WorldWideScience

Sample records for boron isotopic composition

  1. Isotopic compositions of boron in sediments and their implications

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Yingkai, X.

    The abundance and isotopic compositions of boron in sediments from the salt lakes of Qaidam Basin, China have been determined by thermal ionization mass spectrometry of cesium borate. The results show large variations in the isotopic compositions...

  2. Isotopic composition of cosmic-ray boron and nitrogen

    Science.gov (United States)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  3. Development and validation of a method to determine the boron isotopic composition of crop plants.

    Science.gov (United States)

    Rosner, Martin; Pritzkow, Wolfgang; Vogl, Jochen; Voerkelius, Susanne

    2011-04-01

    We present a comprehensive chemical and mass spectrometric method to determine boron isotopic compositions of plant tissue. The method including dry ashing, a three-step ion chromatographic boron-matrix separation, and (11)B/(10)B isotope ratio determinations using the Cs(2)BO(2)(+) graphite technique has been validated using certified reference and quality control materials. The developed method is capable to determine δ(11)B values in plant tissue down to boron concentrations of 1 mg/kg with an expanded uncertainty of ≤1.7‰ (k = 2). The determined δ(11)B values reveal an enormous isotopic range of boron in plant tissues covering three-quarters of the natural terrestrial occurring variation in the boron isotopic composition. As the local environment and anthropogenic activity mainly control the boron intake of plants, the boron isotopic composition of plants can be used for food provenance studies.

  4. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  5. The atomic weight and isotopic composition of boron and their variation in nature

    International Nuclear Information System (INIS)

    Holden, N.E.

    1993-01-01

    The boron isotopic composition and atomic weight value and their variation in nature are reviewed. Questions are raised about the previously recommended value and the uncertainty for the atomic weight. The problem of what constitutes an acceptable range for normal material and what should then be considered geologically exceptional is discussed. Recent measurements make some previous decisions in need of re-evaluation

  6. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites

    Science.gov (United States)

    Palmer, M.R.; Slack, J.F.

    1989-01-01

    Boron isotope ratios (11B/10B) have been measured on 60 tourmaline separates from over 40 massive sulfide deposits and tourmalinites from a variety of geologic and tectonic settings. The coverage of these localities is global (5 continents) and includes the giant ore bodies at Kidd Creek and Sullivan (Canada), Broken Hill (Australia), and Ducktown (USA). Overall, the tourmalines display a wide range in ??11B values from -22.8 to +18.3??? Possible controls over the boron isotopic composition of the tourmalines include: 1) composition of the boron source, 2) regional metamorphism, 3) water/rock ratios, 4) seawater entrainment, 5) temperature of formation, and 6) secular variations in seawater ??11B. The most significant control appears to be the composition of the boron source, particularly the nature of footwall lithologies; variations in water/ rock ratios and seawater entrainment are of secondary importance. The boron isotope values seem especially sensitive to the presence of evaporites (marine and non-marine) and carbonates in source rocks to the massive sulfide deposits and tourmalinites. ?? 1989 Springer-Verlag.

  7. Boron contents and isotope compositions of oceanic crusts from the Oman and Troodos ophiolites

    Science.gov (United States)

    Yamaoka, K.; Matsukura, S.; Ishikawa, T.; Kawahata, H.

    2011-12-01

    Boron is excellent tracer for elucidating crustal recycling in subduction zones because of the high concentration of boron in the upper part of the slab and the high mobility of boron during dehydration of the slab. However, fundamental data for vertical distribution of boron in hydrothermally altered oceanic crust are still limited. In this study, boron contents and isotopic compositions were determined for complete section of the oceanic crusts in the Oman and Troodos ophiolite. Although the boron contents of rocks decreased with depth in both the oceanic crusts, altered rocks from deep section showed obvious boron enrichment relative to fresh rocks. The pillow lavas in the Troodos ophiolite, which have been weathered on the seafloor for ~80 Myrs, was highly enriched in boron (>100 ppm), supporting that boron inventory of pillow lava section strongly depends on the crustal age. The δ11B of rocks in the Oman ophiolite systematically increased with depth and negatively correlate with the δ18O values, suggesting that the δ11B values are essentially controlled by alteration temperature. On the other hand, the δ11B profile in the Troodos ophiolite didn't show clear increase trend. The boron contents for the bulk oceanic crusts of the Oman and Troodos ophiolites are estimated to be 3.6 ppm and 12 ppm, respectively. About 8% of δ11B was estimated for both the bulk oceanic crusts. In contrast to previous views, hydrothermally altered gabbro section can be a large sink of boron. This boron-enriched, high-δ11B lower oceanic crust may impact on the estimate of the δ11B value for fluids librated from the subducted oceanic slab, which is believed to largely control the δ11B values of arc magmas generated in the mantle wedge.

  8. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    Science.gov (United States)

    Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.

    2017-06-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this

  9. Rapid, high-precision measurements of boron isotopic compositions in marine carbonates.

    Science.gov (United States)

    McCulloch, Malcolm T; Holcomb, Michael; Rankenburg, Kai; Trotter, Julie A

    2014-12-30

    The isotopic composition and elemental abundance of boron (B) in marine carbonates provide a powerful tool for tracking changes in seawater pH and carbonate chemistry. Progress in this field has, however, been hampered by the volatile nature of B, its persistent memory, and other uncertainties associated with conventional chemical extraction and mass spectrometric measurements. Here we show that for marine carbonates, these limitations can be overcome by using a simplified, low-blank, chemical extraction technique combined with robust multi-collector inductively couple plasma mass spectrometry (MC-ICPMS) methods. Samples are dissolved in dilute HNO3 and loaded first onto on a cation-exchange column with the major cations (Ca, Mg, Sr, Na) being quantitatively retained while the B fraction is carried in the eluent. The eluent is then passed directly through an anion column ensuring that any residual anions, such as SO4(2-), are removed. Isotopic measurements of (11)B/(10)B ratios are undertaken by matching both the B concentration and the isotopic compositions of the samples with the bracketing standard, thereby minimising corrections for cross-contamination. The veracity of the MC-ICPMS procedure is demonstrated using a gravimetrically prepared laboratory standard, UWA24.7, relative to the international reference standard NIST SRM 951 (δ(11)B = 0‰). This gives values consistent with gravimetry (δ(11)B = 24.7 ± 0.3‰ 2sd) for solutions ranging in concentration from 50 to 500 ppb, equivalent to ~2-10 mg size coral samples. The overall integrity of the method for carbonate analysis is demonstrated by measurements of the international carbonate standard JCp-1 (δ(11)B = 24.3 ± 0.34‰ 2sd). A streamlined, integrated approach is described here that enables rapid, accurate, high-precision measurements of boron isotopic compositions and elemental abundances in commonly analysed biogenic carbonates, such as corals, bivalves, and large benthic forams. The overall

  10. Boron isotopic compositions in growing corals from the South China Sea

    Science.gov (United States)

    Xiao, Jun; Xiao, Yingkai; Jin, Zhangdong; Liu, Congqiang; He, Maoyong

    2013-01-01

    In order to determine incorporation of boron species, boron isotopic fractionation, and influence of trace elements on isotopic compositions of boron in corals (δ11Bcoral), concentrations of Mg, Sr, Na, B and δ11Bcoral in growing corals from the South China Sea were measured. Relative to seawater, Sr enriched while Mg depleted in corals in the South China Sea. Although the δ11Bcoral values were different from various species and were not closely correlated with the element concentrations in corals in the South China Sea, Mg(OH)2 existed in corals can result in high δ11Bcoral. Thus, it is necessary to examine the existence of Mg(OH)2 and to choose the same species when δ11Bcoral is used in the δ11B-pH proxy. Based on the measured δ11B values of corals and coexisting seawater as well as the seawater pH in the South China Sea, a new isotopic fractionation factor a4-3 between B(OH)4- and B(OH)3 was determined to be 0.979. Besides B(OH)4- into corals, our results showed that B(OH)3 may also be incorporated into corals with variable proportions. The incorporation of B(OH)3 into corals may challenge the hypothesis of δ11Bcoral = δ11B4, resulting in increasing uncertainty to the calculated seawater pH values to the δ11B-pH proxy. We suggested that a best-fit empirical equation between δ11B of bio-carbonates and seawater pH needs to be established by the precipitation experiments of inorganic carbonates or culture experiments of corals or foraminifera.

  11. Boron and strontium isotope compositions of groundwater from the La Paz arid coastal aquifer, Baja California Sur, Mexico

    Science.gov (United States)

    Mahlknecht, Jürgen; Rosner, Martin; Meixner, Anette

    2016-04-01

    In groundwater studies boron and strontium isotopic compositions can be used to identify natural and anthropogenic sources as well as processes related to groundwater recharge, flow and mixing. The La Paz arid costal aquifer in Baja California Sur, Mexico, is the most important source of drinking and irrigation water for La Paz area and suffers from anthropogenic contamination and intensive exploitation of the aquifer causing seawater intrusion and general groundwater abatement. The relatively un-radiogenic 87Sr/86Sr isotope ratios of the La Paz groundwater range in a narrow field between 0.7054 and 0.7062. In contrast to strontium the boron isotope composition displays a large variability between +27 and +55 permil d11B. The relatively low 87Sr/86Sr ratios of the La Paz groundwater highlight a significant contribution of strontium derived from local terrestrial sediments and igneous rocks with known 87Sr/86Sr ratios between 0.705 and 0.7035. The large variability of d11B values indicate that multiple sources and processes determine the boron isotope composition of La Paz groundwater. Rainwater (high d11B), seawater (~+40 permil) due to seawater intrusions, wastewater (low to medium d11B) and boron derived from the local geology (low to medium d11B) explain most of the observed groundwater d11B variability. However, d11B values higher than modern seawater point to significant boron isotope fractionation by preferential absorption of 10B onto clay minerals during the evolution of some groundwater samples. Due to low boron concentrations in rainwater a significant contribution of 11B-rich rainwater (>+40 permil) on the La Paz groundwater is unlikely.

  12. Boron Isotope Fractionation in Bell Pepper

    OpenAIRE

    Geilert, Sonja; Vogl, Jochen; Rosner, Martin; Voerkelius, Susanne; Eichert, Thomas

    2015-01-01

    Various plant compartments of a single bell pepper plant were studied to verify the variability of boron isotope composition in plants and to identify possible intra-plant isotope fractionation. Boron mass fractions varied from 9.8 mg/kg in the fruits to 70.0 mg/kg in the leaves. Boron (B) isotope ratios reported as δ11B ranged from -11.0‰ to +16.0‰ (U ≤ 1.9‰, k=2) and showed a distinct trend to heavier δ11B values the higher the plant compartments were located in the plant. A fractionatio...

  13. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    Science.gov (United States)

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  14. Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota

    Science.gov (United States)

    Komor, S.C.

    1997-01-01

    Boron-isotope (δ11B) values may be useful as surrogate tracers of contaminants and indicators of water mixing in agricultural settings. This paper characterizes the B contents and isotopic compositions of hog manure and selected fertilizers, and presents δ11B data for ground and surface water from two agricultural areas. Boron concentrations in dry hog manure averaged 61 mg/kg and in commercial fertilizers ranged from below detection limits in some brands of ammonium nitrate and urea to 382 mg/kg in magnesium sulfate. Values of δ11B of untreated hog manure ranged from 7.2 to 11.2o/oo and of N fertilizers were −2.0 to 0.7o/oo. In 22 groundwater samples from a sand-plain aquifer in east-central Minnesota, B concentrations averaged 0.04 mg/L and δ11B values ranged from 2.3 to 41.5o/oo. Groundwater beneath a hog feedlot and a cultivated field where hog manure was applied had B-isotope compositions consistent with the water containing hog-manure leachate. In a 775-km2 watershed with silty-loam soils in southcentral Minnesota: 18 samples of subsurface drainage from corn (Zea mays L.) and soybean (Glycine max L. Merr.) fields had average B concentrations of 0.06 mg/L and δ11B values of 5.3 to 15.1o/oo; 27 stream samples had average B concentrations of 0.05 mg/L and δ11B values of 1.0 to 19.0o/oo; and eight groundwater samples had average B concentrations of 0.09 mg/L and δ11B values of −0.3 to 23.0o/oo. Values of δ11B and B concentrations, when plotted against one another, define a curved mixing trend that suggests subsurface drainage and stream water contain mixtures of B from shallow and deep groundwater.

  15. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2018-04-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  16. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2017-07-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  17. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  18. A study of galactic cosmic ray propagation models based on the isotopic composition of the elements lithium, beryllium and boron

    Science.gov (United States)

    Hinshaw, G. F.; Wiedenbeck, M. E.; Greiner, D. E.

    1982-01-01

    A good test for a cosmic ray propagation model is its ability to predict the abundances of the light secondary nuclei lithium, beryllium, and boron. By using measured isotopic abundances of lithium, beryllium, and boron, Garcia-Munoz et al. (1979) were able to place limits on three important parameters of a leaky box propagation model. The considered parameters include the source spectral parameter, the leakage mean free path, and the characteristic adiabatic energy loss due to solar modulation. The present investigation is concerned with a critical evaluation of the information which can be deduced about these parameters from isotopic composition alone, taking into account the effects of uncertainties in the spallation cross section data.

  19. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  20. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  1. LITHIUM-BERYLLIUM-BORON ISOTOPIC COMPOSITIONS IN METEORITIC HIBONITE: IMPLICATIONS FOR ORIGIN OF 10Be AND EARLY SOLAR SYSTEM IRRADIATION

    International Nuclear Information System (INIS)

    Liu, Ming-Chang; Nittler, Larry R.; Alexander, Conel M. O'D.; Lee, Typhoon

    2010-01-01

    NanoSIMS isotopic measurements of Li, Be, and B in individual hibonite grains extracted from the Murchison meteorite revealed that 10 B excesses correlate with the 9 Be/ 11 B ratios in 26 Al-free PLAty hibonite Crystals. From these data, an initial 10 Be/ 9 Be = (5.5 ± 1.6) x 10 -4 (2σ) and 10 B/ 11 B = 0.2508 ± 0.0015 can be inferred. On the other hand, chondritic boron isotopic compositions were found in 26 Al-bearing Spinel-HIBonite spherules, most likely due to contamination with normal boron. No 7 Li excesses due to 7 Be decay were observed. When combined with previously reported data, the new data yield the best defined 10 Be/ 9 Be = (5.3 ± 1.0) x 10 -4 (2σ) and 10 B/ 11 B = 0.2513 ± 0.0012 for PLACs. A comparison of this value and the best constrained 10 Be/ 9 Be = (8.8 ± 0.6) x 10 -4 in CV Ca-Al-rich inclusions supports a heterogeneous distribution of 10 Be and its protosolar irradiation origin. We consider two possible irradiation scenarios that could potentially lead to the observed Li-Be-B isotopic compositions in PLACs. Although in situ irradiation of solids with hibonite chemistry seems to provide the simplest explanation, more high quality data will be needed for quantitatively constraining the irradiation history.

  2. Boron and lithium isotopic composition in chondrules from the mokoia meteorite

    Science.gov (United States)

    Robert, F.; Chaussidon, M.

    2003-04-01

    Introduction: Large Boron isotopic variations have been reported in individual chondrules from several meteorites [1, 2]. These variations were interpreted as resulting from the incomplete mixing of two isotopically distinct sources of Boron. Spallation is the only known nucleosynthetic process that can yield Boron in substantial amounts at the scale of the Universe. Therefore it has been proposed that the two sources observed in chondrules correspond to two different types of spallation reactions, namely at high and low energies. Indeed, in the case of Boron, the 11B/10B ratio is sensitive to the energy at which the spallation reaction takes place. Since this report of large B isotopic variations in chondrules, two observations have allowed to identify the natural conditions under which at least one of such spallation reactions may have taken place in the early solar system. First, X-ray observations of T-Tauri stars have revealed daily outbursts which mimic the present day solar activity during the emission of flares [3]. Second, the decay product (i.e. 10B) of the short lived radio-isotope 10Be was discovered in Calcium-Aluminum-rich inclusions (CAIs) [4]. This is an indication that spallation did occurr in the solar system, shortly (i.e. less than a few million years) before the formation of the CAIs. In addition the possible occurrence of 7Be in CAIs suggests that this duration can be as short as a few months [5]. Sampling and Results: In the 8 chondrules from Mokoia, the δ11B values range between -39±6.8 ppm and -0.6±7.8 ppm (2 sigma). In one Boron depleted area of one chondrule, the δ11B value was found to be as low as -68.5 ppm and -61.5 ppm (±29; 2 sigma). In one chondrule from Mokoia the δ11B values range between -33.7±5.4 ppm and -3.8±5.4 ppm. These data confirm with a resolution of ≈ ±6 ppm the presence of a significant Boron isotopic heterogeneity,.The δ^7Li were also measured along with the ^delta11B. They range from -53.7±2.4 and -0.15

  3. Determination of boron content and isotopic composition in gypsum by inductively coupled plasma optical emission spectroscopy and positive thermal ionization mass spectrometry using phase transformation.

    Science.gov (United States)

    Ma, Yun-Qi; Peng, Zhang-Kuang; Yang, Jian; Xiao, Ying-Kai; Zhang, Yan-Ling

    2017-12-01

    As a stable isotope, boron plays an important role in hydrogeology, environmental geochemistry, ore deposit geochemistry and marine paleoclimatology. However, there is no report of boron isotopic composition in gypsum. This is mainly confined to complete dissolution of Gypsum by water or acid. In this study, gypsum was converted to calcium carbonate (CaCO 3 ) with ammonium bicarbonate(NH 4 HCO 3 ) by two steps at 50°C. In every step, the mass ratio of NH 4 HCO 3 /CaSO 4 ·2H 2 O was twice, and conversion rate reached more than 98%. Converted CaCO 3 was totally dissolved with hydrochloric acid (the dissolution rate was over 99%). In order to overcome the difficulties of the matrix interference and the detection limit of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), we use Amberlite IRA 743 resin to purify and enrichment the boron at first, then eluting boron from the resin with 10mL 0.1mol/L hydrochloric acid at 75°C. The boron isotopic composition of natural gypsum samples was determined using positive thermal ionization mass spectrometry (P-TIMS). The boron isotopic composition of gypsum may be an excellent indicator for the formation environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  5. Method of separating boron isotopes

    Science.gov (United States)

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  6. Possible roles of pH, temperature, and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera

    Science.gov (United States)

    Wara, M.W.; Delaney, M.L.; Bullen, T.D.; Ravelo, A.C.

    2003-01-01

    We present the first continuous records from 0 to 5 Ma (in 0.333 m.y. integrated time steps) of paired boron/calcium (B/Ca) ratios and boron isotopes (??11B) in the planktonic foraminifera Globogerinoides sacculifer (without sacc) from a site in the western equatorial Pacific Ocean (Ocean Drilling Program Site 806). These measurements, the first made in conjunction with calcification temperature (magnesium/calcium ratios) and average shell mass measurements, indicate that pH is not the sole environmental variable controlling B in planktonic foraminiferal calcite. Our data are consistent with calcification temperature exerting a primary control on B concentration and isotopic composition in planktonic foraminifera. If so, calcification temperature must be taken into account if pH for past oceans and atmospheric pCO2 are to be estimated from B isotope measurements in foraminiferal calcite. Doing so will substantially increase the uncertainty of PH estimates. Although this work was designed as a temporal study, its results define new aspects of calibrating the ??11B paleo-pH tracer. Copyright 2003 by the American Geophysical Union.

  7. A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon and nitrogen. Ph.D. Thesis

    Science.gov (United States)

    Zumberge, J. F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.

  8. Boron isotopes and groundwater pollution

    International Nuclear Information System (INIS)

    Vengosh, A.

    1999-01-01

    Boron can be used as a tracer in ground water because of its high solubility in aqueous solutions, natural abundance in all waters, and the lack of effects by evaporation, volatilisation, oxidation-reduction reactions. Since the boron concentrations in pristine ground waters are generally low and contaminant sources are usually enriched in boron, the δ 11 B of groundwater is highly sensitive to the impact of contamination. The large isotopic variations of the potential sources can be used to trace the origin of the contamination and to reconstruct mixing and flow paths

  9. Boron isotopic composition of tertiary borate deposits in the Puna Plateau of the Central Andes, NW Argentina

    International Nuclear Information System (INIS)

    Kasemann, Simone; Franz, Gerhard; Viramonte, Jose G.; Alonso, Ricardo N.

    1998-01-01

    precipitation at variable pH values (Palmer and Helvaci 1995, Oi et al. 1989). Because of the identical δ 11 B values of each borate sequence from Sijes, similarly composed thermal brines are likely. Taking the Antuco data into account we calculate an original δ 11 B of -12%0 for the Sijes brines. The difference to the value (-16%0), calculated according to Oi et al. (1989), is small and can be explained by lower temperature and pH as well different chemical composition in the required fluid. In Tincalayu we measured the boron isotopes from different minerals with the same boron atomic coordination. The δ 11 B values are similar for the borates, which agrees with the work from Oi et al. (1989). The calculated δ 11 B value for the boron rich brines is around -10%0. In a first approximation, the isotopic composition of the boron source must be similar for Tincalayu and Sijes. A different situation is found in Loma Blanca. There a δ 11 B value between 0.0%0 and +4%0 for the fluid is calculated, which is clearly due to different source material. (author)

  10. Geochemical evolution of tourmaline in the Darasun gold district, Transbaikal region, Russia: evidence from chemical and boron isotopic compositions

    Science.gov (United States)

    Baksheev, Ivan A.; Prokofiev, Vsevolod Yu.; Trumbull, Robert B.; Wiedenbeck, Michael; Yapaskurt, Vasilii O.

    2015-01-01

    The Darasun gold district, Transbaikal region, eastern Russia comprises three deposits: Teremkyn, Talatui, and Darasun, where gold-bearing quartz veins are hosted in metagabbro and granitoids. Tourmaline is a common gangue mineral in these deposits and a useful indicator of fluid source. The tourmaline compositions are oxy-dravite-povondraite, dravite, and schorl. We report here in situ B-isotope analyses by secondary ion mass spectrometry (SIMS) on tourmaline from veins in metagabbro and K-rich granodiorite, as well as from a breccia pipe at the margin of granodiorite porphyry. The B-isotope composition of tourmalines from the Darasun gold district as a whole covers a very wide range from -15.7 to +11.2 ‰, with distinctive differences among the three deposits. The δ11B values in the Teremkyn tourmalines are the most diverse, from -15.7 to +2.5 ‰. Tourmaline core compositions yield an inferred δ11B value of the initial fluid of ca. -12 ‰, suggesting granitic rocks as the B source, whereas the heavier rims and late-stage grains reflect Rayleigh fractionation. The δ11B values of tourmaline from Talatuiare -5.2 to -0.9 ‰. Taking into account fluid inclusion temperatures from vein quartz (ca. 400 °C), the inferred δ11B value of fluid is heavy (-2.5 to +2.2 ‰) suggesting a B source from the host metagabbro. At the Darasun deposit, tourmaline from the breccia pipe is isotopically uniform (δ11 B -6 to -5 ‰) and suggested to have precipitated from a 10B-depleted, residual fluid derived from granitic rocks. The Darasun vein-hosted tourmalines I and II (δ11B from -4.4 to +1.5 ‰) may have crystallized from strongly fractionated residual granitic fluid although mixing with heavy boron from the metagabbro rocks probably occurred as well; the boron isotopic composition of tourmaline III (-11.2 ‰) is attributed to a less-fractionated fluid, possibly a recharge from the same source.

  11. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea

    Science.gov (United States)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.

    2016-12-01

    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  12. The isotopic composition of galactic cosmic ray lithium, beryllium and boron

    Science.gov (United States)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1978-01-01

    The isotopic composition of galactic-cosmic-ray Li, Be, and B has been measured near 100 MeV/nucleon by using the University of Chicago IMP 7 and IMP 8 cosmic-ray telescopes during 1973-1975. The measured abundances allow detailed checks of models of interstellar propagation and solar modulation to be made and conclusions to be drawn concerning the spectral forms at the source and the minimum solar modulation level. For example, comparing these results with local interstellar spectra calculated by using a 'leaky box' model, it is found that if solar modulation is ignored, there is no unique leakage mean free path consistent with all the observations. However, by taking account of a sizable level of residual solar modulation, excellent agreement is obtained between the calculated and measured abundances. Thus, these isotopic abundances confirm the old hypothesis that cosmic-ray Li, Be, and B are produced as secondaries in interstellar space.

  13. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    OpenAIRE

    Marschall, H.R.; Wanless, V.D.; Shimizu, N.; Pogge von Strandmann, Philip A.E.; Elliott, T.; Monteleone, B.D.

    2017-01-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([Li]=1.39±0.10[Li]=1.39±0.10 μg/g and [B]=0.19±0.02[B]=0.19±0.02 μg/g) and depleted mantle abundances ([Li]=1.20±0.10...

  14. Environmental controls on the boron and strontium isotopic composition of aragonite shell material of cultured Arctica islandica

    Directory of Open Access Journals (Sweden)

    Y.-W. Liu

    2015-06-01

    Full Text Available Ocean acidification, the decrease in ocean pH associated with increasing atmospheric CO2, is likely to impact marine organisms, particularly those that produce carbonate skeletons or shells. Therefore, it is important to investigate how environmental factors (seawater pH, temperature and salinity influence the chemical compositions in biogenic carbonates. In this study we report the first high-resolution strontium (87Sr / 86Sr and δ88 / 86Sr and boron (δ11B isotopic values in the aragonite shell of cultured Arctica islandica (A. islandica. The 87Sr / 86Sr ratios from both tank water and shell samples show ratios nearly identical to the open ocean, which suggests that the shell material reflects ambient ocean chemistry without terrestrial influence. The 84Sr–87Sr double-spike-resolved shell δ88 / 86Sr and Sr concentration data show no resolvable change throughout the culture period and reflect no theoretical kinetic mass fractionation throughout the experiment despite a temperature change of more than 15 °C. The δ11B records from the experiment show at least a 5‰ increase through the 29-week culture season (January 2010–August 2010, with low values from the beginning to week 19 and higher values thereafter. The larger range in δ11B in this experiment compared to predictions based on other carbonate organisms (2–3‰ suggests that a species-specific fractionation factor may be required. A significant correlation between the ΔpH (pHshell − pHsw and seawater pH (pHsw was observed (R2 = 0.35, where the pHshell is the calcification pH of the shell calculated from boron isotopic composition. This negative correlation suggests that A. islandica partly regulates the pH of the extrapallial fluid. However, this proposed mechanism only explains approximately 35% of the variance in the δ11B data. Instead, a rapid rise in δ11B of the shell material after week 19, during the summer, suggests that the boron uptake changes when a thermal

  15. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    Science.gov (United States)

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  16. The isotopic composition of galactic cosmic-ray lithium, beryllium, and boron

    Science.gov (United States)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1975-01-01

    The isotopes of cosmic-ray Li, Be, and B near 100 MeV per nucleon have been measured with cosmic-ray telescopes on board the IMP-7 and IMP-8 satellites during 1973 and 1974. The measured isotopic abundances provide a stringent test for models of interstellar propagation and solar modulation. It is found that the isotopic abundances can be explained using a steady-state interstellar propagation model with a 5-g/sq cm leakage mean free path. These results, taken along with Be-10 abundance measurements, indicate a longer lifetime for cosmic rays than that predicted by the usual assumption of an average interstellar density of 1 to 3 atoms per cu cm.

  17. Boron Isotopes Enrichment via Continuous Annular Chromatography

    OpenAIRE

    Sağlam, Gonca

    2016-01-01

    ABSTRACT Boron has two stable isotopes namely 10B and 11B isotopes. The large cross section of 10B isotope for thermal neutrons is used for reactor control in nuclear fission reactors. The thermal neutrons absorption cross sections of pure 10B and 11B are 3837 and 0.005 barns respectively. In the literature, amongst others, batch elution chromatography techniques are reported for 10B isotope enrichment. This work focuses on continuous chromatographic 10B isotope separation system via continuo...

  18. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  19. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Qingcai Xu

    2015-01-01

    Full Text Available Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰ with a mean value of 2.61±11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  20. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry.

    Science.gov (United States)

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  1. Composite boron nitride neutron detectors

    Science.gov (United States)

    Roth, M.; Mojaev, E.; Khakhan, O.; Fleider, A.; Dul`kin, E.; Schieber, M.

    2014-09-01

    Single phase polycrystalline hexagonal boron nitride (BN) or mixed with boron carbide (BxC) embedded in an insulating polymeric matrix acting as a binder and forming a composite material as well as pure submicron size polycrystalline BN has been tested as a thermal neutron converter in a multilayer thermal neutron detector design. Metal sheet electrodes were covered with 20-50 μm thick layers of composite materials and assembled in a multi-layer sandwich configuration. High voltage was applied to the metal electrodes to create an interspacing electric field. The spacing volume could be filled with air, nitrogen or argon. Thermal neutrons were captured in converter layers due to the presence of the 10B isotope. The resulting nuclear reaction produced α-particles and 7Li ions which ionized the gas in the spacing volume. Electron-ion pairs were collected by the field to create an electrical signal proportional to the intensity of the neutron source. The detection efficiency of the multilayer neutron detectors is found to increase with the number of active converter layers. Pixel structures of such neutron detectors necessary for imaging applications and incorporation of internal moderator materials for field measurements of fast neutron flux intensities are discussed as well.

  2. Studies on Separation Process and Production Technology of Boron Isotope

    OpenAIRE

    LI Jian-ping

    2014-01-01

    The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material di...

  3. Effects of foliar boron application on seed composition, cell wall boron, and seed δ(15)N and δ(13)C isotopes in water-stressed soybean plants.

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A; Abel, Craig A

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha(-1). The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS-B); water stressed plants with FB (WS+B); watered plants without FB (W-B), and watered plants with FB (W+B). The treatment W-B was used as a control. Comparing with WS-B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W-B. However, seed stachyose concentrations increased by 43% in WS-B plants seed compared with W-B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS-B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ(15)N and δ(13)C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids.

  4. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  5. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-06

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  6. Boron isotopes as an artificial tracer.

    Science.gov (United States)

    Quast, Konrad W; Lansey, Kevin; Arnold, Robert; Bassett, Randy L; Rincon, Martha

    2006-01-01

    A field study was conducted using a combination of intrinsic and artificial tracers to estimate travel times and dilution during transport of infiltrate from a reclaimed water infiltration basin to nearby monitoring wells. A major study objective was to validate boric acid enriched in (10)B as an artificial tracer. Basin 10E at the Rio Hondo Spreading Grounds in Whittier, California, was the site of the test. The basin normally receives a mixture of treated municipal waste water, purchased State Project water, and local runoff from the San Gabriel River. Approximately 3.5 kg of (10)B-enriched boric acid was dispersed among 2.05 x 10(5) m(3) of basin water to initiate the experiment. The resultant median delta(11)B in the infiltration basin was -71 per thousand. Prior to tracer addition, the basin water had an intrinsic delta(11)B of +2 per thousand. Local monitoring wells that were used to assess travel times had delta(11)B values of +5 per thousand and +8 per thousand at the time of tracer addition. Analytic results supported an assumption that boron is conserved during ground water transport and that boron enriched in (10)B is a useful artificial tracer. Several intrinsic tracers were used to reinforce the boric acid tracer findings. These included stable isotopes of oxygen (delta(18)O) and hydrogen (deltaD), sulfate concentration, and the boron to chloride ratio. Xenon isotopes, (136)Xe and (124)Xe, also supported boron isotope results. Xenon isotopes were added to the recharge basin as dissolved gases by investigators from the Lawrence Livermore National Laboratory.

  7. Boron Isotope Compositions of Selected Fresh MORB Glasses From the Northern EPR (8-10° N): Implications for MORB Magma Contamination

    Science.gov (United States)

    Le Roux, P. J.; Shirey, S. B.; Hauri, E. H.; Perfit, M. R.

    2003-12-01

    . These MORB samples have 0.56 to 2.61 ppm B, and B isotope compositions that are surprisingly restricted ranging from δ 11B -5.50 to -8.96‰ . The low δ 11B values are close to the depleted upper mantle value (-10‰ ). The δ 11B data do not correlation with B concentrations, Mg#, Sr, Nd or Pb isotopes, or proxies for brine addition (e.g. Cl/Nb). The lowest δ 11B samples are also the most-incompatible element depleted (high B/Nb ratios). The δ 11B of the on-axis samples increases slightly with increased levels of magma degassing (i.e. lowest δ 11B values in samples extracted undegassed from depths closest to AMC top).Therefore, although the Cl data indicate significant addition of probably a saline brine component to both on- and off-axis MORB magmas, their δ 11B compositions were not significantly affected by this process and the observed variations in δ 11B may have a different origin. Possibly, the low B/Cl ratio of seawater ( ˜ 0.001) coupled with preferential partitioning of Cl relative to B into brines during supercritical phase separation (Berndt and Seyfried, 1990) of seawater in hydrothermal system, results in very saline brines with low boron concentrations. The coupled B-Cl data effectively eliminates simple magmatic assimilation of altered Cl-rich high-B isotope composition oceanic crust in this region.

  8. Tracing recycled volatiles in a heterogeneous mantle with boron isotopes

    Science.gov (United States)

    Walowski, Kristina; Kirstein, Linda; de Hoog, Cees-Jan; Elliot, Tim; Savov, Ivan; Devey, Colin

    2016-04-01

    Recycling of oceanic lithosphere drives the chemical evolution of the Earth's mantle supplying both solids and volatiles to the Earth's interior. Yet, how subducted material influences mantle composition remains unclear. A perfect tracer for slab recycling should be only fractionated at the Earth's surface, have a strong influence on mantle compositions but be resistant to perturbations en route back to the surface. Current understanding suggests that boron concentrations linked to B isotope determinations fulfil all these requirements and should be an excellent tracer of heterogeneity in the deep mantle. Here, we present the trace element, volatile and the B isotope composition of basaltic glasses and melt inclusions in olivine from distinct end-member ocean island basalts (OIB) to track the fate of recycled lithosphere and ultimately document how recycling contributes to mantle heterogeneity. The chosen samples represent the different end member OIB compositions and include: EMI (Pitcairn), EMII (MacDonald), HIMU (St. Helena), and FOZO (Cape Verde & Reunion). The data is derived from both submarine and subaerial deposits, with B isotope determination of both basaltic glass and melt inclusions from each locality. Preliminary results suggest OIB have B isotopic compositions that overlap the MORB array (-7.5‰±0.7; Marschall et al., 2015) but extend to both lighter and heavier values. These results suggest that B isotopes will be useful for resolving mantle source heterogeneity at different ocean islands and contribute to our understanding of the volatile budget of the deep mantle.

  9. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  10. Content of lithium, beryllium, boron, and titanium, and the isotopic composition of lithium, boron, and magnesium in Luna 16 regolith sample

    Science.gov (United States)

    Eugster, O.

    1974-01-01

    The abundance of the following elements in the L 16-19 No. 118 regolith sample, zone V was determined by isotopic dilution using a mass spectrometer equipped with a scattering ion source: Li -- 9.8, Be -- 1.2, Be -- 2.6, and Ti -- 1.92 percent. For comparison, these same elements were measured in samples of surface material returned by Apollo 11, Apollo 12, and Apollo 14, and in the terrestrial reference standard diabase W-1. The content of Li, Be, and B in the Luna 16 sample is nearly the same as in the Apollo 11 surface material. The surface material returned by Apollo 12 and Apollo 14 contains two to four times more of these elements. However, the abundance ratios of Li, Be, and B are remarkably similar in the surface materials from the four different lunar regions. With respect to basaltic achondrites and especially with respect to chondrites, the lunar basalts are enriched in Li, Be, and B up to 100 times.

  11. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, J.K.; Palmer, M.R.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  12. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    OpenAIRE

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass ...

  13. Boron isotope fractionation in column chromatography with glucamine type fibers

    International Nuclear Information System (INIS)

    Sonoda, Akinari; Makita, Yoji; Hirotsu, Takahiro

    2008-01-01

    Glucamine type polymers have specific affinity toward boric acid and borate ion. Among them, Chelest Fiber GRY-L showed larger fractionation for boron isotopes than other polymers in our previous study. For this study, we used Chelest Fibers with different fiber lengths (1.0 mm, 0.5 mm, and 0.3 mm) as column packing materials to perform chromatographic separation of boron isotopes. The shorter fiber has larger packing density when packed into the column using a dry method. The 0.3-mm-long fiber has a larger backpressure than fibers of other lengths. Boron adsorption capacities were measured using the breakthrough operation. At this time, the 0.5-mm-long fiber showed the highest capacity. When we measured the isotope ratio profile for fibers of different length using column chromatography, 0.5-mm-long fibers displayed the highest boron isotope fractionation. The 0.5-mm-long fiber is promising as a packing material of column chromatography for boron isotope separation. We also changed operation methods. The lower eluent concentration and the slower flow rate are suitable for boron isotope separation. (author)

  14. Fluid sources and metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, U.S.A.: Insights from major-element and boron isotopic compositions of tourmaline

    Science.gov (United States)

    Trumbull, Robert B.; Slack, John F.; Krienitz, M.-S.; Belkin, Harvey E.; Wiedenbeck, M.

    2011-01-01

    Tourmaline is a widespread mineral in the Mesoproterozoic Blackbird Co–Cu–Au–Bi–Y–REE district, Idaho, where it occurs in both mineralized zones and wallrocks. We report here major-element and B-isotope compositions of tourmaline from stratabound sulfide deposits and their metasedimentary wallrocks, from mineralized and barren pipes of tourmaline breccia, from late barren quartz veins, and from Mesoproterozoic granite. The tourmalines are aluminous, intermediate in the schorl–dravite series, with Fe/(Fe + Mg) values of 0.30 to 0.85, and 10 to 50% X-site vacancies. Compositional zoning is prominent only in tourmaline from breccias and quartz veins; crystal rims are enriched in Mg, Ca and Ti, and depleted in Fe and Al relative to cores. The chemical composition of tourmaline does not correlate with the presence or absence of mineralization. The δ11B values fall into two groups. Isotopically light tourmaline (−21.7 to −7.6‰) occurs in unmineralized samples from wallrocks, late quartz veins and Mesoproterozoic granite, whereas heavy tourmaline (−6.9 to +3.2‰) is spatially associated with mineralization (stratabound and breccia-hosted), and is also found in barren breccia. At an inferred temperature of 300°C, boron in the hydrothermal fluid associated with mineralization had δ11B values of −3 to +7‰. The high end of this range indicates a marine source of the boron. A likely scenario involves leaching of boron principally from marine carbonate beds or B-bearing evaporites in Mesoproterozoic strata of the region. The δ11B values of the isotopically light tourmaline in the sulfide deposits are attributed to recrystallization during Cretaceous metamorphism, superimposed on a light boron component derived from footwall siliciclastic sediments (e.g., marine clays) during Mesoproterozoic mineralization, and possibly a minor component of light boron from a magmatic–hydrothermal fluid. The metal association of Bi–Be–Y–REE in the Blackbird

  15. Hydrochemistry and boron isotopes as natural tracers in the study of groundwaters from North Chianan Plain, Taiwan.

    Science.gov (United States)

    Lu, Hsueh-Yu

    2014-01-01

    In this paper, hydrochemistry and boron isotopes are successfully applied to elucidate hydrogeological processes by the use of natural tracers. The hydrochemical analysis identifies four end-members in the hydrochemical evolution of groundwater from the North Chianan plain groundwater district. A few groundwater contain extraordinary chlorine concentrations of up to 48,000 mg l(-1). However, the hydrochemistry of groundwater only reveals that high saline water is a dominant factor in groundwater hydrochemistry. It is thought that these groundwater experienced precipitation of carbonates during seawater evaporation that did not involve the precipitation of gypsum. Boron isotopes are very efficient tracers in determining the source of salinisation. The boron isotopes reveal the results of mixing of evaporated seawater and water-sediment interaction. In general, the boron isotope ratio of the groundwater is controlled by a two-end-member mixing system, which is composed of evaporated seawater (isotopically heavy) and fresh surface water (isotopically light). Due to a long lagoonal period in the coastal plain, the groundwaters in the downstream area generally have high Cl/B ratios and relatively heavy boron isotope ratios while those in the upstream area are composed of low Cl/B and light boron isotopes. However, there is not a resolvable mixing trend between the Cl/B ratio and the isotopic composition of boron. It is probably obscured by a highly variable boron isotope ratio in fresh surface water and through fractionation associated with water-rock interaction. Both factors would decrease the boron isotope ratio but one effect cannot be distinguished from the other.

  16. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  17. First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity.

    Science.gov (United States)

    Stewart, Derek A; Savić, Ivana; Mingo, Natalio

    2009-01-01

    Isotopic composition can dramatically affect thermal transport in nanoscale heat conduits such as nanotubes and nanowires. A 50% increase in thermal conductivity for isotopically pure boron ((11)B) nitride nanotubes was recently measured, but the reason for this enhancement remains unclear. To address this issue, we examine thermal transport through boron nitride nanotubes using an atomistic Green's function transport formalism coupled with phonon properties calculated from density functional theory. We develop an independent scatterer model for (10)B defects to account for phonon isotope scattering found in natural boron nitride nanotubes. Phonon scattering from (10)B dramatically reduces phonon transport at higher frequencies and our model accounts for the experimentally observed enhancement in thermal conductivity.

  18. Isotopic effect on thermal physical properties of isotopically modified boron single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Quanli [Japan Science and Technology Corporation, Kawaguchi, Saitama (Japan); Noda, Tetsuji; Suzuki, Hiroshi; Araki, Hiroshi; Numazawa, Takenori; Hirano, Toshiyuki [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Nogi, Naoyuki; Tanaka, Satoru [University of Tokyo, Department of Quantum Engineering and Systems Science, Tokyo (Japan)

    2002-04-01

    The measurement of specific heat and thermal conductivity at low temperature for isotopically modified boron single crystals was performed between 0.5 and 100K using relaxation method and steady heat flow method, respectively. The results indicate that the specific heat has obvious divergences at T<5K. At 40K, the thermal conductivity of {sup 10}B-enriched crystal is about 570 W/m{center_dot}K, which is 40% larger than that of natural boron crystal. The influence of lattice vibration modes and the isotopic effect on specific heat and thermal conductivity for isotopically modified boron are discussed. (author)

  19. Reconstruction of pH and partial pressure of carbon dioxide during the Mesozoic era period using boron and oxygen isotopic compositions of fresh ammonoids & nautiloids

    Science.gov (United States)

    Kawahata, Hodaka; Fukushima, Ayaka; Moriya, Kazuyori; Ishikawa, Tsuyoshi; Suzuki, Atsushi; Tanabe, Kazushige

    2013-04-01

    The increase of partial pressure of carbon dioxide (pCO2) in the atmosphere induces global warming and ocean acidification at the modern condition. The reconstruction of pCO2 during the geological time is required together with proxy calibration by laboratory experiments to predict the future environments. Boron isotopic ratio is an excellent proxy for pH and the relevant partial pressure of carbon dioxide in the seawater (PCO2). This study is the first to quantify pH dependence of delta 11B of the ammonoids and nautiloids mainly in the Cretaceous and in Jurassic (70-162 Ma), which are expected to be much warmer due to higher PCO2. However, no reliable reconstruction data using foraminiferal delta 11B before Cenozoic era has been reported. We used the very fresh aragonite shells of ammonoids and nautiloids by big advantages. Since aragonite changes into secondary calcite by diagenesis, it is easy and effective to identify the degree of alteration at each sample by measuring calcite/aragonite ratio. Also we carefully conducted the assessment of secondary alteration from three perspectives: 1) Determination of calcite/aragonite ratio by X-ray diffraction (XRD), 2) Observation of microstructures of the nacreous layers by scanning electron microscope (SEM), and 3) Measurement of trace element contents and stable isotope ratios. We conducted high precision boron isotope analysis of biogenic carbonates with +/- 0.1 per mil reproducibility by adopting positive thermal ionization mass spectrometry (P-TIMS) methods. Also we analyzed delta 18O to estimate paleo-temperature, at which biogenic aragonite was formed. Combination of delta 11B and delta 18O of biogenic aragonite in 80 Ma and 86 Ma revealed that deeper dwellers showed lower delta 11B values, which corresponded to lower pH. This feature is consistent with those observed in the modern vertical water column. The respective shallow water temperature was 19.7 and 19.1 centigrade. Based on these results, the

  20. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    Science.gov (United States)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  1. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    Science.gov (United States)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  2. Boron isotopes in the Seine River, France: a probe of anthropogenic contamination.

