WorldWideScience

Sample records for boron nanoparticles inhibit

  1. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf;

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre...

  2. Boronate Affinity Fluorescent Nanoparticles for Förster Resonance Energy Transfer Inhibition Assay of cis-Diol Biomolecules.

    Science.gov (United States)

    Wang, Shuangshou; Ye, Jin; Li, Xinglin; Liu, Zhen

    2016-05-17

    Förster resonance energy transfer (FRET) has been essential for many applications, in which an appropriate donor-acceptor pair is the key. Traditional dye-to-dye combinations remain the working horses but are rather nonspecifically susceptive to environmental factors (such as ionic strength, pH, oxygen, etc.). Besides, to obtain desired selectivity, functionalization of the donor or acceptor is essential but usually tedious. Herein, we present fluorescent poly(m-aminophenylboronic acid) nanoparticles (poly(mAPBA) NPs) synthesized via a simple procedure and demonstrate a FRET scheme with suppressed environmental effects for the selective sensing of cis-diol biomolecules. The NPs exhibited stable fluorescence properties, resistance to environmental factors, and a Förster distance comparable size, making them ideal donor for FRET applications. By using poly(mAPBA) NPs and adenosine 5'-monophosphate modified graphene oxide (AMP-GO) as a donor and an acceptor, respectively, an environmental effects-suppressed boronate affinity-mediated FRET system was established. The fluorescence of poly(mAPBA) NPs was quenched by AMP-GO while it was restored when a competing cis-diol compounds was present. The FRET system exhibited excellent selectivity and improved sensitivity toward cis-diol compounds. Quantitative inhibition assay of glucose in human serum was demonstrated. As many cis-diol compounds such as sugars and glycoproteins are biologically and clinically significant, the FRET scheme presented herein could find more promising applications. PMID:27089186

  3. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...

  4. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  5. Aggregation and deposition behavior of boron nanoparticles in porous media.

    Science.gov (United States)

    Liu, Xuyang; Wazne, Mahmoud; Christodoulatos, Christos; Jasinkiewicz, Kristin L

    2009-02-01

    New kinds of solid fuels and propellants comprised of nanomaterials are making their way into civilian and military applications yet the impact of their release on the environment remains largely unknown. One such material is nano boron, a promising solid fuel and propellant. The fate and transport of nano boron under various aquatic systems was investigated in aggregation and deposition experiments. Column experiments were performed to examine the effects of electrolyte concentration and flow velocity on the transport of boron nanoparticles under saturated conditions, whereas aggregation tests were conducted to assess the effects of electrolytes on the aggregation of the boron nanoparticles. Aggregation tests indicated the presence of different reaction-controlled and diffusion-controlled regimes and yielded critical coagulation concentrations (CCC) of 200 mM, 0.7 mM and 1.5 mM for NaCl, CaCl(2), and MgCl(2), respectively. Aggregation and deposition experimental data corresponded with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) model and the constant attachment efficiency filtration model, respectively. Theoretical calculations indicated that both the primary and secondary energy minima play important roles in the deposition of nano boron in sand columns.

  6. Preparation of Boron Suboxide Nanoparticles and Their Processing

    Directory of Open Access Journals (Sweden)

    Jānis GRABIS

    2012-03-01

    Full Text Available Crystalline boron suboxide B6O particles with size in the range of 1.5 µm – 2 µm and crystallite size in the range of 32 nm – 40 nm were prepared by calcination at 1400 °C for one or two hours of precursors obtained by mixing X-ray amorphous boron with water solution of B2O3 followed by evaporation and drying. Decrease of molar ratio B/B2O3 from 16 to 14 in the precursor mixture reduced nonstoichiometry of prepared B6O although simultaneously it increased admixture of B2O3. Particulate composites of B6O with TiN or Ni nanoparticles were prepared by mechanical mixing. The spark plasma sintering process intensified the densification of prepared boron suboxide nanoparticles at 1900 °C and allowed manufacturing of fully dense bodies (98 % during five minutes. Additives of TiN or Ni nanoparticles reduced sintering temperature to 1700 °C and their promoted formation of Ti or Ni borides.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1345

  7. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.;

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...

  8. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  9. A thermo dynamical model for the shape and size effect on melting of boron carbide nanoparticles.

    Science.gov (United States)

    Antoniammal, Paneerselvam; Arivuoli, Dakshanamoorthy

    2012-02-01

    The size and shape dependence of the melting temperature of Boron Carbide (B4C) nanoparticles has been investigated with a numerical thermo dynamical approach. The problem considered in this paper is the inward melting of nanoparticles with spherical and cylindrical geometry. The cylindrical Boron Carbide (B4C) nanoparticles, whose melting point has been reported to decrease with decreasing particle radius, become larger than spherical shaped nanoparticle. Comparative investigation of the size dependence of the melting temperature with respect to the two shapes is also been done. The melting temperature obtained in the present study is approximately a dealing function of radius, in a good agreement with prediction of thermo dynamical model.

  10. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    Science.gov (United States)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258

  11. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    Science.gov (United States)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  12. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    Science.gov (United States)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258

  13. Boronic acid functionalized superparamagnetic iron oxide nanoparticle as a novel tool for adsorption of sugar

    International Nuclear Information System (INIS)

    Synthesis of boronic acid functionalized superparamagnetic iron oxide nanoparticles has been reported. Magnetite nanoparticles were prepared by simple co-precipitation from Fe2+ and Fe3+ solution. m-Aminophenyl boronic acid was attached to iron oxide particles through 3,4-dihydroxy benzaldehyde through C=N bond. X-ray diffraction and selected area electron diffraction have shown the formation of inverse spinel phase magnetite of both as prepared and functionalized magnetite particles. FTIR shows attachment of boronic acid-imine onto iron oxide surface through enediol group. Transmission electron microscopy shows well dispersion of boronic acid functionalized particles of size 8 ± 2 nm. Vibration sample magnetometry shows both the particles are superparamagnetic at room temperature having saturation magnetization (Ms) 52 emu/g. In this work the affinity of these boronic acid functionalized particles towards sugar binding was studied taking dextrose sugar as a model. The influence of pH and sugar concentration has been extensively investigated. The results show that such boronic acid modified superparamagnetic particles are efficient support for sugar separation having maximum sugar loading capacity (60 μg/50 μl) at pH 8.

  14. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  15. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  16. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coate

  17. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  18. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rasel, Md. Alim Iftekhar; Li, Tong; Nguyen, Trung Dung; Singh, Sanjleena [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia); Zhou, Yinghong; Xiao, Yin [Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (Australia); Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [Queensland University of Technology (QUT), School of Chemistry, Physics and Mechanical Engineering (Australia)

    2015-11-15

    Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.

  19. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization

    International Nuclear Information System (INIS)

    Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications

  20. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    OpenAIRE

    Fangfang Wang; Xiaoliang Zeng; Yimin Yao; Rong Sun; Jianbin Xu; Ching-Ping Wong

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride...

  1. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry.

    Science.gov (United States)

    Khanal, Manakamana; Barras, Alexandre; Vausselin, Thibaut; Fénéant, Lucie; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2015-01-28

    The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2(nd) generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.

  2. Facile preparation of boronic acid functionalized Fe-core/Au-shell magnetic nanoparticles for covalent immobilization of adenosine

    NARCIS (Netherlands)

    Pham, Tuan Anh; Kumar, Nanjundan Ashok; Jeong, Yeon Tae

    2010-01-01

    The synthesis of biocompatible magnetic nanoparticles is one of the important topics in nanoscience because such materials have potential biomedical applications. Herein, we report a facile approach for surface functionalization of magnetic nanoparticles (MNPs) with boronic acid and their use for th

  3. Nanoparticle-enhanced fluorescence emission for non-separation assays of carbohydrates using a boronic acid-alizarin complex.

    Science.gov (United States)

    Li, Qianjin; Kamra, Tripta; Ye, Lei

    2016-03-01

    Addition of crosslinked polymer nanoparticles into a solution of a 3-nitrophenylboronic acid-alizarin complex leads to significant enhancement of fluorescence emission. Using the nanoparticle-enhanced boronic acid-alizarin system has improved greatly the sensitivity and extended the dynamic range of separation-free fluorescence assays for carbohydrates.

  4. Characteristics of Boron Decorated TiO2 Nanoparticles for Dye-Sensitized Solar Cell Photoanode

    Directory of Open Access Journals (Sweden)

    Ching-Yuan Ho

    2015-01-01

    Full Text Available Different boron weight percents on mixed-phase (anatase and rutile TiO2 nanoparticles were synthesized to investigate structure morphology, defect states, luminescence properties, and energy conversion. The measured results indicate that boron doping of TiO2 both increases the crystallite size and rutile-phase percent in an anatase matrix. Decreasing the band gap by boron doping can extend the absorption to the visible region, while undoped TiO2 exhibits high UV absorption. Oxygen vacancy defects generated by boron ions reduce Ti+4 and affect electron transport in dye-sensitized solar cells. Excess electrons originating from the oxygen vacancies of doped TiO2 downward shift in the conduction band edge and prompt the transfer of photoelectrons from the conduction band of the rutile phase to the lower energy anatase trapping sites; they then separate charges to enhance the photocurrent and Jsc. Although the resistance of the electron recombination (Rk between doped TiO2 photoanode and the electrolyte for the doped TiO2 sample is lower, a longer electron lifetime (τ of 19.7 ms with a higher electron density (ns of 2.1 × 1018 cm−3 contributes to high solar conversion efficiency.

  5. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation

    Science.gov (United States)

    Chan, Chun Wong Aaron; Mahadi, Abdul Hanif; Li, Molly Meng-Jung; Corbos, Elena Cristina; Tang, Chiu; Jones, Glenn; Kuo, Winson Chun Hsin; Cookson, James; Brown, Christopher Michael; Bishop, Peter Trenton; Tsang, Shik Chi Edman

    2014-12-01

    Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.

  6. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Limat, Meriadec; El Roustom, Bahaa [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland); Jotterand, Henri [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Physics of the Complex Matter, CH-1015 Lausanne (Switzerland); Foti, Gyoergy [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)], E-mail: gyorgy.foti@epfl.ch; Comninellis, Christos [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)

    2009-03-30

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate.

  7. One-pot synthesis of biocompatible boronic acid-functionalized poly(methyl methacrylate) nanoparticles at sub-100 nm scale for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sakalak, Huseyin [Selcuk University, Metallurgy and Materials Engineering (Turkey); Ulasan, Mehmet; Yavuz, Emine [Selcuk University, Advanced Technology Research and Application Center (Turkey); Camli, Sevket Tolga, E-mail: tolgacamli@gmail.com [Biyotez Machinery Chemistry R& D Co. Ltd. (Turkey); Yavuz, Mustafa Selman, E-mail: selmanyavuz@selcuk.edu.tr [Selcuk University, Metallurgy and Materials Engineering (Turkey)

    2014-12-15

    Poly(methyl methacrylate) nanoparticles containing 4-vinylphenyl boronic acid were synthesized in one pot by surfactant-free emulsion polymerization. The nanoparticles were characterized by scanning electron microscopy and dynamic light scattering. Boron content in the nanoparticles was confirmed by electron-dispersive X-ray spectroscopy. In polymerization process, several co-monomer ratios were studied in order to obtain optimum nanoparticle size. Average hydrodynamic diameter and polydispersity index of nanoparticles versus variation of acetone percentage in the solvent mixture and total monomer concentration were investigated. The effect of boronic acid concentration in the monomer mixture on nanoparticle size and size distribution was also reported. Without further functionalization to the nanoparticles, the catechol dye, alizarin red S, was bound to boronic acid-containing nanoparticles. These nanoparticles behave as a nanosensor by which glucose or fructose can be easily detected. Dye-containing nanoparticles were undertaken displacement reaction by glucose or fructose. The glucose or fructose content was also monitored by UV–Visible spectrophotometer. Furthermore, cytotoxicity studies of boronic acid-carrying poly(methyl methacrylate) nanoparticles were carried out in 3T3 cells, which showed no toxicity effect on the cells.

  8. Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiming; Zhou, Yingke, E-mail: zhouyk888@hotmail.com; Tian, Xiaohui; Xu, Xiao; Zhu, Hongxi; Zhang, Shaowei; Yuan, Tao

    2014-10-30

    Highlights: • A single-step heat treatment approach is developed to synthesize boron and nitrogen doped graphene supporting PtRu nanocatalysts. • The introduction of boron or nitrogen containing function groups into graphene can modulate the particle size and dispersion of the supporting PtRu nanoparticles. • The optimized catalysts present high electrocatalytic activity and excellent stability for methanol oxidation reaction. - Abstract: In this study, we demonstrate a single-step heat treatment approach to synthesize boron and nitrogen doped graphene supporting PtRu electrocatalysts for methanol electro-oxidation reaction. The reduction of graphene oxide, boron or nitrogen doping of graphene and loading of PtRu nanoparticles happened simultaneously during the reaction process. The morphologies and microstructures of the as-prepared catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic methanol oxidation activity and durability of the obtained catalysts were evaluated by the cyclic voltammetry and chronoamperometric techniques. The results reveal that the boron and nitrogen doped graphene supporting PtRu electrocatalysts can be successfully prepared by the single step heat treatment technique, and the introduction of boron or nitrogen containing function groups into the reduced graphene sheets could modulate the particle size and dispersion of the supporting PtRu nanoparticles and improve the electrocatalytic performance of methanol oxidation reaction. The optimal annealing temperature is 800 °C, the preferable heat treatment time is 60 min for the nitrogen-doped catalysts and 90 min for the boron-doped catalysts, and the catalysts prepared under such conditions present superior catalytic activities for methanol oxidation than those prepared under other heat treatment conditions.

  9. Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Highlights: • A single-step heat treatment approach is developed to synthesize boron and nitrogen doped graphene supporting PtRu nanocatalysts. • The introduction of boron or nitrogen containing function groups into graphene can modulate the particle size and dispersion of the supporting PtRu nanoparticles. • The optimized catalysts present high electrocatalytic activity and excellent stability for methanol oxidation reaction. - Abstract: In this study, we demonstrate a single-step heat treatment approach to synthesize boron and nitrogen doped graphene supporting PtRu electrocatalysts for methanol electro-oxidation reaction. The reduction of graphene oxide, boron or nitrogen doping of graphene and loading of PtRu nanoparticles happened simultaneously during the reaction process. The morphologies and microstructures of the as-prepared catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic methanol oxidation activity and durability of the obtained catalysts were evaluated by the cyclic voltammetry and chronoamperometric techniques. The results reveal that the boron and nitrogen doped graphene supporting PtRu electrocatalysts can be successfully prepared by the single step heat treatment technique, and the introduction of boron or nitrogen containing function groups into the reduced graphene sheets could modulate the particle size and dispersion of the supporting PtRu nanoparticles and improve the electrocatalytic performance of methanol oxidation reaction. The optimal annealing temperature is 800 °C, the preferable heat treatment time is 60 min for the nitrogen-doped catalysts and 90 min for the boron-doped catalysts, and the catalysts prepared under such conditions present superior catalytic activities for methanol oxidation than those prepared under other heat treatment conditions

  10. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates

    Science.gov (United States)

    Brem, Jürgen; Cain, Ricky; Cahill, Samuel; McDonough, Michael A.; Clifton, Ian J.; Jiménez-Castellanos, Juan-Carlos; Avison, Matthew B.; Spencer, James; Fishwick, Colin W. G.; Schofield, Christopher J.

    2016-08-01

    β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as `transition state analogue' inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs.

  11. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates.

    Science.gov (United States)

    Brem, Jürgen; Cain, Ricky; Cahill, Samuel; McDonough, Michael A; Clifton, Ian J; Jiménez-Castellanos, Juan-Carlos; Avison, Matthew B; Spencer, James; Fishwick, Colin W G; Schofield, Christopher J

    2016-01-01

    β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as 'transition state analogue' inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs. PMID:27499424

  12. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    Science.gov (United States)

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance. PMID:27467416

  13. Investigation of boron modified graphene nanostructures; optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets

    Science.gov (United States)

    Armaković, Stevan; Armaković, Sanja J.

    2016-11-01

    In this work we investigated optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets and the consequences on these properties after modifications with boron atoms. Within the framework of density functional theory (DFT) several important optoelectronic quantities have been calculated for graphene nanoparticles: oxidation and reduction potentials, hole and electron reorganization energies, while thermally activated delayed fluorescence was assessed by calculations of energy separation between the lowest excited singlet (S1) and triplet (T1) state, Δ E (S1 -T1) . Obtained results show that optoelectronic properties of graphene nanoparticles are significantly improved by the modification with boron atoms and that investigated structures can be considered as a promising organic light emitting diode (OLED) materials. Influence of boron atoms to charge and heat transport properties of graphene nanosheets was investigated as well, employing the self-consistent non-equilibrium Green's functions with DFT. On the other side it is shown that charge transport of graphene nanosheets is not influenced by the introduction of boron atoms, while influence to the phonon subsystem is minimal.

  14. Synthesis and characterization of boron nitride sponges as a novel support for metal nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHENG MingTao; LIU YingLiang; GU YunLe; XU ZiLin

    2008-01-01

    This paper describes a simple synthetic route for the synthesis of hexagonal boron nitride (h-BN) powders with high specific surface area, in which BBr3, NH4Cl and Al powders are used as starting materials. The structure and composition of the powders were characterized by electron diffraction, Fourier transformation infrared spectroscopy and X-ray photoelectron spectroscopy in the selected area. X-ray diffraction shows wide peaks of crystalline h-BN with the particle size on the nanometer scale, and transmission electron microscopy reveals that the products have a novel spongy morphol-ogy. Silver nanoparticles loaded h-BN sponges were prepared via a one-step synthesis method. Dif-ferent reaction conditions for the formation of h-BN sponges were also investigated.

  15. Synthesis and characterization of boron nitride sponges as a novel support for metal nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a simple synthetic route for the synthesis of hexagonal boron nitride (h-BN) powders with high specific surface area, in which BBr3, NH4Cl and Al powders are used as starting materials. The structure and composition of the powders were characterized by electron diffraction, Fourier transformation infrared spectroscopy and X-ray photoelectron spectroscopy in the selected area. X-ray diffraction shows wide peaks of crystalline h-BN with the particle size on the nanometer scale, and transmission electron microscopy reveals that the products have a novel spongy morphology. Silver nanoparticles loaded h-BN sponges were prepared via a one-step synthesis method. Different reaction conditions for the formation of h-BN sponges were also investigated.

  16. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate.

    Science.gov (United States)

    Hu, Guiqing; Lin, Gang; Wang, Ming; Dick, Lawrence; Xu, Rui-Ming; Nathan, Carl; Li, Huilin

    2006-03-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 A resolution reveals a substrate-binding pocket with composite features of the distinct beta1, beta2 and beta5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the alpha-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapetides of the alpha-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-beta-(1-naphthyl)-L-alanine-L-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis. PMID:16468986

  17. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    Energy Technology Data Exchange (ETDEWEB)

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  18. Cross-Linked Dependency of Boronic Acid-Conjugated Chitosan Nanoparticles by Diols for Sustained Insulin Release

    Directory of Open Access Journals (Sweden)

    Nabil A. Siddiqui

    2016-10-01

    Full Text Available Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes.

  19. Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode.

    Science.gov (United States)

    Hutton, Laura; Newton, Mark E; Unwin, Patrick R; Macpherson, Julie V

    2009-02-01

    Pt nanoparticle (NP)-modified polycrystalline boron-doped diamond (pBDD) disk electrodes have been fabricated and employed as amperometric sensors for the determination of dissolved oxygen concentration in aqueous solution. pBDD columns were cut using laser micromachining techniques and sealed in glass, in order to make disk electrodes which were then characterized electrochemically. Electrodeposition of Pt onto the diamond electrodes was optimized so as to give the maximum oxygen reduction peak current with the lowest background signal. Pt NPs, >0-10 nm diameter, were found to deposit randomly across the pBDD electrode, with no preference for grain boundaries. The more conductive grains were found to promote the formation of smaller nanoparticles at higher density. With the use of potential step chronoamperometry, in which the potential was stepped to a diffusion-limited value, a four electron oxygen reduction process was found to occur at the Pt NP-modified pBDD electrode. Furthermore the chronoamperometric response scaled linearly with dissolved oxygen concentration, varied by changing the oxygen/nitrogen ratio of gas flowed into solution. The sensor was used to detect dissolved oxygen concentrations with high precision over the pH range 4-10. PMID:19117391

  20. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    International Nuclear Information System (INIS)

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth

  1. Synthesis of PBAD-lipiodol nanoparticles for combination treatment with boric acid in boron neutron capture therapy for hepatoma in-vitro

    International Nuclear Information System (INIS)

    This study attempted to increase BNCT efficiency for hepatoma by a combined treatment of phenylboric acid derivative entrapped lipiodol nanoparticles (PBAD-L nanoparticles) with boric acid. The size of PBAD-L nanoparticles were 400-750 nm at the boron concentrations of 0.3-2.7 mg/ml. After 24 hours the boron concentration in PBAD-L nanoparticles treated human hepatoma HepG2 cells was 112 ppm, while that in rat liver Clone 9 cells was 52 ppm. With the use of 25 μg B/ml boric acid, after 6 hours the boron concentration in HepG2 and Clone 9 cells were 75 ppm and 40 ppm, respectively. In a combined treatment, boron concentration in HepG2 cells which were treated with PBAD-L nanoparticles for 18 hours and then combined with boric acid for 6 hours was 158 ppm. After neutron irradiation, the surviving fraction of HepG2 cells treated with PBAD-L nanoparticles was 12.6%, while that in the ones with a combined treatment was 1.3%. In conclusion, the combined treatment provided a higher boron concentration in HepG2 cells than treatments with either PBAD-L nanoparticles or boric acid, resulting in a higher therapeutic efficacy of BNCT in hepatoma cells. (author)

  2. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  3. Functionalization of boron nitride nanoparticles and their utilization in epoxy composites with enhanced thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    He, Yong-Ming; Wang, Qian-Qian; Liu, Wei; Liu, Yi-Sheng [College of Energy Resources, Chengdu University of Technology, Chengdu (China)

    2014-03-15

    This work proposes a facile method to greatly improve the thermal conductivity, while retaining the low electrical conductivity, of epoxy composites by incorporating boron nitride nanoparticles (BNNPs). BNNPs were surface modified by noncovalent functionalization with 1-pyrenebutyric acid to obtain a stable aqueous BNNP dispersion. The functionalized BNNPs (f-BNNPs) were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared (FTIR), and thermogravimetric analysis (TGA). The f-BNNPs were found to yield the f-BNNP/epoxy composites showing a homogeneous dispersion of BNNPs and a strong BNNP-epoxy interfacial adhesion. The f-BNNP/epoxy composites with 10 wt.% f-BNNPs exhibited a high thermal conductivity of 1.58 W m{sup -1} K{sup -1} and a low electrical conductivity of 2.5 x 10{sup -16} S m{sup -1}. The present f-BNNP/epoxy composites can be potentially utilized in electronic packaging that requires electronic insulators with high thermal conductivity. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy

    KAUST Repository

    Cai, Qiran

    2015-01-01

    Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement. This journal is © the Owner Societies 2015.

  5. Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor.

    Science.gov (United States)

    Wu, Jianmin; Yin, Longwei

    2011-11-01

    A novel amperometric biosensor based on the BNNTs-Pani-Pt hybrids with Pt nanoparticle homogeneously decorated on polyaniline (Pani)-wrapped boron nitride nanotubes (BNNTs), was developed. It is shown that π interactions take place between BNNTs and polyaniline (Pani) located at N atoms from BNNTs and C atoms from Pani, resulting in the water solubility for the Pani wrapped BNNTs hybrids. The developed glucose biosensor displayed high sensitivity and stability, good reproducibility, anti-interference ability, especially excellent acid stability and heat resistance. The resulted BNNTs-Pani-Pt hybrid amperometric glucose biosensor exhibited a fast response time (within 3 s) and a linear calibration range from 0.01 to 5.5 mM with a high sensitivity and low detection limit of 19.02 mA M(-1) cm(-2) and 0.18 μM glucose (S/N = 3). Surprisedly, the relative activity of the GC/BNNTs-Pani-Pt-GOD electrode keeps almost no change in a range from pH 3 to 7. Futhermore, the BNNTs-Pani-Pt hybrid biosensor maintains a high GOD enzymatic activity even at a relatively high temperature of 60 °C. This might be attributed to the effect of electrostatic field and hydrophobia of BNNTs. The unique acid stability and heat resistance of this sensor indicate great promising application in numerous industrial and biotechnological operations involving harsh conditions. PMID:22013877

  6. Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Roudbari, M.A. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2013-09-02

    In this article, the nonlocal longitudinal and transverse vibrations of coupled boron nitride nanotube (BNNT) system under a moving nanoparticle using piezoelastic theory and surface stress based on Euler–Bernoulli beam are developed. BNNTs are coupled by visco-Pasternak medium and single-walled zigzag structure BNNT is selected in this study. Hamilton's principle is employed to derive the corresponding higher order equations of motion for both nanotubes. The detailed parametric study is conducted, focusing on the remarkable effects of the small scale parameter, aspect ratio, surface stress and visco-Pasternak coefficients on the vibration behavior of the coupled BNNT system. Also it is demonstrated that the normalized dynamic deflections obtained by using the classical beam theory are smaller than those obtained by the nonlocal beam theory. The influence of the smart controller is proved on the nondimensional fundamental longitudinal frequency. The result of this study can be useful to manufacture of smart microelectromechanical system and nanoelectromechanical system in advanced biomechanics applications with electric field as a parametric controller. - Highlights: • Vibration of coupled boron nitride nanotube system is studied. • Boron nitride nanotubes are coupled by a visco-Pasternak medium. • Single-walled zigzag boron nitride nanotube structure is considered. • The applied electric potential effect on the longitudinal vibration is studied. • The results may be useful to design of micro/nanoelectromechanical systems.

  7. Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria

    Science.gov (United States)

    Thuy Duong, Thi; Son Le, Thanh; Thu Huong Tran, Thi; Kien Nguyen, Trung; Ho, Cuong Tu; Hien Dao, Trong; Phuong Quynh Le, Thi; Chau Nguyen, Hoai; Dang, Dinh Kim; Thu Huong Le, Thi; Thu Ha, Phuong

    2016-09-01

    Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l-1. The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p < 0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l-1. The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l-1). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.

  8. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    Science.gov (United States)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S. V.; Ganesan, V.; Kulkarni, Anjali

    2013-12-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle-RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml-1) as compared to neat RIF (125 μg ml-1). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle-RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml-1, respectively. Further studies are underway to determine the efficacy of NPs-RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates.

  9. Non-catalytic facile synthesis of superhard phase of boron carbide (B13C2) nanoflakes and nanoparticles.

    Science.gov (United States)

    Xie, Sky Shumao; Su, Liap Tat; Guo, Jun; Vasylkiv, Oleg; Borodianska, Hanna; Xi, Zhu; Krishnan, Gireesh M; Su, Haibin; Tokl, Alfred I Y

    2012-01-01

    Boron Carbide is one the hardest and lightest material that is also relatively easier to synthesis as compared to other superhard ceramics like cubic boron nitride and diamond. However, the brittle nature of monolithic advanced ceramics material hinders its use in various engineering applications. Thus, strategies that can toughen the material are of fundamental and technological importance. One approach is to use nanostructure materials as building blocks, and organize them into a complex hierarchical structure, which could potentially enhance its mechanical properties to exceed that of the monolithic form. In this paper, we demonstrated a simple approach to synthesize one- and two-dimension nanostructure boron carbide by simply changing the mixing ratio of the initial compound to influence the saturation condition of the process at a relatively low temperature of 1500 degrees C with no catalyst involved in the growing process. Characterization of the resulting nano-structures shows B13C2, which is a superhard phase of boron carbide as its hardness is almost twice as hard as the commonly known B4C. Using ab-initio density functional theory study on the elastic properties of both B12C3 and B13C2, the high hardness of B13C2 is consistent to our calculation results, where bulk modulus of B13C2 is higher than that of B4C. High resolution transmission electron microscopy of the nanoflakes also reveals high density of twinning defects which could potentially inhibit the crack propagation, leading to toughening of the materials.

  10. Method and device to synthesize boron nitride nanotubes and related nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.

    2016-07-19

    Methods and apparatus for producing chemical nanostructures having multiple elements, such as boron and nitride, e.g. boron nitride nanotubes, are disclosed. The method comprises creating a plasma jet, or plume, such as by an arc discharge. The plasma plume is elongated and has a temperature gradient along its length. It extends along its length into a port connector area having ports for introduction of feed materials. The feed materials include the multiple elements, which are introduced separately as fluids or powders at multiple ports along the length of the plasma plume, said ports entering the plasma plume at different temperatures. The method further comprises modifying a temperature at a distal portion of or immediately downstream of said plasma plume; and collecting said chemical nanostructures after said modifying.

  11. Size-Dependent Electrocatalytic Activity of Gold Nanoparticles on HOPG and Highly Boron-Doped Diamond Surfaces

    Directory of Open Access Journals (Sweden)

    Tine Brülle

    2011-12-01

    Full Text Available Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  12. Effect of boron addition on the structure and magnetic properties of CoPt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khemjeen, Yutthaya [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Pinitsoontorn, Supree, E-mail: psupree@kku.ac.th; Chompoosor, Apiwat [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-05-07

    The effect of B addition on CoPt nanoparticles was investigated. The CoPt-B nanoparticles were synthesized by means of the polyol process. Transmission electron microscopy has shown that the as-synthesized particles have a spherical morphology with average size about 2–3 nm. The X-ray absorption spectroscopy and the X-ray diffraction technique showed the effect of B concentration on phase transformation. The addition of B at up to 60% promoted the formation of the L1{sub 0} phase when the nanoparticles were subjected to annealing at 600 °C. If the B content is higher than 60%, the phase transition is suppressed. The evidence of B addition on the structure of CoPt nanoparticles was further supported by the magnetic measurements. The results show that the coercivity of the annealed CoPt-B nanoparticles was enhanced by the B additions from 20% to 60%, with the maximum coercivity of 12 000 Oe for the CoPt-40%B sample.

  13. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats.

    Science.gov (United States)

    Coban, Funda Karabag; Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Hazman, Omer

    2015-10-01

    Organophosphorus compounds cause oxidative stress and lead to alterations in antioxidant status in organisms. In this study, the effects of subchronic exposure to malathion and the protective effects of boron (B) were evaluated in 48 Wistar rats, which were divided equally into six groups. For 28 d, the control group received a normal diet and tap water, the corn oil group received a normal diet and 0.5 mL of corn oil by gastric gavage and the malathion group received a normal diet and malathion (100 mg/kg/d) by gastric gavage. During the same period, each of the three other groups received a different dosage of B (5, 10 and 20 mg/kg/d, respectively) and malathion (100 mg/kg/d) by gastric gavage. Malathion administration during the period increased malondialdehyde, nitric oxide and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, as well as markers of liver function, yet decreased acetylcholinesterase, reduced glutathione, superoxide dismutase, and catalase activities in blood, liver, kidney and brain tissues. Administration of B in a dose-dependent manner also reversed malathion-induced oxidative stress, lipid peroxidation (LPO) and antioxidant enzyme activity. Moreover, B exhibited protective action against malathion-induced histopathological changes in liver, kidney and brain tissues. These results demonstrate that, if used in a dose-dependent manner, B decreases malathion-induced oxidative stress, enhances the antioxidant defense mechanism and regenerates tissues in rats. PMID:25342379

  14. Synthesis and characterization of carbon or/and boron-doped CdS nanoparticles and investigation of optical and photoluminescence properties

    International Nuclear Information System (INIS)

    Un-doped and carbon or/and boron doped Cadmium sulfide nanoparticles were prepared via chemical co-precipitation procedure by Polyvinyl pyrrolidone (PVP) as a stabilizer. The optical and structural properties were investigated using several techniques. The morphology of CdS nanophotocatalyst was characterized using X-ray diffraction (XRD) and scanning electron microscopy. The optical properties of both un-doped and doped samples were carried out by photoluminescence (PL) spectroscopy and UV–vis Diffuse reflectance spectra (DRS). An optimum doping level of the atoms dopant for enhanced PL properties are found through optical study. Degradation of Amoxicillin under UV light elucidation was applied to appraise the photocatalytic efficiency. The results show that the carbon and boron doping CdS nanoparticles has high potential in green chemistry. - Highlights: • Un-doped, C or/and B-doped CdS nanoparticles were successfully synthesized. • The Blue shift was observed in UV–vis absorption spectra for the doped nanoparticles. • Doping of CdS with C and B enhances the fluorescence

  15. Synthesis and characterization of carbon or/and boron-doped CdS nanoparticles and investigation of optical and photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali, E-mail: ali.fakhri88@yahoo.com [Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khakpour, Reza [Department of Physics, Tehran North Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-04-15

    Un-doped and carbon or/and boron doped Cadmium sulfide nanoparticles were prepared via chemical co-precipitation procedure by Polyvinyl pyrrolidone (PVP) as a stabilizer. The optical and structural properties were investigated using several techniques. The morphology of CdS nanophotocatalyst was characterized using X-ray diffraction (XRD) and scanning electron microscopy. The optical properties of both un-doped and doped samples were carried out by photoluminescence (PL) spectroscopy and UV–vis Diffuse reflectance spectra (DRS). An optimum doping level of the atoms dopant for enhanced PL properties are found through optical study. Degradation of Amoxicillin under UV light elucidation was applied to appraise the photocatalytic efficiency. The results show that the carbon and boron doping CdS nanoparticles has high potential in green chemistry. - Highlights: • Un-doped, C or/and B-doped CdS nanoparticles were successfully synthesized. • The Blue shift was observed in UV–vis absorption spectra for the doped nanoparticles. • Doping of CdS with C and B enhances the fluorescence.

  16. Growth inhibition of human pancreatic cancer grafts in nude mice by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between 10B and thermal neutrons to release alpha-particles (4He) and lithium-7 ions (7Li). The 4He kills cells in the range of 10 μm from the site of 4He generation. Therefore, it is theoretically possible to kill tumor cells without affecting adjacent healthy tissues, if 10B-compounds could be selectively delivered. We have described that 10B atoms delivered by immunoliposomes exerted cytotoxic effect on human pancreatic carcinoma cells (AsPC-1) in a dose-dependent manner by thermal neutron irradiation in vitro as reported previously. In the present study, the cytotoxic effect of a locally injected 10B compound solution or multilamellar liposomes containing a 10B compound to human pancreatic carcinoma xenograft in nude mice was evaluated after thermal neutron irradiation. AsPC-1 cells (1 x 107) injected subcutaneously into a nude mouse grew to a tumor weighing 100-300 mg after 2 weeks. At this time 200 μg 10B compounds was locally injected in the tumor and irradiated with 2 x 1012 n/cm2 thermal neutron. Tumor growth of 10B-treated groups was suppressed as compared with control group. Histopathologically, hyalinization and necrosis were found in the tumor tissues. For effective tumor destruction, 10B dose more than 60 μg was necessary. The tumor tissue injected with saline only and irradiated showed neither destruction nor necrosis. These data indicate that the accumulation of 10B atoms to the tumor site is mandatory for the cytotoxic effect by thermal neutron irradiation. (author)

  17. Inhibition of Inositol-1-phosphate Synthetase in Mycobacterium Tuberculosis by Chitosan-antisense Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LI Yuanyuan; CHEN Zhifei; ZHANG Hongling; LI Xiaobo; SHEN Jie; LU Shi; XU Shunqing

    2009-01-01

    Oligodeoxynucleotides (ODNs) were combined with the biodegradable polymer chitosan to form chitosan-ODN nanoparticles by complex coacervation, in order to improve the sta-bility and intracellular penetration. The diameter of the nanoparticles was light strength size and ranged between 60 and 219 nm with a mean value of 132 nm, while zeta potential was between +12 and + 20 mV at pH 5.5. The chitosan-ODN nanoparticles could partially protect the encapsulated ODN from nuclease degradation. Moreover, chitosan-ODN nanoparticles were much more effective in inhibiting the proliferation of M.tuberculosis than free ODN.

  18. Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin

    Science.gov (United States)

    Lamsal, Kabir; Kim, Sang-Woo; Jung, Jin Hee; Kim, Yun Seok; Kim, Kyoung Su

    2011-01-01

    Powdery mildew is one of the most devastating diseases in cucurbits. Crop yield can decline as the disease severity increases. In this study, we evaluated the effect of silver nanoparticles against powdery mildew under different cultivation conditions in vitro and in vivo . Silver nanoparticles (WA-CV-WA13B) at various concentrations were applied before and after disease outbreak in plants to determine antifungal activities. In the field tests, the application of 100 ppm silver nanoparticles showed the highest inhibition rate for both before and after the outbreak of disease on cucumbers and pumpkins. Also, the application of 100 ppm silver nanoparticles showed maximum inhibition for the growth of fungal hyphae and conidial germination in in vivo tests. Scanning electron microscope results indicated that the silver nanoparticles caused detrimental effects on both mycelial growth and conidial germination. PMID:22783069

  19. Undoped and boron doped diamond nanoparticles as platinum and platinum-ruthenium catalyst support for direct methanol fuel cell application

    Science.gov (United States)

    La Torre Riveros, Lyda

    Nanoparticular diamond is a promising material that can be used as a robust and chemically stable catalytic support. It has been studied and characterized physically and electrochemically, in its powder and thin film forms. This thesis work intends to demonstrate that undoped diamond nanoparticles (DNPs) and boron-doped diamond nanoparticles (BDDNPs) can be used as an electrode and a catalytic support material for platinum and ruthenium catalysts. The electrochemical properties of diamond nanoparticle electrodes, fabricated using the ink paste method, were investigated. As an initial step, we carried out chemical purification of commercially available undoped DNPs by refluxing in aqueous HNO3 as well as of BDDNPs which were doped through a collaborative work with the University of Missouri. The purified material was characterized by spectroscopic and surface science techniques. The reversibility of reactions such as ferricyanide/ferrocyanide (Fe(CN) 63-/Fe(CN)64-) and hexaamineruthenium (III) chloride complexes as redox probes were evaluated by cyclic voltammetry at the undoped DNPs and BDDNPs surface. These redox probes showed limited peak currents and presented linear relationships between current (i) and the square root of the potential scan rate (v1/2). However, compared to conventional electrodes, the peak currents were smaller. BDDNPs show an improvement in charge transfer currents when compared to undoped DNPs. Platinum and ruthenium nanoparticles were chemically deposited on undoped DNPs and BDDNPs through the use of the excess of a mild reducing agent such NaBH4. In order to improve the nanoparticle dispersion sodium dodecyl benzene sulfonate (SDBS), a surfactant agent, was used. Percentages of platinum and ruthenium metals were varied as well as the stoichiometric amount of the reducing agent to determine adequate parameters for optimum performance in methanol oxidation. Both before and after the reducing process the samples were characterized by scanning

  20. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin.

    Science.gov (United States)

    Dubey, Kriti; Anand, Bibin G; Badhwar, Rahul; Bagler, Ganesh; Navya, P N; Daima, Hemant Kumar; Kar, Karunakar

    2015-12-01

    Here, we have strategically synthesized stable gold (AuNPs(Tyr), AuNPs(Trp)) and silver (AgNPs(Tyr)) nanoparticles which are surface functionalized with either tyrosine or tryptophan residues and have examined their potential to inhibit amyloid aggregation of insulin. Inhibition of both spontaneous and seed-induced aggregation of insulin was observed in the presence of AuNPs(Tyr), AgNPs(Tyr), and AuNPs(Trp) nanoparticles. These nanoparticles also triggered the disassembly of insulin amyloid fibrils. Surface functionalization of amino acids appears to be important for the inhibition effect since isolated tryptophan and tyrosine molecules did not prevent insulin aggregation. Bioinformatics analysis predicts involvement of tyrosine in H-bonding interactions mediated by its C=O, -NH2, and aromatic moiety. These results offer significant opportunities for developing nanoparticle-based therapeutics against diseases related to protein aggregation.

