohara, Atsuko; Yokoyama, Kazuhito; Sekino, Masaki; Sakurai, Yuriko; Morishita, Yasuyuki; Iyomoto, Naoko; Nagasaki, Takeshi; Horiguchi, Yukichi; Nagasaki, Yukio; Nakajima, Jun; Ono, Minoru; Kakimi, Kazuhiro; Takahashi, Hiroyuki

    2013-07-01

    Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site. Tumor samples were taken for quantitative analysis by ICP-MS at 2, 12, and 24 h after gadolinium compound injection. Highest gadolinium concentration was observed at about 2 h after gadolinium compound injection with an average of 40.3 μg/g of wet tumor tissue. We performed neutron irradiation at JRR-4 reactor facility of Japan Atomic Energy Research Institute in Tokaimura with average neutron fluence of 2×10¹² n/cm². The experimental results showed that the tumor growth suppression of gadolinium-injected irradiated group was revealed until about four times higher compared to the control group, and no significant weight loss were observed after treatment suggesting low systemic toxicity of this compound. The gadolinium-entrapped liposome will become one of the candidates for Gd delivery system on NCT.

  20. In vivo prompt gamma neutron activation analysis for the screening of boron-10 distribution in a rabbit knee: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X; Yanch, J [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Clackdoyle, R [Laboratoire Hubert Curien, Mixed Research Unit (UMR) 5516, CNRS and Universite Jean Monnet, Saint Etienne (France); Shortkroff, S [Department of Orthopedic Surgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2008-05-21

    Boron neutron capture synovectomy (BNCS) is under development as a potential treatment modality for rheumatoid arthritis (RA). RA is characterized by the inflammation of the synovium (the membrane lining articular joints), which leads to pain and a restricted range of motion. BNCS is a two-part procedure involving the injection of a boronated compound directly into the diseased joint followed by irradiation with a low-energy neutron beam. The neutron capture reactions taking place in the synovium deliver a local, high-linear energy transfer (LET) dose aimed at destroying the inflamed synovial membrane. For successful treatment via BNCS, a boron-labeled compound exhibiting both high synovial uptake and long retention time is necessary. Currently, the in vivo uptake behavior of potentially useful boronated compounds is evaluated in the knee joints of rabbits in which arthritis has been induced. This strategy involves the sacrifice and dissection of a large number of animals. An in vivo {sup 10}B screening approach is therefore under investigation with the goal of significantly reducing the number of animals needed for compound evaluation via dissection studies. The 'in vivo prompt gamma neutron activation analysis' (IVPGNAA) approach uses a narrow neutron beam to irradiate the knee from several angular positions following the intra-articular injection of a boronated compound whose uptake characteristics are unknown. A high-purity germanium detector collects the 478 keV gamma photons produced by the {sup 10}B capture reactions. The {sup 10}B distribution in the knee is then reconstructed by solving a system of simultaneous equations using a weighted least squares algorithm. To study the practical feasibility of IVPGNAA, simulation data were generated with the Monte Carlo N-particle transport code. The boron-containing region of a rabbit knee was partitioned into 8 compartments, and the {sup 10}B prompt gamma signals were tallied from 16 angular positions

  1. In vivo prompt gamma neutron activation analysis for the screening of boron-10 distribution in a rabbit knee: a simulation study

    Science.gov (United States)

    Zhu, X.; Clackdoyle, R.; Shortkroff, S.; Yanch, J.

    2008-05-01

    Boron neutron capture synovectomy (BNCS) is under development as a potential treatment modality for rheumatoid arthritis (RA). RA is characterized by the inflammation of the synovium (the membrane lining articular joints), which leads to pain and a restricted range of motion. BNCS is a two-part procedure involving the injection of a boronated compound directly into the diseased joint followed by irradiation with a low-energy neutron beam. The neutron capture reactions taking place in the synovium deliver a local, high-linear energy transfer (LET) dose aimed at destroying the inflamed synovial membrane. For successful treatment via BNCS, a boron-labeled compound exhibiting both high synovial uptake and long retention time is necessary. Currently, the in vivo uptake behavior of potentially useful boronated compounds is evaluated in the knee joints of rabbits in which arthritis has been induced. This strategy involves the sacrifice and dissection of a large number of animals. An in vivo 10B screening approach is therefore under investigation with the goal of significantly reducing the number of animals needed for compound evaluation via dissection studies. The 'in vivo prompt gamma neutron activation analysis' (IVPGNAA) approach uses a narrow neutron beam to irradiate the knee from several angular positions following the intra-articular injection of a boronated compound whose uptake characteristics are unknown. A high-purity germanium detector collects the 478 keV gamma photons produced by the 10B capture reactions. The 10B distribution in the knee is then reconstructed by solving a system of simultaneous equations using a weighted least squares algorithm. To study the practical feasibility of IVPGNAA, simulation data were generated with the Monte Carlo N-particle transport code. The boron-containing region of a rabbit knee was partitioned into 8 compartments, and the 10B prompt gamma signals were tallied from 16 angular positions. Results demonstrate that for this

  2. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.

  3. Review of Livermore-Led Neutron Capture Studies Using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W; Sheets, S; Agvaanluvsan, U; Becker, J; Becvar, F; Bredeweg, T; Clement, R; Couture, A; Esch, E; Haight, R; Jandel, M; Krticka, M; Mitchell, G; Macri, R; O' Donnell, J; Reifarth, R; Rundberg, R; Schwantes, J; Ullmann, J; Vieira, D; Wouters, J; Wilk, P

    2007-05-11

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decay properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.