    Science.gov (United States)

    Chetelat, Benjamin; Gaillardet, Jérôme

    2005-04-15

    Boron concentrations and isotopic compositions have been measured in the dissolved load of the Seine Basin rivers, France. Hydrology and chemistry of the Seine River and its tributaries are strongly influenced by human activities, as the anthropogenic pressure on the Seine catchment is one of the highest in Europe. The samples were collected between 1994 and 1996 during various stages of flow, complemented by a time-series of the Seine River in Paris for 1 yr. In particular, the decennial flood event of winter 1994 was sampled. Boron appears to be conservative in rivers and not influenced by adsorption onto suspended matter and/or consumption by microorganisms. Despite the complexity of the Seine River system, dissolved boron and its isotopes are found to be suitable tracers of contamination. The total dissolved boron of the Seine River at Paris is explained by the contribution from three distinct components: Urban effluents constitute 65% of the boron discharge measured in the Seine River whereas agriculture-affected waters contribute less than 10% with a more marked influence during high water discharges. Rainwater contribution is important (25% mean), reaching 30% of dissolved boron during high flood events.

  3. Pressure-dependent boron isotopic fractionation observed by column chromatography

    Science.gov (United States)

    Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.

    2007-12-01

    Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.

  4. Separation of the isotopes of boron by chemical exchange reactions

    Science.gov (United States)

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  5. Separation of the isotopes of boron by chemical exchange reactions

    Science.gov (United States)

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  6. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes

    Science.gov (United States)

    Hulett, Samuel R. W.; Simonetti, Antonio; Rasbury, E. Troy; Hemming, N. Gary

    2016-12-01

    The global boron geochemical cycle is closely linked to recycling of geologic material via subduction processes that have occurred over billions of years of Earth’s history. The origin of carbonatites, unique melts derived from carbon-rich and carbonate-rich regions of the upper mantle, has been linked to a variety of mantle-related processes, including subduction and plume-lithosphere interaction. Here we present boron isotope (δ11B) compositions for carbonatites from locations worldwide that span a wide range of emplacement ages (between ~40 and ~2,600 Ma). Hence, they provide insight into the temporal evolution of their mantle sources for ~2.6 billion years of Earth’s history. Boron isotope values are highly variable and range between -8.6‰ and +5.5‰, with all of the young (-4.0‰), whereas most of the older carbonatite samples record lower B isotope values. Given the δ11B value for asthenospheric mantle of -7 +/- 1‰, the B isotope compositions for young carbonatites require the involvement of an enriched (crustal) component. Recycled crustal components may be sampled by carbonatite melts associated with mantle plume activity coincident with major tectonic events, and linked to past episodes of significant subduction associated with supercontinent formation.

  7. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  8. Boron isotope ratios of surface waters in Guadeloupe, Lesser Antilles

    International Nuclear Information System (INIS)

    Louvat, Pascale; Gaillardet, Jerome; Paris, Guillaume; Dessert, Celine

    2011-01-01

    Highlights: → Rivers outer of hydrothermal areas have d11B around 40 per mille and [B] of 10-31 μg/L. → Thermal springs have d11B of 8-15 per mille and [B] between 250 and 1000 μg/L. → With Na, SO 4 and Cl, boron shows mixing of rain, low and high-T weathering inputs. → Guadeloupe rivers and thermal springs have d11B 20-40 per mille higher than the local rocks. → Solid-solution fractionation during weathering pathways may explain this gap of d11B. - Abstract: Large variations are reported in the B concentrations and isotopic ratios of river and thermal spring waters in Guadeloupe, Lesser Antilles. Rivers have δ 11 B values around 40 per mille and B concentrations lower than 30 μg/L, while thermal springs have δ 11 B of 8-15 per mille and B concentrations of 250-1000 μg/L. River samples strongly impacted by hydrothermal inputs have intermediate δ 11 B and B contents. None of these surface water samples have δ 11 B comparable to the local unweathered volcanic rocks (around 0 per mille), implying that a huge isotopic fractionation of 40 per mille takes place during rock weathering, which could be explained by preferential incorporation of 10 B during secondary mineral formation and adsorption on clays, during rock weathering or in the soils. The soil-vegetation B cycle could also be a cause for such a fractionation. Atmospheric B with δ 11 B of 45 per mille represents 25-95% of the river B content. The variety of the thermal spring chemical composition renders the understanding of B behavior in Guadeloupe hydrothermal system quite difficult. Complementary geochemical tracers would be helpful.

  9. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  10. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  11. Separation of boron isotopes by aminated polystyrene-divinylbenzene resins

    International Nuclear Information System (INIS)

    Choi, Sei Young; Baek, Joong Hyun; Kim, Hee Lake

    1991-01-01

    Separation of boron isotopes was carried out by using nonporous aminated polystyrene-divinylbenzene as ion exchangers. After 0.1 M boric acid containing 10% sucrose solution was passed through the column, the boric acid band formed on the column was eluted with pure water of 50% methyl alchol water solution. The contents of boric acid of the fraction were determined with neutralization titrations. The relative mass of boron isotopes of the fractions was analyzed on a mass spectrometer. From these results, we found that separation factors for porous aminated polystyrene-divinylbenzene ion exchanger is larger than value of non porous ion exchanger, and then separation factors for 50%-methanol as eluting agent is larger than the value of pure water. (Author)

  12. An anion-exchange chromatographic study on boron isotopic fractionation at 2 MPa at 293 K.

    Science.gov (United States)

    Musashi, Masaaki; Matsuo, Motoyuki; Oi, Takao; Nomura, Masao

    2006-10-27

    To study boron isotopic fractionation at high pressure, column chromatography operated in the breakthrough manner was performed at 2.0 MPa at 25.0 degrees C. The fractionation factor (S) between boron adsorbed onto strongly basic anion-exchange resin and boron in solution was obtained as 1.013, which was smaller than the values at 0.1 MPa (atmospheric pressure) found in literature. The pressure dependence of S was discussed based on the polymerization of boron in the solution and resin phases and on the occurrence of the pressure dependent isotope effect relating to the molar volume changes of boron species upon isotope substitution.

  13. Isotopic analysis of boron by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.; Souza, I.M.S.

    1991-07-01

    This paper presents a methodology for isotopic analysis of boron by thermal ionization mass spectrometry technique through the ion intensity measurement of Na 2 BO + 2 in H 3 BO 3 , B o and B 4 C. The samples were loaded on single tantalum filaments by different methods. In the case of H 3 BO 3 , the method of neutralization with NaOH was used. For B 4 C the alcaline fusion with Na 2 CO 3 and for B o dissolution with 1:1 nitric sulfuric acid mixture followed by neutralization with NaOH was used. The isotopic ratio measurements were obtained by the use of s Faraday cup detector with external precision of ±0,4% and accuracy of ±0,1%, relative to H 3 BO 3 isotopic standard NBS 951. The effects of isotopic fractionation was studied in function of the time during the analyses and the different chemical forms of deposition. (author)

  14. Boron isotope determinations in waters and other geological materials: analytical techniques and inter-calibration of measurements.

    Science.gov (United States)

    Tonarini, Sonia; Pennisi, Maddalena; Gonfiantini, Roberto

    2009-06-01

    The (11)B/(10)B ratio exhibits wide variations in nature; thus, boron isotopes have found numerous applications in geochemistry, hydrology, and environmental studies. The main analytical techniques used are as follows: positive thermal ionisation mass spectrometry is the most precise (about 0.2 per thousand of the boron isotope ratio), but requires complex and laborious sample preparation; negative thermal ionisation mass spectrometry is less precise (about 0.5 per thousand), but rapid and suitable for water samples, whereas total evaporation-NTIMS allows for identification of the precise boron isotope composition of marine carbonates. It is expected that multi-collection system inductively coupled plasma mass spectrometry (MC-ICPMS) will eventually combine high precision with simple analytical procedures. Secondary ion mass spectrometry and laser ablation (LA)-MC-ICPMS allow in situ determinations on solid samples, but require the availability of calibration materials which are chemically and mineralogically similar to samples. These features of boron isotope measurement techniques were confirmed by the results of the first inter-laboratory comparison of measurements, organised by the Istituto di Geoscienze e Georisorse in Pisa. Finally, two examples of boron isotope applications in groundwater investigations are reported.

  15. A high-throughput system for boron microsublimation and isotope analysis by total evaporation thermal ionization mass spectrometry.

    Science.gov (United States)

    Liu, Yi-Wei; Aciego, Sarah M; Wanamaker, Alan D; Sell, Bryan K

    2013-08-15

    Research on the ocean carbon cycle is vitally important due to the projected impacts of atmospheric CO2 on global temperatures and climate change, but also on ocean chemistry. The direct influence of this CO2 rise on the seawater pH can be evaluated from the boron isotopic composition in biogenic carbonates; however, conscientious laboratory techniques and data treatment are vital in obtaining accurate and precise results. A rapid-throughput boron purification and Total Evaporation Thermal Ionization Mass Spectrometry method was developed for high accuracy and precision boron isotopic analysis for small (ng) sample sizes. An improved microsublimation method, in which up to 20 samples can be processed simultaneously under identical temperature conditions, was developed. Several tests have confirmed the viability of this technique. First, seawater and Porites coral samples were processed with H2 O2 and the results compared with those obtained using microsublimation; second, the impact of various sublimation times was evaluated; and third, quantitative recovery was assessed using standard addition. Microsublimation provides a valid method for the quantitative recovery and separation of boron from both major elements and organic matter under low-blank conditions. The close agreement of our results with published values validates the accuracy of the measurements. The isotopic ratio for SRM 951a boric acid isotopic standard was 4.0328 ± 0.0054 (2 STD, n = 25). The reproducibility of boron isotopic composition for standards including AE121, IAEA B-1 and an in-house coral standard UM-CP1 was ±0.68‰ (2 STD, n = 15), ±1.12‰ (2 STD, n = 24), and ±1.17‰ (2 STD, n = 14), respectively. The sample sizes were boron isotopic values in a variety of carbonate materials should facilitate the reconstruction of past ocean pH conditions with decadal-scale resolution. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Processing of boron carbide-aluminum composites

    International Nuclear Information System (INIS)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1989-01-01

    The processing problems associated with boron carbide and the limitations of its mechanical properties can be significantly reduced when a metal phase (e.g., aluminum) is added. Lower densification temperatures and higher fracture toughness will result. Based on fundamental capillarity thermodynamics, reaction thermodynamics, and densification kinetics, we have established reliable criteria for fabricating B 4 C-Al particulate composites. Because chemical reactions cannot be eliminated, it is necessary to process B 4 C-Al by rapidly heating to near 1200 degrees C (to ensure wetting) and subsequently heat-treating below 1200 degrees C (for microstructural development)

  17. Aluminum/boron composite - fatigue life prediction

    International Nuclear Information System (INIS)

    Plumtree, A.; Glinka, G.

    2002-01-01

    The fatigue behaviour of a 6061-0 aluminum alloy reinforce with 0.25 volume fraction undirectional boron fibres of 100 μm diameter has been investigated. The specimens were tested under constant stress amplitude using a stress ratio (minimum/maximum stress) of 0.2 with the fibres oriented at an angle to the loading direction in order to study the matrix dominated fatigue behaviour. Two sets of data were obtained for unidirectional specimens tested with fibre to load axis angles of 200 and 450 A third set of data was obtained with V 45 angle-ply specimens. It is shown that a microstress/strain analysis in conjunction with a multiaxial fatigue parameter can be applied to successfully predict the fatigue lives of these boron reinforced aluminum alloy composites. The multiaxial parameter enables a generalized strain-life relationship to be determined using limited experimental data. Once this generalized relationship is known, the life of the composite cycled under different loads and load-fibre angles can be predicted. (author)

  18. Isotopic phonon effects in β-rhombohedral boron--non-statistical isotope distribution.

    Science.gov (United States)

    Werheit, H; Filipov, V; Kuhlmann, U; Schwarz, U; Armbrüster, M; Antadze, M

    2012-05-02

    On the basis of the spectra of IR- and Raman-active phonons, the isotopic phonon effects in β-rhombohedral boron are analysed for polycrystalline (10)B- and (11)B-enriched samples of different origin and high-purity (nat)B single crystals. Intra- and inter-icosahedral B-B vibrations are harmonic, hence meeting the virtual crystal approximation (VCA) requirements. Deviations from the phonon shift expected according to the VCA are attributed to the anharmonic share of the lattice vibrations. In the case of icosahedral vibrations, the agreement with calculations on α-rhombohedral boron by Shirai and Katayama-Yoshida is quite satisfactory. Phonon shifts due to isotopic disorder in (nat)B are separated and determined. Some phonon frequencies are sensitive to impurities. The isotopic phonon effects yield valuable specific information on the nature of the different phonon modes. The occupation of regular boron sites by isotopes deviates significantly from the random distribution. © 2012 IOP Publishing Ltd

  19. Structure and superconductivity of isotope-enriched boron-doped diamond

    OpenAIRE

    Evgeny A Ekimov, Vladimir A Sidorov, Andrey V Zoteev, Yury B Lebed, Joe D Thompson and Sergey M Stishov

    2008-01-01

    Superconducting boron-doped diamond samples were synthesized with isotopes of 10B, 11B, 13C and 12C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the ‘diamond-carbon’-related nature of superconductivity and the importance of the electron–phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrat...

  20. Structure and superconductivity of isotope-enriched boron-doped diamond.

    Science.gov (United States)

    Ekimov, Evgeny A; Sidorov, Vladimir A; Zoteev, Andrey V; Lebed, Julia B; Thompson, Joe D; Stishov, Sergey M

    2008-12-01

    Superconducting boron-doped diamond samples were synthesized with isotopes of 10 B, 11 B, 13 C and 12 C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the 'diamond-carbon'-related nature of superconductivity and the importance of the electron-phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm -1 Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron. The absence of a superconducting transition (down to 1.6 K) in diamonds synthesized in the Co-C-B system at 1900 K correlates with the small boron concentration deduced from lattice parameters.

  1. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation

    International Nuclear Information System (INIS)

    Zhang, Wenjie; Tan, Hongbing; Zhang, Yanfei; Wei, Haizhen; Dong, Tao

    2015-01-01

    The Tibetan plateau is characterized by intense hydrothermal activity and abnormal enrichment of trace elements in geothermal waters. Hydrochemistry and B isotope samples from geothermal waters in Tibet were systematically measured to describe the fractionation mechanisms and provide constraints on potential B reservoirs. B concentrations range from 0.35 to 171.90 mg/L, and isotopic values vary between −16.57 ‰ and +0.52 ‰. Geothermal fields along the Indus-Yarlung Zangbo suture zone and N–S rifts are observed with high B concentrations and temperatures. The similar hydrochemical compositions of high-B geothermal waters with magmatic fluid and consistent modeling of B isotopic compositions with present δ 11 B values imply that the B in high-B geothermal waters is mainly contributed by magmatic sources, probably through magma degassing. In contrast, geothermal fields in other regions of the Lhasa block have relatively low B concentrations and temperatures. After considering the small fractionation factor and representative indicators of Na/Ca, Cl/HCO 3 , Na + K and Si, the conformity between modeling results and the isotopic compositions of host rocks suggests that the B in low-temperature geothermal fields is mainly sourced from host rocks. According to simulated results, the B in some shallow geothermal waters not only originated from mixing of cold groundwater with deep thermal waters, but it was also contributed by equilibration with marine sedimentary rocks with an estimated proportion of 10%. It was anticipated that this study would provide useful insight into the sources and fractionation of B as well as further understanding of the relationships between B-rich salt lakes and geothermal activities in the Tibetan plateau. - Highlights: • Chemical and boron isotopic data of geothermal waters in Tibetan plateau were introduced. • Unusual enrichment of boron in Tibetan geothermal waters is related to magmatic and host rocks. • Boron

  2. Differentiation analysis of boron isotopic fractionation in different forms within plant organ samples.

    Science.gov (United States)

    Sun, Aide; Xu, Qingcai; Wei, Gangjian; Zhu, Huayu; Chen, Xuefei

    2018-03-01

    As a critical micronutrient, boron (B) plays an important role in plant growth and embryonic development. To further understand the effects of B uptake, transportation and isotopic fractionation, the contents and isotopic compositions of hydro-soluble B in the sap and structural B fixed in the cell within individual plant tissues were investigated. The B isotope ratio was determined by multi-collector inductively coupled plasma mass spectrometry. The δ 11 B values in hydro-soluble and structural B in the investigated plant samples ranged from -1.57‰ to +11.30‰ and from +6.57‰ to +16.64‰, respectively. Different fractionation factors of the B isotopes, in the range of 0.9954-1.0150, were observed in these samples, indicating that in most plant tissues, the heavy isotope ( 11 B) was preferentially enriched in structural B, which was fixed into the cell. However, there was a reversal in the fractionation of B isotopic compositions in the fruit samples compared with the other plant tissue samples. It is more powerful to examine the molecular mechanisms of B transport, uptake and utilization than the use of limited plant organ samples containing a mixture of hydro-soluble and structural B within different intra-plant compartments and in inter-plant interactions. These isotopic shifts, which may be used as important isotopic indicators, contribute to the surface processes interactions in the plant-soil system and the knowledge of the molecular mechanisms of B in the uptake and absorption by different plant species in nature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Investigations on boron isotopic geochemistry of salt lakes in Qaidam basin, Qinghai

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.K.; Shirodkar, P.V.; Liu, W.G.; Wang, Y.H.; Jin, L.

    of brine and are related to boron origin, the corrosion of salt and to certain chemical constituents. The distribution of boron isotopes in Quidam Basin showed a regional feature: salt lake brines in the west and northwest basin have the highest d11B values...

  4. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Aida, Masao; Okamoto, Makoto; Kakihana, Hidetake

    1980-01-01

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  5. Boron carbide-carbon composites and composites for cryogenic applications

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1979-01-01

    Because of its neutronic properties, high hardness, and high melting temperature, boron carbide (B 4 C) is widely used at the Los Alamos Scientific Laboratory. However because of its hardness and mode of manufacture, it is expensive to machine finish to tight dimensional specifictions. For some neutronic applications, a density considerably below the theoretical 2.52 Mg/m 3 was acceptable, and this relaxation in density specification permitted addition of carbon as a second phase to reduce machining costs. We conducted an experimental program to prepare 50.8-mm-diam by 34.8-mm-thick cylinders of B 4 C and B 4 C-C composites with concentrations of carbon varying from 5.5 to 30 volume percent. Additionally we used three forms of carbon, natural flake graphite, synthetic graphite flour, and a fine furnace black as the source of the second phase. We determined the sound velocity, compressive strength, coefficient of thermal expansion, electrical resistivity, and microstructure as functions of composition. Additionally, an enriched boron ( 10 B)-carbon composite was studied as an alternate material

  6. Abrasive slurry composition for machining boron carbide

    Science.gov (United States)

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  7. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  8. Ultralow-loss polaritons in isotopically pure boron nitride

    Science.gov (United States)

    Giles, Alexander J.; Dai, Siyuan; Vurgaftman, Igor; Hoffman, Timothy; Liu, Song; Lindsay, Lucas; Ellis, Chase T.; Assefa, Nathanael; Chatzakis, Ioannis; Reinecke, Thomas L.; Tischler, Joseph G.; Fogler, Michael M.; Edgar, J. H.; Basov, D. N.; Caldwell, Joshua D.

    2018-02-01

    Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called `flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.

  9. New Experimental Setup for Boron Isotopes Separation by the Laser Assisted Retardation of Condensation Method.

    Science.gov (United States)

    Lyakhov, Konstantin; Lee, Heon-Ju

    2015-11-01

    Demand in isotopically pure boron is steadily growing in industry and medicine. It makes necessary to search for cheaper ways of isotopes production. We propose a new experimental setup design for boron isotope separation by laser assisted retardation of condensation (SILARC) method based on an energy efficiency use relevant optimization method. This optimization method is based on the transport model for rarefied gas flow dynamics in laser field with frequency tuned for excitation of specific isotopomer. Because product cut and enrichment factor corresponding to the optimal conditions are rather small, target isotopomers should be recovered iteratively.

  10. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  11. Utilization of intrinsic boron isotopes as co-migrating tracers for identifying potential nitrate contamination sources

    International Nuclear Information System (INIS)

    Leenhouts, J.M.; Bassett, R.L.; Maddock, T. III.

    1998-01-01

    The stable isotopes of the conservative element boron, 11B and 10B, have been employed as co-migrating isotopic tracers to trace potential sources of nitrate observed in ground water pumped from a large capacity 0.167 m3/s irrigation well in the Avra Valley of southeastern Arizona. The isotopic ratios provided an identifying signature for two nitrogen carrying source waters: municipal waste water and agricultural return flow. Additional chemical parameters were also examined to corroborate the isotopic indications. Boron isotopes provided a superior delineation of mixing processes in the system compared to the general inorganic chemical parameters. Findings of this investigation indicate that the water pumped by the study well at the beginning of the 1993 irrigation season was composed of a mixture of approximately 25% municipal waste water and 75% background ground water. As the irrigation season progressed, an increasing proportion of water was contributed by irrigation return flow from neighboring agricultural fields

  12. Boron isotope variations in geothermal systems on Java, Indonesia

    Science.gov (United States)

    Purnomo, Budi Joko; Pichler, Thomas; You, Chen-Feng

    2016-02-01

    This paper presents δ11B data for hot springs, hot acid crater lakes, geothermal brines and a steam vent from Java, Indonesia. The processes that produce a large range of the δ11B values were investigated, including the possible input of seawater as well as the contrast δ11B compositions of acid sulfate and acid chloride crater lakes. The δ11B values of hot springs ranged from - 2.4 to + 28.7‰ and acid crater lakes ranged from + 0.6 to + 34.9‰. The δ11B and Cl/B values in waters from the Parangtritis and Krakal geothermal systems confirmed seawater input. The δ11B values of acid sulfate crater lakes ranged from + 5.5 to + 34.9‰ and were higher than the δ11B of + 0.6‰ of the acid chloride crater lake. The heavier δ11B in the acid sulfate crater lakes was caused by a combination of vapor phase addition and further enrichment due to evaporation and B adsorption onto clay minerals. In contrast, the light δ11B of the acid chloride crater lake was a result of acid water-rocks interaction. The correlations of δ11B composition with δ18O and δ2H indicated that the B isotope corresponded to their groundwater mixing sources, but not for J21 (Segaran) and J48 (Cikundul) that underwent 11B isotope enrichment by B adsorption into minerals.

  13. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    Science.gov (United States)

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  14. Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes.

    Science.gov (United States)

    Lasagna, Manuela; De Luca, Domenico Antonio

    2017-11-24

    Diffuse nitrate pollution in groundwater is currently considered one of the major causes of water quality degradation. Determining the sources of nitrate contamination is an important first step for a better management of water quality. Thus, the isotopic composition of nitrate (δ 15 N NO3 and δ 18 O NO3 ) and boron (δ 11 B) were used to evaluate nitrate contamination sources and to identify geochemical processes occurring in the shallow and deep aquifers of the Turin-Cuneo plain (NW Italy). The study area is essentially an agricultural zone, where use of synthetic nitrogenous fertilizers and organic manure is a common practice and the connection to sewer services is locally lacking. Also livestock farming are highly developed. A groundwater sampling campaign was performed on 34 wells in the shallow aquifer and 8 wells in the deep aquifers, to analyze nitrate, chloride, boron, δ 15 N NO3 , δ 18 O NO3 and δ 11 B. Isotope data of nitrate indicate that nitrate contamination in the Turin-Cuneo plain originates from mixtures of synthetic and organic sources, slightly affected by denitrification, and manure or septic tank effluents. Moreover, boron isotopes were used to discriminate further among the main anthropogenic sources of pollution. The analyses results confirm that both animal manure and domestic sewage, especially under the city of Turin, can contribute to the nitrate contamination. The isotope analysis was also used for the evaluation of denitrification and nitrification processes: contrary to expectations, a significant denitrification phenomenon was assessed only in the shallow unconfined aquifer, especially in the Poirino Plateau, the most contaminated sector of the study area.

  15. Chemical production of chondrule oxygen isotopic composition

    Science.gov (United States)

    Thiemens, M. H.

    1994-01-01

    Defining the source of observed meteoritic O isotopic anomalies remains a fundamental challenge. The O isotopic composition of chondrules are particularly striking. There are at least three types of chemical processes that produce the isotopic compositions observed in chondrules and Ca-Al-rich inclusions (CAI's). The processes are rather general, viz, they require no specialized processes and the processes associated with chondrule production are likely to produce the observed compositions.

  16. Boron isotopes reveal multiple metasomatic events in the mantle beneath the eastern North China Craton

    Science.gov (United States)

    Li, Hong-Yan; Zhou, Zhou; Ryan, Jeffrey G.; Wei, Gang-Jian; Xu, Yi-Gang

    2016-12-01

    Linkages inferred between the geochemical heterogeneity of the mantle beneath eastern Eurasia and the stagnant Pacific slab documented geophysically in its mantle transition zone are as yet not clearly characterized. In this paper we report new elemental and isotopic data for boron (B) on a suite of well-characterized Cenozoic basalts (alkali basalts, basanites and nephelinites), with ocean island basalt (OIB)-like trace element signatures from western Shandong of the eastern North China Craton (NCC). Correlations between major elements (e.g., FeOT versus SiO2), trace elements (e.g., CeN/PbN versus BaN/ThN) and radiogenic isotopes (e.g., 206Pb/204Pb versus 87Sr/86Sr) suggest these basalts are derived via the mixing of melts from two mantle components: a fluid mobile element (FME; such as Ba, K, Pb and Sr) enriched component, which is most evident in the alkali basalts, and a FME depleted mantle component that is more evident in the basanites and nephelinites. The alkali basalts in this study have lower B concentrations (1.4-2.2 μg/g) but higher δ11B (-4.9 to -1.4) values than the basanites and nephelinites (B = 2.1-5.0 μg/g; δ11B = -6.9 to -3.9), and all the samples have nearly constant B/Nb ratios between 0.03 and 0.07, similar to the observed range in B/Nb for intraplate lavas. Our high-SiO2 samples have higher δ11B than that of our low SiO2 samples, indicating that the B isotopic differences among our samples do not result from the addition of a continental crustal component in the mantle source, or direct crustal assimilation during the eruption process. The positive B versus Nb correlation suggests the B isotopic compositions of the western Shandong basalts primarily reflect the pre-eruptive compositions of their mantle sources. Correlations among B, Nd and Sr isotope signatures of the western Shandong basalts differ from those among basalts from plume settings (e.g., Azores and Hawaii), and are inconsistent with models suggesting single-step metasomatic

  17. Geochemistry of the Congo and Amazon river systems. Boron isotopic geochemistry in corals. Continental erosion and ocean pH

    International Nuclear Information System (INIS)

    Gaillardet, J.

    1995-01-01

    Two main geological processes control the CO 2 concentration in the atmosphere at a geological time scale: CO 2 outgasing from the interior of the Earth and CO 2 consumption by continental weathering. In the thesis, we initiate two different directions that can be useful to constraint the past climate evolution models. The first one is the extensive study of the largest rivers of the world using the classical geochemical analyses (major and trace elements, Sr-Nd-Pb isotopes) and modelling approaches. The study case of this thesis are the Congo and Amazon Basin. In particular, the coupling between chemical and physical erosion is examined and related to the hydrologic and tectonic parameters. Relief, thus tectonics appear to best control CO 2 consumption by rock weathering. The second part of the work is devoted to the measurement of boron isotopic ratio in corals because it may be used as a proxy for paleo-ocean pH. It could thus bring important pieces of information on the global C cycle and climate evolution. The technical part is extensively described and the method applied to the corals from the last interglacial period. Our conclusion is that corals are likely to be influence by early diagenetic changes that modify the boron isotopic composition of corals. We thus propose a test to select the samples. (author)

  18. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    International Nuclear Information System (INIS)

    Grounes, M.

    1967-07-01

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10 18 n/cm 2 (> 1 MeV) and 4 x 10 19 n/cm 2 (thermal) and also 9.0 x 10 18 n/cm 2 (> 1 MeV) and 6 x 10 19 n/cm 2 (thermal). Material from three laboratory melts, in which the boron consisted of 10 B, 11 B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the 10 B-alloyed material was changed more and the 11 B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the 10 B containing material compared to 5 kg/mm in the 11 B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the 10 B-alloyed material, 40 deg C in the 11 B-alloyed material and 80 deg C in the material containing natural boron

  19. H-isotope retention and thermal/ion-induced release in boronized films

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Wampler, W.R.; Hays, A.K.

    1990-01-01

    Over the past decade, it has been clearly demonstrated that the composition of the very near surface (∼100nm) of plasma-interactive components plays a determinant role in most processes which occur in the plasma-edge of Tokamaks. Two very successful techniques to effect control of the plasma-wall interaction are (1) in-situ deposition of amorphous carbon or boron-carbon films and (2) the use of He/C conditioning discharges or He glow discharge cleaning to modify the near surface of bulk graphite components. We have deposited boronized layers into Si using plasma-assisted CVD and sputter deposition. The PCVD deposition conditions were as close as possible to those used in TFTR, and some films deposited in TFTR have also been studied. Using these two deposition techniques, B x CH y films have been produced with x varying from 1/2 -- 4, and y from ∼1 (sputtered) to ∼3 (PCVD). Most films also contained significant amounts of 0. Thermal and ion-induced release of H-isotopes from BC films is qualitatively similar to that measured for graphite. Implanted H saturates in these films at a H/host atom ratio of 0.7 which is considerably higher than that of graphite(∼0.4). As-deposited PCVD films are already saturated with H, while sputtered films are not. Sputtered BC films therefore possess an inherent H-pumping capability which could prove to be extremely beneficial to TFTR. 16 refs., 5 figs., 1 tab

  20. Column chromatographic boron isotope separation at 5 and 17 MPa with diluted boric acid solution.

    Science.gov (United States)

    Musashi, Masaaki; Oi, Takao; Matsuo, Motoyuki; Nomura, Masao

    2008-08-01

    Boron isotopic fractionation factor (S) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25 degrees C, using 0.1 mM boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at the atmospheric pressure at 25 degrees C with the boron concentration of 10mM, but were larger than the values under the same condition with much higher concentration of 100 and 501 mM. Calculations based on the theory of isotope distribution between two phases estimated that 21% (5 MPa) and 47% (17 MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)(3)-form, instead of in the four-coordinated B(OH)(4)-form, at high pressures even with a very diluted boric acid solution. We discussed the present results by introducing (1) hydration and (2) a partial molar volume difference between isotopic molecules. Borate may have been partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Instead, it may be possible that the difference in the isotopic partial molar volume difference between B(OH)(3) and B(OH)(4)(-) caused the S value to decrease with increasing pressure.

  1. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  2. Use of inductively coupled plasma-mass spectrometry in boron-10 stable isotope experiments with plants, rats, and humans.

    Science.gov (United States)

    Vanderpool, R A; Hoff, D; Johnson, P E

    1994-11-01

    The commercial availability of inductively coupled plasma-mass spectrometry technology (ICP-MS) has presented the opportunity to measure the boron concentrations and isotope ratios in a large number of samples with minimal sample preparation. A typical analytical sequence for fecal samples consists of 25 acid blanks, 1 digestion blank, 5 calibration solutions, 4 standard reference material solutions, 10 samples, and 4 natural abundance bias standards. Boron detection limits (3 x 1 sigma) for acid blanks are 0.11 ppb for 10B, and 0.40 ppb for 11B. Isotope ratios were measured in fecal samples with 20 to 50 ppb boron with sample had a 1.0 ppb boron memory after a 6-min washout. Boron isotope ratios in geological materials are highly variable; apparently this variability is reflected in plants of a fixed natural abundance value for boron requires that a natural abundance ratio be determined for each sample or related data set. The natural abundance variability also prevents quantitation and calculation of isotope dilution by instrument-supplied software. To measure boron transport in animal systems, 20 micrograms of 10B were fed to a fasted rat. During the 3 days after a 10B oral dose, 95% of the 10B was recovered from the urine and 4% from the feces. Urinary isotope ratios, 11B/10B, changed from a natural abundance of 4.1140 to an enriched value of 0.95077, a 77% change.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Deglacial Western Equatorial Pacific pCO2 Reconstruction Using Boron Isotopes of Planktonic Foraminiferas

    Science.gov (United States)

    Kubota, K.; Yokoyama, Y.; Ishikawa, T.; Sagawa, T.; Ikehara, M.; Yamazaki, T.

    2017-12-01

    During the last deglaciation (ca. 19 - 11 ka), partial pressure of CO2 (pCO2) of the atmosphere increased by 80 μatm. Many paleoceanographers point out that the ocean had played an important role in atmospheric CO2 rise, since the ocean have 60 times larger capacity to store carbon compared to the atmosphere. However, evidence on where carbon was transferred from the ocean to the atmosphere is still lacking, hampering our understanding of global carbon cycles in glacial-interglacial timescales. Boron isotope of skeletons of marine calcifying organisms such as corals and foraminiferas can pin down where CO2 source/sink existed, because boron isotopes of marine calcium carbonates is dependent on seawater pH, from which pCO2 of the past seawater can be reconstructed. In previous studies using the boron isotope teqnique, Martinez-Boti et al. (2015, Nature) and Kubota et al. (2014, Scientific Reports) revealed that central and eastern parts of the equatorial Pacific acted as a CO2 source (i.e., CO2 emission) during the last deglaciation, suggesting the equatorial Pacific's contribution to atmospheric CO2 rise. However, some conflicting results have been confirmed in a marine sediment record from the western part of the equatorial Pacific (Palmer & Pearson, 2003, Science), making the conclusion elusive. In this presentation, we will show new results of Mg/Ca, oxygen isotope, and boron isotope measurements during the last 35 ka on two species of surface dwelling foraminiferas (Globigerinoides ruber and G. sacculifer) which was hand-picked separatedly from a well-dated marine sediment core recovered from the West Caroline Basin (KR05-15 PC01) (Yamazaki et al., 2008, GRL). From the new records, we will discuss how the equatorial Pacific behaved during the last deglaciation and how it related to the global carbon cycles.

  4. The effect of the boron source composition ratio on the adsorption performance of hexagonal boron nitride without a template

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Zhang, Tong; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Cui, Xingyu

    2015-08-01

    An inexpensive boric acid (H{sub 3}BO{sub 3}) and borax (Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O) mix was used as a source of boron with different composition ratios, and urea was used as a nitrogen source, in flowing ammonia atmosphere, for the preparation of hexagonal boron nitride (h-BN) with different micro-morphologies. Under a certain synthesis process, the effects of the molar ratio of borax and boric acid (or simply the boron source composition ratio for short) on the phase composition of the sample were studied; the work also explored the effect of boron source composition ratio on the micro-morphology, adsorption desorption isotherm and specific surface area of the h-BN powder. The main purpose of this work was to determine the optimum composition ratio of preparing spherical mesoporous h-BN and ensure that the micro-mechanism underpinning the formation of spherical mesoporous h-BN was understood. The results showed that at the optimum boron source composition ratio of 1:1, globular mesoporous spheres with a diameter of approximately 600–800 nm could be obtained with the highest pore volume and specific surface area (230.2 m{sup 2}/g). - Graphical abstract: Display Omitted - Highlights: • Spherical h-BN was synthesized by controlling the boron source composition ratio. • Without extra spherical template, solid Na{sub 2}O was equal to a spherical template. • At boron source composition ratio of 1:1, h-BN had best adsorption performance.

  5. Evaluation of Ground-Water and Boron Sources by Use of Boron Stable-Isotope Ratios, Tritium, and Selected Water-Chemistry Constituents near Beverly Shores, Northwestern Indiana, 2004

    Science.gov (United States)

    Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.

    2007-01-01

    from human-affected boron sources. Boron concentrations in potential ground-water sources of boron were largest (15,700 to 24,400 ?g/L) in samples of CCP-affected surficial aquifer water from four wells at a CCP landfill and smallest (27 to 63 ?g/L) in three wells in the surficial aquifer that were distant from human-affected boron sources. Boron concentrations in water from the basal sand aquifer ranged from 656 ?g/L to 1,800 ?g/L. Boron concentrations in water from three domestic-wastewater-affected surficial aquifer wells ranged from 84 to 387 ?g/L. Among the representative ground-water samples, boron concentrations from all four samples of CCP-affected surficial aquifer water and four of five samples of water from the basal sand aquifer had concentrations greater than the RAL. A comparison of boron concentrations in acid-preserved and unacidified samples indicated that boron concentrations reported for this investigation may be from about 11 to 16 percent less than would be reported in a standard analysis of an acidified sample. The stable isotope boron-11 was most enriched in comparison to boron-10 in ground water from a confined aquifer, the basal sand aquifer (d11B, 24.6 to 34.0 per mil, five samples); it was most depleted in CCP-affected water from the surficial aquifer (d11B, 0.1 to 6.6 per mil, four samples). Domestic-wastewater-affected water from the surficial aquifer (d11B, 8.7 to 11.7 per mil, four samples) was enriched in boron-11, in comparison to individual samples of a borax detergent additive and a detergent with perborate bleach; it was intermediate in composition between basal sand aquifer water and CCP-affected water from the surficial aquifer. The similarity between a ground-water sample from the surficial aquifer and a hypothetical mixture of unaffected surficial aquifer and basal sand aquifer waters indicates the potential for long-term upward discharge of ground water into the surficial aquifer from one or more confined aquifers. Est

  6. Solid State Non-powder Process for Boron Nitride Nanotube Metal Matrix Composite, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Boron nitride nanotube (BNNT) reinforced metal matrix composites (MMCs) provide potential for advanced lightweight high stiffness structures that are critical for...

  7. Stable carbon isotope discrimination: an indicator of cumulative salinity and boron stress in Eucalyptus camaldulensis.

    Science.gov (United States)

    Poss, J A; Grattan, S R; Suarez, D L; Grieve, C M

    2000-10-01

    Saplings of Eucalyptus camaldulensis Dehn. Clone 4544, irrigated with water of differing salinities (2 to 28 dS m-1) and boron concentrations (1 to 30 mg l-1), integrated the history of these stresses through the discrimination of stable isotopes of carbon in leaf and woody tissues. Carbon isotope discrimination (delta) was reduced primarily by salinity. Decreases in discrimination in response to boron stress were detected in the absence of salinity stress, but the decreases were significant only in leaf tissues with visible boron injury. Sapwood core samples indicated that salinity- and boron-induced reductions in delta increased with increasing tree age. Absolute values of delta varied with location of leaf or wood tissue, but relative effects of salinity on the relationship between delta and transpiration efficiency (W) were similar. In response to increasing salinity stress, relative decreases in delta paralleled relative decreases in biomass and both indices yielded similar salt tolerance model parameters. The strong correlations between delta, tree fresh weight, leaf area and W suggest that delta is a useful parameter for evaluating salt tolerance of eucalyptus

  8. The boron geochemistry of siliceous sponges

    Science.gov (United States)

    de Leon, A.; Wille, M.; Eggins, S. M.; Ellwood, M. J.

    2009-12-01

    The boron content and isotopic composition (δ11B) of marine carbonate organisms can be linked to the pH of the seawater in which they have grown, making carbonates a useful tool for palaeo-seawater pH reconstruction. A study by Furst (1981) documented unusually high boron concentrations in siliceous sponge spicules, in range from hundreds to a thousand ppm. This observation and the potential for preferential incorporation of the tetrahedral borate species into biogenic silica raises the question as to whether the boron chemistry of biogenic silica might also be influenced by seawater pH. We have measured the boron concentration and isotopic composition of siliceous sponges from the Southern Ocean region, with a view to (1) confirming the observations of Furst (1981), (2) assessing the factors that control boron incorporation and isotopic compositions of sponge silica, and (3) investigating the potentially significant role of siliceous sponges in the marine boron cycle. The measured boron concentrations in a diverse range of both demosponge and hexactinellid sponges confirm the high boron concentrations previously reported. The boron isotope compositions of these sponges vary from around +2‰ to +25‰ and greatly exceed the range in marine carbonates. This isotopic variation is inconsistent with seawater pH control but is correlated with ambient seawater silicon concentration, in a manner that suggests a link to silicon uptake kinetics and demand by sponges.

  9. Thermal conductivity of polymer composites with oriented boron nitride

    International Nuclear Information System (INIS)

    Ahn, Hong Jun; Eoh, Young Jun; Park, Sung Dae; Kim, Eung Soo

    2014-01-01

    Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C 27 H 27 N 3 O 2 and C 14 H 6 O 8 . • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C 14 H 6 O 8 -treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C 14 H 6 O 8 amphiphilic agent demonstrated a higher thermal conductivity than those treated by C 27 H 27 N 3 O 2 . The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models

  10. Multipurpose boron carbide-aluminum composite and its manufacture via the control of the microstructure

    International Nuclear Information System (INIS)

    Pyzik, A.J.; Aksay, I.A.

    1987-01-01

    A method of making a boron carbidealuminum composite is described comprising: heating a particulate boron carbide in the presence of free carbon to 1800 0 -2250 0 C wherein the resulting boron carbide exhibits a substantially reduced reaction rate with aluminum; and reacting the boron carbide with aluminum, wherein a boron carbide-aluminum composite is formed having a microstructure including principally boron carbide and aluminum metal homogeneously distributed throughout the composite. A method is described of making a boron carbide-aluminum composite of selected ceramic and metal content and microstructure, having high fracture toughness, fracture strength and Young's modulus, and low density. It consists of: dispersing a particulate boron carbide of less than 10 micrometers particle size in water at a pH selected to maximize electrostatic repelling forces on boron carbide particle surfaces; consolidating the boron carbide into a porous compact; sintering the compact, whereby an open porous structure is retained; infilterating the compact with aluminum; and heat treating the compact, whereby a voidless composite is formed having microstructure phases

  11. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes.

    Science.gov (United States)

    Han, Wei-Qiang; Yu, Hua-Gen; Zhi, Chunyi; Wang, Jianbin; Liu, Zhenxian; Sekiguchi, Takashi; Bando, Yoshio

    2008-02-01

    We have carried out an isotope study on the band gap and radiative transition spectra of boron nitride nanotubes (BNNTs) using both experimental and theoretical approaches. The direct band gap of BNNTs was determined at 5.38 eV, independent of the nanotube size and isotope substitution, by cathodoluminescences (CL) spectra. At lower energies, several radiative transitions were observed, and an isotope effect was revealed. In particular, we confirmed that the rich CL spectra between 3.0 and 4.2 eV reflect a phonon-electron coupling mechanism, which is characterized by a radiative transition at 4.09 eV. The frequency red shift and peak broadening due to isotopic effect have been observed. Our Fourier transform infrared spectra and density functional theory calculations suggest that those radiative transitions in BNNTs could be generated by a replacement of some nitrogen atoms with oxygen.

  12. Isotopic composition of precipitation in Slovenia

    International Nuclear Information System (INIS)

    Vreca, P.; Kanduc, T.; Zigon, S.; Trkov, Z.

    2005-01-01

    Three-years monitoring of isotopic composition (δ 18 O, δ 2 H and 3 H) in precipitation in Slovenia was performed to obtain temporal and spatial variability and to trace changes of isotopic composition in W-E direction. Monthly as well as daily variations in isotopic composition were compared with climate-related parameters such as local air temperature and precipitation amount. Large variations in isotopic composition were observed especially during extremely dry year 2003. Relationships of δ 2 H vs. δ 18 O are close to the Global Meteoric Water Line with deviations related to the influence of different air masses and evaporation. Tritium activity distribution shows typical seasonal variations with winter concentrations approaching the natural pre-bomb level. (author)

  13. Boron and strontium isotopic characterization of coal combustion residuals: validation of new environmental tracers.

    Science.gov (United States)

    Ruhl, Laura S; Dwyer, Gary S; Hsu-Kim, Heileen; Hower, James C; Vengosh, Avner

    2014-12-16

    In the U.S., coal fired power plants produce over 136 million tons of coal combustion residuals (CCRs) annually. CCRs are enriched in toxic elements, and their leachates can have significant impacts on water quality. Here we report the boron and strontium isotopic ratios of leaching experiments on CCRs from a variety of coal sources (Appalachian, Illinois, and Powder River Basins). CCR leachates had a mostly negative δ(11)B, ranging from -17.6 to +6.3‰, and (87)Sr/(86)Sr ranging from 0.70975 to 0.71251. Additionally, we utilized these isotopic ratios for tracing CCR contaminants in different environments: (1) the 2008 Tennessee Valley Authority (TVA) coal ash spill affected waters; (2) CCR effluents from power plants in Tennessee and North Carolina; (3) lakes and rivers affected by CCR effluents in North Carolina; and (4) porewater extracted from sediments in lakes affected by CCRs. The boron isotopes measured in these environments had a distinctive negative δ(11)B signature relative to background waters. In contrast (87)Sr/(86)Sr ratios in CCRs were not always exclusively different from background, limiting their use as a CCR tracer. This investigation demonstrates the validity of the combined geochemical and isotopic approach as a unique and practical identification method for delineating and evaluating the environmental impact of CCRs.