  1. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    Science.gov (United States)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  2. Pollutant capturing SERS substrate: porous boron nitride microfibers with uniform silver nanoparticle decoration

    Science.gov (United States)

    Dai, Pengcheng; Xue, Yanming; Wang, Xuebin; Weng, Qunhong; Zhang, Chao; Jiang, Xiangfen; Tang, Daiming; Wang, Xi; Kawamoto, Naoyuki; Ide, Yusuke; Mitome, Masanori; Golberg, Dmitri; Bando, Yoshio

    2015-11-01

    How to concentrate target molecules on the surface of a SERS substrate is a key problem in the practical application of SERS. Herein, we designed for the first time a pollutant capturing surface enhanced Raman spectroscopy (SERS) substrate, namely porous BN microfibers uniformly decorated with Ag nanoparticles, in which the BN microfibers adsorb pollutants, while the Ag nanoparticles provide SERS activity. This SERS substrate captures pollutants from an aqueous solution completely and accumulates them all on its surface without introducing noise signals. The pores of BN protect the silver particles from aggregation which makes BN/Ag a stable and recyclable SERS substrate. What's more, while the dyes are thoroughly concentrated from a diluted solution, the SERS detection limit is easily enhanced, from 10-6 M to 10-9 M.How to concentrate target molecules on the surface of a SERS substrate is a key problem in the practical application of SERS. Herein, we designed for the first time a pollutant capturing surface enhanced Raman spectroscopy (SERS) substrate, namely porous BN microfibers uniformly decorated with Ag nanoparticles, in which the BN microfibers adsorb pollutants, while the Ag nanoparticles provide SERS activity. This SERS substrate captures pollutants from an aqueous solution completely and accumulates them all on its surface without introducing noise signals. The pores of BN protect the silver particles from aggregation which makes BN/Ag a stable and recyclable SERS substrate. What's more, while the dyes are thoroughly concentrated from a diluted solution, the SERS detection limit is easily enhanced, from 10-6 M to 10-9 M. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05625j

  3. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    DEFF Research Database (Denmark)

    Grodzik, Marta; Sawosz, Ewa; Wierzbicki, Mateusz;

    2011-01-01

    The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chrioallantoic membrane of chicken embryo and after 7 days of incubati...... antiangiogenic activity of carbon nanoparticles, making them potential factors for anticancer therapy.......The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chrioallantoic membrane of chicken embryo and after 7 days of incubation......, were treated with carbon nanoparticles administered in ovo to the tumor. Both types of nanoparticles significantly decreased tumor mass and volume, fibroblast growth factor-2 and vascular endothelial growth factor expression at the messenger ribonucleic acid level. The present results demonstrate...

  4. Effective performance for undoped and boron-doped double-layered nanoparticles-copper telluride and manganese telluride on tungsten oxide photoelectrodes for solar cell devices.

    Science.gov (United States)

    Srathongluan, Pornpimol; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab; Tubtimtae, Auttasit

    2016-11-01

    This work demonstrates the synthesis of a novel double-layered Cu2-xTe/MnTe structure on a WO3 photoelectrode as a solar absorber for photovoltaic devices. Each material absorber is synthesized using a successive ionic layer adsorption and reaction (SILAR) method. The synthesized individual particle sizes are Cu2-xTe(17) ∼5-10nm and MnTe(3) ∼2nm, whereas, the aggregated particle sizes of undoped and boron-doped Cu2-xTe(17)/MnTe(11) are ∼50 and 150nm, respectively. The larger size after doping is due to the interconnecting of nanoparticles as a network-like structure. A new alignment of the energy band is constructed after boron/MnTe(11) is coated on boron/Cu2-xTe nanoparticles (NPs), leading to a narrower Eg equal to 0.58eV. Then, the valence band maximum (VBM) and conduction band minimum (CBM) with a trap state are also up-shifted to near the CBM of WO3, leading to the shift of a Fermi level for ease of electron injection. The best efficiency of 1.41% was yielded for the WO3/boron-doped [Cu2-xTe(17)/MnTe(11)] structure with a photocurrent density (Jsc)=16.43mA/cm(2), an open-circuit voltage (Voc)=0.305V and a fill factor (FF)=28.1%. This work demonstrates the feasibility of this double-layered structure with doping material as a solar absorber material. PMID:27451035

  5. Boron nitride ultrathin fibrous nanonets: one-step synthesis and applications for ultrafast adsorption for water treatment and selective filtration of nanoparticles.

    Science.gov (United States)

    Lian, Gang; Zhang, Xiao; Si, Haibin; Wang, Jun; Cui, Deliang; Wang, Qilong

    2013-12-26

    Novel boron nitride (BN) ultrathin fibrous networks are firstly synthesized via an one-step solvothermal process. The average diameter of BN nanofibers is only ~8 nm. This nanonets exhibit excellent performance for water treatment. The maximum adsorption capacity for methyl blue is 327.8 mg g(-1). Especially, they present the property of ultrafast adsorption for dye removal. Only ~1 min is enough to almost achieve the adsorption equilibrium. In addition, the BN fibrous nanonets could be applied for the size-selective separation of nanoparticles via a filtration process.

  6. DOXORUBICIN-LOADED BORON-RICH POLYMER NANOPARTICLES FOR ORTHOTOPICALLY IMPLANTED LIVER TUMOR TREATMENT

    Institute of Scientific and Technical Information of China (English)

    Lu-zhong Zhang; Ya-jun Zhang; Wei Wu; Xi-qun Jiang

    2013-01-01

    The in vivo behaviors of doxorubicin (DOX)-loaded dextran-poly(3-acrylamidophenylboronic acid) (DextranPAPBA) nanoparticles (NPs) were studied.The DOX-loaded NPs had a narrowly distributed diameter of ca.74 nm and mainly accumulated in liver of tumor-bearing mice after intravenous injection as demonstrated by in vivo real-time near infrared fluorescent imaging.The DOX contents in various tissues were quantified and consisted well with the results of fluorescent imaging.The biodistribution pattern of DOX-loaded NPs encourages us to investigate their liver tumor treatment by using an orthotopically implanted liver tumor model,revealing that the DOX-loaded NPs formulation had better antitumor effect than free DOX.

  7. Inhibition of total oxygen uptake by silica nanoparticles in activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sibag, Mark [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Choi, Byeong-Gyu [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-ro, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Suh, Changwon [Energy Lab, Environment Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Kwan Hyung; Lee, Jae Woo [Department of Environmental Engineering and Program in Environmental Technology and Policy, Korea University, Sejong 339-700 (Korea, Republic of); Maeng, Sung Kyu [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Cho, Jinwoo, E-mail: jinwoocho@sejong.edu [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-02-11

    Highlights: • Silica nanoparticles (SNP) inhibit total oxygen uptake in activated sludge. • Relatively smaller SNP are inhibitorier than larger SNP. • SNP alters C15:0, C16:0 and C18:0 in activated sludge fatty acid methyl ester profile. - Abstract: Nanoparticle toxicity to biological activities in activated sludge is largely unknown. Among the widely used nanoparticles, silica nanoparticles (SNP) have a limited number of studies associated with inhibition to the activated sludge process (ASP). We demonstrated SNP inhibition of activated sludge respiration through oxygen uptake rate (OUR) measurement. Based on the percentage inhibition of total oxygen consumption (I{sub T}), we observed that smaller SNPs (12 nm, I{sub T} = 33 ± 3%; 151 nm, I{sub T} = 23 ± 2%) were stronger inhibitors than larger SNPs (442 and 683 nm, I{sub T} = 5 ± 1%). Transmission electron micrographs showed that some of the SNPs were adsorbed on and/or apparently embedded somewhere in the microbial cell membrane. Whether SNPs are directly associated with the inhibition of total oxygen uptake warrants further studies. However, it is clear that SNPs statistically significantly altered the composition of microbial membrane lipids, which was more clearly described by principal component analysis and weighted Euclidian distance (PCA-ED) of the fatty acid methyl ester (FAME) data. This study suggests that SNPs potentially affect the biological activity in activated sludge through the inhibition of total oxygen uptake.

  8. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    Science.gov (United States)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  9. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-01-01

    Reasonable suspicion has accumulated that inhaled nano-scale particulate matter influences the biophysical function of the pulmonary surfactant system. Hence, it is evident to provide novel insights into the extent and mechanisms of nanoparticle-surfactant interactions in order to facilitate the fabrication of safe nanomedicines suitable for pulmonary applications. Negatively- and positively-charged poly(styrene) nanoparticles (diameters of ~100nm) served as model carriers. Nanoparticles were incubated with several synthetic and naturally-derived pulmonary surfactants to characterize the sensitivity of each preparation to biophysical inactivation. Changes in surface properties (i.e. adsorption and dynamic surface tension behavior) were monitored in a pulsating bubble surfactometer. Both nanoparticle formulations revealed a dose-dependent influence on the biophysical behavior of all investigated pulmonary surfactants. However, the surfactant sensitivity towards inhibition depended on both the carrier type, where negatively-charged nanoparticles showed increased inactivation potency compared to their positively-charged counterparts, and surfactant composition. Among the surfactants tested, synthetic mixtures (i.e. phospholipids, phospholipids supplemented with surfactant protein B, and Venticute®) were more susceptible to surface-activity inhibition as the more complex naturally-derived preparations (i.e. Alveofact® and large surfactant aggregates isolated from rabbit bronchoalveolar lavage fluid). Overall, nanoparticle characteristics and surfactant constitution both influence the extent of biophysical inhibition of pulmonary surfactants.

  10. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  11. Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Cristóbal, L.F. [Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Maestría en Ciencias Odontológicas en el Área de Odontología Integral Avanzada, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Martínez-Castañón, G.A., E-mail: mtzcastanon@fciencias.uaslp.mx [Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Maestría en Ciencias Odontológicas en el Área de Odontología Integral Avanzada, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava S/N, Zona Universitaria, C.P. 78290 San Luis Potosí, S.L.P. (Mexico); Téllez-Déctor, E.J. [Facultad de Odontología de la Universidad Veracruzana campus Río Blanco, Mariano Abasolo S/N. Col. Centro. Río Blanco, Veracruz (Mexico); and others

    2013-05-01

    The aim of this ex vivo study was to evaluate the adherence capacity of Streptococcus mutans after being exposed to three different sizes of silver nanoparticles on healthy human dental enamel. Three different sizes of silver nanoparticles (9.3, 21.3 and 98 nm) were prepared, characterized and an adherence testing was performed to evaluate their anti-adherence activity on a reference strain of S. mutans on healthy dental enamel surfaces. Colony-Forming Unit count was made for adherence test and light microscopy, atomic force microscopy and scanning electron microscopy were used to compare qualitative characteristics of S. mutans. 9.3 nm and 21.3 nm groups did not show differences between them but statistical differences were found when 9.3 nm and 21.3 nm groups were compared with 98 nm and negative control groups (p < 0.05). Microscopy analysis shows a better inhibition of S. mutans adherence in 9.3 nm and 21.3 nm groups than the 98 nm group when compared with control group. Silver nanoparticles showed an adherence inhibition on S. mutans and the anti-adherence capacity was better when silver nanoparticles were smaller. Highlights: ► We examined how SNP can affect cellular adhesion from S. mutans. ► Several techniques were applied to analyzed S. mutans biofilm on enamel. ► All SNP sizes had an adhesion inhibition of S. mutans. ► Smaller SNP showed a better adhesion inhibition than larger SNP. ► Inhibition effect of SNP could be related with adhesion inhibition from S. mutans.

  12. Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles

    International Nuclear Information System (INIS)

    The aim of this ex vivo study was to evaluate the adherence capacity of Streptococcus mutans after being exposed to three different sizes of silver nanoparticles on healthy human dental enamel. Three different sizes of silver nanoparticles (9.3, 21.3 and 98 nm) were prepared, characterized and an adherence testing was performed to evaluate their anti-adherence activity on a reference strain of S. mutans on healthy dental enamel surfaces. Colony-Forming Unit count was made for adherence test and light microscopy, atomic force microscopy and scanning electron microscopy were used to compare qualitative characteristics of S. mutans. 9.3 nm and 21.3 nm groups did not show differences between them but statistical differences were found when 9.3 nm and 21.3 nm groups were compared with 98 nm and negative control groups (p < 0.05). Microscopy analysis shows a better inhibition of S. mutans adherence in 9.3 nm and 21.3 nm groups than the 98 nm group when compared with control group. Silver nanoparticles showed an adherence inhibition on S. mutans and the anti-adherence capacity was better when silver nanoparticles were smaller. Highlights: ► We examined how SNP can affect cellular adhesion from S. mutans. ► Several techniques were applied to analyzed S. mutans biofilm on enamel. ► All SNP sizes had an adhesion inhibition of S. mutans. ► Smaller SNP showed a better adhesion inhibition than larger SNP. ► Inhibition effect of SNP could be related with adhesion inhibition from S. mutans

  13. A novel nanoparticle containing neuritin peptide with grp170 induces a CTL response to inhibit tumor growth.

    Science.gov (United States)

    Yuan, Bangqing; Shen, Hanchao; Su, Tonggang; Lin, Li; Chen, Ting; Yang, Zhao

    2015-10-01

    Malignant glioma is among the most challenging of all cancers to treat successfully. Despite recent advances in surgery, radiotherapy and chemotherapy, current treatment regimens have only a marginal impact on patient survival. In this study, we constructed a novel nanoparticle containing neuritin peptide with grp170. The nanoparticle could elicit a neuritin-specific cytotoxic T lymphocyte response to lyse glioma cells in vitro. In addition, the nanoparticle could inhibit tumor growth and improve the lifespan of tumor-bearing mice in vivo. Taken together, the results demonstrated that the nanoparticle can inhibit tumor growth and represents a promising therapy for glioma. PMID:26290143

  14. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles.

    Science.gov (United States)

    Bimbo, Luis M; Denisova, Oxana V; Mäkilä, Ermei; Kaasalainen, Martti; De Brabander, Jef K; Hirvonen, Jouni; Salonen, Jarno; Kakkola, Laura; Kainov, Denis; Santos, Hélder A

    2013-08-27

    Influenza A viruses (IAVs) cause recurrent epidemics in humans, with serious threat of lethal worldwide pandemics. The occurrence of antiviral-resistant virus strains and the emergence of highly pathogenic influenza viruses have triggered an urgent need to develop new anti-IAV treatments. One compound found to inhibit IAV, and other virus infections, is saliphenylhalamide (SaliPhe). SaliPhe targets host vacuolar-ATPase and inhibits acidification of endosomes, a process needed for productive virus infection. The major obstacle for the further development of SaliPhe as antiviral drug has been its poor solubility. Here, we investigated the possibility to increase SaliPhe solubility by loading the compound in thermally hydrocarbonized porous silicon (THCPSi) nanoparticles. SaliPhe-loaded nanoparticles were further investigated for the ability to inhibit influenza A infection in human retinal pigment epithelium and Madin-Darby canine kidney cells, and we show that upon release from THCPSi, SaliPhe inhibited IAV infection in vitro and reduced the amount of progeny virus in IAV-infected cells. Overall, the PSi-based nanosystem exhibited increased dissolution of the investigated anti-IAV drug SaliPhe and displayed excellent in vitro stability, low cytotoxicity, and remarkable reduction of viral load in the absence of organic solvents. This proof-of-principle study indicates that PSi nanoparticles could be used for efficient delivery of antivirals to infected cells.

  15. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  16. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    Science.gov (United States)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  17. A Review on the Preparation of Borazine-derived Boron Nitride Nanoparticles and Nanopolyhedrons by Spray-pyrolysis and Annealing Process

    Directory of Open Access Journals (Sweden)

    Vincent Salles

    2016-01-01

    Full Text Available Boron nitride (BN nanostructures (= nanoBN are struc‐ tural analogues of carbon nanostructures but display different materials chemistry and physics, leading to a wide variety of structural, thermal, electronic, and optical applications. Proper synthesis routes and advanced structural design are among the great challenges for preparing nanoBN with such properties. This review provides an insight into the preparation and characteriza‐ tion of zero dimensional (0D nanoBN including nanopar‐ ticles and nanopolyhedrons from borazine, an economically competitive and attractive (from a technical point of view molecule, beginning with a concise intro‐ duction to hexagonal BN, followed by an overview on the past and current state of research on nanoparticles. Thus, a review of the spray-pyrolysis of borazine to form BN nanoparticles is firstly presented. The use of BN nanopar‐ ticles as precursors of BN nanopolyhedrons is then de‐ tailed. Applications and research perspectives for these 0D nanoBN are discussed in the conclusion.

  18. Ag Nanoparticles on Boron Doped Multi-walled Carbon Nanotubes as a Synergistic Catalysts for Oxygen Reduction Reaction in Alkaline Media

    International Nuclear Information System (INIS)

    Highlights: • The mass activity of Ag/B-MWCNTs reduces with increasing of Ag loading. • The B-MWCNTs can be a promising supporting material for low-cost ORR catalyst. • This work the role of supporting materials in reducing the loading of metal catalyst. - Abstract: Here we report the oxygen reduction reaction (ORR) activity of Ag nanoparticles supported on boron doped multi-walled carbon nanotubes (Ag/B-MWCNTs) with different Ag loadings synthesized by a facile chemical method. Transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD) measurements were employed to investigate the morphology and crystal structure of the as-prepared catalysts. The electrochemical results demonstrated that all the Ag/B-MWCNTs samples catalyzed the ORR in alkaline media by an efficient four-electron pathway. Furthermore, Ag/B-MWCNTs with lowest Ag loading (20%) performed the highest mass activity towards ORR mainly due to the synergistic effect of Ag nanoparticles and B-MWCNTs. This work brings insight into the role of supporting materials in reducing the loading of metal catalyst towards low-cost ORR in alkaline media

  19. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection

    Science.gov (United States)

    Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi

    2016-01-01

    Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition

  20. Inhibition of DNA restrictive endonucleases by aqueous nanoparticle suspension of methanophosphonate fullerene derivatives and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Aqueous nanoparticle suspension of fullerene and its derivatives are currently attracting much attention. To determine the effects of aqueous nanoparticle suspension of a mono-methanophosphonate fullerene and bis-methanophosphonate fullerene (denoted as n-MMPF and n-BMPF, respectively) on the activities of DNA restrictive endonucleases, plasmid pEGFP-N1 was cleaved at a single but differently restrictive site by EcoR I, BamH I, and isozymes Cfr9 I and Xma I, respectively. Both n-MMPF and n-BMPF inhibited the activity of EcoR I, while n-BMPF exhibited stronger inhibition than n-MMPF. Addition of n-BMPF into reaction mixtures inhibited the activities of all the four enzymes, and IC50 values for EcoR I, BamH I, Cfr9 I and Xma I were 4.3, >30, 11.7 and 8.3 μmol/L, respectively. When EcoR I was completely inhibited by n-BMPF, addition of excess amounts of pEGFP-N1 could not produce the product linear plasmid; however, increase of EcoR I amounts antagonized EcoR I inhibition of n-BMPF. Two scavengers of reactive oxygen species (ROS), mannitol and sodium azide at the concentrations of 2-10 mmol/L, did not reverse inhibition of n-BMPF, implying that this inhibition probably is not correlated to ROS. These results suggested that aqueous nano-fullerenes might act as inhibitors of DNA restrictive endonucleases.

  1. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  2. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination.

    Directory of Open Access Journals (Sweden)

    Sourabh Dwivedi

    Full Text Available The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼ 10-15 nm has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM. The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.

  3. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2012-04-01

    Full Text Available Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities.Results: Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM.Conclusion: These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation.Keywords: zerovalent bismuth nanoparticles, antimicrobial agent, biofilm, Streptococcus mutans

  4. Improved microbial growth inhibition activity of bio-surfactant induced Ag–TiO{sub 2} core shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nithyadevi, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Ponpandian, N.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Meena, P. [Department of Physics, PSGR Krishnammal college for women, Coimbatore 641 004 (India)

    2015-02-01

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles were synthesized by hydrolysis process and Ag nanoparticles were prepared by using hydrazine reduction method. • Ag–TiO{sub 2} core shell nanoparticles were synthesized by reverse micelle method. • Coatings of TiO{sub 2} shell leads to decrease the usage of silver particles and also it reduces the release of silver ions from the matrix. • Optimum ratio of TiO{sub 2} particles: Ag atoms are needed for better antibacterial activity. • Sodium alginate (Bio-copolymer) induced core shell nanoparticles results 100% cell growth inhibition toward Staphylococcus aureus. - Abstract: Surfactant induced silver–titanium dioxide core shell nanoparticles within the size range of 10–50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver–titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver–titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV–vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver–titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell

  5. Novel Insights Into The Mode of Inhibition of Class A SHV-1 Beta-Lactamases Revealed by Boronic Acid Transition State Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    W Ke; J Sampson; C Ori; F Prati; S Drawz; C Bethel; R Bonomo; F van den Akker

    2011-12-31

    Boronic acid transition state inhibitors (BATSIs) are potent class A and C {beta}-lactamase inactivators and are of particular interest due to their reversible nature mimicking the transition state. Here, we present structural and kinetic data describing the inhibition of the SHV-1 {beta}-lactamase, a clinically important enzyme found in Klebsiella pneumoniae, by BATSI compounds possessing the R1 side chains of ceftazidime and cefoperazone and designed variants of the latter, compounds 1 and 2. The ceftazidime and cefoperazone BATSI compounds inhibit the SHV-1 {beta}-lactamase with micromolar affinity that is considerably weaker than their inhibition of other {beta}-lactamases. The solved crystal structures of these two BATSIs in complex with SHV-1 reveal a possible reason for SHV-1's relative resistance to inhibition, as the BATSIs adopt a deacylation transition state conformation compared to the usual acylation transition state conformation when complexed to other {beta}-lactamases. Active-site comparison suggests that these conformational differences might be attributed to a subtle shift of residue A237 in SHV-1. The ceftazidime BATSI structure revealed that the carboxyl-dimethyl moiety is positioned in SHV-1's carboxyl binding pocket. In contrast, the cefoperazone BATSI has its R1 group pointing away from the active site such that its phenol moiety moves residue Y105 from the active site via end-on stacking interactions. To work toward improving the affinity of the cefoperazone BATSI, we synthesized two variants in which either one or two extra carbons were added to the phenol linker. Both variants yielded improved affinity against SHV-1, possibly as a consequence of releasing the strain of its interaction with the unusual Y105 conformation.

  6. Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium.

    Science.gov (United States)

    Yue, Yang; Behra, Renata; Sigg, Laura; Schirmer, Kristin

    2016-10-01

    While short-term exposures of vertebrate cells, such as from fish, can be performed in defined, serum-free media, long-term cultures generally require addition of growth factors and proteins, normally supplied with a serum supplement. However, proteins are known to alter nanoparticle properties by binding to nanoparticles. Therefore, in order to be able to study nanoparticle-cell interactions for extended periods, the rainbow trout (Oncorhynchus mykiss) gill cell line, RTgill-W1, was adapted to proliferate in a commercial, serum-free medium, InVitrus VP-6. The newly adapted cell strain was named RTgill-W1-pf (protein free). These cells proliferate at a speed similar to the RTgill-W1 cells cultured in a fully supplemented medium containing 5% fetal bovine serum. As well, they were successfully cryopreserved in liquid nitrogen and fully recovered after thawing. Yet, senescence set in after about 10 passages in InVitrus VP-6 medium, revealing that this medium cannot fully support long-term culture of the RTgill-W1 strain. The RTgill-W1-pf cell line was subsequently applied to investigate the effect of silver nanoparticles (AgNP) on cell proliferation over a period of 12 days. Indeed, cell proliferation was inhibited by 10 μM AgNP. This effect correlated with high levels of silver being associated with the cells. The new cell line, RTgill-W1-pf, can serve as a unique representation of the gill cell-environment interface, offering novel opportunities to study nanoparticle-cell interactions without serum protein interference. PMID:27030289

  7. Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium.

    Science.gov (United States)

    Yue, Yang; Behra, Renata; Sigg, Laura; Schirmer, Kristin

    2016-10-01

    While short-term exposures of vertebrate cells, such as from fish, can be performed in defined, serum-free media, long-term cultures generally require addition of growth factors and proteins, normally supplied with a serum supplement. However, proteins are known to alter nanoparticle properties by binding to nanoparticles. Therefore, in order to be able to study nanoparticle-cell interactions for extended periods, the rainbow trout (Oncorhynchus mykiss) gill cell line, RTgill-W1, was adapted to proliferate in a commercial, serum-free medium, InVitrus VP-6. The newly adapted cell strain was named RTgill-W1-pf (protein free). These cells proliferate at a speed similar to the RTgill-W1 cells cultured in a fully supplemented medium containing 5% fetal bovine serum. As well, they were successfully cryopreserved in liquid nitrogen and fully recovered after thawing. Yet, senescence set in after about 10 passages in InVitrus VP-6 medium, revealing that this medium cannot fully support long-term culture of the RTgill-W1 strain. The RTgill-W1-pf cell line was subsequently applied to investigate the effect of silver nanoparticles (AgNP) on cell proliferation over a period of 12 days. Indeed, cell proliferation was inhibited by 10 μM AgNP. This effect correlated with high levels of silver being associated with the cells. The new cell line, RTgill-W1-pf, can serve as a unique representation of the gill cell-environment interface, offering novel opportunities to study nanoparticle-cell interactions without serum protein interference.

  8. Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Zhao-xiong ZHOU; Bai-gen ZHANG; Hao ZHANG; Xiao-zhong HUANG; Ya-li HU; Li SUN; Xiao-min WANG; Ji-wei ZHANG

    2009-01-01

    Aim: To investigate the in vitro release profile of drugs encapsulated within perfluorocarbon (PFC) nanoparticles (NPs) and their ability to inhibit the activity of vascular smooth muscle cells (SMCs).Methods: Dexamethasone phosphate (DxP) or dexamethasone acetate (DxA) was encapsulated into PFC nanoparticles using a high-pressure homogenous method. The morphology and size of the NPs were examined using scanning electron microscopy (SEM) and a laser particle size analyzer. Drug loading and in vitro release were assessed by high-performance liquid chromatography (HPLC). The impact of NP capsules on SMC proliferation, migration and apoptosis in vitro was assessed using cell counting kit-8, transwell cell migration and flow cytometry assays.Results: The sizes of DxP-NPs and DxA-NPs were 224±6 nm and 236±9 nm, respectively. The encapsulation efficiency (EE) of DxP-NPs was 66.4%±1.0%, with an initial release rate of 77.2%, whereas the EE of DxA-NPs was 95.3%±1.3%, with an initial release rate of 23.6%. Both of the NP-coated drugs could be released over 7 d. Human umbilical artery SMCs were harvested and cultured for four to six passages. Compared to free DxP, SMCs treated with tissue factor (TF)-directed DxP-NPs showed significant differences in the inhibition of proliferation, migration and apoptosis (P<0.05).Conclusion: The results collectively suggest that PFC nanoparticles will be beneficial for targeted drug delivery because of the sustained drug release and effective inhibition of SMC proliferation and migration.

  9. Aqueous extract of Rabdosia rubescens leaves: forming nanoparticles, targeting P-selectin, and inhibiting thrombosis.

    Science.gov (United States)

    Wang, Yuji; Tang, Jingcheng; Zhu, Haimei; Jiang, Xueyun; Liu, Jiawang; Xu, Wenyun; Ma, Haiping; Feng, Qiqi; Wu, Jianhui; Zhao, Ming; Peng, Shiqi

    2015-01-01

    The hot water extract of Rabdosia rubescens was traditionally used as an antithrombotic medicine. To explore its antithrombotic utility and mechanism, we carried out a series of in vitro and in vivo assays in this study. In vitro platelet aggregation assay showed that the half maximal inhibitory concentration values of aqueous extract of R. rubescens leaves (AERL) inhibiting platelet aggregation induced by thrombin, arachidonic acid, adenosine diphosphate, and platelet-activating factor ranged from 0.12 mg/mL to 1.43 mg/mL. The minimal effective oral dose of AERL inhibiting the rats from forming thrombus was 25 mg/kg. Both in vitro and in vivo actions were correlated with AERL concentration-dependently inhibiting sP-selectin release. In water, AERL formed nanoparticles, and their size depended on the concentration. Docking the five nucleotides, 21 phenolic acids, and four diterpenoids identified by high-performance liquid chromatography-photodiode array detector/(-)electrospray ionization-tandem mass spectrometry analysis into the active site of P-selectin, rosmarinic acid was predicted to be the antithrombotic ingredient of AERL. In flow cytometry analysis, 1 μM of rosmarinic acid effectively inhibited sP-selectin release in arachidonic acid-activated platelets. In a rat model, 5 mg/kg of oral rosmarinic acid effectively inhibited thrombosis.

  10. Direct electrochemistry of Shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique.

    Science.gov (United States)

    Wu, Wenguo; Xie, Ronggang; Bai, Linling; Tang, Zuming; Gu, Zhongze

    2012-05-01

    Microbial Fuel Cells (MFCs) are robust devices capable of taping biological energy, converting pollutants into electricity through renewable biomass. The fabrication of nanostructured electrodes with good bio- and electrochemical activity, play a profound role in promoting power generation of MFCs. Au nanoparticles (AuNPs)-modified Boron-Doped Diamond (BDD) electrodes are fabricated by layer-by-layer (LBL) self-assembly technique and used for the direct electrochemistry of Shewanella loihica PV-4 in an electrochemical cell. Experimental results show that the peak current densities generated on the Au/PAH multilayer-modified BDD electrodes increased from 1.25 to 2.93 microA/cm(-2) as the layer increased from 0 to 6. Different cell morphologies of S. loihica PV-4 were also observed on the electrodes and the highest density of cells was attached on the (Au/PAH)6/BDD electrode with well-formed three-dimensional nanostructure. The electrochemistry of S. loihica PV-4 was enhanced on the (Au/PAH)4/BDD electrode due to the appropriate amount of AuNPsand thickness of PAH layer.

  11. Effect of Nanoparticles on Modified Screen Printed Inhibition Superoxide Dismutase Electrodes for Aluminum

    Directory of Open Access Journals (Sweden)

    Miriam Barquero-Quirós

    2016-09-01

    Full Text Available A novel amperometric biosensor for the determination of Al(III based on the inhibition of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine substrate was affected by the presence of Al(III ions leading to a decrease in its amperometric current. The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon electrodes modifiedwith tetrathiofulvalene (TTF and different types ofnanoparticles. Nanoparticles of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes by means of two electrochemical procedures. Nanoparticles were characterized trough scanning electronic microscopy, X-rays fluorescence, and atomic force microscopy. Palladium nanoparticles showed lower atomic force microscopy parameters and higher slope of aluminum calibration curves and were selected to perform sensor validation. The developed biosensor has a detection limit of 2.0 ± 0.2 μM for Al(III, with a reproducibility of 7.9% (n = 5. Recovery of standard reference material spiked to buffer solution was 103.8% with a relative standard deviation of 4.8% (n = 5. Recovery of tap water spiked with the standard reference material was 100.5 with a relative standard deviation of 3.4% (n = 3. The study of interfering ions has also been carried out.

  12. Synthesis of magnetic composite nanoparticles enveloped in copolymers specified for scale inhibition application

    Science.gov (United States)

    Do, Bao Phuong Huu; Dung Nguyen, Ba; Duy Nguyen, Hoang; Nguyen, Phuong Tung

    2013-12-01

    We report the synthesis of magnetic iron oxide nanoparticles encapsulated in maleic acid-2-acrylamido-2-methyl-1-propanesulfonate based polymer. This composite nanoparticle is specified for the high-pressure/high-temperature (HPHT) oilfield scale inhibition application. The process includes a facile-ultrasound-supported addition reaction to obtain iron oxide nanoparticles with surface coated by oleic acid. Then via inverse microemulsion polymerization with selected monomers, the specifically designed copolymers have been formatted in nanoscale. The structure and morphology of obtained materials were characterized by transmission electron microscopy (TEM), x-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and the thermal stability. The effectiveness of synthesized compounds as a carbonate scale inhibitor was investigated by testing method NACE standard TM 03-074-95 at aging temperature of 70, 90 and 120 °C. The magnetic nanocomposite particles can be easily collected and detected demonstrating their superior monitoring ability, which is absent in the case of conventional copolymer-based scale inhibitor.

  13. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water

    Science.gov (United States)

    Guisbiers, G; Wang, Q; Khachatryan, E; Mimun, LC; Mendoza-Cruz, R; Larese-Casanova, P; Webster, TJ; Nash, KL

    2016-01-01

    Nosocomial diseases are mainly caused by two common pathogens, Escherichia coli and Staphylococcus aureus, which are becoming more and more resistant to conventional antibiotics. Therefore, it is becoming increasingly necessary to find other alternative treatments than commonly utilized drugs. A promising strategy is to use nanomaterials such as selenium nanoparticles. However, the ability to produce nanoparticles free of any contamination is very challenging, especially for nano-medical applications. This paper reports the successful synthesis of pure selenium nanoparticles by laser ablation in water and determines the minimal concentration required for ~50% inhibition of either E. coli or S. aureus after 24 hours to be at least ~50 ppm. Total inhibition of E. coli and S. aureus is expected to occur at 107±12 and 79±4 ppm, respectively. In this manner, this study reports for the first time an easy synthesis process for creating pure selenium to inhibit bacterial growth. PMID:27563240

  14. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  15. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.

    Science.gov (United States)

    McGuffie, Matthew J; Hong, Jin; Bahng, Joong Hwan; Glynos, Emmanouil; Green, Peter F; Kotov, Nicholas A; Younger, John G; VanEpps, J Scott

    2016-01-01

    Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices. PMID:26515755

  16. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation

    Science.gov (United States)

    Duivenvoorden, Raphaël; Tang, Jun; Cormode, David P.; Mieszawska, Aneta J.; Izquierdo-Garcia, David; Ozcan, Canturk; Otten, Maarten J.; Zaidi, Neeha; Lobatto, Mark E.; van Rijs, Sarian M.; Priem, Bram; Kuan, Emma L.; Martel, Catherine; Hewing, Bernd; Sager, Hendrik; Nahrendorf, Matthias; Randolph, Gwendalyn J.; Stroes, Erik S. G.; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2014-01-01

    Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show that they accumulate in atherosclerotic lesions in which they directly affect plaque macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.

  17. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells

    Science.gov (United States)

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  18. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.

    Science.gov (United States)

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  19. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  20. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    Science.gov (United States)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics

  1. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation

    Science.gov (United States)

    Skaat, Hadas; Belfort, Georges; Margel, Shlomo

    2009-06-01

    Maghemite (γ-Fe2O3) magnetic nanoparticles of 15.0 ± 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic γ-Fe2O3/poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) (γ-Fe2O3/PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the γ-Fe2O3/PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from α-helix to β-sheets during insulin fibril formation is observed in the presence of the γ-Fe2O3/PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the γ-Fe2O3 core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

  2. Rapamycin-loaded nanoparticles for inhibition of neointimal hyperplasia in experimental vein grafts

    Directory of Open Access Journals (Sweden)

    Ma Hao

    2011-05-01

    Full Text Available Abstract Background Nanoparticles possess several advantages as a carrier system for intracellular delivery of therapeutic agents. Rapamycin is an immunosuppressive agent which also exhibits marked antiproliferative properties. We investigated whether rapamycin-loaded nanoparticles(NPs can reduce neointima formation in a rat model of vein graft disease. Methods Poly(lactic-co-glycolic acid (PLGA NPs containing rapamycin was prepared using an oil/water solvent evaporation technique. Nanoparticle size and morphology were determined by dynamic light scattering methodology and electron microscopy. In vitro cytotoxicity of blank, rapamycin-loaded PLGA (RPLGA NPs was studied using MTT Assay. Excised rat jugular vein was treated ex vivo with blank-NPs, or rapamycin-loaded NPs, then interposed back into the carotid artery position using a cuff technique. Grafts were harvested at 21 days and underwent morphometric analysis as well as immunohistochemical analysis. Results Rapamycin was efficiently loaded in PLGA nanoparticles with an encapsulation efficiency was 87.6%. The average diameter of NPs was 180.3 nm. The NPs-containing rapamycin at 1 ng/ml significantly inhibited vascular smooth muscular cells proliferation. Measurement of rapamycin levels in vein grafts shown that the concentration of rapamycin in vein grafts at 3 weeks after grafting were 0.9 ± 0.1 μg/g. In grafted veins without treatment intima-media thickness was 300.4 ±181.5 μm after grafting 21 days. Whereas, Veins treated with rapamycin-loaded NPs showed a reduction of intimal-media thickness of 150.2 ± 62.5 μm (p = 0.001. CD-31 staining was used to measure luminal endothelial coverage in grafts and indicated a high level of endothelialization in 21 days vein grafts with no significant effect of blank or rapamycin-loaded NPs group. Conclusions We conclude that sustained-release rapamycin from rapymycin loaded NPs inhibits vein graft thickening without affecting the

  3. Electrochemical Method for Heavy Metals Detection by Inhibition of Acetylcholinesterase Immobilized on Pt-nanoparticles Modified Graphite Electrode

    Directory of Open Access Journals (Sweden)

    Turdean G. L.

    2013-04-01

    Full Text Available The optimization and the characterization of a new amperometric biosensor based on acetylcholinestrase (AChE, immobilized on a graphite electrode modified with Pt-nanoparticles (PtNP, are reported. The G/PtNP-AChE biosensor was used for heavy metals detection. The degree of inhibition (%I, the kinetic constants of the inhibition process, as well as the influence of the PtNP presence on these parameters were estimated.

  4. Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity.

    Science.gov (United States)

    Cha, Sang-Ho; Hong, Jin; McGuffie, Matt; Yeom, Bongjun; VanEpps, J Scott; Kotov, Nicholas A

    2015-09-22

    Enzyme inhibitors are ubiquitous in all living systems, and their biological inhibitory activity is strongly dependent on their molecular shape. Here, we show that small zinc oxide nanoparticles (ZnO NPs)-pyramids, plates, and spheres-possess the ability to inhibit activity of a typical enzyme β-galactosidase (GAL) in a biomimetic fashion. Enzyme inhibition by ZnO NPs is reversible and follows classical Michaelis-Menten kinetics with parameters strongly dependent on their geometry. Diverse spectroscopic, biochemical, and computational experimental data indicate that association of GAL with specific ZnO NP geometries interferes with conformational reorganization of the enzyme necessary for its catalytic activity. The strongest inhibition was observed for ZnO nanopyramids and compares favorably to that of the best natural GAL inhibitors while being resistant to proteases. Besides the fundamental significance of this biomimetic function of anisotropic NPs, their capacity to serve as degradation-resistant enzyme inhibitors is technologically attractive and is substantiated by strong shape-specific antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), endemic for most hospitals in the world. PMID:26325486

  5. The inhibition of advanced glycation end-products-induced retinal vascular permeability by silver nanoparticles.

    Science.gov (United States)

    Sheikpranbabu, Sardarpasha; Kalishwaralal, Kalimuthu; Lee, Kyung-Jin; Vaidyanathan, Ramanathan; Eom, Soo Hyun; Gurunathan, Sangiliyandi

    2010-03-01

    The increased permeability of the blood-retinal barrier is known to occur in patients with diabetes, and this defect contributes to retinal edema. This study aimed to determine the effects of silver nanoparticles (Ag-NPs) on advanced glycation end-products (AGEs)-induced endothelial cell permeability. Cultured porcine retinal endothelial cells (PRECs) were exposed to AGE-modified bovine serum albumin (AGE-BSA) and the endothelial cell permeability was detected by measuring the flux of RITC-dextran across the PREC monolayers. We found that AGE-BSA increased the dextran flux across a PREC monolayer and Ag-NPs blocked the solute flux induced by AGE-BSA. In order to understand the underlying signaling mechanism of Ag-NPs on the inhibitory effect of AGE-BSA-induced permeability, we demonstrated that Ag-NPs could inhibit the AGE-BSA-induced permeability via Src kinase pathway. AGE-BSA also increased the PREC permeability by stimulating the expression of intracellular adhesion molecule-1 (ICAM-1) and decreased the expression of occludin and ZO-1. Further, Ag-NPs inhibited the AGE-BSA-induced permeability by increased expression of tight junction proteins occludin and ZO-1, co-incident with an increase in barrier properties of endothelial monolayer. Together, our results indicate that Ag-NPs could possibly act as potent anti-permeability molecule by targeting the Src signaling pathway and tight junction proteins and it offers potential targets to inhibit the ocular related diseases. PMID:19963272

  6. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-11-01

    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines.