  4. Review of Livermore-led neutron capture studies using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W.E.; Agvaanluvsan, U.; Becker, J.A.; Macri, R.; Wilk, P.A. [Lawrence Livermore National Lab., Livermore, CA (United States); Sheets, S.A. [North Carolina State Univ., Raleigh, NC (United States); Becvar, F.; Krticka, M. [Prague Charles Univ. (Czech Republic); Bredeweg, T.A.; Clement, R.; Couture, A.; Esch, E.; Haight, R.C.; Jandel, M.; O' Donnell, J.M.; Reifarth, R.; Rundberg, R.S.; Schwantes, J.M.; Ullmann, J.L.; Vieira, D.J.; Wouters, J.M. [Los Alamos National Lab., Los Alamos, NM (United States); Mitchell, G.E. [North Carolina State Univ., Raleigh, NC (United States); Triangle Univ.s Nuclear Lab., Durham, NC (United States)

    2008-07-01

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1 eV up to about 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decay properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am. (authors)

  5. New aspects of the neutron capture in light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mengoni, A. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    Several neutron capture cross sections of light nuclei (A {<=} 40) for neutron energies up to the MeV region have been recently calculated. Examples are (target nuclei): {sup 12}C, {sup 13}C, {sup 16}O and {sup 10}Be. The results of these calculations will be shown together with a comparison with the most recent experimental data. In the case of n + {sup 10}Be case, the cross section of the inverse process (Coulomb dissociation of {sup 11}Be) is considered and compared with the measurement. A discussion on the relevant nuclear structure information required for the evaluation of nuclear data of light nuclei is given. (author)

  6. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code

    International Nuclear Information System (INIS)

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5 cm2 configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSPBICHP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSPBERTHP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25 meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. - Highlights: • The results of boron-coated GEM for thermal neutrons are described. • The simulations were performed by GEANT4 MC code. • The evaluation was determined by GEANT4 using two physics lists. • The response of the detector was taken for En=25–100 meV

  7. Experimental and simulation study of the response of a boron-loaded plastic scintillator to neutrons and gamma-rays

    International Nuclear Information System (INIS)

    A boron-loaded plastic scintillator has been investigated for possible use in neutron spectrometry. The sensor composition of hydrogen and carbon leads to multiple scattering collisions that are useful for fast neutron spectroscopy, while its boron component can serve as a thermal neutron detector. The response function of this detector has been simulated using MCNPX code for gamma-rays and neutrons. The sensor has been mounted on a photomultiplier tube connected to a data acquisition system. The system has been tested in different gamma-ray and neutron fields at the UOIT Neutron Facility. The simulation and experimental results have been compared and analyzed. (author)

  8. Direct Neutron Capture for Magic-Shell Nuclei

    OpenAIRE

    Krausmann, E.; Balogh, W.; Oberhummer, H.; Rauscher, T.; Kratz, K.-L.; Ziegert, W.

    1995-01-01

    In neutron capture for magic--shell nuclei the direct reaction mechanism can be important and may even dominate. As an example we investigated the reaction $^{48}$Ca(n,$\\gamma)^{49}$Ca for projectile energies below 250\\,keV in a direct capture model using the folding procedure for optical and bound state potentials. The obtained theoretical cross sections are in agreement with the experimental data showing the dominance of the direct reaction mechanism in this case. The above method was also ...

  9. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  10. Application of neutron induced radiography technique in determination of boron in aluminium

    International Nuclear Information System (INIS)

    The technique of Neutron Induced Radiography has been applied to determine boron concentration and its spatial distribution in aluminium using Allyl diglycol carbonate (CR-39) detectors. The technique is based upon the simultaneous irradiation of sample and a standard fixed on a track detector with thermal neutrons and the counting of alpha and /sup 7/Li tracks produced in the detector from the nuclear reaction /sup 10/B(n,α)/sup 7/Li after chemical etching. Boron concentration is determined by comparing the /sup 7/Li and alpha particle tracks density with that of a standard of known boron concentration. Boron concentration in aluminium has been found to be (135.8 ±0.7) ppm in this study which is on the higher side within the normal range reported in the literature. The technique of boron determination by Neutron Induced Radiography is a simple and reliable. It can be used to study the other α-emitting radionuclides in minerals and other materials. (author)

  11. Boron cage compound materials and composites for shielding and absorbing neutrons

    Science.gov (United States)

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-03-04

    Boron cage compound-containing materials for shielding and absorbing neutrons. The materials include BCC-containing composites and compounds. BCC-containing compounds comprise a host polymer and a BCC attached thereto. BCC-containing composites comprise a mixture of a polymer matrix and a BCC filler. The BCC-containing materials can be used to form numerous articles of manufacture for shielding and absorbing neutrons.

  12. Preparation of radioactive rare earth targets for neutron capture study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G. G. (Geoffrey G.); Rogers, P. S. Z. (Pamela S. Z.); Palmer, P. D. (Phillip D.); Dry, D. E. (Donald E.); Rundberg, R. S. (Robert S.); Fowler, Malcolm M.; Wilhelmy, J. B. (Jerry B.)

    2002-01-01

    The understanding of thc details of nucleosynthesis in stars remains a great challenge. Though the basic mechanisms governing the processes have been known since the pioneering work of Burbidge, Burbidge, Fowler and Hoyle (l), we are now evolving into a condition where we can ask more specific questions. Of particular interest are the dynamics of the s ('slow') process. In this process the general condition is one in which sequential neutron captures occur at time scales long compared with the beta decay half lives of the capturing nuclides. The nucleosynthesis period for C or Ne burning stellar shells is believed to be in the year to few year time frame (2). This means that radionuclides with similar half lives to this burning period serve as 'branch point' nuclides. That is, there will be a competition between a capture to the next heavier isotope and a beta decay to the element of nexl higher atomic number. By understanding the abundances of these competing reactions we can learn about the dynamics of the nucleosynthesis process in the stellar medium. Crucial to this understanding is that we have a knowledge of the underlying neutron reaction cross sections on these unstable nuclides in the relevant stellar energy regions (neutrons of 0.1-100 KeV). Tm (1.9 years) and ls'Sm (90 ycws) have decay properties that permit their handling in an open fume hood. These Iwo were therefore selected to be the first radionuclides for neutron capture study in what will be an ongoing effort.

  13. Photon strength function deduced from photon scattering and neutron capture

    Directory of Open Access Journals (Sweden)

    Matic A.

    2010-10-01

    Full Text Available The dipole strength function of 78Se and 196Pt are investigated by two different experimental methods, capture of cold neutrons in 77Se and 195Pt and photon scattering experiments on 78Se and 196Pt. Considering the different ways of excitation, the strength function deduced from the results are expected to agree. The report shows the status of the data analysis and presents first preliminary results.

  14. The theoretical description of thermal neutron capture γ-spectra

    International Nuclear Information System (INIS)

    In the framework of statistical approach with phenomenological parametrization the energy dependence of the excited level density the thermal neutron capture γ-ray spectra for a number of spherical nuclei with 77<=A<=200 are calculated. Taking into account satisfactory agreement between theoretical and experimental intensities of the γ-ray spectra it is concluded that the photon E1- and M1-strength functions can serve as a reliable basis for the analysis of radiative decay of these nuclei

  15. Neutron capture on nitrogen as a means of detecting explosives

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.N.; Rassool, R.P.