  14. Phase diagram of boron carbide with variable carbon composition

    Science.gov (United States)

    Yao, Sanxi; Gao, Qin; Widom, Michael

    2017-02-01

    Boron carbide exhibits intrinsic substitutional disorder over a broad composition range. The structure consists of 12-atom icosahedra placed at the vertices of a rhombohedral lattice, together with a 3-atom chain along the threefold axis. In the high-carbon limit, one or two carbon atoms can replace boron atoms on the icosahedra while the chains are primarily of type C-B-C. We fit an interatomic pair interaction model to density-functional-theory total energies to investigate the substitutional carbon disorder. Monte Carlo simulations with sampling improved by replica exchange and augmented by two-dimensional multiple histogram analysis predict three phases. The low-temperature, high-carbon-composition monoclinic C m structure disorders through a pair of phase transitions, first via an Ising-like transition to a monoclinic centrosymmetric state with space group C 2 /m , then via a first-order three-state Potts-like transition to the experimentally observed rhombohedral R 3 ¯m symmetry.

  15. Use of inductively coupled plasma-mass spectrometry in boron-10 stable isotope experiments with plants, rats, and humans.

    Science.gov (United States)

    Vanderpool, R A; Hoff, D; Johnson, P E

    1994-01-01

    The commercial availability of inductively coupled plasma-mass spectrometry technology (ICP-MS) has presented the opportunity to measure the boron concentrations and isotope ratios in a large number of samples with minimal sample preparation. A typical analytical sequence for fecal samples consists of 25 acid blanks, 1 digestion blank, 5 calibration solutions, 4 standard reference material solutions, 10 samples, and 4 natural abundance bias standards. Boron detection limits (3 x 1 sigma) for acid blanks are 0.11 ppb for 10B, and 0.40 ppb for 11B. Isotope ratios were measured in fecal samples with 20 to 50 ppb boron with boron biological sample had a 1.0 ppb boron memory after a 6-min washout. Boron isotope ratios in geological materials are highly variable; apparently this variability is reflected in plants of a fixed natural abundance value for boron requires that a natural abundance ratio be determined for each sample or related data set. The natural abundance variability also prevents quantitation and calculation of isotope dilution by instrument-supplied software. To measure boron transport in animal systems, 20 micrograms of 10B were fed to a fasted rat. During the 3 days after a 10B oral dose, 95% of the 10B was recovered from the urine and 4% from the feces. Urinary isotope ratios, 11B/10B, changed from a natural abundance of 4.1140 to an enriched value of 0.95077, a 77% change.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889873

  16. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    Science.gov (United States)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  17. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  18. Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon

    Science.gov (United States)

    Zeng, Xiaojun; Liu, Weiliang

    2016-11-01

    Boron carbide (B4C)-silicon (Si) composites have been prepared by aqueous tape casting, laminating, and spark plasma sintering (SPS). The influences of silicon (Si) content on the phases, microstructure, sintering properties, and mechanical properties of the obtained B4C-Si composites are studied. The results indicate that the addition of Si powder can act as a sintering aid and contribute to the sintering densification. The addition of Si powder can also act as a second phase and contribute to the toughening for composites. The relative density of B4C-Si composites samples with adding 10 wt.% Si powder prepared by SPS at 1600 °C and 50 MPa for 8 min is up to 98.3%. The bending strength, fracture toughness, and Vickers hardness of the sintered samples are 518.5 MPa, 5.87 MPa m1/2, and 38.9 GPa, respectively. The testing temperature-dependent high-temperature bending strength and fracture toughness can reach a maximum value at 1350 °C. The B4C-Si composites prepared at 1600, 1650, and 1700 °C have good high-temperature mechanical properties. This paper provides a facile low-temperature sintering route for B4C ceramics with improved properties.

  19. Chemical and isotopic analysis of boron in uranium by mass spectrometry; Analyse chimique et isotopique du bore dans l'uranium par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Chenouard, J.; Nief, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A method is described for the determination by mass spectrometry of the concentration and the isotopic composition of small quantities of boron in uranium. The concentration range is between 10 and 100 ppm. The boron is extracted by distillation of methyl borate. The concentration is attained by isotopic dilution. Many precautions have to be taken to limit and correct contaminations. This method of analysis is applicable for at least 0.2 {mu}g of boron; the relative accuracy is about 2 per cent. (authors) [French] On decrit une methode de determination par spectrometrie de masse de la concentration et de la composition isotopique de faibles quantites de bore dans l'uranium. Le domaine de concentration est compris entre 10 et 100 ppm. L'extraction du bore s'effectue par distillation du borate de methyle. La concentration est atteinte par dilution isotopique. De nombreuses precautions doivent etre prises pour limiter et corriger les contaminations. L'analyse est possible a partir de 0,2 {mu}g de bore avec une precision relative de l'ordre de 2 pour cent. (auteurs)

  20. The carbon isotopic composition of ecosystem breath

    Science.gov (United States)

    Ehleringer, J.

    2008-05-01

    At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance

  1. Spectral determination of thallium isotope composition

    International Nuclear Information System (INIS)

    Polyanskij, V.A.; Turkin, Yu.I.; Yakimova, N.M.

    1986-01-01

    The photoelectric non-standard method for determination of the thallium isotope composition is developed. The analysis is carried out by measuring the brightness of the Hfs components in the line Tl Iλ535.04 nm. The relative standard deviation of the results of the isotope analysis of thallium as metal is 0.02 and of thallium salts - 0.02-0.05

  2. Boron and chlorine isotopic signatures of seawater in the Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Xiao, Y.K.; Hai, L

    and then through the Dowex resin to remove all cations and co n vert Cl ? ions to HCl and finally through the Cs - resin bed to convert HCl to CsCl. Nearly 0.5 to 1.0 ml of CsCl sample was co l lected for the isotopic measurements of chlorine by mass spe c... measured by positive thermal ionization mass spe c- trometry of Cs 2 BO 4 + and Cs 2 Cl + ions 17,18 using VG 354 model mass spectrometer. Sample solutions (3 ? 6 ?l) co n- taining 1 ?g of boron per ?l and 5 ?g of chlorine per ?l solution...

  3. Development of advanced composite rocket motor chambers using boron and graphite fibers.

    Science.gov (United States)

    Jensen, W. M.

    1973-01-01

    Four 71-cm-diameter rocket motor chambers were designed and fabricated with advanced composite materials. The first three chambers were filament wound from boron/epoxy tape, and the fourth from graphite/epoxy tape. The first boron/epoxy chamber was 74 cm in length and was successfully hydroburst tested. The other three chambers were 57.6 cm in length for a smaller propellant load. The first shortened boron/epoxy chamber failed in proof test as a result of fabrication deficiencies. The last boron/epoxy and the graphite/epoxy chambers were successfully proof tested.

  4. Removal of boron from aqueous solution using magnesite and bentonite clay composite

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-03-01

    Full Text Available demonstrated that boron removal is optimum at 30 min of agitation, 1 g of dosage and 20 mg L-1 of ion concentration. Adsorption of boron by the composite was independent of pH. The adsorption data fitted well into both Langmuir adsorption isotherm...

  5. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    Science.gov (United States)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  6. Unlocking the coral calcification process: Insights from boron isotope measurements and a skeletal growth model

    Science.gov (United States)

    Mollica, N. R.; Guo, W.; Cohen, A. L.; Huang, K. F.; Foster, G. L.; Donald, H.; Solow, A.

    2017-12-01

    Carbonate skeletons of scleractinian corals are important archives of ocean climate and environmental change. However, corals don't accrete their skeletons directly from ambient seawater, but from a calcifying fluid whose composition is strongly regulated. There is mounting evidence that the carbonate chemistry of this calcifying fluid significantly impacts the amount of carbonate the coral can precipitate, which in turn affects the geochemical composition of the skeleton produced. However the mechanistic link between calcifying fluid (cf) chemistry, particularly the up-regulation of pHcf and thereby aragonite saturation state (Ωcf), and coral calcification is not well understood. We explored this link by combining boron isotope measurements with in situ measurements of seawater temperature, salinity, and DIC to estimate Ωcf of nine Porites corals from four Pacific reefs. Associated calcification rates were quantified for each core via CT scanning. We do not observe a relationship between calcification rates and Ωcf or Ωsw. Instead, when we deconvolve calcification into linear extension and skeletal density, a significant correlation is observed between density and Ωcf, and also Ωsw while extension does not correlate with either. These observations are consistent with the two-step model of coral calcification, in which skeleton is secreted in two distinct phases: vertical extension creating new skeletal elements, followed by lateral thickening of existing elements that are covered by living tissue. We developed a numerical model of Porites skeletal growth that builds on this two-step model and links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validated the model using existing coral skeletal datasets from six Porites species collected across five reef sites, and quantified the effects of each seawater parameter (e.g. temperature, pH, DIC) on skeletal density. Our findings illustrate

  7. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis.

    Science.gov (United States)

    Widory, David; Petelet-Giraud, Emmanuelle; Négrel, Philippe; Ladouche, Bernard

    2005-01-15

    Nitrate (NO3) is one of the world's major pollutants of drinking water resources. Although recent European Directives have reduced input from intensive agriculture, NO3 levels in groundwater are approaching the drinking water limit of 50 mg L(-1) almost everywhere. Determining the sources of groundwater contamination is an important first step toward improving its quality by emission control. It is with this aim that we review here the benefit of using a coupled isotopic approach (delta15N and delta11B), in addition to conventional hydrogeological analyses, to trace the origin of NO3 in water. The studied watersheds include both fractured bedrock and alluvial (subsurface and deep) hydrogeological contexts. The joint use of nitrogen and boron isotope systematics in each context deciphers the origin of NO3 in the groundwater and allows a semi-quantification of the contributions of the respective pollution sources (mineral fertilizers, wastewater, and animal manure).

  8. Alternative Filament Loading Solution for Accurate Analysis of Boron Isotopes by Negative Thermal Ionization Mass Spectrometry

    Science.gov (United States)

    Dwyer, G. S.; Vengosh, A.

    2008-12-01

    The negative thermal ionization mass spectrometry technique has become the major tool for investigating boron isotopes in the environment. The high sensitivity of BO2- ionization enables measurements of ng levels of boron. However, B isotope measurement by this technique suffers from two fundamental problems (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; and (2) CNO- interference on mass 42 that is often present in some load solutions (such as B-free seawater processed through ion-exchange resin). Here we report a potentially improved methodology using an alternative filament loading solution with a recently-installed Thermo Scientific TRITON thermal ionization mass spectrometer. Our initial results suggest that this solution -- prepared by combining high-purity single- element standard solutions of Ca, Mg, Na, and K in proportions similar to those in seawater in a 5% HCl matrix -- may offer significant improvement over some other commonly used load solutions. Total loading blank is around 15pg as determined by isotope dilution (NIST952). Replicate analyses of NIST SRM951 and modern seawater thus far have yielded 11B/10B ratios of 4.0057 (±0.0008, n=14) and 4.1645 (±0.0017, n=7; δ11B=39.6 permil), respectively. Replicate analyses of samples and SRM951 yield an average standard deviation (1 σ) of approximately 0.001 (0.25 permil). Fractionation during analysis (60-90 minutes) has thus far typically been less than 0.002 (0.5 permil). The load solution delivers ionization efficiency similar to directly-loaded seawater and has negligible signal at mass 26 (CN-), a proxy for the common interfering molecular ion (CNO-) on mass 42. Standards and samples loaded with the solution behave fairly predictably during filament heating and analysis, thus allowing for the possibility of fully automated data collection.

  9. Calcium Isotopic Composition of Bulk Silicate Earth

    Science.gov (United States)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  10. Boron nitride - Composition, optical properties, and mechanical behavior

    Science.gov (United States)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  11. Boron nitride: Composition, optical properties and mechanical behavior

    Science.gov (United States)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  12. Calcium isotopic composition of mantle peridotites

    Science.gov (United States)

    Huang, F.; Kang, J.; Zhang, Z.

    2015-12-01

    Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards. δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large Δ44Caopx-cpx (defined as δ44Caopx-δ44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel. [1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.

  13. Chemical and isotopic compositions of bottled waters sold in Korea: chemical enrichment and isotopic fractionation by desalination.

    Science.gov (United States)

    Kim, Go-Eun; Ryu, Jong-Sik; Shin, Woo-Jin; Bong, Yeon-Sik; Lee, Kwang-Sik; Choi, Man-Sik

    2012-01-15

    A total of 54 Korean bottled waters were investigated to characterize their origins and types using elemental and isotopic composition, as well as to identify elemental and isotopic changes in desalinated marine water that arise due to desalination. The different types of bottled water displayed a wide pH range (3.42 to 7.21). The elemental compositions of still and sparkling waters were quite similar, whereas desalinated marine water was clearly distinguished by its high concentrations of Ca, Mg, B, and Cl. In addition, desalinated marine water had much higher isotope ratios of oxygen and hydrogen (-0.5 and -2‰, respectively) than still and sparkling waters (-8.4 and -57‰). The elemental composition of desalinated marine water was adjusted through post-treatment procedures; in particular, boron was greatly enriched during desalination processes. The carbon isotope compositions of dissolved inorganic carbon (δ(13)C(DIC) values) varied widely according to the origins of the bottled waters (-25.6 to -13.6‰ for still water, -31.2 to -26.7‰ for sparkling water, and -24.1 to -6.3‰ for desalinated marine water). This indicates that carbon isotopes in dissolved inorganic carbon are significantly fractionated by desalination processes and re-modified through post-treatment procedures. The results suggest that combined elemental and stable isotopic tracers are useful for identifying the origin of bottled water, verifying elemental and isotopic modifications during desalination processes, and characterizing various water types of bottled waters. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1976-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction which is at least enriched with one of the compounds of the mixture. 17 claims, no drawings

  15. Petrography, compositional characteristics and stable isotope ...

    African Journals Online (AJOL)

    Petrography, compositional characteristics and stable isotope geochemistry of the Ewekoro formation from Ibese Corehole, eastern Dahomey basin, southwestern Nigeria. ME Nton, MO ... Preserved pore types such as; intercrystaline, moldic and vuggy pores were observed as predominant conduits for fluids. The major ...

  16. petrography, compositional characteristics and stable isotope ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Subsurface samples of the predominantly carbonate Ewekoro Formation, obtained from Ibese core hole within the Dahomey basin were used in this study. Investigations entail petrographic, elemental composition as well as stable isotopes (carbon and oxygen) geochemistry in order to deduce the different microfacies and ...

  17. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1975-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction that is at least enriched with one of the compounds of the mixture. (U.S.)

  18. Facies, dissolution seams and stable isotope compositions

    Indian Academy of Sciences (India)

    Stable isotope analysis of the limestone shows that 13C and 18O values are compatible with the early Mesoproterozoic open seawater composition. The ribbon limestone facies in the Rohtas Limestone is characterized by micritic beds, each decoupled in a lower band enriched and an upper band depleted in dissolution ...

  19. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    Science.gov (United States)

    Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.

    2015-09-01

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.

  20. Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada

    Science.gov (United States)

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1999-01-01

    We report here the results of 54 boron isotope analyses of tourmaline associated with the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia, Canada. The ??11B values range from -11.1 to -2.9???, which is almost as great as the range found worldwide in tourmalines from 33 massive sulfide deposits and tourmalinites in dominantly clastic metasedimentary terranes. The major control on the overall ??11B values of the Sullivan tourmalinites is the boron source. Potential controls over the large range of the data also include: (1) differences in formation temperatures of the tourmalinites, (2) different stages of tourmaline formation, (3) variations in the proportions of dissolved boron incorporated into the tourmaline (Rayleigh fractionation), (4) seawater entrainment, and (5) post-depositional metamorphism. The boron isotope data at Sullivan are consistent with boron derivation from leaching of footwall clastic sediments. However, the great abundance of tourmaline in the Sullivan deposit suggests that the local clastic sediments were not the sole source of boron, and we argue that non-marine evaporites, buried deep below the orebody, are the most viable source of this additional boron. It is likely that some of the variation in tourmaline ??11B values reflect mixing of boron from these two sources. Comparison of the potential effects of these controls with geologic and other geochemical evidence suggests that major causes for the wide range of ??11B values measured at Sullivan are seawater entrainment and Rayleigh fractionation, although in places, post-depositional alteration and thermal metamorphism were important in determining ??11B values of some of the recrystallized tourmalinites.

  1. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  2. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, N Gary; Yang, Jing-Hong; Yang, Tao; Wu, He-Pin; Yang, Tang-Li; Yan, Xiong; Pu, Wei

    2014-06-01

    In order to eliminate boron loss and potential isotopic fractionation during chemical pretreatment of natural samples with complex matrices, a three-column ion-exchange separation/purification procedure has been modified, which ensures more than 98% recovery of boron from each step for a wide range of sample matrices, and is applicable for boron isotope analysis by both TIMS and MC-ICP-MS. The PTIMS-Cs2BO2(+)-static double collection method was developed, ensuring simultaneous collection of (133)Cs2(11)B(16)O2(+)(m/z 309) and (133)Cs2(10)B(16)O2(+) (m/z 308) ions in adjacent H3-H4 Faraday cups with typical zoom optics parameters (Focus Quad: 15 V, Dispersion Quad: -85 V). The external reproducibilities of the measured (11)B/(10)B ratios of the NIST 951 boron standard solutions of 1000 ng, 100 ng and 10 ng of boron by PTIMS method are ±0.06‰, ±0.16‰ and ±0.25‰, respectively, which indicates excellent precision can be achieved for boron isotope measurement at nanogram level boron in natural samples. An on-peak zero blank correction procedure was employed to correct the residual boron signals effect in MC-ICP-MS, which gives consistent δ(11)B values with a mean of 39.66±0.35‰ for seawater in the whole range of boron content from 5 ppb to 200 ppb, ensuring accurate boron isotope analysis in few ppb boron. With the improved protocol, consistent results between TIMS and MC-ICP-MS data were obtained in typical geological materials within a wide span of δ(11)B values ranging from -25‰ to +40‰. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Tungsten Stable Isotope Compositions of Ferromanganese Crusts

    Science.gov (United States)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.

    2014-12-01

    We report the first accurate and precise data for mass-dependent fractionation of tungsten (W) stable isotopes, using a double spike technique and MC-ICPMS. Results are expressed relative to the NIST 3136 W isotope standard as per mil deviations in 186W/184W (δ186W). Although heavy element mass-dependent fractionations are expected to be small, Tl and U both display significant low temperature isotopic fractionations. Theoretical calculations indicate that W nuclear volume isotopic effects should be smaller than mass-dependent fractionations at low temperatures. Hydrogenetic ferromanganese (Fe-Mn) crusts precipitate directly from seawater and have been used as paleoceanographic recorders of temporal changes in seawater chemistry. Crusts are strongly enriched in W and other metals, and are a promising medium for exploring W isotopic variability. Tungsten has a relatively long residence time in seawater of ~61,000 years, mainly as the tungstate ion (WO42-). Water depth profiles show conservative behaviour. During adsorption on Fe-Mn crusts, W species form inner-sphere complexes in the hexavalent (W6+) state. The major host phase is thought to be Mn oxides and the lighter W isotope is expected to be absorbed preferentially. Surface scrapings of 13 globally distributed hydrogenetic Fe-Mn crusts display δ186W from -0.08 to -0.22‰ (±0.03‰, 2sd). A trend toward lighter W isotope composition exists with increasing water depth (~1500 to ~5200m) and W concentration. One hydrothermal Mn-oxide sample is anomalously light and Mn nodules are both heavy and light relative to Fe-Mn crusts. Tungsten speciation depends on concentration, pH, and time in solution and is not well understood because of the extremely slow kinetics of the reactions. In addition, speciation of aqueous and/or adsorbed species might be sensitive to pressure, showing similar thermodynamic stability but different effective volumes. Thus, W stable isotopes might be used as a water-depth barometer in

  4. Determination of isotopic composition of uranium in microparticles by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Veniaminov, N.N.; Kolesnikov, O.N.; Stebel'kov, V.A.

    1992-01-01

    Aerosol particles including uranium in their composition are specific atmospheric polutants. Uranium is used as nuclear fuel in atomic power stations and in spacecraft power units, and also as a component of nuclear warheads. In order to monitor the discharge of uranium-containing aerosol particles to the atmosphere, they must first be identified. As an example, one may cite an investigation of the elemental composition and radioactivity of particles formed in the accident at the Chernobyl atomic power station. One of the most informative indicators of the origin of uranium-containing aerosol particles is the isotopic composition of the uranium. Secondary ion mass spectrometry (SIMS) offers unique possibilities for the measurement of isotope ratios in individual microscopic objects. At the same time, a measurement of isotope ratios of sulfur in microsection of galenite PbS 2 has shown that the application of SIMS for these purposes is seriously limited by the difference in yield of secondary ions for isotopes with different masses. These discrimination effects, in the case of light elements such as boron, may result in distortion of the isotope ratios by several percent. In the case of heavy elements, however, the effect is less significant, amounting to about 0.5% for lead isotopes. 13 refs., 3 figs., 1 tab

  5. Stable Cl isotope composition of the Changjiang River water

    Science.gov (United States)

    Lang, Y.; Liu, C. Q.; LI, S. L.; Aravena, R.; Ding, H.; WANG, B.; Benjamin, C.

    2017-12-01

    To understand chemical wreathing, nutrient cycling, and the impact of human activities on eco-environments of the Changjiang River (Yangtze River) Basin, we carried out a geochemical study on water chemistry and multiple isotopes (C, N, S, Sr…...) of Changjiang River water in the summer season. Some of the research results about the water chemistry, boron isotope geochemistry and suspended matter have been published (Chetelat et al., 2008; Li et al., 2010). Ten samples were selected for the measurement of δ37Cl values, among which 7 samples were collected from main stream and 3 samples from tributaries. The range of δ37Cl values varies between 0.02‰ and 0.33‰ in the main stream and between 0.16‰ and 0.71‰ in the tributary waters. The δ37Cl values in general are negatively correlated with Cl- concentrations for both main stream and tributary waters. δ37Cl value of Wujiang, which is one of the large tributaries in the upper reach of Changjiang and dominated by carbonate rocks in lithology of the watershed, has the maximum value but minimum value of Cl- concentration in this study. The lowest δ37Cl value was measured for the water collected from the estuary of Changjiang River. The variation of δ37Cl values in the waters would be attributed to mixing of different sources of chlorine, which most likely include rain water, ground water, seawater, and pollutants. Systematic characterization of different Cl sources in terms of their chlorine isotope composition is imperative for better understanding of sources and processes of chlorine cycling. Acknowledgements: This work was financially supported by NSFC through project 41073099. (Omit references)

  6. Isotopic Composition of Oxygen in Lunar Zircons

    Science.gov (United States)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.

    2005-01-01

    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  7. The Nitrogen Isotopic Composition of Meteoritic HCN

    Science.gov (United States)

    Pizzarello, Sandra

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN-, we have analyzed the 15N/14N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  8. Element isotope composition definition in solid microvolumes

    International Nuclear Information System (INIS)

    Kaviladze, M.Sh.; Melashvili, T.A.; Kviriya, M.S.

    1977-01-01

    A method for the mass-spectrometric isotopic analysis of solid microvolumes is described which allows to obtain both high analysis localization and high accuracy of the results. The underlying idea is that a laser beam is used to transfer the sample layer-wise onto the evaporator film directly in the ion source. To effect this mass-spectrometric analysis an apparatus has been developed comprising a mass-spectrometer, a ruby laser, a feedback circuit from the amplifier of the ion current of a more common isotope and a replaceable-vaporizer ion source. The composition of each microvolume having a mass about 10 -13 g. is measured in relation to the model specimen, whereby a relative measurement accuracy of about 0.1% is achieved

  9. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  10. Isotope effects associated with the preparation and methylation of fatty acids by boron trifluoride in methanol for compound-specific stable hydrogen isotope analysis via gas chromatography/thermal conversion/isotope ratio mass spectrometry.

    Science.gov (United States)

    Chivall, David; Berstan, Robert; Bull, Ian D; Evershed, Richard P

    2012-05-30

    Compound-specific stable hydrogen isotope analysis of fatty acids is being used increasingly as a means of deriving information from a diverse range of materials of archaeological, geological and environmental interest. Preparative steps required prior to isotope ratio mass spectrometry (IRMS) analysis have the potential to alter determined δD values and hence must be accounted for if accurate δD values for target compounds are to be obtained. Myristic, palmitic, stearic, arachidic and behenic saturated fatty acids were derivatised to their respective fatty acid methyl esters (FAMEs), using 14% (w/v) boron trifluoride in methanol then analysed by gas chromatography/thermal conversion/IRMS (GC/TC/IRMS). FAMEs generated from fatty acid sodium salts of unknown δD values were then used to test a correction factor determined for this method of derivatisation. Derivatisation was found to alter the hydrogen isotopic composition of FAMEs although this effect was reproducible and can be accounted for. The difference between the mean corrected and mean bulk δD values was always less than 6.7 ‰. Extraction of saturated fatty acids and acyl lipids from samples, subsequent hydrolysis, then separation on a solid-phase extraction cartridge, was found to alter the determined δD values by less than one standard deviation. Overall, it has been shown that for natural abundance hydrogen isotope determinations, the isolation and derivatisation of extracted fatty acids alters the determined δD values only by a numerical increment comparable with the experimental error. This supports the use of the described analytical protocol as an effective means of determining fatty acid δD values by GC/TC/IRMS. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Study on distribution and origin of boron in groundwater in the area of Chalkidiki, Northern Greece by employing chemical and isotopic tracers.

    Science.gov (United States)

    Voutsa, D; Dotsika, E; Kouras, A; Poutoukis, D; Kouimtzis, Th

    2009-12-30

    This paper presents an integrate study on the occurrence and distribution of boron in groundwater in the area of Chalkidiki, Northern Greece. Groundwater samples were collected from wells used for drinking and irrigation purposes. Samples were analysed for boron, various physicochemical parameters (T, pH, EC, Ca, Mg, Na, K, Br, Cl, HCO(3), SO(4), NO(3) and As) and isotopes ((18)O, (2)H, (11)B). Boron showed high spatial variation ranged from 0.04 to 6.5mg/L. Almost 60% of the examined wells exhibited boron concentration higher than the limit of 1mg/L proposed for water intended for human consumption. The higher concentrations were determined in geothermal waters with relatively high temperature. Correlation analysis and hierarchical cluster analysis were employed to find out possible relationships among the examined parameters and groundwater samples. Chemical and isotopic fingerprints have been used to investigate the origin of boron.

  12. Lithium and boron in late-orogenic granites - Isotopic fingerprints for the source of crustal melts?

    Science.gov (United States)

    Romer, Rolf L.; Meixner, Anette; Förster, Hans-Jürgen

    2014-04-01

    Geochemically diverse late- and post-Variscan granites of the Erzgebirge-Vogtland, the Saxon Granulite Massif, and Thuringia (Germany) formed by anatectic melting of Palaeozoic sedimentary successions and associated mafic to felsic volcanic rocks. The compositional diversity of the least evolved of these granites is largely inherited from the protoliths. We present Li and B-isotopic data of these granites and compare them with the isotopic composition of their protoliths, to investigate whether (i) there exist systematic differences in the Li and B-isotopic composition among different granite types and (ii) Li and B-isotopic compositions provide information on the granite sources complementary to information from the isotopic composition of Sr, Nd, and Pb and the trace-element signatures. Low-F biotite and two-mica granite types have flat upper continental crust (UCC)-normalized trace-element pattern with variable enrichments in Li, Rb, Cs, Sn, and W and depletions in Sr, Ba, and Eu. These signatures are least pronounced for the Niederbobritzsch biotite granite, which has the largest contribution of mafic material, and most pronounced for the two-mica granites. The granites show a relatively narrow range of δ7Li values (-3.0 to -0.5) and a broad range of δ11B values (-13.4 to +20.1). The δ11B values are lower in rocks with distinctly higher contents of Li, Rb, Cs, and Sn. The high δ11B of the Niederbobritzsch granite may be explained by the melting of former altered oceanic crust in its source. Relative to UCC, intermediate-F to high-F low-P granites show strong depletions in Sr, Ba, Eu as well as Zr and Hf, strong enrichments in Li, Rb, and Cs as well as Nb, Sn, Ta, and W, and REE pattern with stronger enrichments for HREE than for LREE. These granites show narrow ranges of δ7Li (-2.0 to +1.6) and δ11B values (-14.7 to -9.1), reflecting the smaller variability of the Li and B-isotopic composition in their source lithologies. The anomalously high δ7Li value

  13. Wear and friction of composites of an epoxy with boron containing wastes

    Directory of Open Access Journals (Sweden)

    Tayfun Uygunoğlu

    2015-06-01

    Full Text Available AbstractPolymer surface coatings provide superior adhesion to substrates, some flexibility and corrosion resistance. On the other hand, 400,000 ton of boron wastes are generated each year. We have developed polymer composites based on epoxy resins containing up to 50 wt. % of boron wastes and determined their pin-on-disk dynamic friction, wear, Shore D hardness and surface roughness. The hardness and wear resistance increase with increasing boron waste concentration. An equation, with parameters dependent on the load, relating wear rate to hardness is provided. Dynamic friction increases with increasing surface roughness, as represented by the equation. Further, dynamic friction is an increasing function of the wear rate. Micrographs of pure epoxy without fillers shows traces after pin-on-disk testing, with tears, breaks and cracks. For the composites, we observe simpler and relatively homogeneous surfaces.

  14. Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites

    Science.gov (United States)

    Clayton, R. N.; Mayeda, T. K.; Hutcheon, I. D.; Molini-Velsko, C.; Onuma, N.; Ikeda, Y.; Olsen, E. J.

    1983-01-01

    The ferromagnesian chondrules in Allende follow a trend in the oxygen three-isotope plot that diverges significantly from the 16-O mixing line defined by light and dark inclusions and the matrix of the meteorite. The trend probably results from isotopic exchange with an external gaseous reservoir during the process of chondrule formation sometime after the establishment of the isotopic compositions of the inclusions and matrix. The Allende chondrules approach, but do not reach, the isotopic compositions of chondrules in unequilibrated ordinary chondrites, implying exchange with a similar ambient gas, but isotopically different solid precursors for the two types of meteorite.

  15. Isotopic composition of precipitation and groundwater in Sicily, Italy

    International Nuclear Information System (INIS)

    Liotta, M.; Grassa, F.; D’Alessandro, W.; Favara, R.; Gagliano Candela, E.; Pisciotta, A.; Scaletta, C.

    2013-01-01

    Highlights: • Isotopic composition of precipitation and groundwater in Sicily (Italy). • Isotopic data processing for hydrogeological purpose. • GIS mapping of isotopic data. - Abstract: The isotopic composition of meteoric water in Sicily, Italy was investigated from May 2004 until June 2006. Samples were sampled monthly from a network of 50 rain gauges. During the same period 580 groundwater samples were collected from springs and wells to obtain insight into the isotopic composition of the water circulating in the main aquifers of the area. The mean weighted precipitation values were used to define the weighted local meteoric water line for five different sectors of Sicily. The use of Geographical Information System tools, coupled with isotopic vertical gradients, allowed designing an isotopic contour map of precipitation in Sicily. The defined meteoric compositions were highly consistent with most of the groundwater samples in each sector. However, in some areas fractionation processes occurring during and after rainfall slightly modify the isotopic composition of the groundwater. The obtained data set defines the present day isotopic composition of meteoric water in the central Mediterranean area and provides baseline values for future climatic and/or isotope-based hydrology studies

  16. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  17. Effect of Boron and Phosphate compounds on Thermal and Fire Properties of wood/HDPE composites

    Science.gov (United States)

    Turgay Akbulut; Nadir Ayrilmis; Turker Dundar; Ali Durmus; Robert H. White; Murat Teker

    2011-01-01

    Melting and non-isothermal crystallization behaviors, oxidative induction time, and fire performance of the injection-molded wood flour-high density polyethylene (HDPE) composites (WPCs) incorporated with different levels (4, 8, or 12 wt %) of boron compounds [borax/boric acid (BX/BA) (0.5:0.5 wt %), zinc borate (ZB)] and phosphorus compounds [mono- and di-ammonium...

  18. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    Science.gov (United States)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  19. Development of an on-line isotope dilution laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method for determination of boron in silicon wafers.

    Science.gov (United States)

    Yang, Chao-Kai; Chi, Po-Hsiang; Lin, Yong-Chine; Sun, Yuh-Chang; Yang, Mo-Hsiung

    2010-01-15

    A method has been developed based on an on-line isotope dilution technique couple with laser ablation/inductively coupled plasma mass spectrometry (LA-ICP-MS), for the determination of boron in p-type silicon wafers. The laser-ablated sample aerosol was mixed on-line with an enriched boron aerosol supplied continuously using a conventional nebulization system. Upon mixing the two aerosol streams, the isotope ratio of boron changed rapidly and was then recorded by the ICP-MS system for subsequent quantification based on the isotope dilution principle. As an on-line solid analysis method, this system accurately quantifies boron concentrations in silicon wafers without the need for an internal or external solid reference standard material. Using this on-line isotope dilution technique, the limit of detection for boron in silicon wafers is 2.8x10(15)atomscm(-3). The analytical results obtained using this on-line methodology agree well with those obtained using wet chemical digestion methods for the analysis of p-type silicon wafers containing boron concentrations ranging from 1.0x10(16) to 9.6x10(18)atomscm(-3).

  20. Basic features of boron isotope separation by SILARC method in the two-step iterative static model

    Science.gov (United States)

    Lyakhov, K. A.; Lee, H. J.

    2013-05-01

    In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.

  1. Boron isotope variations in Tonga-Kermadec-New Zealand arc lavas: Implications for the origin of subduction components and mantle influences

    Science.gov (United States)

    Leeman, William P.; Tonarini, Sonia; Turner, Simon

    2017-03-01

    The Tonga-Kermadec-New Zealand volcanic arc is an end-member of arc systems with fast subduction suggesting that the Tonga sector should have the coolest modern slab thermal structure on Earth. New data for boron concentration and isotopic composition are used to evaluate the contrasting roles of postulated subduction components (sediments and oceanic slab lithologies) in magma genesis. Major observations include: (a) Tonga-Kermadec volcanic front lavas are enriched in B (as recorded by B/Nb and similar ratios) and most have relatively high δ11B (>+4‰), whereas basaltic lavas from New Zealand have relatively low B/Nb and δ11B (enrichments in the arc magma sources are likely dominated by serpentinite domains deeper within the subducting slab (±altered oceanic crust), and B systematics are consistent with dominant transport by slab-derived aqueous fluids. Effects of this process are amplified by mantle wedge source depletion due to prior melt extraction.Plain Language SummaryBoron isotope and other geochemical data are used to evaluate contributions from subducted materials to magma sources for volcanoes of the Tonga-Kermadec-New Zealand volcanic arc. The data are used to estimate the composition of modified mantle sources for the arc magmas as well as the extent of melting to produce them. It is shown that the mantle was previously depleted in melt components, and then overprinted by B and other components from the subducting slab, predominantly by aqueous fluids produced by dehydration of the slab. Some elements (e.g., Th, Be, La) considered to be relatively immobile in aqueous fluids, show strong correlation with B-enrichment, suggesting that they too can be mobilized in this manner. This result is important for understanding the origin of arc magmas from other localities. In addition our data imply that slab inputs to arc magma sources are cumulative over time.

  2. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  3. Boron cage compound materials and composites for shielding and absorbing neutrons

    Science.gov (United States)

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-03-04

    Boron cage compound-containing materials for shielding and absorbing neutrons. The materials include BCC-containing composites and compounds. BCC-containing compounds comprise a host polymer and a BCC attached thereto. BCC-containing composites comprise a mixture of a polymer matrix and a BCC filler. The BCC-containing materials can be used to form numerous articles of manufacture for shielding and absorbing neutrons.

  4. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    Science.gov (United States)

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  5. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    Silva, J.R.M. da.

    1978-01-01

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O 16 than the patterns from marine environments. The C 12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.) [pt

  6. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.

    Science.gov (United States)

    Martínez-Botí, M A; Marino, G; Foster, G L; Ziveri, P; Henehan, M J; Rae, J W B; Mortyn, P G; Vance, D

    2015-02-12

    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon.

  7. Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: Implications for δ 11B vital effects and paleo-pH reconstructions

    Science.gov (United States)

    Rollion-Bard, C.; Erez, J.

    2010-03-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ 11B has some limitations such as the knowledge of the fractionation factor ( α4-3) between boric acid and the borate ion and the amplitude of "vital effects" on this proxy that are not well constrained. Using secondary ion mass spectrometry (SIMS) we have examined the internal variability of the boron isotope ratio in the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24 ± 0.1 °C) in seawater with pH ranging between 7.90 and 8.45. Intra-shell boron isotopes showed large variability with an upper limit value of ≈30‰. Our results suggest that the fractionation factor α4-3 of 0.97352 ( Klochko et al., 2006) is in better agreement with our experiments and with direct pH measurements in seawater vacuoles associated with the biomineralization process in these foraminifera. Despite the large variability of the skeletal pH values in each cultured specimen, it is possible to link the lowest calculated pH values to the experimental culture pH values while the upper pH limit is slightly below 9. This variability can be interpreted as follows: foraminifera variably increase the pH at the biomineralization site to about 9. This increase above ambient seawater pH leads to a range in δ 11B (Δ 11B) for each seawater pH. This Δ 11B is linearly correlated with the culture seawater pH with a slope of -13.1 per pH unit, and is independent of the fractionation factor α4-3, or the δ 11B sw through time. It may also be independent of the p KB (the dissociation constant of boric acid) value. Therefore, Δ 11B in foraminifera can potentially reconstruct paleo-pH of seawater.

  8. Boron abundances and isotopic ratios of olivine grains on Itokawa returned by the Hayabusa spacecraft

    Science.gov (United States)

    Fujiya, Wataru; Hoppe, Peter; Ott, Ulrich

    2016-09-01

    We report the B abundances and isotopic ratios of two olivine grains from the S-type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic-ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic-ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.

  9. Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites

    International Nuclear Information System (INIS)

    Madakbaş, Seyfullah; Çakmakçı, Emrah; Kahraman, Memet Vezir

    2013-01-01

    Highlights: ► PAN/h-BN composites with improved thermal stability were prepared. ► Thermal properties of composites were analysed by TGA and DSC. ► Flame retardancy of the composites increased up to 27%. - Abstract: Polyacrylonitrile is a thermoplastic polymer with unique properties and it has several uses. However its flammability is a major drawback for certain applications. In this study it was aimed to prepare polyacrylonitrile (PAN)/hexagonal boron nitride (h-BN) composites with improved flame retardancy and thermal stability. Chemical structures of the composites were characterized by FTIR analysis. Thermal properties of these novel composites were analysed by TGA and DSC measurements. Glass transition temperatures and char yields increased with increasing h-BN percentage. Flame retardancy of the PAN composite materials improved with the addition of h-BN and the LOI value reached to 27% from 18%. Furthermore, the surface morphology of the composites was investigated by SEM analysis.

  10. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Boron by Titrimetry 7 to 13 Separation of Boron for Mass Spectrometry 14 to 19 Isotopic Composition by Mass Spectrometry 20 to 23 Separation of Halides by Pyrohydrolysis 24 to 27 Fluoride by Ion-Selective Electrode 28 to 30 Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 31 to 33 Trace Elements by Emission Spectroscopy 34 to 46 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (F...

  11. Isotopic Composition of Xenon in Petroleum from the Shell ...

    Indian Academy of Sciences (India)

    The xenon isotopic composition was found to be similar to the atmospheric value for one petroleum sample. While the results of the second sample suggest possible enrichment of the heavier isotopes, the errors associated with these excesses preclude a definitive statement to that effect. No monoisotopic enrichment in ...

  12. A comparative study on isotopic composition of precipitation in wet ...

    Indian Academy of Sciences (India)

    A comparative study on isotopic composition of precipitation in wet tropic and semi-arid stations across southern India. C Unnikrishnan Warrier∗ and M Praveen Babu. Isotope Hydrology Division, Centre for Water Resources Development and Management,. Kunnamangalam P.O., Kozhikode 673 571, Kerala, India. ∗.

  13. The isotopic composition of CO in vehicle exhaust

    NARCIS (Netherlands)

    Naus, S.; Röckmann, T.; Popa, M.E.

    2018-01-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO 2 isotopes, and the CO:CO 2 , CH 4 :CO 2 and H 2 :CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench.

  14. The oxygen isotopic composition of water extracted from carbonaceous chondrites

    OpenAIRE

    Baker, L.; Franchi, Ian; Wright, Ian; Pillinger, Colin

    2001-01-01

    The oxygen isotopic composition of water from carbonaceous chondrites suggests that close to isotopic equilibrium was attained on CI and CM parent bodies. This is more consistent with a closed system than one with fluid flow. Tagish Lake does not display such equilibrium.

  15. Oxygen isotopic composition of the Luna 20 soil.

    Science.gov (United States)

    Clayton, R. N.

    1973-01-01

    Comparison of the oxygen isotopic composition in the Luna 20 soil sample with the oxygen isotopic abundances of the Apollo 11, 12, 14, and 15 lunar soil samples. The Luna 20 soil is found to have a relatively low delta 0-18 content (0.57%) in comparison to the other lunar soils (0.58 to 0.63%).

  16. Improvement of Thermal and Electrical Conductivity of Epoxy/boron Nitride/silver Nanoparticle Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungyong; Lim, Soonho [Korea Institute of Science and Technology, Wanju (Korea, Republic of)

    2017-06-15

    In this study, we investigated the effect of BN (boron nitride) on the thermal and the electrical conductivity of composites. In case of epoxy/BN composites, the thermal conductivity was increased as the BN contents were increased. Epoxy/AgNP (Ag nanoparticle) nanocomposites exhibited a slight change of thermal conductivity and showed a electrical percolation threshold at 20 vol% of Ag nanoparticles. At the fixed Ag nanoparticle content below the electrical percolation threshold, increasing the amount of BN enhanced the electrical conductivity as well as thermal conductivity for the epoxy/AgNP/BN composites.

  17. Effect of boron compounds on physical, mechanical, and fire properties of injection molded wood plastic composites

    Science.gov (United States)

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Zeki Candan; Umit Buyuksari; Erkan Avci

    2011-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites (WPCs) incorporated with different levels of boron compounds, borax/boric acid (BX/BA) (0.5:0.5 wt %) and zinc borate (ZB) (4, 8, or 12 wt %) were investigated. The effect of the coupling agent loading (2, 4, or 6 wt %), maleic anhydride-grafted PP (MAPP), on the...

  18. Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    DEFF Research Database (Denmark)

    Jepsen, Lars H.; Ley, Morten B.; Lee, Young-Su

    2014-01-01

    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights ...... a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved. © 2014 Elsevier Ltd....

  19. Boron cycling in subduction zones

    OpenAIRE

    Palmer, Martin R.

    2017-01-01

    Subduction zones are geologically dramatic features, with much of the drama being driven by the movement of water. The “light and lively” nature of boron, coupled with its wide variations in isotopic composition shown by the different geo-players in this drama, make it an ideal tracer for the role and movement of water during subduction. The utility of boron ranges from monitoring how the fluids that are expelled from the accretionary prism influence seawater chemistry, to the subduction of c...

  20. Isotopic compositions of the elements 2013 (IUPAC Technical Report)

    Science.gov (United States)

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the “best measurement” of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.

  1. Accurate and precise determination of boron isotopic ratios at low concentration by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions.

    Science.gov (United States)

    He, Mao-yong; Xiao, Ying-kai; Jin, Zhang-dong; Ma, Yun-qi; Xiao, Jun; Zhang, Yan-ling; Luo, Chong-guang; Zhang, Fei

    2013-07-02

    A static double-collector system for accurate, precise, and rapid boron isotope analysis has been established by employing a newly fixed Faraday H3 and H4 cup enabling simultaneously collected Cs2BO2(+) ion beams (m/z = 308 and 309) on a Finnigan-MAT Triton thermal ionization mass spectrometer of boron (Triton B). The experimental result indicated that Cs2BO2(+) ion beams (m/z = 308 and 309) were simultaneously collected using a fixed Faraday H3 and H4 cup without using the "Zoom Quad" function and reduced accelerating voltage. Furthermore, the method enabled the measurement of samples containing as little as 20 ng of boron. An analysis of the National Institute of Standards and Technology standard reference material (NIST SRM) 951 standard showed external reproducibility (2RSD) of ±0.013‰, ± 0.013‰, and ±0.019‰ for 100, 50, and 20 ng of boron, respectively. The present method of static multicollection of Cs2BO2(+) ions is applicable to a wide field of boron isotopic research that requires high precision and accuracy to analyze samples with low boron concentrations, including pore fluids, foraminifera, rivers, rainwater, and other natural samples.

  2. Thermal environment effects on strength and impact properties of boron-aluminum composites

    Science.gov (United States)

    Grimes, H. H.; Lad, R. A.; Maisel, J. E.