  7. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  8. Doping Silicon Wafers with Boron by Use of Silicon Paste

    Institute of Scientific and Technical Information of China (English)

    Yu Gao; Shu Zhou; Yunfan Zhang; Chen Dong; Xiaodong Pi; Deren Yang

    2013-01-01

    In this work we introduce recently developed silicon-paste-enabled p-type doping for silicon.Boron-doped silicon nanoparticles are synthesized by a plasma approach.They are then dispersed in solvents to form silicon paste.Silicon paste is screen-printed at the surface of silicon wafers.By annealing,boron atoms in silicon paste diffuse into silicon wafers.Chemical analysis is employed to obtain the concentrations of boron in silicon nanoparticles.The successful doping of silicon wafers with boron is evidenced by secondary ion mass spectroscopy (SIMS) and sheet resistance measurements.

  9. Dual effects of β-cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibition and reduced cytotoxicity.

    Science.gov (United States)

    Jaiswal, Swarna; Bhattacharya, Kunal; McHale, Patrick; Duffy, Brendan

    2015-01-01

    The composition and mode of synthesis of nanoparticles (NPs) can affect interaction with bacterial and human cells differently. The present work describes the ability of β-cyclodextrin (β-CD) capped silver nanoparticles (AgNPs) to inhibit biofilm growth and reduce cytotoxicity. Biofilm formation of Staphylococcus epidermidis CSF 41498 was quantified by a crystal violet assay in the presence of native and capped AgNPs (Ag-10CD and Ag-20CD), and the morphology of the biofilm was observed by scanning electron microscope. The cytotoxicity of the AgNPs against HaCat cells was determined by measuring the increase in intracellular reactive oxygen species and change in mitochondrial membrane potential (ΔΨm). Results indicated that capping AgNPs with β-CD improved their efficacy against S. epidermidis CSF 41498, reduced biofilm formation and their cytotoxicity. The study concluded that β-CD is an effective capping and stabilising agent that reduces toxicity of AgNPs against the mammalian cell while enhancing their antibiofilm activity. PMID:25596861

  10. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  11. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of a 'single' application of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-1(Na210B10H10) or (GB-10+BPA) to treat hamster cheek pouch tumors with no normal tissue radiotoxicity. Based on these results, we developed a model of precancerous tissue in the hamster cheek pouch for long-term studies. Employing this model we evaluated the long-term potential inhibitory effect on the development of second primary tumors from precancerous tissue and eventual radiotoxicity of a single application of BNCT mediated by BPA, GB-10 or (GB-10+BPA), in the RA-6. The clinical rationale of this study was to search for a BNCT protocol that is therapeutic for tumor, not radio-toxic for the normal tissue that lies in the neutron beam path, and exerts the desired inhibitory effect on the development of second primary tumors, without exceeding the radio-tolerance of precancerous tissue, the dose limiting tissue in this case. Second primary tumors that arise in precancerous tissue (also called locoregional recurrences) are a frequent cause of therapeutic failure in head and neck tumors. Aim: Evaluate the radiotoxicity and inhibitory effect of a 'double' application of the same BNCT protocols that were proved therapeutically successful for tumor and precancerous tissue, with a long term follow up (8 months). A 'double' application of BNCT is a potentially useful strategy for the treatment of tumors, in particular the larger ones, but the cost in terms of side-effects in dose-limiting tissues might preclude its application and requires cautious evaluation. Materials and methods: We performed a double application of 1) BPA-BNCT; 2) (GB- 10+BPA

  12. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells.

    Science.gov (United States)

    Sun, Rong; Shen, Song; Zhang, Yun-Jiao; Xu, Cong-Fei; Cao, Zhi-Ting; Wen, Long-Ping; Wang, Jun

    2016-10-01

    Cancer stem cells (CSCs) have garnered increasing attention over the past decade, as they are believed to play a crucial role in tumor initiation, progression and metastasis, relapse and drug resistance. Therapeutic strategies which simultaneously exterminate both bulk tumor cells and the rare CSC subpopulation may produce striking response and result in long-term tumor remission. Accumulating evidence provides insight into the function of autophagy in maintenance, plasticity and survival of CSCs. The role of autophagy in the susceptibility of breast CSCs to chemotherapeutics was investigated in the present work, reduced 'stemness' and increased susceptibility to chemotherapy drugs (doxorubicin, DOX and docetaxel, DTXL) were observed after chloroquine (CQ)-mediated autophagy inhibition in sorted ALDH(hi) cells of breast cancer cell line MDA-MB-231. We further proved that nanoparticle-mediated autophagy inhibition promoted the efficacy of chemotherapeutics against ALDH(hi) MDA-MB-231 cells in vitro. Administration of drug delivery systems significantly prolonged the circulation half-life and augmented enrichment of two different drugs in tumor tissues and ALDH(hi) cells. More importantly, compared with single treatment, the combined delivery systems NPCQ/NPDOX and NPCQ/DOX (NPCQ/NPDTXL and NPCQ/DTXL) showed most effective and persistent tumor growth inhibitory effect by eliminating bulk tumor cells as well as CSCs (p breast cancer. PMID:27376558

  13. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); De la Fuente, J M, E-mail: pmvb@fct.unl.pt [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2010-12-17

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  14. Antibacterial effect of silver nanoparticles along with protein synthesis-inhibiting antibiotics on Staphylococcus aureus isolated from cattle mastitis

    Directory of Open Access Journals (Sweden)

    Malahat Ahmadi

    2014-01-01

    Full Text Available Introduction: Staphylococcus aureus is an opportunistic pathogen in dairy ruminants which is also found in healthy carriage and can be a major cause of mastitis. Various mastitis control programs have been used to combat the problem but have not always been efficient. In most countries, antibiotic resistance is extremely common. Silver nanoparticles have shown antimicrobial activity against S. aureus. In the present study the effect of silver nanoparticles on S. aureus isolated from cattle mastitis along with antibiotics of operative on protein bacterial synthesis investigated. Materials and methods: Three hundred eleven milk samples were collected from the cow farms. Each milk sample was cultured on mannitol salt agar and was incubated. A total of 72 isolates of S. aureus were isolated from the bovine mastitis milk samples. S. aureus DNA extracted by DNA purification kit according to the manufacturer protocol. 58 isolates were confirmed as S. aureus by biochemical tests as well as nuc gene detection. MIC and MBC determined for silver nanoparticles with antibiotics on 50 isolates. Results: The resistance of S. aureus isolates against erythromycin, gentamicin, streptomycin and doxycycline were 100, 22, 100 and 8%, respectively. 8 of all isolates were sensitive to 25 µg/ml concentration of silver nanoparticles. The 92% growth of the samples were inhibited at concentrations between 50-100 µg/ml. Discussion and conclusion: The present study suggests that antibiotics which can inhibit protein synthesis have significant synergistic effect along with silver nanoparticles.

  15. Inhibition of Plasmodium falciparum proliferation in vitro by double-stranded RNA nanoparticle against malaria topoisomerase II.

    Science.gov (United States)

    Attasart, Pongsopee; Boonma, Siriwan; Sunintaboon, Panya; Tanwilai, Dolpawan; Pothikasikorn, Jinrapa; Noonpakdee, Wilai Tienrungroj

    2016-05-01

    The need to develop new effective antimalarial agents is urgent due to the rapid emergence of drug resistance to all current drugs by the most virulent human malaria parasite, Plasmodium falciparum. A promising avenue is in the development of antimalarials based on RNA interference targeting expression of malaria parasite vital genes, viz. DNA topoisomerase II gene (PfTOP2). Biodegradable chitosan nanoparticle system has proven to be effective in delivering DNA and small double-stranded interfering RNA to target cells. We have employed a long double-stranded (dsRNA) targeting the coding region of PfTOP2 that is complexed with chitosan nanoparticles in order to interfere with the cognate mRNA expression and examined its effect on P. falciparum growth in culture. Exposure of ring stage-infected erythrocytes to 10 μg/ml PfTOP2 chitosan/dsRNA nanoparticles for 48 h resulted in 71% growth inhibition as determined by [(3)H] hypoxanthine incorporation and microscopic assays, compared with 41% inhibition using an equivalent amount of free PfTOP2 dsRNA or 12% with unrelated chitosan/dsRNA nanoparticles. This inhibition was shown to occur during maturation of trophozoite to schizont stages. RT-PCR analysis indicated 56% and 38% decrease in PfTOP2 transcript levels in P. falciparum trophozoites treated with PfTOP2 dsRNA nanoparticles and free PfTOP2 dsRNA respectively. These results suggest that chitosan-based nanoparticles might be a useful tool for delivering dsRNA into malaria parasites.

  16. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration.

    Science.gov (United States)

    Wirth, Stacy M; Bertuccio, Alex J; Cao, Feng; Lowry, Gregory V; Tilton, Robert D

    2016-04-01

    Immobilization of antimicrobial silver nanoparticles (AgNPs) on surfaces has been proposed as a method to inhibit biofouling or as a possible route by which incidental releases of AgNPs may interfere with biofilms in the natural environment or in wastewater treatment. This study addresses the ability of planktonic Pseudomonas fluorescens bacteria to colonize surfaces with pre-adsorbed AgNPs. The ability of the AgNP-coated surfaces to inhibit colonization was controlled by the dissolved silver in the system, with a strong dependence on the initial planktonic cell concentration in the suspension, i.e., a strong inoculum effect. This dependence was attributed to a decrease in dissolved silver ion bioavailability and toxicity caused by its binding to cells and/or cell byproducts. Therefore, when the initial cell concentration was high (∼1×10(7)CFU/mL), an excess of silver binding capacity removed most of the free silver and allowed both planktonic growth and surface colonization directly on the AgNP-coated surface. When the initial cell concentration was low (∼1×10(5)CFU/mL), 100% killing of the planktonic cell inoculum occurred and prevented colonization. When an intermediate initial inoculum concentration (∼1×10(6)CFU/mL) was sufficiently large to prevent 100% killing of planktonic cells, even with 99.97% initial killing, the planktonic population recovered and bacteria colonized the AgNP-coated surface. In some conditions, colonization of AgNP-coated surfaces was enhanced relative to silver-free controls, and the bacteria demonstrated a preferential attachment to AgNP-coated, rather than bare, surface regions. The degree to which the bacterial concentration dictates whether or not surface-immobilized AgNPs can inhibit colonization has significant implications both for the design of antimicrobial surfaces and for the potential environmental impacts of AgNPs. PMID:26771749

  17. Aqueous extract of Rabdosia rubescens leaves: forming nanoparticles, targeting P-selectin, and inhibiting thrombosis

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-11-01

    Full Text Available Yuji Wang,1 Jingcheng Tang,1 Haimei Zhu,1 Xueyun Jiang,1 Jiawang Liu,1 Wenyun Xu,1 Haiping Ma,1 Qiqi Feng,1 Jianhui Wu,1 Ming Zhao,1,2 Shiqi Peng1 1Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China; 2Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan Abstract: The hot water extract of Rabdosia rubescens was traditionally used as an antithrombotic medicine. To explore its antithrombotic utility and mechanism, we carried out a series of in vitro and in vivo assays in this study. In vitro platelet aggregation assay showed that the half maximal inhibitory concentration values of aqueous extract of R. rubescens leaves (AERL inhibiting platelet aggregation induced by thrombin, arachidonic acid, adenosine diphosphate, and platelet-activating factor ranged from 0.12 mg/mL to 1.43 mg/mL. The minimal effective oral dose of AERL inhibiting the rats from forming thrombus was 25 mg/kg. Both in vitro and in vivo actions were correlated with AERL concentration-dependently inhibiting sP-selectin release. In water, AERL formed nanoparticles, and their size depended on the concentration. Docking the five nucleotides, 21 phenolic acids, and four diterpenoids identified by high-performance liquid chromatography–photodiode array detector/(-electrospray ionization-tandem mass spectrometry analysis into the active site of P-selectin, rosmarinic acid was predicted to be the antithrombotic ingredient of AERL. In flow cytometry analysis, 1 µM of rosmarinic acid effectively inhibited sP-selectin release in arachidonic acid-activated platelets. In a rat model, 5 mg/kg of oral rosmarinic acid effectively inhibited thrombosis. Keywords: R. rubescens, s

  18. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth

    Science.gov (United States)

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J.; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy. PMID:26917087

  19. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth.

    Science.gov (United States)

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy.

  20. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    Science.gov (United States)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics

  1. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression

    Directory of Open Access Journals (Sweden)

    Xiao YF

    2016-07-01

    Full Text Available Yu-Feng Xiao,1 Jian-Mei Li,2 Su-Min Wang,1 Xin Yong,1 Bo Tang,1 Meng-Meng Jie,1 Hui Dong,1 Xiao-Chao Yang,2 Shi-Ming Yang1 1Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China; 2School of Biomedical Engineering, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823. Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15. Keywords: cerium oxide nanoparticles, gastric cancer, DHX15, p38

  2. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Skaat, Hadas; Margel, Shlomo [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Belfort, Georges [Howard P Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)], E-mail: ch348@mail.biu.ac.il, E-mail: belfog@rpi.edu, E-mail: Shlomo.margel@mail.biu.ac.il

    2009-06-03

    Maghemite ({gamma}-Fe{sub 2}O{sub 3}) magnetic nanoparticles of 15.0 {+-} 2.1 nm are formed by nucleation followed by controlled growth of maghemite thin films on gelatin-iron oxide nuclei. Uniform magnetic {gamma}-Fe{sub 2}O{sub 3}/poly (2,2,3,3,4,4,4-heptafluorobutyl acrylate) ({gamma}-Fe{sub 2}O{sub 3}/PHFBA) core-shell nanoparticles are prepared by emulsion polymerization of the fluorinated monomer 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) in the presence of the maghemite nanoparticles. The kinetics of the insulin fibrillation process in the absence and in the presence of the {gamma}-Fe{sub 2}O{sub 3}/PHFBA core-shell nanoparticles are elucidated. A significant direct slow transition from {alpha}-helix to {beta}-sheets during insulin fibril formation is observed in the presence of the {gamma}-Fe{sub 2}O{sub 3}/PHFBA nanoparticles. This is in contradiction to our previous manuscript, which illustrated that the {gamma}-Fe{sub 2}O{sub 3} core nanoparticles do not affect the kinetics of the formation of the insulin fibrils, and to other previous publications that describe acceleration of the fibrillation process by using various types of nanoparticles. These core-shell nanoparticles may therefore be also useful for the inhibition of conformational changes of other amyloidogenic proteins that lead to neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, mad cow and prion diseases.

  3. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles

    Science.gov (United States)

    Shiang, Yen-Chun; Ou, Chung-Mao; Chen, Shih-Ju; Ou, Ting-Yu; Lin, Han-Jia; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-03-01

    We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45-Au NPs shows inhibitory efficiency in the retroviral replication cycle with a decreasing infectivity (40.2%).We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45

  4. Effect of chitosan and thiolated chitosan coating on the inhibition behaviour of PIBCA nanoparticles against intestinal metallopeptidases

    International Nuclear Information System (INIS)

    Surface modified nanoparticles composed of poly(isobutylcyanoacrylate) (PIBCA) cores surrounded by a chitosan and thiolated chitosan gel layer were prepared and characterized in previous works. The presence of such biopolymers on the nanoparticle surface conferred those nanosystems interesting characteristics that might partially overcome the gastrointestinal enzymatic barrier, improving the oral administration of pharmacologically active peptides. In the present work, the antiprotease behaviour of this family of core-shell nanoparticles was in vitro tested against two model metallopeptidases present in the gastrointestinal tract (GIT): Carboxypeptidase A -CP A- (luminal protease) and Leucine Aminopeptidase M -LAP M- (membrane protease). As previous step, the zinc-binding capacity of these nanoparticles was evaluated. Interestingly, an improvement of both the zinc-binding capacity and the antiprotease effect of chitosan was observed when the biopolymers (chitosan and thiolated chitosan) were used as coating component of the core-shell nanoparticles, in comparison with their behaviour in solution, thanks to the different biopolymer chains rearrangement. The presence of amino, hydroxyl and thiol groups on the nanoparticle surface promoted zinc binding and hence the inhibition of the metallopeptidases analysed. On the contrary, the occurrence of a cross-linked structure in the gel layer surrounding the PIBCA cores of thiolated formulations, due to the formation of interchain and intrachain disulphide bonds, partially limited the inhibition of the proteases. The low accessibility of cations to the active groups of the cross-linked polymeric shell was postulated as a possible explanation of this behaviour. Results obtained in this work make this family of surface-modified nanocarriers promising candidates for the successfull administration of pharmacologically active peptides and proteins by the oral route.

  5. Antimicrobial Activity and Mechanism of Inhibition of Silver Nanoparticles against Extreme Halophilic Archaea.

    Science.gov (United States)

    Thombre, Rebecca S; Shinde, Vinaya; Thaiparambil, Elvina; Zende, Samruddhi; Mehta, Sourabh

    2016-01-01

    Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300-400 μg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

  6. Antimicrobial Activity and Mechanism of Inhibition of Silver Nanoparticles against Extreme Halophilic Archaea

    Science.gov (United States)

    Thombre, Rebecca S.; Shinde, Vinaya; Thaiparambil, Elvina; Zende, Samruddhi; Mehta, Sourabh

    2016-01-01

    Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300–400 μg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death. PMID:27679615

  7. Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation.

    Science.gov (United States)

    Liu, Wenwen; Golshan, Negar H; Deng, Xuliang; Hickey, Daniel J; Zeimer, Katherine; Li, Hongyi; Webster, Thomas J

    2016-08-25

    Since implants often fail due to infection and uncontrolled inflammatory responses, we designed an in vitro study to investigate the antibacterial and anti-inflammatory properties of titanium dioxide nanotubes (TNTs) incorporated with selenium nanoparticles (SeNPs). Selenium incorporation was achieved by the reaction of sodium selenite (Na2SeO3) with glutathione (GSH) under a vacuum in the presence of TNTs. Two types of bacteria and macrophages were cultured on the samples to determine their respective antibacterial and anti-inflammatory properties. The results showed that the TNT samples incorporating SeNPs (TNT-Se) inhibited the growth of Escherichia coli and Staphylococcus aureus compared to unmodified TNTs, albeit the SeNP concentration still needs to be optimized for maximal effect. At their maximum effect, the TNT-Se samples reduced the density of E. coli by 94.6% and of S. aureus by 89.6% compared to titanium controls. To investigate the underlying mechanism of this effect, the expression of six E. coli genes were tracked using qRT-PCR. Results indicated that SeNPs weakened E. coli membranes (ompA and ompF were down-regulated), decreased the function of adhesion-mediating proteins (csgA and csgG were progressively down-regulated with increasing SeNP content), and induced the production of damaging reactive oxygen species (ahpF was up-regulated). Moreover, TNT-Se samples inhibited the proliferation of macrophages, indicating that they can be used to control the inflammatory response and even prevent chronic inflammation, a condition that often leads to implant failure. In conclusion, we demonstrated that SeNP-TNTs display antibacterial and anti-inflammatory properties that are promising for improving the performance of titanium-based implants for numerous orthopedic and dental applications.

  8. Antimicrobial Activity and Mechanism of Inhibition of Silver Nanoparticles against Extreme Halophilic Archaea.

    Science.gov (United States)

    Thombre, Rebecca S; Shinde, Vinaya; Thaiparambil, Elvina; Zende, Samruddhi; Mehta, Sourabh

    2016-01-01

    Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300-400 μg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death. PMID:27679615

  9. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression

    Science.gov (United States)

    Xiao, Yu-Feng; Li, Jian-Mei; Wang, Su-Min; Yong, Xin; Tang, Bo; Jie, Meng-Meng; Dong, Hui; Yang, Xiao-Chao; Yang, Shi-Ming

    2016-01-01

    Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15. PMID:27486320

  10. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2.

    Science.gov (United States)

    Yeste, Ada; Takenaka, Maisa C; Mascanfroni, Ivan D; Nadeau, Meghan; Kenison, Jessica E; Patel, Bonny; Tukpah, Ann-Marcia; Babon, Jenny Aurielle B; DeNicola, Megan; Kent, Sally C; Pozo, David; Quintana, Francisco J

    2016-06-21

    Type 1 diabetes (T1D) is a T cell-dependent autoimmune disease that is characterized by the destruction of insulin-producing β cells in the pancreas. The administration to patients of ex vivo-differentiated FoxP3(+) regulatory T (Treg) cells or tolerogenic dendritic cells (DCs) that promote Treg cell differentiation is considered a potential therapy for T1D; however, cell-based therapies cannot be easily translated into clinical practice. We engineered nanoparticles (NPs) to deliver both a tolerogenic molecule, the aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and the β cell antigen proinsulin (NPITE+Ins) to induce a tolerogenic phenotype in DCs and promote Treg cell generation in vivo. NPITE+Ins administration to 8-week-old nonobese diabetic mice suppressed autoimmune diabetes. NPITE+Ins induced a tolerogenic phenotype in DCs, which was characterized by a decreased ability to activate inflammatory effector T cells and was concomitant with the increased differentiation of FoxP3(+) Treg cells. The induction of a tolerogenic phenotype in DCs by NPs was mediated by the AhR-dependent induction of Socs2, which resulted in inhibition of nuclear factor κB activation and proinflammatory cytokine production (properties of tolerogenic DCs). Together, these data suggest that NPs constitute a potential tool to reestablish tolerance in T1D and potentially other autoimmune disorders.

  11. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2.

    Science.gov (United States)

    Yeste, Ada; Takenaka, Maisa C; Mascanfroni, Ivan D; Nadeau, Meghan; Kenison, Jessica E; Patel, Bonny; Tukpah, Ann-Marcia; Babon, Jenny Aurielle B; DeNicola, Megan; Kent, Sally C; Pozo, David; Quintana, Francisco J

    2016-01-01

    Type 1 diabetes (T1D) is a T cell-dependent autoimmune disease that is characterized by the destruction of insulin-producing β cells in the pancreas. The administration to patients of ex vivo-differentiated FoxP3(+) regulatory T (Treg) cells or tolerogenic dendritic cells (DCs) that promote Treg cell differentiation is considered a potential therapy for T1D; however, cell-based therapies cannot be easily translated into clinical practice. We engineered nanoparticles (NPs) to deliver both a tolerogenic molecule, the aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and the β cell antigen proinsulin (NPITE+Ins) to induce a tolerogenic phenotype in DCs and promote Treg cell generation in vivo. NPITE+Ins administration to 8-week-old nonobese diabetic mice suppressed autoimmune diabetes. NPITE+Ins induced a tolerogenic phenotype in DCs, which was characterized by a decreased ability to activate inflammatory effector T cells and was concomitant with the increased differentiation of FoxP3(+) Treg cells. The induction of a tolerogenic phenotype in DCs by NPs was mediated by the AhR-dependent induction of Socs2, which resulted in inhibition of nuclear factor κB activation and proinflammatory cytokine production (properties of tolerogenic DCs). Together, these data suggest that NPs constitute a potential tool to reestablish tolerance in T1D and potentially other autoimmune disorders. PMID:27330188

  12. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells

    International Nuclear Information System (INIS)

    Titanium dioxide nanoparticles (TiO2 NPs) are widely used in the chemical, electrical and electronic industries. TiO2 NPs can enter directly into the brain through the olfactory bulb and be deposited in the hippocampus region. We determined the effect of TiO2 NPs on rat and human glial cells, C6 and U373, respectively. We evaluated proliferation by crystal violet staining, internalization of TiO2 NPs, and cellular morphology by TEM analysis, as well as F-actin distribution by immunostaining and cell death by detecting active caspase-3 and DNA fragmentation. TiO2 NPs inhibited proliferation and induced morphological changes that were related with a decrease in immuno-location of F-actin fibers. TiO2 NPs were internalized and formation of vesicles was observed. TiO2 NPs induced apoptosis after 96 h of treatment. Hence, TiO2 NPs had a cytotoxic effect on glial cells, suggesting that exposure to TiO2 NPs could cause brain injury and be hazardous to health.

  13. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water

    Directory of Open Access Journals (Sweden)

    Guisbiers G

    2016-08-01

    Full Text Available G Guisbiers,1 Q Wang,2 E Khachatryan,1 LC Mimun,1 R Mendoza-Cruz,1 P Larese-Casanova,3 TJ Webster,2,4,5 KL Nash1 1Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 2Department of Bioengineering, 3Department of Civil and Environmental Engineering, 4Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 5Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Nosocomial diseases are mainly caused by two common pathogens, Escherichia coli and Staphylococcus aureus, which are becoming more and more resistant to conventional antibiotics. Therefore, it is becoming increasingly necessary to find other alternative treatments than commonly utilized drugs. A promising strategy is to use nanomaterials such as selenium nanoparticles. However, the ability to produce nanoparticles free of any contamination is very challenging, especially for nano-medical applications. This paper reports the successful synthesis of pure selenium nanoparticles by laser ablation in water and determines the minimal concentration required for ~50% inhibition of either E. coli or S. aureus after 24 hours to be at least ~50 ppm. Total inhibition of E. coli and S. aureus is expected to occur at 107±12 and 79±4 ppm, respectively. In this manner, this study reports for the first time an easy synthesis process for creating pure selenium to inhibit bacterial growth. Keywords: nosocomial disease, bacteria, antibiotics resistant, cytotoxicity

  14. Influence of Biological Macromolecules and Aquatic Chemistries on the Inhibition of Nitrifying Bacteria by Silver Nanoparticles

    Science.gov (United States)

    Radniecki, T. S.; Anderson, J. W.; Schneider, M. C.; Stankus, D. P.; Nason, J. A.; Semprini, L.

    2010-12-01

    The use of silver nanoparticles (Ag-NP) as a broad spectrum biocide in a wide range of consumer goods has grown exponentially since 2006 (1), which may result in an increased release of Ag-NP into wastewater streams and ultimately the receiving bodies of water. Ammonia oxidizing bacteria (AOB) play a critical role in the global nitrogen cycle through the oxidation of ammonia (NH3) to nitrite (NO2-) and are widely considered to be the most sensitive microbial fauna in the environment being readily inhibited by contaminants, including Ag-NP (2). This research used physiological techniques in combination with physical/chemical assays to characterize the inhibition of Nitrosomonas europaea, the model AOB, by silver ions (Ag+), 3-5 nm Ag-NP, 20 nm Ag-NP and 80 nm Ag-NP under a variety of aqueous chemistries. In addition, the stability of Ag-NP suspensions was examined under a variety of aqueous chemistries including in the presences of divalent cations, chloride anions, natural organic matter (NOM), proteins (BSA) and lipopolysaccharides (alginate). Using the stable Ag-NP/test media suspensions, N. europaea was found to be extremely sensitive to Ag+, 3-5 nm Ag-NP, 20 nm Ag-NP and 80 nm Ag-NP with concentrations of 0.1, 0.12, 0.5 and 1.5 ppm, respectively, resulting in a 50% decrease in nitrification rates. The inhibition was correlated with the amount of Ag+ released into solution. It is suspected that the inhibition observed from Ag-NP exposure is caused by the liberated Ag+. The aquatic chemistry of the test media was found to have a profound influence on the stability of Ag-NP suspensions. The presence of Ag ligands (e.g. EDTA and Cl-) reduced toxicity of Ag-NP through the formation of Ag-ligand complexes with the liberated Ag+. The presence of divalent cations (e.g. Ca2+ or Mg2+) resulted in the rapid aggregation of Ag-NP leading to a decrease in Ag+ liberation and thus a decrease in N. europaea inhibition. The presence of 5 ppm NOM resulted in a highly stable Ag

  15. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  16. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  17. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations.

    Science.gov (United States)

    Liakopoulos, Georgios; Stavrianakou, Sotiria; Filippou, Manolis; Fasseas, Costas; Tsadilas, Christos; Drossopoulos, Ioannis; Karabourniotis, George

    2005-02-01

    For plant species in which a considerable portion of the photoassimilates are translocated in the phloem as sugar alcohols, boron is freely translocated from mature organs to growing tissues. However, the effects of decreased plant boron status on boron remobilization are poorly understood. We conducted a growth chamber experiment (CE) and a field experiment (FE) to study the effects of low boron supply on boron remobilization in olive (Olea europaea L.), a species that transports considerable amounts of mannitol in the phloem. For the CE, several physiological parameters were compared between control (B+) and boron-deficient olive plants (B-) during the expansion of new leaves. Boron remobilization was assessed by measuring boron content of selected leaves at the beginning and at the end of the CE. As expected, boron was remobilized from mature leaves to young leaves of B+ plants; however, considerable boron remobilization was also observed in B- plants, suggesting a mechanism whereby olive can sustain a minimum boron supply for growth of new tissues despite an insufficient external boron supply. Boron deficiency caused inhibition of new growth but had no effect on photosynthetic capacity per unit leaf surface area of young and mature leaves, thereby altering the carbon utilization pattern and resulting in carbon allocation to structures within the source leaves and accumulation of soluble carbohydrates. Specifically, in mature B- leaves in the CE and in B- leaves in the FE, mannitol concentration on a leaf water content basis increased by 48 and 27% respectively, compared with controls. Carbon export ability (assessed by both phloem anatomy and phloem exudate composition of FE leaves) was enhanced at low boron supply. We conclude that, at low boron supply, increased mannitol concentrations maintain boron remobilization from source leaves to boron-demanding sink leaves. PMID:15574397

  18. Tuning field emission properties of boron nanocones with catalyst concentration

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Tian Yuan; Wang Deng-Ke; Shi Xue-Zhao; Hui Chao; Shen Cheng-Min; Gao Hong-Jun

    2011-01-01

    Single crystalline boron nanocones are prepared by using a simple spin spread method in which Fe3O4 nanoparticles are pre-manipulated on Si(111) to form catalyst patterns of different densities. The density of boron nanocones can be tuned by changing the concentration of catalyst nanoparticles. High-resolution transmission electron microscopy analysis shows that the boron nanocone has a β-tetragonal structure with good crystallization. The field emission behaviour is optimal when the spacing distance is close to the nanocone length, which indicates that this simple spin spread method has great potential applications in electron emission nanodevices.

  19. Glycyrrhizic acid nanoparticles inhibit LPS-induced inflammatory mediators in 264.7 mouse macrophages compared with unprocessed glycyrrhizic acid

    Directory of Open Access Journals (Sweden)

    Wang W

    2013-04-01

    Full Text Available Wei Wang,1–3 Meng Luo,1–3 Yujie Fu,1–3 Song Wang,1–3 Thomas Efferth,4 Yuangang Zu1–3 1Key Laboratory of Forest Plant Ecology, 2Engineering Research Center of Forest Bio-Preparation, 3State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin, China; 4Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany Abstract: Glycyrrhizic acid (GA, the main component of radix glycyrrhizae, has a variety of pharmacological activities. In the present study, suspensions of GA nanoparticles with the average particle size about 200nm were prepared by a supercritical antisolvent (SAS process. Comparative studies were undertaken using lipopolysaccardide(LPS-stimulated mouse macrophages RAW 264.7 as in vitro inflammatory model. Several important inflammation mediators such as NO, PGE2, TNF-α and IL-6 were examined. These markers were highly stimulated by LPS and were inhibited both by nano-GA and unprocessed GA in a dose-dependent manner, especially PGE2 and TNF-α. However nano-GA and unprocessed GA inhibited NO only at a high concentration. In general, we found that GA nanoparticle suspensions exhibited much better anti-inflammatory activities compared to unprocessed GA. Keywords: glycyrrhizic acid, nanoparticle, mouse macrophages RAW 264.7, inflammatory cytokines

  20. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  1. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin; Long, Linjuan; Zhang, Weiying; Du, Dan; Lin, Yuehe

    2012-09-10

    Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.

  2. Active targeting docetaxel-PLA nanoparticles eradicate circulating lung cancer stem-like cells and inhibit liver metastasis.

    Science.gov (United States)

    Yang, Nan; Jiang, Yao; Zhang, Huifeng; Sun, Bo; Hou, Chunying; Zheng, Ji; Liu, Yanyong; Zuo, Pingping

    2015-01-01

    Lung cancer is the major cause of cancer related lethality worldwide, and metastasis to distant organs is the pivotal cause of death for the vast majority of lung cancer patients. Accumulated evidence indicates that lung cancer stem-like cells (CSLCs) play important roles in metastagenesis, and these circulating CSLCs may be important targets to inhibit the subsequent metastasis. The present study was aimed at establishing CSLC-targeting polylactic acid (PLA) encapsulated docetaxel nanoparticles for antimetastatic therapy. Cyclic binding peptides were screened on CSLCs in vitro and the peptide CVKTPAQSC exhibiting high specific binding ability to pulmonary adenocarcinoma tissue was subsequently conjugated to the nanoparticles loaded with docetaxel (NDTX). Antimetastatic effect of CSLC-targeting nanoparticles loaded with docetaxel (TNDTX) was evaluated in a nude mouse model of liver metastasis. Results showed that, in the absence of targeting peptide, NDTX hardly exhibited any antimetastatic effect. However, TNDTX treatment significantly decreased the metastatic tumor area in the nude mouse liver. Histopathological and serological results also confirmed the antimetastatic efficacy of TNDTX. To our knowledge, this is the first report on establishing a CSLC-based strategy for lung cancer metastatic treatment, and we hope this will offer a potential therapeutic approach for management of metastatic lung cancer.

  3. Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Linlin Zhang,1,2,* Arun K lyer,3,4,* Xiaoqian Yang,1 Eisuke Kobayashi,1 Yuqi Guo,1,2 Henry Mankin,1 Francis J Hornicek,1 Mansoor M Amiji,3 Zhenfeng Duan1 1Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; 2Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China; 3Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, USA; 4Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA *These authors contributed equally to this work Abstract: Our prior screening of microRNAs (miRs identified that miR-199a-3p expression is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p exhibited functions of tumor cell growth inhibition, suggesting the potential application of miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a lipid-modified dextran-based polymeric nanoparticle platform for encapsulation of miRs, and determined the efficiency and efficacy of delivering miR-199a-3p into osteosarcoma cells. In addition, another potent miR, let-7a, which also displayed tumor suppressive ability, was selected as a candidate miR for evaluation. Fluorescence microscopy studies and real-time polymerase chain reaction results showed that dextran nanoparticles could deliver both miR-199a-3p and let-7a into osteosarcoma cell lines (KHOS and U-2OS successfully. Western blotting analysis and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays demonstrated that dextran nanoparticles loaded with miRs could efficiently downregulate the expression of target proteins and effectively inhibit the growth and proliferation of osteosarcoma cells. These results demonstrate that a lipid-modified dextran

  4. Nanoparticles and Ethylene Diamine Tetra Acetic Acid on Growth Inhibition of Standard Strain of Candida albicans

    Directory of Open Access Journals (Sweden)

    F Haghighi

    2010-07-01

    Full Text Available Introduction & Objective: In recent years, the incidence of opportunistic fungi has shown a marked increase. Infection caused by common pathogenic fungi is a significant health problem in immune compromised hosts. The present study evaluated antifungal activity of Titanum dioxide nanoparticles and Ethylene Diamine Tetra-acetic Acid against Candida albicans as self-cleaning agent by standard micro dilution test. Materials & Methods: The present study was conducted at the Medical University of Tarbiyat Modares in 2009. TiO2 nanoparticles were obtained through the hydrolysis of TiCl4 (Titanium tetrachloride. Size and type of these nanoparticles were characterized by scanning electron microscopy (SEM and X-Ray-Diffraction (XRD. Afterwards, the Minimum Inhibitory Concentration (MIC and Minimal Fungicide Concentration (MFC test for TiO2 and EDTA were performed. Results: Concentration of synthesised TiO2 was 7.03 mg/ml and 5.63 5.63 ×1020 particles/ml. Evaluation of morphology and diameter of the TiO2 nanoparticles with SEM showed that nanoparticles were spherical with diameter between 40-65 nm. MIC50 of 2.2, 1.24 and 0.125 µg/ml respectively. MIC90 and MFC of TiO2, EDTA and fluconazole were 3.51, 2.48 , 0.5 µg/ml and 4.06, 3.1 ,1 µg/ml respectively. Conclusion: In the present study, using of synthesized TiO2 nanoparticles with chemical method showed a suitable activity against Candida in comparison with Fluconazole. Thus it might represent a good candidates in elimination of Candida in medical from medical devices. Key Words:

  5. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene

    Directory of Open Access Journals (Sweden)

    Huang RFS

    2015-04-01

    Full Text Available Rwei-Fen S Huang,1,2,* Yi-Jun Wei,1,2,* Baskaran Stephen Inbaraj,3 Bing-Huei Chen1,3,4 1Graduate Institute of Nutrition and Food Science, 2Department of Nutritional Science, 3Department of Food Science, 4Graduate Institute of Medicine, Fu Jen University, Taipei, Taiwan *These authors contributed equally to this work Abstract: Lycopene (LP, an important functional compound in tomatoes, and gold nanoparticles (AN, have received considerable attention as potential candidates for cancer therapy. However, the extreme instability and poor bioavailability of LP limits its in vivo application. This study intends to develop a nanoemulsion system incorporating both LP and AN, and to study the possible synergistic effects on the inhibition of the HT-29 colon cancer cell line. LP–nanogold nanoemulsion containing Tween 80 as an emulsifier was prepared, followed by characterization using transmission electron microscopy (TEM, dynamic light scattering (DLS analysis, ultraviolet spectroscopy, and zeta potential analysis. The particle size as determined by TEM and DLS was 21.3±3.7 nm and 25.0±4.2 nm for nanoemulsion and 4.7±1.1 nm and 3.3±0.6 nm for AN, while the zeta potential of nanoemulsion and AN was -32.2±1.8 mV and -48.5±2.7 mV, respectively. Compared with the control treatment, both the combo (AN 10 ppm plus LP 12 µM and nanoemulsion (AN 0.16 ppm plus LP 0.4 µM treatments resulted in a five- and 15-fold rise in early apoptotic cells of HT-29, respectively. Also, the nanoemulsion significantly reduced the expressions of procaspases 8, 3, and 9, as well as PARP-1 and Bcl-2, while Bax expression was enhanced. A fivefold decline in the migration capability of HT-29 cells was observed for this nanoemulsion when compared to control, with the invasion-associated markers being significantly reversed through the upregulation of the epithelial marker E-cadherin and downregulation of Akt, nuclear factor kappa B, pro-matrix metalloproteinase (MMP-2, and

  6. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency

    NARCIS (Netherlands)

    de Jesus, Marcelo B.; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dirk; Zuhorn, Inge S

    2014-01-01

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that ar

  7. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  8. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

    Science.gov (United States)

    Igaz, Nóra; Kovács, Dávid; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M; Kiricsi, Mónika

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols. PMID:27434153

  9. Action of silver nanoparticles towards biological systems: cytotoxicity evaluation using hen's egg test and inhibition of Streptococcus mutans biofilm formation.

    Science.gov (United States)

    Freire, Priscila L L; Stamford, Thayza C M; Albuquerque, Allan J R; Sampaio, Fabio C; Cavalcante, Horacinna M M; Macedo, Rui O; Galembeck, André; Flores, Miguel A P; Rosenblatt, Aronita

    2015-02-01

    This study aimed to evaluate the cytotoxicity and bactericidal properties of four silver nanoparticle (AgNP) colloids and their ability to inhibit Streptococcus mutans biofilm formation on dental enamel. The cytotoxicity of AgNPs was evaluated based on signs of vascular change on the chorioallantoic membrane using the hen's egg test (HET-CAM). Bactericidal properties and inhibition of S. mutans biofilm formation were determined using a parallel-flow cell system and a dichromatic fluorescent stain. The percentage of viable cells was calculated from regression data generated from a viability standard. AgNP colloids proved to be non-irritating, as they were unable to promote vasoconstriction, haemorrhage or coagulation. AgNP colloids inhibited S. mutans biofilm formation on dental enamel, and cell viability measured by fluorescence was 0% for samples S1, S2, S3 and S4 and 36.5% for the positive control (diluted 30% silver diamine fluoride). AgNPs are new products with a low production cost because they have a lower concentration of silver, with low toxicity and an effective bactericidal effect against a cariogenic oral bacterium. Moreover, they do not promote colour change in dental enamel, which is an aesthetic advantage compared with traditional silver products.