    1995-10-01

    A research prototype was developed on the basis of neutron capture on nitrogen and is demonstrated to be able to detect parcel and letter bombs. Is the gamma radiation that is detected as an indication of the presence of nitrogen, and the probable presence of nitrogen-containing explosive. The conceptual design of the explosive detector and some experimental results are briefly presented. figs., ills.

  16. Development of inverse-planning system for neutron capture therapy

    International Nuclear Information System (INIS)

    To lead proper irradiation condition effectively, Japan Atomic Energy Agency (JAEA) is developing an inverse-planning system for neutron capture therapy (NCT-IPS) based on the JAEA computational dosimetry system (JCDS) for BNCT. The leading methodology of an optimum condition in the NCT-IPS has been applied spatial channel theory with adjoint flux solution of Botzman transport. By analyzing the results obtained from the adjoint flux calculations according to the theory, optimum incident point of the beam against the patient can be found, and neutron spectrum of the beam which can generate ideal distribution of neutron flux around tumor region can be determined. The conceptual design of the NCT-IPS was investigated, and prototype of NCT-IPS with JCDS is being developed. (author)

  17. Neutron Capture Cross Sections for the Weak s Process

    CERN Document Server

    Heil, M; Kaeppeler, F; Gallino, R; Pignatari, M; Uberseder, E

    2009-01-01

    In past decades a lot of progress has been made towards understanding the main s-process component that takes place in thermally pulsing Asymptotic Giant Branch (AGB) stars. During this process about half of the heavy elements, mainly between 90=8Msolar) and is much less understood. A better characterization of the weak s component would help disentangle the various contributions to element production in this region. For this purpose, a series of measurements of neutron-capture cross sections have been performed on medium-mass nuclei at the 3.7-MV Van de Graaff accelerator at FZK using the activation method. Also, neutron captures on abundant light elements with A<56 play an important role for s-process nucleosynthesis, since they act as neutron poisons and affect the stellar neutron balance. New results are presented for the (n,g) cross sections of 41K and 45Sc, and revisions are reported for a number of cross sections based on improved spectroscopic information.

  18. Neutron capture cross section on Lu isotopes at DANCE

    International Nuclear Information System (INIS)

    The DANCE (Detector for Advanced Neutron Capture Experiments) array at the LANSCE spallation neutron source in Los Alamos has been used to measure neutron capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the s-process nucleosynthesis. 175Lu is an important waiting-point in the s-process and 176Lu is a sensitive s-process thermometer. Three targets were used to perform these measurements. One was a natural Lu foil of 31 mg/cm2 and the other two were isotopically enriched targets of 175Lu (99.8%, ∼1 mg/cm2 electro-deposited on Ti) and 176Lu (99.9%, ∼1 mg/cm2 mass separator deposited on aluminized mylar). The data analysis is in progress. Preliminary cross sections have been obtained by normalizing the data to the known thermal cross section. A comparison of these data with recent experimental data of K. Wisshak et al. and the evaluated data of ENDF B-VII will be presented.

  19. Modern alchemy: Fred Hoyle and element building by neutron capture

    Science.gov (United States)

    Burbidge, E. Margaret

    Fred Hoyle's fundamental work on building the chemical elements by nuclear processes in stars at various stages in their lives began with the building of elements around iron in the very dense hot interiors of stars. Later, in the paper by Burbidge, Burbidge, Fowler and Hoyle, we four showed that Hoyle's "equilibrium process" is one of eight processes required to make all of the isotopes of all the elements detected in the Sun and stars. Neutron capture reactions, which Fred had not considered in his epochal 1946 paper, but for which experimental data were just becoming available in 1957, are very important, in addition to the energy-generating reactions involving hydrogen, helium, carbon, nitrogen and oxygen, for building all of the elements. They are now providing clues to the late stages of stellar evolution and the earliest history of our Galaxy. I describe here our earliest observational work on neutron capture processes in evolved stars, some new work on stars showing the results of the neutron capture reactions, and data relating to processes ending in the production of lead, and I discuss where this fits into the history of stars in our own Galaxy.

  20. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    International Nuclear Information System (INIS)

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated

  1. 硼中子俘获疗法对胶质瘤干细胞增殖和细胞周期的影响%Effect of boron neutron capture therapy on cell proliferation and cell cycle arrest in glioma stem cells

    Institute of Scientific and Technical Information of China (English)

    孙婷; 钱兴龙; 李炎炎; 张紫竹; 李斌; 陈桂林; 韦永新; 谢学顺; 周幽心

    2014-01-01

    Objective To study the effect and mechanism of boron neutron capture therapy (BNCT) on cell cycle procession in human glioma stem cells (GSCs) in vitro,and to analyze the difference of sensitivity for BNCT on GSCs and glioma cells.Methods Firstly,uptake of boronophenylalarine (BPA) on human GSCs SU2 and glioma cells SHG-44 was detected.Then the cells enriched boron-10 (10B) were irradiated by In-Hospital Neutron Irradiator (IHNI-1).The radiation sensitivity was measured using clonogenic survival assay.The proliferation was examined by MTT assay.The cell cycle procession was determined using flow cytometry.The protein expression of cyclin B1,CDK1 and P21[WAF1] were detected by Western blot.Results 10B concentration of SU2 and SHG-44 cells arrived at (1.76 ±0.28) and (2.50 ±0.12) μg/107cells at 24 h in 5 mMBPA.After radiation by IHNI-1,the survival fraction and viability of cells enriched 10B were decreased significantly (P < 0.05 orP < 0.01),compared with those of 10B-free.The BNCT sensitivity of SU2 cells was lower than that of SHG-44 cells (P < 0.05).The proportion of G2/M phase of SU2 and SHG-44 cells was increased after BNCT compared with that of 10B-free(P < 0.05).The protein levels of cyclin B1 and CDK1 were decreased(P < 0.01),and that of P21[WAF1] was increased(P < 0.01).Conclusions The BNCT sensitivity of GSCs was lower than that of glioma cells.BNCT could inhibite cell regeneration and proliferation and make G2/M to be blocked by inhibition of cell cycle protein formation.%目的 研究硼中子俘获疗法(BNCT)对体外培养人胶质瘤干细胞(GSCs)周期进程的影响及机制,比较GSCs和胶质瘤细胞株SHG-44对BNCT敏感性的差异.方法 首先检测人GSCsSU2和人胶质瘤细胞株SHG-44吸收含硼化合物二羟基苯丙氨酸硼(BPA)的情况,然后采用医院中子照射器(IHNI-1)对含硼(10B)细胞进行照射,克隆存活实验检测细胞的放射敏感性,MTT法检测细胞增殖率,流式细胞