    1977-01-01

    Thermal effects on fracture strength and impact energy were studied in 50 volume percent unidirectional composites of 143 and 203 micron boron fibers in 6061 and 1100 aluminum matrices. For 6061 matrix composites, strength was maintained to approximately 400 C in the cyclic tests and higher than 400 C in the static tests. For the 1100 matrix composites, strength degradation appeared near 260 C after cycling and higher than 260 C in static heating. This composite strength degradation is explained by a fiber degradation mechanism resulting from a boron-aluminum interface reaction. The impact energy absorption degraded significantly only above 400 C for both matrix alloys. Thus, while impact loss for the 6061 composite correlates with the fiber strength loss, other energy absorption processes appear to extend the impact resistance of the 1100 matrix composites to temperatures beyond where its strength is degraded. Interrupted impact tests on as-received and thermally cycled composites define the range of load over which the fibers break in the impact event.

  3. Tackling the salinity-pollution nexus in coastal aquifers from arid regions using nitrate and boron isotopes.

    Science.gov (United States)

    Re, V; Sacchi, E

    2017-05-01

    Salinization and nitrate pollution are generally ascertained as the main issues affecting coastal aquifers worldwide. In arid zones, where agricultural activities also result in soil salinization, both phenomena tend to co-exist and synergically contribute to alter groundwater quality, with severe negative impacts on human populations and natural ecosystems' wellbeing. It becomes therefore necessary to understand if and to what extent integrated hydrogeochemical tools can help in distinguishing among possible different salinization and nitrate contamination origins, in order to provide adequate science-based support to local development and environmental protection. The alluvial plain of Bou-Areg (North Morocco) extends over about 190 km 2 and is separated from the Mediterranean Sea by the coastal Lagoon of Nador. Its surface is covered for more than 60% by agricultural activities, although the region has been recently concerned by urban population increase and tourism expansion. All these activities mainly rely on groundwater exploitation and at the same time are the main causes of both aquifer and lagoon water quality degradation. For this reason, it was chosen as a case study representative of the typical situation of coastal aquifers in arid zones worldwide, where a clear identification of salinization and pollution sources is fundamental for the implementation of locally oriented remedies and long-term management strategies. Results of a hydrogeochemical investigation performed between 2009 and 2011 show that the Bou-Areg aquifer presents high salinity (often exceeding 100 mg/L in TDS) due to both natural and anthropogenic processes. The area is also impacted by nitrate contamination, with concentrations generally exceeding the WHO statutory limits for drinking water (50 mg/L) and reaching up to about 300 mg/L, in both the rural and urban/peri-urban areas. The isotopic composition of dissolved nitrates (δ 15 N NO3 and δ 18 O NO ) was used to constrain

  4. Boron/aluminum graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  5. Joint composite-rotation adiabatic-sweep isotope filtration

    International Nuclear Information System (INIS)

    Valentine, Elizabeth R.; Ferrage, Fabien; Massi, Francesca; Cowburn, David; Palmer, Arthur G.

    2007-01-01

    Joint composite-rotation adiabatic-sweep isotope filters are derived by combining the composite-rotation [Stuart AC et al. (1999) J Am Chem Soc 121: 5346-5347] and adiabatic-sweep [Zwahlen C et al. (1997) J Am Chem Soc 119:6711-6721; Kupce E, Freeman R (1997) J Magn Reson 127:36-48] approaches. The joint isotope filters have improved broadband filtration performance, even for extreme values of the one-bond 1 H- 13 C scalar coupling constants in proteins and RNA molecules. An average Hamiltonian analysis is used to describe evolution of the heteronuclear scalar coupling interaction during the adiabatic sweeps within the isotope filter sequences. The new isotope filter elements permit improved selective detection of NMR resonance signals originating from 1 H spins attached to an unlabeled natural abundance component of a complex in which the other components are labeled with 13 C and 15 N isotopes

  6. Effect of 10B isotope and vacancy defects on the phonon modes of two-dimensional hexagonal boron nitride

    Science.gov (United States)

    Sherajul Islam, Md.; Anindya, Khalid N.; Bhuiyan, Ashraful G.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    We report the details of the effects of the 10B isotope and those of B and N vacancies combined with the isotope on the phonon modes of two-dimensional hexagonal boron nitride (h-BN). The phonon density of states and localization problems are solved using the forced vibrational method, which is suitable for an intricate and disordered system. We observe an upward shift of Raman-active E2g-mode optical phonons (32 cm‑1) for a 100% 10B isotope, which matches well with the experiment and simple harmonic oscillator model. However, a downward shift of E2g-mode phonons is observed for B or N vacancies and the combination of the isotope and vacancy-type disordered BN. Strong localized eigenmodes are found for all types of defects, and a typical localization length is on the order of ∼7 nm for naturally occurring BN samples. These results are very important for understanding the heat dissipation and electron transport properties of BN-based nanoelectronics.

  7. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga

    Science.gov (United States)

    Donald, Hannah K.; Ries, Justin B.; Stewart, Joseph A.; Fowell, Sara E.; Foster, Gavin L.

    2017-11-01

    The increase in atmospheric carbon dioxide (CO2) observed since the industrial revolution has reduced surface ocean pH by ∼0.1 pH units, with further change in the oceanic system predicted in the coming decades. Calcareous organisms can be negatively affected by extreme changes in seawater pH (pHsw) such as this due to the associated changes in the oceanic carbonate system. The boron isotopic composition (δ11B) of biogenic carbonates has been previously used to monitor pH at the calcification site (pHcf) in scleractinian corals, providing mechanistic insights into coral biomineralisation and the impact of variable pHsw on this process. Motivated by these investigations, this study examines the δ11B of the high-Mg calcite skeleton of the coralline red alga Neogoniolithon sp. to constrain pHcf, and investigates how this taxon's pHcf is impacted by ocean acidification. δ11B was measured in multiple algal replicates (n = 4-5) cultured at four different pCO2 scenarios - averaging (±1σ) 409 (±6), 606 (±7), 903 (±12) and 2856 (±54) μatm, corresponding to average pHsw (±1σ) of 8.19 (±0.03), 8.05 (±0.06), 7.91 (±0.03) and 7.49 (±0.02) respectively. Results show that skeletal δ11B is elevated relative to the δ11B of seawater borate at all pHsw treatments by up to 18‰. Although substantial variability in δ11B exists between replicate samples cultured at a given pHsw (smallest range = 2.32‰ at pHsw 8.19, largest range = 6.08‰ at pHsw 7.91), strong correlations are identified between δ11B and pHsw (R2 = 0.72, p ocean acidification via increase of pHcf relative to pHsw in a similar manner to scleractinian corals. However, these results also indicate that pHcf cannot be sufficiently increased by algae exposed to a larger reduction in pHsw, adversely impacting calcification rates of coralline red algae.

  8. Use of water as displacing agent in ion exchange chromatographic separation of isotope of boron using weak base ion exchange resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Mohanakrishnan, G.; Anand Babu, C.; Krishna Prabhu, R.

    2008-01-01

    Experiments were undertaken to study the feasibility of using weakly basic anion exchange resin for enrichment of isotopes of boron by ion exchange chromatography and water as eluent. The results of experiments carried out to determine total chloride capacity (TCC), strong base capacity (SBC) of the resin at different concentrations of boric acid and enrichment profiles are reported in this paper. (author)

  9. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers.

    Science.gov (United States)

    Wang, Zifeng; Fu, Yuqiao; Meng, Wenjun; Zhi, Chunyi

    2014-01-01

    A solvent-free method for the fabrication of thermally conductive epoxy-boron nitride (BN) nanoplatelet composite material is developed in this study. By this method, polymer composites with nearly any filler fractions can be easily fabricated. The maximum thermal conductivity reaches 5.24 W/mK, which is 1,600% improvement in comparison with that of pristine epoxy material. In addition, the as-fabricated samples exhibit excellent overall performances with great mechanical property and thermal stability well preserved.

  10. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral.

    Science.gov (United States)

    Thil, François; Blamart, Dominique; Assailly, Caroline; Lazareth, Claire E; Leblanc, Thierry; Butsher, John; Douville, Eric

    2016-02-15

    Laser Ablation coupled to Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS) is a powerful tool for the high-precision measurement of the isotopic ratios of many elements in geological samples, with the isotope ratio ((11) B/(10) B) of boron being used as an indicator of the pH of oceanic waters. Most geological samples or standards are polished and ablation occurs on flat surfaces. However, the shape and the irregularities of marine biocarbonates (e.g., corals, foraminifera) can make precise isotopic measurements of boron difficult. Even after polishing, the porosity properties and the presence of holes or micro-fractures affect the signal and the isotopic ratio when ablating the material, especially in raster mode. The effect of porosity and of the crater itself on the (11) B signal and the isotopic ratio acquired by LA-MC-ICPMS in both raster and spot mode was studied. Characterization of the craters was then performed with an optical profilometer to determine their shapes and depths. Surface state effects were examined by analyzing the isotopic fractionation of boron in silicate (NIST-SRM 612 and 610 standards) and in carbonate (corals). Surface irregularities led to a considerable loss of signal when the crater depth exceeded 20 µm. The stability and precision were degraded when ablation occurred in a deep cavity. The effect of laser focusing and of blank correction was also highlighted and our observations indicate that the accuracy of the boron isotopic ratio does not depend on the shape of the surface. After validation of the analytical protocol for boron isotopes, a raster application on a Porites coral, which grew for 18 months in an aquarium after field sampling, was carried out. This original LA-MC-ICPMS study revealed a well-marked boron isotope ratio temporal variability, probably related to growth rate and density changes, irrespective of the pH of the surrounding seawater. Copyright © 2015 John Wiley & Sons, Ltd. Copyright

  11. Boron Dissolved and Particulate Atmospheric Inputs to a Forest Ecosystem (Northeastern France).

    Science.gov (United States)

    Roux, Philippe; Turpault, Marie-Pierre; Kirchen, Gil; Redon, Paul-Olivier; Lemarchand, Damien

    2017-12-19

    Boron concentrations and isotopic compositions of atmospheric dust and dissolved depositions were monitored over a two-year period (2012-2013) in the forest ecosystem of Montiers (Northeastern France). This time series allows the determination of the boron atmospheric inputs to this forest ecosystem and contributes to refine our understanding of the sources and processes that control the boron atmospheric cycle. Mean annual dust and dissolved boron atmospheric depositions are comparable in size (13 g·ha -1 ·yr -1 and 16 g·ha -1 ·yr -1 , respectively), which however show significant intra- and interannual variations. Boron isotopes in dust differ from dissolved inputs, with an annual mean value of +1 ‰ and +18 ‰ for, respectively. The notable high boron contents (190-390 μg·g -1 ) of the dust samples are interpreted as resulting from localized spreading of boron-rich fertilizers, thus indicating a significant local impact of regional agricultural activities. Boron isotopes in dissolved depositions show a clear seasonal trend. The absence of correlation with marine cyclic solutes contradicts a control of atmospheric boron by dissolution of seasalts. Instead, the boron data from this study are consistent with a Rayleigh-like evolution of the atmospheric gaseous boron reservoir with possible but limited anthropogenic and/or biogenic contributions.

  12. Improved impact-resistant boron/aluminum composites for use as turbine engine fan blades

    Science.gov (United States)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Thin-sheet Charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on unidirectional and angleply composites containing 4, 5.6 and 8 mil boron in 1100, 2024, 5052 and 6061 Al matrices. Impact failure modes of B/Al are proposed to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of more ductile matrices and larger diameter boron fibers gave the highest impact strengths by allowing matrix shear deformation and multiple fiber breakage. Pendulum impact test results of improved B/Al were higher than notched titanium and indicate sufficient foreign object damage protection to warrant consideration of B/Al for application to fan blades in aircraft gas turbine engines.

  13. Microscopic origin of the composition-dependent change of the thermal conductivity in boron carbides

    International Nuclear Information System (INIS)

    Emin, D.; Howard, I.A.; Green, T.A.; Beckel, C.L.

    1987-01-01

    Large grain polycrystalline boron carbides have a high-temperature thermal conductivity which changes from being characteristic of a crystal to being glass-like as the carbon content is reduced from its maximal value. We relate this phenomenon, to compositional changes within the three-atom intericosahedral chains. With a reduction of the carbon concentration from its maximal concentration (20%), a carbon atom within some of the three-atoms (CBC) intericosahedral chains is replaced by a boron atom, thereby producing CBB chains. We estimate that the CBB chains are significantly softer than the CBC chains. Thus, with this reduction of carbon content the intericosahedral chains are inhomogeneously softened. This suppresses the coherent transport of heat through the chains. The remaining thermal transport occurs incoherently through vibrationally inequivalent structural units, i.e. ''phonon hopping.''

  14. Effect of fiber diameter and matrix alloys on impact-resistant boron/aluminum composites

    Science.gov (United States)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Nonstandard thin-sheet charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on composites containing unidirectional 0.10mm, 0.14mm, and 0.20mm diameter boron fibers in 1100, 2024, 5052, and 6061 Al matrices. Impact failure modes of B/Al are proposed in an attempt to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of a ductile matrix and large diameter boron fibers gave the highest impact strengths. This combination resulted in improved energy absorption through matrix shear deformation and multiple fiber breakage.

  15. Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Yongqiang Tan

    2016-03-01

    Full Text Available Lightweight graphene nanoplatelet (GNP/boron carbide (B4C composites were prepared and the effect of GNPs loading on the electromagnetic interference (EMI shielding effectiveness (SE has been evaluated in the X-band frequency range. Results have shown that the EMI SE of GNP/B4C composite increases with increasing the GNPs loading. An EMI SE as high as 37 ∼ 39 dB has been achieved in composite with 5 vol% GNPs. The high EMI SE is mainly attributed to the high electrical conductivity, high dielectric loss as well as multiple reflections by aligned GNPs inside the composite. The GNP/B4C composite is demonstrated to be promising candidate of high-temperature microwave EMI shielding material.

  16. Preparation and Properties Study of Thermally Conductive Epoxy/Modified Boron Nitride/Graphene Nanosheets Composites

    Science.gov (United States)

    Chen, Hexiang; Zhao, Chunbao; Xu, Suichun; Yang, Xujie

    2017-12-01

    A series of thermally conductive and electric-insulating epoxy composites filled with boron nitride (BN) modified by octadecyl trimethyl ammonium bromide and graphene nanosheets (GNP) were prepared. The effects of modified-BN (BNOTAB) and GNP content on thermal conductivity, electric-insulating and thermal stability properties of epoxy composite were investigated. The results indicate that the BNOTAB can homogeneously disperse into epoxy system. When the mass ratio of BNOTAB/GNP is 6:4 (total filler content is 10%), the thermal conductivity of the composites reached 0.48 W/(m·K), which is 108.7% higher than that of the neat epoxy. Meanwhile, the composite retains excellent electric-insulating property. TGA and DSC results showed that the addition of BNOTAB/GNP filler particles can improve the thermal stability of epoxy resin composites.

  17. Geographic determination of coffee beans using multi-element analysis and isotope ratios of boron and strontium.

    Science.gov (United States)

    Liu, Hou-Chun; You, Chen-Feng; Chen, Chiou-Yun; Liu, Yu-Ching; Chung, Ming-Tsung

    2014-01-01

    This study aims to evaluate the feasibility of using chemical and isotopic compositions of coffee beans to identify their geographic origins. Twenty-one Coffea arabica beans collected from 14 countries in 3 major coffee-producing regions, Africa, America and Asia, were analysed for multi-element of B, Rb, Sr, Ba, Fe, Mn and Zn, as well as isotopic compositions of B and Sr. Our results demonstrate that the geographic origin of coffee beans could be classified based on concentrations of Rb, Sr and Ba. However, the isotope ratios of B and Sr provide more sensitive information for the growth localities. Combined with literature data, this study indicates that B and Sr isotopes are excellent indicators of the origin of coffee beans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. What does the oxygen isotope composition of rodent teeth record?

    Science.gov (United States)

    Royer, Aurélien; Lécuyer, Christophe; Montuire, Sophie; Amiot, Romain; Legendre, Serge; Cuenca-Bescós, Gloria; Jeannet, Marcel; Martineau, François

    2013-01-01

    Oxygen isotope compositions of tooth phosphate (δ18Op) were measured in 107 samples defined on the basis of teeth obtained from 375 specimens of extant rodents. These rodents were sampled from pellets collected in Europe from 38°N (Portugal) to 65°N (Finland) with most samples coming from sites located in France and Spain. Large oxygen isotopic variability in δ18Op is observed both at the intra- and inter-species scale within pellets from a given location. This isotopic variability is partly explained by heterochrony in tooth formation related to the short time of mineralization for all rodent species as well as the duration of mineralization that is species-dependent. Consequently, tooth phosphate of rodents records a short seasonal interval in the oxygen isotope compositions of meteoric waters (δ18Omw). In addition, inter-species isotopic variability observed in the same pellets suggests behavioural differences implying distinct isotopic compositions for species living in the same location. At the scale of Europe, a robust linear oxygen isotope fractionation equation was determined for Muroidea between the midrange δ18Op values and δ18Omw values: δ18Op=1.21(±0.20)δ18Omw+24.76(±2.70) with R2=0.79 (n=9; p<0.0001).

  19. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  20. Long-term thermal degradation and alloying constituent effects on five boron/aluminum composites

    Science.gov (United States)

    Olsen, G. C.

    1982-01-01

    Thermal exposure effects on the properties of five boron/aluminum composite systems were experimentally investigated. The composite systems were 49 volume percent boron fibers (203 micron diameter) in aluminum-alloy matrices 1100 Al, 2024 Al, 3003 Al, 5052 Al, and 6061 Al. Specimens were thermally exposed up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 2000 thermal cycles between 200 K and 590 K. Composite longitudinal and transverse tensile strengths, longitudinal compression strength, and in-plane shear strength were determined. None of the systems was severely degraded by exposure at 590 K. The best performing system was B-2024 Al. Effects of matrix alloys on degradation mechanisms were experimentally investigated. Composite specimens and individual fibers were metallurgically analyzed with a scanning electron microscope and an electron microprobe to determine failure characteristics, chemical element distribution, and reaction layer morphology. Alloying constituents were found to be affect the composite degradation mechanisms as follows: alloys containing iron, but without manganese as a stabilizer, caused increased low-temperature degradation; alloys containing magnesium, iron, or manganese caused increased degradation; and alloys containing copper caused increased fiber strength.

  1. Isotopic fractionation of boron in growing corals and its palaeoenvironmental implication

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.K.; Shirodkar, P.V.; Zhang, C.G.; Wei, H.Z.; Liu, W.G.; Zhou, W.J.

    observed in this study, gave the average pH va l ues of sea water to be 8.85, 8.17, 7.76 and 8.22 respe c ti vely. This indicates the closeness of a43 value of 0.980 with that of the well - accepted r e ported a43 of 0.981 as the recalculated p... function calculati ons and boron adsorption e x- periments on ion exchange resin. Thereafter, a lower a43 of 0.968 was determined 7 based on adsorption exper i ments of boron onto marine clays. Moreover, Hemming et al. 8 calculated a fractionation...

  2. Boron compartmentation in roots of sunflower plants of different boron status: A study using the stable isotopes 10B and 11B adopting two independent approaches

    International Nuclear Information System (INIS)

    Pfeffer, H.; Dannel, F.; Roemheld, V.

    2001-01-01

    The intracellular compartmentation of boron (B) in roots of sunflower plants precultured with 100 μM B (high B) or 1 μM B (low B) was studied using two independent approaches. In the first approach, short-term efflux studies using the stable isotopes 11 B and 10 B were carried out. In roots of high B plants, the calculated concentrations of B (nmol g FW -1 ) were 52.6 in the cell wall, 7.5 in the vacuole, 27.1 in the cytosol and 48.0 in the free space. In roots of low B plants, the concentrations of B (nmol g FW -1 ) were 43.4 in the cell wall, 2.8 in the vacuole, 17.9 in the cytosol and almost zero in the free space. Although the B supply differed by a factor 100, the B concentrations in the cytosol and the vacuole of low B plants were 66 and 37% of the respective concentrations in high B plants. This suggests an additional role for B in plant metabolism, besides its function in the cell wall. In the second approach, root B pools (cell sap and water-insoluble residue) were determined for comparison, and found to be in good agreement with the results from the efflux study. (au)

  3. The ruthenium isotopic composition of the oceanic mantle

    Science.gov (United States)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  4. Evaluation of plasma disruption simulating short pulse laser irradiation experiments on boronated graphites and CFCs [carbon fibre composites

    International Nuclear Information System (INIS)

    Stad, R.C.L. van der; Klippel, H.T.; Kraaij, G.J.

    1992-12-01

    New experimental and numerical results from disruption heat flux simulations in the millisecond range with laser beams are discussed. For a number of graphites, boronated graphites and carbon fibre composites, the effective enthalpy of ablation is determined as 30 ± 3 MJ/kg, using laser pulses of about -.3 ms. The numerical results predict the experimental results rather well. No effect of boron doping on the ablation enthalpy is found. (author). 9 refs., 4 figs., 1 tab

  5. Microstructure and mechanical properties of boron-fiber-reinforced titanium-matrix composites produced by pulsed current hot pressing (PCHP)

    International Nuclear Information System (INIS)

    Mizuuchi, Kiyoshi; Inoue, Kanryu; Sugioka, Masami; Itami, Masao; Kawahara, Masakazu; Yamauchi, Isamu

    2006-01-01

    Boron-fiber-reinforced Ti-matrix composites were fabricated by a pulsed current hot pressing (PCHP) process at various holding temperatures between 973 and 1273 K at a pressure of 32 MPa for 600 s. It was found that the boron fiber and the Ti-matrix were well bonded when the PCHP process was carried out at 1073 K. When a holding temperature of the PCHP process was higher than 1173 K, a TiB 2 compound layer was formed along the interface between the boron fiber and the matrix, and crystallization of amorphous boron occurred in the vicinity of the tungsten core in the fiber. The thickness of TiB 2 layer and the amount of crystallized boron increased with increasing holding temperature. The composite produced by the PCHP process at 1073 K with 17.2 vol.% boron fiber presented a tensile yield stress of 706 MPa when deformed at room temperature. This value was about 80% of the yield stress estimated by a force-equilibrium equation of a composite taking into account the direction of fiber axis

  6. Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios.

    Science.gov (United States)

    Serra, Francesca; Guillou, Claude G; Reniero, Fabiano; Ballarin, Luciano; Cantagallo, Maria I; Wieser, Michael; Iyer, Sundaram S; Héberger, Károly; Vanhaecke, Frank

    2005-01-01

    In this study we show that the continental origin of coffee can be inferred on the basis of coupling the isotope ratios of several elements determined in green beans. The combination of the isotopic fingerprints of carbon, nitrogen and boron, used as integrated proxies for environmental conditions and agricultural practices, allows discrimination among the three continental areas producing coffee (Africa, Asia and America). In these continents there are countries producing 'specialty coffees', highly rated on the market that are sometimes mislabeled further on along the export-sale chain or mixed with cheaper coffees produced in other regions. By means of principal component analysis we were successful in identifying the continental origin of 88% of the samples analyzed. An intra-continent discrimination has not been possible at this stage of the study, but is planned in future work. Nonetheless, the approach using stable isotope ratios seems quite promising, and future development of this research is also discussed. (c) 2005 John Wiley & Sons, Ltd.

  7. Fabrication and properties of ceramic composites with a boron nitride matrix

    International Nuclear Information System (INIS)

    Kim, D.P.; Cofer, C.G.; Economy, J.

    1995-01-01

    Boron nitride (BN) matrix composites reinforced by a number of different ceramic fibers have been prepared using a low-viscosity, borazine oligomer which converts in very high yield to a stable BN matrix when heated to 1,200 C. Fibers including Nicalon (SiC), FP (Al 2 O 3 ), Sumica and Nextel 440 (Al 2 O 3 -SiO 2 ) were evaluated. The Nicalon/BN and Sumica/BN composites displayed good flexural strengths of 380 and 420 MPa, respectively, and modulus values in both cases of 80 GPa. On the other hand, FP/BN and Nextel/BN composites exhibited very brittle behavior. Nicalon fiber with a carbon coating as a buffer barrier improved the strength by 30%, with a large amount of fiber pullout from the BN matrix. In all cases except for Nicalon, the composites showed low dielectric constant and loss

  8. Synthesis and Thermal Conductivity of Exfoliated Hexagonal Boron Nitride/Alumina Ceramic Composite

    Science.gov (United States)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Lizcano, Maricela; Kelly, Marisabel

    2017-01-01

    Exfoliated hexagonal boron nitride (hBN)/alumina composite can be fabricated by following the process of (1) heating a mixture of hBN, AlCl3, and NaF in nitrogen for intercalation; (2) heating the intercalated product in air for exfoliation and at the same time converting the intercalate (AlCl3) into Al2O3, (3) rinsing the oxidized product, (4) coating individual exfoliated hBN platelets that contain Al2O3 with new layers of aluminum oxide, and finally, (5) hot pressing the product into the composite. The composite thus obtained has a composition of approximately 60 percent by weight hBN and 40 percent by weight alumina. Its in-plane and through-plane thermal conductivity were measured to be 86 and 18 watts per meter Kelvin, respectively, at room temperature.

  9. Boron isotope fractionation in groundwaters as an indicator of past permafrost conditions in the fractured crystalline bedrock of the fennoscandian shield.

    Science.gov (United States)

    Casanova, Joël; Négrel, Philippe; Blomqvist, Runar

    2005-01-01

    The Fennoscandian Shield has been subjected to several glaciations over the past million years, the last of which (Weichselian Ice Age) ended only at about 10Ka. Here we used boron isotopes and B contents to (a) establish the degree of water-rock interaction (WRI) and (b) clarify freezing processes within groundwaters from the Aspo site in Sweden and from various sites in Finland. The high delta(11)B values recorded by all groundwaters (up to 51.9 per thousand) including diluted, boron-poor, inland groundwaters suggest selective uptake of (10)B into ice related to freezing processes under permafrost conditions. According to co-existing ice and residual brines in a Canadian frozen mine, this fractionation process, enhanced by Rayleigh fractionation, can generate a natural field of isotopic variation around 60 per thousand and provides a new application of B isotope that makes possible to easily characterise groundwaters that underwent past permafrost conditions.

  10. Limitations of the isotopic composition of nitrates as a tracer of their origin

    Science.gov (United States)

    Kloppmann, Wolfram; Mayer, Bernhard; Otero, Neus; Sebilo, Mathieu; Gooddy, Daren; Lapworth, Dan; Surridge, Ben; Petelet Giraud, Emmanuelle; Flehoc, Christine; Baran, Nicole

    2017-04-01

    Nitrogen and oxygen isotopes are traditionally considered and frequently used as tracers of nitrate sources in watersheds used for drinking water production. The enrichment of synthetic nitrate-containing fertilizers in 18O due to the contribution of atmospheric oxygen in the production process confers a specific isotopic fingerprint to mineral fertilizers. In spite of the still widespread use on nitrate-containing synthetic fertilizers, their characteristic N and O isotope signatures are rarely unambiguously observed in nitrate-contaminated groundwater. We postulate, in line with Mengis et al. (2001), that fertilizer-derived nitrate is not directly and rapidly transferred to groundwater but rather retained in the soil-plant system as organic N and then mineralized and re-oxidized (termed the mineralization-immobilization turnover, MIT) thereby re-setting the oxygen isotope composition of nitrate and also changing its N isotope ratios. We show examples from watersheds on diverse alluvial/clastic and carbonate aquifers in eastern and northern France where, in spite of the use of mineral fertilizers, evidenced also through other isotopic tracers (boron isotopes), both N and O-isotope ratios are very homogeneous and compatible with nitrification of ammonium where 2/3 of oxygen is derived from soil water and 1/3 from atmospheric O2. These field data are corroborated by lysimeter data from Canada. Even if in areas where ammonium is derived from chemical fertilizers, N values still tend to be lower than in areas where ammonium is derived from manure/sewage, this is clearly a limitation to the dual isotope method (N, O) for nitrate source identification, but has important implications for the nitrogen mobility and residence time in soils amended with synthetic fertilizers (Sebilo et al., 2013). Mengis M., Walther U., Bernasconi S. M., Wehrli B. (2001) Limitations of Using δ18O for the Source Identification of Nitrate in Agricultural Soils. Environmental Science

  11. Influence of Boron on the Creep Behavior and the Microstructure of Particle Reinforced Aluminum Matrix Composites

    Directory of Open Access Journals (Sweden)

    Steve Siebeck

    2018-02-01

    Full Text Available The reinforcement of aluminum alloys with particles leads to the enhancement of their mechanical properties at room temperature. However, the creep behavior at elevated temperatures is often negatively influenced. This raises the question of how it is possible to influence the creep behavior of this type of material. Within this paper, selected creep and tensile tests demonstrate the beneficial effects of boron on the properties of precipitation-hardenable aluminum matrix composites (AMCs. The focus is on the underlying microstructure behind this effect. For this purpose, boron was added to AMCs by means of mechanical alloying. Comparatively higher boron contents than in steel are investigated in order to be able to record their influence on the microstructure including the formation of potential new phases as well as possible. While the newly formed phase Al3BC can be reliably detected by X-ray diffraction (XRD, it is difficult to obtain information about the phase distribution by means of scanning electron microscopy (SEM and scanning transmission electron microscopy (STEM investigations. An important contribution to this is finally provided by the investigation using Raman microscopy. Thus, the homogeneous distribution of finely scaled Al3BC particles is detectable, which allows conclusions about the microstructure/property relationship.

  12. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  13. Soil Carbon: Compositional and Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  14. The mean grain size determination of boron carbide (B4C)-aluminium (Al) and boron carbide (B4C)-nickel (Ni) composites by ultrasonic velocity technique

    International Nuclear Information System (INIS)

    Unal, Ridvan; Sarpuen, Ismail H.; Yalim, H. Ali; Erol, Ayhan; Ozdemir, Tuba; Tuncel, Sabri

    2006-01-01

    In this study, the mean grain size of ceramic-metal composites, made from boron carbide (B 4 C)-aluminium (Al)-nickel (Ni) powders, has been determined with ultrasonic velocity technique by using a 2 MHz transducer. An ultrasonic velocity-grain size master graph was plotted using a 4 MHz ultrasonic transducer. The results were compared to the mean grain size obtained from SEM (Scanning Electron Microscopy) images

  15. Komatiites constrain molybdenum isotope composition of the Earth's mantle

    Science.gov (United States)

    Greber, Nicolas D.; Puchtel, Igor S.; Nägler, Thomas F.; Mezger, Klaus

    2015-07-01

    In order to estimate the Mo isotope composition and Mo abundance in the Bulk Silicate Earth (BSE), a total of thirty komatiite samples from five localities on three continents were analyzed using an isotope dilution double spike technique. Calculated Mo concentrations of the emplaced komatiite lavas range from 25 ± 3 to 66 ± 22 ng /g, and the inferred Mo concentrations in the deep mantle sources of the komatiites range between 17 ± 4 and 30 ± 12 ng /g, with an average value of 23 ± 7 ng /g (2SE). This average value represents our best estimate for the Mo concentration in the BSE; it is identical, within the uncertainty, to published previous estimates of 39 ± 16 ng /g, but is at least a factor of 2 more precise. The Mo isotope compositions of the komatiite mantle sources overlap within uncertainty and range from δ98Mo = - 0.04 ± 0.28 to 0.11 ± 0.10 ‰, with an average of 0.04 ± 0.06 ‰ (2SE). This value is analytically indistinguishable from published Mo isotope compositions of ordinary and enstatite chondrites and represents the best estimate for the Mo isotope composition of the BSE. The inferred δ98Mo for the BSE is therefore lighter than the suggested average of the upper continental crust (0.3 to 0.4‰). Thus, from the mass balance standpoint, a reservoir with lighter Mo isotope composition should exist in the Earth's mantle; this reservoir can potentially be found in subducted oceanic crust. The similarity of δ98Mo between chondritic meteorites and estimates for the BSE from this study indicates that during the last major equilibration between Earth's core and mantle, i.e., the one that occurred during the giant impact that produced the Moon, chemical and isotopic equilibrium of Mo between Fe metal of the core and the silicate mantle was largely achieved.

  16. Aerosol carbon isotope composition over Baltic Sea

    Science.gov (United States)

    Garbaras, Andrius; Pabedinskas, Algirdas; Masalaite, Agne; Petelski, Tomasz; Gorokhova, Elena; Sapolaite, Justina; Ezerinskis, Zilvinas; Remeikis, Vidmantas

    2017-04-01

    Particulate carbonaceous matter is significant contributor to ambient particulate matter originating from intervening sources which contribution is difficult to quantify due to source diversity, chemical complexity and processes during atmospheric transport. Carbon isotope analysis can be extremely useful in source apportionment of organic matter due to the unique isotopic signatures associated with anthropocentric (fossil fuel), continental (terrestrial plants) and marine sources, and is particularly effective when these sources are mixed (Ceburnis et al., 2011;Ceburnis et al., 2016). We will present the isotope ratio measurement results of aerosol collected during the cruise in the Baltic Sea. Sampling campaign of PM10 and size segregated aerosol particles was performed on the R/V "Oceania" in October 2015. Air mass back trajectories were prevailing both from the continental and marine areas during the sampling period. The total carbon concentration varied from 1 µg/m3 to 8 µg/m3. Two end members (δ13C = -25‰ and δ13C = -28 ‰ ) were established from the total stable carbon isotope analysis in PM10 fraction. δ13C analysis in size segregated aerosol particles revealed δ13C values being highest in the 1 - 2.5 µm range (δ13C = -24.9 ‰ ) during continental transport, while lowest TC δ13C values (δ13C ≈ -27 ‰ ) were detected in the size range D50 marine environment. Additionally, concentration of bacteria and fungi were measured in size segregated and PM10 aerosol fraction. We were able to relate aerosol source δ13C end members with the abundance of bacteria and fungi over Baltic Sea combining air mass trajectories, stable isotope data, fungi and bacteria concentrations. Ceburnis, D., Garbaras, A., Szidat, S., Rinaldi, M., Fahrni, S., Perron, N., Wacker, L., Leinert, S., Remeikis, V., and Facchini, M.: Quantification of the carbonaceous matter origin in submicron marine aerosol by 13 C and 14 C isotope analysis, Atmospheric Chemistry and Physics

  17. The influence of interfaces and water uptake on the dielectric response of epoxy-cubic boron nitride composites

    NARCIS (Netherlands)

    Tsekmes, I.A.; Morshuis, P.H.F.; Smit, J.J.; Kochetov, R.

    2015-01-01

    In this study, epoxy-cubic boron nitride composites are fabricated, and their dielectric response is investigated. They exhibit the same trend as epoxy composites reinforced with other filler types. Thus, at low filler concentrations, they exhibit a lower relative permittivity than neat epoxy. As

  18. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    Science.gov (United States)

    Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A. E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim

    2017-09-01

    It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion or inherited from prior nebular fractionation. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism.

  19. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions.

    Science.gov (United States)

    Hin, Remco C; Coath, Christopher D; Carter, Philip J; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A E; Willbold, Matthias; Leinhardt, Zoë M; Walter, Michael J; Elliott, Tim

    2017-09-27

    It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion or inherited from prior nebular fractionation. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism.

  20. Epoxy composites filled with boron nitride and aluminum nitride for improved thermal conductivity

    OpenAIRE

    Hutchinson, John M.; Román Concha, Frida Rosario; Cortés Izquierdo, M. Pilar; Calventus Solé, Yolanda

    2017-01-01

    Epoxy composites containing boron nitride (BN) or aluminum nitride (AlN or Al2N3) particles have been studied with a view to obtaining increased thermal conductivity. The effect of these fillers on the cure reaction has been investigated by differential scanning calorimetry (DSC) for two systems, epoxy-diamine and epoxy-thiol, and for volume fractions up to about 35 % of these filler particles. For the epoxy-diamine system, the glass transition temperature of the fully cured system, the heat ...

  1. Large-scale fabrication and utilization of novel hexagonal/turbostratic composite boron nitride nanosheets

    KAUST Repository

    Zhong, Bo

    2017-02-15

    In this report, we have developed a scalable approach to massive synthesis of hexagonal/turbostratic composite boron nitride nanosheets (h/t-BNNSs). The strikingly effective, reliable, and high-throughput (grams) synthesis is performed via a facile chemical foaming process at 1400°C utilizing ammonia borane (AB) as precursor. The characterization results demonstrate that high quality of h/t-BNNSs with lateral size of tens of micrometers and thickness of tens of nanometers are obtained. The growth mechanism of h/t-BNNSs is also discussed based on the thermogravimetric analysis of AB which clearly shows two step weight loss. The h/t-BNNSs are further used for making thermoconductive h/t-BNNSs/epoxy resin composites. The thermal conductivity of the composites is obviously improved due to the introduction of h/t-BNNSs. Consideration of the unique properties of boron nitride, these novel h/t-BNNSs are envisaged to be very valuable for future high performance polymer based material fabrication.

  2. Stable isotope composition of human fingernails from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Grolmusová, Zuzana, E-mail: zuzana.grolmusova@geology.sk [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Rapčanová, Anna [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Michalko, Juraj; Čech, Peter [State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Veis, Pavel [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia)

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ{sup 13}C and δ{sup 15}N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in {sup 13}C and {sup 15}N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ{sup 13}C and δ{sup 15}N values. These data were compared to previously published δ{sup 13}C and δ{sup 15}N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ{sup 13}C and δ{sup 15}N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied.

  3. Stable isotope composition of human fingernails from Slovakia

    International Nuclear Information System (INIS)

    Grolmusová, Zuzana; Rapčanová, Anna; Michalko, Juraj; Čech, Peter; Veis, Pavel

    2014-01-01

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ 13 C and δ 15 N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in 13 C and 15 N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ 13 C and δ 15 N values. These data were compared to previously published δ 13 C and δ 15 N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ 13 C and δ 15 N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied

  4. Chemical and isotopic compositions in acid residues from various meteorites

    Science.gov (United States)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-03-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  5. Boron-bearing species in ceramic matrix composites for long-term aerospace applications

    International Nuclear Information System (INIS)

    Naslain, R.; Guette, A.; Rebillat, F.; Pailler, R.; Langlais, F.; Bourrat, X.

    2004-01-01

    Boron-bearing refractory species are introduced in non-oxide ceramic matrix fibrous composites (such as SiC/SiC composites) to improve their oxidation resistance under load at high temperatures with a view to applications in the aerospace field. B-doped pyrocarbon and hex-BN have been successfully used as interphase (instead of pure pyrocarbon) either as homogeneous or multilayered fiber coatings, to arrest and deflect matrix cracks formed under load (mechanical fuse function) and to give toughness to the materials. A self-healing multilayered matrix is designed and used in a model composite, which combines B-doped pyrocarbon mechanical fuse layers and B- and Si-bearing compound (namely B 4 C and SiC) layers forming B 2 O 3 -based fluid healing phases when exposed to an oxidizing atmosphere. All the materials are deposited by chemical vapor infiltration. Lifetimes under tensile loading of several hundreds hours at high temperatures are reported

  6. Anomalous isotopic composition of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  7. Experimental dissolution vs. transformation of micas under acidic soil conditions: Clues from boron isotopes

    Science.gov (United States)

    Voinot, A.; Lemarchand, D.; Collignon, C.; Granet, M.; Chabaux, F.; Turpault, M.-P.

    2013-09-01

    Minerals in soils evolve through contact with water and other weathering agents (protons, organic acids and ligands) from the atmosphere or released by the surrounding vegetation and associated fauna. Determining the respective contribution of these agents to weathering budgets and the mechanisms by which they interact with soil minerals is a key step toward obtaining refined models of soil development, plant/mineral interactions and, ultimately, soil sustainability. To test the influence of different chemical agents on the processes of mica weathering (dissolution and transformation), we conducted a series of laboratory flow-through experiments on biotite using three chemical groups of reactants found in forest soils: protons (HCl), organic acids (citric acid) and ligands (siderophores). These experiments were performed at two different pH values (pH 3 and pH 4.5) for 37 days at 20 °C. Biotite was chosen as a test-mineral because it is reactive with acids and water and because it is commonly found in granite soils. To investigate the weathering reactions, the chemical and isotopic compositions of B (δ11B) and the concentrations of predominant cation (Si, Al, Mg, K and Fe) were monitored in the outflowing solutions. The choice of B as a proxy for weathering processes is based on the fact that B is located in different crystallographic sites in biotite (interlayers and structural sites, named I- and S-sites, respectively). We observed a large δ11B contrast between these sites (Δ11BS-I sites˜80‰), which allows for a precise quantification of the respective contribution of I- and S-sites to B released during biotite weathering. The individual reaction rates for these crystallographic sites were inferred from the B chemical and isotopic compositions of the outflowing solutions. A comparison with the major elements reveals that B is preferentially released to solution under all tested experimental conditions (up to 4 times more), particularly in the presence of

  8. Oxygen Isotopic Compositions of Olivine and Pyroxene from CI Chondrites

    Science.gov (United States)

    Leshin, L. A.; Rubin, A. E.; McKeegan, K. D.

    1996-03-01

    The oxygen isotopic compositions of carbonaceous chondrites are complicated since individual components of these meteorites have distinct isotopic compositions that have been affected, to varying degrees, by both nebular and parent body processes. We present the first measurements of oxygen isotopic compositions of rare olivine and pyroxene in the CI chondrites. By combining these data with oxygen isotopic analyses of secondary minerals in these rocks previously reported by Clayton and co-workers, we hope to place quantitative constraints on the physical processes that occurred during formation of these meteorites. The oxygen isotopic composition of separated olivine and pyroxene grains from Orgueil and Ivuna were measured using SIMS. The delta ^(18)O values of the olivines range from ~+3 to +13 and the delta^(17)O values range from ~+1 to +7. The delta^(18)O values of the pyroxenes range from ~+4 to +10 and the delta^(17)O values range from ~+2 to +5. Observations that will be explained in the interpretation of the data are: (1) CI pyroxene and olivine grains have essentially identical oxygen isotopic compositions which are distinct from those measured in other carbonaceous chondrites. (2) All data points except two are indistinguishable from terrestrial values at the one sigma level, and the two exceptions fall only slightly below the terrestrial fractionation line. We consider the data taken as a whole to be consistent with terrestrial values, as well as the slightly positive delta^(17)O values reported previously for matrix and magnetite in CI chondrites. (3) Due to the small range in d values observed relative to the uncertainties, it is not possible to distinguish whether these data fall on a line of approximately slope 1 or slope 1/2.

  9. Influence of chemical structure on carbon isotope composition of lignite

    Science.gov (United States)

    Erdenetsogt, Bat-Orshikh; Lee, Insung; Ko, Yoon-Joo; Mungunchimeg, Batsaikhan

    2017-04-01

    During the last two decades, a number of studies on carbon isotopes in terrestrial organic matter (OM) have been carried out and used to determine changes in paleoatmospheric δ13C value as well as assisting in paleoclimate analysis. Coal is abundant terrestrial OM. However, application of its δ13C value is very limited, because the understanding of changes in isotopic composition during coalification is relatively insufficient. The purpose of this study was to examine the influence of the chemical structure on the carbon isotope composition of lignite. Generally, lignite has more complex chemical structures than other higher rank coal because of the existence of various types of oxygen-containing functional groups that are eliminated at higher rank level. A total of sixteen Lower Cretaceous lignite samples from Baganuur mine (Mongolia) were studied by ultimate, stable carbon isotope and solid-state 13C CP/MAS NMR analyses. The carbon contents of the samples increase with increase in depth, whereas oxygen content decreases continuously. This is undoubtedly due to normal coalification process and also consistent with solid state NMR results. The δ13C values of the samples range from -23.54‰ to -21.34‰ and are enriched in 13C towards the lowermost samples. Based on the deconvolution of the NMR spectra, the ratios between carbons bonded to oxygen (60-90 ppm and 135-220 ppm) over carbons bonded to carbon and hydrogen (0-50 ppm and 90-135 ppm) were calculated for the samples. These correlate well with δ13C values (R2 0.88). The results indicate that the δ13C values of lignite are controlled by two mechanisms: (i) depletion in 13C as a result of loss of isotopically heavy oxygen-bounded carbons and (ii) enrichment in 13C caused by a loss of isotopically light methane from aliphatic and aromatic carbons. At the rank of lignite, coal is enriched in 13C because the amount of isotopically heavy CO2 and CO, released from coal as a result of changes in the chemical

  10. Development and method of use of a mass spectrometric isotope dilution analysis within the use of negative thermoionisation for determination of boron traces

    International Nuclear Information System (INIS)

    Zeininger, H.