  10. Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation

    Science.gov (United States)

    Son, Min Jeong; Kim, Won Kon; Kwak, Minjeong; Oh, Kyoung-Jin; Chang, Won Seok; Min, Jeong-Ki; Lee, Sang Chul; Song, Nam Woong; Bae, Kwang-Hee

    2015-10-01

    Nanoparticles are of great interest due to their wide variety of biomedical and bioengineering applications. However, they affect cellular differentiation and/or intracellular signaling when applied and exposed to target organisms or cells. The brown adipocyte is a cell type important in energy homeostasis and thus closely related to obesity. In this study, we assessed the effects of silica nanoparticles (SNPs) on brown adipocyte differentiation. The results clearly showed that brown adipocyte differentiation was significantly repressed by exposure to SNPs. The brown adipocyte-specific genes as well as mitochondrial content were also markedly reduced. Additionally, SNPs led to suppressed p38 phosphorylation during brown adipocyte differentiation. These effects depend on the size of SNPs. Taken together, these results lead us to suggest that SNP has anti-brown adipogenic effect in a size-dependent manner via regulation of p38 phosphorylation.

  11. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells

    OpenAIRE

    Qilin Yu; Jianrong Li; Yueqi Zhang; Yufan Wang; Lu Liu; Mingchun Li

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxici...

  12. Silver-nanoparticle-coated biliary stent inhibits bacterial adhesion in bacterial cholangitis in swine

    Institute of Scientific and Technical Information of China (English)

    Wei Wen; Li-Mei Ma; Wei He; Xiao-Wei Tang; Yin Zhang; Xiang Wang; Li Liu; Zhi-Ning Fan

    2016-01-01

    BACKGROUND: One of the major limitations of biliary stents is the stent occlusion, which is closely related to the over-growth of bacteria. This study aimed to evaluate the feasibility of a novel silver-nanoparticle-coated polyurethane (Ag/PU) stent in bacterial cholangitis model in swine. METHODS: Ag/PU was designed by coating silver nanopar-ticles on polyurethane (PU) stent. Twenty-four healthy pigs with bacterial cholangitis using Ag/PU and PU stents were ran-domly divided into an Ag/PU stent group (n=12) and a PU stent group (n=12), respectively. The stents were inserted by standard endoscopic retrograde cholangiopancreatography. Laboratory assay was performed for white blood cell (WBC) count, alanine aminotransferase (ALT), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) at baseline time, 8 hours, 1, 2, 3, and 7 days after stent placements. The segment of bile duct containing the stent was examined histologically ex vivo. Implanted bili-ary stents were examined by a scan electron microscope. The amount of silver release was also measured in vitro. RESULTS: The number of inflammatory cells and level of ALT, IL-1β and TNF-α were significantly lower in the Ag/PU stent group than in the PU stent group. Hyperplasia of the mucosa was more severe in the PU stent group than in the Ag/PU stent group. In contrast to the biofilm of bacteria on the PU stent, fewer bacteria adhered to the Ag/PU stent. CONCLUSIONS: PU biliary stents modified with silver nanoparticles are able to alleviate the inflammation of pigs with bacterial cholangitis. Silver-nanoparticle-coated stents are resistant to bacterial adhesion.

  13. Phytoextracts-Synthesized Silver Nanoparticles Inhibit Bacterial Fish Pathogen Aeromonas hydrophila

    OpenAIRE

    Mahanty, Arabinda; Mishra, Snehasish; Bosu, Ranadhir; Maurya, UK; Netam, Surya Prakash; Sarkar, Biplab

    2013-01-01

    Fish disease is a major stumbling block towards sustainable growth of the fisheries sector. Aeromonas hydrophila, which is a major infectious aquatic pathogen is reportedly the causative agent of ulcers, fin-rot, tail-rot, hemorrhagic septicemia in fish, and has reportedly developed resistance against many of the available antibiotics. In this context, the inhibitory function of silver nanoparticles (AgNPs) against A. hydrophila was studied to evaluate its possible application in aquaculture ...

  14. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays.

    Science.gov (United States)

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Liu, Yi-Ming; Wei, Ying; Qing, Lin-Sen; Liao, Xun

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe3O4-SiO2) possessed three dimensional core-shell structures with an average diameter of ~20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g(-1). The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The Km and the Vmax values (0.02 mM, 6.40 U·mg(-1) enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg(-1) enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. PMID:24656379

  15. Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells.

    Science.gov (United States)

    Correia, Alexandra; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Almeida, Sérgio; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-10-21

    Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.

  16. Data on combination effect of PEG-coated gold nanoparticles and non-thermal plasma inhibit growth of solid tumors.

    Science.gov (United States)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Yoo, Ki Chun; Uddin, Nizam; Kim, Ju Sung; Lee, Su Jae; Choi, Eun Ha

    2016-12-01

    Highly resistant tumor cells are hard to treat at low doses of plasma. Therefore, researchers have gained more attention to development of enhancers for plasma therapy. Some enhancers could improve the efficacy of plasma towards selectivity of cancer cells damage. In this dataset, we report the application of low doses of PEG-coated gold nanoparticles with addition of plasma treatment. This data consists of the effect of PEG-coated GNP and cold plasma on two solid tumor cell lines T98G glioblastoma and A549 lung adenocarcinoma. Cell proliferation, frequency of cancer stem cell population studies by this co-treatment was reported. Finally, we included in this dataset the effect of co-treatment in vivo, using tumor xenograft nude mice models. The data supplied in this article supports the accompanying publication "Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT" (N. K. Kaushik, N. Kaushik, K. C. Yoo, N Uddin, J. S. Kim, S. J. Lee et al., 2016) [1]. PMID:27668278

  17. Carnosic acid nanoparticles suppress liver ischemia/reperfusion injury by inhibition of ROS, Caspases and NF-κB signaling pathway in mice.

    Science.gov (United States)

    Li, Hui; Sun, Jian-Jun; Chen, Guo-Yong; Wang, Wei-Wei; Xie, Zhan-Tao; Tang, Gao-Feng; Wei, Si-Dong

    2016-08-01

    Living donor liver transplantation (LDLT) requires ischemia/reperfusion (I/R), which can lead to early graft injury. However, the detailed molecular mechanism of I/R injury remains unclear. Carnosic acid, as a phenolic diterpene with function of anti-inflammation, anti-cancer, anti-bacterial, anti-diabetic, as well as neuroprotective properties, is produced by many species from Lamiaceae family. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of carnosic acid nanoparticles was thought to be sufficient to lead to considerable inhibition of liver injury progression induced by ischemia/reperfusion. In our study, liver ischemia/reperfusion injury was established successfully with C57BL/6 animal model. 10 and 20mg/kg carnosic acid nanoparticles were injected to mice for five days prior to ischemia. After liver ischemia/reperfusion, the levels of serum AST, ALT and APL were increased, which was attenuated by pre-treatment with carnosic acid nanoparticles. In addition, carnosic acid nanoparticles inhibited ROS production via its related signals regulation. And carnosic acid nanoparticles also suppressed the ischemia/reperfusion-induced up-regulation in the pro-apoptotic protein and mRNA levels of Bax, Cyto-c, Apaf-1 and Caspase-9/3 while increased ischemia/reperfusion-induced decrease of anti-apoptotic factor of Bcl-2. Further, ischemia/reperfusion-induced inflammation was also inhibited for carnosic acid nanoparticles administration via inactivating NF-κB signaling pathway, leading to down-regulation of pro-inflammatory cytokines releasing. In conclusion, our study suggested that carnosic acid nanoparticles protected against liver ischemia/reperfusion injury via its role of anti-oxidative, anti-apoptotic and anti-inflammatory bioactivity. PMID:27470360

  18. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels

    Directory of Open Access Journals (Sweden)

    Wang Q

    2015-04-01

    Full Text Available Qi Wang,1 Philip Larese-Casanova,2 Thomas J Webster3,41Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, USA; 2Department of Civil and Environmental Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.Keywords: selenium nanoparticles, paper towels, antibacterial

  19. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-01

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to "copper" cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper.

  20. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yallapu Murali M

    2010-04-01

    Full Text Available Abstract Background Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a monoclonal antibody specific for cancer cells. Methods Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin transcription activity. The poly(lactic acid-co-glycolic acid (PLGA nanoparticle formulation of curcumin (Nano-CUR was developed by a modified nano-precipitation method and physico-chemical characterization was performed by transmission electron microscopy and dynamic light scattering methods. Results Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, curcumin pre

  1. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    Science.gov (United States)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  2. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna.

    Science.gov (United States)

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L; Grysan, Patrick; Audinot, Jean-Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C; Murk, AlberTinka J

    2016-11-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR). In this study we first evaluated, in vitro, the interaction of silver nanoparticles (Ag NPs, 20, 23 and 27nm), Ag 200nm particles and Ag ions (AgNO3) with MXR efflux transporters using MDCKII and the P-gp over-expressing MDCKII-MDR1 cells and calcein-AM as a substrate of the transporters. Next the in vivo modulation of MXR activity was studied in Daphnia magna juveniles with the model P-gp and MRP1 inhibitors verapamil-HCl and MK571, respectively. The common environmental contaminants perfluorooctane sulfonate and bisphenol A, previously observed to interfere with the P-gp in vitro, also inhibited the efflux of calcein in vivo. Small-sized Ag NPs (with biomolecules present on the surface) and AgNO3 inhibited the MXR activity in daphnids and MDCKII-MDR1 cells, but abcb1 gene expression remained unchanged. Both Ag NPs and dissolved ions contributed to the effects. This study provides evidence of the interference of Ag NPs and AgNO3 with the MXR activity both in vitro and in D. magna, and should be taken into account when Ag NP toxicity is assessed. PMID:27376922

  3. Enhanced Ehrlich tumor inhibition using DOX-NP™ and gold nanoparticles loaded liposomes

    Science.gov (United States)

    Mady, M. M.; Al-Shaikh, F. H.; Al-Farhan, F. F.; Aly, A. A.; Al-Mohanna, M. A.; Ghannam, M. M.

    2016-04-01

    Treatment with doxorubicin (DOX) is a common regime in treating various types of cancer. DOX-NP™ is one of a well established marketed liposomal formulation for DOX. It offers distinct advantages over conventional DOX in reducing the cardiac toxicity and increasing the tolerability and efficacy. Gold nanoparticles (GNPs), a typical biocompatible nanomaterial, have been widely used in biomedical engineering and bioanalytical applications such as biomedical imaging and biosensors. Ehrlich tumors were grown in female balb mice by subcutaneous injection of Ehrlich ascites carcinoma cells. Mice bearing Ehrlich tumor were injected with saline, free doxorubicin (DOX) in solution, gold nanoparticles loaded liposomes and commercial liposomal encapsulated doxorubicin (DOX-NP™). The results showed that GNPs loaded liposomes could enhance the antitumor activity of commercial liposomal formulation (DOX-NP™) and displayed significantly decreased systemic toxicity compared with free DOX and commercial liposomal formulation (DOX-NP™) at the equivalent dose. So the combination of GNPs and liposomes is expected to significantly increase the likelihood of cell killing and make it a promising new approach to cancer therapy.

  4. Nanoparticles inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery via cell surface-related GRP78

    Directory of Open Access Journals (Sweden)

    Zhao L

    2014-12-01

    Full Text Available Liang Zhao,1,* Hongdan Li,2,* Yijie Shi,1 Guan Wang,2 Liwei Liu,1 Chang Su,3 Rongjian Su2 1School of Pharmacy, Liaoning Medical University, Jinzhou, People’s Republic of China; 2Central Laboratory of Liaoning Medical University, Jinzhou, People’s Republic of China; 3School of Veterinary Medicine, Liaoning Medical University, Jinzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Nanoparticles (NPs which target specific agents could effectively recognize the target cells and increase the stability of chemical agents by encapsulation. As such, NPs have been widely used in cancer treatment research. Recently, over 90% of treatment failure cases in patients with metastatic cancer were attributed to resistance to chemotherapy. Surface-exposed glucose-regulated protein of 78 kDa (GRP78 is expressed highly on many tumor cell surfaces in many human cancers and is related to the regulation of invasion and metastasis. Herein, we report that NPs conjugated with antibody against GRP78 (mAb GRP78-NPs inhibit the adhesion, invasion, and metastasis of hepatocellular carcinoma (HCC and promote drug delivery of 5-fluorouracil into GRP78 high-expressed human hepatocellular carcinoma cells. Our new findings suggest that mAb GRP78-NPs could enhance drug accumulation by effectively transporting NPs into cell surface GRP78-overexpressed human hepatocellular carcinoma cells and then inhibit cell proliferation and viability and induce cell apoptosis by regulating caspase-3. In brief, mAb GRP78-NPs effectively inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery. Keywords: 5-Fu, apoptosis, HCC, caspase-3

  5. Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method.

    Science.gov (United States)

    Carrillo-González, Rogelio; Martínez-Gómez, Miriam Araceli; González-Chávez, Ma Del Carmen A; Mendoza Hernández, José Carlos

    2016-09-15

    The Citadel, part of the pre-Hispanic city of Teotihuacan and listed as a World Heritage Site, harbors irreplaceable archaeological walls and murals. This city was abandoned by the 7th century and its potential deterioration represents a noteworthy loss of the world's cultural heritage. This research consisted of isolation and identification of bacteria and fungi contributing to this deterioration from walls of a pre-Hispanic city. In addition, silver nanoparticles (AgNP) produced, using a green synthesis method, were tested as potential inhibitors of microbes. AgNP of different sizes and concentrations were tested using in situ assays. Leaf aqueous extracts from two plants species (Foeniculum vulgare and Tecoma stans) and two extraction procedures were used in the NP synthesis. The potential of AgNP as preventive/corrective treatments to protect stucco materials from biodeterioration, as well as the microbial inhibition on three stone materials (stucco, basalt and calcite) was analyzed. Twenty-three bacterial species belonging to eight genera and fourteen fungal species belonging to seven genera were isolated from colored stains, patinas and biofilms produced on the surfaces of archaeological walls from the pre-Hispanic city, Teotihuacan. AgNP from F. vulgare were more effective for in vitro microbial growth inhibition than those from T. stans. Bacteria were less sensitive to AgNP than fungi; however, sensitivity mainly depended on the microbial strain and the plant extract used to prepare AgNP. The use of AgNP as a preventive or corrective treatment to decrease microbial colonization in three kinds of stone used in historical walls was successful. Calcite was more colonized by Alternaria alternata, but less by Pectobacterium carotovorum. This is the first study at different scales (in vitro and tests on different stone types) of inhibition of biodeterioration-causing microorganisms isolated from an archaeological site by green synthesized AgNP. PMID:27015961

  6. Discrete nanoparticles of ruta graveolens induces the bacterial and fungal biofilm inhibition.

    Science.gov (United States)

    Sivakamavalli, Jeyachandran; Deepa, Oyyappan; Vaseeharan, Baskaralingam

    2014-08-01

    Ruta graveolens silver nanoparticles (AgNPs) showed the color change within 30 min and characterized using UV-visible spectra, Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). UV-visible spectrum of R. graveolens AgNPs showed the sharp peak at the wavelength of 440-560 nm. XRD patterns confirmed that crystalline nature of R. graveolens AgNPs and FTIR results revealed that phytochemical reaction of these R. graveolens is responsible for the synthesis of AgNPs. TEM results showed the size of the R. graveolens AgNPs around 30-50 nm with spherical and triangular nature. Further, the antibacterial and antibiofilm activity of R. graveolens AgNPs showed the effective inhibitory activity against clinically important Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Our findings suggest that R. graveolens AgNPs can be exploited toward the development of potential antibacterial agents for various biomedical and environmental applications.

  7. Phytoextracts-Synthesized Silver Nanoparticles Inhibit Bacterial Fish Pathogen Aeromonas hydrophila.

    Science.gov (United States)

    Mahanty, Arabinda; Mishra, Snehasish; Bosu, Ranadhir; Maurya, Uk; Netam, Surya Prakash; Sarkar, Biplab

    2013-12-01

    Fish disease is a major stumbling block towards sustainable growth of the fisheries sector. Aeromonas hydrophila, which is a major infectious aquatic pathogen is reportedly the causative agent of ulcers, fin-rot, tail-rot, hemorrhagic septicemia in fish, and has reportedly developed resistance against many of the available antibiotics. In this context, the inhibitory function of silver nanoparticles (AgNPs) against A. hydrophila was studied to evaluate its possible application in aquaculture as alternative to antibiotics. AgNPs were synthesized using the leaf extracts of subtropical plants Mangifera indica (Mango), Eucalyptus terticornis (Eucalyptus), Carica papaya (Papaya) and Musa paradisiaca (Banana). The absorbance maxima, size range and shape of the AgNPs as characterized by the UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), and energy dispersive X-ray spectroscopy (EDX) were, Mangifera-442, 50-65 nm, ovular; Eucalyptus-465, 60-150 nm, oval; Carica-442, 25-40 nm, round, irregular; and Musa-454, 10-50 nm, round, irregular, respectively. Well-diffusion of these AgNPs for their antimicrobial characteristics exhibited that, the papaya leaf extract synthesized AgNPs had maximum antimicrobial activity at 153.6 μg/ml concentrations, and that from the eucalyptus leaves was least effective. As observed, the potency of the nanoparticles enhanced with the decrease in particle size, from 60-150 nm in eucalyptus to 25-40 nm in papaya. Due to its purely natural sourcing, phytosynthesized AgNPs can be applied as alternative to antibiotics and other biocides as a cost-effective and eco-friendly therapeutic agent against A. hydrophila stimulated diseases in aquatic animals. PMID:24426148

  8. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  9. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    International Nuclear Information System (INIS)

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe3O4–SiO2) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g−1. The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The Km and the Vmax values (0.02 mM, 6.40 U·mg−1 enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg−1 enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity, reusability, and thermo-stability than the free PPL

  10. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuan-Ting [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ren, Xiao-Yun [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liu, Yi-Ming [Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217 (United States); Wei, Ying [Changzhi Medical College, Changzhi 046000 (China); Qing, Lin-Sen [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liao, Xun, E-mail: liaoxun@cib.ac.cn [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China)

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe{sub 3}O{sub 4}–SiO{sub 2}) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g{sup −1}. The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K{sub m} and the V{sub max} values (0.02 mM, 6.40 U·mg{sup −1} enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg{sup −1} enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity

  11. Interaction of TiO{sub 2} nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bin, E-mail: xiabin@ysfri.ac.cn; Chen, Bijuan; Sun, Xuemei; Qu, Keming; Ma, Feifei; Du, Meirong

    2015-03-01

    The toxicity of TiO{sub 2} engineered nanoparticles (NPs) to the marine microalga Nitzschia closterium was investigated by examining growth inhibition, oxidative stress and uptake. The results indicated that the toxicity of TiO{sub 2} particles to algal cells significantly increased with decreasing nominal particle size, which was evidenced by the 96 EC{sub 50} values of 88.78, 118.80 and 179.05 mg/L for 21 nm, 60 nm and 400 nm TiO{sub 2} particles, respectively. The growth rate was significantly inhibited when the alga was exposed to 5 mg/L TiO{sub 2} NPs (21 nm). Measurements of antioxidant enzyme activities showed that superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities were first induced and subsequently inhibited following exposure to 5 mg/L TiO{sub 2} NPs. The depletion of antioxidant enzymes with a concomitant increase in malondialdehyde (MDA) levels and reactive oxygen species (ROS) posed a hazard to membrane integrity. A combination of flow cytometry analysis, transmission electron microscopy and Ti content measurement indicated that TiO{sub 2} NPs were internalized in N. closterium cells. The level of extracellular ROS, which was induced by TiO{sub 2} NPs under visible light, was negligible when compared with the intracellular ROS level (accounting for less than 6.0% of the total ROS level). These findings suggest that elevated TiO{sub 2} nanotoxicity in marine environments is related to increased ROS levels caused by internalization of TiO{sub 2} NPs. - Highlights: • Inhibition of marine microalgae by TiO{sub 2} NPs and bulk particles was evaluated. • Aggregation of TiO{sub 2} NPs and bulk particles was observed in marine algal test medium. • TiO{sub 2} NPs induced damage to algal cell membranes as detected by flow cytometry. • Increased TiO{sub 2} nanotoxicity to algal cells was caused by internalization of NPs.

  12. P-glycoprotein inhibition of drug resistant cell lines by nanoparticles.

    Science.gov (United States)

    Singh, Manu Smriti; Lamprecht, Alf

    2016-01-01

    Several pharmaceutical excipients are known for their ability to interact with cell membrane lipids and reverse the phenomenon of multidrug resistance (MDR) in cancer. Interestingly, many excipients act as stabilizers and are key ingredients in a variety of nano-formulations. In this study, representatives of ionic and non-ionic excipients were used as surface active agents in nanoparticle (NP) formulations to utilize their MDR reversing potential. In-vitro assays were performed to elucidate particle-cell interaction and accumulation of P-glycoprotein (P-gp) substrates-rhodamine-123 and calcein AM, in highly drug resistant glioma cell lines. Chemosensitization achieved using NPs and their equivalent dose of free excipients was assessed with the co-administered anti-cancer drug doxorubicin. Among the excipients used, non-ionic surfactant, Cremophor® EL, and cationic surfactant, cetyltrimethylammonuium bromide (CTAB), demonstrated highest P-gp modulatory activity in both free solution form (up to 7-fold lower IC50) and as a formulation (up to 4.7-fold lower IC50) as compared to doxorubicin treatment alone. Solutol® HS15 and Tween® 80 exhibited considerable chemosensitization as free solution but not when incorporated into a formulation. Sodium dodecyl sulphate (SDS)-based nanocarriers resulted in slightly improved cytotoxicity. Overall, the results highlight and envisage the usage of excipient in nano-formulations in a bid to improve chemosensitization of drug resistant cancer cells towards anti-cancer drugs.

  13. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  14. Inhibition of Osteoclast Differentiation and Bone Resorption by Bisphosphonate-conjugated Gold Nanoparticles

    Science.gov (United States)

    Lee, Donghyun; Heo, Dong Nyoung; Kim, Han-Jun; Ko, Wan-Kyu; Lee, Sang Jin; Heo, Min; Bang, Jae Beum; Lee, Jung Bok; Hwang, Deok-Sang; Do, Sun Hee; Kwon, Il Keun

    2016-01-01

    In recent years, gold nanoparticles (GNPs) have been reported to affect the regeneration of bone tissue. The goal of this study was to improve bone tissue regeneration by using targeted GNPs. We fabricated a functionalized GNPs conjugated with alendronate (ALD), of the bisphosphonate group. Subsequently, the ALD, GNPs, and ALD conjugated GNPs (GNPs-ALD) were analyzed by ultraviolet-visible absorbance (UV-vis) spectrophotometer, Attenuated total reflectance Fourier transform infrared spectrometer (ATR-FTIR), and thermo gravimetric analysis (TGA). The prepared GNPs-ALD were used to investigate their inhibitory effects on the receptor activator of nuclear factor- κb ligand (RANKL)-induced osteoclastogenesis in bone marrow-derived macrophages (BMMs). Additionally, the GNPs-ALD were applied to ovariectomy (OVX)-induced osteoporotic mice and the experiments were evaluated. ALD was found to be successfully conjugated to the GNPs surface, and it displayed significant adhesion onto the bone surface. The in-vitro study indicated that the GNPs, ALD and GNPs-ALD suppressed osteoclast formation in a dose-dependent manner. Furthermore, in the OVX mouse model, the mice treated GNPs-ALD had higher bone density as compared to other OVX mice groups. The results from these tests indicated that GNPs-ALD can be useful agents for preventing and treating osteoporosis. PMID:27251863

  15. Electron beam assisted synthesis of silver nanoparticle in chitosan stabilizer: Preparation, stability and inhibition of building fungi studies

    International Nuclear Information System (INIS)

    Silver nanoparticles (AgNPs) in chitosan (CS) stabilizer were successfully synthesized using electron beam irradiation. The effects of irradiation dose, molecular weight (MW) of CS stabilizer, concentration of AgNO3 precursor and addition of tert-butanol on AgNPs production were studied. The stability of the AgNPs under different temperatures and storage times were also investigated. The AgNPs formation in CS was observed using UV–vis, FT-IR and XRD. The characteristic surface plasmon resonance (SPR) of the obtained AgNPs was around 418 nm. The CS stabilizer and its MW, AgNO3 precursor and irradiation doses are important parameters for the synthesis of AgNPs. The optimum addition of 20% v/v tert-butanol could assist the formation of AgNPs. The AgNPs in CS stabilizer were stable over a period of one year when the samples were kept at 5 °C. The AgNPs observed from TEM images were spherical with an average particle size in the range of 5–20 nm depending on the irradiation doses. The AgNPs in CS solution effectively inhibited the growth of several fungi, i.e., Curvularia lunata, Trichoderma sp., Penicillium sp. and Aspergillus niger, which commonly found on the building surface. - Highlights: • Electron beam efficiently assists the synthesis of AgNPs. • AgNPs are spherical with the size of 5–20 nm. • AgNPs formation can be controlled by dose, chitosan, Ag+ content and t-BuOH • AgNPs in chitosan are stable at 5 °C over a year. • AgNPs in chitosan inhibit the growth of building fungi

  16. PLGA-PEG Nanoparticles Coated with Anti-CD45RO and Loaded with HDAC Plus Protease Inhibitors Activate Latent HIV and Inhibit Viral Spread

    Science.gov (United States)

    Tang, Xiaolong; Liang, Yong; Liu, Xinkuang; Zhou, Shuping; Liu, Liang; Zhang, Fujina; Xie, Chunmei; Cai, Shuyu; Wei, Jia; Zhu, Yongqiang; Hou, Wei

    2015-10-01

    Activating HIV-1 proviruses in latent reservoirs combined with inhibiting viral spread might be an effective anti-HIV therapeutic strategy. Active specific delivery of therapeutic drugs into cells harboring latent HIV, without the use of viral vectors, is a critical challenge to this objective. In this study, nanoparticles of poly(lactic-co-glycolic acid)-polyethylene glycol diblock copolymers conjugated with anti-CD45RO antibody and loaded with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and/or protease inhibitor nelfinavir (Nel) were tested for activity against latent virus in vitro. Nanoparticles loaded with SAHA, Nel, and SAHA + Nel were characterized in terms of size, surface morphology, zeta potential, entrapment efficiency, drug release, and toxicity to ACH-2 cells. We show that SAHA- and SAHA + Nel-loaded nanoparticles can target latently infected CD4+ T-cells and stimulate virus production. Moreover, nanoparticles loaded with SAHA + NEL were capable of both activating latent virus and inhibiting viral spread. Taken together, these data demonstrate the potential of this novel reagent for targeting and eliminating latent HIV reservoirs.

  17. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines

    Science.gov (United States)

    Wilson, D. Scott; Dalmasso, Guillaume; Wang, Lixin; Sitaraman, Shanthi V.; Merlin, Didier; Murthy, Niren

    2010-11-01

    Small interfering RNAs (siRNAs) directed against proinflammatory cytokines have the potential to treat numerous diseases associated with intestinal inflammation; however, the side-effects caused by the systemic depletion of cytokines demands that the delivery of cytokine-targeted siRNAs be localized to diseased intestinal tissues. Although various delivery vehicles have been developed to orally deliver therapeutics to intestinal tissue, none of these strategies has demonstrated the ability to protect siRNA from the harsh environment of the gastrointestinal tract and target its delivery to inflamed intestinal tissue. Here, we present a delivery vehicle for siRNA, termed thioketal nanoparticles (TKNs), that can localize orally delivered siRNA to sites of intestinal inflammation, and thus inhibit gene expression in inflamed intestinal tissue. TKNs are formulated from a polymer, poly-(1,4-phenyleneacetone dimethylene thioketal), that degrades selectively in response to reactive oxygen species (ROS). Therefore, when delivered orally, TKNs release siRNA in response to the abnormally high levels of ROS specific to sites of intestinal inflammation. Using a murine model of ulcerative colitis, we demonstrate that orally administered TKNs loaded with siRNA against the proinflammatory cytokine tumour necrosis factor-alpha (TNF-α) diminish TNF-α messenger RNA levels in the colon and protect mice from ulcerative colitis.

  18. Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits

    Science.gov (United States)

    Jiang, Xincheng; Lin, Houwei; Jiang, Dapeng; Xu, Guofeng; Fang, Xiaoliang; He, Lei; Xu, Maosheng; Tang, Bingqiang; Wang, Zhiyong; Cui, Daxiang; Chen, Fang; Geng, Hongquan

    2016-02-01

    Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.

  19. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells.

    Science.gov (United States)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells. PMID:27484730

  20. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    Science.gov (United States)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells. PMID:27484730

  1. First boronization in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H., E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, K.S.; Kim, K.M.; Kim, H.T.; Kim, G.P. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, J.H.; Woo, H.J. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Park, J.M.; Kim, W.C.; Kim, H.K.; Park, K.R.; Yang, H.L.; Na, H.K. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Chung, K.S. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    First boronization in KSTAR is reported. KSTAR boronization system is based on a carborane (C{sub 2}B{sub 10}H{sub 12}) injection system. The design, construction, and test of the system are accomplished and it is tested by using a small vacuum vessel before it is mounted to a KSTAR port. After the boronization in KSTAR, impurity levels are significantly reduced by factor of 3 (oxygen) and by 10 (carbon). Characteristics of a-C/B:H thin films deposited by carborane vapor are investigated. Re-condensation of carborane vapor during the test phase has been reported.

  2. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.

    Science.gov (United States)

    Kumar, Naresh; Omoregie, Enoma O; Rose, Jerome; Masion, Armand; Lloyd, Jonathan R; Diels, Ludo; Bastiaens, Leen

    2014-03-15

    Batch microcosms were setup to determine the impact of different sized zero valent iron (Fe(0)) particles on microbial sulfate reduction during the in situ bio-precipitation of metals. The microcosms were constructed with aquifer sediment and groundwater from a low pH (3.1), heavy-metal contaminated aquifer. Nano (nFe(0)), micro (mFe(0)) and granular (gFe(0)) sized Fe(0) particles were added to separate microcosms. Additionally, selected microcosms were also amended with glycerol as a C-source for sulfate-reducing bacteria. In addition to metal removal, Fe(0) in microcosms also raised the pH from 3.1 to 6.5, and decreased the oxidation redox potential from initial values of 249 to -226 mV, providing more favorable conditions for microbial sulfate reduction. mFe(0) and gFe(0) in combination with glycerol were found to enhance microbial sulfate reduction. However, no sulfate reduction occurred in the controls without Fe(0) or in the microcosm amended with nFe(0). A separate dose test confirmed the inhibition for sulfate reduction in presence of nFe(0). Hydrogen produced by Fe(0) was not capable of supporting microbial sulfate reduction as a lone electron donor in this study. Microbial analysis revealed that the addition of Fe(0) and glycerol shifted the microbial community towards Desulfosporosinus sp. from a population initially dominated by low pH and metal-resisting Acidithiobacillus ferrooxidans.

  3. Engineering novel targeted nanoparticle formulations to increase the therapeutic efficacy of conventional chemotherapeutics against multiple myeloma

    Science.gov (United States)

    Ashley, Jonathan D.

    Multiple myeloma (MM) is a hematological malignancy which results from the uncontrolled clonal expansion of plasma cells within the body. Despite recent medical advances, this disease remains largely incurable, with a median survival of ˜7 years, owing to the development of drug resistance. This dissertation will explore new advances in nanotechnology that will combine the cytotoxic effects of small molecule chemotherapeutics with the tumor targeting capabilities of nanoparticles to create novel nanoparticle formulations that exhibit enhanced therapeutic indices in the treatment of MM. First, doxorubicin was surfaced conjugated onto micellar nanoparticles via an acid labile hydrazone bond to increase the drug accumulation at the tumor. The cell surface receptor Very Late Antigen-4 (VLA-4; alpha4beta1) is expressed on cancers of hematopoietic origin and plays a vital role in the cell adhesion mediated drug resistance (CAM-DR) in MM. Therefore, VLA-4 antagonist peptides were conjugated onto the nanoparticles via a multifaceted procedure to actively target MM cells and simultaneously inhibit CAM-DR. The micellar doxorubicin nanoparticles were able to overcome CAM-DR and demonstrated improved therapeutic index relative to free doxorubicin. In addition to doxorubicin, other classes of therapeutic agents, such as proteasome inhibitors, can be incorporated in nanoparticles for improved therapeutic outcomes. Utilizing boronic acid chemistry, bortezomib prodrugs were synthesized using a reversible boronic ester bond and then incorporated into liposomes. The different boronic ester bonds that could be potentially used in the synthesis of bortezomib prodrugs were screened based on stability using isobutylboronic acid. The liposomal bortezomib nanoparticles demonstrated significant proteasome inhibition and cytotoxicity in MM cells in vitro, and dramatically reduced the non-specific toxicities associated with free bortezomib while maintaining significant tumor growth

  4. Tailor-Made Boronic Acid Functionalized Magnetic Nanoparticles with a Tunable Polymer Shell-Assisted for the Selective Enrichment of Glycoproteins/Glycopeptides.

    Science.gov (United States)

    Zhang, Xihao; Wang, Jiewen; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2015-11-11

    Biomedical sciences, and in particular biomarker research, demand efficient glycoproteins enrichment platforms. In this work, we present a facile and time-saving method to synthesize phenylboronic acid and copolymer multifunctionalized magnetic nanoparticles (NPs) using a distillation-precipitation polymerization (DPP) technique. The polymer shell is obtained through copolymerization of two monomers-affinity ligand 3-acrylaminophenylboronic acid (AAPBA) and a hydrophilic functional monomer. The resulting hydrophilic Fe3O4@P(AAPBA-co-monomer) NPs exhibit an enhanced binding capacity toward glycoproteins by an additional functional monomer complementary to the surface presentation of the target protein. The effects of monomer ratio of AAPBA to hydrophilic comonomers on the binding of glycoproteins are systematically investigated. The morphology, structure, and composition of all the synthesized microspheres are characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The hydrophilic Fe3O4@P(AAPBA-co-monomer) microspheres show an excellent performance in the separation of glycoproteins with high binding capacity; And strong magnetic response allows them to be easily separated from solution in the presence of an external magnetic field. Moreover, both synthetic Fe3O4@P(AAPBA) and copolymeric NPs show good adsorption to glycoproteins in physiological conditions (pH 7.4). The Fe3O4@P(AAPBA-co-monomer) NPs are successfully utilized to selectively capture and identify the low-abundance glycopeptides from the tryptic digest of horseradish peroxidase (HRP). In addition, the selective isolation and enrichment of glycoproteins from the egg white samples at physiological condition is obtained by Fe3O4@P(AAPBA-co-monomer) NPs as adsorbents.

  5. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-01

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite. PMID:17830955

  6. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  7. Boron Nitride Nanosheets for Metal Protection

    OpenAIRE

    Li, Lu Hua; Xing, Tan; Chen, Ying; Jones, Rob

    2015-01-01

    Although the high impermeability of graphene makes it an excellent barrier to inhibit metal oxidation and corrosion, graphene can form a galvanic cell with the underlying metal that promotes corrosion of the metal in the long term. Boron nitride (BN) nanosheets which have a similar impermeability could be a better choice as protective barrier, because they are more thermally and chemically stable than graphene and, more importantly, do not cause galvanic corrosion due to their electrical insu...

  8. L-Phenylalanine preloading reduces the (10)B(n, α)(7)Li dose to the normal brain by inhibiting the uptake of boronophenylalanine in boron neutron capture therapy for brain tumours.

    Science.gov (United States)

    Watanabe, Tsubasa; Tanaka, Hiroki; Fukutani, Satoshi; Suzuki, Minoru; Hiraoka, Masahiro; Ono, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours.

  9. Synthesis of Glycyrrhetinic Acid-Modified Chitosan 5-Fluorouracil Nanoparticles and Its Inhibition of Liver Cancer Characteristics in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Jiang Han

    2013-09-01

    Full Text Available Nanoparticle drug delivery (NDDS is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA, to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS. The synthetic product was confirmed by Fourier transformed infrared spectroscopy (FT-IR and 1H-nuclear magnetic resonance (1H-NMR. By combining GA-CTS and 5-FU (5-fluorouracil, we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 217.2 nm, a drug loading of 1.56% and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained release system comprising three distinct phases of quick, steady and slow release. We demonstrated that the nanoparticle accumulated in the liver. In vitro data indicated that it had a dose- and time-dependent anti-cancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. Additionally, GA-CTS/5-FU significantly inhibited the growth of drug-resistant hepatoma, which may compensate for the drug-resistance of 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited tumor growth, resulting in increased survival time.

  10. Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways.

    Science.gov (United States)

    Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Hua, Liang; Wang, Hanzhong; Xia, Huimin; Zhu, Bing

    2016-09-21

    As the therapeutic agent for antiviral applications, the clinical use of oseltamivir is limited with the appearance of drug-resistant viruses. It is important to explore novel anti-influenza drugs. The antiviral activity of silver nanoparticles (AgNPs) has attracted increasing attention in recent years and was a possibility to be employed as a biomedical intervention. Herein, we describe the synthesis of surface decoration of AgNPs by using oseltamivir (OTV) with antiviral properties and inhibition of drug resistance. Compared to silver and oseltamivir, oseltamivir-modified AgNPs (Ag@OTV) have remarkable inhibition against H1N1 infection, and less toxicity was found for MDCK cells by controlled-potential electrolysis (CPE), MTT, and transmission electron microscopy (TEM). Furthermore, Ag@OTV inhibited the activity of neuraminidase (NA) and hemagglutinin (HA) and then prevented the attachment of the H1N1 influenza virus to host cells. The investigations of the mechanism revealed that Ag@OTV could block H1N1 from infecting MDCK cells and prevent DNA fragmentation, chromatin condensation, and the activity of caspase-3. Ag@OTV remarkably inhibited the accumulation of reactive oxygen species (ROS) by the H1N1 virus and activation of AKT and p53 phosphorylation. Silver nanoparticle based codelivery of oseltamivir inhibits the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. These findings demonstrate that Ag@OTV is a novel promising efficient virucide for H1N1. PMID:27588566

  11. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  12. Curcumin-Loaded Apotransferrin Nanoparticles Provide Efficient Cellular Uptake and Effectively Inhibit HIV-1 Replication In Vitro

    OpenAIRE

    Upendhar Gandapu; R K Chaitanya; Golla Kishore; Reddy, Raju C; Kondapi, Anand K

    2011-01-01

    BACKGROUND: Curcumin (diferuloylmethane) shows significant activity across a wide spectrum of conditions, but its usefulness is rather limited because of its low bioavailability. Use of nanoparticle formulations to enhance curcumin bioavailability is an emerging area of research. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, curcumin-loaded apotransferrin nanoparticles (nano-curcumin) prepared by sol-oil chemistry and were characterized by electron and atomic force microscopy. Confoca...

  13. Organic-Inorganic Hybrid Nanoparticles for Bacterial Inhibition: Synthesis and Characterization of Doped and Undoped ONPs with Ag/Au NPs

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Huerta Aguilar

    2015-04-01

    Full Text Available Organic nanoparticles (ONPs of lipoic acid and its doped derivatives ONPs/Ag and ONPs/Au were prepared and characterized by UV-Visible, EDS, and TEM analysis. The antibacterial properties of the ONPs ONPs/Ag and ONPs/Au were tested against bacterial strains (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella typhi. Minimal Inhibitory Concentration (MIC and bacterial growth inhibition tests show that ONPs/Ag are more effective in limiting bacterial growth than other NPs, particularly, for Gram positive than for Gram-negative ones. The order of bacterial cell growth inhibition was ONPs/Ag > ONPs > ONPs/Au. The morphology of the cell membrane for the treated bacteria was analyzed by SEM. The nature of bond formation of LA with Ag or Au was analyzed by molecular orbital and density of state (DOS using DFT.

  14. pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members.

    Directory of Open Access Journals (Sweden)

    Yitong J Zhang

    Full Text Available Artemisinin (ART dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs remained tightly associated with liposomal nanoparticles (NPs at neutral pH but were efficiently released at acidic pH's that are known to exist within solid tumors and organelles such as endosomes and lysosomes. ADPs incorporated into nanoparticles down regulated the anti-apoptotic protein, survivin, and cyclin D1 when incubated at low concentrations with breast cancer cell lines. We demonstrate for the first time, for any ART derivative, that ADP NPs can down regulate the oncogenic protein HER2, and its counterpart, HER3 in a HER2+ cell line. We also show that the wild type epidermal growth factor receptor (EGFR or HER1 declines in a triple negative breast cancer (TNBC cell line in response to ADP NPs. The declines in these proteins are achieved at concentrations of NP109 at or below 1 µM. Furthermore, the new artemisinin derivatives showed improved cell-proliferation inhibition effects compared to known dimer derivatives.