  2. Novel Boron-10-based detectors for Neutron Scattering Science

    OpenAIRE

    Piscitelli, Francesco; project, for the ILL/ESS/LiU collaboration for the development of the B10 detector technology in the framework of the CRISP

    2015-01-01

    Nowadays neutron scattering science is increasing its instrumental power. Most of the neutron sources in the world are pushing the development of their technologies to be more performing. The neutron scattering development is also pushed by the European Spallation Source (ESS) in Sweden, a neutron facility which has just started construction. Concerning small area detectors (1m^2), the 3He technology, which is today cutting edge, is reaching fundamental limits in its development. Counting rat...

  3. Neutron capture and (n,2n) measurements on 241Am

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D; Jandel, M; Bredeweg, T; Bond, E; Clement, R; Couture, A; Haight, R; O' Donnell, J; Reifarth, R; Ullmann, J; Wilhelmy, J; Wouters, J; Tonchev, A; Hutcheson, A; Angell, C; Crowell, A; Fallin, B; Hammond, S; Howell, C; Karowowski, H; Kelley, J; Pedroni, R; Tornow, W; Macri, R; Agvaanluvsan, U; Becker, J; Dashdorj, D; Stoyer, M; Wu, C

    2007-07-18

    We report on a set of neutron-induced reaction measurements on {sup 241}Am which are important for nuclear forensics and advanced nuclear reactor design. Neutron capture measurements have been performed on the DANCE detector array at the Los Alamos Neutron Scattering CEnter (LANSCE). In general, good agreement is found with the most recent data evaluations up to an incident neutron energy of {approx} 300 keV where background limits the measurement. Using mono-energetic neutrons produced in the {sup 2}H(d,n){sup 3}He reaction at Triangle University Nuclear Laboratory (TUNL), we have measured the {sup 241}Am(n,2n) excitation function from threshold (6.7 MeV) to 14.5 MeV using the activation method. Good agreement is found with previous measurements, with the exception of the three data points reported by Perdikakis et al. around 11 MeV, where we obtain a much lower cross section that is more consistent with theoretical estimates.

  4. Advances in Atomic Data for Neutron-Capture Elements

    CERN Document Server

    Sterling, N C; Esteves, D A; Stancil, P C; Kilcoyne, A L D; Bilodeau, R C; Aguilar, A

    2011-01-01

    Neutron(n)-capture elements (atomic number Z>30), which can be produced in planetary nebula (PN) progenitor stars via s-process nucleosynthesis, have been detected in nearly 100 PNe. This demonstrates that nebular spectroscopy is a potentially powerful tool for studying the production and chemical evolution of trans-iron elements. However, significant challenges must be addressed before this goal can be achieved. One of the most substantial hurdles is the lack of atomic data for n-capture elements, particularly that needed to solve for their ionization equilibrium (and hence to convert ionic abundances to elemental abundances). To address this need, we have computed photoionization cross sections and radiative and dielectronic recombination rate coefficients for the first six ions of Se and Kr. The calculations were benchmarked against experimental photoionization cross section measurements. In addition, we computed charge transfer (CT) rate coefficients for ions of six n-capture elements. These efforts will ...

  5. Anomalous globular clusters: insights from neutron capture elements abundances

    CERN Document Server

    Marino, A F

    2013-01-01

    Thanks to the large amount of spectroscopic and photometric data assembled in the last couple of decades, the assumption that all globular clusters (GCs) contain a simple mono-metallic stellar population has been modified. Besides the common variations in the elements created/destroyed in the H-burning processes, spreads and/or multi-modalities in heavier elements have been detected in a few objects. Among the most remarkable chemical inhomogeneity in these anomalous objects is the internal variation in the neutron-capture (n-capture) elements, that can provide some information about the material from which stars were born. I report a summary of the chemical pattern observed in GCs where variations in n-capture have been detected, and the connection between these chemical features and the distribution of stars along the color-magnitude diagrams in the context of the lively debate on multiple stellar populations.

  6. Neutron Capture Radiography: Neutron Capture Radiography:a technique for isotopic labelling and analytical imaging with a few stable isotopes

    OpenAIRE

    Michel Thellier; Camille Ripoll

    2006-01-01

    NCR (neutron capture radiography) may be used successfully for the imaging of one of the stable isotopes of a few chemical elements (especially 6Li and 10B, possibly also 14N, 17O, and others) and for labelling experiments using these stable isotopes. Other physical techniques compete with NCR. However, NCR can remain extremely useful in a certain number of cases, because it is usually more easily done and is less expensive than the other techniques.

  7. Neutron Capture Radiography: Neutron Capture Radiography:a technique for isotopic labelling and analytical imaging with a few stable isotopes

    Directory of Open Access Journals (Sweden)

    Michel Thellier

    2006-01-01

    Full Text Available NCR (neutron capture radiography may be used successfully for the imaging of one of the stable isotopes of a few chemical elements (especially 6Li and 10B, possibly also 14N, 17O, and others and for labelling experiments using these stable isotopes. Other physical techniques compete with NCR. However, NCR can remain extremely useful in a certain number of cases, because it is usually more easily done and is less expensive than the other techniques.

  8. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237Np, 241Am and 242Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237Np were identified, as well as 19 of 241Am, and 127 prompt γ-rays of 242Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237Np was observed at an energy of Eγ=182.82(10) keV associated with a partial capture cross section of σγ=22.06(39) b. The most intense prompt γ-ray lines of 241Am and of 242Pu were observed at Eγ=154.72(7) keV with σγ=72.80(252) b and Eγ=287.69(8) keV with σγ=7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237Np, 241Am and 242Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was demonstrated. Compared

  9. Rapid Neutron Capture Process in Supernovae and Chemical Element Formation

    Indian Academy of Sciences (India)

    Rulee Baruah; Kalpana Duorah; H. L. Duorah

    2009-09-01

    The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half of the heavy elements with mass number ≻ 70 and all of the actinides in the solar system are believed to have been produced in the r-process. We have studied the r-process in supernovae for the production of heavy elements beyond = 40 with the newest mass values available. The supernova envelopes at a temperature ≻ 109 K and neutron density of 1024 cm-3 are considered to be one of the most potential sites for the r-process. The primary goal of the r-process calculations is to fit the global abundance curve for solar system r-process isotopes by varying time dependent parameters such as temperature and neutron density. This method aims at comparing the calculated abundances of the stable isotopes with observation.We have studied the r-process path corresponding to temperatures ranging from 1.0 × 109 K to 3.0 × 109 K and neutron density ranging from 1020 cm-3 to 1030 cm-3. With temperature and density conditions of 3.0 × 109 K and 1020 cm-3 a nucleus of mass 273 was theoretically found corresponding to atomic number 115. The elements obtained along the r-process path are compared with the observed data at all the above temperature and density range.