    1984-01-01

    A mass spectrometric trace boron determination using negative thermionisation was developed. It is based on the determination of the ratio of BO 2 - isotopes ( 10 B and 11 B). A high stability and a constant intensity at a given temperature of the BO 2 - ion currents allow for a computer controlled measurement with a programmed heating. The reproducibility lies at around 0,004-0,08%. The boron determination using Mels potentiometry with a BF 4 - -ion selective electrode was used as an analytical comparison method. The MS-IDA was first used on metal samples, such as Al, Zr, and steel. Later on the boron in reagents, biological material (milk powder, spinach, water plants) and water were determined. For this material-dependent hydrolysation and separation procedures were worked out. The MS-IDA in comparison to all other analytical methods used by other collaborators offers the greatest accuracy. (RB) [de

  11. What controls the isotopic composition of Greenland surface snow?

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2014-02-01

    Full Text Available Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD of near-surface water vapor, precipitation and samples of the top (0.5 cm snow surface has been conducted during two summers (2011–2012 at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76 for 2012. The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near

  12. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2007-05-01

    The objective of this study is to determine isotopic characteristics of precipitation, the climatic and geographical conditions affecting isotopic composition in order to obtain the input function of groundwater to evaluate the water resources.13 meteoric stations were selected in Syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the Syrian meteoric line (SMWL) was estimated with a slope of 6.62 and that of both Syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude of 18 O was about 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14 % and -0.84% /100m respectively). The spatial distribution of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern Mediterranean climate type over this region.(author)

  13. Effect of carbon species on the reduction and melting behavior of boron-bearing iron concentrate/carbon composite pellets

    Science.gov (United States)

    Wang, Guang; Ding, Yin-gui; Wang, Jing-song; She, Xue-feng; Xue, Qing-guo

    2013-06-01

    Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boronbearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300°C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminitebearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism.

  14. Measurement of Plutonium Isotopic Composition - MGA

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  15. Boron removal by a composite sorbent: Polyethylenimine/tannic acid derivative immobilized in alginate hydrogel beads.

    Science.gov (United States)

    Bertagnolli, Caroline; Grishin, Andrey; Vincent, Thierry; Guibal, Eric

    2017-03-21

    A novel composite material was prepared by the grafting of tannic acid on polyethylenimine (PEI), which allows an efficient sorption of boron (sorption capacity close to 0.89 mmol B g -1 ). The encapsulation of this chelating sorbent (finely crushed) facilitates its use (readily solid/liquid separation, use in fixed-bed columns) at the expense of a loss in sorption capacity (proportionally decreased by the introduction of alginate having poor efficiency for boron uptake). Sorption isotherms are modeled using the Langmuir equation, while the kinetic profiles are presented a good fit by pseudo-second order rate equation. In addition, the encapsulating matrix introduces supplementary resistance to intraparticle diffusion, especially when the resin is dried without control: freeze-drying partially limits this effect. The stability (at long-term storage) of the sorbent is improved when the sorbent is stored under nitrogen atmosphere. The presence of an excess of NaCl was investigated. The degradation of the hydrogel (by ion-exchange of Ca(II) with Na(I)) leads to a decrease in the sorption performance of composite material but the action of Ca(II) ions in the solutions re-stabilizes the hydrogel.

  16. H-Isotopic Composition of Apatite in Northwest Africa 7034

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  17. Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites

    Science.gov (United States)

    Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid

    2018-01-01

    Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.

  18. Oxygen isotopic constraints on the composition of the moon

    Science.gov (United States)

    Grossman, L.; Clayton, R. N.; Mayeda, T. K.

    1974-01-01

    The mean oxygen isotopic composition of 5 Apollo 17 soils, one Apollo 17 breccia and one Apollo 12 soil is delta O-18 = 5.63 + or - .05 and delta O-17 = 3.8 + or - .2%. These values are within several tenths of a part permil of the composition of a large fraction of the lunar interior. High-temperature condensate aggregates from Allende and other C2 and C3 chondrites are vastly enriched in O-16 compared to this composition. The moon cannot be a mixture of ordinary chondrites and Allende inclusions, nor can it be derived from such a mixture by chemical fractionation processes. The moon's isotopic composition is consistent with a mixture of high- and low-temperature condensates but the refractory fraction would have to be free of the O-16-rich component so prevalent in the meteoritic aggregates, a fact which makes such models less attractive than they once seemed.

  19. elemental and isotopic compositions of organic carbon and nitrogen ...

    African Journals Online (AJOL)

    Muzuka – Elements and isotopic composition of organic carbon and nitrogen … 88. (2000), the East African region experienced drought during Medieval warm period and humid conditions during little ice age. Further south in South Africa, Holmgren et al. (2001) using record of stalagmite from. Cold air cave in the ...

  20. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  1. Determination of hydrogen isotope composition in organic compounds

    International Nuclear Information System (INIS)

    Ordzhonikidze, K.G.; Parulava, L.P.; Vakhaniya, G.V.; Tarielashvili, V.O.

    1989-01-01

    method for determination of hydrogen isotope composition just in organic compounds using mass-spectrometer of the second class is suggested. The method enables to determine atomic fraction of hydrogen without multiplet separation. The accuracy of determination of deuterium atomic fraction in acetone in 1-99% range was equal to 3-0.2% respectively

  2. Carbon isotopic composition of fossil leaves from the Early ...

    Indian Academy of Sciences (India)

    carbon isotopic composition. The study of fossil plant or plant mega fossil has certain advantages over the use of bulk terrestrial organic matter. (TOM) that is widely used to establish correlation between the marine and terrestrial carbon cycle events through geological time (Grocke et al 2005). For example, the TOM can be ...

  3. Elemental and isotopic compositions of organic carbon and nitrogen ...

    African Journals Online (AJOL)

    Elemental and isotopic compositions of organic carbon and nitrogen of recently deposited organic matter in Empakai crater and its implication for climatic changes ... The C/N ratios values, which average 12.2±2.3, increase downcore to the base of the core owing to preferential loss of nitrogen containing compounds during ...

  4. Carbon and oxygen isotopic compositions and diagenesis of the ...

    African Journals Online (AJOL)

    Carbon and oxygen isotopic compositions and diagenesis of the Ewekoro formation in the eastern Dahomey Basin, southwestern Nigeria. OA Adekeye, SO Akande, RB Bale, BD Erdtmann. Abstract. No Abstract. Journal of Mining and Geology 2005, Vol. 41(1): 87-95. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  5. Facies, dissolution seams and stable isotope compositions of the ...

    Indian Academy of Sciences (India)

    Stable isotope analysis of the limestone shows that 13C and 18O values are compatible with the early Mesoproterozoic open seawater composition. The ribbon limestone facies in the Rohtas Limestone is characterized by micritic beds, each decoupled in a lower band enriched and an upper band depleted in dissolution ...

  6. The Pre-History of Chondrules Based on Initial Pb Isotopic Compositions

    Science.gov (United States)

    Connelly, J. N.; Bizzarro, M.

    2012-09-01

    We use the initial Pb isotopic composition of Pb-Pb dated chondrules to explore the initial Pb isotopic composition of the solar system and the thermal histories of chondrules prior to their final closure.

  7. Biosynthetic effects on the stable carbon isotopic compositions of agal lipids: Implications for deciphering the carbon isotopic biomarker record

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Klein Breteler, W.C.M.; Blokker, P.; Schogt, N.; Rijpstra, W.I.C.; Grice, K.; Baas, M.

    1998-01-01

    Thirteen species of algae covering an extensive range of classes were cultured and stable carbon isotopic compositions of their lipids were analysed in order to assess carbon isotopic fractionation effects during their biosynthesis. The fatty acids were found to have similar stable carbon isotopic

  8. Friction and wear performance of boron doped, undoped microcrystalline and fine grained composite diamond films

    Science.gov (United States)

    Wang, Xinchang; Wang, Liang; Shen, Bin; Sun, Fanghong

    2015-01-01

    Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti

  9. Isotopic composition of lead ore from the Japanese islands

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Akira (Geological Survey of Japan, Yatabe, Ibaraki (Japan)); Sato, Kazuo; Cumming, G.L.

    1982-12-01

    The metallic mineralization in Japanese islands can be divided into three groups in view of the ore lead isotope systematics. The Paleozoic to Mesozoic stratiform (Besshi type) mineralization is composed of cupriferous iron sulfide ore, in which lead is usually a minor constituent. The lead is isotopically variable, being consistently low in both Pb-207/Pb-204 and Pb-208/Pb-204 ratios. The pre-Neogene mineralization excluding the Besshi type deposit is mostly related to Cretaceous to Paleogene granitoids. Galena is fairly common, and forms sizable ore bodies in a few skarn type deposits. The isotopic composition of lead is variable regionally, low in Pb-206/Pb-204 but high in Pb-208/Pb-204 in all cases. The Neogene mineralization is represented by kuroko mineralization and the related vein type one of middle Miocene age, carrying abundant lead as one of the major ore metals. The lead is isotopically rather uniform with consistently low Pb-206/Pb-204 and high Pb-208/Pb-204. Forty-three samples from 30 localities gave the average Pb-206/Pb-204, Pb-207/Pb-204 and Pb-208/Pb-204 ratios of 18.471 +- 0.108, 15.609 +- 0.036 and 38.677 +- 0.0220, respectively. A remarkably consistent isotopic composition close to this average was observed in the kuroko ore from north-east Japan. The crustal lead around Japanese islands has been strongly influenced by the lead evolved in the lower continental crust.

  10. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2008-01-01

    13 meteoric stations were selected in syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the syrian or local meteoric line (SMWL) was estimated with a slope of 6.63 and that of both syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude was determined by 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14% and - 0.84%/100 m elevation respectively). The spatial variability of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content of precipitation, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern mediterranean climate type over this region. (author)

  11. Mechanical properties of particulate composites based on a body-centered-cubic Mg-Li alloy containing boron

    Science.gov (United States)

    Whalen, R. T.; Gonzalez-Doncel, G.; Robinson, S. L.; Sherby, O. D.

    1989-01-01

    The effect of substituting the Mg metal in Mg-B composites by a Mg-14 wt pct Li solid solution on the ductility of the resulting composite was investigated using elastic modulus measurements on the P/M composite material prepared with a dispersion of B particles (in a vol pct range of 0-30) in a matrix of Mg-14 wt pct Li-1.5 wt pct Al. It was found that the elastic modulus of the composites increased rapidly with increasing boron, with specific stiffness values reaching about two times that of most structural materials. The values of the compression and tensile strengths increased significantly with boron additions. Good tensile ductility was achieved at the level of 10 vol pct B. However, at 20 vol pct B, the Mg-Li composite exhibited only limited tensile ductility (about 2 percent total elongation).

  12. Tracing anthropogenic thallium in soil using stable isotope compositions.

    Science.gov (United States)

    Kersten, Michael; Xiao, Tangfu; Kreissig, Katharina; Brett, Alex; Coles, Barry J; Rehkämper, Mark

    2014-08-19

    Thallium stable isotope data are used in this study, for the first time, to apportion Tl contamination in soils. In the late 1970s, a cement plant near Lengerich, Germany, emitted cement kiln dust (CKD) with high Tl contents, due to cocombustion of Tl-enriched pyrite roasting waste. Locally contaminated soil profiles were obtained down to 1 m depth and the samples are in accord with a binary mixing relationship in a diagram of Tl isotope compositions (expressed as ε(205)Tl, the deviation of the (205)Tl/(203)Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 10(4)) versus 1/[Tl]. The inferred mixing endmembers are the geogenic background, as defined by isotopically light soils at depth (ε(205)Tl ≈ -4), and the Tl emissions, which produce Tl-enriched topsoils with ε(205)Tl as high as ±0. The latter interpretation is supported by analyses of the CKD, which is also characterized by ε(205)Tl ≈ ± 0, and the same ε(205)Tl value was found for a pyrite from the deposit that produced the cocombusted pyrite roasting waste. Additional measurements for samples from a locality in China, with outcrops of Tl sulfide mineralization and associated high natural Tl backgrounds, reveal significant isotope fractionation between soils (ε(205)Tl ≈ +0.4) and locally grown green cabbage (ε(205)Tl between -2.5 and -5.4). This demonstrates that biological isotope fractionation cannot explain the isotopically heavy Tl in the Lengerich topsoils and the latter are therefore clearly due to anthropogenic Tl emissions from cement processing. Our results thus establish that isotopic data can reinforce receptor modeling for the toxic trace metal Tl.

  13. Menopause effect on blood Fe and Cu isotope compositions.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent

    2014-02-01

    Iron (δ(56) Fe) and copper (δ(65) Cu) stable isotope compositions in blood of adult human include a sex effect, which still awaits a biological explanation. Here, we investigate the effect of menopause by measuring blood δ(56) Fe and δ(65) Cu values of aging men and women. The results show that, while the Fe and Cu isotope compositions of blood of men are steady throughout their lifetime, postmenopausal women exhibit blood δ(65) Cu values similar to men, and δ(56) Fe values intermediate between men and premenopausal women. The residence time of Cu and Fe in the body likely explains why the blood δ(65) Cu values, but not the δ(56) Fe values, of postmenopausal women resemble that of men. We suggest that the Cu and Fe isotopic fractionation between blood and liver resides in the redox reaction occurring during hepatic solicitation of Fe stores. This reaction affects the Cu speciation, which explains why blood Cu isotope composition is impacted by the cessation of menstruations. Considering that Fe and Cu sex differences are recorded in bones, we believe this work has important implications for their use as a proxy of sex or age at menopause in past populations. Copyright © 2013 Wiley Periodicals, Inc.

  14. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    Science.gov (United States)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  15. Thermal and mechanical properties of 3D printed boron nitride - ABS composites

    Science.gov (United States)

    Quill, Tyler J.; Smith, Matthew K.; Zhou, Tony; Baioumy, Mohamed Gamal Shafik; Berenguer, Joao Paulo; Cola, Baratunde A.; Kalaitzidou, Kyriaki; Bougher, Thomas L.

    2017-11-01

    The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of 3 for injection molding and 4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.

  16. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites

    Science.gov (United States)

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci

    2012-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...

  17. Isotopic substitution of boron and carbon in superconducting diamond epilayers grown by MPCVD

    Czech Academy of Sciences Publication Activity Database

    Achatz, P.; Omnès, F.; Ortega, L.; Marcenat, C.; Vacík, Jiří; Hnatowicz, Vladimír; Koster, U.; Jomard, F.; Bustarret, E.

    2010-01-01

    Roč. 19, č. 7 (2010), s. 814-817 ISSN 0925-9635 R&D Projects: GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : Isotopic effects * Vibrational properties * p-type doping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.825, year: 2010

  18. Stable isotope composition and volume of Early Archaean oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    Oxygen and hydrogen isotope compositions of seawater are controlled by volatile fluxes between mantle, lithospheric (oceanic and continental crust) and atmospheric reservoirs. Throughout geologic time oxygen was likely conserved within these Earth system reservoirs, but hydrogen was not, as it can...... escape to space [1]. Hydrogen isotope ratios of serpentinites from the ~3.8Ga Isua Supracrustal Belt in West Greenland are between -53 and -99‰; the highest values are in antigorite ± lizardite serpentinites from a low-strain lithologic domain where hydrothermal reaction of Archaean seawater with oceanic...... of continents present at that time), and the mass of Early Archaean oceans to ~109 to 126% of present day oceans. Oxygen isotope analyses from these Isua serpentinites (δ18O = +0.1 to 5.6‰ relative to VSMOW) indicate that early Archaean δ18OSEAWATER similar to modern oceans. Our observations suggest...

  19. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  20. Composition-dependent buckling behaviour of hybrid boron nitride-carbon nanotubes.

    Science.gov (United States)

    Zhang, Jin; Meguid, S A

    2015-05-21

    The buckling of hybrid boron nitride-carbon nanotubes (BN-CNTs) with various BN compositions and locations of the BN domain is investigated using molecular dynamics. We find that BN-CNTs with large BN composition (>38%) only undergo local shell-like buckling in their BN domain. Although similar local shell-like buckling can occur in BN-CNTs with a relatively small BN composition, it can transfer to the global column-like buckling of the whole BN-CNT with increasing strains. The critical strains for local shell-like and global column-like buckling decrease with increasing BN composition. In addition, critical strains and buckling modes of the global column-like buckling of BN-CNTs also strongly depend on the location of their BN domain. As a possible application of the buckling of BN-CNTs, we demonstrate that the BN-CNT can serve as a water channel integrated with a local natural valve using the local buckling of its BN domain.

  1. Boron analyses in the reactor coolant system of French PWR by acid-base titration ([B]) and ICP-MS (10B atomic %): key to NPP safety

    International Nuclear Information System (INIS)

    Jouvet, Fabien; Roux, Sylvie; Carabasse, Stephanie; Felgines, Didier

    2012-09-01

    Boron is widely used by Nuclear Power Plants and especially by EDF Pressurized Water Reactors to ensure the control of the neutron rate in the reactor coolant system and, by this way, the fission reaction. The Boron analysis is thus a major factor of safety which enables operators to guarantee the permanent control of the reactor. Two kinds of analyses carried out by EDF on the Boron species, recently upgraded regarding new method validation standards and developed to enhance the measurement quality by reducing uncertainties, will be discussed in this topic: Acid-Base titration of Boron and Boron isotopic composition by Inductively Coupled Plasma Mass Spectrometer - ICP MS. (authors)

  2. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  3. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Directory of Open Access Journals (Sweden)

    Affam Augustine Chioma

    2018-01-01

    Full Text Available Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal. It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  4. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Science.gov (United States)

    Chioma Affam, Augustine; Chung Wong, Chee; Seyam, Mohammed A. B.; Matt, Chelsea Ann Anak Frederick; Lantan Anak Sumbai, Josephine; Evuti, Abdullahi Mohammed

    2018-03-01

    Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT) method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal). It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  5. Chromatographic separation process with pellicular ion exchange resins that can be used for ion or isotope separation and resins used in this process

    International Nuclear Information System (INIS)

    Carles, M.; Neige, R.; Niemann, C.; Michel, A.; Bert, M.; Bodrero, S.; Guyot, A.

    1989-01-01

    For separation of uranium, boron or nitrogen isotopes, an isotopic exchange is carried out betwen an isotope fixed on an ion exchange resin and another isotope of the same element in the liquid phase contacting the resin. Pellicular resins are used comprising composite particulates with an inert polymeric core and a surface layer with ion exchange groups [fr

  6. Investigations of isotopic composition of foodstuff - basic study and applications

    International Nuclear Information System (INIS)

    Wierzchnicki, R.

    2005-01-01

    Study of food isotopic composition play actually an important role in food authenticity and origin control. In Institute of Nuclear Chemistry and technology the subject of study has been investigated for many years. In last time our work is concentrated on the implementation new methods for selected food and improves of our proficiency in laboratory work. The examples of our study results are presented. (author)

  7. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively, it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  8. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    Science.gov (United States)

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  9. Investigations on isotopic composition of dusty mist of southern Tajikistan

    International Nuclear Information System (INIS)

    Abdullaev, S.F.; Abdurasulova, N.A.; Maslov, V.A.; Madvaliev, U.; Juraev, A.A.; Davlatshoev, T. S.U.

    2012-01-01

    Atmosphere physics laboratory under S.U. Umarov Physical and Technical Institute Academy of Sciences of the Republic of Tajikistan have carried out investigations on optical and micro physical properties of arid zone aerosols from 1982. Traces of man-made radioactive isotopes were revealed in sands and dust compositions taken in arid zone of Tajikistan during Soviet-American tests on investigation of arid aerosol. Produced result was the basis for further investigation of element composition for dusty haze distributed from south till central part of the country. We investigated samples of soil collected by natural sedimentation along dusty haze distribution and samples of dusty aerosol (in total 80 samples).

  10. Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2013-05-01

    Full Text Available In this study, magnesium composites with nano-size boron nitride (BN particulates of varying contents were synthesized using the powder metallurgy (PM technique incorporating microwave-assisted two-directional sintering followed by hot extrusion. The effect of nano-BN addition on the microstructural and the mechanical behavior of the developed Mg/BN composites were studied in comparison with pure Mg using the structure-property correlation. Microstructural characterization revealed uniform distribution of nano-BN particulates and marginal grain refinement. The coefficient of thermal expansion (CTE value of the magnesium matrix was improved with the addition of nano-sized BN particulates. The results of XRD studies indicate basal texture weakening with an increase in nano-BN addition. The composites showed improved mechanical properties measured under micro-indentation, tension and compression loading. While the tensile yield strength improvement was marginal, a significant increase in compressive yield strength was observed. This resulted in the reduction of tension-compression yield asymmetry and can be attributed to the weakening of the strong basal texture.

  11. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  12. The oxygen isotopic composition of water extracted from unequilibrated ordinary chondrites

    OpenAIRE

    Baker, L.; Franchi, I.A.; Wright, I.P.; Pillinger, C.T.

    2003-01-01

    The oxygen isotopic composition of water extracted from the unequilibrated ordinary chondrites Semarkona and Bishunpur reveals differences in alteration mineralogy and levels of isotopic enrichment – reflecting key parameters in the alteration process.

  13. Oxygen isotopic composition of carbon dioxide in the middle atmosphere.

    Science.gov (United States)

    Liang, Mao-Chang; Blake, Geoffrey A; Lewis, Brenton R; Yung, Yuk L

    2007-01-02

    The isotopic composition of long-lived trace molecules provides a window into atmospheric transport and chemistry. Carbon dioxide is a particularly powerful tracer, because its abundance remains >100 parts per million by volume (ppmv) in the mesosphere. Here, we successfully reproduce the isotopic composition of CO(2) in the middle atmosphere, which has not been previously reported. The mass-independent fractionation of oxygen in CO(2) can be satisfactorily explained by the exchange reaction with O((1)D). In the stratosphere, the major source of O((1)D) is O(3) photolysis. Higher in the mesosphere, we discover that the photolysis of (16)O(17)O and (16)O(18)O by solar Lyman-alpha radiation yields O((1)D) 10-100 times more enriched in (17)O and (18)O than that from ozone photodissociation at lower altitudes. This latter source of heavy O((1)D) has not been considered in atmospheric simulations, yet it may potentially affect the "anomalous" oxygen signature in tropospheric CO(2) that should reflect the gross carbon fluxes between the atmosphere and terrestrial biosphere. Additional laboratory and atmospheric measurements are therefore proposed to test our model and validate the use of CO(2) isotopic fractionation as a tracer of atmospheric chemical and dynamical processes.

  14. Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Maho [Nanotube Unit, World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3050005 (Japan); Meng, Fanqiang [Research Center for Strategic Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 3050044 (Japan); Firestein, Konstantin [Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049 (Russian Federation); Tsuchiya, Koichi [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3050005 (Japan); Research Center for Strategic Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 3050044 (Japan); Golberg, Dmitri, E-mail: GOLBERG.Dmitri@nims.go.jp [Nanotube Unit, World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3050005 (Japan)

    2014-05-01

    Aluminum/boron nitride nanotube (BNNT) composites with up to 5 wt% (i.e., 9.7 vol%) nanotube fractions were prepared via spark plasma sintering (SPS) and high-pressure torsion (HPT) methods. Various microscopy techniques, X-ray diffraction, and energy dispersive X-ray analysis confirmed the integration of the two phases into decently dense and compact composites. No other phases, like Al borides or nitrides, formed in the Al–BNNTs macrocomposites of the two series. The BNNTs were found to be preferentially located along Al grain boundaries in SPS samples (grain size was 10–20 μm) creating micro-discontinuities and pores which were found to be detrimental for the sample hardness, whereas in HPT samples, the tubes were rather evenly distributed within a fine-grained Al matrix (grain size of several hundred nm). Therefore, the hardness of HPT samples was drastically increased with increasing BNNTs content in Al pellets. The value for Al–BNNT 3.0 wt% sample was more than doubled (190 MPa) compared to a pure Al–HPT compact (90 MPa). And the room temperature ultimate tensile strength of Al–BNNTs HPT samples containing 3.0 wt% BNNT (∼300 MPa) became ∼1.5 times larger than that of a BNNT-free HPT–Al compact (∼200 MPa)

  15. ISOTOPE SUBSTITUTION IN B2O3 GLASS - A MOLECULAR-DYNAMICS STUDY

    NARCIS (Netherlands)

    VERHOEF, AH; DENHARTOG, HW

    1994-01-01

    The results of molecular dynamics simulations of boron oxide glasses with different isotopic compositions (B-11, B-10, O-16, O-18) are presented. The influence of boron and oxygen mass on the vibrational spectra is considered and compared with experimental data from the literature. The position of

  16. Does burial diagenesis reset pristine isotopic compositions in paleosol carbonates?

    Science.gov (United States)

    Bera, M. K.; Sarkar, A.; Tandon, S. K.; Samanta, A.; Sanyal, P.

    2010-11-01

    Sedimentological study of early Oligocene continental carbonates from the fluvial Dagshai Formation of the Himalayan foreland basin, India resulted in the recognition of four different types namely, soil, palustrine, pedogenically modified palustrine and groundwater carbonates. Stable oxygen and carbon isotopic ( δ18O and δ13C) analyses of fabric selective carbonate microsamples show that although the pristine isotopic compositions are largely altered during deep-burial diagenesis, complete isotopic homogenization does not occur. δ18O and δ13C analyses of ~ 200 calcrete and palustrine carbonates from different stratigraphic horizons and comparison with δ18O of more robust bioapatite (fossil vertebrate tooth) phase show that dense micrites (~ > 70% carbonate) invariably preserve the pristine δ18O value (mean) of ~ - 9.8‰, while altered carbonates show much lower δ18O value ~ - 13.8‰. Such inhomogeneity causes large intra-sample and intra-soil profile variability as high as > 5‰, suggesting that soils behave like a closed system where diagenetic overprinting occurs in local domains. A simple fluid-rock interaction model suggests active participation of clay minerals to enhance the effect of fluid-rock ratio in local domains during diagenesis. This places an upper limit of 70% micrite concentration above which the effect of diagenetic alteration is minimal. Careful sampling of dense micritic part of the soil carbonate nodules, therefore, does provide pristine isotopic composition and it is inappropriate, as proposed recently, to reject the paleoclimatic potential of all paleosol carbonates affected by burial diagenesis. Based on pristine δ13C value of - 8.8 ± 0.2‰ in soil carbonates an atmospheric CO 2 concentration between ~ 764 and ~ 306 ppmv is estimated for the early Oligocene (~ 31 Ma) Dagshai time. These data show excellent agreement between two independent proxy records (viz. soil carbonate and marine alkenone) and support early Oligocene

  17. Oxygen isotope composition of mafic magmas at Vesuvius

    Science.gov (United States)

    Dallai, L.; Cioni, R.; Boschi, C.; D'Oriano, C.

    2009-12-01

    The oxygen isotope composition of olivine and clinopyroxene from four plinian (AD 79 Pompeii, 3960 BP Avellino), subplinian (AD 472 Pollena) and violent strombolian (Middle Age activity) eruptions were measured to constrain the nature and evolution of the primary magmas of the last 4000 years of Mt. Vesuvius activity. A large set of mm-sized crystals was accurately separated from selected juvenile material of the four eruptions. Crystals were analyzed for their major and trace element compositions (EPMA, Laser Ablation ICP-MS), and for 18O/16O ratios. As oxygen isotope composition of uncontaminated mantle rocks on world-wide scale is well constrained (δ18Oolivine = 5.2 ± 0.3; δ18Ocpx = 5.6 ± 0.3 ‰), the measured values can be conveniently used to monitor the effects of assimilation/contamination of crustal rocks in the evolution of the primary magmas. Instead, typically uncontaminated mantle values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary magmas during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). Low δ18O values have been measured in olivine from Pompeii eruption (δ18Oolivine = 5.54 ± 0.03‰), whereas higher O-compositions are recorded in mafic minerals from pumices or scoria of the other three eruptions. Measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas, as also constrained by their trace element compositions. Data on melt inclusions hosted in crystals of these compositions have been largely collected in the past demonstrating that they crystallized from mafic melt, basaltic to tephritic in composition. Published data on volatile content of these melt inclusions reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting

  18. Boron Isotopes as Tracers of the Tectonic Origin and Geological History of Serpentinites in Subduction and Suture Zones.

    Science.gov (United States)

    Martin, C.; Harlow, G. E.; Flores, K. E.; Angiboust, S.

    2017-12-01

    Serpentinites are known to play a key role in subduction, because they contain significant water content and can be enriched in elements such as As, B, Li, Sb, and U. They originate by hydration of peridotite by two different processes: (i) by a seawater source reacting with peridotite beneath the ocean crust and (ii) by reaction of peridotite at the base of the mantle-wedge with fluids released from the slab during subduction. In suture zones, it is relatively common to find serpentinite from both exhumed subduction channel mélange (from the mantle wedge) and ophiolite (from the oceanic crust), but recognizing them and their tectonic origin can be difficult. A recent study based on samples from the Guatemala Suture Zone demonstrated that boron (B) isotopes can be used as a probe of the fluid from which serpentinites form. Serpentinites from an ophiolite complex have positive δ11B, as expected for peridotites hydrated by seawater-derived fluid, whereas serpentinite samples from the matrix of the mélange (coming from the roof of the subducting channel) have negative δ11B, in agreement with hydration of mantellic peridotites by fluids released at 30-70 km depth from metamorphic rocks. Serpentinites from tectonically well-constrained locations were selected to extend our knowledge of metasomatism in subduction-related areas. The trace-element contents and B isotopes were measured in situ, respectively by LA-ICP-MS and LA-MC-ICP-MS on samples from the oceanic crust (ophiolite = Guatemala, Iran, Cuba), the subduction forearc (Nicaragua), and the mantle wedge (Guatemala, Iran, Japan, Myanmar). The spider diagrams and REE patterns, as well as a B/La vs. As/La diagram do not show any reliable difference to distinguish the tectonic origin of the serpentinite. However, in a δ11B vs. B content diagram, the serpentinites seem to plot in a triangle with fluid endmembers representing (i) seawater (δ11B = 40‰, [B] = 5ppm), (ii) metabasite-issued metamorphic fluids, and

  19. A 10-fold improvement in the precision of boron isotopic analysis by negative thermal ionization mass spectrometry.

    Science.gov (United States)

    Shen, Jason Jiun-San; You, Chen-Feng

    2003-05-01

    Boron isotopes are potentially very important to cosmochemistry, geochemistry, and paleoceanography. However, the application has been hampered by the large sample required for positive thermal ionization mass spectrometry (PTIMS), and high mass fractionation for negative-TIMS (NTIMS). Running as BO(2)(-), NTIMS is very sensitive and requires only nanogram sized samples, but it has rather poor precision (approximately 0.7-2.0 per thousand) as a result of the larger mass fractionation associated with the relatively light ion. In contrast, running as the much heavier molecule of Cs(2)BO(2)(+), PTIMS usually achieves better precision around 0.1-0.4 per thousand. Moreover, there is a consistent 10 per thousand offset in the (11)B/(10)B ratio for NIST SRM 951 standard boric acid between the NTIMS and the certified value, but the cause of this offset is unclear. In this paper, we have adapted a technique we developed earlier to measure the (138)La/(139)La using LaO(+) (1) to improve the NTIMS technique for BO(2). We were able to correct for instrumental fractionation by measuring BO(2)(-) species not only at masses of 42 and 43, but also at 45, which enabled us to normalize (45)BO(2)/(43)BO(2) to an empirical (18)O/(16)O value. We found that both I(45)/I(42) = ((11)B(16)O(18)O/(10)B(16)O(16)O) and (I(43)/I(42))(C) = ((11)B(16)O(16)O/(10)B(16)O(16)O) vary linearly with (I(45)/I(43))(C) x 0.5 = ((11)B(16)O(18)O/(11)B(16)O(16)O) x 0.5 = (18)O/(16)O. In addition, different activators and different chemical forms of B yield different slopes for the fractionation lines. After normalizing (11)B(16)O(18)O/(11)B(16)O(16)O x 0.5 to a fixed (18)O/(16)O value, we obtained a mean (11)B/(10)B value of NIST SRM 951 that matches the NIST certified value at 4.0430 +/- 0.0015 (+/-0.36 per thousand, n = 11). As a result, our technique can achieve precision and accuracy comparable to that of PTIMS with only 1 per thousand of the sample required. This new NTIMS technique for B isotopes is

  20. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Coetzee, Paul P. [University of Johannesburg, Department of Chemistry, Johannesburg (South Africa); Vanhaecke, Frank [Institute for Nuclear Sciences, Laboratory of Analytical Chemistry Ghent University, Ghent (Belgium)

    2005-11-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO{sub 3} was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the {sup 11}B/{sup 10}B ratios can be used to characterize wines from different geographical origins. Average {sup 11}B/{sup 10}B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  1. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    International Nuclear Information System (INIS)

    Coetzee, Paul P.; Vanhaecke, Frank

    2005-01-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO 3 was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the 11 B/ 10 B ratios can be used to characterize wines from different geographical origins. Average 11 B/ 10 B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  2. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios.

    Science.gov (United States)

    Coetzee, Paul P; Vanhaecke, Frank

    2005-11-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO3 was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the 11B/10B ratios can be used to characterize wines from different geographical origins. Average 11B/10B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%.

  3. Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties

    Science.gov (United States)

    Dong, Mengge; Xue, Xiangxin; Yang, He; Li, Zhefu

    2017-12-01

    Highly cost-effective shielding composite was prepared by vanadium slag, boron-rich slag and epoxy resin in this paper. WinXCOM program and 60Co gamma ray source were used to analyze the gamma ray shielding properties. Gamma ray irradiation for composite was tested with 60Co gamma ray irradiation field. Simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy were used to analyze the material properties of composite. The HVL of all composites are nearly same for 60Co gamma ray, about 3.90 cm at 1173 keV and 4.15 cm at 1332 keV. Maximum resistance temperature of composites is about 230 °C. Bending strength of all composites is nearly same and more than 10 MPa. Composites have good resistance for gamma ray irradiation effect under 93.5 kGy dose gamma ray.

  4. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    Science.gov (United States)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  5. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    Gromov, Sergey S.

    2014-01-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ 13 C, δ 18 O and Δ 17 O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13 CO/ 12 CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13 C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH 4 ) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH 4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13 C, were found significant when explicitly simulated. The

  6. The Role of Boron Chloride and noble gas isotope ratios in Taupo Volcanic Zone geothermal systems

    International Nuclear Information System (INIS)

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater con noble gases, at air saturated water concentrations, mixes with hot fluids of man origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks 'en route' the surface. It is demonstrated that this interaction is responsible for most of CO/sub 2/ in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed th the modelling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks like to be encountered in the geothermal system, but further information on the behaviour of B may be needed. If these problems can be overcome this modelling technique has promise for the estimation of the recharge of geothermal systems a hence the sustainability of these systems. (author). 17 refs., 4 figs

  7. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Itoh, S.; Aida, M.; Okamoto, M.; Nomura, M.; Fujii, Y.

    1985-01-01

    Influences of operating temperatures and concentrations of feed boric acid solutions were examined on the above titled process over the ranges of 25 - 70 0 C and 0.1 - 1.6 mol/dm 3 (M), respectively. The ideal displacement chromatography with a very sharp-cut boundary of the boric acid adsorption band was realized at higher temperatures and lower boric acid concentrations within the experimental conditions. The isotope separation coefficient epsilon was found to decrease with increases in either temperature or the boric acid concentration. The observed values of epsilon at 25 0 C were 0.013, 0.012 and 0.011 corresponding to feed boric acid concentrations of 0.1 M, 0.4 M and 0.8 M, respectively. The epsilon's at 70 0 C were 0.0097 (0.1 M), 0.0086 (0.4 M), 0.0083 (0.8 M) and 0.0073 (1.6 M). A temperature of 40 0 C and 0.4 M of boric acid concentration was considered the optimum operating condition for the production of enriched 10 B. (author)

  8. Nitrogen isotope composition of organically and conventionally grown crops.

    Science.gov (United States)

    Bateman, Alison S; Kelly, Simon D; Woolfe, Mark

    2007-04-04

    Authentic samples of commercially produced organic and conventionally grown tomatoes, lettuces, and carrots were collected and analyzed for their delta15N composition in order to assemble datasets to establish if there are any systematic differences in nitrogen isotope composition due to the method of production. The tomato and lettuce datasets suggest that the different types of fertilizer commonly used in organic and conventional systems result in differences in the nitrogen isotope composition of these crops. A mean delta15N value of 8.1 per thousand was found for the organically grown tomatoes compared with a mean value of -0.1 per thousand for those grown conventionally. The organically grown lettuces had a mean value of 7.6 per thousand compared with a mean value of 2.9 per thousand for the conventionally grown lettuces. The mean value for organic carrots was not significantly different from the mean value for those grown conventionally. Overlap between the delta15N values of the organic and conventional datasets (for both tomatoes and lettuces) means that it is necessary to employ a statistical methodology to try and classify a randomly analyzed "off the shelf" sample as organic/conventional, and such an approach is demonstrated. Overall, the study suggests that nitrogen isotope analysis could be used to provide useful "intelligence" to help detect the substitution of certain organic crop types with their conventional counterparts. However, delta15N analysis of a "test sample" will not provide unequivocal evidence as to whether synthetic fertilizers have been used on the crop but could, for example, in a situation when there is suspicion that mislabeling of conventionally grown crops as "organic" is occurring, be used to provide supporting evidence.

  9. Calcium Isotope (δ44/40Ca) Composition of Morozovella Velascoensis During the Paleocene Eocene Thermal Maximum Ocean Acidification Event

    Science.gov (United States)

    Kitch, G. D.; Jacobson, A. D.; Hurtgen, M.; Sageman, B. B.; Harper, D. T.; Zachos, J. C.

    2017-12-01

    Ocean acidification (OA) events are transient disruptions to the carbonate chemistry of seawater that involve decreases in pH, [CO32-] and carbonate mineral saturation states (Ω). Numerical modeling studies predict that the Ca isotope (δ44/40Ca) composition of primary marine carbonate should be sensitive to OA1, and recent evidence from the rock record may support this hypothesis2. Boron isotope (δ11B) data for the planktonic foraminifera Morozovella velascoensis indicate that the Paleocene-Eocene Thermal Maximum (PETM; 55 Mya) was an interval of pronounced OA3, although the Ca isotope composition of the bulk carbonate record appears to show post-burial diagenetic effects4. To further evaluate the Ca isotope proxy, we used a high-precision (2σSD=±0.04‰), double-spike (43Ca-42Ca) TIMS method5 to measure δ44/40Ca values of well-preserved M. velascoensis tests spanning the PETM. M. velascoensis tests (250-355 µm) were picked from samples recovered during ODP Leg 198, Site 1209 on Shatsky Rise in the equatorial Pacific. Five M. velascoensis tests were combined per sample, dissolved, spiked, and analyzed using a Triton TIMS. Repeat dissolutions of ten samples gave δ44/40Ca values within ±0.04‰ of the original measurements. Method and procedural blanks were negligible. δ44/40Ca values are elevated, even before the negative carbon isotope excursion (CIE) that marks the PETM. When δ11/10B values decrease during the CIE, δ44/40Ca values remain elevated, but then decrease by 0.10‰ as δ11B values return to pre-CIE levels. The apparent inverse correlation between δ44/40Ca and δ11B values suggests that Ca isotope fractionation by M. velascoensis was sensitive to OA. A decrease in pH indicated by lower δ11B values is consistent with higher δ44/40Ca values (decreased fractionation) due to elevated [Ca2+]/[CO32-] ratios and reduced W. The Ca isotope composition of pristine foraminiferal calcite may have potential for reconstructing [CO32-]. The current

  10. Effect of thermal-mechanical cycling on thermal expansion behavior of boron fiber-reinforced aluminum matrix composite

    International Nuclear Information System (INIS)

    Qin, Y.C.; He, S.Y.; Yang, D.Z.

    2004-01-01

    The thermal expansion behavior of boron fiber-reinforced aluminum matrix composite subjected to thermal-mechanical cycling (TMC) was studied. Experimental results showed that TMC affected greatly the thermal expansion behavior of the composite. Using a simple analysis model of internal stress in the fibers, the stress change during the thermal expansion coefficient measurements of the composite subjected to TMC was calculated. The results indicated that TMC could induce the interfacial degradation of the composite, and the more the numbers of TMC cycles, or the higher the applied stress level of TMC, the more serious the interfacial degradation of the composite became. The proposed one-dimensional analysis model was proved to be a simple and qualitative approach to probing the interfacial degradation of unidirectional fiber-reinforced metal matrix composites during TMC

  11. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission.

    Science.gov (United States)

    Yurimoto, Hisayoshi; Abe, Ken-ichi; Abe, Masanao; Ebihara, Mitsuru; Fujimura, Akio; Hashiguchi, Minako; Hashizume, Ko; Ireland, Trevor R; Itoh, Shoichi; Katayama, Juri; Kato, Chizu; Kawaguchi, Junichiro; Kawasaki, Noriyuki; Kitajima, Fumio; Kobayashi, Sachio; Meike, Tatsuji; Mukai, Toshifumi; Nagao, Keisuke; Nakamura, Tomoki; Naraoka, Hiroshi; Noguchi, Takaaki; Okazaki, Ryuji; Park, Changkun; Sakamoto, Naoya; Seto, Yusuke; Takei, Masashi; Tsuchiyama, Akira; Uesugi, Masayuki; Wakaki, Shigeyuki; Yada, Toru; Yamamoto, Kosuke; Yoshikawa, Makoto; Zolensky, Michael E

    2011-08-26

    Meteorite studies suggest that each solar system object has a unique oxygen isotopic composition. Chondrites, the most primitive of meteorites, have been believed to be derived from asteroids, but oxygen isotopic compositions of asteroids themselves have not been established. We measured, using secondary ion mass spectrometry, oxygen isotopic compositions of rock particles from asteroid 25143 Itokawa returned by the Hayabusa spacecraft. Compositions of the particles are depleted in (16)O relative to terrestrial materials and indicate that Itokawa, an S-type asteroid, is one of the sources of the LL or L group of equilibrated ordinary chondrites. This is a direct oxygen-isotope link between chondrites and their parent asteroid.

  12. V isotope composition in modern marine hydrothermal sediments

    Science.gov (United States)

    Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.

    2017-12-01

    Vanadium is multivalence transition metal with two isotopes (51V and 50V). Recent work has shown that large V isotope variations occur with oxygen variations in modern sediments (Wu et al., 2016 and 2017 Goldschmidt Abstracts), providing its potential as a promising proxy for determining low oxygen conditions. However, the development of V isotopes as a proxy to probe past redox conditions requires a comprehensive understanding of the modern oceanic isotopic mass balance. Therein, the scavenging of V from the hydrous iron oxides in hydrothermal fluid has been shown to be an important removal process from seawater (Rudnicki and Elderfield, 1993 GCA) but remains unquantified. In this study, we analyzed V isotopic compositions of metalliferous sediments around the active TAG hydrothermal mound from the mid-Atlantic Ridge (26° degrees North) and the Eastern Pacific Zonal Transect (GEOTRACES EPZT cruise GP16). The TAG sediments deposited as Fe oxyhydroxides from plume fall-out, and have δ51V values between -0.3 to 0‰. The good correlation between Fe and V for these metalliferous sediments indicate that the accumulation of V in these samples is directly related to the deposition of Fe oxyhydroxides, which also control their V isotope signature. The EPZT samples cover 8,000 km in the South Pacific Ocean with sedimentary areas that underlie the Peru upwelling region and the well-oxygenated deep South Pacific Ocean influenced by hydtorthermal plume material from southern East Pacific Rise (EPR). The sediments collected at the east of the EPR have δ51V values between -1.2 to -0.7‰, similar to previous δ51V of oxic sediments. In contrast, the sediments from the west of the EPR have δ51V values (-0.4 to 0‰) similar to hydrothermal sediments from the mid-Atlantic Ridge, indicating the long transportation (more than 4,000 km, Fitzsimmons et al., 2017 NG) of Fe and Mn from hydrothermal plume and their incorporation into sediments have a major impact on the cycle of V

  13. Thermoconductive Thermosetting Composites Based on Boron Nitride Fillers and Thiol-Epoxy Matrices

    Directory of Open Access Journals (Sweden)

    Isaac Isarn

    2018-03-01

    Full Text Available In this work, the effect of the addition of boron nitride (BN fillers in a thiol-cycloaliphatic epoxy formulation has been investigated. Calorimetric studies put into evidence that the kinetics of the curing has been scarcely affected and that the addition of particles does not affect the final structure of the network. Rheologic studies have shown the increase in the viscoelastic properties on adding the filler and allow the percolation threshold to be calculated, which was found to be 35.5%. The use of BN agglomerates of bigger size increases notably the viscosity of the formulation. Glass transition temperatures are not affected by the filler added, but Young’s modulus and hardness have been notably enhanced. Thermal conductivity of the composites prepared shows a linear increase with the proportion of BN particle sheets added, reaching a maximum of 0.97 W/K·m. The addition of 80 μm agglomerates, allowed to increase this value until 1.75 W/K·m.

  14. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  15. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    M. Casado

    2016-07-01

    Full Text Available Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014–January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying

  16. Isotopic composition of lead in soils and street dust in the Southeastern administrative district of Moscow

    Science.gov (United States)

    Ladonin, D. V.; Plyaskina, O. V.

    2009-01-01

    The content and isotope ratios of lead were studied in soils, street dust, and snow sampled in the Southeastern administrative district of Moscow. The relationships between the lead isotope ratios and the content of different lead compounds in soils were revealed. It was shown that isotope ratios for the total lead have low information values upon low levels of lead contamination. The contribution of technogenic lead compounds to the isotopic composition of lead increases in the following sequence: total lead < acid-soluble lead < mobile lead. The effect of emissions from thermal power stations and vehicles’ exhaust on the isotopic composition of lead in the street dust and soils was estimated.