  15. Nanoparticles Composed of Zn and ZnO Inhibit Peronospora tabacina Spore Germination in vitro and P. tabacina Infectivity on Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    George Wagner

    2016-03-01

    Full Text Available Manufactured nanoparticles (NPs are increasingly being used for commercial purposes and certain NP types have been shown to have broad spectrum antibacterial activity. In contrast, their activities against fungi and fungi-like oomycetes are less studied. Here, we examined the potential of two types of commercially available Zn NPs (Zn NPs and ZnO NPs to inhibit spore germination and infectivity on tobacco leaves resulting from exposure to the fungi-like oomycete pathogen Peronospora tabacina (P. tabacina. Both types of NPs, as well as ZnCl2 and bulk ZnO control treatments, inhibited spore germination compared to a blank control. ZnO ENMs were shown to be a much more powerful suppressor of spore germination and infectivity than bulk ZnO. ZnO and Zn NPs significantly inhibited leaf infection at 8 and 10 mg·L−1, respectively. Both types of NPs were found to provide substantially higher concentration dependent inhibition of spore germination and infectivity than could be readily explained by the presence of dissolved Zn. These results suggest that both NP types have potential for use as economic, low-dose, potentially non-persistent anti-microbial agents against the oomycete P. tabacina.

  16. Surfactant-free synthesis of mesoporous and hollow silica nanoparticles with an inorganic template.

    Science.gov (United States)

    Baù, Luca; Bártová, Barbora; Arduini, Maria; Mancin, Fabrizio

    2009-12-28

    A surfactant-free synthesis of mesoporous and hollow silica nanoparticles is reported in which boron acts as the templating agent. Using such a simple and mild procedure as a treatment with water, the boron-rich phase is selectively removed, affording mesoporous pure silica nanoparticles with wormhole-like pores or, depending on the synthetic conditions, silica nanoshells. PMID:20024287

  17. Bright prospects for boron

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  18. Interaction of boron with graphite: A van der Waals density functional study

    Science.gov (United States)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-08-01

    Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less ability to offer electrons to oxygen, ultimately resulted in the inhibition of carbon oxidation. For interstitial doping, vdW-DFs show more accurate formation energy than LDA. PBE functional cannot describe the interstitial boron in graphite reasonably because of the ignoring binding of graphite sheets. The investigation of electron structures of boron doped graphite will play an important role in understanding the oxidation mechanism in further study.

  19. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires

    Institute of Scientific and Technical Information of China (English)

    FU Xin; JIANG Jun; LIU Chao; YU Zhi-Yang; Steffan LEA; YUAN Jun

    2009-01-01

    We report a preferential growth of boron carbide nanowires with a Eve-fold twinned internal structure.The nanowires are found to grow catalytically via iron boron nanoparticles,but unusually the catalytic particle is in contact with the low-energy surfaces of boron carbide with V-shaped contact lines.We propose that this catalytical growth may be caused by preferential nucleation at the re-entrant grooves due to the twinning planes,followed by rapid spreading of atomic steps.This is consistent with the observed temperature dependence of the five-fold twinned nanowire growth.

  20. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  1. Plasma boron and the effects of boron supplementation in males.

    Science.gov (United States)

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  2. An overview of male reproductive studies of boron with an emphasis on studies of highly exposed Chinese workers

    DEFF Research Database (Denmark)

    Scialli, Anthony R; Bonde, Jens Peter; Brüske-Hohlfeld, Irene;

    2010-01-01

    Boron treatment of rats, mice, and dogs has been associated with testicular toxicity, characterized by inhibited spermiation at lower dose levels and a reduction in epididymal sperm count at higher dose levels. The no-adverse-effect level for reproductive effects in male rats is 17.5mg B/kg bw...... working in boron (B) mining or processing in Liaoning province in northeast China has been published in several Chinese and a few English language papers. This study included individual assessment of boron exposure, interview data on reproductive experience and semen analysis. Employed men living...... in the same community and in a remote community were used as controls. Boron workers (n=75) had a mean daily boron intake of 31.3mg B/day, and a subset of 16 of these men, employed at a plant where there was heavy boron contamination of the water supply, had an estimated mean daily boron intake of 125 mg B...

  3. Interaction of Boron Clusters with Oxygen: a DFT Study

    Science.gov (United States)

    Salavitabar, Kamron; Boggavarapu, Kiran; Kandalam, Anil

    A controlled combustion involving aluminum nanoparticles has often been the focus of studies in the field of solid fuel propellants. However very little focus has been given to the study of boron nanoparticles in controlled combustion. In contrast to aluminum nanoclusters, boron nanoclusters (Bn) are known to exhibit a planar geometries even at the size of n = 19 - 20, and thus offer a greater surface area for interaction with oxygen. Earlier experimental studies have shown that boron nanoclusters exhibit different reactivity with oxygen depending on their size and charge. In this poster, we present our recent density functional theory based results, focusing on the reactivity patterns of neutral and negatively charged B5 cluster with On, where n = 1 - 5; and B6 cluster with On (n = 1 - 2). The effect of charge on the reactivity of boron cluster, variation in the stability of product clusters, i e., neutral and negatively charged B5On (n = 1 - 5) and B6On (n = 1 - 2) are also examined. Financial Support from West Chester University Foundation under FaStR grant is acknowledged.

  4. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  5. Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy.

    Science.gov (United States)

    Paholak, Hayley J; Stevers, Nicholas O; Chen, Hongwei; Burnett, Joseph P; He, Miao; Korkaya, Hasan; McDermott, Sean P; Deol, Yadwinder; Clouthier, Shawn G; Luther, Tahra; Li, Qiao; Wicha, Max S; Sun, Duxin

    2016-10-01

    Increasing evidence suggesting breast cancer stem cells (BCSCs) drive metastasis and evade traditional therapies underscores a critical need to exploit the untapped potential of nanotechnology to develop innovative therapies that will significantly improve patient survival. Photothermal therapy (PTT) to induce localized hyperthermia is one of few nanoparticle-based treatments to enter clinical trials in human cancer patients, and has recently gained attention for its ability to induce a systemic immune response targeting distal cancer cells in mouse models. Here, we first conduct classic cancer stem cell (CSC) assays, both in vitro and in immune-compromised mice, to demonstrate that PTT mediated by highly crystallized iron oxide nanoparticles effectively eliminates BCSCs in translational models of triple negative breast cancer. PTT in vitro preferentially targets epithelial-like ALDH + BCSCs, followed by mesenchymal-like CD44+/CD24- BCSCs, compared to bulk cancer cells. PTT inhibits BCSC self-renewal through reduction of mammosphere formation in primary and secondary generations. Secondary implantation in NOD/SCID mice reveals the ability of PTT to impede BCSC-driven tumor formation. Next, we explore the translational potential of PTT using metastatic and immune-competent mouse models. PTT to inhibit BCSCs significantly reduces metastasis to the lung and lymph nodes. In immune-competent BALB/c mice, PTT effectively eliminates ALDH + BCSCs. These results suggest the feasibility of incorporating PTT into standard clinical treatments such as surgery to enhance BCSC destruction and inhibit metastasis, and the potential of such combination therapy to improve long-term survival in patients with metastatic breast cancer. PMID:27450902

  6. Multidimensional potential of boron-containing molecules in functional materials

    Indian Academy of Sciences (India)

    Wolfgang Kaim; Narayan S Hosmane

    2010-01-01

    Boron-containing molecular systems have received much attention under theoretical aspects and from the side of synthetic organic chemistry. However, their potential for further applications such as optically interesting effects such as Non-Linear Optics (NLO), medical uses for Boron Neutron Capture Therapy (BNCT), or magnetism has been recognised only fairly recently. Molecular systems containing boron offer particular mechanisms to accommodate unpaired electrons which may result in stable radicals as spin-bearing materials. Among such materials are organoboron compounds in which the prototypical electron deficient (10B, 11B) boron vs. carbon centers can accept and help to delocalise added electrons in a 2-dimensionally conjugated system. Alternatively, oligoboron clusters B$_{n}$X$_{n}^{k}$ and the related carboranes or metallacarboranes are capable of adding or losing single electrons to form paramagnetic clusters with 3-dimensionally delocalised spin, according to combined experimental studies and quantum chemical calculations. The unique nuclear properties of 10B are of therapeutic value if their selective transport via appended carbon nanotubes, boron nanotubes, or magnetic nanoparticles can be effected.

  7. A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo

    Science.gov (United States)

    Lee, Justin B; Zhang, Kaixin; Tam, Yuen Yi C; Quick, Joslyn; Tam, Ying K; Lin, Paulo JC; Chen, Sam; Liu, Yan; Nair, Jayaprakash K; Zlatev, Ivan; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Rennie, Paul S; Cullis, Pieter R

    2016-01-01

    The androgen receptor plays a critical role in the progression of prostate cancer. Here, we describe targeting the prostate-specific membrane antigen using a lipid nanoparticle formulation containing small interfering RNA designed to silence expression of the messenger RNA encoding the androgen receptor. Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the lipid nanoparticle system formulated with a long alkyl chain polyethylene glycol-lipid to enhance accumulation at tumor sites and facilitate intracellular uptake into tumor cells following systemic administration. Through these features, and by using a structurally refined cationic lipid and an optimized small interfering RNA payload, a lipid nanoparticle system with improved potency and significant therapeutic potential against prostate cancer and potentially other solid tumors was developed. Decreases in serum prostate-specific antigen, tumor cellular proliferation, and androgen receptor levels were observed in a mouse xenograft model following intravenous injection. These results support the potential clinical utility of a prostate-specific membrane antigen–targeted lipid nanoparticle system to silence the androgen receptor in advanced prostate cancer.

  8. Oxidation of Silicon and Boron in Boron Containing Molten Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new process of directly smelting boron steel from boron-containing pig iron has been established. The starting material boron-containing pig iron was obtained from ludwigite ore, which is very abundant in the eastern area of Liaoning Province of China. The experiment was performed in a medium-frequency induction furnace, and Fe2O3 powder was used as the oxidizing agent. The effects of temperature, addition of Fe2O3, basicity, stirring, and composition of melt on the oxidation of silicon and boron were investigated respectively. The results showed that silicon and boron were oxidized simultaneously and their oxidation ratio exceeded 90% at 1 400 ℃. The favorable oxidation temperature of silicon was about 1 300-1 350 C. High oxygen potential of slag and strong stirring enhanced the oxidation of silicon and boron.

  9. High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor

    Directory of Open Access Journals (Sweden)

    Jaewoo Kim

    2014-08-01

    Full Text Available Enhancement of the production yield of boron nitride nanotubes (BNNTs with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter.

  10. Small molecule PZL318: forming fluorescent nanoparticles capable of tracing their interactions with cancer cells and activated platelets, slowing tumor growth and inhibiting thrombosis

    Directory of Open Access Journals (Sweden)

    Li S

    2015-08-01

    Full Text Available Shan Li,1 Yuji Wang,1 Feng Wang,1 Yaonan Wang,1 Xiaoyi Zhang,1 Ming Zhao,1,2 Qiqi Feng,1 Jianhui Wu,1 Shurui Zhao,1 Wei Wu,3 Shiqi Peng11Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People’s Republic of China; 2Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; 3College of Basic Medicine of Capital Medical University, Beijing, People’s Republic of ChinaAbstract: Low selectivity of chemotherapy correlates with poor outcomes of cancer patients. To improve this issue, a novel agent, N-(1-[3-methoxycarbonyl-4-hydroxyphenyl]-β-carboline-3-carbonyl-Trp-Lys-OBzl (PZL318, was reported here. The transmission electron microscopy, scanning electron microscopy, and atomic force microscopy images demonstrated that PZL318 can form nanoparticles. Fluorescent and confocal images visualized that PZL318 formed fluorescent nanoparticles capable of targeting cancer cells and tracing their interactions with cancer cells. In vitro, 40 µM of PZL318 inhibited the proliferation of tumorigenic cells, but not nontumorigenic cells. In vivo, 10 nmol/kg of PZL318 slowed the tumor growth of S180 mice and alleviated the thrombosis of ferric chloride-treated ICR mice, while 100 µmol/kg of PZL318 did not injure healthy mice and they exhibited no liver toxicity. By analyzing Fourier transform–mass spectrometry and rotating-frame Overhauser spectroscopy (ROESY two-dimensional nuclear magnetic resonance spectra, the chemical mechanism of PZL318-forming trimers and nanoparticles was explored. By using mesoscale simulation, a nanoparticle of 3.01 nm in diameter was predicted containing 13 trimers. Scavenging free radicals, downregulating sP-selectin expression and intercalating toward

  11. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain

    International Nuclear Information System (INIS)

    The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation and invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer. - Highlights: • TM-JM1/2 peptides are efficiently delivered into cells by AuNP-Apt-conjugates. • TM-JM1/2 peptides loaded onto AuNP-Apt conjugates inhibit DDR2 activation. • Inhibition of DDR2 activation by TM-JM1/2 peptides decreases tumor progression

  12. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daehwan; Yeom, Ji-Hyun; Lee, Boeun; Lee, Kangseok [Department of Life Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Bae, Jeehyeon, E-mail: jeehyeon@cau.ac.kr [Department of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Rhee, Sangmyung, E-mail: sangmyung.rhee@cau.ac.kr [Department of Life Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-08-21

    The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation and invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer. - Highlights: • TM-JM1/2 peptides are efficiently delivered into cells by AuNP-Apt-conjugates. • TM-JM1/2 peptides loaded onto AuNP-Apt conjugates inhibit DDR2 activation. • Inhibition of DDR2 activation by TM-JM1/2 peptides decreases tumor progression.

  13. Boron toxicity causes multiple effects on Malus domestica pollen tube growth

    Directory of Open Access Journals (Sweden)

    Kefeng eFang

    2016-02-01

    Full Text Available Boron is an essential micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this stress is not known. This study aimed to evaluate the effect of boron stress on Malus domestica pollen tube growth and its possible regulatory pathway. Our results show that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron stress could decrease [Ca2+]c and induce the disappearance of the [Ca2+]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron stress. Immuno-localization and fluorescence labeling, together with Fourier-transform infrared analysis (FTIR, suggested that boron stress influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca2+]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

  14. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; Zhong, J. X.

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  15. Nanoparticles inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery via cell surface-related GRP78

    OpenAIRE

    Zhao L; Li H; Shi Y.; Wang G; Liu L; Su C; Su R

    2014-01-01

    Liang Zhao,1,* Hongdan Li,2,* Yijie Shi,1 Guan Wang,2 Liwei Liu,1 Chang Su,3 Rongjian Su2 1School of Pharmacy, Liaoning Medical University, Jinzhou, People’s Republic of China; 2Central Laboratory of Liaoning Medical University, Jinzhou, People’s Republic of China; 3School of Veterinary Medicine, Liaoning Medical University, Jinzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Nanoparticles (NPs) which target specific a...

  16. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  17. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria.

    Science.gov (United States)

    Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V

    2014-01-01

    Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. PMID:24140741

  18. Curcumin delivery by methoxy polyethylene glycol-poly(caprolactone) nanoparticles inhibits the growth of C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Junfei Shao; Donghui Zheng; Zhifeng Jiang; Huae Xu; Yong Hu; Xiaolin Li; Xiaowei Lu

    2011-01-01

    As a potential anticancer agent, curcumin (Cum) has been reported for its chemopreventive and chemotherapeutic activity in a series of cancers through influencing cell cycle arrest, differentiation, apoptosis, etc. Therefore, the potential activity against various cancers of Cure raises the possibility of its application as a novel model drug in nanopartiele-based delivery systems. The current study reported a spherical core-shell structure curcumin-loaded nanoparticle (Cum-np) formed by amphllic methoxy polyethylene glycolpoly(caprolactone) (mPEG-PCL) block copolymers. Characterization tests indicated that Cum was incorporated into mPEG-PCL-based nanoparticles with high encapsulation efficiency due to its lipophilicity. The incorporated Cum could be released from Cum-np in a sustained manner. Cum was effectively transported into the cells by nanoparticles through endocytosis and localized around the nuclei in the cytoplasms. In vitro studies proved that the cytotoxicity of Cum-np would be pro-apoptosis effect against rat C6 glioma cell line in a dose-dependent manner. The present results suggest that Cum-np could be a potential useful chemotherapeutic formulation for malignant glioma therapy. Moreover, the development of traditional Chinese medicine with nanoscale drug formation warrants more intensive research for its clinical applications.

  19. Prophylactic effect of topical silica nanoparticles as a novel antineovascularization agent for inhibiting corneal neovascularization following chemical burn

    Directory of Open Access Journals (Sweden)

    Mehrdad Mohammadpour

    2015-01-01

    Conclusions: SiNPs is an effective modality for inhibiting corneal neovascularization following chemical burn in an experimental model. Further investigations are suggested for evaluation of its safety and efficacy in human eyes.

  20. Spherically-clustered porous Au-Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy.

    Science.gov (United States)

    Jang, Hongje; Min, Dal-Hee

    2015-03-24

    The polyvinylpyrrolidone (PVP)-coated spherically clustered porous gold-silver alloy nanoparticle (PVP-SPAN) was prepared by low temperature mediated, partially inhibited galvanic replacement reaction followed by silver etching process. The prepared porous nanostructures exhibited excellent photothermal conversion efficiency under irradiation of near-infrared light (NIR) and allowed a high payload of both doxorubicin (Dox) and thiolated dye-labeled oligonucleotide, DNAzyme (FDz). Especially, PVP-SPAN provided 10 times higher loading capacity for oligonucleotide than conventional hollow nanoshells due to increased pore diameter and surface-to-volume ratio. We demonstrated highly efficient chemo-thermo-gene multitherapy based on codelivery of Dox and FDz with NIR-mediated photothermal therapeutic effect using a model system of hepatitis C virus infected human liver cells (Huh7 human hepatocarcinoma cell line containing hepatitis C virus NS3 gene replicon) compared to conventional hollow nanoshells.

  1. Cell-Penetrating Poly(disulfide) Assisted Intracellular Delivery of Mesoporous Silica Nanoparticles for Inhibition of miR-21 Function and Detection of Subsequent Therapeutic Effects.

    Science.gov (United States)

    Yu, Changmin; Qian, Linghui; Ge, Jingyan; Fu, Jiaqi; Yuan, Peiyan; Yao, Samantha C L; Yao, Shao Q

    2016-08-01

    The design of drug delivery systems capable of minimal endolysosomal trapping, controlled drug release, and real-time monitoring of drug effect is highly desirable for personalized medicine. Herein, by using mesoporous silica nanoparticles (MSNs) coated with cell-penetrating poly(disulfide)s and a fluorogenic apoptosis-detecting peptide (DEVD-AAN), we have developed a platform that could be uptaken rapidly by mammalian cells via endocytosis-independent pathways. Subsequent loading of these MSNs with small molecule inhibitors and antisense oligonucleotides resulted in intracellular release of these drugs, leading to combination inhibition of endogenous miR-21 activities which was immediately detectable by the MSN surface-coated peptide using two-photon fluorescence microscopy. PMID:27325284

  2. Enhanced in vivo antitumor efficacy of dual-functional peptide-modified docetaxel nanoparticles through tumor targeting and Hsp90 inhibition.

    Science.gov (United States)

    Jiang, Yao; Yang, Nan; Zhang, Huifeng; Sun, Bo; Hou, Chunying; Ji, Chao; Zheng, Ji; Liu, Yanyong; Zuo, Pingping

    2016-01-10

    Although conventional anticancer drugs exhibit excellent efficacy, serious adverse effects and/or even toxicity have occurred due to their nonselectivity. Moreover, active targeting approaches have not consistently led to successful outcomes. Ligands that simultaneously possess targeting capability and exert a strong influence on intracellular signaling cascades may be expected to improve the therapeutic efficacy of active targeting nanoparticulate carriers. In this study, we screened a targeting peptide, LPLTPLP, which specifically bound to non-small cell lung cancer (NSCLC) specimens in vitro. Surprisingly, this peptide inhibited the expression of Hsp90 and induced apoptosis by preventing autophagy in A549 cells treated with docetaxel. The results suggested that this peptide might be used as a promising dual-functional ligand for cancer treatment. Based on these findings, we designed and developed a novel active targeting delivery system by modifying docetaxel nanoparticles (DNP) with the dual-functional ligand LPLTPLP. We consistently demonstrated that the cellular uptake of nanoparticles (NPs) was significantly enhanced in vitro. Furthermore, the targeting NPs exhibited significantly improved antitumor efficacy and biodistribution compared with nontargeting nanodrug and free docetaxel. These findings demonstrate the feasibility of dual-functional NPs for efficient anticancer therapy.

  3. Therapeutic potential of inhibiting ABCE1 and eRF3 genes via siRNA strategy using chitosan nanoparticles in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, Bagdat Burcu; Asik, Mehmet Dogan [Hacettepe University, Nanotechnology and Nanomedicine Division (Turkey); Kara, Goknur [Hacettepe University, Biochemistry Division, Chemistry Department (Turkey); Turk, Mustafa [Kirikkale University, Bioengineering Department (Turkey); Denkbas, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Hacettepe University, Biochemistry Division, Chemistry Department (Turkey)

    2015-04-15

    In recent years, targeted cancer therapy strategies have begun to take the place of the conventional treatments. Inhibition of the specific genes, involved in cancer progress, via small interfering RNA (siRNA) has become one of the promising therapeutic approaches for cancer therapy. However, due to rapid nuclease degradation and poor cellular uptake of siRNA, a suitable carrier for siRNA penetration inside the cells is required. We used chitosan nanoparticles (CS-NPs) to efficiently deliver ATP-binding casette E1 (ABCE1) and eukaryotic release factor 3 (eRF3)-targeting siRNAs, individually and together, to reduce the proliferation and induce the apoptosis of breast cancer cells. The CS-NPs were generated by ionic gelation method using tripolyphosphate (TPP) as a crosslinker. Nanoparticles (NPs) were obtained with diameters ranging between 110 and 230 nm and the zeta potential of approximately 27 mV optimizing the solution pH to 4.5 and CS/TPP mass ratio to 3:1. Loading efficiencies of 98.69 % ± 0.051 and 98.83 % ± 0.047 were achieved when ABCE1 siRNA and eRF3 siRNA were entrapped into the NPs, respectively. Cell proliferation assay demonstrated that siRNA-loaded CS-NPs were more effective on cancer cells when compared to siRNAs without CS-NPs. Parallel results were also obtained by apoptosis/necrosis, double-staining analysis. Within our study, the potency of ABCE1 and eRF3 siRNAs were shown for the first time with this kind of polymeric delivery system. The results also indicated that ABCE1 and eRF3, important molecules in protein synthesis, could serve as effective targets to inhibit the cancer cells.

  4. Therapeutic potential of inhibiting ABCE1 and eRF3 genes via siRNA strategy using chitosan nanoparticles in breast cancer cells

    International Nuclear Information System (INIS)

    In recent years, targeted cancer therapy strategies have begun to take the place of the conventional treatments. Inhibition of the specific genes, involved in cancer progress, via small interfering RNA (siRNA) has become one of the promising therapeutic approaches for cancer therapy. However, due to rapid nuclease degradation and poor cellular uptake of siRNA, a suitable carrier for siRNA penetration inside the cells is required. We used chitosan nanoparticles (CS-NPs) to efficiently deliver ATP-binding casette E1 (ABCE1) and eukaryotic release factor 3 (eRF3)-targeting siRNAs, individually and together, to reduce the proliferation and induce the apoptosis of breast cancer cells. The CS-NPs were generated by ionic gelation method using tripolyphosphate (TPP) as a crosslinker. Nanoparticles (NPs) were obtained with diameters ranging between 110 and 230 nm and the zeta potential of approximately 27 mV optimizing the solution pH to 4.5 and CS/TPP mass ratio to 3:1. Loading efficiencies of 98.69 % ± 0.051 and 98.83 % ± 0.047 were achieved when ABCE1 siRNA and eRF3 siRNA were entrapped into the NPs, respectively. Cell proliferation assay demonstrated that siRNA-loaded CS-NPs were more effective on cancer cells when compared to siRNAs without CS-NPs. Parallel results were also obtained by apoptosis/necrosis, double-staining analysis. Within our study, the potency of ABCE1 and eRF3 siRNAs were shown for the first time with this kind of polymeric delivery system. The results also indicated that ABCE1 and eRF3, important molecules in protein synthesis, could serve as effective targets to inhibit the cancer cells

  5. Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins

    Directory of Open Access Journals (Sweden)

    Garza Treviño Elsa N

    2011-09-01

    Full Text Available Abstract Background HIV/AIDS pandemic is a worldwide public health issue. There is a need for new approaches to develop new antiviral compounds or other therapeutic strategies to limit viral transmission. The envelope glycoproteins gp120 and gp41 of HIV are the main targets for both silver nanoparticles (AgNPs and neutralizing antibodies. There is an urgency to optimize the efficiency of the neutralizing antibodies (NABs. In this study, we demonstrated that there is an additive effect between the four NABs and AgNPs when combined against cell-associated HIV-1 infection in vitro Results Four NABs (Monoclonal antibody to HIV-1 gp41 126-7, HIV-1 gp120 Antiserum PB1 Sub 2, HIV-1 gp120 Antiserum PB1, HIV-1 gp120 Monoclonal Antibody F425 B4e8 with or without AgNPs of 30-50 nm in size were tested against cell free and cell-associated HIVIIIB virus. All NABs inhibited HIV-1 cell free infection at a dose response manner, but with AgNPs an antiviral additive effect was not achieved Although there was no inhibition of infection with cell-associated virus by the NABs itself, AgNPs alone were able to inhibit cell associated virus infection and more importantly, when mixed together with NABs they inhibited the HIV-1 cell associated infection in an additive manner. Discussion The most attractive strategies to deal with the HIV problem are the development of a prophylactic vaccine and the development of effective topical vaginal microbicide. For two decades a potent vaccine that inhibits transmission of infection of HIV has been searched. There are vaccines that elicit NABs but none of them has the efficacy to stop transmission of HIV-1 infection. We propose that with the addition of AgNPs, NABs will have an additive effect and become more potent to inhibit cell-associated HIV-1 transmission/infection. Conclusions The addition of AgNPs to NABs has significantly increased the neutralizing potency of NABs in prevention of cell-associated HIV-1 transmission

  6. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick [Univ. of California, Los Angeles, CA (United States)

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  7. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  8. Gold nanoparticle-lignan complexes inhibited MCF-7 cell proliferation in vitro: a novel conjugation for cancer therapy.

    Science.gov (United States)

    Bakar, Filiz; Caglayan, Mehmet G; Onur, Feyyaz; Nebioglu, Serpil; Palabiyik, Ismail M

    2015-01-01

    Nanoparticles, including gold nanoparticles (AuNP), have been used in imaging in cancer treatment and as therapeutic agents and drug delivery vehicles. Particularly lignans, also called phytoestrogens, have strong effects on the treatment of carcinomas due to their antiestrogenic, antiangiogenic and proapoptotic mechanism. The aim of this study is to investigate the antiproliferative effects of three lignans-AuNP conjugates, pinoresinol (PINO), lariciresinol (LARI) and secoisolariciresinol (SECO), on the MCF-7 cell lines. For this purpose, first, thiolated β-cyclodextrin (β-CD) was synthesized to achieve a surface modification of AuNP, and then the β-CD modified AuNP was characterized using the transmission electron microscopy (TEM), UV-Visible and Nuclear Magnetic Resonance (NMR) spectroscopy. Then, the selected lignans were conjugated to the β-CD-modified AuNP, and the antiproliferative effect of these conjugates was monitored. The results suggest that when compared to their non-conjugated forms, the AuNP-bound lignan conjugates prevented the proliferation of the MCF-7 cells significantly. Therefore, these AuNP-conjugated derivatives can be new candidate agents for breast cancer therapy.

  9. Boron effects on the ductility of a nano-cluster-strengthened ferritic steel

    International Nuclear Information System (INIS)

    Research highlights: → Cu-rich nano-particle precipitation strengthens the ferritic steels. → Boron doping suppresses brittle intergranular fracture. → Moisture-induced environmental embrittlement can be alleviated by surface coating. - Abstract: The mechanical properties of Cu-rich nano-cluster-strengthened ferritic steels with and without boron doping were investigated. Tensile tests at room temperature in air showed that the B-doped ferritic steel has similar yield strength but a larger elongation than that without boron doping after extended aging at 500 deg. C. There are three mechanisms affecting the ductility and fracture of these steels: brittle cleavage fracture, week grain boundaries, and moisture-induced hydrogen embrittlement. Our study reveals that boron strengthens the grain boundary and suppresses the intergranular fracture. Furthermore, the moisture-induced embrittlement can be alleviated by surface coating with vacuum oil.

  10. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis.

    Science.gov (United States)

    Khan, Shams Tabrez; Ahmad, Javed; Ahamed, Maqusood; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-06-01

    Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml(-1), respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml(-1), respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26-83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene. PMID:26837748

  11. Dietary boron, brain function, and cognitive performance.

    OpenAIRE

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and wo...

  12. Banishing brittle bones with boron

    Energy Technology Data Exchange (ETDEWEB)

    A 6-month study indicates that boron, not even considered an essential nutrient for people and animals, may be a key to preventing osteoporosis, say nutritionist Forrest H. Nielsen and anatomist Curtiss D. Hunt at ARS' Grand Forks, North Dakota, Human Nutrition Research Center. They believe the results of the study - the first to look at the nutritional effects of boron in humans - will generate a lot of interest in the element. In the study, 12 postmenopausal women consumed a very low boron diet (0.25 milligrams per day) for 17 weeks then were given a daily 3-mg supplement - representing the boron intake from a well-balanced diet - for 7 more weeks. Within 8 days after the supplement was introduced, the lost 40 percent less calcium, one-third less magnesium, and slightly less phosphorus through the urine. In fact, their calcium and magnesium losses were lower than prestudy levels, when they were on their normal diets. Since boron isn't considered essential for people, there is not recommended intake and no boron supplement on the market. Nielsen says the supplement of sodium borate used in the study was specially prepared based on the amount of boron a person would get from a well-balanced diet containing fruits and vegetables. He says the average boron intake is about 1.5 mg - or half the experimental dose - but average means a lot of people get less and a lot get more. Hunt cautioned that large doses of boron can be toxic, even lethal. The lowest reported lethal dose of boric acid is about 45 grams (1.6 ounces) for an adult and only 2 grams (0.07 ounce) for an infant.

  13. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection

    Directory of Open Access Journals (Sweden)

    Mohammed Fayaz A

    2012-09-01

    anti-HIV activity was primarily mediated by the Ag-NPs, which are associated with the PUC. In addition, the data showed that both macrophage (M-tropic and T lymphocyte (T-tropic strains of HIV-1 were highly sensitive to the Ag-NPs-coated PUC. Furthermore, we also showed that the Ag-NPs-coated PUC was able to inhibit the growth of bacteria and fungi. These results demonstrated that the Ag-NPs-coated PUC is able to directly inactivate the microbe’s infectious ability and provides another defense line against these sexually transmitted microbial infections.Keywords: silver nanoparticles, condom, HIV-1, HSV-1/2, antimicrobial

  14. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  15. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  16. Aurora kinase inhibitors attached to iron oxide nanoparticles enhances inhibition of the growth of liver cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiquan [Southeast University, State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering (China); Xie, Li [Southeast University, Zhongda Hospital, School of Medicine (China); Zheng, Ming; Yao, Juan [Jiangsu Chai Tai Tianqing Pharmaceutical Co. Ltd. (China); Song, Lina [Southeast University, State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering (China); Chang, Weiwei [Jiangsu Chai Tai Tianqing Pharmaceutical Co. Ltd. (China); Zhang, Yu; Ji, Min, E-mail: minji888@hotmail.com; Gu, Ning, E-mail: guning@seu.edu.cn [Southeast University, State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering (China); Zhan, Xi, E-mail: zhan01@gmail.com [University of Maryland School of Medicine, The Center of Vascular and Inflammatory Diseases, The Department of Pathology (United States)

    2015-06-15

    We have developed a novel Aurora kinase inhibitor (AKI) AM-005, an analogue of pan-AKI AT-9283. To improve the intracellular efficacy of AM-005 and AT-9283, we utilized magnetite nanoparticles (NPs) to deliver AM-005 and AT-9283 into human SMMC-7721 and HepG2 liver cancer cells. The drug-loaded NPs were prepared through quasi-emulsion solvent diffusion of magnetite NPs with AM-005 or AT-9283. The encapsulated drugs were readily released from NPs, preferentially at low pHs. Upon exposure, cancer cells effectively internalized drug-loaded NPs into lysosome-like vesicles, which triggered a series of cellular changes, including the formation of enlarged cytoplasm, the significant increase of membrane permeability, and the generation of reactive oxygen species (ROS). The increased ROS synthesis sustained over 72 h, whereas that in the cells treated with free-form drugs declined rapidly after 48 h. However, chemical sequestration of the iron core of NPs had a minor influence on the generation of intracellular ROS. On the other hand, uncoupling of AM-005 uptake with NP internalization into cells failed to induce ROS synthesis. Overall, our approach achieved two-fold increase in suppressing the viability of tumor cells in vitro and the growth of tumors in vivo. We conclude that magnetite NPs can be used as pH responsive nanocarriers that are able to improve the efficacy of AKIs.

  17. Aurora kinase inhibitors attached to iron oxide nanoparticles enhances inhibition of the growth of liver cancer cells

    International Nuclear Information System (INIS)

    We have developed a novel Aurora kinase inhibitor (AKI) AM-005, an analogue of pan-AKI AT-9283. To improve the intracellular efficacy of AM-005 and AT-9283, we utilized magnetite nanoparticles (NPs) to deliver AM-005 and AT-9283 into human SMMC-7721 and HepG2 liver cancer cells. The drug-loaded NPs were prepared through quasi-emulsion solvent diffusion of magnetite NPs with AM-005 or AT-9283. The encapsulated drugs were readily released from NPs, preferentially at low pHs. Upon exposure, cancer cells effectively internalized drug-loaded NPs into lysosome-like vesicles, which triggered a series of cellular changes, including the formation of enlarged cytoplasm, the significant increase of membrane permeability, and the generation of reactive oxygen species (ROS). The increased ROS synthesis sustained over 72 h, whereas that in the cells treated with free-form drugs declined rapidly after 48 h. However, chemical sequestration of the iron core of NPs had a minor influence on the generation of intracellular ROS. On the other hand, uncoupling of AM-005 uptake with NP internalization into cells failed to induce ROS synthesis. Overall, our approach achieved two-fold increase in suppressing the viability of tumor cells in vitro and the growth of tumors in vivo. We conclude that magnetite NPs can be used as pH responsive nanocarriers that are able to improve the efficacy of AKIs

  18. Intranasal Immunization with Chitosan/pCAGGS-flaA Nanoparticles Inhibits Campylobacter jejuni in a White Leghorn Model

    Directory of Open Access Journals (Sweden)

    Jin-lin Huang

    2010-01-01

    Full Text Available Campylobacter jejuni is the most common zoonotic bacterium associated with human diarrhea, and chickens are considered to be one of the most important sources for human infection, with no effective prophylactic treatment available. We describe here a prophylactic strategy using chitosan-DNA intranasal immunization to induce specific immune responses. The chitosan used for intranasal administration is a natural mucus absorption enhancer, which results in transgenic DNA expression in chicken nasopharynx. Chickens immunized with chitosan-DNA nanoparticles, which carried a gene for the major structural protein FlaA, produced significantly increased levels of serum anti-Campylobacter jejuni IgG and intestinal mucosal antibody (IgA, compared to those treated with chitosan-DNA (pCAGGS. Chitosan-pCAGGS-flaA intranasal immunization induced reductions of bacterial expellation by 2-3 log10 and 2 log10 in large intestine and cecum of chickens, respectively, when administered with the isolated C. jejuni strain. This study demonstrated that intranasal delivery of chitosan-DNA vaccine successfully induced effective immune response and might be a promising vaccine candidate against C. jejuni infection.

  19. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants

    Directory of Open Access Journals (Sweden)

    Susan K. Eszterhas

    2011-09-01

    Full Text Available Human Immunodeficiency Virus-type 1 (HIV- 1 binds to CD4 and CCR5 receptors on target cells in the human female reproductive tract. We sought to determine whether reducing levels of messenger RNA (mRNA transcripts that encode these receptors in female reproductive tract cells could protect mucosal tissue explants from HIV- 1 infection. Explants prepared from the endometrium, endocervix, and ectocervix of hysterectomy tissues from HIV-1 sero-negative women were exposed to nanoparticles containing CD4- and CCR5-specific short-interfering RNA (siRNA sequences. Explants were then exposed two days later to HIV-1, and HIV-1 reverse transcripts were measured five days post-infection. Explants treated with nanoparticles containing CD4- and CCR5-specific siRNA showed reduced levels of CD4 and CCR5 transcripts, and significantly lower levels of HIV-1 reverse transcripts compared to those treated with an irrelevant siRNA. In female reproductive tract explants and in peripheral blood cell cultures, siRNA transfection induced the secretion of IFN-alpha (IFN-α, a potent antiviral cytokine. In female mice, murine-specific Cd4-siRNA nanoparticles instilled within the uterus significantly reduced murine Cd4 transcripts by day 3. Our findings demonstrate that siRNA nanoparticles reduce expression of HIV-1 infectivity receptors in human female reproductive tract tissues and also inhibit HIV-1 infection. Murine studies demonstrate that nanoparticles can penetrate the reproductive tract tissues in vivo and silence gene expression. The induction of IFN-α after siRNA transfection can potentially contribute to the antiviral effect. These findings support the therapeutic development of nanoparticles to deliver siRNA molecules to silence host cell receptors in the female reproductive tract as a novel microbicide to inhibit mucosal HIV-1 transmission.

  20. Effects of adsorbed and templated nanosilver in mesoporous calcium-silicate nanoparticles on inhibition of bacteria colonization of dentin

    Directory of Open Access Journals (Sweden)

    Fan W

    2014-11-01

    Full Text Available Wei Fan,1,* Daming Wu,1,* Franklin R Tay,2 Tengjiao Ma,1 Yujie Wu,1 Bing Fan1 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China; 2Department of Endodontics, Georgia Regents University, Augusta, Georgia, USA *These authors contributed equally to this work Abstract: Mesoporous calcium-silicate nanoparticles (MCSNs are advanced biomaterials for controlled drug delivery and mineralization induction. Nanosilver-incorporated MCSNs (Ag-MCSNs were prepared in the present study using both the adsorption and template methods. Both versions of Ag-MCSNs showed characteristic morphology of mesoporous materials and exhibited sustained release of ions over time. In antibacterial testing against planktonic Enterococcus faecalis, Ag-MCSNs showed significantly better antibacterial effects when compared with MCSNs (P<0.05. The Ag-MCSNs aggregated on the dentin surface of root canal walls and infiltrated into dentinal tubules after ultrasound activation, significantly inhibiting the adherence and colonization of E. faecalis on dentin (P<0.05. Despite this, Ag-MCSNs with templated nanosilver showed much lower cytotoxicity than Ag-MCSNs with adsorbed nanosilver (P<0.05. The results of the present study indicated that nanosilver could be incorporated into MCSNs using the template method. The templated nanosilver could release silver ions and inhibit the growth and colonization of E. faecalis both in the planktonic form and as biofilms on dentin surfaces as absorbed nanosilver. Templated Ag-MCSNs may be developed into a new intracanal disinfectant for root canal disinfection due to their antibacterial ability and low cytotoxicity, and as controlled release devices for other bioactive molecules to produce multifunctional biomaterials. Keywords: antibacterial effect, mesoporosity

  1. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  2. Alleviation of Boron Stress through Plant Derived Smoke Extracts in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Pirzada Khan

    2014-08-01

    Full Text Available Boron is an essential micronutrient necessary for plant growth at optimum concentration. However, at high concentrations boron affects plant growth and is toxic to cells. Aqueous extract of plant-derived smoke has been used as a growth regulator for the last two decades to improve seed germination and seedling vigor. It has been established that plant-derived smoke possesses some compounds that act like plant growth hormones. The present research was the first comprehensive attempt to investigate the alleviation of boron stress with plant-derived smoke aqueous extract on Sorghum (Sorghum bicolor seed. Smoke extracts of five plants, i.e. Cymbopogon jwarancusa, Eucalyptus camaldulensis, Peganum harmala, Datura alba and Melia azedarach each with six dilutions (Concentrated, 1:100, 1:200, 1:300, 1:400 and 1:500 were used. While boron solutions at concentrations of 5, 10, 15, 20 and 25 ppm were used for stress. Among the dilutions of smoke, 1:500 of E. camaldulensis significantly increased germination percentage, root and shoot length, number of secondary roots and fresh weight of root and shoot while, boron stress reduced growth of Sorghum. It was observed that combined effect of boron solution and E. camaldulensis smoke extract overcome inhibition and significantly improved plant growth. Present research work investigated that the smoke solution has the potential to alleviate boron toxicity by reducing the uptake of boron by maintaining integrity of plant cell wall. The present investigation suggested that plant derived smoke has the potential to alleviate boron stress and can be used to overcome yield losses caused by boron stress to plants.