  10. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    International Nuclear Information System (INIS)

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176Hf and 178Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little

  11. Cubic boron nitride: a new prospective material for ultracold neutron application

    OpenAIRE

    Sobolev, Yu.; Lauer, Th.; Borisov, Yu.; Daum, M.; Fresne, N. du; Goeltl, L.; Hampel, G.; Heil, W.; Knecht, A.; Keunecke, M.; Kratz, J.V.; Lang, T.; Meister, M.; Plonka-Spehr, Ch.; Pokotilovski, Yu.

    2009-01-01

    For the first time, the neutron optical wall-potential of natural cubic boron nitride (cBN) was measured at the ultracold neutron (UCN) source of the research reactor TRIGA Mainz using the time-of-flight method (TOF). The samples investigated had a wall-potential of (305 +/- 15) neV. This value is in good agreement with the result extracted from neutron reflectometry data and theoretical expectations. Because of its high critical velocity for UCN and its good dielectric characteristics, cubic...

  12. Early detection of deteriorations affecting neutrons boron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, T.; Hamrita, H.; Normand, S. [CEA, LIST, Laboratoire Capteur et Architectures Electroniques, F-91191 Gif/Yvette (France); Daviaud, J. P. [EDF, DPN, 1 place Pleyel, 93 282 Saint Denis Cedex (France); Laroche, M. [EDF, SEPTEN, 12-14 rue Dutrievoz, 69628 Villeurbanne Cedex (France)

    2011-07-01

    The objective of these studies is to design and to industrialize a new device taking back the features of the actual system of control of boron detectors and updating them by adding some analysis of the pulses shapes for predictive maintenance. (authors)

  13. Determination of boron in water solution by an indirect neutron activation technique from a 241Am/Be source

    International Nuclear Information System (INIS)

    Boron content in water solutions has been analysed by Indirect Activation Technique a twin 241Am/Be neutron source with a source strength of 9x106 n/seg. The boron concentration was inferred from the measurement of the activity induced in a vanadium flux monitor. The vanadium rod was located inside the boron solution in a standart geometrical set up with respect to the neutron source. Boron concentrations in the range of 100 to 1000 ppm were determined with an overall accuracy of about 2% during a total analysis time of about 20 minutes. Eventhough the analysis is not selective for boron yet due the rapid, simple and precise nature, it is proposed for the analysis of boron in the primary coolant circuit of Nuclear Power Plants of PWR type. (Author)

  14. Study of thermal neutron capture on /sup 32/S

    Energy Technology Data Exchange (ETDEWEB)

    Guo Taichang; Shi Zongren; Zeng Xiantang; Li Guohua; Ding Dazhao

    1985-02-01

    The ..gamma..-ray spectrum of the /sup 32/S (n,..gamma..) reaction at thermal energy measured by using a Ge(Li) detector. Among 86 ..gamma.. rays identified 23 ones are recognized as primary ..gamma..-transitions. The excitation energies of 25 levels and the decay branch ratios are deduced. Three possible levels of 7505.0, 4473.1, and 2884.6 keV were not reported previously. The neutron separation energy of /sup 33/S is determined to be 8641.7 +- 0.6 keV. The thermal neutron capture cross section of /sup 32/S is determined to be 529 +- 26 mb by summing the transition intensities to the ground state of /sup 33/S and comparing with the well known Au (n,..gamma..) cross sections. The partial capture cross section of seven primary E1 transitions are calculated by the formula of the Lane-Lynn direct capture theory and compared with measured values.

  15. New measurement of neutron capture resonances of 209Bi

    CERN Document Server

    Domingo-Pardo, C; Abbondanno, U; Aerts, G; Alvarez-Pol, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, Panayiotis; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carrillode Albornoz, A; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Gallino, R; Gonçalves, I; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Kappeler, F; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; Oshima, M; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2006-01-01

    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At th...

  16. Design, building and evaluation of a neutron detection device based on boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    This work focuses on the study, the characterization and the fabrication of Boron-loaded plastic scintillators. Their use in thermal and fast neutron detection devices is also investigated. Fabrication process, especially boron doping, is explained in the first part of this work. Several FTIR, UV-visible and NMR analysis methods were used in order to characterize the material and to check its structure and stoichiometry. Experiences were done using alpha particles and proton beams to measure the scintillation characteristics. Light emission could therefore be completely determined by the Birks semi-empirical relation. In the second part, the whole detector simulation is undergone: interaction between material and radiation, light generation, paths and signal generation. Neutron simulation by MCNP (Monte Carlo N-Particles) is coupled to a light generation and propagation code developed especially during this work. These simulation tools allow us to optimize the detector geometry for neutron detection and to determine the geometry influence to the photon collection efficiency. Neutron detection efficiency and mean lifetime in this scintillator are also simulated. The close fit obtained between experimental measurements and simulations demonstrate the reliability of the method used. The third part deals with the discrimination methods between neutron and gamma, such as analog (zero crossing) and digital (charge comparison) ones. Their performances were explained and compared. The last part of this work reports on few applications where neutron detection is essential and can be improved with the use of boron loaded plastic scintillators. In particular, the cases of doped scintillation fibers, neutron spectrometry devices and more over neutron multiplicity counting devices are presented. (author)

  17. Neutron Capture gamma ENDF libraries for modeling and identification of neutron sources

    International Nuclear Information System (INIS)