  17. Quantitative subcellular secondary ion mass spectrometry (SIMS) imaging of boron-10 and boron-11 isotopes in the same cell delivered by two combined BNCT drugs: in vitro studies on human glioblastoma T98G cells.

    Science.gov (United States)

    Chandra, Subhash; Lorey II, Daniel R; Smith, Duane R

    2002-06-01

    Ion microscopy was used for subcellular quantitative imaging of the isotopes 10B and 11B in the same cell to evaluate boron delivery using a mixture of two neutron capture therapy drugs, p-boronophenylalanine-fructose (BPA-F) and sodium borocaptate (BSH). The application of 10B-labeled BPA-F and 11B-labeled BSH allowed independent imaging of both 10B and 11B in the same cell using a CAMECA IMS-3f ion microscope. Mixed-drug treatments were compared to single-drug exposures given under identical conditions. 10BPA-F delivered 10B heterogeneously to T98G human glioblastoma cells, with a significantly reduced concentration in an organelle-rich perinuclear region. The intracellular distribution of 11B from 11BSH contrasted with that of the 10B from 10BPA-F, with 11B distributed nearly homogeneously throughout cells. The subcellular distributions of 10B and 11B were sustained in mixed-drug treatments and resembled their localizations after the single-drug treatments. In both single- and mixed-drug treatments, cellular levels of 10B from 10BPA-F nearly doubled between 1 h and 6 h, with a 3:1 intracellular to nutrient medium partitioning, while cellular levels of 11BSH remained essentially unchanged. The net effect of the combined treatment with 10BPA-F and 11BSH was an additive delivery of boron to cells. This study introduces a novel approach for checking potential synergistic, antagonistic or simple additive delivery of two mixed boronated compounds in cellular/subcellular compartments.

  18. Spectroscopic metrology for isotope composition measurements and transfer standards

    Science.gov (United States)

    Anyangwe Nwaboh, Javis; Balslev-Harder, David; Kääriäinen, Teemu; Richmond, Craig; Manninen, Albert; Mohn, Joachim; Kiseleva, Maria; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2017-04-01

    The World Meteorological Organization (WMO) has identified greenhouse gases such as CO2, CH4 and N2O as critical for global climate monitoring. Other molecules such as CO that has an indirect effect of enhancing global warming are also monitored. WMO has stated compatibility goals for atmospheric concentration and isotope ratio measurements of these gases, e.g. 0.1 ppm for CO2 concentration measurements in the northern hemisphere and 0.01 ‰ for δ13C-CO2. For measurements of the concentration of greenhouse gases, gas analysers are typically calibrated with static gas standards e.g. traceable to the WMO scale or to the International System of Units (SI) through a national metrology institute. However, concentrations of target components, e.g. CO, in static gas standards have been observed to drift, and typically the gas matrix as well as the isotopic composition of the target component does not always reflect field gas composition, leading to deviations of the analyser response, even after calibration. The deviations are dependent on the measurement technique. To address this issue, part of the HIGHGAS (Metrology for high-impact greenhouse gases) project [1] focused on the development of optical transfer standards (OTSs) for greenhouse gases, e.g. CO2 and CO, potentially complementing gas standards. Isotope ratio mass spectrometry (IRMS) [2] is currently used to provide state-of-the-art high precision (in the 0.01 ‰ range) measurements for the isotopic composition of greenhouse gases. However, there is a need for field-deployable techniques such as optical isotope ratio spectroscopy (OIRS) that can be combined with metrological measurement methods. Within the HIGHGAS project, OIRS methods and procedures based on e.g. cavity enhanced spectroscopy (CES) and tunable diode laser absorption spectroscopy (TDLAS), matched to metrological principles have been established for the measurement of 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O, and 13C/12C and 2H

  19. Modeling the oxygen-isotopic composition of the North American Ice Sheet and its effect on the isotopic composition of the ocean during the last glacial cycle

    NARCIS (Netherlands)

    Sima, A.; Paul, A.; Schulz, M.; Oerlemans, J.

    2006-01-01

    We used a 2.5-dimensional thermomechanical icesheet model including the oxygen-isotope ratio 18O/16O as a passive tracer to simulate the isotopic composition (d18O) of the North American Ice Sheet (NAIS) during the last glacial cycle. This model allowed us to estimate the NAIS contribution to the

  20. Pb isotopic composition of the atmosphere of the Sao Paulo city, Brazil, and isotopic characterization of some pollutant sources

    International Nuclear Information System (INIS)

    Aily, C.; Babinski, M.; Ruiz, I.R.; Sato, K

    2001-01-01

    Lead isotopes are known to be good tools for surveying lead origin in atmospheric samples (Chow et al., 1975). Lead has four naturally occurring stable isotopes: 206 Pb, 207 Pb, 208 Pb and 204 Pb. The first three isotopes are end products of radioactive decay chains from 238 U, 235 U and 232 Th, respectively, and the last one is non-radiogenic. Therefore, their abundance and the ratios among the four isotopes gradually change with time. Lead in the atmosphere comes from various sources, such as leaded gasoline, industrial emissions and coal combustion. Thus, lead isotope ratios different from those of the mother rock in the region are often observed in the atmosphere (Tatsumoto and Patterson, 1963). Lead is emitted to the atmosphere in fine particles, which can be transported within air masses for very long distances, e. g. from mid latitude regions to the Artic and Antarctica (Sturges and Barrie, 1989). Lead isotopes have been used to trace the pollutant sources in many cities of the world. However, a systematic study using this methodology has not been done in any Brazilian city. The main purpose of the present work is to characterize the Pb isotope composition in the atmosphere in Sao Paulo city, and suggest the possible pollutant sources. For our study lead isotopes were measured in different samples: aerosols and rainwater which would yield the Pb isotope composition of the atmosphere. Samples of gasoline and ethanol, gutter sweepings, soot from vehicle exhaust pipes, and filters containing particulate material from industrial emissions were also analyzed, since they were considered potential pollutant sources of the atmosphere. In order to obtain the local geogenic Pb isotopic composition we also analyzed rock and K-feldspar samples. Lead concentrations were only determined on aerosols and rainwater samples (au)

  1. Analytical developments in the measurements of boron, nitrate, phosphate and sulphate isotopes and case examples of discrimination of nitrogen and sulphur sources in pollution studies

    International Nuclear Information System (INIS)

    Aggarwal, J.; Sheppard, D.S.; Robinson, B.W.

    1998-01-01

    Methods are documented for the analysis of B isotopes, O and N isotopes in nitrates. B isotopes can be measured by negative ion thermal ionisation mass spectrometry. Nitrate is recovered from groundwaters by ion exchange and the resulting silver nitrate combusted for stable isotope gas analysis. Oxygen isotope analysis of phosphates can be determined by generating and analysing CO 2 gas from the combustion of silver phosphate produced from aqueous samples. Sulphate in ground and surface waters can be separated and concentrated by ion exchange and precipitated as barium sulphate. This is reacted with graphite to yield CO 2 and CO, the latter being spark discharged to CO 2 and the total CO 2 measured for oxygen isotope analysis. Barium sulphide from this reaction is converted to silver sulphide which is reacted with cuprous oxide to give SO 2 gas for sulphur isotope measurements. A case study of the semi-rural Manakau area in New Zealand was conducted to see if nitrate isotopes could be used to detect the source of nitrate contamination (groundwater nitrate - 3- N). Nitrogen isotope (+4 to +12 per mille) coupled with oxygen isotope measurements (+5 to +9 per mille) demonstrated that the nitrogen is not sources from fertilisers but from some combination of septic tank and animal waste. For the case study of sulphate isotope use, sulphur and oxygen isotopic compositions of sulphate in river and lake water from seven major catchments of New Zealand were determined. The isotope analyses have allowed the distinction between natural (geological, geothermal and volcanic) and anthropogenic (fertiliser) sulphur sources. (author)

  2. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    Science.gov (United States)

    Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell

    2015-01-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...

  3. Changes in stable isotope composition in Lake Michigan trout ...

    Science.gov (United States)

    Researchers have frequently sought to use environmental archives of sediment, peat and glacial ice to try and assess historical trends in atmospheric mercury (Hg) deposition to aquatic ecosystems. While this information is valuable in the context of identifying temporal source trends, these types of assessments cannot account for likely changes in bioavailability of Hg sources that are tied to the formation of methylmercury (MeHg) and accumulation in fish tissues. For this study we propose the use of long-term fish archives and Hg stable isotope determination as an improved means to relate temporal changes in fish Hg levels to varying Hg sources in the Great Lakes. For this study we acquired 180 archived fish composites from Lake Michigan over a 40-year time period (1975 to 2014) from the Great Lakes Fish Monitoring and Surveillance Program, which were analyzed for their total Hg content and Hg isotope abundances. The results reveal that Hg sources to Lake Michigan trout (Salvelinus namaycush) have encountered considerable changes as well as a large shift in the food web trophic position as a result of the introduction of several invasive species, especially the recent invasion of dreissenid mussels. Total Hg concentrations span a large range (1,600 to 150 ng g-1) and exhibit large variations from 1975 to 1985. Ä199Hg signatures similarly exhibit large variation (3.2 to 6.9‰) until 1985, followed by less variation through the end of the data record in 2014.

  4. Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.; McKenzie, J.A.; Bernasconi, S.; Paul, H.

    1998-01-01

    Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition above and below its melting temperature have been studied and compared with the primary (PKIE) and secondary kinetic isotope effects (SKIE) of 13 C and 18 O, respectively, in the decarboxylation of other heterocyclic acids. The temperature dependence of the secondary oxygen-18 isotope effects is negative in the total 221-255 deg C temperature interval investigated initially. The 13 C KIE measured above melting point of N.A. (temperature interval 235-270 deg C) are located in the range 1.007-1.009. Below melting point of nicotinic acid the 13 C KIE are larger and reveal the negative temperature dependence ( 13 C KIE decreases with decreasing the reaction temperature from 1.013/at 230 deg C to 1.0114/at 221 deg C). A discussion of the above isotopic results is presented. (author)

  5. Effect of temperature and salinity on stable isotopic composition of shallow water benthic foraminifera: A laboratory culture study

    Digital Repository Service at National Institute of Oceanography (India)

    Kurtarkar, S.R.; Linshy, V.N.; Saraswat, R.; Nigam, R.

    Quantitative estimation of past climatic parameters from stable isotopic composition of foraminifera relies on estimating the precise relationship between stable isotopic composition of the species analyzed and the physico-chemical factors...

  6. The isotopic composition of CO in vehicle exhaust

    Science.gov (United States)

    Naus, S.; Röckmann, T.; Popa, M. E.

    2018-03-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO2 isotopes, and the CO:CO2, CH4:CO2 and H2:CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench. The spread in the results, even for a single vehicle, was large: for δ13 C in CO ∼ -60 to 0‰, for δ18 O in CO ∼ +10 to +35‰, and for all gas ratios several orders of magnitude. The results show an increase in the spread of isotopic values for CO compared to previous studies, suggesting that increasing complexity of emission control in vehicles might be reflected in the isotopic composition. When including all samples, we find a weighted mean for the δ13 C and δ18 O in CO of -28.7 ± 0.5‰ and +24.8 ± 0.3‰ respectively. This result is dominated by cold petrol vehicles. Diesel vehicles behaved as a distinct group, with CO enriched in 13C and depleted in 18O, compared to petrol vehicles. For the H2:CO ratio of all vehicles, we found a value of 0.71 ± 0.31 ppb:ppb. The CO:CO2 ratio, with a mean of 19.4 ± 6.8 ppb:ppm, and the CH4:CO2 ratio, with a mean of 0.26 ± 0.05 ppb:ppm, are both higher than recent literature indicates. This is likely because our sampling distribution was biased towards cold vehicles, and therefore towards higher emission situations. The CH4:CO2 ratio was found to behave similarly to the CO:CO2 ratio, suggesting that the processes affecting CO and CH4 are similar. The δ13 C values in CO2 were close to the expected δ13 C in fuel, with no significant difference between petrol and diesel vehicles. The δ18 O values in CO2 for petrol vehicles covered a range of 20-35‰, similar to the δ18 O of CO. The δ18 O values in CO2 for diesel vehicles were close to the δ18 O in atmospheric oxygen. A set of polluted atmospheric samples, taken near a highway and inside parking garages, showed an isotopic signature of CO and a H2:CO ratio that were

  7. Fabrication and tribological response of aluminium 6061 hybrid composite reinforced with bamboo char and boron carbide micro-fillers

    Science.gov (United States)

    Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham

    2018-02-01

    Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.

  8. Isotopic and Elemental Composition of Roasted Coffee as a Guide to Authenticity and Origin.

    Science.gov (United States)

    Carter, James F; Yates, Hans S A; Tinggi, Ujang

    2015-06-24

    This study presents the stable isotopic and elemental compositions of single-origin, roasted coffees available to retail consumers. The δ(13)C, δ(15)N, and δ(18)O compositions were in agreement with those previously reported for green coffee beans. The δ(15)N composition was seen to be related to organic cultivation, reflected in both δ(2)H and δ(18)O compositions. The δ(13)C composition of extracted caffeine differed little from that of the bulk coffee. Stepwise discriminant analysis with jackknife tests, using isotopic and elemental data, provided up to 77% correct classification of regions of production. Samples from Africa and India were readily classified. The wide range in both isotopic and elemental compositions of samples from other regions, specifically Central/South America, resulted in poor discrimination between or within these regions. Simpler X-Y and geo-spatial plots of the isotopic data provided effective visual means to distinguish between coffees from different regions.

  9. Tungsten isotope composition of the Acasta Gneiss Complex

    Science.gov (United States)

    Willbold, M.; Mojzsis, S. J.; Chen, H.-W.; Elliott, T.

    2015-06-01

    High-precision tungsten (182W/184W) isotope measurements on well-characterised mafic and felsic samples of the ca. 3960 Ma Acasta Gneiss Complex (AGC; Northwest Territories, Canada) show radiogenic ε182W values between +0.06 to +0.15. Two ca. 3600 Ma felsic samples from this terrane have ε182W ∼ 0 and are the oldest samples so far documented to have a W isotopic composition indistinguishable from that of the modern mantle. The ε182W data are correlated with ε142Nd (Roth et al., 2014) and we attribute this variability to incomplete metamorphic homogenisation of the 3960 Ma protolith with more recent material in a 3370 Ma tectono-thermal event. Notably, the value of the positive ε182W anomalies seen in the 3960 Ma AGC samples that are least affected by metamorphic homogenisation is comparable to that observed in other early Archean rocks (Isua Supracrustal Belt, Greenland; Nuvvuagittuq Supracrustal Belt, Canada) and the late Archean Kostomuksha komatiites (Karelia). This demonstrates a globally constant signature. We infer that the presence of a pre-late veneer mantle represents the most straightforward interpretation of a uniform distribution of ε182W ∼ + 0.15 value in Archean rocks of different ages. We show that such a notion is compatible with independent constraints from highly siderophile element abundances in mafic and ultra-mafic Archean mantle-derived rocks. The absence of anomalous ε182W and ε142Nd so far measured in samples younger than ca. 2800 Ma suggests progressive convective homogenisation of silicate reservoirs. The downward mixing of an upper mantle rich in late-delivered meteoritic material might account for these combined observations.

  10. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  11. Standard specification for nuclear-grade aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This specification applies to pellets composed of mixtures of aluminum oxide and boron carbide that may be ultimately used in a reactor core, for example, in neutron absorber rods. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  12. Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation

    Science.gov (United States)

    Chen, Guo; Schnyder, Hans; Auerswald, Karl

    2017-04-01

    Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (panalysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.

  13. Life support systems and optimal isotope composition in cosmonaut habitats for long-term missions

    Science.gov (United States)

    Siniak, I. E.; Grigoriev, A. I.

    Differences in the isotope content of the biogenous chemicals of cosmonaut habitats are given a theoretical consideration. Rationale is given to the hypothesis according to which the biochemical and biophysical processes in plants, animals, and humans must be impacted by the isotopes of all the biogenous chemicals in cosmonaut habitats. Organisms were found to persistently make preference of lighter fractions of stable isotopes from the biogenous chemicals. In most of the compounds the light fraction of stable isotopes constitutes the greater portion by mass. However, the optimal isotope composition of biogenous chemicals is still unknown and necessitates biochemical, toxicological, biological and other kinds of research. The functions of a life support system should also include production and maintenance of an optimal isotope composition for habitats, i.e. water, oxygen, food stuffs in order to improve metabolism in and performance of cosmonauts.

  14. Microstructural and mechanical characterization of hybrid aluminum matrix composite containing boron carbide and Al-Cu-Fe quasicrystals

    Science.gov (United States)

    Khan, Mahmood; Zulfaqar, Muhammad; Ali, Fahad; Subhani, Tayyab

    2017-07-01

    Hybrid aluminum matrix composites containing particles of boron carbide and quasicrystals were manufactured to explore the combined effect of reinforcements on microstructural evolution and mechanical performance of the composites. The particles were incorporated at a loading of 6 wt% each making a total of 12 wt% reinforcement in pure aluminum. For comparison, two composites containing individually reinforced 12 wt% particles were also prepared along with a reference specimen of pure aluminum. Ball milling technique was employed to mix the composite constituents. The green bodies of composite powders were prepared by uniaxial pressing at room temperature followed by consolidation by pressureless sintering under inert atmosphere. The microstructural characterization was performed using scanning electron microscopy while phase identification was carried out by X-ray diffraction. The mechanical characterization was performed by Vickers hardness and compression tests. Hybrid composites showed increased compressive properties while the composites containing solely quasicrystals demonstrated improved hardness. The increase in mechanical performance was related to the microstructural evolution due to the presence and uniform dispersion of binary particles.

  15. The isotopic compositions database system on spent fuels in light water reactors (SFCOMPO)

    International Nuclear Information System (INIS)

    Kurosawa, Masayoshi; Naito, Yoshitaka; Sakamoto, Hiroki; Kaneko, Toshiyuki.

    1997-02-01

    In the framework of the activity of the nuclide production evaluation WG in the Sigma Committee in Japan, we have been collecting the assay data on the isotopic composition of LWR spent fuels. Those data are required for verification of accuracy of the burnup calculation codes. To supply worldwide users with these types of data, the isotopic composition database system SFCOMPO was constructed on an IBM PC-AT (compatible computers). The SFCOMPO includes the isotopic composition data from 10 LWRs (the 6 PWRs and 4 BWRs) and several sets of axial burnup profiles of spent fuel rods. (author)

  16. Compression and Associated Properties of Boron Carbide

    Science.gov (United States)

    2008-12-01

    Klandadze, G.I., and Eristavi, A.M., 1999: IR- Active Phonons and Structure Elements of Isotope - Enriched Boron Carbide, J. Sol. State Chem. 154, 79- 86...COMPRESSION AND ASSOCIATED PROPERTIES OF BORON CARBIDE D. P. Dandekar*and J. A. Ciezak Army Research Laboratory, APG, MD 21005 M. Somayazulu...of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress

  17. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  18. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  19. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata

    2016-02-01

    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  20. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NARCIS (Netherlands)

    Röckmann, Thomas; Eyer, Simon; Van Der Veen, Carina; Popa, Maria E.; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2016-01-01

    High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in

  1. Isotopic composition of water in the environment. Water on the surface on the earth

    International Nuclear Information System (INIS)

    Nief, Guy; Merlivat, Liliane

    1976-01-01

    The isotopic composition of water is influenced by the physico-chemical transformations occuring during water cycle. These isotopic variations supply much information on various meteorological or hydrological phenomena. It is shown how the study of these variations can help towards the understanding and interpretation of the basic phenomena which generate them [fr

  2. Isotopic composition of rainfall and runoff in a small arid basin with implications for deep percolation

    International Nuclear Information System (INIS)

    Dody, A.

    1995-08-01

    The aim of this work was to characterize the isotopic composition of potential recharge in an arid rocky watershed. Unique field observations were obtained from an arid watershed in the Negev Highlands, Israel, through utilization of the dynamic variations in the isotopic composition of rainfall and runoff. The hydrological system's inputs are rainfall and its isotopic composition. Rainfall and runoff were sampled in eight storms. High variability in the isotopic composition of rainfall was observed during any single rainstorm. The isotopic distribution in the runoff at the outlet of the basin appeared often not to be correlated to the isotopic patterns of the associated rain storm. A new mathematical model was developed to describe these physical processes. The model called A Double-Component Kinematic Wave Flow and Transport Approach, was designated to assess the dynamic isotopic distribution in arid rain storms and runoff. This model simulates the transport of rainfall into overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. A numerical solution for the problem was developed, to estimate the depression storage parameters. The model also reflects the isotopic memory effect due to the depression storage between sequential rain showers. A good agreement between the observed and computed hydrograph and the change of the δ 18O values in runoff in time confirms the validity of the model. (author) 138 figs., 125 refs

  3. Synthesis of magnetic graphene/mesoporous silica composites with boronic acid-functionalized pore-walls for selective and efficient residue analysis of aminoglycosides in milk.

    Science.gov (United States)

    Feng, Jianan; She, Xiaojian; He, Xinying; Zhu, Jinglin; Li, Yan; Deng, Chunhui

    2018-01-15

    In this study, magnetic graphene/mesoporous silica composites with boronic acid-functionalized pore-walls were synthesized for the first time by a two-step post-graft method. The obtained nano-composites were proven to hold many attractive features such as large specific surface area, uniform mesopores, high magnetic responsibility, and boronic acid-functionalized inner pore-walls. Aminoglycoside residues in milk were extracted using MG@mSiO 2 -APB composites as restricted access matrix dispersive solid phase extraction adsorbents through the interaction between boronic acid groups and glucoside structures. Extraction conditions were optimized by studying the SPE parameters. Limits of detection of the method were as low as 5ngmL -1 for streptomycin) and 2ngmL -1 for dihydrostreptomycin. Finally, magnetic graphene/mesoporous silica composites with boronic acid-functionalized pore-walls were successfully applied to residue analysis in milk samples. Compared to the traditional extraction methods, using this nano-composites for aminoglycoside residues analysis in milk is more sensitive, effective and convenient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite

    Directory of Open Access Journals (Sweden)

    I. Aatthisugan

    2017-03-01

    Full Text Available In this experimental study, magnesium (AZ91D based boron carbide (B4C and graphite (Gr particle reinforced hybrid composite materials were manufactured by stir casting. The tribological and mechanical properties of these composite materials were investigated. The results of the tests revealed that the graphite reinforced hybrid composites exhibited a lower wear loss compared to the unreinforced AZ91D alloy and AZ91D–B4C composites. It was found that with an increase in the B4C content, the wear resistance increased monotonically with hardness and ultimate tensile strength decreased. This study revealed that the addition of both a hard reinforcement (e.g., B4C and soft reinforcement (e.g., graphite significantly improves the wear resistance of magnesium composites. These entire results designate that the hybrid magnesium composites can be considered as an excellent material where high strength, ultimate tensile strength and wear-resistant components are of major importance, primarily in the aerospace and automotive engineering sectors.

  5. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    Science.gov (United States)

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Use of Isotopic Composition Data to Improve Reactor Calculational Techniques,

    Science.gov (United States)

    calculational code processes to real data. By applying isotopic correlation techniques to this source of data and to data from burnup calculations , it...Before the availability of isotopic data from chemical reprocessing of spent nuclear fuels, burnup code normalization was done using data from small... burnup samples. Chemical reprocessing plant isotopic data are in additional source of burnup data reliably measured to permit normalization of

  7. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    Science.gov (United States)

    Battistel, Maria; Hurwitz, Shaul; Evans, William; Barbieri, Maurizio

    2017-01-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (<24.2°C) flowing in shallow volcanic rocks and SO4-rich thermal waters (25.3°C to 62.2°C) ascending from deep, high permeability Mesozoic limestones. The (equivalent) SO4/Cl (0.01–0.02), Na/Cl (2.82–5.83) and B/Cl ratios (0.02–0.38) of thermal waters differs from the ratios in other geothermal systems from Central Italy, probably implying a lack of hydraulic continuity across the region. The δ18O (−6.6‰ to −5.9‰) and δD (−40.60‰ to −36.30‰) isotopic composition of spring water suggest that the recharge area for the geothermal system is the summit region of Mount Cimino. The strontium isotope ratios (87Sr/86Sr) of thermal waters (0.70797–0.70805) are consistent with dissolution of the Mesozoic evaporite-carbonate units that constitute the reservoir, and the ratios of cold fresh waters mainly reflect shallow circulation through the volcanic cover and some minor admixture (<10%) of thermal water as well. The boron isotopic composition (δ11B) of fresh waters (−5.00 and 6.12‰) is similar to that of the volcanic cover, but the δ11B of thermal waters (−8.37‰ to −4.12‰) is a mismatch for the Mesozoic reservoir rocks and instead reflects dissolution of secondary boron minerals during fluid ascent through flysch units that overlie the reservoir. A slow and tortuous ascent enhances extraction of boron but also promotes conductive cooling, partially masking the heat present in the

  8. Alkynyl substituted carboranes as precursors to boron carbide thin films, fibers and composites

    International Nuclear Information System (INIS)

    Johnson, S.E.; Yang, X.; Hawthorne, M.F.; Mackenzie, J.D.; Thorne, K.J.; Zheng, H.

    1992-01-01

    In this paper the use of alkynyl substituted derivatives of o-carborane as precursors to boron containing ceramics is described. These compounds undergo a thermally or photochemically induced polymerization to afford cross linked polyakynyl-o-carborane derivatives. The increase in molecular weight should allow for increased Tg's and the retention of modelled polymer preforms. In this report, these modification reactions are described. In addition, the retention of molded polymer preforms were analyzed after UV exposure and inert atmosphere pyrolysis

  9. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  10. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    Science.gov (United States)

    Sveinbjörnsdottir, Arny E.; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Johnsen, Sigfus J.

    2013-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  11. Carbon-13 kinetic isotope effects in the decarbonylation of lactic acid of natural isotopic composition in phosphoric acid medium

    International Nuclear Information System (INIS)

    Zielinski, M.; Czarnota, G.; Papiernik-Zielinska, H.; Kasprzyk, G.; Gumolka, L.; Staedter, W.

    1993-01-01

    The 13 C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphoric acids (PA) and by 85% H 3 PO 4 has been studied in the temperature interval of 60-150 deg C. The values of the 13 C (1) isotope effects in the decarbonylation of lactic acid in 100% H 3 PO 4 , in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C (1)- OH bond is broken in the rate-controlling step of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90-130 deg C the experimental 13 C fractionation factors determined in concentrated PA approach quite closely the 13 C fractionation corresponding to C (2)- C (1) bond scission. The 13 C (1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110-150 deg C coincide with the 13 C isotope effects calculated assuming that the frequency corresponding to the C (1) -OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H 3 PO 4 has been suggested. A possible secondary 18 O and a primary 18 O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too. (author) 21 refs.; 3 tabs

  12. The use of stable isotope compositions of selected elements in food origin control

    International Nuclear Information System (INIS)

    Wierzchnicki, R.

    2002-01-01

    Stable isotope ratios have been used widely for authentication of foodstuffs especially for detection of added water and sugar in fruit juices and wines. Hydrogen and oxygen composition are particularly interesting probes for geographical origin and authenticity identification. Carbon and nitrogen composition of fruits contains the finger-print of their metabolism and growing condition. Exemplary data are presented which demonstrated the usefulness of the Isotope Ratio Mass Spectrometry (IRMS) methods for authenticating wines and fruits (juice and pulp). (author)

  13. Improvements to SFCOMPO - a database on isotopic composition of spent nuclear fuel

    International Nuclear Information System (INIS)

    Suyama, Kenya; Nouri, Ali; Mochizuki, Hiroki; Nomura, Yasushi

    2003-01-01

    Isotopic composition is one of the most relevant data to be used in the calculation of burnup of irradiated nuclear fuel. Since autumn 2002, the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) has operated a database of isotopic composition - SFCOMPO, initially developed in Japan Atomic Energy Research Institute. This paper describes the latest version of SFCOMPO and the future development plan in OECD/NEA. (author)

  14. Spatiotemporal variation of stable isotopic composition in precipitation

    DEFF Research Database (Denmark)

    Müller, Sascha; Stumpp, Christine; Sørensen, Jens Havskov

    2017-01-01

    gradient and predominant westerly winds. Data showed the local meteoric water line for this region is expressed by the equation δ2H = 7.4δ18O + 5.4‰. A significant trend correlating enriched isotopic values to humidities around 70% during dry season and more depleted isotopic values to humidities around 90...

  15. Carbon isotopic composition of fossil leaves from the Early ...

    Indian Academy of Sciences (India)

    Keywords. Carbon isotopes; plant fossil; Cretaceous; Kachchh; pCO2. J. Earth Syst. Sci. 120, No. 4, August 2011, pp. 703–711 c Indian Academy of Sciences. 703 ... and Banerji 1984). Though in this context it may be mentioned that the isotopic analysis of benthic foraminifera from Kachchh helped to quantify the.

  16. Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications

    International Nuclear Information System (INIS)

    Takahashi, Susumu; Imai, Yusuke; Kan, Akinori; Hotta, Yuji; Ogawa, Hirotaka

    2014-01-01

    Highlights: • The degree of orientation of the hBN could be controlled by the fabrication process. • The dielectric constants of composites ranged between 2.25 and 3.39. • The dielectric loss of composites was on the order of 10 −4 for all compositions. • The thermal conductivity were improved by controlling orientation of hBN. - Abstract: Dielectric composites aimed for high frequency applications were prepared by using anisotropic hexagonal boron nitride (hBN) particles as a fillers and isotactic polypropylene (iPP) as polymer matrix. Dielectric and thermal properties of the composites were studied, focusing on the filler orientation in the plate-shape specimens and filler concentration up to 40 vol%. The degree of orientation of the filler was controlled by the composite fabrication process. Hot-pressing gave relatively random orientation of the filler in the matrix, while injection molding induced a high orientation. Dielectric constant (ε r ) of the composites ranged between 2.25 and 3.39. The estimation of ε r based on the Bruggeman mixing model agreed well with the measured value. Low dielectric losses (tan δ) at microwave frequencies, on the order of 10 −4 , were obtained for all the compositions. Through-thickness thermal conductivity (k) of the hot-pressed samples showed a drastic increase with increasing the filler concentration, reaching up to 2.1 W/m K at 40 vol% of hBN. The filler concentration dependence of k was less significant for the injection molded composites. In-plane thermal expansion was almost independent on the filler orientation, while the coefficient of thermal expansion for the thickness direction of the hot-pressed sample was reduced to approximately half of the injection molded counterpart. These differences in thermal conductivity and thermal expansion are thought to arise from the difference in hBN filler orientation

  17. Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Susumu, E-mail: 143453501@ccalumni.meijo-u.ac.jp [Graduate School of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 4688502 (Japan); Imai, Yusuke [National Institute of Advanced Industrial Science and Technology (AIST), 2268-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Kan, Akinori [Graduate School of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 4688502 (Japan); Hotta, Yuji [National Institute of Advanced Industrial Science and Technology (AIST), 2268-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Ogawa, Hirotaka [Graduate School of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 4688502 (Japan)

    2014-12-05

    Highlights: • The degree of orientation of the hBN could be controlled by the fabrication process. • The dielectric constants of composites ranged between 2.25 and 3.39. • The dielectric loss of composites was on the order of 10{sup −4} for all compositions. • The thermal conductivity were improved by controlling orientation of hBN. - Abstract: Dielectric composites aimed for high frequency applications were prepared by using anisotropic hexagonal boron nitride (hBN) particles as a fillers and isotactic polypropylene (iPP) as polymer matrix. Dielectric and thermal properties of the composites were studied, focusing on the filler orientation in the plate-shape specimens and filler concentration up to 40 vol%. The degree of orientation of the filler was controlled by the composite fabrication process. Hot-pressing gave relatively random orientation of the filler in the matrix, while injection molding induced a high orientation. Dielectric constant (ε{sub r}) of the composites ranged between 2.25 and 3.39. The estimation of ε{sub r} based on the Bruggeman mixing model agreed well with the measured value. Low dielectric losses (tan δ) at microwave frequencies, on the order of 10{sup −4}, were obtained for all the compositions. Through-thickness thermal conductivity (k) of the hot-pressed samples showed a drastic increase with increasing the filler concentration, reaching up to 2.1 W/m K at 40 vol% of hBN. The filler concentration dependence of k was less significant for the injection molded composites. In-plane thermal expansion was almost independent on the filler orientation, while the coefficient of thermal expansion for the thickness direction of the hot-pressed sample was reduced to approximately half of the injection molded counterpart. These differences in thermal conductivity and thermal expansion are thought to arise from the difference in hBN filler orientation.

  18. Influence of Boron Carbide Reinforcement on Mechanical Properties of Aluminum Base Composite Prepared by Stir and Squeeze Casting

    Directory of Open Access Journals (Sweden)

    Zahraa Fadhil

    2017-08-01

    Full Text Available Aluminum metal matrix composites reinforced by ceramic particles have a wide acceptance in engineering applications due to their mechanical and physical properties. The present work aims at investigating the effect of B4C particles ons ome mechanical and physical properties of Al –base matrix. All samples were prepared by two-step stir casting method with squeezing the melt during its solidification. Aluminum metal matrix samples of 2wt%Mg with (0,2,4,and 6wt% ofB4C particles were prepared. The effect of such additions of these particles on hardness, tensile properties were investigated, also the microstructures were analyzed using optical microscopic and (SEM-EDS analysis. The results showed a maximum increase of (53% in Brinel's hardness by adding 6% of boron carbide, while the yield stress, tensile strength and the modulus of elasticity were increased by 11%, 51% , and 51% respectively due to add 4% of boron carbide. The SEM-EDS analyses confirm the presence of B4C particles within the Al-base matrix. The microscopic tests indicated the homogenous dispersion of the addition of 4wt% B4C.

  19. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    KAUST Repository

    Wang, Shuo

    2017-07-20

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges x = 0.06 to 0.16, closely following gas-flow ratios. Transmission electron microscopy indicates the sole presence of wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B+Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films.The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B+Al) gas-flow ratios that we used, which is significantly higher than previously thought.

  20. Boron fertilisation of organically managed grass-clover swards on coarse-textured soils: effects on botanical and element composition

    Directory of Open Access Journals (Sweden)

    Lisbeth Linse

    2015-12-01

    Full Text Available Three trials were performed on two organic farms with dairy and suckler cows and using home-produced forage and feed crops, predominantly grass-clover ley, in order to determine whether boron (B is a limiting factor for legumes on coarse-textured soils in an area predisposed to low B soil concentrations. The effects of B fertilisation (applied as sprayed liquid on biomass yield, botanical composition and plant macro- and micronutrient concentrations relative to soil concentrations and livestock requirements were investigated. Boron fertilisation (i did not affect any yield, (ii increased the white clover percentage significantly in forage on one farm and (iii increased B concentrations in plants and soil on both farms, and (iv did not affect concentrations of other nutrients in forage on either farm. Thus, B was not an obvious limiting factor on these farms. Effects of management practices on interactions and ratios between B, calcium (Ca, potassium (K, magnesium (Mg and sodium (Na and their implications are discussed.

  1. Isotopic composition of Danube water in the pre-delta section from the years 2009 - 2012

    Directory of Open Access Journals (Sweden)

    RANK Dieter

    2013-12-01

    Full Text Available The isotopic composition of river water in the Danube Basin is mainly governed by the isotopic composition of precipitation in the catchment area, evaporation effects play only a minor role. Short-term and long-term isotope signals from precipitation are thus transmitted through the whole catchment. The isotopic composition of Danube water in the Delta region so provides an integrated isotope signal for climatic/hydrological conditions and changes in the whole catchment. The aim of this investigation was to establish a representative isotope monitoring near the Danube Delta. The results showed that the Danube River is regarding isotope content fully mixed at the bifurcation of the Danube Delta arms. Therefore routine sampling at only one location in the pre-delta region should be sufficient to obtain a representative isotope record for the whole Danube Basin. The δ 18 O time series from November 2009 to May 2012 (sampling twice a month shows seasonal variations in the range of -9.8 ‰ ± 0.7 ‰ with a minimum in spring and a maximum in autumn. The tritium results exhibit the influence of short term contaminations due to human activities. The expected “environmental” tritium content of river water in Central Europe would be about 10 TU. During this investigation 3 H values up to 100 TU were observed in the pre-delta section. This indicates short terms releases of tritium from local sources such as nuclear power plants in the Danube river system.

  2. Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic - A multispecies approach using habitat preference of planktonic foraminifera

    Science.gov (United States)

    Raitzsch, Markus; Bijma, Jelle; Benthien, Albert; Richter, Klaus-Uwe; Steinhoefel, Grit; Kučera, Michal

    2018-04-01

    The boron isotopic composition of planktonic foraminiferal shell calcite (δ11BCc) provides valuable information on the pH of ambient water at the time of calcification. Hence, δ11BCc of fossil surface-dwelling planktonic foraminifera can be used to reconstruct ancient aqueous pCO2 if information on a second carbonate system parameter, temperature and salinity is available. However, pH and pCO2 of surface waters may vary seasonally, largely due to changes in temperature, DIC, and alkalinity. As also the shell fluxes of planktonic foraminifera show species-specific seasonal patterns that are linked to intra-annual changes in temperature, it is obvious that δ11BCc of a certain species reflects the pH and thus pCO2 biased towards a specific time period within a year. This is important to consider for the interpretation of fossil δ11BCc records that may mirror seasonal pH signals. Here we present new Multi-Collector Inductively Coupled Mass Spectrometry (MC-ICPMS) δ11BCc coretop data for the planktonic foraminifera species Globigerina bulloides, Globigerinoides ruber, Trilobatus sacculifer and Orbulina universa and compare them with δ11Bborate derived from seasonally resolved carbonate system parameters. We show that the inferred season-adjusted δ11BCc /δ11Bborate relationships are similar to existing calibrations and can be combined with published δ11BCc field and culture data to augment paleo-pH calibrations. To test the applicability of these calibrations, we used a core drilled on the Walvis Ridge in the Southeast Atlantic spanning the last 330,000 years to reconstruct changes in surface-water pCO2. The reconstruction based on G. bulloides, which reflects the austral spring season, was shown to yield values that closely resemble the Vostok ice-core data indicating that surface-water pCO2 was close to equilibrium with the atmosphere during the cooler spring season. In contrast, pCO2 estimated from δ11BCc of O. universa, T. sacculifer and G. ruber that

  3. Changes in Oxygen Isotopes Composition of Precipitation over Tibetan Plateau during Cenozoic

    Science.gov (United States)

    Botsyun, S.; Sepulchre, P.; Donnadieu, Y.; Risi, C. M.; Fluteau, F.

    2014-12-01

    Despite the increasing role of the stable oxygen isotopes measurements for reconstructing mountains belts paleoelevation, some issues remain that lead to a large uncertainty in paleoelevation estimationes. Among them, the use of modern isotopic lapse rate with no account of climate change linked to lower topography can lead to misinterpretation of uplift rates. In this study, we use the atmospheric general circulation model LMDZ-iso to simulate changes in isotopic composition of precipitation due to uplift of the Himalayas and Tibetan plateau. Various scenarios of TP growth have been applied together with Paleocene, Eocene, Oligocene and Miocene boundary conditions. Our simulations allow us to estimate the magnitude of precipitation, temperature and wind field changes related to the spatial and temporal evolution of the Tibetan Plateau and Himalayas. Such changes affected the isotopic composition of precipitation during the Cenozoic.We investigate the impact of these changes on the isotopic lapse rate and the implications for paleoelevation estimates.

  4. Elemental and iron isotopic composition of aerosols collected in a parking structure

    International Nuclear Information System (INIS)

    Majestic, Brian J.; Anbar, Ariel D.; Herckes, Pierre

    2009-01-01

    The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM) 2.5 μm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m -3 ) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be + 0.15 ± 0.03 per mille and + 0.18 ± 0.03 per mille for the PM 2.5 μm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average = + 0.02 per mille ) and the ceramic brake linings (average = + 0.65 per mille ). Differences in isotopic composition were also observed between the metallic (average = + 0.18 per mille ) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.

  5. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Ying-kai; Liu, Wei-guo; Zhou, Y.M.; Wang, Yun-hui; Shirodkar, P.V.

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs sub(2) Cl sup(+) ion by thermal ionization...

  6. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition

    Science.gov (United States)

    Bergmann, Kristin D.; Finnegan, Seth; Creel, Roger; Eiler, John M.; Hughes, Nigel C.; Popov, Leonid E.; Fischer, Woodward W.

    2018-03-01

    The secular increase in δ18O values of both calcitic and phosphatic marine fossils through early Phanerozoic time suggests either that (1) early Paleozoic surface temperatures were high, in excess of 40 °C (tropical MAT), (2) the δ18O value of seawater has increased by 7-8‰ VSMOW through Paleozoic time, or (3) diagenesis has altered secular trends in early Paleozoic samples. Carbonate clumped isotope analysis, in combination with petrographic and elemental analysis, can deconvolve fluid composition from temperature effects and therefore determine which of these hypotheses best explain the secular δ18O increase. Clumped isotope measurements of a suite of calcitic and phosphatic marine fossils from late Cambrian- to Middle-late Ordovician-aged strata-the first paired fossil study of its kind-document tropical sea surface temperatures near modern temperatures (26-38 °C) and seawater oxygen isotope ratios similar to today's ratios.

  7. Characterizing the origins of bottled water on the South Korean market using chemical and isotopic compositions

    International Nuclear Information System (INIS)

    Bong, Yeon-Sik; Ryu, Jong-Sik; Lee, Kwang-Sik

    2009-01-01

    We analyzed the major elements and stable isotopes of oxygen, hydrogen, and carbon (dissolved inorganic carbon: DIC) in various types of bottled water (domestic and foreign) commercially available in South Korea to classify the water types and to identify their origins. Only marine waters and some sparkling waters could be discriminated by their physicochemical compositions. Oxygen and hydrogen isotopes made marine waters more distinguishable from other water types. The determination of the carbon isotope composition of DIC was clearly useful for distinguishing between naturally and artificially sparkling waters. In addition, statistical analysis also appeared to aid in the discrimination of bottled water types. Our results indicate that a method that combines chemical and stable isotope composition analysis with statistical analysis is the most useful for discriminating water types and characterizing the origins of bottled water

  8. Iron isotopic composition of blood serum in anemia of chronic kidney disease.

    Science.gov (United States)

    Anoshkina, Yulia; Costas-Rodríguez, Marta; Speeckaert, Marijn; Van Biesen, Wim; Delanghe, Joris; Vanhaecke, Frank

    2017-05-24

    Chronic kidney disease (CKD) is a general term for disorders that affect the structure and function of the kidneys. Iron deficiency (ID) and anemia occur in the vast majority of CKD patients, most of whom are elderly. However, establishing the cause of anemia in CKD, and therefore making an informed decision concerning the corresponding therapeutic treatment, is still a challenge. High-precision Fe isotopic analysis of blood serum samples of CKD patients with and without ID/anemia was performed via multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) for such a purpose. Patients with CKD and/or iron disorders showed a heavier serum Fe isotopic composition than controls. Many clinical parameters used for the diagnosis and follow-up of anemia correlated significantly with the serum Fe isotopic composition. In contrast, no relation was observed between the serum Fe isotopic composition and the estimated glomerular filtration rate as a measure of kidney function. Among the CKD patients, the serum Fe isotopic composition was substantially heavier in the occurrence of ID anemia, while erythropoietin-related anemia did not exert this effect. The Fe isotopic composition can thus be useful for distinguishing these different types of anemias in CKD patients, i.e. ID anemia vs. erythropoietin-related anemia.

  9. A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite

    Science.gov (United States)

    Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan

    2017-11-01

    A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.

  10. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    Science.gov (United States)

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth

  11. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data

    Science.gov (United States)

    Estrada, Nubia Luz; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua; Harvey, Greg; Burkey, Kent O.; Grantz, David A.; McGrath, Margaret T.; Anderson, Todd A.; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B.; Jackson, W. Andrew

    2017-01-01

    Natural perchlorate (ClO4−) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4− may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4−, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4− in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4− was transported from solutions into plants similarly to NO3− but preferentially to Cl− (4-fold). The ClO4− isotopic compositions of initial ClO4− reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4− uptake or accumulation. The ClO4− isotopic composition of field-grown snap beans was also consistent with that of ClO4− in varying proportions from irrigation water and precipitation. NO3− uptake had little or no effect on NO3− isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3− in hydroponic solutions and leaf extracts, consistent with partial NO3− reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4− in commercial produce, as illustrated by spinach, for which the ClO4− isotopic composition was similar to that of indigenous natural ClO4−. Our results indicate that some types of plants can accumulate and (presumably) release ClO4− to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4−and NO3− in plants may be useful for determining sources of fertilizers and sources of ClO4− in their growth environments and

  12. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    Science.gov (United States)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was

  13. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries.