  3. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    Science.gov (United States)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  4. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  5. Boron toxicity in Lemna gibba

    OpenAIRE

    Mayra Sánchez Villavicencio; Carlos Álvarez Silva; Guadalupe Miranda Arce

    2007-01-01

    Total soluble phenols and total chlorophylls content, changes of biomass and concentration factor in Lemna gibba exposed to different concentrations of boron were measured. Day six soluble phenols showed significant differences in treatment with 10 mg/L of boron. At day ten, chlorophylls content in treatment 2 mg/L concentration increased respect to other experimental groups and control group, there were no significant differences. Biomass of Lemna gibba decreased significant in treatments wi...

  6. Thin coatings based on ZnO@C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonella enterica early biofilm growth

    Science.gov (United States)

    Stan, Miruna Silvia; Constanda, Sabrina; Grumezescu, Valentina; Andronescu, Ecaterina; Ene, Ana Maria; Holban, Alina Maria; Vasile, Bogdan Stefan; Mogoantă, Laurenţiu; Bălşeanu, Tudor-Adrian; Mogoşanu, George Dan; Socol, Gabriel; Grumezescu, Alexandru Mihai; Dinischiotu, Anca; Lazar, Veronica; Chifiriuc, Mariana Carmen

    2016-06-01

    The aim of this study was to develop a nanostructured bioactive surface based on zinc oxide, sodium stearate (C18) and usnic acid (UA) exhibiting harmless effects with respect to the human cells, but with a significant antimicrobial effect, limiting the attachment and biofilm formation of food pathogens. ZnO nanoparticles were synthesized by sol-gel method and functionalized with C18 and UA. The coatings were fabricated by matrix assisted pulsed laser evaporation technique (MAPLE) and further characterized by TEM, SEM, SAED, XRD and IRM. The biological characterization of the prepared coatings consisted in cytotoxicity and antimicrobial assays. The cytotoxicity of ZnO@C18 and ZnO@C18-UA films was evaluated with respect to the human skin fibroblasts (CCD 1070SK cell line) by phase contrast microscopy, MTT assay and nitric oxide (NO) release. The covered surfaces exhibited a decreased cell attachment, effect which was more pronounced in the presence of UA as shown by purple formazan staining of adhered cells. The unattached fibroblasts remained viable after 24 h in the culture media as it was revealed by their morphology analysis and NO level which were similar to uncovered slides. The quantitative microbiological assays results have demonstrated that the bioactive coatings have significantly inhibited the adherence and biofilm formation of Salmonella enterica. The obtained results recommend these materials as efficient approaches in developing anti-adherent coatings for various industrial, medical and food processing applications.

  7. Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4.

    Science.gov (United States)

    Foit, Linda; Thaxton, C Shad

    2016-09-01

    Toll-like receptor 4 (TLR4) plays a critical role in the innate immune system. Stimulation of TLR4 occurs upon binding lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls. Due to the potency of the induced inflammatory response, there is a growing interest in agents that can most proximally modulate this LPS/TLR4 interaction to prevent downstream cell signaling events and the production of inflammatory mediators. Building on the natural ability of human high-density lipoprotein (HDL) to bind LPS, we synthesized a suite of HDL-like nanoparticles (HDL-like NP). We identified one HDL-like NP that was particularly effective at decreasing TLR4 signaling caused by addition of purified LPS or Gram-negative bacteria to model human cell lines or primary human peripheral blood cells. The HDL-like NP functioned to inhibit TLR4-dependent inflammatory response to LPS derived from multiple bacterial species. Mechanistically, data show that the NP mainly functions by scavenging and neutralizing the LPS toxin. Taken together, HDL-like NPs constitute a powerful endotoxin scavenger with the potential to significantly reduce LPS-mediated inflammation. PMID:27244690

  8. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  9. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles.

    Science.gov (United States)

    Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2015-02-14

    Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene "click" strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(I)-catalysed "click" reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.

  10. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  11. Quantifying the Solubility of Boron Nitride Nanotubes and Sheets with Static Light Scattering and Refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, M [The University of Tennessee; Eastwood, Eric Allen [ORNL; Dadmun, Mark D [ORNL

    2013-01-01

    The dissolution of nanoparticles, particularly those containing boron, is an important area of interest for polymer nanocomposite formation and material development. In this work, the solubility of boron nitride nanotubes (BNNT), functionalized boron nitride nanotubes (FBNNT), and boron nitride sheets (BNZG) is quantified in toluene and THF with static light scattering, refractometry, UV vis spectroscopy, and physical observations. UV vis spectroscopy provides a method to determine the concentration and solubility limits of the solutions tested. Using light scattering, the second virial coefficient, A2, is determined and used to calculate , the solute solvent interaction parameter. The Hildebrand solubility parameter, , is then extracted from this data using the Hildebrand Scatchard Solution Theory. A list of potential good solvents based on the estimated value is provided for each nanoparticle. Single-walled carbon nanotubes (SWNTs) and prepolymers (EN4 and EN8) used to synthesize polyurethanes were also tested, because the published and molar attraction constants of these materials provided a selfconsistent check. The dn/dc of SWNTs and boron-containing particles was measured for the first time in this work. A solvent screen for BN-ZG provides additional information that supports the obtained and . Three systems were found to have values below 0.5 and were thermodynamically soluble: BNNT in THF, EN8 in THF, and EN8 in toluene.

  12. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  13. Boron Drug Delivery via Encapsulated Magnetic Nanocomposites: A New Approach for BNCT in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yinghuai Zhu

    2010-01-01

    Full Text Available Ortho-carborane cages have been successfully attached to modified magnetic nanoparticles via catalytic azide-alkyne cycloadditions between 1-R-2-butyl-Ortho-C2B10H10(R=Me,3;Ph,4 and propargyl group-enriched magnetic nanoparticles. A loading amount of 9.83 mmol boron atom/g starch-matrixed magnetic nanoparticles has been reached. The resulting nanocomposites have been found to be highly tumor-targeted vehicles under the influence of an external magnetic field (1.14T, yielding a high boron concentration of 51.4 μg/g tumor and ratios of around 10 : 1 tumor to normal tissues.

  14. Targeted delivery of let-7a microRNA encapsulated ephrin-A1 conjugated liposomal nanoparticles inhibit tumor growth in lung cancer

    Directory of Open Access Journals (Sweden)

    Lee HY

    2013-11-01

    Full Text Available Hung-Yen Lee,1,2 Kamal A Mohammed,1,3 Fredric Kaye,4 Parvesh Sharma,5 Brij M Moudgil,5 William L Clapp,6 Najmunnisa Nasreen1,3 1Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine in the College of Medicine, 2Biomaterials Center, Department of Materials Sciences and Engineering, 3North Florida/South Georgia Veterans Health System, Malcom Randall VA Medical Center, 4Division of Hematology and Oncology, Department of Medicine in the College of Medicine, 5Particle Engineering Research Center and Department of Materials Science and Engineering, 6Renal Pathology, Surgical Pathology, University of Florida, Gainesville, FL, USA Abstract: MicroRNAs (miRs are small noncoding RNA sequences that negatively regulate the expression of target genes by posttranscriptional repression. miRs are dysregulated in various diseases, including cancer. let-7a miR, an antioncogenic miR, is downregulated in lung cancers. Our earlier studies demonstrated that let-7a miR inhibits tumor growth in malignant pleural mesothelioma (MPM and could be a potential therapeutic against lung cancer. EphA2 (ephrin type-A receptor 2 tyrosine kinase is overexpressed in most cancer cells, including MPM and non-small-cell lung cancer (NSCLC cells. Ephrin-A1, a specific ligand of the EphA2 receptor, inhibits cell proliferation and migration. In this study, to enhance the delivery of miR, the miRs were encapsulated in the DOTAP (N-[1-(2.3-dioleoyloxypropyl]-N,N,N-trimethyl ammonium/Cholesterol/DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[cyanur(polyethylene glycol-2000]-PEG (polyethylene glycol-cyanur liposomal nanoparticles (LNP and ephrin-A1 was conjugated on the surface of LNP to target receptor EphA2 on lung cancer cells. The LNP with an average diameter of 100 nm showed high stability, low cytotoxicity, and high loading efficiency of precursor let-7a miR and ephrin-A1. The ephrin-A1 conjugated LNP (ephrin-A1–LNP and let-7a miR encapsulated LNP

  15. Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    In order to enhance the electrochemical properties, especially durability and cell performance in proton exchange membrane fuel cell, electron deficient boron is doped into graphene, followed by deposition of Pt nanoparticles. Successful synthesis of Pt-boron doped graphene (Pt–B–Gr) by pyrolytic process is confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and Transmission electron microscopy analyses. Pt–B–Gr is intercalated by different amount of CB (carbon black) based on Pt–B–Gr/CBx (x = 0.0, 0.2, 0.3, 0.4) and applied to cathode in proton exchange membrane fuel cell. The ECSA (electrochemical active surface area) is increased with CB content up to 30 wt.% of Pt–B–Gr from 21.4 to 33.6 m2 g−1 beyond which it is rather slightly decreased to 29.6 m2 g−1. The ADT (accelerated durability test) is conducted where the ECSA is compared at every 400 cycles up to 1200 cycles for durability. The result exhibits that boron doping into graphene significantly enhances the durability. It might be attributed to more tight binding between Pt and B due to the electron transfer from graphene to boron. The cell performance is enhanced and it is attributed to the combined effect of B-doping and intercalation. - Highlights: • Graphene was successfully doped with boron using pyrolytic process. • Pt nanoparticles were deposited onto boron-doped graphene. • Pt-boron doped graphene was intercalated by carbon black to prevent restacking. • Boron doping significantly enhanced the durability. • The combined effect of boron doping and intercalation enhanced the cell performance

  16. 光照纳米银颗粒对葡萄糖生物传感器响应电流的抑制%Inhibition of Photo-Induced Silver Nanoparticles to Response Current of Glucose Biosensor

    Institute of Scientific and Technical Information of China (English)

    马士禹; 曲艺; 穆劲; 王国军; 江龙

    2009-01-01

    采用纳米银-壳聚糖复合膜固定葡萄糖氧化酶,构建葡萄糖生物传感器.利用计时电流法对不同光照时间纳米银颗粒组装的酶电极响应电流进行了表征.实验结果表明,光照纳米银颗粒可以抑制葡萄糖生物传感器的响应电流;随着光照时间的延长,纳米银颗粒的抑制作用逐渐增强,当光照时间达到120 min时,葡萄糖生物传感器的响应电流最小(-3.953 μA/cm~2).葡萄糖生物传感器响应电流的抑制可能是由纳米银颗粒表面的Ag~+离子浓度及表面性能的变化引起的.%The silver nanoparticle/chitosan composite matrix was developed to fabricate the glucose biosensor. The response current of the enzyme electrode containing AgNPs photo-induced at differ-ent time was characterized by chronoamperometry. The experimental results indicated that the re-sponse current of the glucose biosensor was inhibited by the photo-induced silver nanoparticles. The inhibitory effect of silver nanoparticles enhanced along with the photo-induced time. When the pho-to-induced time of silver nanoparticles was 120 min, the response current of the glucose biosensor reached the minimum value, -3. 953 μ/cm~2. The inhibition of response current of the glucose biosensor is probably due to the change of Ag~+ ions concentration and the new surface formation of silver nanoparticles.

  17. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey); Yilmaz, M. Tolga [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Chemical Engineering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey)

    2005-01-31

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions.

  18. The boron trifluoride nitromethane adduct

    Science.gov (United States)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  19. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  20. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  1. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  2. Mechanical properties of boron coatings

    International Nuclear Information System (INIS)

    Internal stress of coatings will cause reliability problems, such as adhesion failure and peeling. We measured the internal stress in boron coatings, which was prepared by the ion plating method, with an apparatus based on the optically levered laser technique. The boron coatings exhibited large compressive stress in the range from -0.5 GPa to -2.6 GPa. It was found that these compressive stresses were decreasing functions of the deposition rate and were increasing functions of the ion bombardment energy. ((orig.))

  3. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  4. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  5. Newly synthesized salicylidene-4,4′-dimorpholine (SDM) assembled on nickel oxide nanoparticles (NiONPs) and its inhibitive effect on mild steel in 2 N hydrochloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwani, Poonam M. [Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Panchal, Vikram K., E-mail: vikram60panchal@gmail.com [R.G. Shah Science College, Vasna, Ahmedabad 382170, Gujarat (India); Shah, Nisha K. [Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)

    2015-03-15

    Graphical abstract: - Highlights: • Nanoparticles with inhibitor were found to be better corrosion inhibitor than only organic compound. • A strong binding mechanism was confirmed by FTIR, PXRD. • Inhibition efficiency increases drastically for SDM assembled on NiONPs as compared to SDM. • The adsorption model obeys Langmuir adsorption isotherm. • The protective layer over the surface of mild steel has been confirmed by AFM analysis. - Abstract: Corrosion inhibition of mild steel in hydrochloric acid solution by salicylidene-4,4′-dimorpholine (SDM) and SDM assembled on nickel oxide nanoparticles (NiONPs) has been studied with gravimetric, electrochemical impedance spectroscopy (EIS) and polarization techniques. Inhibition was found to increase with increasing concentration of the inhibitors. While studying the temperature effect on corrosion behaviour of SDM and SDM assembled on NiONPs, the inhibition efficiency decreases for SDM only but increases for SDM assembled on NiONPs. The adsorption of both the inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The activation energy as well as other thermodynamic parameters (ΔH* and ΔS*) for the inhibition process was calculated. EIS analysis results showed that the capacitive loops for SDM assembled on NiONPs were far away from blank when compared with SDM only. Polarization curve shows that the inhibitors are of mixed type. Further, the protective layer formation was confirmed from atomic force microscopy (AFM) results. Various methods such as EIS-MS, {sup 1}H NMR, XRD, FTIR, and DLS were performed for the confirmation of the structure, interaction of SDM with NiONPs and size of NiONPs.

  6. Analysis of boronized wall in LHD

    International Nuclear Information System (INIS)

    Boronization has been carried out in some experimental fusion devices as one of wall conditioning Methods. The well-known merits of the boronization are as follows: 1) coated-boron on the first wall has strong gettering function for oxygen impurities and oxygen has been kept into boron films as a boron-oxide and 2) boron film covers first wall with apparently low Z materials facing the plasma. However, an operation scenario of boronization for next generation devices such as ITER is not optimized. In this paper, we discuss an optimized method of coated film uniformity in a wide area and a lifetime of boron film as an oxygen getter using experimental data in the large helical device (LHD). In LHD, boronization by glow discharges has been carried out a few times during each experimental campaign. Helium-diborane mixtured gas is used and plasma facing components (PFM) are stainless steel (SS) for the first wall and carbon for the divertor plates kept in the room temperature. Material probes made of SS316 and Si were installed in the vacuum vessel and exposed during the experimental campaign. Depth profiles of their impurities were analyzed using the X-ray Photoelectron Spectroscopy (XPS) and the Auger electron spectroscopy (AES). Two types of gettering process by boron film have been investigated. One is the process during boronization and the other is that after boronization. Concerning a lifetime of boron film, the distribution of oxygen near the top surface region (0 to 20 nm) indicates a process of oxygen gettering, it shows a contribution after boronization. In this paper, these kinds of process using material probes are shown. (authors)

  7. An efficient Trojan delivery of tetrandrine by poly(N-vinylpyrrolidone-block-poly(ε-caprolactone (PVP-b-PCL nanoparticles shows enhanced apoptotic induction of lung cancer cells and inhibition of its migration and invasion

    Directory of Open Access Journals (Sweden)

    Xu H

    2013-12-01

    Full Text Available Huae Xu,1,2 Zhibo Hou,3 Hao Zhang,4 Hui Kong,2 Xiaolin Li,4 Hong Wang,2 Weiping Xie21Department of Pharmacy, 2Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China; 3First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, People's Republic of China; 4Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of ChinaAbstract: Earlier studies have demonstrated the promising antitumor effect of tetrandrine (Tet against a series of cancers. However, the poor solubility of Tet limits its application, while its hydrophobicity makes Tet a potential model drug for nanodelivery systems. We report on a simple way of preparing drug-loaded nanoparticles formed by amphiphilic poly(N-vinylpyrrolidone-block-poly(ε-caprolactone (PVP-b-PCL copolymers with Tet as a model drug. The mean diameters of Tet-loaded PVP-b-PCL nanoparticles (Tet-NPs were between 110 nm and 125 nm with a negative zeta potential slightly below 0 mV. Tet was incorporated into PVP-b-PCL nanoparticles with high loading efficiency. Different feeding ratios showed different influences on sizes, zeta potentials, and the drug loading efficiencies of Tet-NPs. An in vitro release study shows the sustained release pattern of Tet-NPs. It is shown that the uptake of Tet-NPs is mainly mediated by the endocytosis of nanoparticles, which is more efficient than the filtration of free Tet. Further experiments including fluorescence activated cell sorting and Western blotting indicated that this Trojan strategy of delivering Tet in PVP-b-PCL nanoparticles via endocytosis leads to enhanced induction of apoptosis in the non-small cell lung cancer cell A549 line; enhanced apoptosis is achieved by inhibiting the expression of anti-apoptotic Bcl-2 and Bcl-xL proteins. Moreover, Tet-NPs more efficiently inhibit the ability of cell migration and

  8. Boron Poisoning of Plutonium Solutions

    International Nuclear Information System (INIS)

    The results of a theoretical investigation into the possible relaxation of criticality concentration limits in wet chemical reprocessing plants, due to the introduction of boron poisoning, are reported. The following systems were considered: 1. 1 in. stainless steel tubes filled with boron carbide at various pitches in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 2. 1 in. and 2 in borosilicate glass Raschig rings in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 3. The concentration of natural boron required for k∞ = 1 in homogeneous mixtures of 239Pu-B-H2O. The method of calculation was Monte Carlo using the GEM code with Nuclear Data File cross-sections. The Raschig rings used are those commercially available. The core model consisted of a cubic arrangement of unit cubes of solution within each of which a Raschig ring was centrally placed. The arrangement was such that the rings were regularly stacked with axes parallel, but the side of the unit cube was fixed to preserve the random packing density. Comparison is made with other reported results on boron poisoning. (author)

  9. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  10. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  11. Raman spectroscopy of boron carbides and related boron-containing materials

    International Nuclear Information System (INIS)

    Raman spectra of crystalline boron, boron carbide, boron arsenide (B12As2), and boron phosphide (B12P2) are reported. The spectra are compared with other boron-containing materials containing the boron icosahedron as a structural unit. The spectra exhibit similar features some of which correlate with the structure of the icosahedral units of the crystals. The highest Raman lines appear to be especially sensitive to the B-B distance in the polar triangle of the icosahedron. Such Raman structural markers are potentially useful in efforts to tailor electronic properties of these high temperature semiconductors and thermoelectrics

  12. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  13. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  14. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science; Wierschke, Jonathan Brett [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  15. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice

    Science.gov (United States)

    Verma, Raj Kumar; Yu, Wei; Shrivastava, Anju; Shankar, Sharmila; Srivastava, Rakesh K.

    2016-01-01

    Activation of sonic hedgehog (Shh) in cancer stem cell (CSC) has been demonstrated with aggressiveness of pancreatic cancer. In order to enhance the biological activity of α-mangostin, we formulated mangostin-encapsulated PLGA nanoparticles (Mang-NPs) and examined the molecular mechanisms by which they inhibit human and KC mice (PdxCre;LSL-KrasG12D) pancreatic CSC characteristics in vitro, and pancreatic carcinogenesis in KPC (PdxCre;LSLKrasG12D;LSL-Trp53R172H) mice. Mang-NPs inhibited human and KrasG12D mice pancreatic CSC characteristics in vitro. Mang-NPs also inhibited EMT by up-regulating E-cadherin and inhibiting N-cadherin and transcription factors Slug, and pluripotency maintaining factors Nanog, c-Myc, and Oct4. Furthermore, Mang-NPs inhibited the components of Shh pathway and Gli targets. In vivo, Mang-NPs inhibited the progression of pancreatic intraneoplasia to pancreatic ductal adenocarcinoma and liver metastasis in KPC mice. The inhibitory effects of Mang-NPs on carcinogenesis in KPC mice were associated with downregulation of pluripotency maintaining factors (c-Myc, Nanog and Oct4), stem cell markers (CD24 and CD133), components of Shh pathway (Gli1, Gli2, Patched1/2, and Smoothened), Gli targets (Bcl-2, XIAP and Cyclin D1), and EMT markers and transcription factors (N-cadherin, Slug, Snail and Zeb1), and upregulation of E-cadherin. Overall, our data suggest that Mang-NPs can inhibit pancreatic cancer growth, development and metastasis by targeting Shh pathway. PMID:27624879

  16. Growth Inhibition of Re-Challenge B16 Melanoma Transplant by Conjugates of Melanogenesis Substrate and Magnetite Nanoparticles as the Basis for Developing Melanoma-Targeted Chemo-Thermo-Immunotherapy

    Directory of Open Access Journals (Sweden)

    Tomoaki Takada

    2009-01-01

    Full Text Available Melanogenesis substrate, N-propionyl-cysteaminylphenol (NPrCAP, is selectively incorporated into melanoma cells and inhibits their growth by producing cytotoxic free radicals. Magnetite nanoparticles also disintegrate cancer cells and generate heat shock protein (HSP upon exposure to an alternating magnetic field (AMF. This study tested if a chemo-thermo-immunotherapy (CTI therapy strategy can be developed for better management of melanoma by conjugating NPrCAP on the surface of magnetite nanoparticles (NPrCAP/M. We examined the feasibility of this approach in B16 mouse melanoma and evaluated the impact of exposure temperature, frequency, and interval on the inhibition of re-challenged melanoma growth. The therapeutic protocol against the primary transplanted tumor with or without AMF exposure once a day every other day for a total of three treatments not only inhibited the growth of the primary transplant but also prevented the growth of the secondary, re-challenge transplant. The heat-generated therapeutic effect was more significant at a temperature of 43∘C than either 41∘C or 46∘C. NPrCAP/M with AMF exposure, instead of control magnetite alone or without AMF exposure, resulted in the most significant growth inhibition of the re-challenge tumor and increased the life span of the mice. HSP70 production was greatest at 43∘C compared to that with 41∘C or 46∘C. CD+T cells were infiltrated at the site of the re-challenge melanoma transplant.

  17. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  18. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  19. CVD-produced boron filaments

    Science.gov (United States)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  20. Boron Enrichment in Martian Clay

    OpenAIRE

    James D Stephenson; Lydia J Hallis; Kazuhide Nagashima; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest minera...

  1. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  2. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  3. Boron-based Drug Design for Cancer Therapy

    Institute of Scientific and Technical Information of China (English)

    H.Nakamura; R.Horikoshi; T.Usui; H.S.Ban

    2007-01-01

    1 Results Selective inhibition of protein tyrosine kinases is gaining importance as an effective therapeutic approach for the treatment of a wide range of human cancers.The epidermal growth factor receptor (EGFR) protein tyrosine kinase is one of the important kinases that play a fundamental role in cell growth signal pathways.We focused on the 4-anilinoquinazoline framework,which is observed in both compounds as a common structure.A boron atom has a vacant orbital and interconverts with ease between th...

  4. Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction

    Science.gov (United States)

    Sun, Yongrong; Du, Chunyu; An, Meichen; Du, Lei; Tan, Qiang; Liu, Chuntao; Gao, Yunzhi; Yin, Geping

    2015-12-01

    We report the synthesis of boron-doped graphene by thermally annealing the mixture of graphene oxide and boric acid, and its usage as the support of Pt catalyst towards the methanol oxidation reaction. The composition, structure and morphology of boron-doped graphene and its supported Pt nanoparticles (Pt/BG) are characterized by transmission electron microscopy, inductively coupled plasma mass spectrometry, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. It is revealed that boron atoms are doped into graphene network in the form of BC2O and BCO2 bonds, which lead to the increase in defect sites and facilitate the subsequent deposition of Pt nanoparticles. Therefore, the Pt/BG catalyst presents smaller particle size and narrower size distribution than the graphene supported Pt (Pt/G) catalyst. When evaluated as the electrocatalyst for the methanol oxidation reaction, the Pt/BG catalyst exhibits excellent electrochemical activity and stability demonstrated by cyclic voltammetry and chronoamperometry tests. The enhanced activity is mainly ascribed to the electronic interaction between boron-doped graphene and Pt nanoparticles, which lowers the d-band center of Pt and thus weakens the absorption of the poisoning intermediate CO. Our work provides an alternative approach of improving the reaction kinetics for the oxidation of small organic molecules.

  5. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  6. Method for determination of boron carbide in wurtzite-like boron nitride

    International Nuclear Information System (INIS)

    A technique for increase of sensitivity and analysis accuracy while boron carbide determination in wurtzite-like boron nitride is proposed. Boron nitride with an addition of boron carbide is bjected to treatment by the mixture of concentrated sulphuric acid and 0.1-0.5 N of porassium bichromate solution at ratio of (2-1):1 at the temperature of mixture boiling. Boron carboide content is calculated according to the quantity of restored Cr(3+), which is determined by titration of Cr(6+) excess with the Mohr's salt solution

  7. Boron water quality for the Plynlimon catchments

    Directory of Open Access Journals (Sweden)

    C. Neal

    1997-01-01

    Full Text Available Boron concentrations in rainfall, throughfall and stemflow for Spruce stands, mist, streamwater and groundwater are compared with chloride to assess atmospheric sources and catchment input-output balances for the Plynlimon catchments. In rainfall, boron concentration averages about 4.5 μg-B l-1 and approximately two thirds of this comes from anthropogenic sources. In through-fall and stemflow, boron concentrations are approximately a factor of ten times higher than in rainfall. This increase is associated with enhanced scavenging of mist and dry deposition by the trees. As the sampling sites were close to a forest edge, this degree of scavenging is probably far higher than in the centre of the forest. The throughfall and stemflow concentrations of boron show some evidence of periodic variations with time with peak concentrations occurring during the summer months indicating some vegetational cycling. In mist, boron concentrations are almost twenty times higher than in rainfall and anthropogenic sources account for about 86% of this. Within the Plynlimon streams, boron concentrations are about 1.4 to 1.7 times higher than in rainfall. However, after allowance for mist and dry deposition contributions to atmospheric deposition, it seems that, on average, about 30% of the boron input is retained within the catchment. For the forested catchments, felling results in a disruption of the biological cycle and a small increase in boron leaching from the catchment results in the net retention by the catchment being slightly reduced. Despite the net uptake by the catchment, there is clear evidence of a boron component of weathering from the bedrock. This is shown by an increased boron concentration in a stream influenced by a nearby borehole which increased groundwater inputs. The weathering component for boron is also observed in Plynlimon groundwaters as boron concentrations and boron to chloride ratios are higher than for the streams. For these

  8. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  9. Some physical properties of compacted specimens of highly dispersed boron carbide and boron suboxide

    International Nuclear Information System (INIS)

    Structure, shear modulus and internal friction (IF) of compacted specimens of boron carbide and boron suboxide have been investigated. Microtwins and stacking faults were observed along the {100} plane systems of polycrystalline specimens of boron carbide. Electrical conductivity of the specimens was that of p-type. Concentration of holes varied from 1017 to 1019 cm-3. The IF was measured in the temperature range 80-300 K. It was shown that the IF of boron carbide and that of boron suboxide were characterized with a set of similar relaxation processes. Mechanisms of the relaxation processes in boron carbide and boron suboxide are discussed in terms of the Hasiguti model of interaction between dislocations and point defects

  10. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  11. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  12. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  13. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  14. Next generation adoptive immunotherapy--human T cells as carriers of therapeutic nanoparticles.

    Science.gov (United States)

    Mortensen, M W; Kahns, L; Hansen, T; Sorensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2007-12-01

    An important step in adoptive immunotherapy in general and specifically with respect to cancer treatment is the initiation of an inflammatory T cell response at the tumor site. Here we suggest a new concept for a controlled inflammatory response in which the intrinsic cytotoxic properties of T cells are upgraded with the properties of nanoparticles transfected into the T cells during the ex vivo expansion process. We report in vitro upgrading of human T cells using PEGylated boron carbide nanoparticles functionalised with a translocation peptide aimed at Boron Neutron Capture Therapy (BNCT). A key finding is that the metabolism of such upgraded human T cells were not affected by a payload of 0.13 pg boron per cell and that the nanoparticles were retained in the cell population after several cell divisions. This is vital for transporting nanoparticles by T cells to the tumor site.

  15. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  16. Boronated mesophase pitch coke for lithium insertion

    Science.gov (United States)

    Frackowiak, E.; Machnikowski, J.; Kaczmarska, H.; Béguin, F.

    Boronated carbons from mesophase pitch have been used as materials for lithium storage in Li/carbon cells. Doping by boron has been realized by co-pyrolysis of coal tar pitch with the pyridine-borane complex. Amount of boron in mesocarbon microbeads (MCMB) varied from 1.4 to 1.8 wt.% affecting the texture of carbon. Optical microscopy and X-ray diffractograms have shown tendency to more disordered structure for boron-doped carbon. The values of specific reversible capacity ( x) varied from 0.7 to 1.1 depending significantly on the final temperature of pyrolysis (700-1150°C). The optimal charge/discharge performance was observed for boronated carbon heated at 1000°C.

  17. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  18. Non inflammatory boronate based glucose-responsive insulin delivery systems.

    Directory of Open Access Journals (Sweden)

    Indrani Dasgupta

    Full Text Available Boronic acids, known to bind diols, were screened to identify non-inflammatory cross-linkers for the preparation of glucose sensitive and insulin releasing agglomerates of liposomes (Agglomerated Vesicle Technology-AVT. This was done in order to select a suitable replacement for the previously used cross-linker, ConcanavalinA (ConA, a lectin known to have both toxic and inflammatory effects in vivo. Lead-compounds were selected from screens that involved testing for inflammatory potential, cytotoxicity and glucose-binding. These were then conjugated to insulin-encapsulating nanoparticles and agglomerated via sugar-boronate ester linkages to form AVTs. In vitro, the particles demonstrated triggered release of insulin upon exposure to physiologically relevant concentrations of glucose (10 mmoles/L-40 mmoles/L. The agglomerates were also shown to be responsive to multiple spikes in glucose levels over several hours, releasing insulin at a rate defined by the concentration of the glucose trigger.

  19. Boron enrichment in martian clay.

    Science.gov (United States)

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  20. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  1. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles.

    Directory of Open Access Journals (Sweden)

    Amanda Tivnan

    Full Text Available BACKGROUND: Neuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD(2, providing a target for tumor-specific delivery. PRINCIPAL FINDINGS: Nanoparticles encapsulating miR-34a and conjugated to a GD(2 antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2 protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors. SIGNIFICANCE: These novel findings highlight the potential of anti-GD(2-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD(2-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth.

  2. Structural and photoelectrochemical investigation of boron-modified nanostructured tungsten trioxide films

    International Nuclear Information System (INIS)

    We report a modification of nanostructured WO3 films by doping with boron. The films were obtained by a direct one-step sol–gel route involving tungstic acid/polyethelene glycol precursor. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) showed that the incorporation of boron results in the retention of a substantial amount of water and/or hydroxyl groups in the WO3 lattice and at the surface of nanoparticles occurring despite high temperature (550 °C) annealing of the films. Another consequence of boron doping is the largely increased roughness factor revealed by atomic force microscopy (AFM) imaging. Both kinds of films are highly porous and consist of partly sintered particles with sizes in the range of tens of nanometers. The photoelectrochemical (PEC) studies performed under simulated solar AM 1.5 illumination showed significantly enhanced water oxidation photocurrents for B-WO3 photoanodes, by about 25% higher than those for the undoped WO3 films of similar thickness. The low extent of recombination of photogenerated charges was confirmed by incident photon-to-current conversion efficiencies (IPCEs) reaching 70% in the region of visible wavelengths at 420 nm. The improved PEC properties were attributed to the increased surface hydroxylation of B-WO3 nanoparticles favoring water photo-oxidation reaction and to the larger surface area of the film exposed to the electrolyte

  3. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo -In vitro and in vivo Anticancer Activity of bio-Pt NPs-

    Directory of Open Access Journals (Sweden)

    Bendale Yogesh

    2016-06-01

    Full Text Available Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer.

  4. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    OpenAIRE

    Yuya Egawa; Ryotaro Miki; Toshinobu Seki

    2014-01-01

    In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conj...

  5. Synthesis and characterization of ammonium phosphate fertilizers with boron

    OpenAIRE

    ANGELA MAGDA; RODICA PODE; CORNELIA MUNTEAN; MIHAI MEDELEANU; ALEXANDRU POPA

    2010-01-01

    The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the ...

  6. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  7. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 3000C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 10500C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  8. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  9. Synthesis of Boron Nanorods by Smelting Non-Toxic Boron Oxide in Liquid Lithium

    OpenAIRE

    Amartya Chakrabarti; Tao Xu; Laura K. Paulson; Krise, Kate J.; Maguire, John A; Hosmane, Narayan S.

    2010-01-01

    In contrast to the conventional bottom-up syntheses of boron nanostructures, a unique top-down and greener synthetic strategy is presented for boron nanorods involving nontoxic boron oxide powders ultrasonically smelted in liquid lithium under milder conditions. The product was thoroughly characterized by energy dispersive X-ray analysis, atomic emission spectroscopy, thermogravimetric analysis and, UV-Vis spectroscopy, including structural characterization by transmission electron microscop...

  10. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  11. First boronization in KSTAR: Experiences on carborane

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Suk-Ho, E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Kun-Su; Kim, Kwang-Pyo; Kim, Kyung-Min; Kim, Hong-Tack [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, Jong-Ho; Woo, Hyun-Jong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jae-Min [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Park, Eun-Kyong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Woong-Chae; Kim, Hak-Kun; Park, Kap-Rai; Yang, Hyung-Lyeol; Oh, Yeong-Kook; Na, Hoon-Kyun [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lho, Taehyeop [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, Kyu-Sun [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-08-01

    First boronization was performed in KSTAR tokamak during 2009 campaign in order to reduce oxygen impurities and to lower the power loss due to radiation. We report the results from the experiences on carborane during the first boronization in KSTAR. After the boronization, H{sub 2}O and O{sub 2} level in the vacuum vessel are reduced significantly. The characteristics of the deposited thin films were analyzed by variable angle spectroscopic ellipsometry, XPS, and AES. {approx}1.78 x 10{sup 16} cm{sup -2} s{sup -1} of carbon flux on the wall is estimated by using cavity technique.

  12. From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

    OpenAIRE

    Hongsheng Liu; Junfeng Gao; Jijun Zhao

    2013-01-01

    As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster BN with increasing cluster size and low diffusion barrier for a single B atom on Cu(111) surface ensure cont...

  13. Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions

    International Nuclear Information System (INIS)

    This study demonstrates that trace boron addition to Ti–6Al–4V coupons produced by additive layer manufacturing is an effective way to eliminate the deleterious anisotropic microstructures often encountered with this manufacturing technique. Trace boron additions (up to 0.13 wt.%) to this alloy eliminate grain boundary-α and colony-α, and instead produce a homogeneous α-microstructure consisting of fine equiaxed α-grains in both as-deposited and heat treated coupons. Prior-β grains remain columnar with boron addition but become narrower due to the wider solidification range and growth restricting effect of the boron solute. Compared to unmodified Ti–6Al–4V alloy, Ti–6Al–4V modified with trace boron additions showed up to 40% improvement in plasticity with no loss in strength under uniaxial compression at room temperature. Boron additions were found to inhibit twinning transmission that causes sudden large load drops during deformation of the unmodified Ti–6Al–4V alloy in the heat treated condition

  14. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  15. A Three-Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes).

    Science.gov (United States)

    Santos, Fábio M F; Rosa, João N; Candeias, Nuno R; Carvalho, Cátia Parente; Matos, Ana I; Ventura, Ana E; Florindo, Helena F; Silva, Liana C; Pischel, Uwe; Gois, Pedro M P

    2016-01-26

    The modular assembly of boronic acids with Schiff-base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99%) of structurally diverse and photostable dyes that exhibit a polarity-sensitive green-to-yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54,000 M(-1) cm(-1)). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non-cytotoxic, stable, and highly fluorescent poly(lactide-co-glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains.

  16. Water-Soluble Chitosan Nanoparticles Inhibit Hypercholesterolemia Induced by Feeding a High-Fat Diet in Male Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Yi Tao

    2011-01-01

    Full Text Available Chitosan, a deacetylated product of chitin, has been demonstrated to lower cholesterol in humans and animals. However, chitosan is not fully soluble in water which would influence absorption in the human intestine. In addition, water-soluble chitosan (WSC has higher reactivity compared to chitosan. The present study was designed to clarify the effects of WSC and water-soluble chitosan nanoparticles (WSC-NPs on hypercholesterolemia induced by feeding a high-fat diet in male Sprague-Dawley rats. WSC-NPs were prepared by the ionic gelation method and the spray-drying technique. The nanoparticles were spherical in shape and had a smooth surface. The mean size of WSC-NPs was 650 nm variing from 500 to 800 nm. Results showed that WSC-NPs reduced the blood lipids and plasma viscosity significantly and increased the serum superoxide dismutase (SOD activities significantly. This paper is the first report of the lipid-lowering effects of WSC-NPs suggesting that the WSC-NPs could be used for the treatment of hypercholesterolemia.

  17. Water-Soluble Chitosan Nanoparticles Inhibit Hypercholesterolemia Induced by Feeding a High-Fat Diet in Male Sprague-Dawley Rats

    International Nuclear Information System (INIS)

    Chitosan, a deacetylated product of chitin, has been demonstrated to lower cholesterol in humans and animals. However, chitosan is not fully soluble in water which would influence absorption in the human intestine. In addition, water-soluble chitosan (WSC) has higher reactivity compared to chitosan. The present study was designed to clarify the effects of WSC and water-soluble chitosan nanoparticles (WSC-NPs) on hypercholesterolemia induced by feeding a high-fat diet in male Sprague-Dawley rats. WSC-NPs were prepared by the ionic gelation method and the spray-drying technique. The nanoparticles were spherical in shape and had a smooth surface. The mean size of WSC-NPs was 650 nm variing from 500 to 800?nm. Results showed that WSC-NPs reduced the blood lipids and plasma viscosity significantly and increased the serum superoxide dismutase (SOD) activities significantly. This paper is the first report of the lipid-lowering effects of WSC-NPs suggesting that the WSC-NPs could be used for the treatment of hypercholesterolemia

  18. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  19. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  20. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  1. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  2. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  3. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  4. Innovative boron nitride-doped propellants

    OpenAIRE

    Thelma Manning; Richard Field; Kenneth Klingaman; Michael Fair; John Bolognini; Robin Crownover; Carlton P. Adam; Viral Panchal; Eugene Rozumov; Henry Grau; Paul Matter; Michael Beachy; Christopher Holt; Samuel Sopok

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower ...

  5. Lithium-Beryllium-Boron : Origin and Evolution

    OpenAIRE

    Vangioni-Flam, Elisabeth; Casse, Michel; Audouze, Jean

    1999-01-01

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to...