    There are a number of inaccuracies and data omissions with respect to gammas from neutron capture in the ENDF libraries used as field reference information and by modeling codes used in JTOT. As the use of Active Neutron interrogation methods is expanded, these shortfalls become more acute. A new, more accurate and complete evaluated experimental database of gamma rays (over 35,000 lines for 262 isotopes up to U so far) from thermal neutron capture has recently become available from the IAEA. To my knowledge, none of this new data has been installed in ENDF libraries and disseminated. I propose to upgrade libraries of 184,186W, 56Fe, 204,206,207Pb, 104Pd, and 19F the 1st year. This will involve collaboration with Richard Firestone at LBL in evaluating the data and installing it in the libraries. I will test them with the transport code MCNP5

  18. Neutron capture effects and pre-atmospheric sizes of meteoroids

    Institute of Scientific and Technical Information of China (English)

    WANG Daode; LIN Yangting

    2003-01-01

    Excesses of 80Kr and 82Kr, produced by secondary neutron capture effects of 79Br and 81Br, were observed in meteorites. Epithermal neutron flux, Jn (30-300 eV), and fast neutron flux, Jn( > 5 MeV), were determined according to reactions of 79Br(n, γβ80Kr, 81Br(n, γβ82Kr, and 24Mg(n, α)21Ne, respectively. Cosmogenic noble gases of several ordinary chondrites fell in China indicate a positive relationship between Jn (30-300 eV)/Jn ( > 5 MeV) ratio and Jn (30-300 eV). This suggests large pre-atmospheric sizes of the meteorites, and a considerable fraction of the secondary neutrons were slowed down to epithermal energy. According to its relationship with Jn (30-300 eV)/Jn ( > 5 MeV) ratio, the pre-atmospheric minimum radii and masses of several Chinese chondrites were estimated as below: Zhaodong: 60 cm, 3200 kg; Laochengzhen: 23 cm, 490 kg; Suizhou: 31 cm, 450 kg; Xi Ujimgin: 22 cm, 160 kg; Dongtai: 21 cm, 140 kg.

  19. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    Directory of Open Access Journals (Sweden)

    Baramsai B.

    2015-01-01

    Full Text Available Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ experiments on Gd isotopes, and (γ,γ’ reactions.

  20. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    Science.gov (United States)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-01

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions.

  1. Stellar neutron capture rates and the s process

    Directory of Open Access Journals (Sweden)

    Käppeler F.

    2012-02-01

    Full Text Available Neutron reactions are responsible for the formation of the elements heavier than iron. The corresponding scenarios relate to helium burning in Red Giant stars (s process and to supernova explosions (r and p processes. The s process, which operates in or near the valley of β-stability, has produced about half of the elemental abundances between Fe and Bi. Accurate (n, γ cross sections are the essential input for s process studies, because they determine the abundances produced by that process. Following a brief summary of the neutron capture processes, the focus will be set on the s process in massive stars, where the role of reliable cross section information is particularly important. Eventually, the intriguing aspects of the origin of 60Fe will be addressed. Attempts to determine the stellar cross section of that isotope are pushing experimental possibilities to their limits and present a pertinent challenge for future facilities.

  2. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    International Nuclear Information System (INIS)

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions

  3. Selective thermal neutron capture therapy of cancer cells using their specific functional differentiation

    International Nuclear Information System (INIS)

    The theory and the history of selective thermal neutron capture therapy for malignant melanoma, thermal neutron capture therapy which has been developed by authors, synthesis and effects of 10B-compounds accumulating in melanoma cells and absorbing thermal neutron easily, and many experiments concerning this therapy were reviewed and discussed. (Tsunoda, M.)

  4. The pulsed-neutron, capture-gamma borehole logging tool

    International Nuclear Information System (INIS)

    The report attempts to give a review of available information on the pulsed-neutron, capture-gamma tool. It starts with a discussion of the general principle of the physics of the tool. Next a review of available tool design data is given, including a special discussion of the source-detector distance. Operational data available on the tool is also considered. These reviews are followed by data on the SIGMAa2200 value of various materials relevant to petroleum technology. Finally the various approaches used to treat the measurements in order to obtain the absorption cross section of the medium are outlined. (author) 20 refs

  5. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Science.gov (United States)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  6. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science; Wierschke, Jonathan Brett [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  7. Neutron capture measurements on Tl-isotopes at Dance

    Energy Technology Data Exchange (ETDEWEB)

    Couture, A.; Reifarth, R.; Bredeweg, T.A.; Haight, R.C.; Jandel, M.; Mertz, A.F.; O' Donnell, J.M.; Rundberg, R.S.; Ullmann, J.L.; Viera, D.J.; Wouters, J.M. [Los Alamos National Laboratory, NM (United States); Baker, J.D. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    The thallium isotopes play an important role in the s-process nucleosynthesis at the s-process endpoint. Furthermore, {sup 204}Tl is one of few branch point isotopes in the endpoint region. The understanding of branch point isotopes provides modeling constraints on the temperatures and neutron densities during which the process takes place. The production of s-only {sup 204}Pb is controlled almost entirely by {sup 204}Tl. Measurements of the capture cross-sections of the stable Tl isotopes have recently been made using the DANCE 4{pi} array at LANSCE. This provides needed resonance information in the region as well as preparing the way for measurements of as yet unmeasured capture cross-section of the unstable {sup 204}Tl. (authors)

  8. Neutron capture measurements on Tl-isotopes at Dance

    International Nuclear Information System (INIS)

    The thallium isotopes play an important role in the s-process nucleosynthesis at the s-process endpoint. Furthermore, 204Tl is one of few branch point isotopes in the endpoint region. The understanding of branch point isotopes provides modeling constraints on the temperatures and neutron densities during which the process takes place. The production of s-only 204Pb is controlled almost entirely by 204Tl. Measurements of the capture cross-sections of the stable Tl isotopes have recently been made using the DANCE 4π array at LANSCE. This provides needed resonance information in the region as well as preparing the way for measurements of as yet unmeasured capture cross-section of the unstable 204Tl. (authors)

  9. Experimental evaluation of neutron performance in boron-doped low activation concrete

    International Nuclear Information System (INIS)

    Reaction rate distribution in concrete with/without boron dopant up to a thickness of 60 cm was measured using Yayoi fast reactor located at Univ. of Tokyo. The 7 reaction rates such as 197Au(n, γ), 59Co(n, γ), 115In(n, n'), 55Mn(n, γ), 23Na(n, γ), 94Zr(n, γ) and 96Zr(n, γ) were measured at 12 different depths, and the reduction of the reaction rate as a result of boron doping was quantitatively analysed. These reaction rates were also used to determine epithermal neutron spectrum shape parameter. Monte Carlo simulations of the experimental setup were performed using the MCNP-5 code. Simulated depth profiles of reaction rates and the epithermal neutron spectrum shape parameter agreed with the experimental results with fair accuracy. This experimental results provide useful data to benchmark the accuracy of neutron transport codes in the prediction of transmission and neutron spectrum distortion in boron-doped concrete. (authors)