    Science.gov (United States)

    Shim, Jimin; Kim, Dong-Gyun; Kim, Hee Joong; Lee, Jin Hong; Lee, Jong-Chan

    2015-04-15

    Core-shell silica particles with ion-conducting poly(ethylene glycol) and anion-trapping boron moiety in the shell layer were prepared to be used as fillers for polymer composite electrolytes based on organic/inorganic hybrid branched copolymer as polymer matrix for all-solid-state lithium-ion battery applications. The core-shell silica particles were found to improve mechanical strength and thermal stability of the polymer matrix and poly(ethylene glycol) and boron moiety in the shell layer increase compatibility between filler and polymer matrix. Furthermore, boron moiety in the shell layer increases both ionic conductivity and lithium transference number of the polymer matrix because lithium salt can be more easily dissociated by the anion-trapping boron. Interfacial compatibility with lithium metal anode is also improved because well-dispersed silica particles serve as protective layer against interfacial side reactions. As a result, all-solid-state battery performance was found to be enhanced when the copolymer having core-shell silica particles with the boron moiety was used as solid polymer electrolyte.

  14. Energy and mass dependence of isotopic enrichment in sputtering

    CERN Document Server

    Shutthanandan, V; Ray, P

    2003-01-01

    Silver, copper, and boron (from a boron nitride target) were sputtered with xenon ions. The isotopic composition of secondary ions of silver was measured at ion energies ranging from 300 eV to 3 keV and, for copper and boron, at 2.0, 2.5, and 3.0 keV. An ion gun was used to generate the ion beam. The secondary ions were detected at a small emission angle by a quadrupole mass spectrometer. The secondary-ion flux of silver was found to be enriched in heavy isotopes at lower incident-ion energies. The heavy-isotope enrichment was observed to decrease with increasing primary-ion energy. Beyond 500 eV, light isotopes of silver were sputtered preferentially with the enrichment increasing to a constant value of 1.018. The sputtered flux of copper and boron also indicated constant enrichments (1.008 and 1.281 for copper and boron respectively) in light isotopes at high ion energies. (orig.)

  15. Iron Isotopic Compositions of Troilite (FeS) Inclusions from Iron Meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David L.; Schönbächler, Maria, E-mail: david.cook@erdw.ethz.ch [Institut für Geochemie und Petrologie, ETH Zürich, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2017-10-01

    We report non-mass-dependent Fe isotopic data for troilite (FeS) inclusions from 10 iron meteorites, representing both non-magmatic (IAB) and magmatic groups (IIAB, IIIAB, IVA). No resolvable variations are present in the most neutron-rich isotope ({sup 58}Fe), but small deficits (≈−0.1 ε ) in {sup 56}Fe were observed in several inclusions. With the exception of several Ca–Al-rich inclusions in primitive meteorites, these are the first reported non-mass-dependent variations in Fe isotopes for material formed in the early solar system. Nucleosynthetic variations in Ni isotopes were previously reported in these same samples. The effects in Fe isotopes are not correlated with those in Ni, which suggests that the origins of the isotopic variations are decoupled from one another. The {sup 56}Fe deficits may represent incomplete mixing of the precursor dust in the protoplanetary disk. Alternatively, a parent body process (e.g., irradiation by galactic cosmic rays) may have modified the Fe isotopic compositions of some inclusions, which initially had homogeneous Fe isotopic compositions.

  16. Normal variations in the isotopic composition of metabolically relevant transition metals in human blood

    Science.gov (United States)

    Van Heghe, L.; Cloquet, C.; Vanhaecke, F.

    2012-04-01

    Cu, Fe and Zn are transition metals with great catalytic, structural and regulating importance in the human body. Hence, an aberrant metabolism of these elements can have serious implications on the health of a person. It is assumed that, due to differences in isotope fractionation, the isotopic composition of these elements in whole blood of patients can be different from that in blood of healthy subjects. Therefore, isotopic analysis of the element affected by the disease can be a promising approach for early diagnosis. A method for isotopic analysis of Cu, Fe and Zn in human whole blood was developed. The simultaneous chromatographic isolation of these elements and the conditions for isotope ratio measurement via multi-collector ICP - mass spectrometry (MC-ICP-MS) were optimized. So far, only whole blood of supposedly healthy volunteers (reference population) was analyzed. Results for Fe confirmed the known differences in isotopic composition between male and female blood. It is also shown that other parameters can have influence as well, e.g., the isotopic composition of Zn seems to be governed by the diet.

  17. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective

    Science.gov (United States)

    Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang

    2017-12-01

    The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.

  18. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    Science.gov (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  19. Measurement of natural carbon isotopic composition of acetone in human urine.

    Science.gov (United States)

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  20. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    Science.gov (United States)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  1. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    Science.gov (United States)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  2. Oxygen isotopic composition of mammal bones as a new tool for studying ratios of paleoenvironmental water and paleoclimates

    International Nuclear Information System (INIS)

    Longinelli, A.

    1984-04-01

    The purpose of this study is to try to establish quantitative relationships between the average oxygen isotopic composition of local meteoric water, the oxygen isotopic composition of mammal body water and the oxygen isotopic composition of phosphate in mammal bones. These relationships, after calibration of the method on living specimens, would allow quantitative paleoclimatological research based on the measurement of delta 18 O(PO 4 3- ) of fossil mammal bones

  3. Transition of the Isotopic Composition of Leaf Water to the Isotopic Steady State in Soybean and Corn

    Science.gov (United States)

    Kim, K.; Lee, X.; Welp, L. R.

    2007-12-01

    The isotope composition of leaf water (δL) plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. The objective of this study is to improve our understanding of environmental and biological controls on the transition of δL to steady state through laboratory experiments. Plants (soybean, Glycine max; corn, Zea mays) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. In the first set of experiments, humidity inside the container was saturated to mimic dew events in field conditions. In the second set, humidity was controlled at approximately 95%. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of δL in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of δL differ between the C3 and C4 photosynthesis pathways.

  4. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy.

    Science.gov (United States)

    Koehler, Geoff; Wassenaar, Leonard I

    2012-04-17

    Hydrogen isotopic compositions of hydrous minerals and organic materials were measured by combustion to water, followed by optical isotopic analysis of the water vapor by off-axis integrated cavity output spectroscopy. Hydrogen and oxygen isotopic compositions were calculated by numerical integration of the individual isotopologue concentrations measured by the optical spectrometer. Rapid oxygen isotope exchange occurs within the combustion reactor between water vapor and molecular oxygen so that only hydrogen isotope compositions may be determined. Over a wide range in sample sizes, precisions were ±3-4 per mil. This is comparable but worse than continuous flow-isotope ratio mass spectroscopy (CF-IRMS) methods owing to memory effects inherent in water vapor transfer. Nevertheless, the simplicity and reduced cost of this analysis compared to classical IRMS or CF-IRMS methods make this an attractive option to determine the hydrogen isotopic composition of organic materials where the utmost precision or small sample sizes are not needed.

  5. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  6. Study on the meat isotopic composition for origin identification

    Directory of Open Access Journals (Sweden)

    Irina Chernukha

    2018-03-01

    Full Text Available Russian consumer and governmental authorities are equally concerned to know where food products come from. This requires more accurate and specialized methods for the evaluation of geographical location. The following methods are used: chemometrics, histological and histochemical, genomic and proteomic, microbiological, immunochemical and mass spectrometric. Method of stable isotope analysis is becoming increasingly promising nowadays for the identification of meat and meat products' place of origin. The isotope ratios of the four elements - carbon, nitrogen, oxygen and hydrogen, are mainly determined. The method is successfully used to identify a country of origin of wines, juices and water. The aim of the research was to study the stable isotope ratios for pork and beef samples purchased in Moscow supermarkets (Russian Federation. The country of production of meat samples was determined according to specifications and/or labels. The geography of countries of meat samples origin includes Europe, both America continents and Australia. Databases collected by the All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industrywere used for the analysis and interpretation of the results. Values of 13С/12С, δ13С, 18О/16О, δ18О, 2Н/1Н, δ2Н for 30 pork and beef samples from 13 countries were obtained. Differences in stable isotope ratios were found depending on place of origin. The data correlated with the oxygen isotope characteristics for wine, which were in the range from 2.5 to 4.5 ppm. According to the 13С/12С, δ13С results, the assumption was made about a false indication of the region for the beef sample. Despite the fact that beef was labeled as a product of Lithuania, the region of origin was most probably defined as Germany. The studies carried out showed the possibility to identify the region of raw meat origin by the stable isotope ratio.

  7. The concentration and isotopic composition of diffusible Nd in fresh and marine waters

    Science.gov (United States)

    Dahlqvist, Ralf; Andersson, Per S.; Ingri, Johan

    2005-04-01

    Variations in the Nd isotopic composition of ocean water through time, recorded in marine deposits, are suggested to document changes in erosional input and ocean circulation. Thus characterization of the dissolved Nd component in seawater is important. But few attempts have been made to directly measure truly dissolved Nd. Here we report Nd data, obtained using the technique of diffusive gradients in thin-films (DGT) designed to measure in situ, diffusible labile trace metals in aqueous solutions. The method samples free ions and possibly very small complexes. The concentration and isotopic composition of Nd in fresh, brackish and seawater have been determined with DGT, analyzed with thermal ionization mass-spectrometry, and compared with filtered and bulk water samples. Concentrations measured in water samples and with DGT show that the relative amount of diffusible Nd increases with salinity, from being about 10% in the fresh water to 42% in seawater. At each sampled site, the isotopic composition of Nd in the water shows a similar isotopic composition, within errors, with Nd sampled using the DGT method. These results indicate that there is a complete exchange between the particulate/colloidal fraction and the truly dissolved phase. Therefore our findings suggest that solute Nd reflects both the isotopic composition of the marine sediments and the bulk water.

  8. Substoichiometric isotope dilution mass spectrometry of boron by the ion-pair extraction with halogenated salicyl alcohol derivatives and a quaternary ammonium salt.

    Science.gov (United States)

    Morita, Keisuke; Imura, Hisanori

    2012-01-01

    Novel salicyl alcohol derivatives (H(2)X(n)sal), 5-bromo-, 3,5-dibromo-, and 3,5-diiodosalicyl alcohol which were abbreviated to H(2)Brsal, H(2)Br(2)sal, and H(2)I(2)sal, respectively, were synthesized and used for the selective extraction of boric acid. Boric acid was extracted with each H(2)X(n)sal into chlorobenzene containing trioctylmethylammonium chloride (TOMACl) as an ion-pair complex, TOMA·B(X(n)sal)(2), at a different pH range. The extraction constant (K(ex)) of boric acid was determined by the equilibrium analyses including the formation of hydrogen-bonded complex of each H(2)X(n)sal with TOMACl in the organic phase. The K(ex) values obtained by salicyl alcohol (H(2)sal) and its derivatives were decreased in the order of H(2)I(2)sal ≥ H(2)Br(2)sal > H(2)Brsal > H(2)sal. The most powerful extractant, H(2)I(2)sal, was employed for the substoichiometric extraction of boric acid, which was extracted at pH 5 - 9 with a substoichiometric amount of TOMACl in the presence of an excess of H(2)I(2)sal. The present substoichiometric separation method combined with the stable isotope dilution analysis using inductively coupled plasma mass spectrometry (ICP-MS) could be successfully applied to the determination of boron in a reference material of high-analysis compound fertilizer (FAMIC-A-08) without any correction as to the isotopic abundance.

  9. [FTIR Spectroscopic Characterization of Material Composition in Functional Leaf of Cotton under Stress of Potassium and Boron].

    Science.gov (United States)

    Wu, Xiu-wen; Hao, Yan-shu; Lei, Jing; Jiang, Cun-cang

    2016-03-01

    Potassium (K) and boron (B) are essential nutrient elements for plants, and the elements play an important role for plant growth, development and physiological metabolism. Cotton has a higher demand for K and B; K deficiency or B deficiency often occurs in cotton though. To reveal the component changes in functional leaf of cotton under K and B stress and investigate effects on material composition from K and B. A pot experiment was conducted at Huazhong Agricultural University. (1) the characteristic peaks at 1 546.86, 1 438.85, 1 153.39 and 1 024.17 cm(-1) disappeared due to B deficiency, and relative absorbance of other characteristic peaks was decreased compared with normal, which suggested that the structures of protein, fiber, soluble sugar and ribosome in cotton functional leaf changed and decreased in cotent when lack of K. (2) the relative absorbance of all characteristic peaks was increased in the B-deficient cotton leaves compared with normal, suggesting B deficiency leads to the accumulation in leaves of protein, and fiber, soluble sugar and other carbohydrates because of the hindered transportation. (3) lack of both potassium and boron, induced significant changes to both the locations and relative absorbance of characteristic peaks, and the content of protein, and soluble sugar and other carbohydrates increased, while the content of nucleic acids and polysaccharides dropped. K deficiency led to the structures of protein, fiber, soluble sugar and ribosome in cotton functional leaf changed and decreased in content; B deficiency gave rise to the accumulation in leaves of protein, and fiber, soluble sugar and other carbohydrates; the content of protein and soluble sugar and other carbohydrates increased, while the content of nucleic acids and polysaccharides dropped when K and B were all in short supply.

  10. Heterogeneities in the solar nebula. [oxygen isotopic composition in carbonaceous chondrites

    Science.gov (United States)

    Clayton, R.; Grossman, L.; Mayeda, T. K.; Onuma, N.

    1974-01-01

    Oxygen isotopic compositions of the high-temperatue phases in carbonaceous chondrites define a mixing line with an O-16 rich component and show little superimposed chemical isotope fractionation. Within a single inclusion in Allende, variations of delta O-18 and delta O-17 of 39% are found. The ordinary chondrites are slightly displaced from the terrestrial fractionation trend, implying that at least 0.2% of the oxygen in terrestrial rocks was derived from the O-16 rich component.

  11. Oxygen isotopic composition of fulgurites from the Egyptian Sahara and other locations.

    Science.gov (United States)

    Longinelli, Antonio; Serra, Romano; Sighinolfi, Giampaolo; Selmo, Enricomaria; Sgavetti, Maria

    2012-09-15

    Fulgurites are glassy crusts or hollow glassy tubes formed by the impact of a lightning strike on a target material on the Earth's surface. The oxygen isotopic composition of fulgurites has never been measured and, consequently, it is unknown whether or not isotopic fractionations take place between the target material and the fulgurite glass during the lightning event which is an excellent natural example of extremely fast melting process. Following well-established procedures (high-temperature reaction of the fulgurite material with BrF(5), conversion into CO(2) of the evolved O(2) and measurement of the(18)O/(16)O ratio on a Finnigan Delta S mass spectrometer) we measured for the first time the oxygen isotopic composition of sets of fulgurites coming from various locations on the Earth's surface. The range of isotopic values is quite large, probably reflecting the oxygen isotopic values of the target materials. In the case of fulgurites from the Sahara Desert the isotopic values obtained from the bulk material, quartz crystals sticking to the fulgurite body, tiny samples of loose sand coming from fulgurite bubbles, and sand samples collected near the fulgurites, are very close to one another. Although we do not have indisputable evidence, we conclude that, at least in the case of oxygen, the fusion process of the material struck by lightning, as well as all the extremely fast high-temperature fusion processes, probably take place without any isotopic fractionation effect. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Isotope composition and volume of Earth´s early oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hyd......Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs......, but hydrogen´s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as Î......´D relative to Vienna standard mean ocean water (VSMOW)] by at most 25± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios...

  13. Correspondence between human diet, body composition and stable isotopic composition of hair and breath in Fijian villagers.

    Science.gov (United States)

    Hedges, Robert; Rush, Elaine; Aalbersberg, William

    2009-03-01

    The main aim of this work was to describe the relationship between diet, and hair and breath isotopic composition. From one Fijian rural village, hair and breath samples were procured from 20 women. Physical anthropometrics were made, and hair (13)C/(12)C and (15)N/(14)N and breath (13)C/(12)C were measured. Individual diet diaries were kept for two of the four preceding weeks, and isotopic compositions of items which accounted for most of the diet were measured. Individual average diets were analysed for macronutrient and energy content and conform to reasonable nutritional expectation. Characteristics of the diet are described in terms of protein and energy, their patterning with respect to different clusters of food items and their relationship to individuals' anthropometry. Breath CO(2) is depleted in (13)C by 1-2 per thousand on average with respect to the total diet. Hair was enriched on average by 4.1 per thousand in nitrogen and 4.5 per thousand in carbon with respect to the total diet. There was insufficient population variation in hair isotopic composition to establish individual hair-diet isotopic differences. The definite relationship that we establish in this work, between dietary and tissue isotopic values for a human community, provides a basis for determining and validating dietary regimes more generally within non-industrial, non-global-'supermarket' economies.

  14. Fe Isotopic Composition of Presolar SiC Mainstream Grains

    Science.gov (United States)

    Tripa, C. E.; Pellin, M. J.; Savina, M. R.; Davis, A. M.; Lewis, R. S.; Clayton, R. N.

    2002-01-01

    Iron isotopic distribution was measured in SiC mainstream grains from the Murchison meteorite by time-of-flight resonance ionization mass spectrometry. All grains exhibit 54Fe depletions of 50 to 200, lower than what are predicted by calculations of s-process nucleosynthesis in AGB stars. Additional information is contained in the original extended abstract.

  15. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    ground uranium mine in India. Besides uranium;. Cu, Mo and Ni have previously been recovered and presently magnetite is being recovered as a by-product. Similar to other deposits in the. SSZ, the Jaduguda deposit is hosted by strongly. Keywords. Pyrite; minor element; sulphur isotope; evolution; Jaduguda; Singhbhum; ...

  16. Carbon isotopic composition of fossil leaves from the Early ...

    Indian Academy of Sciences (India)

    Stable carbon isotope analysis of fossil leaves from the Bhuj Formation, western India was carried out to infer the prevailing environmental conditions. Compression fossil leaves such as Pachypteris indica, Otozamite kachchhensis, Brachyphyllum royii and Dictyozamites sp. were recovered from three sedimentary ...

  17. Carbon and oxygen isotope compositions of the carbonate facies in ...

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the ...

  18. Carbon and oxygen isotope compositions of the carbonate facies

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the ...

  19. Carbon and oxygen isotope compositions of the carbonate facies in ...

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period. Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies. However, the ...

  20. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  1. A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio

    Directory of Open Access Journals (Sweden)

    Kon-Kee Liu Shuh-Ji Kao

    2007-01-01

    Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.

  2. Isotopic composition of carbon of certain sapropelites as an indicator of their formation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S; Klesment, I.; Punning, Ya.M.; Vaikmyae, R.

    1981-01-01

    Materials are presented on an investigation of the isotopic composition of carbon of three sapropelites, Chagan schist--of marine orgin, of the Jurassic age; schist of Borova Dola (Bulgarian People's Republic)-fascial type, lake with marine influence, of Upper Ecocene age; balkhashite--of contemporary origin, if formed of oil-containing algae. On the basis of the isotope composition of the carbon there is drawn the conclusion that the original biological substance of the Chagan schist and of balkhashite was subjected so strong bacterial action. The isotopic composition of the organic matter of the sapropelites can serve as a criterion of their genesis. It is shown that there exists a regularity of change of par. delta /sup 13/ C of sapropelites in dependence on the degree of metamorphism, on the fascial-genetic type of organic substance and on the conditions of sedimentary accumulations.

  3. The oxygen isotopic composition of the Sun inferred from captured solar wind.

    Science.gov (United States)

    McKeegan, K D; Kallio, A P A; Heber, V S; Jarzebinski, G; Mao, P H; Coath, C D; Kunihiro, T; Wiens, R C; Nordholt, J E; Moses, R W; Reisenfeld, D B; Jurewicz, A J G; Burnett, D S

    2011-06-24

    All planetary materials sampled thus far vary in their relative abundance of the major isotope of oxygen, (16)O, such that it has not been possible to define a primordial solar system composition. We measured the oxygen isotopic composition of solar wind captured and returned to Earth by NASA's Genesis mission. Our results demonstrate that the Sun is highly enriched in (16)O relative to the Earth, Moon, Mars, and bulk meteorites. Because the solar photosphere preserves the average isotopic composition of the solar system for elements heavier than lithium, we conclude that essentially all rocky materials in the inner solar system were enriched in (17)O and (18)O, relative to (16)O, by ~7%, probably via non-mass-dependent chemistry before accretion of the first planetesimals.

  4. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial

    Science.gov (United States)

    Owens, Jeremy D.; Nielsen, Sune G.; Horner, Tristan J.; Ostrander, Chadlin M.; Peterson, Larry C.

    2017-09-01

    Thallium (Tl) isotopes are a new and potentially powerful paleoredox proxy that may track bottom water oxygen conditions based on the global burial flux of manganese oxides. Thallium has a residence time of ∼20 thousand years, which is longer than the ocean mixing time, and it has been inferred that modern oxic seawater is conservative with respect to both concentration and isotopes. Marine sources of Tl have nearly identical isotopic values. Therefore, the Tl sinks, adsorption onto manganese oxides and low temperature oceanic crust alteration (the dominant seawater output), are the primary controls of the seawater isotopic composition. For relatively short-term, ∼million years, redox events it is reasonable to assume that the dominant mechanism that alters the Tl isotopic composition of seawater is associated with manganese oxide burial because large variability in low temperature ocean crust alteration is controlled by long-term, multi-million years, average ocean crust production rates. This study presents new Tl isotope data for an open ocean transect in the South Atlantic, and depth transects for two euxinic basins (anoxic and free sulfide in the water column), the Cariaco Basin and Black Sea. The Tl isotopic signature of open ocean seawater in the South Atlantic was found to be homogeneous with ε205Tl = -6.0 ± 0.3 (±2 SD, n = 41) while oxic waters from Cariaco and the Black Sea are -5.6 and -2.2, respectively. Combined with existing data from the Pacific and Arctic Oceans, our Atlantic data establish the conservatism of Tl isotopes in the global ocean. In contrast, partially- and predominantly-restricted basins reveal Tl isotope differences that vary between open-ocean (-6) and continental material (-2) ε205Tl, scaling with the degree of restriction. Regardless of the differences between basins, Tl is quantitatively removed from their euxinic waters below the chemocline. The burial of Tl in euxinic sediments is estimated to be an order of magnitude

  5. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    Directory of Open Access Journals (Sweden)

    Poirson Evan K

    2009-11-01

    Full Text Available Abstract Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides, taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains.

  6. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  7. Thermally conductive tough flexible elastomers as composite of slide-ring materials and surface modified boron nitride particles via plasma in solution

    Science.gov (United States)

    Goto, Taku; Iida, Masaki; Tan, Helen; Liu, Chang; Mayumi, Koichi; Maeda, Rina; Kitahara, Koichi; Hatakeyama, Kazuto; Ito, Tsuyohito; Shimizu, Yoshiki; Yokoyama, Hideaki; Kimura, Kaoru; Ito, Kohzo; Hakuta, Yukiya; Terashima, Kazuo

    2018-03-01

    We have developed a thermally conductive flexible elastomer as a composite material with slide-ring (SR) materials and boron nitride (BN) particles surface-modified via plasma in solution. This composite shows excellent properties as a flexible insulator for thermal management. Surface modification of BN particles using plasma in solution increases the tensile strength, extension ratio at break, toughness, and rubber characteristics of the composites, compared to SR and non-modified BN, while the Young's modulus values are identical. Furthermore, the thermal conductivity also improved as a result of plasma surface modification.

  8. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.

    Science.gov (United States)

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P

    2008-07-17

    Quasi-one-dimensional cylindrical pores of single-walled boron nitride and carbon nanotubes efficiently differentiate adsorbed hydrogen isotopes at 33 K. Extensive path integral Monte Carlo simulations revealed that the mechanisms of quantum sieving for both types of nanotubes are quantitatively similar; however, the stronger and heterogeneous external solid-fluid potential generated from single-walled boron nitride nanotubes enhanced the selectivity of deuterium over hydrogen both at zero coverage and at finite pressures. We showed that this enhancement of the D(2)/H(2) equilibrium selectivity results from larger localization of hydrogen isotopes in the interior space of single-walled boron nitride nanotubes in comparison to that of equivalent single-walled carbon nanotubes. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly depending on both the type as well as the size of the nanotube. For all investigated nanotubes, we predicted the occurrence of the minima of the D(2)/H(2) equilibrium selectivity at finite pressure. Moreover, we showed that those well-defined minima are gradually shifted upon increasing of the nanotube pore diameter. We related the nonmonotonic shape of the D(2)/H(2) equilibrium selectivity at finite pressures to the variation of the difference between the average kinetic energy computed from single-component adsorption isotherms of H(2) and D(2). In the interior space of both kinds of nanotubes hydrogen isotopes formed solid-like structures (plastic crystals) at 33 K and 10 Pa with densities above the compressed bulk para-hydrogen at 30 K and 30 MPa.

  9. Determining Isotopic Composition of Dissolved Nitrate Using Bacterial Denitrification Followed by Laser Spectroscopy

    International Nuclear Information System (INIS)

    Yan Tiezhu; Lee Zhi Yi, Amelia; Heiling, Maria; Weltin, Georg; Toloza, Arsenio; Resch, Christian

    2016-01-01

    Nitrate (NO 3 - ) pollution is a prevalent problem that can cause water quality degradation and eutrophication of water bodies. Quantifying the nitrogen and oxygen isotopic composition of nitrates will allow for better identification of their potential sources, which in turn will assist in remediation of contaminated water and the designing of future water management practices. In this research bacterial denitrification followed by laser spectroscopy are used to determine isotopic composition of δ 15 N and δ 18 O of dissolved nitrates. The objective of the project is to establish a standard operating procedure (SOP) that outlines the best practices for both methods in sequence and designed to be used as a technical guideline

  10. Nitrate distribution and isotopic composition in vadose-zone sediments underlying large dairy operations

    Science.gov (United States)

    Esser, B. K.; Singleton, M. J.; Moran, J. E.; Roberts, S. K.; Barton, C. G.; Watanabe, N.; Harter, T.

    2009-12-01

    Understanding the transport and cycling of nitrate in the vadose zone is essential to 1) linking agronomic models of nitrate flux out of the root zone to groundwater models of nitrate loading at the water table, 2) quantifying the impact of vadose-zone biogeochemical processes on nitrate isotopic composition for the purpose of source attribution, and 3) constraining transport time scales through the vadose zone in order to assess the impact of changes in agricultural nutrient management on underlying groundwater quality. In this study, we have investigated the isotopic composition of water-leachable nitrate extracted from sediment cores underlying three dairy operations in the southern San Joaquin Valley of California. One of the dairy operations is new (less than ten years old) and is sited on former range land; the other two operations are older (with one having been continuously operated for over a century). All use dairy wastewater for irrigation, and have vadose zones of 25-60 meters thickness developed in sedimentary sequences dominated by alluvial fan deposits. Sediment core samples from a UC-Davis monitor well drilling program were extracted with an equal amount of ultrapure water, and analyzed for nitrate isotopic composition using the denitrifying bacteria method at LLNL. The range in nitrate isotopic composition (δ15N,air = 4.8 to 26.6 permil, δ18O,VSMOW = -0.3 to 16.2 permil) is large, comparable to isotopic compositions observed in dairy wastewater-impacted groundwaters (Singleton et al., 2007, ES&T 41:759-765), and varies from site to site. The range is the largest on the oldest operation (δ15N = 5.2 to 26.6), and most tightly clustered on the youngest operation (δ15N = 4.8 to 7.8). Leachable nitrate-δ18O correlates with nitrate-δ15N along a characteristic denitrification trend for individual cores. Leachable nitrate-δ15N is not simply correlated with leachable nitrate concentration (which is generally high in shallow sediments and decreases

  11. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Science.gov (United States)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  12. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-09

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  13. Shear-Assisted Production of Few-Layer Boron Nitride Nanosheets by Supercritical CO2 Exfoliation and Its Use for Thermally Conductive Epoxy Composites.

    Science.gov (United States)

    Tian, Xiaojuan; Li, Yun; Chen, Zhuo; Li, Qi; Hou, Liqiang; Wu, Jiaye; Tang, Yushu; Li, Yongfeng

    2017-12-19

    Boron nitride nanosheets (BNNS) hold the similar two-dimensional structure as graphene and unique properties complementary to graphene, which makes it attractive in application ranging from electronics to energy storage. The exfoliation of boron nitride (BN) still remains challenge and hinders the applications of BNNS. In this work, the preparation of BNNS has been realized by a shear-assisted supercritical CO 2 exfoliation process, during which supercritical CO 2 intercalates and diffuses between boron nitride layers, and then the exfoliation of BN layers is obtained in the rapid depressurization process by overcoming the van der Waals forces. Our results indicate that the bulk boron nitride has been successfully exfoliated into thin nanosheets with an average 6 layers. It is found that the produced BNNS is well-dispersed in isopropyl alcohol (IPA) with a higher extinction coefficient compared with the bulk BN. Moreover, the BNNS/epoxy composite used as thermal interface materials has been prepared. The introduction of BNNS results in a 313% enhancement in thermal conductivity. Our results demonstrate that BNNS produced by supercritical CO 2 exfoliation show great potential applications for heat dissipation of high efficiency electronics.

  14. Chemical-vapor-infiltrated silicon nitride, boron nitride, and silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Ventri, R.D.; Galasso, F.S.

    1990-01-01

    This paper reports composites of carbon/chemical-vapor-deposited (CVD) Si 3 N 4 , carbon/CVD BN, mullite/CVD SiC, and SiC yarn/CVD SiC prepared to determine if there were inherent toughness in these systems. The matrices were deposited at high enough temperatures to ensure that they were crystalline, which should make them more stable at high temperatures. The fiber-matrix bonding in the C/Si 3 N 4 composite appeared to be too strong; the layers of BN in the matrix of the C/BN were too weakly bonded; and the mullite/SiC composite was not as tough as the SiC/SiC composites. Only the SiC yarn/CVD SiC composite exhibited both strength and toughness

  15. Method-Dependent Variations in Oxygen Isotope Compositions Obtained for Structural Carbonate in Bone Bioapatite

    Science.gov (United States)

    Metcalfe, J. Z.; Longstaffe, F. J.; White, C. D.

    2007-12-01

    The carbon and oxygen isotope compositions of structural carbonate contained in bioapatite can be obtained by reaction with ortho-phosphoric acid at various temperatures and reaction times, using off-line or automated sample preparation, and continuous-flow or dual-inlet isotope-ratio mass spectrometry (IRMS). Here, we compare the isotopic compositions obtained for structural carbonate in bone bioapatite using (1) conventional off- line gas extraction (25°C) and dual-inlet IRMS, (2) GasBench automated sampling (50°C) and continuous-flow IRMS, and (3) MultiPrep automated sampling (50°C, 90°C) and dual-inlet IRMS. On average, the stable carbon isotope compositions obtained for the same sample using different methods are within ±0.33 per mil (n=29). The reproducibility of oxygen isotope compositions using the different methods is much poorer (±3.18 per mil; n=29). The differences among these methods were most pronounced for samples analyzed using the MultiPrep at 90°C and dual-inlet IRMS. In the latter case, some samples consistently had extremely low oxygen isotope compositions, and also yielded a contaminant gas containing masses 47, 48, and 49, which was not separated from the normal reaction product (carbon dioxide) during cryogenic processing. Normal and anomalous samples do not systematically differ in their crystallinity indices, C/P ratios, gas yields, or total organic content. Anomalous samples have an additional peak in their deconvoluted FTIR spectra at 866 cm-1 and their ignition products lack β-TCP. They also contain slightly more Al and Si cations, and slightly fewer Na cations. It is not clear how these subtle structural and chemical differences relate to the production of the contaminant gas.

  16. Elemental and iron isotopic composition of aerosols collected in a parking structure

    Energy Technology Data Exchange (ETDEWEB)

    Majestic, Brian J., E-mail: brian.majestic@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604 (United States); Anbar, Ariel D. [Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604 (United States); School of Earth and Space Exploration, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604 (United States); Herckes, Pierre [Department of Chemistry and Biochemistry, Arizona State University, PO Box 871604, Tempe, AZ 85287-1604 (United States)

    2009-09-01

    The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM) < 2.5 {mu}m in diameter (the fine fraction) and PM > 2.5 {mu}m were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m{sup -3}) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be + 0.15 {+-} 0.03 per mille and + 0.18 {+-} 0.03 per mille for the PM < 2.5 {mu}m and PM > 2.5 {mu}m fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average = + 0.02 per mille ) and the ceramic brake linings (average = + 0.65 per mille ). Differences in isotopic composition were also observed between the metallic (average = + 0.18 per mille ) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.

  17. Stable isotope compositions (O-C) of reef fish otoliths from the Taiaro lagoon (Tuamotu, French Polynesia): isotopic and biologic implications

    International Nuclear Information System (INIS)

    Blamart, D.; Juillet-Leclerc, A.; Ouahdi, R.; Escoubeyrou, K.; Lecomte-Finiger, R.

    2002-01-01

    Nuclei (larval stage) and outer parts (adult stage) of fish otoliths from the Taiaro closed lagoon (French Polynesia) and adjacent ocean have been analysed for the C-O isotopic compositions. δ 18 O values of the nuclei of both populations indicate that isotopic equilibrium is reached. This implies that the lagoonal fish population has done its complete biological cycle in the lagoon and represents an adaptation in a closed system. δ 18 O values of the outer parts show a slight isotopic disequilibrium ( 13 C values exhibit a strong isotopic disequilibrium related to metabolic activity. (authors)

  18. Numerical modeling of radioactive neutron capture influence of Hf isotopic composition dynamics rate in the RBMK-1500 reactor

    CERN Document Server

    Jurkevicius, A; Auzelyte, V; Remeikis, V

    2000-01-01

    The nuclide composition of the nuclear fuel and isotopic composition of the hafnium in the radial neutron flux detectors of the RBMK-1500 reactor were numerically modelled. The sequence SAS2 from package SCALE 4.3 was used for calculations. The nuclear fuel nuclide concentrations, the concentration of Hf isotopes, the neutron absorption rate on Hf isotopes and summary absorption rate dependences on the fuel assembly burn up are presented. (author)

  19. Uncertainties in the oxygen isotopic composition of barium sulfate induced by coprecipitation of nitrate.

    Science.gov (United States)

    Michalski, Greg; Kasem, Michelle; Rech, Jason A; Adieu, Sabine; Showers, William S; Genna, Bernie; Thiemens, Mark

    2008-10-01

    Coprecipitation of nitrate and sulfate by barium has probably resulted in significant error in numerous studies dealing with the oxygen isotopic composition of natural sulfates using chemical/thermal conversion of BaSO(4) and analysis by isotope ratio mass spectrometry. In solutions where NO(3) (-)/SO(4) (2-) molar ratios are above 2 the amount of nitrate coprecipitated with BaSO(4) reaches a maximum of approximately 7% and decreases roughly linearly as the molar ratio decreases. The fraction of coprecipitated nitrate appears to increase with decreasing pH and is also affected by the nature of the cations in the precipitating solution. The size of the oxygen isotope artifact in sulfate depends both on the amount of coprecipitated nitrate and the delta(18)O and Delta(17)O values of the nitrate, both of which can be highly variable. The oxygen isotopic composition of sulfate extracted from atmospheric aerosols or rain waters are probably severely biased because photochemical nitrate is usually also present and it is highly enriched in (18)O (delta(18)O approximately 50-90 per thousand) and has a large mass-independent isotopic composition (Delta(17)O approximately 20-32 per thousand). The sulfate delta(18)O error can be 2-5 per thousand with Delta(17)O artifacts reaching as high as 4.0 per thousand.

  20. First Measurements of Osmium Concentration and Isotopic Composition in a Summit, Greenland Ice Core

    Science.gov (United States)

    Osterberg, E. C.; Sharma, M.; Hawley, R. L.; Courville, Z.

    2010-12-01

    Osmium (Os) is one of the rarer elements in the environment and therefore one of the most difficult to accurately measure, but its isotopically distinctive crustal, mantle-derived, and extra-terrestrial sources make it a valuable geochemical tracer. Recent state-of-the-art analyses of precipitation, river water, and ocean water samples from around the world have revealed elevated concentrations of Os with a characteristically low (unradiogenic) Os isotopic signature (187Os/188Os). This unusual low Os isotopic signal has been interpreted as evidence for widespread Os pollution due to the smelting of Platinum Group Element (PGE) sulfide ores for use in automobile catalytic converters. However, an environmental time series of Os concentrations and isotopic composition spanning the pre-industrial to modern era has not previously been developed to evaluate changes in atmospheric Os sources through time. Here we present the first measurements of Os concentration and isotopic composition (to our knowledge) in a 100 m-long ice core collected from Summit, Greenland, spanning from ca. 1700 to 2010 AD. Due to the extremely low Os concentrations in snow (10-15 g/g), these analyses have only recently become possible with advances in Thermal Ionization Mass Spectrometry (TIMS) and ultra-clean analytical procedures. Initial results indicate that the 187Os/188Os of Greenland snow was unradiogenic (187Os/188Os = 0.13-0.15) for at least several periods over the past 300 years, including both pre-anthropogenic and modern times. Os concentrations in the Summit ice core are relatively high (11-52 pg/kg) compared to previously measured precipitation in North America, Europe, Asia and Antarctic sea ice (0.35-23 pg/kg). The low (unradiogenic) isotopic composition are consistent with extraterrestrial (cosmic dust and meteorites; 187Os/188Os = 0.13) and possibly volcanic (187Os/188Os = 0.15-0.6) Os sources, although the Os isotopic composition of volcanic emissions is poorly constrained

  1. Magnesium isotope compositions of Solar System materials determined by double spiking

    Science.gov (United States)

    Hin, R.; Lai, Y. J.; Coath, C.; Elliott, T.

    2015-12-01

    As a major element, magnesium is of interest for investigating large scale processes governing the formation and evolution of rocky planetary bodies. Determining the Mg isotope composition of the Earth and other planetary bodies has hence been a topic of interest ever since mass-dependent fractionation of 'non-traditional' stable isotopes has been used to study high-temperature processes. Published results, however, suffer from disagreement on the Mg isotope compositions of the Earth and chondrites [1-5], which is attributed to residual matrix effects. Nonetheless, most recent studied have converged towards a homogeneous (chondritic) Mg isotope composition in the Solar System [2-5]. However, in several of the recent studies there is a hint of a systematic difference of about 0.02-0.06‰ in the 26Mg/24Mg isotope compositions of chondrites and Earth. Such difference, however, is only resolvable by taking standard errors, which assumes robust data for homogenous sample sets. The discrepancies between various studies unfortunately undermine the confidence in such robustness and homogeneity. The issues with matrix effects during isotopic analyses can be overcome by using a double spike approach. Such methodology generally requires three isotope ratios to solve for three unknowns, a requirement that cannot be met for Mg. However, using a newly developed approach, we present Mg isotope compositions obtained by critical mixture double spiking. This new approach should allow greater confidence in the robustness of the data and hence enable improvement of. Preliminary data indicate that chondrites have a resolvable ~0.04‰ lighter 26Mg/24Mg than (ultra)mafic rocks from Earth, Mars and the eucrite parent body, which appear indistinguishable from each other. It seems implausible that this difference is caused by magmatic process such as partial melting or crystallisation. More likely, Mg isotopes are fractionated by a non-magmatic process during the formation of planets, e

  2. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water

    Science.gov (United States)

    de La Rocha, Christina L.

    2003-05-01

    The silicon isotope composition (δ30Si) of biogenic opal provides a view of the silica cycle at times in the past. Reconstructions require the knowledge of silicon isotope fractionation during opal biomineralization. The δ30Si of specimens of hexactinellid sponges and demosponges growing in the modern ocean ranged from -1.2‰ to -3.7‰ (n = 6), corresponding to the production of opal that has a δ30Si value 3.8‰ ± 0.8‰ more negative than seawater silicic acid and a fractionation factor (α) of 0.9964. This is three times the fractionation observed during opal formation by marine diatoms and terrestrial plants and is the largest fractionation of silicon isotopes observed for any natural process on Earth. The δ30Si values of sponge spicules across the Eocene-Oligocene boundary at Ocean Drilling Program Site 689 on Maud Rise range from -1.1‰ to -3.0‰, overlapping the range observed for sponges growing in modern seawater.

  3. Comparison of different methods of determining plutonium content and isotopic composition

    International Nuclear Information System (INIS)

    Dowell, M.R.W.

    1985-05-01

    At Rockwell Hanford Operations, several different methods are used to determine plutonium content and isotopic composition. These include alpha particle energy analysis, calorimetry/gamma-ray analysis, mass spectrometry, and low energy ray assay. Each is used in a process control environment and has its advantages and disadvantages in terms of sample matrix, sample preparation, concentration, error ranges, detection limits, and turn around time. Of the methods discussed, special attention is paid to the Plutonium Isotopics Solution Counter, a low energy gamma ray assay system designed to provide plutonium and americium content and isotopic composition of Pu-238 through Pu-241 and Am-241. It is qualitatively and quantitatively compared to the other methods. A brief description of sample types which the Solution Counter analyzes is presented. 4 refs., 4 tabs

  4. Comparison of different methods of determining plutonium content and isotopic composition

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    At Rockwell Hanford Operations, several different methods are used to determine plutonium content and isotopic composition. These include alpha particle energy analysis, calorimetry/gamma-ray analysis, mass spectrometry, and low energy gamma-ray assay. Each is used in a process control environment and has its advantages and disadvantages in terms of sample matrix, sample preparation, concentration, error ranges, detection limits, and turn around time. Of the methods discussed, special attention is paid to the Plutonium Isotopics Solution Counter, a low energy gamma-ray assay system designed to provide plutonium and americium content and isotopic composition of Pu-238 through Pu-241 and Am-241. It is qualitatively and quantitatively compared to the other methods. A brief description of sample types which the Solution Counter analyzes is presented

  5. Effect of Two Organic Manures, Zinc and Boron on Yield, Yield Components and Grain Chemical Composition in Millet

    Directory of Open Access Journals (Sweden)

    T Nejad Hosseini

    2012-02-01

    Full Text Available A field study was conducted in Qaen region using complete randomized blocks with three replications to study the effect of organic manure, zinc and boron on yield and yield components of millet and grain chemical composition. The treatments included factorial arrangement of municipal solid waste compost and cow manure (each at 25 ton ha-1, Zn (0, 50 kg ha-1 and B (0, 10 kg ha-1 by using their respective: ZnSO4 and H3BO3 salts. Results showed that the effect of Zn and B increased total plant biomass, N and K concentrations in grain. Interaction effects of cow manure and Zn, increased grain yield to 239.7 %, total plant biomass 157 % compared to their controls. Organic manure application significantly increased grain yield, total plant biomass, spike length and 1000 grain weight compared to their controls. Interaction effects of B and cow manure increased total plant biomass, P, K and Cu concentrations in grain by 150.6, 102.8, 75 and 118.6 percent, respectively compared to control. So according to the results, Zn, B and organic manures application had significant impacts in improving yield, yield components and seed quality of millet, but more research are needed with respect to amounts of Zn and B and their proper methods of applications.

  6. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry.

    Science.gov (United States)

    Betti, M; Rasmussen, G; Koch, L

    1996-07-01

    A double-focusing Glow Discharge Mass Spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from Thermal Ionization Mass Spectrometry (TIMS). For boron and lithium at microg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques.

  7. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    Science.gov (United States)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  8. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  9. Review of data of oxygen and hydrogen isotope composition in thermal waters in China

    International Nuclear Information System (INIS)

    Fan Zhicheng; Wang Jiyang

    1988-01-01

    Based on the data of δD and δ 18 O content from more than 600 water samples, this paper reviews the stable isotope composition of thermal waters in China. Data to be used in this paper were mostly collected from published literatures with a few by authors. 9 figs, 2 tabs

  10. An IBM-1620 code for calculaton of isotopic composition of irradiated uranium (ISOCOM-1)

    International Nuclear Information System (INIS)

    Soliman, R.H.; Karchava, G.; Hamouda, I.

    1974-01-01

    The present work gives a description of an IBM-1620 code to calculate the isotopic composition during the irradiation of a nuclear fuel, which initially consists of 235 U and 238 U. The numerical results of test calculations as well as the ET-RR-1 reactor calculations are presented. The code is in operation since 1968

  11. Soil moisture effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Claire L. Phillips; Nick Nickerson; David Risk; Zachary E. Kayler; Chris Andersen; Alan Mix; Barbara J. Bond

    2010-01-01

    The carbon isotopic composition (δ13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the δ13C of soil respiration, which suggests indirectly that recently fixed photosynthates...