  6. Inheritance of Boron Efficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; WANG Yun-Hua; NIAN Fu-Zhao; LU Jian-Wei; MENG Jin-Ling; XU Fang-Sen

    2009-01-01

    Field experiments were conducted to study the inheritance of boron efficiency in oilseed rape (Brassica napus L.) by evaluating the boron (B) efficiency coefficient (BEC,the ratio of the seed yield at below the critical boron level to that at the boron-sufficient level) with 657 F2:3 fines of a population derived from a cross between a B-efficient cultivar,Qingyou 10,and a B-inefficient cultivar,Bakow.Qingyou i0 had high BEC as well as high seed yield at low available soil B.On the contrary,Bakow produced low seed yield at low B status.Boron deficiency decreased the seed yield of the F2:3 lines to different extents and the distribution of BEC of the population showed a bimodal pattern.When the 657 F2:3 lines were grouped into B-efficient lines and B-inefficient lines according to their BEC,the ratio of B-efficient lines to B-inefficient lines fitted the expected ratio (3:1),indicating that one major gene controlled the B-efficiency trait.127 F2:3 lines selected from the population at random,with distribution of BEC similar to that of the overall population,were used to identify the target region for fine mapping of the boron efficiency gene.

  7. Boronization of Russian tokamaks from carborane precursors

    International Nuclear Information System (INIS)

    A new and cheap boronization technique using the nontoxic and nonexplosive solid substance carborane has been developed and successfully applied to the Russian tokamaks T-11M, T-3M, T-10 and TUMAN-3. The glow discharge in a mixture of He and carborane vapor produced the amorphous B/C coating with the B/C ratio varied from 2.0-3.7. The deposition rate was about 150 nm/h. The primary effect of boronization was a significant reduction of the impurity influx and the plasma impurity contamination, a sharp decrease of the plasma radiated power, and a decrease of the effective charge. Boronization strongly suppressed the impurity influx caused by additional plasma heating. ECR- and ICR-heating as well as ECR current drive were more effective in boronized vessels. Boronization resulted in a significant extension of the Ne- and q-region of stable tokamak operation. The density limit rose strongly. In Ohmic H-mode energy confinement time increased significantly (by a factor of 2) after boronization. It rose linearly with plasma current Ip and was 10 times higher than Neo-Alcator time at maximum current. ((orig.))

  8. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 105 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  9. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  10. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  11. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  12. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  13. The energy landscape of fullerene materials: a comparison between boron, boron-nitride and carbon

    CERN Document Server

    De, Sandip; Amsler, Maximilian; Pochet, Pascal; Genovese, Luigi; Goedecker, Stefan

    2010-01-01

    Using the minima hopping global geometry optimization method on the density functional potential energy surface we study medium size and large boron clusters. Even though for isolated medium size clusters the ground state is a cage like structure they are unstable against external perturbations such as contact with other clusters. The energy landscape of larger boron clusters is glass like and has a large number of structures which are lower in energy than the cages. This is in contrast to carbon and boron nitride systems which can be clearly identified as structure seekers in our minima hopping runs. The differences in the potential energy landscape explain why carbon and boron nitride systems are found in nature whereas pure boron fullerenes have not been found.

  14. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  15. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  16. Effect of different binders on mechanical and ballistic properties of boron - viton based fuel rich propellant

    Science.gov (United States)

    Verma, Pankaaj; Bhujbal, J. G.; Ghavate, R. B.; Darekar, S. D.; Singh, R. V.

    2013-06-01

    Boron is a preferred metal in air augmented propulsion because of its very high heat of combustion per unit mass and per unit volume. But oxide layer (B2O3) formed on its surface inhibits the combustion of boron. Use of fluorocarbon binder can be a promising approach for the improved ignition of boron. In the present study Fuel Rich Propellant composition based on Boron / Ammonium Perchlorate / vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene terpolymer (Viton-B) as a fluorocarbon binder is processed. The objective of the study is to improve mechanical and ballistic properties of the propellant; Viton-B is partially replaced by other binders like estane, polymethyl metha acrylate, polystyrene and irostic. The different compositions are tested for mechanical properties like ultimate compressive strength (UCS), % Compression and Modulus by Universal Testing Machine following ASTM standard D695-02A; and ballistic properties like pressure exponent value (`n' value) and rate of burning constant value by strand burner technique. It is observed that as Viton is partially replaced; mechanical properties improve; and ballistic properties decrease. From the results, it is concluded that estane can be used as partial replacement of Viton-B, as value of UCS increases by 27% and burn rate & `n' value is comparable with the full Viton-B binder composition.

  17. Synthetic approach of norbadione A: new preparation of alcohols from sulfones and boron compounds

    International Nuclear Information System (INIS)

    The synthetic approach of norbadione A, a pigment from mushrooms related to pulvinic acids, was studied. This compound has the property to complex caesium and has shown an antioxidant activity. The first strategy, based on a double Suzuki-Miyaura coupling between a naphtho-lactone with two boron functions and two pulvinic moieties with a triflate was unsuccessful and has shown a deactivating effect of the lactone. Modifications aimed to inhibit the electro-attracting character of the lactone permitted to obtain a bis(coupled) product with a poor yield. A second approach based on a the cyclization of enol aryl-acetates was studied in order to build the pulvinic moiety in several steps. The important reaction of introduction of an alkyl-acetate from a triflate was realised by a palladium-mediated coupling. The cyclization attempts carried out using a naphthalenic compound allowed us to isolate a monocyclised product. A parallel study was to first build a tetronic moiety and then to construct the exocyclic double bond by a method developed in the laboratory for the preparation of an iodated pulvinic compound. Finally, a new preparation of alcohols from sulfones and boron compounds was developed. Two known reactions in the chemistry of boron were combined. The first one is the reaction between anions of sulfones and tri-alkyl-boranes, the second one is a thermal isomerization which places the boron atom in a terminal position. A new preparation of primary alcohols was thus carried out. (author)

  18. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  19. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation.

    Science.gov (United States)

    Fu, Ling; Hamzeh, Mahsa; Dodard, Sabine; Zhao, Yuan H; Sunahara, Geoffrey I

    2015-05-01

    This study investigated the possibility that titanium dioxide nanoparticles (nano-TiO2) toxicity in Pseudokirchneriella subcapitata involves reactive oxygen species (ROS) production, using the dichlorodihydrofluorescein (DCF) assay. Algae were exposed to nano-TiO2 under laboratory fluorescent lamps supplemented with UV irradiation for 3h, with or without a UV filter. Results showed that nano-TiO2 increased ROS production in UV-exposed cells, with or without a UV filter (LOEC values were 250 and 10mg/L, respectively). Sublethal effects of nano-TiO2 on UV pre-exposed algae were also examined. Toxicity studies indicated that exposure to nano-TiO2 agglomerates decreased algal growth following 3h pre-exposure to UV, with or without a UV filter (EC50s were 8.7 and 6.3mg/L, respectively). The present study suggests that the growth inhibitory effects of nano-TiO2 in algae occurred at concentrations lower than those that can elevate DCF fluorescence, and that ROS generation is not directly involved with the sublethal effects of nano-TiO2 in algae. PMID:25867689

  20. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  1. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  2. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P2O5) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  3. First gaseous boronization during pulsed discharge cleaning

    Science.gov (United States)

    Ko, J.; Den Hartog, D. J.; Goetz, J. A.; Weix, P. J.; Limbach, S. T.

    2013-01-01

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  4. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  5. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  6. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  7. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  8. Boron-doped MnTe semiconductor-sensitized ZnO solar cells

    Indian Academy of Sciences (India)

    Auttasit Tubtimtae; Suwanna Sheangliw; Kritsada Hongsith; Supab Choopun

    2014-10-01

    We studied the photovoltaic performance of boron-doped MnTe semiconductor-sensitized solar cells (B-doped MnTe SSCs). The B-doped MnTe semiconductor was grown on ZnO using two stages of the successive ionic layer adsorption and reaction (SILAR) technique. The two phases of B-doped semiconductor nanoparticles (NPs), i.e. MnTe and MnTe2 were observed with a diameter range of approximately 15–30 nm. The result of the energy conversion efficiency of the sample with boron doping was superior compared to that of an undoped sample, due to the substantial change in the short-circuit current density and the open-circuit voltage. In addition, plots of ( ℎ )2 vs ℎ with band gaps of 1.30 and 1.27 eV were determined for the undoped and B-doped MnTe NPs, respectively. It can be noted that the boron doping effects with the change in the band gap and lead to an improvement in the crystalline quality and also intimate contact between the larger sizes of MnTe NPs. Hence, a noticeably improved photovoltaic performance resulted. However, this kind of semiconductor sensitizer can be further extended by experiments on yielding a higher power conversion efficiency and greater stability of the device.

  9. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  10. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  11. Enhanced Plasma Performance by ICRF Boronization

    Institute of Scientific and Technical Information of China (English)

    万宝年; 赵燕平; 李建刚; 宋梅; 吴振伟; 罗家融; 李成富; 王小明

    2002-01-01

    Boronization with carborane (C2B10H12) by ICRF has been applied routinely to the walls of HT-7 super-conducting tokamak for the reduction of impurity influx, especially carbon and oxygen. Significant suppression of metallic impurities and radiating power fraction are achieved. The improved confinement for both particle and energy is observed in full range of operation parameters. Energy balance analysis shows that electron heat diffusion coefficient is strongly reduced. Measurements by Langmuir probes at the edge plasma show that the poloidal velocity shear after boronization is changed to a profile favoring to good confinement. The main emphasis of this paper is to describe effects of boronization on aspects of the enhanced plasma performance.

  12. Depth resolved investigations of boron implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sztucki, M. E-mail: michael@sztucki.de; Metzger, T.H.; Milita, S.; Berberich, F.; Schell, N.; Rouviere, J.L.; Patel, J

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6x10{sup 15} ions/cm{sup -2} at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {l_brace}1 1 1{r_brace} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  13. The effect of grain boundary segregation of boron in cast alloy 718 on HAZ microfissuring -- a SIMS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.; Chaturvedi, M.C. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Dept. of Mechanical and Industrial Engineering; Richards, N.L. [Bristol Aerospace Ltd., Winnipeg, Manitoba (Canada); Jackman, J. [CANMET, Ottawa, Ontario (Canada)

    1997-08-01

    Secondary ion mass spectroscopy (SIMS) has been used to examine grain boundary segregation in cast alloy 718. The relationship between the boron segregation and the microfissuring tendency in heat affected zones (HAZ) around electron beam welds is discussed in this study. It is concluded that two types of segregation, namely equilibrium and non-equilibrium segregation, occurred during the homogenization heat treatment of the base material. Water quenching after the homogenization treatment inhibited non-equilibrium segregation of boron and other trace elements owing to insufficient time for diffusion of solute-vacancy complexes to occur. Intermediate cooling rates such as air cooling enhanced both non-equilibrium and equilibrium segregation, since equilibrium segregation occurred during holding at the heat treatment temperature. The value of net segregation produced by a combination of equilibrium segregation and non-equilibrium segregation varied with temperature in a U-shape. The nature of the grain boundary in the cast alloy was examined by using an electron backscattered diffraction (EBSD) technique and it was found that 93% of the grain boundaries were of the random type ({Sigma} > 49). The weldability of this alloy was found to be closely related to the grain boundary segregation of boron, i.e., the variation of HAZ total crack length (TCL) with pre-welding heat treatment temperatures has a trend similar to that of boron segregation with temperature after air cooling. Mechanisms for the effect of boron on HAZ microfissuring have been proposed.

  14. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water.

  15. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and co

  16. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  17. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-01-01

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070

  18. Computational Aspects of Carbon and Boron Nanotubes

    Directory of Open Access Journals (Sweden)

    Paul Manuel

    2010-11-01

    Full Text Available Carbon hexagonal nanotubes, boron triangular nanotubes and boron a-nanotubes are a few popular nano structures. Computational researchers look at these structures as graphs where each atom is a node and an atomic bond is an edge. While researchers are discussing the differences among the three nanotubes, we identify the topological and structural similarities among them. We show that the three nanotubes have the same maximum independent set and their matching ratios are independent of the number of columns. In addition, we illustrate that they also have similar underlying broadcasting spanning tree and identical communication behavior.

  19. Superparamagnetic iron oxide nanoparticles mediated 131I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice

    International Nuclear Information System (INIS)

    Hepatocellular carcinoma (HCC) is a primary liver tumor and is the most difficult human malignancy to treat. In this study, we sought to develop an integrative approach in which real-time tumor monitoring, gene therapy, and internal radiotherapy can be performed simultaneously. This was achieved through targeting HCC with superparamagnetic iron oxide nanoparticles (SPIOs) carrying small interfering RNA with radiolabled iodine 131 (131I) against the human vascular endothelial growth factor (hVEGF). hVEGF siRNA was labeled with 131I by the Bolton-Hunter method and conjugated to SilenceMag, a type of SPIOs. 131I-hVEGF siRNA/SilenceMag was then subcutaneously injected into nude mice with HCC tumors exposed to an external magnetic field (EMF). The biodistribution and cytotoxicity of 131I-hVEGF siRNA/SilenceMag was assessed by SPECT (Single-Photon Emission Computed Tomography) and MRI (Magnetic Resonance Imaging) studies and blood kinetics analysis. The body weight and tumor size of nude mice bearing HCC were measured daily for the 4-week duration of the experiment. 131I-hVEGF siRNA/SilenceMag was successfully labeled; with a satisfactory radiochemical purity (>80%) and biological activity in vitro. External application of an EMF successfully attracted and retained more 131I-hVEGF siRNA/SilenceMag in HCC tumors as shown by SPECT, MRI and biodistribution studies. The tumors treated with 131I-hVEGF siRNA/SilenceMag grew nearly 50% slower in the presence of EMF than those without EMF and the control. Immunohistochemical assay confirmed that the tumor targeted by 131I-hVEGF siRNA/SilenceMag guided by an EMF had a lower VEGF protein level compared to that without EMF exposure and the control. EMF-guided 131I-hVEGF siRNA/SilenceMag exhibited an antitumor effect. The synergic therapy of 131I-hVEGF siRNA/SilenceMag might be a promising future treatment option against HCC with the dual functional properties of tumor therapy and imaging

  20. Direct evidence of metallic bands in a monolayer boron sheet

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Liu, Ro-Ya; Iimori, Takushi; Lian, Chao; Li, Hui; Chen, Lan; Wu, Kehui; Meng, Sheng; Komori, Fumio; Matsuda, Iwao

    2016-07-01

    The search for metallic boron allotropes has attracted great attention in the past decades and recent theoretical works predict the existence of metallicity in monolayer boron. Here, we synthesize the β12-sheet monolayer boron on a Ag(111) surface and confirm the presence of metallic boron-derived bands using angle-resolved photoemission spectroscopy. The Fermi surface is composed of one electron pocket at the S ¯ point and a pair of hole pockets near the X ¯ point, which is supported by the first-principles calculations. The metallic boron allotrope in β12 sheet opens the way to novel physics and chemistry in material science.

  1. The synthesis and characterization of iron nanoparticles

    Science.gov (United States)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  2. Relationship Between Soil Boron Adsorption Kinetics and Rape Plant Boron Response

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; PIMEIMEI; 等

    1997-01-01

    The boron adsorption kinetic experiment in soil by means a flow displacement technique showed that the kinetic data could be described with some mathematic equations.The average values of the coorealtion coefficeint for zero-order,first-order,parabolic diffusion ,Elovich,power function and eponential equations were 0.957,0.982,0.981,0.984,0.981 and 0.902 ,respectively,The correlation between adsorbed boron or its other expression form and time were the highest for first-order ,parabloic diffusion Elovich,and pwer function equations,the second for the zeroorder equation,and the tlowest for the exponential equation.The parabloic diffusion equation fitted well the expermiental results,with the least standard error among the six kinetic equation,showing that the monvemetn of boron from soil solution to soil colloid surface may be controlled by boron diffusion speed.The boron content of rape seedling obtained from soil cultvation was correlated with the rate constants of the kinetic equations.The constants of first-order ,parabloic diffusion,and exponential equaitions were significanlty correlated with the boron content of the crop of NPK treatment at a 95% probaility level ,with correation coeffecients being 0.686,0.691 and 0.64 and 0.641,respectively.In the case of zero-order equation,it Was significant at 99% probability level(r=0.736),These results showed that the adsorption kinetic constants of soil boron were closely related with the rape plant response to boron.

  3. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  4. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na210B12H11SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author)

  5. The structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron-nitride

    OpenAIRE

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H. G.; Liu, Zheng; Suenaga, Kazutomo

    2014-01-01

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra (EELS) of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sampl...

  6. Effects of boron number per unit volume on the shielding properties of composites made with boron ores form China

    International Nuclear Information System (INIS)

    The total macroscopic removal cross sections, deposited energies and the absorbed doses of three new shielding composites loaded with specific boron-rich slag, boron concentrate ore and boron mud of China for 252Cf neutron source were investigated by experimental and Monte Carlo calculation. The results were evaluated by boron mole numbers per unit volume in composites. The half value layers of the composites were calculated and compared with that of Portland concrete, indicating that ascending boron mole numbers per unit volume in the composites can enhance the shielding properties of the composites for 252Cf neutron source. (authors)

  7. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Ozkan Emre, E-mail: ozdemir@psu.edu; Avramova, Maria N., E-mail: mna109@psu.edu

    2014-10-15

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis.

  8. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    International Nuclear Information System (INIS)

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis

  9. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  10. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst. PMID:18961131

  11. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  12. Coadsorption of lanthanum with boron and gadolinium with boron on Mo(1 1 0)

    Science.gov (United States)

    Magkoev, Tamerlan T.; Vladimirov, Georgij G.; Rump, Gennadij A.

    2008-05-01

    Submonolayer to multilayer coadsorption of lanthanum (La) with boron (B) and gadolinium (Gd) with boron on the surface of Mo(1 1 0) has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and work function ( ϕ) measurements. The equilibrium state of double adsorbate systems achieved either by adsorption of rare-earth metal (REM) on boron precovered Mo(1 1 0) surface held at room temperature or after moderate annealing of the system with opposite order of adsorption (B on REM films) is the layer which is the inhomogeneous mixture of boron and REM atoms with preferential concentration of boron in the surface area of the mixed film. The work function of such films even at REM to boron concentration ratio much higher than 1/6 are very close to the values of corresponding bulk LaB 6 and GdB 6, favoring assumption of surface rearrangement as the dominant reason of high electron emission efficiency of hexaborides. Almost total similarity of the results for La-B and Gd-B systems can be viewed as the consequence of weak participation of Gd f-electrons in determining the thermionic properties of corresponding double layers.

  13. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT

    Directory of Open Access Journals (Sweden)

    Joo-Young Jung

    2016-09-01

    Full Text Available We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT. Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0 simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR thickness, BUR location, and boron concentration with differing proton beam energy (60–90 MeV. We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60–70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  14. Dispersion of TiO2 Nanoparticle Agglomerates by Pseudomonas aeruginosa▿ †

    OpenAIRE

    Horst, Allison M.; Neal, Andrea C.; Mielke, Randall E.; Sislian, Patrick R.; Suh, Won Hyuk; Mädler, Lutz; Stucky, Galen D.; Holden, Patricia A.

    2010-01-01

    Engineered nanoparticles are increasingly incorporated into consumer products and are emerging as potential environmental contaminants. Upon environmental release, nanoparticles could inhibit bacterial processes, as evidenced by laboratory studies. Less is known regarding bacterial alteration of nanoparticles, including whether bacteria affect physical agglomeration states controlling nanoparticle settling and bioavailability. Here, the effects of an environmental strain of Pseudomonas aerugi...

  15. Novel Boron Based Multilayer Thermal Neutron Detector

    CERN Document Server

    SCHIEBER, M

    2010-01-01

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accor...

  16. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  17. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  18. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  19. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  20. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  1. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  2. Pechmann Reaction Promoted by Boron Trifluoride Dihydrate

    Directory of Open Access Journals (Sweden)

    J. Mezger

    2005-08-01

    Full Text Available The Pechmann reaction of substituted phenols 1a-e with methyl acetoacetate (2 can be activated by boron trifluoride dihydrate (3 to give the corresponding 4-methyl- coumarin derivatives 4a-e in excellent yield (98-99 %.

  3. Investigating the Boron Requirement of Plants.

    Science.gov (United States)

    Bohnsack, Charles W.

    1991-01-01

    This article describes a simple and rapid method for using summer squash to investigate born deficiency in plants. Author asserts that students are likely to feel challenged by laboratory exercises and projects that focus on the role boron plays in plant growth because it is an unresolved problem in biology. (PR)

  4. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  5. High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures

    Directory of Open Access Journals (Sweden)

    José E. Nocua

    2009-01-01

    Full Text Available Boron nitride (BN nanostructures are structural analogues of carbon nanostructures but have completely different bonding character and structural defects. They are chemically inert, electrically insulating, and potentially important in mechanical applications that include the strengthening of light structural materials. These applications require the reliable production of bulk amounts of pure BN nanostructures in order to be able to reinforce large quantities of structural materials, hence the need for the development of high-yield synthesis methods of pure BN nanostructures. Using borazine (B3N3H6 as chemical precursor and the hot-filament chemical vapor deposition (HFCVD technique, pure BN nanostructures with cross-sectional sizes ranging between 20 and 50 nm were obtained, including nanoparticles and nanofibers. Their crystalline structure was characterized by (XRD, their morphology and nanostructure was examined by (SEM and (TEM, while their chemical composition was studied by (EDS, (FTIR, (EELS, and (XPS. Taken altogether, the results indicate that all the material obtained is stoichiometric nanostructured BN with hexagonal and rhombohedral crystalline structure.

  6. THE EFFECT OF BORON DOSES ON PARICA (Schizolobium amazonicum Herb.

    Directory of Open Access Journals (Sweden)

    Sebastião Ferreira de Lima

    2003-07-01

    Full Text Available An experiment was conducted in a greenhouse in order to evaluate the effects of boron on parica growth and on concentration and contents of macro and micronutrients indry matter of shoots and roots. Six treatments constituted by boron doses of 0.0; 0.1; 0.3; 0.9;1.5 and 2.1 mg/dm3 in four replications were used. It was evaluated the characteristics:visual diagnostic, plants height and diameter, dry matter production of shoots and roots,concentration and contents of nutrients in dry matter of shoots and roots. The symptoms ofdeficiency can be observed in new leaves and roots and the toxicity in older leaves. Bothboron deficiency and excess inhibits plants growth, but toxicity is more damaging. The Comportamento do paricá (Schizolobium amazonicum Herb. submetido ...193approximate dose of 0 Estimate of average equilibrium moisture content of wood for 26Brazilian states, by Hailwood and Harrobin one hydrate sorption theory equation.15mg/dm3 was the best for plants growth in MSPA and MSRA. The concentration of boronincreased in MSPA and MSRA with application of increasing concentration of B, with a smallreduction in concentration of MSRA from the concentration 1.9 mg/dm3. The toxicity of boronbegins when concentration reaches 36.06 mg/dm3 in shoots and 32.38 in roots. The contentsof all nutrients, except Mn and Fe in MSPA and Cu, Fe and B in MSRA, followed its own drymatter production curves.

  7. Antibacterial and Antibiofilm Effects of Boron on Different Bacteria.

    Science.gov (United States)

    Sayin, Zafer; Ucan, Uckun Sait; Sakmanoglu, Asli

    2016-09-01

    Boron (B) compounds are used in many fields ranging from medicine to industry. In this study, boric acid (BA) and disodium octaborate tetrahydrate (DOT) were evaluated for their antibacterial effects and antibiofilm capacities on selected strains of clinical and type cultures that are of veterinary concern (Staphylococcus aureus ATCC 25923, Aeromonas hydrophila ATCC 19570, Pseudomonas aeruginosa ATCC 27853, Brucella melitensis Rev1 and field isolates of Vibrio anguillarum, Aeromonas hydrophila, Yersinia ruckeri, Pseudomonas aeruginosa, Lactococcus garvieae, and Brucella abortus). Also, the inhibition of biofilm was monitored by scanning electron microscopy. The lowest MIC values of BA and DOT were measured, by broth method using microdilution, from Pseudomonas aeruginosa ATCC 27853, and were 0.385 and 0.644 mg/ml, respectively. Staphylococcus aureus was the most resistant to both BA and DOT. Using the microplate method, we observed that the strongest positivities for biofilm production were presented by Pseudomonas aeruginosa ATCC 27853 and also a clinical isolate of Lactococcus garviea. Lower values in the MIC scores for both B compounds were tested by measuring the inhibitory effect on biofilm production. We found that all the bacterial strains inhibited biofilm formation with the exception of the Pseudomonas aeruginosa strains for BA only and an isolate of Lactococcus garviea for DOT only. Such effects by BA and DOT are worth discussing in order to find novel approaches for different functions in medicine and industry using the bacteria tested. PMID:26864941

  8. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  9. Boron removal from aqueous solution by direct contact membrane distillation

    International Nuclear Information System (INIS)

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 μg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution.

  10. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  11. Synthesis and Stabilization of Fe-Nd-B Nanoparticles for Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Haik, Yousef, E-mail: haik@eng.fsu.edu, E-mail: yhaik@uaeu.ac.ae; Chatterjee, Jhunu; Ching, Jen Chen [Florida State University, Center for Nanomagnetics and Biotechnology (United States)

    2005-12-15

    Stable composition of Iron Neodymium Boron nanoparticles are formed by a chemical method. Conventional borohydride reduction method was used. The particles are in the size range of 30-100 nm. Silica coating was applied to stabilize and prepare the particles for in vitro applications such as cell separation and diagnostics. Morphology of particles has been studied along with the structure and magnetic properties.

  12. Van Hove singularities of some icosahedral boron-rich solids by differential reflectivity spectra

    Science.gov (United States)

    Werheit, Helmut

    2015-09-01

    Differential reflectivity spectra of some icosahedral boron rich solids, β-rhombohedral boron, boron carbide and YB66-type crystals, were measured. The derivatives yield the van Hove singularities, which are compared with results obtained by other experimental methods.

  13. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  14. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg 10B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague–Dawley (SD) rats were studied by administrating 25 mg 10B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4–6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  15. Boron Rich Solids Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  16. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  17. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-01

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  18. Measurement of boron isotopes by negative thermal ionization mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The isobaric interference for boron isotopic measurement by negative thermal ionization mass spectrometry (NTIMS) has been studied. The result shows that the CNO- is not only from the organic material, but also from nitrate in loading reagent in NTIMS. Monitoring the mass 43 ion intensity and 43/42 ratio of blank are also necessary for the boron isotopic measurement by NTIMS, other than is only boron content.

  19. Successive Boronizing and Austempering for GGG-40 Grade Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    Murat Baydogan; Seckin Izzet Akray

    2009-01-01

    Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.

  20. Apparatus for the production of boron nitride nanotubes

    Science.gov (United States)

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  1. Characterization of boron doped nanocrystalline diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/{mu}m range.

  2. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  3. The spectrophotometric determination of boron in tourmalines

    Directory of Open Access Journals (Sweden)

    LJILJANA JAKSIC

    2005-02-01

    Full Text Available A procedure for the spectrophotometric determination of macro amounts of boron in tourmaline with azomethine H is described. The used tourmaline concentrate was obtained by magnetic separation and heavy-liquids purification of the schorl zone of pegmatite or granite aplite. The samples of tourmaline were decomposed by fusion with anhydrous sodium carbonate and taken up in dilute hydrochloric acid. The interfering effects of iron and aluminium were eliminated by masking with an EDTA – NTA solution. After pH adjustment, the boron was reacted with azomethine H and the absorbance of the obtained coloured complex was measured at 415 nm. The results are compared with those obtained by other procedures. The relative error of the determination was less than 3 %.

  4. Techniques for increasing boron fiber fracture strain

    Science.gov (United States)

    Dicarlo, J. A.

    1977-01-01

    Improvement in the strain-to-failure of CVD boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. The results of three methods are presented in which etching and thermal processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment induced surface flaws were removed from 203 micrometers (8 mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment induced contraction on the core flaw. Commercial feasibility considerations suggest as the most cost effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed are presented and discussed both for high vacuum and argon gas heat treatment environments.

  5. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  6. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  7. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  8. Multidimensional boron transport modeling in subchannel approach

    International Nuclear Information System (INIS)

    The main objective of this study is to implement a solute tracking model into the subchannel code CTF for simulations of boric acid transients. Previously, three different boron tracking models have been implemented into CTF and based on the applied analytical and nodal sensitivity studies the Modified Godunov Scheme approach with a physical diffusion term has been selected as the most accurate and best estimate solution. This paper will present the implementation of a multidimensional boron transport modeling with Modified Godunov Scheme within a thermal-hydraulic code based on a subchannel approach. Based on the cross flow mechanism in a multiple-subchannel rod bundle geometry, heat transfer and lateral pressure drop effects will be discussed in deboration and boration case studies. (author)

  9. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  10. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  11. Functionalized boron-dipyrromethenes and their applications

    OpenAIRE

    M. Ravikanth, M; Vellanki,Lakshmi; Sharma,Ritambhara

    2016-01-01

    Vellanki Lakshmi, Ritambhara Sharma, Mangalampalli Ravikanth Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, IndiaAbstract: Boron-dipyrromethenes/BF2-dipyrrins (BODIPYs) are highly fluorescent dyes with a wide range of applications in various fields because of their attractive photophysical properties. One of the salient features of BODIPYs is that the properties of the BODIPY can be fine-tuned at will by selectively introducing the substituent(s) at the desired locati...

  12. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  13. Formation and Structure of Boron Nitride Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG; Zongquan LI; Jin XU

    2005-01-01

    Boron nitride (BN) nanotubes were simply synthesized by heating well-mixed boric acid, urea and iron nitrate powders at 1000℃. A small amount of BN nanowires was also obtained in the resultants. The morphological and structural characters of the BN nanostructures were studied using transmission electron microscopy. Other novel BN nanostructures, such as Y-junction nanotubes and bamboo-like nanotubes, were simultaneously observed. The growth mechanism of the BN nanotubes was discussed briefly.

  14. Anomalous thermal conductivity of monolayer boron nitride

    Science.gov (United States)

    Tabarraei, Alireza; Wang, Xiaonan

    2016-05-01

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate the mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.

  15. Clinical aspects of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is potentially useful in treating malignant tumors of the central nervous system and is technically possible. Additional in vitro and in vivo testing is required to determine toxicities, normal tissue tolerances and tissue responses to treatment parameters. Adequate tumor uptake of the capture agent can be evaluated clinically prior to implementation of a finalized treatment protocol. Phase I and Phase II protocol development, clinical pharmacokinetic studies and neutron beam development

  16. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.)

  17. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  18. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, V., E-mail: V.Mohammadi@tudelft.nl; Nihtianov, S. [Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD, Delft (Netherlands)

    2016-02-15

    The lateral gas phase diffusion length of boron atoms, L{sub B}, along silicon and boron surfaces during chemical vapor deposition (CVD) using diborane (B{sub 2}H{sub 6}) is reported. The value of L{sub B} is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and confirmed analytically in the boron deposition temperature range from 700 °C down to 400 °C. For this temperature range the local loading effect of the boron deposition is investigated on the micro scale. A L{sub B} = 2.2 mm was determined for boron deposition at 700 °C, while a L{sub B} of less than 1 mm was observed at temperatures lower than 500 °C.

  19. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  20. Critical Range of Soil Boron for Prognosis of Boron Deficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Relationships between seed yields of oilseed rape (Brassica napus L.) and extractable boron concen- trations in three soil layers (A, P and W) were investigated through ten experiments on three types of soils (Alluvic Entisols, Udic Ferrisols and Stagnic Anthrosols) in northern, western and middle Zhejiang Province. Among several mathematical models used to described the relationships, the polynomial equation, y = a + bx + cx2 + dx3, where y is the yield of oilseed rape seed and x the extractable boron concentration in P layer of soil, was the best one. The critical range of the concentrations corresponding to 90% of the maximum oilseed rape yield was 0.40~0.52 mg kg-1. The extractable boron concentration of the P layers of the soils was the most stable. The critical range determined was verified through the production practices of oilseed rape in Zhejiang and Anhui provinces.

  1. Critical Range of Soil Boron for Prognosis of Boron Deficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    WEIYOUZHANG

    2001-01-01

    Relationships between seed yields of oilseed rape(Brassica napus L.) and extractable boron concen-trations in three soil layers(A,P and W) were investigated through ten experiments on three types of soils(Alluvic Entisols,Udic Ferrisols and Sagnic Anthrosols) in northern,Western and middle Zhejing Province.Among several mathematical models used to described the relationships,the polynomial equation,y=a+bx+cx2+dx3,where y is the yield of oilseed rape seed and x the extractable boron concentration in P layer of soil,was the best one.The critical range of the concentrations corresponding to 90% of the maximum oilseed rape yield was 0.40-0.52 mg kg-1,The extractable boron concentration of the P layers of the soils was the most stable,The critical range determined was verified through the production practices of oilseed rape in Zhejiang and Anhui provinces.

  2. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  3. Boron impregnation treatment of Eucalyptus grandis wood.

    Science.gov (United States)

    Dhamodaran, T K; Gnanaharan, R

    2007-08-01

    Eucalyptus grandis is suitable for small timber purposes, but its wood is reported to be non-durable and difficult to treat. Boron compounds being diffusible, and the vacuum-pressure impregnation (VPI) method being more suitable for industrial-scale treatment, the possibility of boron impregnation of partially dry to green timber was investigated using a 6% boric acid equivalent (BAE) solution of boric acid and borax in the ratio 1:1.5 under different treatment schedules. It was found that E. grandis wood, even in green condition, could be pressure treated to desired chemical dry salt retention (DSR) and penetration levels using 6% BAE solution. Up to a thickness of 50mm, in order to achieve a DSR of 5 kg/m(3) boron compounds, the desired DSR level as per the Indian Standard for perishable timbers for indoor use, it was found that neither the moisture content of wood nor the treatment schedule posed any problem as far as the treatability of E. grandis wood was concerned. PMID:17046244

  4. Longitudinal residual stresses in boron fibers

    Science.gov (United States)

    Behrendt, D. R.

    1976-01-01

    A technique is proposed for measuring the longitudinal residual stress distribution in commercial CVD (Chemical Vapor Deposition) boron on tungsten fibers of 102, 142, and 203 microns in diameter. The experimental apparatus is so designed that continuous measurements are made of the length changes of a boron fiber specimen as the surface of the fiber is removed by electropolishing. The effects of surface removal on core residual stress and core-initiated fracture are discussed. The three sizes of boron fibers investigated show similar residual stress distributions, i.e., compressive at the surface, tensile near the core, and for the 102-micron fiber compressive again in the core. It is shown that an increase in UTS is due to the increase in the compressive stress at the core produced by fiber contraction during surface removal. An expression is derived for calculating the longitudinal residual stress at a given radius for an as-received fiber of a certain radius from measurements of the axial strain produced by removal of the surface by electropolishing.

  5. Boron dose enhancement for Cf-252 brachytherapy

    International Nuclear Information System (INIS)

    Full text: Monte Carlo modelling of a Cf-252 source in water and in tissue has shown that there is a significant therapeutic advantage obtained if B-10 is present in the tumour cells. This study analyses the advantage in terms of therapeutic margin, defined as the distance from the border of the treatment volume where boron-loaded tumour cells will receive a therapeutic dose. Calculations were made with MCNP version 4a on a Pentium 60 MHz computer. Large voxel sizes allowed 70 minute runs to achieve statistical uncertainties of 5% or less for 100,000 source neutrons. Later runs with smaller voxels confirmed the accuracy of the initial calculations. Calculations were made for treatment volume radii up to 11 cm and 30 ppm boron-10. The therapeutic margin for radii in the range 3-9 cm is approximately 10% of the tumour radius. This results in a 30% increase in the volume inside which peripheral tumour cells may receive a therapeutic dose. The median therapeutic ratio within the therapeutic margin varied from 1.05 at 3 cm up to 1.25 at 10 cm. Thus there is little benefit for less advanced tumours with thickness less than 3 cm. However, cervical cancer frequently presents in an advanced state in Southeast Asia and in Aboriginal communities in Australia, partially attributable to low Pap smear screening rates. These conclusions support the development and testing of boron compounds in in vitro and in vivo models for cervical cancer

  6. Effects of Antihepatocarcinoma with Apatite Nanoparticles in vivo

    Institute of Scientific and Technical Information of China (English)

    YIN Meizhen; HAN Yingchao; DAI Honglian; LI Shipu

    2006-01-01

    The inhibition effect of hydroxyapatite (HAP) nanoparticles on hepatocarcinoma was investigated in vivo. The human hepatocarcinoma cell line Bel-7402 was transplanted subcutaneously into nude mice. Hydroxyapatite nanoparticles suspension at a dose of 0.2 mL was injected into the transplanted tumors every day for 2 weeks, and saline was used as control. The efficacy of hydroxyapatite nanoparticles on this carcinoma was surveyed and morphological changes of tissue and cells were observed by light microscopy and transmission electron microscopy (TEM). Experimental results show that hydroxyapatite nanoparticles have a visible destructive effect on the structures of hepatocarcinoma cells and tissue. The inhibition rates of tumor growth were 77.21% and 51. 32% after intra- tumor injection of hydroxyapatite nanoparticles for 1 week and 2 weeks, respectively. Compared with the control group, hydroxyapatite nanoparticles can also prolong the survival time of the nude mice bearing this cancer significantly. This indicates that hydroxyapatite nanoparticles have the therapeutic potential on hepatoma in vivo.

  7. Structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron nitride.

    Science.gov (United States)

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H G; Liu, Zheng; Suenaga, Kazutomo

    2015-02-20

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride. We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sample regions. We correlate our experimental data with calculations which help explain our observations. PMID:25763963

  8. Synovectomy by neutron capture in boron

    International Nuclear Information System (INIS)

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, α) in the 10 B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a 239 Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the blood tissue

  9. Cosmis Lithium-Beryllium-Boron Story

    Science.gov (United States)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  10. Implementation of Low Boron Core for APR1400 Initial Cycle

    International Nuclear Information System (INIS)

    Low boron capability of a nuclear power plant is rather a qualitative specification requiring the nuclear power plant to be shut down by control rods alone at any time of a plant cycle according to EUR. The reduction of soluble boron is beneficial since it gives the reduction of the corrosive effects in the plant system and improves plant safety giving more negative MTC. Thus, it is necessary to reduce the amount of soluble boron for the criticality to achieve the low boron capability. However, the reduction of soluble boron has its own set of specific challenges that must be overcome. There are two methods to enable the reduction of soluble boron without modifying plant system significantly. The goal of this study is to investigate the loading pattern to achieve the soluble boron reduction for Shin-Kori Unit 5 APR1400 initial core using the low and high content gadolinia burnable absorbers with standard fuel rod enrichment and to verify the feasibility of low boron core with conventional gadolinia burnable absorbers only. For this study, KARMA has been employed to solve 2-D Transport equation, and ASTRA is used for full core analysis. It was possible to achieve the low boron core for APR1400 Cycle 1 using extended usage of two types of gadolinia burnable absorbers sacrificing fuel cycle economy a little bit while enhancing plant safety significantly. Gd rod patterns within an assembly were optimized through geometrical weighting and loading pattern was developed based on these patterns. The amount of soluble boron reduction achieved is 45.4%. The improvement in plant safety is significant resulting in the reduction of least negative best-estimate MTC by about 4 pcm. Also shutdown margin is increased slightly for low boron core. However, the behavior of axial power shape turns out to be undesirable showing a relatively large fluctuation caused by the more negative MTC. It was found that the low boron core might impose kind of operational difficulty. It is usually

  11. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  12. Doxorubicin-Loaded Carborane-Conjugated Polymeric Nanoparticles as Delivery System for Combination Cancer Therapy.