  10. Gamma and neutron attenuation behaviours of boron carbide–silicon carbide composites

    International Nuclear Information System (INIS)

    Highlights: • Gamma and neutron attenuation behaviours of B4C–SiC composites were investigated. • Increasing SiC ratio increases gamma attenuation behaviour of the B4C–SiC composites. • Increasing SiC ratio decrease attenuation behaviour of the B4C–SiC composites. • HVT values of the B4C–SiC composites were calculated for Cs-137, Co-60 and Pu–Be sources. • Experimental mass attenuation coefficient are compatible with theoretical (XCOM) values. - Abstract: In this study, the gamma and neutron attenuation behaviors of pure boron carbide and boron carbide–silicon carbide composites which include three different silicon carbide ratios (20%, 30%, and 40%) by volume were investigated against Cs-137, Co-60 gamma radioisotope sources and Pu–Be neutron source. Transmission technique was used in the experiments to investigate the gamma and neutron attenuation properties of the materials. Linear and mass attenuation coefficients of the samples were determined for 0.662 (Cs-137) and 1.25 MeV (Co-60) energetic gamma rays. In addition the total macroscopic cross-sections (∑T) were calculated for the materials against Pu–Be neutron source. Theoretical mass attenuation coefficients were calculated from XCOM computer code. The experimental and theoretical mass attenuation coefficients were compared and evaluated with each other. In addition half value thickness (HVT) calculations were carried out by using linear attenuation coefficients and total macroscopic cross-sections. The results showed that increasing silicon carbide ratio decreases HVTs against Cs-137 and Co-60 gamma radioisotope sources whereas increases HVTs against Pu–Be neutron source. The mass attenuation coefficients were compatible with the theoretical (XCOM) values. Increasing silicon carbide ratio in boron carbide–silicon carbide composites causes higher gamma attenuation and lower neutron attenuation values

  11. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    Science.gov (United States)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  12. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    Science.gov (United States)

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources. PMID:27502571

  13. Fast neutron capture in actinide isotopes: recent results from Karlsruhe

    International Nuclear Information System (INIS)

    Capture gamma-ray spectra of 241Am, 240Pu, 242Pu 238U and 197Au were calculated in the framework of the spherical optical model and the statistical model. These spectra were used to correct experimental data for the capture cross sections of 240242Pu and 241Am from relative measurements using a Moxon Rae-detector with graphite converter and 197Au as well as 238U as standards. This correction is required to take into account that the detector efficiency is not exactly proportional to gamma-ray energy. The resulting correction factors proved to be negligible for measurements relative to 238U, whereas they are approx. 3% if gold is used as a standard. The capture cross section of 243Am has been measured in the energy range 10 to 250 keV using kinematically collimated neutrons from the 7Li(p,n) and T(p,n) reaction. The samples are positioned at flight paths of 5 to 7 cm and gold was used as a standard. Capture events were detected by two Moxon-Rae detectors with graphite and bismuth-graphite converters shielded by 0.5 to 2 cm of lead. Fission events were detected by a NE213 liquid scintillator. The present status of the experiment and some preliminary results will be presented

  14. Neutron capture nucleosynthesis during core helium burning in massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Prantzos, N.; Arnould, M.; Arcoragi, J.P.

    1987-04-01

    Neutron-capture nucleosynthesis during core He burning in massive (ZAMS mass = 50-100 solar mass) mass-losing stars, which are identified with Wolf-Rayet stars, is studied in the framework of recent stellar models based on the Roxburgh criterion for convection and on the latest nuclear data available. The nucleosynthesis is followed with the aid of a full nuclear reaction network incorporating up-to-date Maxwellian-averaged neutron-capture cross sections and new density- and temperature-dependent beta-decay rates. Numerical techniques are developed in order to integrate efficiently the set of coupled differential equations of the network. The resulting stellar core and surface abundances are presented, as well as the composition of the stellar winds ejected during the WC phase. Consideration is given to the implications of these results for the composition of OB associations and of the solar system, for the isotopic anomalies in meteorites and in the galactic cosmic rays, as well as for nuclear gamma-ray line astronomy. 114 references.

  15. Dosimetric implications of new compounds for neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.

    1982-01-01

    Systemic application of radiolabeled or cytotoxic agents should allow targeting of primary and metastatic neoplasms on a cellular level. In fact, drug uptake in non-target cell pools often exceeds toxic levels before sufficient amounts are delivered to tumor. In addition, at the large concentration of molecules necessary for therapy, effects of saturation are often found. Application of NCT can circumvent problems associated with high uptake in competing non-target cell pools, as the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is activated only within the radiation field. A comparison with other modes of particle therapy indicated that NCT provides significant advantages. It is however, difficult to obtain vehicles for boron transport which demonstrate both the tumor specificity and concentration requisite for NCT. A number of biomolecules have been investigated which show both the necessary concentration and specificity. These include chlorpromazine, thiouracil, porphyrins, amino acids, and nucleosides. However, these analogs have yet to be made available for NCT. Dosimetric implications of binding sites are considered, as well as alternate neutron sources. (ERB)

  16. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    International Nuclear Information System (INIS)

    The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. 6Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the 176Hf and 178Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The 176Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental hafnium resonance integral however

  17. Measurement of the 242Pu neutron capture cross section

    Science.gov (United States)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  18. A standardized method for beam design in neutron capture therapy

    International Nuclear Information System (INIS)

    A desirable end point for a given beam design for Neutron Capture Therapy (NCT) should be quantitative description of tumour control probability and normal tissue damage. Achieving this goal will ultimately rely on data from NCT human clinical trials. Traditional descriptions of beam designs have used a variety of assessment methods to quantify proposed or installed beam designs. These methods include measurement and calculation of open-quotes free fieldclose quotes parameters, such as neutron and gamma flux intensities and energy spectra, and figures-of-merit in tissue equivalent phantoms. The authors propose here a standardized method for beam design in NCT. This method would allow all proposed and existing NCT beam facilities to be compared equally. The traditional approach to determining a quantitative description of tumour control probability and normal tissue damage in NCT research may be described by the following path: Beam design → dosimetry → macroscopic effects → microscopic effects. Methods exist that allow neutron and gamma fluxes and energy dependence to be calculated and measured to good accuracy. By using this information and intermediate dosimetric quantities such as kerma factors for neutrons and gammas, macroscopic effect (absorbed dose) in geometries of tissue or tissue-equivalent materials can be calculated. After this stage, for NCT the data begins to become more sparse and in some areas ambiguous. Uncertainties in the Relative Biological Effectiveness (RBE) of some NCT dose components means that beam designs based on assumptions considered valid a few years ago may have to be reassessed. A standard method is therefore useful for comparing different NCT facilities

  19. Boron-loaded plastic scintillator with neutron-γ pulse shape discrimination capability

    Energy Technology Data Exchange (ETDEWEB)

    Pawełczak, I.A., E-mail: pawelczak1@llnl.gov; Glenn, A.M.; Martinez, H.P.; Carman, M.L.; Zaitseva, N.P.; Payne, S.A.