    Science.gov (United States)

    Xiong, Hejian; Zhou, Dongfang; Qi, Yanxin; Zhang, Zhiyun; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Meng, Fanbo; Huang, Yubin

    2015-12-14

    Carborane-conjugated amphiphilic copolymer nanoparticles were designed to deliver anticancer drugs for the combination of chemotherapy and boron neutron capture therapy (BNCT). Poly(ethylene glycol)-b-poly(L-lactide-co-2-methyl-2(2-dicarba-closo-dodecarborane)propyloxycarbonyl-propyne carbonate) (PLMB) was synthesized via the versatile reaction between decaborane and side alkynyl groups, and self-assembled with doxorubicin (DOX) to form drug-loaded nanoparticles. These DOX@PLMB nanoparticles could not only suppress the leakage of the boron compounds into the bloodstream due to the covalent bonds between carborane and polymer main chains, but also protect DOX from initial burst release at physiological conditions because of the dihydrogen bonds between DOX and carborane. It was demonstrated that DOX@PLMB nanoparticles could selectively deliver boron atoms and DOX to the tumor site simultaneously in vivo. Under the combination of chemotherapy and BNCT, the highest tumor suppression efficiency without reduction of body weight was achieved. This polymeric nanoparticles delivery system could be very useful in future chemoradiotherapy to obtain improved therapeutic effect with reduced systemic toxicity. PMID:26564472

  13. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  14. Influence of Boron on transformation behavior during continuous cooling of low alloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Terzic, A., E-mail: Adnan.Terzic@imf.tu-freiberg.de [Technische Universität Bergakademie Freiberg, Institute of Metal Forming, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany); Calcagnotto, M. [Salzgitter Mannesmann Forschung GmbH, Eisenhüttenstr. 99, 38239 Salzgitter (Germany); Guk, S. [Technische Universität Bergakademie Freiberg, Institute of Metal Forming, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany); Schulz, T. [Salzgitter Mannesmann Forschung GmbH, Eisenhüttenstr. 99, 38239 Salzgitter (Germany); Kawalla, R. [Technische Universität Bergakademie Freiberg, Institute of Metal Forming, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany)

    2013-11-01

    Abstracts: The phase transformation behavior during continuous cooling of low-carbon (LC) Boron-treated steels was studied. Furthermore, the influence of combining Boron with Nb or Ti or V on transformation kinetics was investigated. Additions of Boron to LC steels have a strong influence on the ferrite transformation. By adding 30 ppm Boron to a Boron-free reference alloy the suppressing effect on the ferrite transformation is most pronounced, whereas 10 ppm Boron has almost no effect and 50 ppm Boron the same effect as 30 ppm Boron. Thereby the critical Boron concentration for transformation kinetics in this alloying concept is 30 ppm. The combination of Boron with Ti shifts the phase fields to shorter times and increase the ferrite start temperature, whereas the combination of B+V and B+Nb only affects the ferrite start temperature. Hardness values are mostly influenced by the presence of Boron and strongly depend on the cooling rate.

  15. Plasma stabilisation of metallic nanoparticles on silicon for the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Esconjauregui, S.; Fouquet, M.; Bayer, B. C.; Gamalski, A. D.; Chen Bingan; Xie Rongsi; Hofmann, S.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Cepek, C.; Bhardwaj, S. [Istituto Officina dei Materiali-CNR, Laboratorio TASC, s.s. 14 km 163.5, I-34149 Trieste (Italy); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

    2012-08-01

    Ammonia (NH{sub 3}) plasma pretreatment is used to form and temporarily reduce the mobility of Ni, Co, or Fe nanoparticles on boron-doped mono- and poly-crystalline silicon. X-ray photoemission spectroscopy proves that NH{sub 3} plasma nitrides the Si supports during nanoparticle formation which prevents excessive nanoparticle sintering/diffusion into the bulk of Si during carbon nanotube growth by chemical vapour deposition. The nitridation of Si thus leads to nanotube vertical alignment and the growth of nanotube forests by root growth mechanism.

  16. Huge nanodielectric effects in polyimide/boron nitride nanocomposites revealed by the nanofiller size

    Science.gov (United States)

    Diaham, S.; Saysouk, F.; Locatelli, M.-L.; Lebey, T.

    2015-09-01

    The dielectric properties of polyimide/boron nitride (PI/BN) nanocomposite films are investigated as a function of the BN nanofiller size from 20 to 350 °C and at low filler content (1-2 vol.%). The role of the BN nanofiller size on the large reduction of the electrode polarization relaxation phenomenon due to ionic movements is reported. For the two smallest BN nanoparticles (95 nm and 35 nm), the permittivity, dielectric losses and dc conductivity are strongly attenuated above 200 °C by a factor of 10 to 1000 compared to neat PI. Thus, the dc conductivity at 350 °C is reduced from 4   ×   10-8 Ω-1 cm-1 for neat PI to 3   ×   10-11 Ω-1 cm-1 for PI/BN (35 nm). Moreover, a further decrease is obtained by functionalizing the nanofiller surface with a silane coupling agent which improves the grafting of PI chains on those latter nanoparticles. These results highlight the trapping efficiency in the interphase region introduced by the small BN nanofillers (<100 nm) and provides evidence as to the huge nanodielectric effects on the charge carrier transport controlled by the nanoparticle diameter. This finding should be of great importance for advanced high temperature electrical insulation in the future.

  17. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice

    Science.gov (United States)

    Liu, Bo; Qi, Wei; Tian, Longlong; Li, Zhan; Miao, Guoying; An, Wenzhen; Liu, Dan; Lin, Jing; Zhang, Xiaoyong; Wu, Wangsuo

    2015-12-01

    The boron nitride (BN) nanoparticles, as the structural analogues of graphene, are the potential biomedicine materials because of the excellent biocompatibility, but their solubility and biosafety are the biggest obstacle for the clinic application. Here, we first synthesized the highly soluble BN nanoparticles coated by PEG (BN-PEG) with smaller size (~10 nm), then studied their biodistribution in vivo through radioisotope (Tc99mO4 -) labeling, and the results showed that BN-PEG nanoparticles mainly accumulated in the liver, lung, and spleen with the less uptake by the brain. Moreover, the pathological changes induced by BN-PEG could be significantly observed in the sections of the liver, lung, spleen, and heart, which can be also supported by the test of biochemical indexes in serum. More importantly, we first observed the biodistribution of BN-PEG in the heart tissues with high toxicity, which would give a warning about the cardiovascular disease, and provide some opportunities for the drug delivery and treatment.

  18. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  19. Predicted phase diagram of boron-carbon-nitrogen

    Science.gov (United States)

    Zhang, Hantao; Yao, Sanxi; Widom, Michael

    2016-04-01

    Noting the structural relationships between phases of carbon and boron carbide with phases of boron nitride and boron subnitride, we investigate their mutual solubilities using a combination of first-principles total energies supplemented with statistical mechanics to address finite temperatures. Thus we predict the solid-state phase diagram of boron-carbon-nitrogen (B-C-N). Owing to the large energy costs of substitution, we find that the mutual solubilities of the ultrahard materials diamond and cubic boron nitride are negligible, and the same for the quasi-two-dimensional materials graphite and hexagonal boron nitride. In contrast, we find a continuous range of solubility connecting boron carbide to boron subnitride at elevated temperatures. An electron-precise ternary compound B13CN consisting of B12 icosahedra with NBC chains is found to be stable at all temperatures up to melting. It exhibits an order-disorder transition in the orientation of NBC chains at approximately T =500 K. We also propose that the recently discovered binary B13N2 actually has composition B12.67N2 .

  20. Adsorption characteristics of arsenic and boron by soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, M.

    1986-01-01

    In order to obtain baseline data concerning the surface and ground water pollution caused by coal ash disposal, adsorption characteristics of arsenic (III) and boron by soil have been studied through laboratory experiments. The main results are as follows: (1) Arsenic (III) and boron adsorption on soil was strongly dependent on pH with adsorption maxima at pH 8 and 8-9, respectively. (2) Arsenic (III) and boron adsorption on soil over the entire concentration ranges investigated could be described by the Langmuir adsorption isotherm and the Freundlich adsorption isotherm, respectively. The Henry adsorption isotherm was also applicable over the lower concentration ranges of arsenic (III) and boron (As (III): < 0.1 deltag/ml; B: < 5deltag/ml.) (3) Arsenic (III) and boron adsorption on soil is controlled mainly by the contents of extractable Fe oxide and hydroxide for arsenic (III) and by the contents of extractable Al hydroxide and allophane (amorphous aluminium silicates) for boron. (4) Adsorption and movement of arsenic (III) and boron during the infiltration of coal ash leachate in soil layer were investigated by means of the unsteady-state, one-dimensional convective-diffusive mass transport model. This model is very useful for evaluation and prediction of the contamination of ground water by trace elements such as arsenic (III) and boron leached at coal ash disposal site.

  1. Removal of boron species by layered double hydroxides: a review.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants. PMID:23635479

  2. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    A control blade design, incorporating boron-carbide (B4C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author)

  3. The investigation of parameters affecting boron removal by electrocoagulation method

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, 25240, Atatuerk University, Faculty of Engineering Erzurum (Turkey); Keskinler, Buelent [Department of Environmental Engineering, Gebze Institute of Technology, Gebze/Kocaeli 41400 (Turkey)

    2005-10-17

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm{sup 2}. The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl{sub 2}. Added CaCl{sub 2} increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions.

  4. Determination of boron in silicates after ion exchange separation

    Science.gov (United States)

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  5. Low-dimensional boron structures based on icosahedron B12

    Science.gov (United States)

    Kah, C. B.; Yu, M.; Tandy, P.; Jayanthi, C. S.; Wu, S. Y.

    2015-10-01

    One-dimensional icosahedral boron chains and two-dimensional icosahedral boron sheets (icosahedral α, δ6, and δ4 sheets) that contain icosahedra B12 as their building units have been predicted in a computer simulation study using a state-of-the-art semi-empirical Hamiltonian. These novel low-dimensional icosahedral structures exhibit interesting bonding and electronic properties. Specifically, the three-center, two-electron bonding between icosahedra B12 of the boron bulk (rhombohedral boron) transforms into a two-center bonding in these new allotropes of boron sheets. In contrast to the previously reported stable buckled α and triangular boron monolayer sheets, these new allotropes of boron sheets form a planar network. Calculations of electronic density of states (DOS) reveal a semiconducting nature for both the icosahedral chain and the icosahedral δ6 and δ4 sheets, as well as a nearly gapless (or metallic-like) feature in the DOS for the icosahedral α sheet. The results for the energy barrier per atom between the icosahedral δ6 and α sheets (0.17 eV), the icosahedral δ6 and δ4 sheets (0.38 eV), and the icosahedral α and δ4 sheets (0.27 eV), as indicated in the respective parentheses, suggest that these new allotropes of boron sheets are relatively stable.

  6. Finite Element Analysis Of Boron Diffusion In Wood

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;

    2002-01-01

    The coupled heat and mass transfer equations for air, water and heat transfer are supplemented with a conservation equation for an additional species representing the concentration of boron in wood. Boundary conditions for wood-air. wood-soil and wood-boron interfaces arc discussed and finally...

  7. Eleventh international conference on boron chemistry. Programme and abstracts

    International Nuclear Information System (INIS)

    Abstracts of reports at the Eleventh International Conference on Boron Chemistry are presented. Born chemistry as a connecting bridge between many fields maintains one of the leading positions in modern chemistry. Methods of synthesis of different boron compounds, properties of the compounds, their use in other regions of chemistry and medicine are widely presented in reports

  8. Boron Speciation in Soda-Lime Borosilicate Glasses Containing Zirconium

    International Nuclear Information System (INIS)

    Boron speciation was investigated in soda-lime borosilicate glass containing zirconium. In such compositions, competition between charge compensators (here, sodium and calcium) can occur for the compensation of tetrahedral boron or octahedral zirconium units. 11B MAS NMR is particularly suitable for obtaining data on preferential compensation behavior that directly affects the boron coordination number. In addition to the classical proportions of tri- and tetrahedral boron, additional data can be obtained on the contributions involved in these two coordination numbers. An approach is described here based on simultaneous MAS spectrum analysis of borosilicate glass with variable Zr/Si and Ca/Na ratios at two magnetic field strengths (11. 7 and 18. 8 T), with constraints arising from MQMAS spectroscopy, detailed analysis of satellite transitions, and spin-echo experiments. New possibilities of 11B NMR were presented for improving the identification and quantification of the different contributions involved in tri- and tetrahedral boron coordination. Both NMR and Raman revealed a trend of decreased tetrahedral boron proportion with the increase of Ca/Na ratio or the Zr/Si ratio. This strongly suggests that zirconium compensation takes preference over boron compensation, and that zirconium and boron are both compensated mainly by sodium rather than calcium. (authors)

  9. Method for removal of phosgene from boron trichloride

    Science.gov (United States)

    Freund, S.M.

    1983-09-20

    Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this method. 5 figs.

  10. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  11. Does boron affect hormone levels of barley cultivars?

    Directory of Open Access Journals (Sweden)

    Muavviz Ayvaz

    2012-11-01

    Full Text Available Background: When mineral nutrients are present in excess or in inadequate amounts, their effects can be severe in plants and can be considered as abiotic stress. In this study, we report how hormonal levels in barley cultivars respond to the toxic effect of boron, an essential plant micronutrient. Material and methods: Two different barley (Hordeum vulgare cultivars (Vamik Hoca and Efes 98 were used as a study material. Boron was applied in three different concentrations (0, 10, 20 ppm to plants that had grown from seeds for four weeks. Plants were harvested, stem-root length and stem-root dry-fresh weight content were determined. For further analysis, chlorophyll, total protein, endogenic IAA and ABA content analyses were carried out. Results: According to the data obtained, plant growth and development decreased with increasing boron concentrations. With increasing boron concentrations, soluble total protein increased in both cultivars. Boron application led to increased endogenic IAA content in both cultivars. 10 and 20 ppm boron application led to increased endogenic ABA content in Vamik Hoca cultivar whereas endogenic ABA content decreased in Efes 98. Absence of boron application led to increased endogenic IAA and ABA content in both cultivars. Conclusion: As a result, the response to boron is different in the two cultivars and Efes 98 may be more resistant to the toxicity than Vamik Hoca cultivar.

  12. Composition and microhardness of CAE boron nitride films

    International Nuclear Information System (INIS)

    The paper deals with boron nitride produced by cathodic arc evaporation techniques.The films were applied on titanium and cemented carbide substrates. Their characterization was carried out using X-ray diffraction and Knoop microhardness tests. Demonstrated are the high properties of two-phase films, containing β (cubic) and γ (wurtzitic) modifications of boron nitride. (author). 7 refs., 1 fig., 3 tabs

  13. Nanostructured Boron Nitride: From Molecular Design to Hydrogen Storage Application

    Directory of Open Access Journals (Sweden)

    Georges Moussa

    2014-07-01

    Full Text Available The spray-pyrolysis of borazine at 1400 °C under nitrogen generates boron nitride (BN nanoparticles (NPs. The as-prepared samples form elementary blocks containing slightly agglomerated NPs with sizes ranging from 55 to 120 nm, a Brunauer-Emmett-Teller (BET-specific surface area of 34.6 m2 g−1 and a helium density of 1.95 g cm−3. They are relatively stable in air below 850 °C in which only oxidation of the NP surface proceeds, whereas under nitrogen, their lower size affects their high temperature thermal behavior in the temperature range of 1450–2000 °C. Nitrogen heat-treated nanostructures have been carefully analyzed using X-ray diffraction, electron microscopy and energy-dispersive X-ray spectroscopy. The high temperature treatment (2000 °C gives hollow-cored BN-NPs that are strongly facetted, and after ball-milling, hollow core-mesoporous shell NPs displaying a BET-specific surface area of 200.5 m2·g−1 and a total pore volume of 0.287 cm3·g−1 were produced. They have been used as host material to confine, then destabilize ammonia borane (AB, thus improving its dehydrogenation properties. The as-formed AB@BN nanocomposites liberated H2 at 40 °C, and H2 is pure in the temperature range 40–80 °C, leading to a safe and practical hydrogen storage composite material.

  14. Effect of Hydroxyapatite Nanoparticles on K562 Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    CHEN Pei; DAI Honglian; HAN Yingchao; YIN Meizhen; LI Shipu

    2008-01-01

    Stable and single-dispersed hydroxyapatite (HAP) nanoparticles were synthesized with ultrasonic-assisted method. HAP nanoparticles were characterized by dynamic light scattering, XRD (X-ray diffraction) and TEM (Transmission Electron Microscopy). The effect of HAP nanoparticles on the K562 human myelogcnous leukemia cell line was investigated by MTT assay and cell count test, and the mechanism was studied through the changes of cell cycle and ultrastructure. The results showed that HAP nanoparticles inhibited the proliferation of K562 cells dramatically in vitro. HAP nanoparticles entered the cytoplasm of K562 cells and the cells were arrested at G2/M phase, thus, the cells died directly.

  15. Cytotoxinic Mechanism of Hydroxyapatite Nanoparticles on Human Hepatoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    CAO Xian-ying; QI Zhi-tao; DAI Hong-lian; YAN Yu-hua; LI Shi-pu

    2003-01-01

    Stable and single-dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel-7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G1 phase of cell cycle,thus,cancer cells die directly.

  16. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  17. APPLICATION OF BORON MODIFIED SILICA SOL ON RETENTION AND DRAINAGE

    Institute of Scientific and Technical Information of China (English)

    JinxiaMa; YuxiuPeng; ZhongzhengLi

    2004-01-01

    In this paper it was studied that these dosage effectsof CPAM, cationic starch,boron modified silica sol(BMS), A12(SO4)3, pH value and electrolyte on theretention and drainage of different microparticulatesystems including CPAM, cationic starch and boronsilica sol. The research results indicated that CPAMhad no good retention when used with boron silicasol. The best retention efficiency was the micropar-ticulate system of CPAM + cationic starch withboron modified silica sol; Secondly was that ofcationic starch with boron modified silica sol; Theworst was that of CPAM with boron modified silicasol. The retention efficiency had no relation with theaddition order between CPAM and cationic starch. Itwas also found that the microparticulate retentionsystem of boron modified silica sol could be used inalum-rosin sizing and in acidity, neutral or alkalinepapermaking conditions. This system also could beused with close circulate water so that it could reducethe water pollution and waste.

  18. Safety Assessment of Boron Nitride as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations.

  19. Optical characteristic analysis of the boronization process by using carborane

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonwook; Park, Kyungdeuk; Choi, Youngsun; Oh, Chahwan [Hanyang University, Seoul (Korea, Republic of)

    2014-09-15

    Boronization with carborane (C{sub 2}B{sub 10}H{sub 12}) was achieved in a vacuum vessel coupled to a filament discharge system. Optical emission spectroscopy was employed to characterize the boronization process. The Balmer lines of hydrogen and deuterium were measured, and the boronization process was analyzed by using the intensity ratio of the H{sub α} to the D{sub α} line (I{sub H}/I{sub D}). The relation between the pressure and the intensity ratio was investigated, and the thickness of the deposited boron film was predicted. Also, the dilution ratio H/(H + D) of the boron film was analyzed and compared with the one predicted from an optical analysis of the emission spectrum.

  20. Effect of diborane on the microstructure of boron-doped silicon nanowires

    Science.gov (United States)

    Pan, Ling; Lew, Kok-Keong; Redwing, Joan M.; Dickey, Elizabeth C.

    2005-04-01

    Boron-doped silicon (Si) nanowires, with nominal diameters of 80 nm, were grown via the vapor-liquid-solid (VLS) mechanism using gold (Au) as a catalyst and silane (SiH 4) and diborane (B 2H 6) as precursors. The microstructure of the nanowires was studied by scanning electron microscopy, transmission electron microscopy and electron energy-loss spectroscopy. At lower B 2H 6 partial pressure and thus lower doping levels (⩽1×10 18 cm -3), most of the boron-doped Si nanowires exhibited high crystallinity. At higher B 2H 6 partial pressure (˜2×10 19 cm -3 doping level), the majority of the wires exhibited a core-shell structure with an amorphous Si shell (20-30 nm thick) surrounding a crystalline Si core. Au nanoparticles on the outer surface of the nanowires were also observed in structures grown with high B/Si gas ratios. The structural changes are believed to result from an increase in the rate of Si thin-film deposition on the outer surface of the nanowire at high B 2H 6 partial pressure, which produces the amorphous coating and also causes an instability at the liquid/solid interface resulting in a loss of Au during nanowire growth.

  1. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels.

    Directory of Open Access Journals (Sweden)

    Leonardo Ricotti

    Full Text Available In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa and a small thickness (∼ 12 µm. We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin. We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.

  2. Ion implantation of boron in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.S.

    1985-05-01

    Ion implantation of /sup 11/B/sup +/ into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of /sup 11/B/sup +/ into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10/sup 11//cm/sup 2/ to 1 x 10/sup 14//cm/sup 2/) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses (<1 x 10/sup 12//cm/sup 2/). Three damage related hole traps are produced by ion implantation of /sup 11/B/sup +/. Two of these hole traps have also been observed in ..gamma..-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures (<300/sup 0/C). Boron, from room temperature implantation of BF/sub 2//sup +/ into Ge, is not substitutionally active prior to a post implant annealing step of 250/sup 0/C for 30 minutes. After annealing additional shallow acceptors are observed in BF/sub 2//sup +/ implanted samples which may be due to fluorine or flourine related complexes which are electrically active.

  3. Thermal transport across few-layer boron nitride encased by silica

    Science.gov (United States)

    Ni, Yuxiang; Jiang, Jiechao; Meletis, Efstathios; Dumitric, Traian

    2015-07-01

    Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO2). We report large interfacial thermal resistances, of about 2.2 × 10-8 m2 K W-1, which are not sensitive to the number of h-BN layers or the SiO2 crystallinity. The h-BN/SiO2 superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.

  4. Phase Transformation of BN Nanoparticles Under High Pressure Low Temperature Conditions

    Science.gov (United States)

    Chen, Z.; Lai, Z. F.; Li, K.; Cui, D. L.; Lun, N.; Wang, Q. L.; Jiang, M. H.

    Phase transformation of BN nanoparticles under high pressure (580~860MPa) and low temperature (270~325°C) hot press conditions was investigated. It was found that the contents of orthorhombic boron nitride (oBN) and cubic boron nitride (cBN) increased with the increase of temperature and the prolonging of hot pressing time under high pressure conditions. At the same time, because of the intergrowth of hBN, oBN and cBN. there are strong interactions among these three phases.

  5. Numerical simulation of boron injection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2010-02-15

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of

  6. Continued biological investigations of boron-rich oligomeric phosphate diesters (OPDs). Tumor-selective boron agents for BNCT

    International Nuclear Information System (INIS)

    Clinical success of Boron Neutron Capture Therapy will rely on the selective intracellular delivery of high concentrations of boron-10 to tumor tissue. In order for a boron agent to facilitate clinical success, the simultaneous needs of obtaining a high tumor dose, high tumor selectivity, and low systemic toxicity must be realized. Boron-rich oligomeric phosphate diesters (OPDs) are a class of highly water-soluble compounds containing up to 40% boron by weight. Previous work in our groups demonstrated that once placed in the cytoplasm of tumor cells, OPDs quickly accumulate within the cell nucleus. The objective of the current study was to determine the biodistribution of seven different free OPDs in BALB/c mice bearing EMT6 tumors. Fructose solutions containing between 1.4 and 6.4 micrograms of boron per gram of tissue were interveinously injected in mice seven to ten days after tumor implantation. At intervals during the study, animals were euthanized and samples of tumor, blood, liver, kidney, brain and skin were collected and analyzed for boron content using ICP-AES. Tumor boron concentrations of between 5 and 29 ppm were achieved and maintained over the 72-hour time course of each experiment. Several OPDs demonstrated high tumor selectivity with one oligomer exhibiting a tumor to blood ratio of 35:1. The apparent toxicity of each oligomer was assessed through animal behavior during the experiment and necropsy of each animal upon sacrifice. (author)

  7. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.)

    Science.gov (United States)

    Soil pH is known to influence many important biochemical processes in plants and soils, however its role in salinity - boron interactions affecting plant growth and ion relations has not been examined. The purpose of this research was to evaluate the interactive effects of salinity, boron and soil ...

  8. Ballistic thermoelectric properties in boron nitride nanoribbons

    Science.gov (United States)

    Xie, Zhong-Xiang; Tang, Li-Ming; Pan, Chang-Ning; Chen, Qiao; Chen, Ke-Qiu

    2013-10-01

    Ballistic thermoelectric properties (TPs) in boron nitride nanoribbons (BNNRs) are studied using the nonequilibrium Green's function atomistic simulation of electron and phonon transport. A comparative analysis for TPs between BNNRs and graphene nanoribbons (GNRs) is made. Results show that the TPs of BNNRs are better than those of GNRs stemming from the higher power factor and smaller thermal conductance of BNNRs. With increasing the ribbon width, the maximum value of ZT (ZTmax) of BNNRs exhibits a transformation from the monotonic decrease to nonlinear increase. We also show that the lattice defect can enhance the ZTmax of these nanoribbons strongly depending on its positions and the edge shape.

  9. Low-dimensional boron nitride nanomaterials

    Directory of Open Access Journals (Sweden)

    Amir Pakdel

    2012-06-01

    Full Text Available In this review, a concise research history of low-dimensional boron nitride (BN nanomaterials followed by recent developments in their synthesis, morphology, properties, and applications are presented. Seventeen years after the initial synthesis of BN nanotubes, research on BN nanomaterials has developed far enough to establish them as one of the most promising inorganic nanosystems. In this regard, it is envisaged that the unique properties of low-dimensional BN systems, such as superb mechanical stiffness, high thermal conductivity, wide optical bandgap, strong ultraviolet emission, thermal stability and chemical inertness will play a key role in prospective developments.

  10. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  11. Method for exfoliation of hexagonal boron nitride

    Science.gov (United States)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  12. Boron nitride nanomaterials for thermal management applications.

    Science.gov (United States)

    Meziani, Mohammed J; Song, Wei-Li; Wang, Ping; Lu, Fushen; Hou, Zhiling; Anderson, Ankoma; Maimaiti, Halidan; Sun, Ya-Ping

    2015-05-18

    Hexagonal boron nitride nanosheets (BNNs) are analogous to their two-dimensional carbon counterparts in many materials properties, in particular, ultrahigh thermal conductivity, but also offer some unique attributes, including being electrically insulating, high thermal stability, chemical and oxidation resistance, low color, and high mechanical strength. Significant recent advances in the production of BNNs, understanding of their properties, and the development of polymeric nanocomposites with BNNs for thermally conductive yet electrically insulating materials and systems are highlighted herein. Major opportunities and challenges for further studies in this rapidly advancing field are also discussed. PMID:25652360

  13. Carbohydrate-interactive pDNA and siRNA gene vectors based on boronic acid functionalized poly(amido amine)s.

    Science.gov (United States)

    Piest, Martin; Ankoné, Marc; Engbersen, Johan F J

    2013-08-10

    In order to evaluate the influence of incorporation of boronic acid groups on the properties of poly(amido amine)s as gene vectors, a novel poly(amido amine) copolymer p(CBA-ABOL/2AMPBA) containing ortho-aminomethylphenylboronic acid (2AMPBA) moieties was prepared by Michael-type polyaddition of a mixture of 1,4-aminobutanol (ABOL) and 2-((4-aminobutylamino)methyl)phenyl boronic acid to N,N'-cystamine bisacrylamide (CBA). It appeared that the presence of the boronic acid moieties as side groups along the polymer chain strongly enhances the stability of the self-assembled nanoparticles and nanosized polyplexes formed from this polymer; no aggregation was observed after storage for 6days at 37°C. This strong stabilization can be attributed to intermolecular Lewis acid-base interactions between the 2AMPBA groups and the alcohol and amine groups present in the polymer, leading to dynamical (reversible) crosslinking in the nanoparticles. Moreover, since the boronic acids can reversibly form boronic esters with vicinal diol groups, the presence of the 2AMPBA groups add carbohydrate-interactive properties to these polymers that strongly influence their behavior as gene delivery vectors. DNA transfection with p(CBA-ABOL/2AMPBA) polyplexes gave transfection efficiencies that were approximately similar to commercial PEI in different cell lines (COS-7, HUH-6 and H1299-Fluc), but lower than those obtained with reference polyplexes from p(CBA-ABOL). It is hypothesized that the uptake of the boronated polyplexes is suppressed by binding to the glycocalyx of the cells. This is supported by the observation that addition of sorbitol or dextran to the transfection medium significantly enhances the transfection efficiency, which can be attributed to increased cellular uptake of the polyplexes due to boronic ester formation with these agents. AFM, SEM and confocal microscopy showed that polyplexes of p(CBA-ABOL/2AMPBA) become decorated with a dextran layer in the presence of 0.9% (w

  14. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  15. Influence of the composition of the boroning mixture on the dimension change of pressed and boroned samples from iron powder

    Directory of Open Access Journals (Sweden)

    Ivanov S.

    2008-01-01

    Full Text Available Volume changes occur during sintering and chemical-thermal treatments of metal powder samples. The results of the investigation of the volume change of pressed and boroned samples from an iron powder, depending on the mixture composition used for the boroning process, are presented in this paper. The basic mixture, used for boroning of the investigated samples from iron powder, is modified by the addition of activators with different chemical compositions and in different concentrations, of up to 4 wt %. Mixtures with ammonium bifluoride, ammonium chloride and boron potassium fluoride were investigated. The research results and the mathematical modelling enable the choice of mixture compositions for boroning based on the volume change given in advance.

  16. The Adhesion Improvement of Cubic Boron Nitride Film on High Speed Steel Substrate Implanted by Boron Element

    Institute of Scientific and Technical Information of China (English)

    CAI Zhi-hai; ZHANG Ping; TAN Jun

    2005-01-01

    Cubic boron nitride(c-BN) films were deposited on W6Mo5Cr4V2 high speed steel(HSS) substrate implanted with boron ion by RF-magnetron sputtering. The films were analyzed by the bending beam method, scratch test, XPS and AFM. The experimental results show that the implantation of boron atom can reduce the in ternal stress and improve the adhesion strength of the films. The critical load of scratch test rises to 27.45 N, compared to 1.75 N of c-BN film on the unimplanted HSS. The AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. Then the composition of the boron implanted layer was analyzed by the XPS. And the influence of the boron implanted layer on the internal stress and adhesion strength of c-BN films were investigated.

  17. Crystallography, semiconductivity, thermoelectricity, and other properties of boron and its compounds, especially B6O

    Science.gov (United States)

    Slack, G. A.; Morgan, K. E.

    2015-09-01

    Electron deficient and non-deficient boron compounds are discussed as potential thermoelectric generator materials. Particular attention is paid to carbon-doped beta-boron, high-carbon boron carbide, and the alpha-boron derivative compound boron suboxide. Stoichiometric B6O shows some promise, and may have a higher ZT than the other two compounds. Carbon saturated beta-boron appears to have a higher ZT than undoped samples. Carbon saturated boron carbide at B12C3 does exist. Its thermoelectric behavior is unknown.

  18. Application of Cycloaddition Reactions to the Syntheses of Novel Boron Compounds

    Directory of Open Access Journals (Sweden)

    John A. Maguire

    2010-12-01

    Full Text Available This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-coupling reactions. In addition, the use of boron cage compounds in a number of cycloaddition reactions to synthesize unique aromatic species will be reviewed briefly.

  19. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  20. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  1. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  2. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  3. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    Energy Technology Data Exchange (ETDEWEB)

    Ogitsu, Tadashi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galli, Giulia [Univ. of California, Davis, CA (United States)

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been known for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.

  4. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  5. Durability of tannin-boron-treated timber

    Directory of Open Access Journals (Sweden)

    Gianluca Tondi

    2012-11-01

    Full Text Available Tannin-boron wood preservatives were investigated for their resistance against outdoor agents. This work focused on the analysis of the causes that affect the durability of the tannin-hexamine-treated samples. In particular, dimensional stability, resistance to leaching, and resistance to biological agents were investigated. The combined effect of deterioration agents was evaluated by subjecting the treated samples to simulated and natural weathering tests. The study of the appearance and of the color components (L*, a*, and b* according to CIELAB space of the exposed samples was monitored to assess the efficacy of the tannin-boron formulations for outdoor applications. Significant resistance against the action of water (EN 84, ENV 1250-2 and insects (EN 47 has been demonstrated in specific tests. Conversely, the continuous stress due to artificial and natural weathering deteriorates the color and the visible features of the treated specimens. The combined effect of moisture modifications, solar exposition, and leaching cycles damages the structure of the tannin-based polymeric network and subsequently it negatively affects its preservation properties.

  6. Thermal properties of boron and borides

    International Nuclear Information System (INIS)

    The influence of point defects on the thermal conductivity of polycrystalline β-B has been measured from 1 to 1000 K. Above 300 K, samples containing 2 at. % Hf and Zr have thermal conductivities close to that of amorphous boron, indicating very strong phonon scattering. A thermal conductivity of equal magnitude has also been measured near and below room temperature for nearly stoichiometric single crystals of the theoretical composition YB68. On the basis of a comparison with earlier measurements to temperatures as low as 0.1 K, it is concluded that the thermal conductivity of crystalline YB68 is indeed very similar, if not identical, to that expected for amorphous boron over the entire temperature range of measurement (0.1--300 K). Measurements of the specific heat of nearly stoichiometric YB68 between 1.5 and 30 K also reveal a linear-specific-heat anomaly of the same magnitude as is characteristic for amorphous solids, in fair agreement with earlier measurements by Bilir et al. It is concluded that the lattice vibrations of crystalline YB68 are glasslike

  7. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  8. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF-4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF-4-MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF4. To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed

  9. Bortezomib inhibits bacterial and fungal β-carbonic anhydrases.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-09-15

    Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from pathogenic fungi (Cryptococcus neoformans, Candida albicans, Candida glabrata, Malassezia globosa) and bacteria (three isoforms from Mycobacterium tuberculosis, Rv3273, Rv1284 and Rv3588), as well from the insect Drosophila melanogaster (DmeCA) and the plant Flaveria bidentis (FbiCA1) with the boronic acid peptidomimetic proteosome inhibitor bortezomib was investigated. Bortezomib was a micromolar inhibitor of all these enzymes, with KIs ranging between 1.12 and 11.30μM. Based on recent crystallographic data it is hypothesized that the B(OH)2 moiety of the inhibitor is directly coordinated to the zinc ion from the enzyme active site. The class of boronic acids, an under-investigated type of CA inhibitors, may lead to the development of anti-infectives with a novel mechanism of action, based on the pathogenic organisms CA inhibition. PMID:27469982

  10. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.); Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  11. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  12. Physical properties of CVD boron-doped multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kartick C. [Molecular Sciences Institute and School of Chemistry, University of the Witwatersrand, P.O. Wits, 2050 Johannesburg (South Africa); DST/NRF Centre of Excellence in Strong Materials, P.O. Wits, 2050 Johannesburg (South Africa); Strydom, Andre M. [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa)], E-mail: amstrydom@uj.ac.za; Erasmus, Rudolph M.; Keartland, Jonathan M. [DST/NRF Centre of Excellence in Strong Materials, P.O. Wits, 2050 Johannesburg (South Africa); School of Physics, University of the Witwatersrand, P.O. Wits, 2050 Johannesburg (South Africa); Coville, Neil J. [Molecular Sciences Institute and School of Chemistry, University of the Witwatersrand, P.O. Wits, 2050 Johannesburg (South Africa); DST/NRF Centre of Excellence in Strong Materials, P.O. Wits, 2050 Johannesburg (South Africa)], E-mail: Neil.Coville@wits.ac.za

    2008-10-15

    The effects of boron doping and electron correlation on the transport properties of CVD boron-doped multiwalled carbon nanotubes are reported. The boron-doped multiwalled carbon nanotubes were characterized by TEM as well as Raman spectroscopy using different laser excitations (viz. 488, 514.5 and 647 nm). The intensity of the D-band laser excitation line increased after the boron incorporation into the carbon nanotubes. The G-band width increased on increasing the boron concentration, indicating the decrease of graphitization with increasing boron concentration. Electrical conductivity of the undoped and boron-doped carbon nanotubes reveal a 3-dimensional variable-range-hopping conductivity over a wide range of temperature, viz. from room temperature down to 2 K. The electrical conductivity is not found to be changed significantly by the present levels of B-doping. Electron Paramagnetic Resonance (EPR) results for the highest B-doped samples showed similarities with previously reported EPR literature measurements, but the low concentration sample gives a very broad ESR resonance line.

  13. Characterization of a boron carbide-based polymer neutron sensor

    Science.gov (United States)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  14. APPLICATION OF BORON MODIFIED SILICA SOL ON RETENTION AND DRAINAGE

    Institute of Scientific and Technical Information of China (English)

    Jinxia Ma; Yuxiu Peng; Zhongzheng Li

    2004-01-01

    In this paper it was studied that these dosage effects of CPAM, cationic starch、boron modified silica sol (BMS), Al2(SO4)3, pH value and electrolyte on the retention and drainage of different microparticulate systems including CPAM, cationic starch and boron silica sol. The research results indicated that CPAM had no good retention when used with boron silica sol. The best retention efficiency was the microparticulate system of CPAM + cationic starch with boron modified silica sol; Secondly was that of cationic starch with boron modified silica sol; The worst was that of CPAM with boron modified silica sol. The retention efficiency had no relation with the addition order between CPAM and cationic starch. It was also found that the microparticulate retention system of boron modified silica sol could be used in alum-rosin sizing and in acidity, neutral or alkaline papermaking conditions. This system also could be used with close circulate water so that it could reduce the water pollution and waste.

  15. Boron Particle Ignition in Secondary Chamber of Ducted Rocket

    Directory of Open Access Journals (Sweden)

    J. X. Hu

    2012-01-01

    Full Text Available In the secondary chamber of ducted rocket, there exists a relative speed between boron particles and air stream. Hence, the ignition laws under static conditions cannot be simply applied to represent the actual ignition process of boron particles, and it is required to study the effect of forced convective on the ignition of boron particles. Preheating of boron particles in gas generator makes it possible to utilize the velocity difference between gas and particles in secondary chamber for removal of the liquid oxide layer with the aid of Stoke's forces. An ignition model of boron particles is formulated for the oxide layer removal by considering that it results from a boundary layer stripping mechanism. The shearing action exerted by the high-speed flow causes a boundary layer to be formed in the surface of the liquid oxide layer, and the stripping away of this layer accounts for the accelerated ignition of boron particles. Compared with the King model, as the ignition model of boron particles is formulated for the oxide layer removal by considering that it results from a boundary layer stripping mechanism, the oxide layer thickness thins at all times during the particle ignition and lower the ignition time.

  16. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  17. Nuclear characterizations and applications of boron-containing materials

    International Nuclear Information System (INIS)

    Materials either doped with traces of boron or containing this element as a matrix component have important technological and research applications. For most applications in technology, semiconductor doping, chemical vapor deposition of glass films, and optical waveguide fiber manufacture, boron levels or distribution must be controlled precisely. Thus, methods for quantitation of boron are needed, and its analytical chemistry still receives considerable study. Several nondestructive nuclear methods are described in this paper that have unique capabilities for quantitative analyses of boron at the trace and macro levels. Excellent high-sensitivity determinations are based on alpha track counting. For micro- and macroanalyses, the nuclear track technique using the 10B(n,α)7 Li reaction has been applied to map qualitatively the distribution of boron in borosilicate glass and in optical waveguide glass and fibers. Boron in the 1.59 to 7.75% range is determinable in silicate glasses. Similar information has also been obtained by prompt gamma neutron activation. Neuron depth profiling of boron in glass has been performed also. Results for several of these methods are reported

  18. Boron doping of graphene-pushing the limit.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-08-25

    Boron-doped derivatives of graphene have been intensely investigated because of their electronic and catalytic properties. The maximum experimentally observed concentration of boron atoms in graphite was 2.35% at 2350 K. By employing quantum chemistry coupled with molecular dynamics, we identified the theoretical doping limit for single-layer graphene at different temperatures, demonstrating that it is possible to achieve much higher boron doping concentrations. According to the calculations, 33.3 mol% of boron does not significantly undermine thermal stability, whereas 50 mol% of boron results in critical backbone deformations, which occur when three or more boron atoms enter the same six-member ring. Even though boron is less electro-negative than carbon, it tends to act as an electron acceptor in the vicinity of C-B bonds. The dipole moment of B-doped graphene depends strongly on the distribution of dopant atoms within the sheet. Compared with N-doped graphene, the dopant-dopant bonds are less destructive in the present system. The reported results motivate efforts to synthesize highly B-doped graphene for semiconductor and catalytic applications. The theoretical predictions can be validated through direct chemical synthesis. PMID:27533648

  19. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  20. VEGF-dependent mechanism of anti-angiogenic action of diamond nanoparticles in Glioblastoma Multiforme tumor

    DEFF Research Database (Denmark)

    Grodzik, M.; Sawosz, E.; Wierzbicki, M.;

    2012-01-01

    of diamond nanoparticle on VEGF level and inhibition of the brain tumor angiogenesis. We evaluated interaction of VEGF-A and VEGF-receptor proteins with diamond nanoparticles (TEM), visualized lower the permeability of blood vessels after diamond nanoparticles treatment and determined localization...