    2014-07-01

    Development of the plastic scintillator with neutron sensitivity from thermal to multi-MeV and pulse shape discrimination (PSD) has been demonstrated. Incorporation of {sup 10}B-containing compounds into the plastic scintillator with PSD capability leads to detector improvement in regard to neutron detection efficiency while preserving the discrimination between neutrons and γ-rays. Effects of boron loading on scintillation and pulse shape discrimination properties are discussed. A PSD figure-of-merit value of 1.4±0.03 has been achieved for events in a thermal neutron energy domain, 50–100 keV{sub ee}, for PSD plastic loaded with 5 wt.% of m-carborane.

  20. The Response of Alanine Dosimeters in Thermal Neutron Fields

    DEFF Research Database (Denmark)

    Schmitz, T.; Bassler, Niels; Sharpe, P.;

    Purpose: Boron Neutron Capture Therapy (BNCT) is a special kind of particle therapy, based on the neutron induced fission of the boron isotope 10B [1]. We have performed dosimetry experiments on the mixed neutron and gamma fields at the TRIGA Mark II research reactor in Mainz. Commonly, dosimetry...

  1. The feasibility of using boron-loaded plastic fibers for neutron detection

    International Nuclear Information System (INIS)

    The results from simulations and laboratory experiments with boron-loaded plastic scintillating fibers as a nondestructive assay tool are presented. Single and multiclad fibers in three diameters of 0.25, 0.5, and 1 mm were examined for their application in neutron coincident counting. For this application, the simulation results show that various configurations of boro-loaded plastic scintillating fibers have a die-away time (τ) of 12 micros with an efficiency (var-epsilon) of 50%. For a comparable efficiency, 3He proportional tubes have a typical die-away time of 50 micros. The shortened die-away time can reduce the relative error for measurement of similar samples by up to 50%. Plastic scintillating fibers also offer flexible configurations with the potential to discriminate between signals from gamma-ray and neutron events. To date, the emphasis of the investigation has been the detection capability of plastic scintillating fibers for neutrons and gamma rays and evaluation of their ability to discriminate between the two events. Quantitative calculations and experiments have also been conducted to determine the light output, evaluate the noise,quantify light attenuation, and determine neutron detection efficiency. Current experimental data support the analytical results that boron-loaded plastic fibers can detect thermal neutrons with performance metrics that are comparable or better than those of 3He proportional tubes

  2. Neutron Reference Benchmark Field Specification: ACRR 44 Inch Lead-Boron (LB44) Bucket Environment (ACRR-LB44-CC-32-CL).

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Richard Manuel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Griffin, Patrick J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Vehar, David W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the 44 inch Lead-Boron (LB44) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

  3. Study on the effect of moderator of the proportional Boron-lined counter on the neutron detection efficiency

    International Nuclear Information System (INIS)

    The proportional boron-lined counter as a common source-range detector is widely used in reactor monitoring, which has high detection efficiency for thermal neutron. The detection efficiency of the proportional boron-lined counter for fast reactor monitoring can be improved by using proper moderator. The relative detection efficiency and absolute detection efficiency of the proportional boron-lined counter in different thickness of the moderator for mono-energy neutrons of different energy were simulated by using MCNP, the tend-line of the relative detection efficiency and absolute detection efficiency were obtained. Also the detection efficiency of selected proportional boron-lined counter to the typical neutron spectrum of the fast reactor was simulated, and then the optimized moderator was designed. It would have some degree of guiding significance to design the nuclear measurement system of the fast reactor. (authors)

  4. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    Science.gov (United States)

    Chaudhari, Pradip; Singh, Arvind; Topkar, Anita; Dusane, Rajiv

    2015-04-01

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and 10B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 μm and 0.5 μm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  5. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Pradip, E-mail: pradipcha@gmail.com [Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai – 400076 (India); Singh, Arvind, E-mail: arvindsingh1884@gmail.com [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai – 400085 (India); Topkar, Anita, E-mail: anita.topkar@gmail.com [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai – 400085 (India); Dusane, Rajiv, E-mail: rodusane@iitb.ac.in [Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai – 400076 (India)

    2015-04-11

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and {sup 10}B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 µm and 0.5 µm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  6. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    International Nuclear Information System (INIS)

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and 10B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 µm and 0.5 µm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors

  7. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  8. Novel Boron-10-based detectors for Neutron Scattering Science

    CERN Document Server

    Piscitelli, Francesco

    2015-01-01

    Nowadays neutron scattering science is increasing its instrumental power. Most of the neutron sources in the world are pushing the development of their technologies to be more performing. The neutron scattering development is also pushed by the European Spallation Source (ESS) in Sweden, a neutron facility which has just started construction. Concerning small area detectors (1m^2), the 3He technology, which is today cutting edge, is reaching fundamental limits in its development. Counting rate capability, spatial resolution and cost-e?ectiveness, are only a few examples of the features that must be improved to ful?fill the new requirements. On the other hand, 3He technology could still satisfy the detector requirements for large area applications (50m^2), however, because of the present 3He shortage that the world is experiencing, this is not practical anymore. The recent detector advances (the Multi-Grid and the Multi-Blade prototypes) developed in the framework of the collaboration between the Institut Laue...

  9. A NEW SINGLE-CRYSTAL FILTERED THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne

    2008-09-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron flux produced at the irradiation location is on the order of 9.5x108 neutrons/cm2-s, with a measured cadmium ratio (Au foils) of 105, indicating a well-thermalized spectrum.