  12. Interpretation of groundwater origin in the Velenje coal mine on the basis of isotope composition

    Directory of Open Access Journals (Sweden)

    Janko Urbanc

    2002-12-01

    Full Text Available The aim of the investigation was to determine the isotopic properties of cave waters from the Velenje coal mine and define the recharge areas of individual aquifers. With regard to the oxygen isotope composition, groundwater in the Velenje coal mine can beclassified into three types. Typical d18O values of the first type are around -9 ‰ and are found in surface waters in the vicinity of the mine, therefore it is supposed that these waters are recharged locally. The second type is represented mainly by waters from thelower part of the pliocene aquifer. The average oxygen composition of these waters is about -11 ‰. This isotope composition is considerably different from the isotope composition of recent waters from the mine’s vicinity, which leads to the conclusion that these are older, fossile waters. These waters also have a very high degree of mineralization and consequently conductivity. Waters of the third type have average δ18O values around -10 ‰ and originate mainly from triassic dolomites. These waters could be a mixture of recentand old waters, but it is also possible that they flow into the coal mine from the higher areas of Paški Kozjak.

  13. Utilizing geochemical, hydrologic, and boron isotopic data to assess the success of a salinity and selenium remediation project, Upper Colorado River Basin, Utah.

    Science.gov (United States)

    Naftz, David L; Bullen, Thomas D; Stolp, Bert J; Wilkowske, Christopher D

    2008-03-15

    Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R(2) values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177 metric tons/month and decreased after remediation to less than 590 metric tons/month. The net gain in dissolved Se load during the same pre-closure period exceeded 120 kg/month and decreased to less than 18 kg/month. Sen's slope estimator verified the statistical significance of the modeled reduction in monthly salinity and Se loads. Measured gain in dissolved constituent loads during seepage tests conducted during September and November 2003 ranged from 0.334 to 0.362 kg/day for dissolved Se and 16.9 to 26.1 metric tons/day for dissolved salinity. Stream discharge and changes in the isotopic values of delta boron-11 (delta(11)B) were used in a mixing model to differentiate between constituent loadings contributed by residual sewage effluent and naturally occurring ground-water seepage entering Ashley Creek. The majority of the modeled delta(11)B values of ground-water seepage were positive, indicative of minimal seepage contributions from sewage effluent. The stream reach between sites S3 and AC2A contained a modeled ground-water seepage delta(11)B value of -2.4 per thousand, indicative of ground-water seepage composed of remnant water still draining from the abandoned sewage lagoons.

  14. Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions

    Science.gov (United States)

    Zhang, Feifei; Zhu, Xiangkun; Yan, Bin; Kendall, Brian; Peng, Xi; Li, Jin; Algeo, Thomas J.; Romaniello, Stephen

    2015-11-01

    The nature of ocean redox chemistry between the Cryogenian Sturtian and Marinoan glaciations (ca. 663-654 Ma) is important for understanding the relationship between environmental conditions and the subsequent emergence and expansion of early animals. The Cryogenian-to-Ediacaran stratigraphic succession of the Nanhua Basin in South China provides a nearly complete sedimentary record of the Cryogenian, including a continuous record of interglacial sedimentation. Here, we present a high-resolution pyrite Fe isotope record for a ∼120-m-long drill-core (ZK105) through Sturtian glacial diamictites and the overlying interglacial sediments in the Nanhua Basin to explore changes in marine chemistry during the late Cryogenian. Our pyrite Fe isotope profile exhibits significant stratigraphic variation: Interval I, comprising middle to upper Tiesi'ao diamictites (correlative with the Sturtian glaciation), is characterized by light, modern seawater-like Fe isotope compositions; Interval II, comprising uppermost Tiesi'ao diamictites and the basal organic-rich Datangpo Formation, is characterized by an abrupt shift to heavier Fe isotope compositions; and Interval III, comprising organic-poor grey shales in the middle Datangpo Formation, is characterized by the return of lighter, seawater-like Fe isotope compositions. We infer that Interval I pyrite was deposited in a predominantly anoxic glacial Nanhua Basin through reaction of dissolved Fe2+ and H2S mediated by microbial sulfate reduction (MSR). The shift to heavier pyrite Fe isotope values in Interval II is interpreted as partial oxidation of ferrous iron to ferric iron and subsequent near-quantitative reduction and transformation of Fe-oxyhydroxides to pyrite through coupling with oxidation of organic matter in the local diagenetic environment. In Interval III, near-quantitative oxidation of ferrous iron to Fe-oxyhydroxides followed by near-quantitative reduction and conversion to pyrite in the local diagenetic environment

  15. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    Science.gov (United States)

    Paul, Maxence; Bridgestock, Luke; Rehkämper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28±21 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12±4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated

  16. Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites

    Directory of Open Access Journals (Sweden)

    A. Juillet-Leclerc

    2010-08-01

    Full Text Available The "δ11B-pH" technique was applied to modern and ancient corals Porites from the sub-equatorial Pacific areas (Tahiti and Marquesas spanning a time interval from 0 to 20.720 calendar years to determine the amplitude of pH changes between the Last Glacial Period and the Holocene. Boron isotopes were measured by Multi-Collector – Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS with an external reproducibility of 0.25‰, allowing a precision of about ±0.03 pH-units for pH values between 8 and 8.3. The boron concentration [B] and isotopic composition of modern samples indicate that the temperature strongly controls the partition coefficient KD for different aragonite species. Modern coral δ11B values and the reconstructed sea surface pH values for different Pacific areas match the measured pH expressed on the seawater scale and confirm the calculation parameters that were previously determined by laboratory calibration exercises. Most ancient sea surface pH reconstructions near Marquesas are higher than modern values. These values range between 8.19 and 8.27 for the Holocene and reached 8.30 at the end of the last glacial period (20.7 kyr BP. At the end of the Younger Dryas (11.50±0.1 kyr BP, the central sub-equatorial Pacific experienced a dramatic drop of up to 0.2 pH-units from the average pH of 8.2 before and after this short event. Using the marine carbonate algorithms, we recalculated the aqueous pCO2 to be 440±25 ppmV at around 11.5 kyr BP for corals at Marquesas and ~500 ppmV near Tahiti where it was assumed that pCO2 in the atmosphere was 250 ppmV. Throughout the Holocene, the difference in pCO2 between the ocean and the atmosphere at Marquesas (ΔpCO2 indicates that the surface waters behave as a moderate CO2 sink or source (−53 to 20 ppmV during El Niño-like conditions. By contrast, during the last glacial/interglacial transition, this area was a marked source of CO2 (21 to 92 ppmV for the atmosphere, highlighting

  17. Development of impact resistant boron/aluminum composites for turbojet engine fan blades

    Science.gov (United States)

    Melnyk, P.; Toth, I. J.

    1975-01-01

    Composite fabrication was performed by vacuum press diffusion bonding by both the foil-filament array and preconsolidated monotape methods. The effect of matrix material, fiber diameter, matrix enhancement, fiber volume reinforcement, test temperature, angle-plying, notch, impact orientation, processing variables and fabrication methods on tensile strength and Charpy impact resistance are evaluated. Root attachment concepts, were evaluated by room and elevated temperature tensile testing, as well as by pendulum-Izod and ballistic impact testing. Composite resistance to foreign object damage was also evaluated by ballistic impacting of panels using projectiles of gelatin, RTV rubber and steel at various velocities, and impingement angles. A significant improvement in the pendulum impact resistance of B-Al composites was achieved.

  18. Improved Thermal Performance of Diamond-Copper Composites with Boron Carbide Coating

    Science.gov (United States)

    Hu, Haibo; Kong, Jian

    2013-11-01

    B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10-6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.

  19. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  20. Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites

    Directory of Open Access Journals (Sweden)

    Michael S. Crossley

    2017-12-01

    Full Text Available Soybean aphid (Aphis glycines Matsumura is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L. and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites.

  1. Measurement of the isotopic composition of dissolved iron in the open ocean

    Science.gov (United States)

    Lacan, F.; Radic, A.; Jeandel, C.; Poitrasson, F.; Sarthou, G.; Pradoux, C.; Freydier, R.

    2008-12-01

    This work demonstrates for the first time the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for a typical open ocean Fe concentration range (0.1-1 nM). It also presents the first data of this kind. Iron is preconcentrated using a Nitriloacetic Acid Superflow resin and purified using an AG1x4 anion exchange resin. The isotopic ratios are measured with a MC-ICPMS Neptune, coupled with a desolvator (Aridus II), using a 57Fe-58Fe double spike mass bias correction. Measurement precision (0.13‰, 2SD) allows resolving small iron isotopic composition variations within the water column, in the Atlantic sector of the Southern Ocean (from δ 57Fe = -0.19 to +0.32‰). Isotopically light iron found in the Upper Circumpolar Deep Water is hypothesized to result from organic matter remineralization. Shallow samples suggest that, if occurring, an iron isotopic fractionation during iron uptake by phytoplankton is characterized by a fractionation factor, such as: |Δ57Fe(plankton-seawater)| < 0.48‰.

  2. Methane Carbon Isotopic Composition Reveals Changing Production Pathways Across a Gradient of Permafrost Thaw

    Science.gov (United States)

    Rocci, K.; Burke, S. A.; Clariza, P.; Malhotra, A.; McCalley, C. K.; Verbeke, B. A.; Werner, S. L.; Roulet, N. T.; Varner, R. K.

    2017-12-01

    Methane (CH4) emission in areas of discontinuous permafrost may increase with warming temperatures resulting in a positive feedback to climate change. Characterizing the production pathways of CH4, which may be inferred by measuring carbon isotopes, can help determine underlying mechanistic changes. We studied CH4 flux and isotopic composition of porewater (δ13C-CH4) in a sub-arctic peatland in Abisko, Sweden to understand controls on these factors across a thaw gradient during four growing seasons. Methane chamber flux measurements and porewater samples were collected in July 2013, and over the growing seasons of 2014 to 2016. Samples were analyzed on a Gas Chromatograph with a Flame Ionization Detector for CH4 concentrations and a Quantum Cascade Laser for carbon isotopes. Increased emission rates and changing isotopic signatures were observed across the thaw gradient throughout the growing season. While CH4 flux increased with increases in temperature and shallower water table, δ13C-CH4 exhibited a seasonal pattern that did not correlate with measured environmental variables, suggesting dependence on other factors. The most significant controlling factor for both flux and isotopic signature was plant community composition, specifically, the presence of graminoid species. Graminoid cover increases with thaw stage so both CH4 emissions and δ13C-CH4 are likely to increase in a warmer world, suggesting a shift toward the acetoclastic pathway of methane production.

  3. Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts.

    Science.gov (United States)

    Michalski, Greg; Kolanowski, Michelle; Riha, Krystin M

    2015-01-01

    Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ(15)N values of synthetic and natural nitrates were 0 ± 2 ‰ similar to the air N2 from which they are derived. The δ(18)O values of synthetic nitrates were 23 ± 3 ‰, similar to air O2, and natural nitrate fertilizer δ(18)O values (55 ± 5 ‰) were similar to those observed in atmospheric nitrate. The Δ(17)O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ(17)O values of 18 ± 2 ‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models.

  4. Monitoring of chemical and isotopic composition of the Euphrates river in Syria

    International Nuclear Information System (INIS)

    Kattan, Z.

    2008-11-01

    The ratios of stable isotopes ( 18 O and 2 H), tritium content, together with the chemical composition of major ions of the Euphrates and Balikh (Euphrates tributary) Rivers, and the groundwaters of four wells drilled close to the Euphrates River course, were measured on a monthly basis. The Euphrates River water was monitored at twelve stations along its course in Syria during the period from January 2004 to December 2006, whereas those of the Balikh and groundwaters were only investigated during 2005. Although, the spatial variations of heavy stable isotope concentrations are moderated with respect to other large rivers in the world, the concentrations of these isotopes increase generally downstream the Euphrates River, with a sharp enrichment at Al-Assad Lake. This sharp increase could be explained by the effect of direct evaporation from the river and its tributaries; and the effect of drainage return flows of irrigation waters, isotopically more enriched. Enrichment of stable isotopes in the Euphrates River water was used as a direct indicator of evaporation. Based on an experimental evaporation result of a Euphrates water sample and the integral enrichment of heavy stable isotopes in the Euphrates River system, the amount of water losses by evaporation from Al-Assad Lake was estimated to be about 1.26 to 1.62 billion m''3, according to 18 O and deuterium ( 2 H), respectively. This amount represents about 12-16% of the renewable surface water resources in the country. (author)

  5. Inventory Assessment of Pin-wise Isotopic Composition in the Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Zafar Iqbal; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    There is no direct method to determine the pin-wise composition in a reasonable time frame, so, different multifaceted attempts have been made to calculate isotopic distribution of the SNF under special circumstances. There are numerous factors that influence the final SNF composition; initial fuel composition (especially enrichment), operating conditions of the reactor and final burnup imparted to the fuel, to name a few. An assumption, usually employed implicitly, is that the SNF composition is a function of the burnup and the initial enrichment only. Current methodology can be utilized by making use of the three code strategy i.e. (HELIOS 1.5, MASTER 2.2, and ORIGEN2) to assess the amount of the isotopes that are hazardous for being radioactive as well as those ones that have some role (positive or negative) in reactivity variations inside the core. Effect of the operating power i.e. dominant neutron flux is also incorporated. The minor spectrum variation from BOC to the EOC could be neglected because PWR assemblies are adorned in a way to make the neutron spectrum uniform over the core; (2) minor variation of the neutron spectrum has very little effect on the SNF composition. Few isotopes like Cs-135, Pu-241, etc. show remarkable dependence on the reactor operating conditions (e.g. operating power level) while many important isotopes like U-235, I-129, Cs-137, etc. depend on the net burnup imparted to the fuel only. Detailed pin-wise isotopic composition of the spent nuclear fuel from PWRs could be ascertained if influence of all of the concerned parameters is considered precisely. Here, we considered effect of the burnup on the composition of a selected fuel pin from the assembly B-7. Effect of the operating power level (i.e. flux) is accounted implicitly. This technique of composition reconstruction utilizes the pin-wise burnup calculation capability of the core analysis code MASTER 2.2. The relative magnitudes of the considered isotopes from two different

  6. Coordinated Oxygen Isotopic and Petrologic Studies of CAIS Record Varying Composition of Protosolar

    Science.gov (United States)

    Simon, Justin I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2012-01-01

    Ca-, Al-rich inclusions (CAIs) record the O-isotope composition of Solar nebular gas from which they grew [1]. High spatial resolution O-isotope measurements afforded by ion microprobe analysis across the rims and margin of CAIs reveal systematic variations in (Delta)O-17 and suggest formation from a diversity of nebular environments [2-4]. This heterogeneity has been explained by isotopic mixing between the O-16-rich Solar reservoir [6] and a second O-16-poor reservoir (probably nebular gas) with a "planetary-like" isotopic composition [e.g., 1, 6-7], but the mechanism and location(s) where these events occur within the protoplanetary disk remain uncertain. The orientation of large and systematic variations in (Delta)O-17 reported by [3] for a compact Type A CAI from the Efremovka reduced CV3 chondrite differs dramatically from reports by [4] of a similar CAI, A37 from the Allende oxidized CV3 chondrite. Both studies conclude that CAIs were exposed to distinct, nebular O-isotope reservoirs, implying the transfer of CAIs among different settings within the protoplanetary disk [4]. To test this hypothesis further and the extent of intra-CAI O-isotopic variation, a pristine compact Type A CAI, Ef-1 from Efremovka, and a Type B2 CAI, TS4 from Allende were studied. Our new results are equally intriguing because, collectively, O-isotopic zoning patterns in the CAIs indicate a progressive and cyclic record. The results imply that CAIs were commonly exposed to multiple environments of distinct gas during their formation. Numerical models help constrain conditions and duration of these events.

  7. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth

    Science.gov (United States)

    Kang, Jin-Ting; Ionov, Dmitri A.; Liu, Fang; Zhang, Chen-Lei; Golovin, Alexander V.; Qin, Li-Ping; Zhang, Zhao-Feng; Huang, Fang

    2017-09-01

    To better constrain the Ca isotopic composition of the Bulk Silicate Earth (BSE) and explore the Ca isotope fractionation in the mantle, we determined the Ca isotopic composition of 28 peridotite xenoliths from Mongolia, southern Siberia and the Siberian craton. The samples are divided in three chemical groups: (1) fertile, unmetasomatized lherzolites (3.7-4.7 wt.% Al2O3); (2) moderately melt-depleted peridotites (1.3-3.0 wt.% Al2O3) with no or very limited metasomatism (LREE-depleted cpx); (3) strongly metasomatized peridotites (LREE-enriched cpx and bulk rock) further divided in subgroups 3a (harzburgites, 0.1-1.0% Al2O3) and 3b (fertile lherzolites, 3.9-4.3% Al2O3). In Group 1, δ44/40Ca of fertile spinel and garnet peridotites, which experienced little or no melting and metasomatism, show a limited variation from 0.90 to 0.99‰ (relative to SRM 915a) and an average of 0.94 ± 0.05‰ (2SD, n = 14), which defines the Ca isotopic composition of the BSE. In Group 2, the δ44/40Ca is the highest for three rocks with the lowest Al2O3, i.e. the greatest melt extraction degrees (average 1.06 ± 0.04 ‰, i.e. ∼0.1‰ heavier than the BSE estimate). Simple modeling of modal melting shows that partial melting of the BSE with 103 ln ⁡αperidotite-melt ranging from 0.10 to 0.25 can explain the Group 2 data. By contrast, δ44/40Ca in eight out of nine metasomatized Group 3 peridotites are lower than the BSE estimate. The Group 3a harzburgites show the greatest δ44/40Ca variation range (0.25-0.96‰), with δ44/40Ca positively correlated with CaO and negatively correlated with Ce/Eu. Chemical evidence suggests that the residual, melt-depleted, low-Ca protoliths of the Group 3a harzburgites were metasomatized, likely by carbonate-rich melts/fluids. We argue that such fluids may have low (≤0.25‰) δ44/40Ca either because they contain recycled crustal components or because Ca isotopes, similar to trace elements and their ratios, may be fractionated by kinetic and

  8. Boron and strontium isotope ratios and major/trace elements concentrations in tea leaves at four major tea growing gardens in Taiwan.

    Science.gov (United States)

    Chang, Cheng-Ta; You, Chen-Feng; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Chao, Hung-Chun; Liu, Hou-Chun

    2016-06-01

    Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial sources. This study aims to test whether tea leaf origin can be discriminated using (10)B/(11)B and Sr isotopic composition data, along with concentrations of major/trace elements, in tea specimens collected from major plantation gardens in Taiwan. The tea leaves were digested by microwave and analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The data showed significant variations in (87)Sr/(86)Sr ratios (from 0.70482 to 0.71462), which reflect changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Taitung garden and the least radiogenic ones were from the Hualien garden. The δ (11)B was found to change appreciably (δ (11)B = 0.38-23.73 ‰) which could be due to fertilizers. The maximum δ (11)B was also observed in tea samples from the Hualien garden. Principal component analysis combining (87)Sr/(86)Sr, δ (11)B and major/trace elements results successfully discriminated different sources of major tea gardens in Taiwan, except the Hualien gardens, and this may be due to rather complicated local geological settings.

  9. Constraints on Phanerozoic paleotemperature and seawater oxygen isotope evolution from the carbonate clumped isotope compositions of Late Paleozoic marine fossils (Invited)

    Science.gov (United States)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Pérez-Huerta, A.; Shenton, B.; Yancey, T. E.

    2013-12-01

    A long-standing geoscience controversy has been the interpretation of the observed several per mil increase in the oxygen isotope compositions of marine calcites over the Phanerozoic Eon. Explanations for this trend have included decreasing seawater paleotemperatures, increasing seawater oxygen isotope values, and post-depositional calcite alteration. Carbonate clumped isotope paleothermometry is a useful geochemical tool to test these hypotheses because of its lack of dependence on the bulk isotopic composition of the water from which carbonate precipitated. This technique is increasingly applied to ancient marine invertebrate shells, which can be screened for diagenesis using chemical and microstructural approaches. After several years of clumped isotope analysis of these marine carbonates in a handful of laboratories, a long-term temperature and isotopic trend is emerging, with the results pointing to relatively invariant seawater δ18O and generally decreasing seawater temperatures through the Phanerozoic. Uncertainties remain, however, including the effects of reordering of primary clumped isotope compositions via solid-state diffusion of C and O through the mineral lattice at elevated burial temperatures over hundred million year timescales. To develop a quantitative understanding of such reordering, we present data from laboratory heating experiments of late Paleozoic brachiopod calcite. When combined with kinetic models of the reordering reaction, the results of these experiments suggest that burial temperatures less than ~120 °C allow for preservation of primary brachiopod clumped isotope compositions over geological timescales. Analyses of well-preserved Carboniferous and Permian brachiopods reinforce these results by showing that shells with apparent clumped isotope temperatures of ~150 °C are associated with deep sedimentary burial (>5 km), whereas those with putatively primary paleotemperatures in the 10-30 °C range experienced no more than ~1.5 km

  10. Effect of self-bias on the elemental composition and neutron absorption of boron carbide films deposited by RF plasma enhanced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Bute, A., E-mail: butearundhati@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jagannath, E-mail: ssai@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kar, R., E-mail: rajibkar@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Chopade, S.S., E-mail: supriyagindalkar@rediffmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Desai, S.S., E-mail: ssdesai@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Deo, M.N., E-mail: mndeo@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Rao, Pritty, E-mail: praocccm@rediffmail.com [The National Centre for Compositional Characterization of Materials, Hyderabad (India); Chand, N., E-mail: naresh@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kumar, S., E-mail: sanjivcccm@rediffmail.com [The National Centre for Compositional Characterization of Materials, Hyderabad (India); Singh, K., E-mail: singhkw@barc.gov.in [Fusion Reactor Material Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patil, D.S., E-mail: dspatil@iitb.ac.in [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Sinha, S., E-mail: ssinha@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-10-01

    Boron carbide films are increasingly being investigated for their application in new generation neutron detectors. It is implemented as conversion layer for neutrons and emerging as a potential alternative to {sup 3}He based detectors. This work reports synthesis of boron carbide (B{sub x}C) films from ortho-carborane (o-C{sub 2}B{sub 10}H{sub 12}) by radio frequency (RF) plasma enhanced chemical vapour deposition (PECVD) technique. Dependence of chemical composition, stoichiometry and total macroscopic cross section (Σ{sub t}) has been studied as a function of self-bias on the substrate, varied in the range −75 V to −175 V. Films were characterized by 3D optical profilometry, X-ray photoelectron spectroscopy (XPS), proton elastic backscattering spectrometry (p-EBS), Fourier transform infra-red spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM). Characterization results show noticeable change in the bulk as well as surface chemical composition, surface morphology and film stoichiometry with self-bias. Neutron transmission measurements exhibit increase in Σ{sub t} from 170.47 cm{sup −1} for −75 V film to 273.38 cm{sup −1} for −175 V film with self-bias. - Highlights: • Boron carbide films were deposited by RF PECVD, varying substrate RF self-bias. • B/C ratio increased with decreasing RF self-bias leading to boron rich B{sub x}C films. • Total macroscopic cross section for neutrons Σ{sub t} is found to increase with self-bias. • Higher bias caused rise in oxygen impurity in films and decrease in film stability.

  11. Regulation of Isotopic Composition of Water - way of Improvement of Cosmonauts Drinking Water Functional Properties

    Science.gov (United States)

    Kulikova, Ekaterina; Utina, Dina; Vorozhtsova, Svetlana; Severyuhin, Yuri; Abrosimova, Anna; Sinyak, Yuri; Ivanov, Alexander

    The problem in providing drinking water to cosmonauts is solved - at this moment there is a task to improve the functional properties of the water. One of the perspectives of this trend is the use of light isotopic water. The animal studies have shown that long-term consumption of water with a depletion of deuterium and oxygen heavy isotopes accelerates the rise of mass non-irradiated mice, the phase fluctuations reducing or increasing hematological parameters were having adaptive nature. These fluctuations didn’t overcome values beyond the physiological norm of this type of animal. It is established that the therapeutic use of light isotopic water with 35 - 90 ppm in deuterium increases the survival of irradiated mice by an average of 30%, contributes to the preservation of irradiated animals body weight. Treatment of acute radiation sickness with light isotopic water stimulates hematopoietic recovery. At the same time, keeping mice drinking light isotopic water for 7 - 8 days before the irradiation (from 4 to 8.5 Gr) has no effect on the level of radio resistance. Longer keeping mice on light isotopic water, for 14 -21 days - reduction in life expectancy, animal mass, bone marrow cellularity and the level of white blood cells in irradiated animals is noted. It was established that keeping mice on light isotopic water for 14 days before exposure in experimental animals causes an increase in the mitotic index and the frequency of formation of aberrant mitosis after 24 hours of Co(60) gamma radiation in doses of 1 , 2, and 4 Gr. Thus, it is clear that the regulation of the isotopic composition of drinking water - way to improve its functional properties.

  12. The influence of traffic and wood combustion on the stable isotopic composition of carbon monoxide

    Directory of Open Access Journals (Sweden)

    M. Saurer

    2009-05-01

    Full Text Available Carbon monoxide in the atmosphere is originating from various combustion and oxidation processes. Recently, the proportion of CO resulting from the combustion of wood for domestic heating may have increased due to political measures promoting this renewable energy source. Here, we used the stable isotope composition of CO (δ13C and δ18O for the characterization of different CO sources in Switzerland, along with other indicators for traffic and wood combustion (NOx-concentration, aerosol light absorption at different wavelengths. We assessed diurnal variations of the isotopic composition of CO at 3 sites during winter: a village site dominated by domestic heating, a site close to a motorway and a rural site. The isotope ratios of wood combustion emissions were studied at a test facility, indicating significantly lower δ18O of CO from wood combustion compared to traffic emissions. At the village and the motorway site, we observed very pronounced diurnal δ18O-variations of CO with an amplitude of up to 8‰. Solving the isotope mass balance equation for three distinct sources (wood combustion, traffic, clean background air resulted in diurnal patterns consistent with other indicators for wood burning and traffic. The average night-time contribution of wood-burning to total CO was 70% at the village site, 49% at the motorway site and 29% at the rural site based on the isotope mass balance. The results, however, depend strongly on the pure source isotope values, which are not very well known. We therefore additionally applied a combined CO/NOx-isotope model for verification. Here, we separated the CO emissions into different sources based on distinct CO/NOx emissions ratios for wood combustion and traffic, and inserted this information in the isotope mass balance equation. Accordingly, a highly significant agreement between measured and calculated δ18

  13. Chemical and Oxygen Isotopic Composition of Roman and Late Antique Glass from Northern Greece

    Directory of Open Access Journals (Sweden)

    Alberta Silvestri

    2017-01-01

    Full Text Available The present paper emphasizes the importance of measuring the oxygen isotopic and chemical compositions of ancient glass, in order to constrain some features such as age, raw materials, and production technologies and to identify the “fingerprint” of local productions. In this context, thirty-nine Roman and late Antique glass samples and eight chert samples from northern Greece were selected and analysed for their oxygen isotopic and chemical compositions. Results show that the majority of glass samples are produced using natron as flux and have δ18O values of about 15.5‰, plus or minus a few tenths of one per mil, suggesting that raw materials probably come from Levantine area. Four samples are heavily enriched in 18O, and their chemical composition clearly shows that they were made with soda plant ash as flux. Isotopic and chemical data of Greek chert samples support the hypothesis of local production of the above samples. About half of the glass samples have chemical compositions, which allow their age to be constrained to the late Antique period. For the remaining glass, similarities with literature compositional groups are reported and discussed.

  14. Mineralogy and Oxygen Isotope Compositions of Two C-Rich Hydrated Interplanetary Dust Particles

    Science.gov (United States)

    Snead, C. J.; McKeegan, K. D.; Messenger, S.; Nakamura-Messenger, K.

    2012-01-01

    Oxygen isotopic compositions of chondrites reflect mixing between a O-16-rich reservoir and a O-17,O-18-rich reservoir produced via mass-independent fractionation. The composition of the O-16-rich reservoir is reasonably well constrained, but material representing the O-17,O-18-rich end-member is rare. Self-shielding models predict that cometary water, presumed to represent this reservoir, should be enriched in O-17 and O-18 18O by > 200%. Hydrated interplanetary dust particles (IDPs) rich in carbonaceous matter may be derived from comets; such particles likely contain the products of reaction between O-16-poor water and anhydrous silicates that formed in the inner solar system. Here we present mineralogy and oxygen isotope compositions of two C-rich hydrated IDPs, L2083E47 and L2071E35.

  15. Studies of control materials of isotope transformation

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Tetsuji; Suzuki, Hiroshi; Araki, Hiroshi; Fujita, Mitsutane; Hirano, Toshiyuki; Abe, Fujio; Numazawa, Takenori [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1999-02-01

    To control wavelength of laser, the physical properties of control materials of molecular excitation and isotope should be studied. We carried out isotopic enrichment, Si thin film growth, and preparation of boron isotope crystal and to make a calculation code of nuclear transmutation simulation. A gas circulation system for developing isotope laser was produced in order to control of molecular vibration excitation. We developed a single straight system of silicon isotope enrichment and silicon thin film preparation by infrared laser. When laser irradiated Si{sub 2}F{sub 6}, unreacted Si{sub 2}F{sub 6} contained 99.72% of {sup 28}Si at about 956 cm{sup -1} wavelength. When SiF{sub 4} or Si{sub 2}F{sub 6} with enriched isotope were directly decomposed by the plasma CVD method at about from 350 to 450degC, the yield of silicon crystal was about 28%. A homogeneous crystal with 10 mm diameter was obtained as the control material of boron isotope. The computer code for simulation of nuclear transmutation was improved to calculate the displacement damage, change of composition, induced radioactivity and decay heat. (S.Y.)

  16. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts

    Science.gov (United States)

    Rizo, Hanika; Walker, Richard J.; Carlson, Richard W.; Horan, Mary F.; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G.

    2016-05-01

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth’s primary accretionary period have survived to the present.

  17. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates

    Science.gov (United States)

    Kaufman, Alan J.; Hayes, J. M.; Klein, C.

    1990-01-01

    Results are presented on parallel analyses of carbonate and chert microbands in segments from the early Proterozoic Dales Gorge Member of the Brockman Iron Formation (western Australia), including data on isotopic, chemical, and mineralogic variations in microbanded carbonates, cherts, and coexisting minerals in four core segments from Paraburdoo and one from Wittenoom. It is shown that patterns of variation observed in isotopic abundance and mineral composition can be consistently explained in terms of diagenetic replacement of fine-grained primary precipitates by secondary ones, rather than by mineral-dependent fractionations, metamorphism, or the influence of large volumes of water in an open system.

  18. Oxigen isotope compositions as indicators of epidote granite genesis in the Borborema Provinces, NE Brazil

    International Nuclear Information System (INIS)

    Ferreira, V.P.; Valley, J.W; Sial, A.N; Spicuzza, M.J

    2001-01-01

    Neoproterozoic magmatic epidote-bearing granitoids intrude low-grade metapelites in the Cachoeirinha-Salgueiro terrane (CST), and gneisses and migmatites in the Serido terrane (ST), in the Borborema structural province, northeastern Brazil. Granitoids in both terranes contain biotite and hornblende, and are metaluminous, calc-alkalic, and oxidized I-type granites according to White's (1992) classification. However, in spite of these similarities, this work shows that mineral oxygen isotope data from plutons of the two terranes indicate different magma sources, and that magmatic epidote besides crystallizing at different pressure conditions, can have variable isotopic composition (au)

  19. Measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    International Nuclear Information System (INIS)

    Wiedenbeck, M.E.; Greiner, D.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    The results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (E approx. 80 to 230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft are reported. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space we find: 13 C/C = 0.067 +- 0.008, 15 N/N = 0.54 +- 0.03, 17 O/O 18 O/O = 0.019 +- 0.003

  20. A measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    Science.gov (United States)

    Wiedenbeck, M. E.; Greiner, D. E.; Bieser, F. S.; Crawford, H. J.; Heckman, H. H.; Lindstrom, P. J.

    1980-01-01

    The paper reports the results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (80-230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space the following values are found: C-13/C = 0.067 + or - 0.008, N-15/N = 0.54 + or - 0.03, O-17/O less than 0.027, and O-18/O - 0.019 + or - 0.003.

  1. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    Science.gov (United States)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  2. Experimental Evaluation of pH and Temperature Effects on the Adsorption of Boron onto Clay Minerals

    Science.gov (United States)

    Hoenisch, B.; Marone, D.; Ruprecht, J.

    2017-12-01

    Modeling the secular evolution of the concentration [B] and isotopic composition (δ11B) of boron in seawater is hampered by limited constraints on the relative sources (i.e. riverine input of weathering products, hydrothermal convection at mid-ocean ridges and fluids expelled from accretionary prisms) and sinks (i.e. alteration of the oceanic crust, adsorption onto clays, and co-precipitation in carbonates) of boron to and from the ocean. Clays remove approximately 28% of total boron from the ocean and quantification of this sink thus represents a major factor for reconstructing the secular evolution of seawater [B] and δ11B over the Cenozoic. However, the relative strength of the clay sink could have been much smaller in the early Cenozoic compared to today, because borate ion as the charged species is preferentially adsorbed onto detrital clays over boric acid, and because the relative abundance of borate in seawater should have been lower under the more acidic conditions of the early Cenozoic. In addition, different clay minerals tend to fractionate boron isotopes differentially, and the relative composition of clay minerals has varied in the past with the dominant climate and weathering patterns on the continents. We have conducted a range of pH (7.5-8.4) and temperature (3-32°C) experiments with four clay minerals (Kaolinite, Illite, Montmorillonite and Chlorite), to build on previously published but limited experimental data. Similar to a previous study and as expected based on the relative abundance of borate ion in seawater, boron adsorption onto these clays increases at higher pH and lower temperatures, but whereas Montmorillonite and Illite absorb similar quantities of boron, Kaolinite is most and Chlorite least efficient in this process. We are now in the process of characterizing the boron isotope fractionation associated with these adsorption experiments.

  3. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  4. Temperature and Oxygen Isotope Composition of The Ediacaran Ocean: Constraints From Clumped Isotope Carbonate Thermometry

    Science.gov (United States)

    Bonifacie, M.; Eiler, J. M.; Fike, D. A.

    2008-12-01

    The temperature and chemical variations of the early oceans on Earth are highly debated, particularly for periods associated with significant evolutionary change and/or extinction. The temperature of past oceans has been estimated based on conventional carbonate-water and/or silicate-water stable oxygen isotope thermometry. Precambrian carbonates and silicates both exhibit a long-term secular trend of increasing δ18O values with decreasing age. This trend has been used to support two opposite - though related - interpretations: the Earth's oceans gradually cooled over the course of the Proterozoic eon, from a maximum of ~ 60-90°C at ~ 2.5Ga (and were, on average, relatively warm during much of the Paleozoic era) [1]. This interpretation has been supported by Si-isotope proxies and the thermal tolerances of proteins in various classes of microbial organisms [2-3]. Alternatively, the δ18O value of the oceans has gradually increased through time [4-5], and mean Earth surface temperatures varied over a narrow range similar to modern conditions. In other terms, one either assumes an ocean of constant δ18O and infers that climate varied dramatically, or vise versa. Finally, it is possible that post- depositional processes (e.g., diagenesis, burial metamorphism, weathering) has modified the δ18O values of all or most Precambrian sedimentary carbonates and silicates, overprinting any paleoclimatic variations. Carbonate 'clumped isotope' thermometry provides a new way to independently test these hypotheses because it allows one to determine the apparent growth temperatures of carbonate minerals based on their abundances of 13C-18O bonds, as reflected by the 'Δ47' value of CO2 extracted by phosphoric acid digestion [6]. This method is thermodynamically based and independent of the δ18O of water from which the carbonate grew. We will report the initial results of measurements of 'Δ47 for a suite of carbonates from the Sultanate of Oman. This Ediacaran age (~ 635 to

  5. Thallium isotope composition of the upper continental crust and rivers - An investigation of the continental sources of dissolved marine thallium

    Science.gov (United States)

    Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.

    2005-01-01

    The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.

  6. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis).

    Science.gov (United States)

    Kanpanon, Nicha; Kasemsap, Poonpipope; Thaler, Philippe; Kositsup, Boonthida; Gay, Frédéric; Lacote, Régis; Epron, Daniel

    2015-11-01

    Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees (Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex (δ(13)C-L), leaf soluble compounds (δ(13)C-S) and bulk leaf material (δ(13)C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in δ(13)C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6‰ on average) with more variable δ(13)C values than those of untapped trees. δ(13)C-L was higher and more stable across seasons than δ(13)C-S and δ(13)C-B, with a maximum seasonal difference of 0.7‰ for tapped trees and 0.3‰ for untapped trees. δ(13)C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in δ(13)C-L and δ(13)C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between δ(13)C-L and δ(13)C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Effect of angleplying and matrix enhancement on impact-resistant boron/aluminum composites

    Science.gov (United States)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Tensile and dynamic modulus tests, thin sheet Charpy and Izod impact tests, and standard full size Charpy impact tests were conducted on 0.20 mm (8 mil) diameter-B/1100 Al matrix composites. Angleplies ranged from unidirectional to + or - 30 deg. The best compromise between reduced longitudinal properties and increased transverse properties was obtained with + or - 15 deg angleply. The pendulum impact strengths of improved B/Al were higher than that of notched titanium and appear to be enough to warrant consideration of B/Cl for application to fan blades in aircraft gas turbine engines.

  8. The chlorine isotope composition of the moon and implications for an anhydrous mantle.

    Science.gov (United States)

    Sharp, Z D; Shearer, C K; McKeegan, K D; Barnes, J D; Wang, Y Q

    2010-08-27

    Arguably, the most striking geochemical distinction between Earth and the Moon has been the virtual lack of water (hydrogen) in the latter. This conclusion was recently challenged on the basis of geochemical data from lunar materials that suggest that the Moon's water content might be far higher than previously believed. We measured the chlorine isotope composition of Apollo basalts and glasses and found that the range of isotopic values [from -1 to +24 per mil (per thousand) versus standard mean ocean chloride] is 25 times the range for Earth. The huge isotopic spread is explained by volatilization of metal halides during basalt eruption--a process that could only occur if the Moon had hydrogen concentrations lower than those of Earth by a factor of approximately 10(4) to 10(5), implying that the lunar interior is essentially anhydrous.

  9. High precision analysis of isotopic composition for samples used for nuclear cross-section measurements

    Directory of Open Access Journals (Sweden)

    Shibahara Yuji

    2017-01-01

    Full Text Available For the accuracy improvement of nuclear data of minor actinides and long-lived fission products in the project of “Research and development for Accuracy Improvement of neutron nuclear data on Minor Actinides”, the isotopic compositions of two Am samples (241Am sample and 243Am sample were analyzed by thermal ionization mass spectrometry. Only the peak of 241Am was observed in the analysis of 241Am sample, and level of isotopic impurities were improved from 0.1% to 0.0004%. In the analysis of 243Am sample, the peak of unreported isotope of 242mAm was observed in addition to the peaks of 243Am and 241Am. The mass spectrometry also showed that 243Am sample has other unreported impurities such as 239Pu and 240Pu.

  10. Isotopic composition of the anomalous low energy cosmic ray nitrogen and oxygen

    Science.gov (United States)

    Mewaldt, R. A.; Stone, E. C.; Vidor, S. B.; Vogt, R. E.

    1975-01-01

    The isotopic composition of the enhanced fluxes of cosmic ray nitrogen and oxygen observed below 30 MeV/nuc is of interest, whether the nuclei are a sample from some nearby galactic source region that is underabundant in carbon, or a sample of the neutral interstellar medium. Enhanced fluxes in the 6 to 12 MeV/nuc energy interval were measured over a two year period with the Caltech Electron/Isotope Spectrometer on IMP-7. The observed low-energy nitrogen and oxygen nuclei are predominantly N-14 and O-16, with upper limits (84% confidence level) of N-15/N below 0.26, O-17/0 below 0.13, and O-18/0 below 0.12 for other isotopes in the 6-12 MeV/nuc energy interval. The implications of these results for the origin of the enhanced nitrogen and oxygen fluxes are discussed.

  11. Results of the international Pu-2000 exercise for plutonium isotopic composition measurements

    International Nuclear Information System (INIS)

    Morel, J.; Bickel, M.; Hill, C.; Verbruggen, A.

    2004-01-01

    An international comparison for plutonium isotopic composition measurement, known as the Pu-2000 exercise, was organized by the ESARDA NDA-WG (European Safeguards Research and Development Association, Working Group on Techniques and Standards for Non-Destructive Assay). The aim of this comparison was to test X- and γ-ray spectrometry methods over a large range of isotopic ratios. These methods are based on the complex analysis of several X- and γ-rays in the KX region of the plutonium spectrum and also in the 120-700 keV energy range. The results obtained by the participants with their corresponding uncertainties are presented in this document and compared to the declared values. The main conclusions of the work are also given. No important bias due to an inadequate knowledge of the nuclear data for plutonium isotopes was observed

  12. Lead isotopic compositions of common arsenical pesticides used in New England

    Science.gov (United States)

    Ayuso, Robert; Foley, Nora; Robinson, Gilpin; Wandless, Gregory; Dillingham, Jeremy

    2004-01-01

    The three most important arsenical pesticides and herbicides that were extensively used on apple, blueberry, and potato crops in New England from mid-1800s to recent times are lead arsenate, calcium arsenate, and sodium arsenate. Lead arsenate was probably the most heavily used of the arsenical pesticides until it was banned in 1988. Other metal-arsenic pesticides were also used but in lesser amounts. A recent report identified areas in New England where arsenical pesticides were used extensively (Robinson and Ayuso, 2004). On the basis of factor analysis of metal concentrations in stream sediment samples, a positive correlation with pesticide use was shown in regions having stream sediment sample populations that contained concentrations of high arsenic and lead. Lead isotope compositions of stream sediments from areas with heavy use of the pesticides could not be entirely explained by lead originating from rock sulfides and their weathering products. An industrial lead contribution (mostly from atmospheric deposition of lead) was suggested in general to explain the lead isotopic distributions of the stream sediments that could not be accounted for by the natural lead in the environment. We concluded that when agricultural land previously contaminated with arsenical pesticides is urbanized, pesticide residues in the soils and stream sediments could be released into the groundwater. No lead isotopic data characterizing the compositions of pesticides were available for comparison. We have determined the lead isotopic compositions of commonly used pesticides in New England, such as lead arsenate, sodium metaarsenite, and calcium arsenate, in order to assist in future isotopic comparisons and to better establish anthropogenic sources of Pb and As. New data are also presented for copper acetoarsenite (or Paris green), methyl arsonic acid and methane arsonic acid, as well as for arsanilic acid, all of which are used as feed additives to promote swine and poultry growth

  13. Uranium in open ocean: concentration and isotopic composition

    International Nuclear Information System (INIS)

    Ku, T.L.; Knauss, K.G.; Mathieu, G.G.

    1977-01-01

    Uranium concentrations and 234 U/ 238 U activity ratios have been determined in 63 seawater samples (nine vertical profiles) from the Atlantic, and Pacific, and Arctic, and the Antarctic oceans, using the alpha-spectrometric method for their determinations. Correlation between uranium and salinity is well manifested by the data from the Arctic and the Antarctic oceans, but such a relation cannot be clearly defined with the +-(1 to 2)% precision of uranium measurements for the Atlantic and Pacific data. At the 95% confidence level: (1) the uranium/salinity ratio is (9.34 + - 0.56) x 10 -8 g/g for the seawater analyzed with salinity ranging from 30.3 to 36.2 per thousand; the uranium concentration of seawater of 35 per thousand salinity is 3.3 5 + - 0.2 μ g l -1 ; (2) the 234 U/ 238 U activity ratio is 1.14 +- 0.03. Uranium isotopes in interstitial waters of the Pacific surface sediments analyzed do not show large concentration differences across the sediment-water interface as suggested by previous measurements. Current estimations of the average world river uranium concentration (0.3 to 0.6 μ g l -1 ) and 234 U/ 238 U ratio (1.2 to 1.3) and of the diffusional 234 U influx from sediments 0.3 dpm cm -2 10 -3 yr -1 ) are essentially consistent with a model which depicts a steady state distribution of uranium in the ocean. However, the 0.3 to 0.6 μ g l -1 value for river uranium may be an upper limit estimate. (author)

  14. Detection of phosphohydrolytic enzyme activity through the oxygen isotope composition of dissolved phosphate

    Science.gov (United States)

    Colman, A. S.

    2016-02-01

    Phosphohydrolytic enzymes play an important role in phosphorus remineralization. As they release phosphate (Pi) from various organophosphorus compounds, these enzymes facilitate the transfer of oxygen atoms from water to the phosphoryl moieties. Most such enzymatic reactions impart a significant isotopic fractionation to the oxygen transferred. If this reaction occurs within a cell, then the resultant oxygen isotope signal is overprinted by continued recycling of the Pi. However, if this reaction occurs extracellularly, then the isotopic signal will be preserved until the Pi is transported back into a cell. Thus, the oxygen isotope composition of Pi (δ18Op) in an aquatic ecosystem can serve as a useful indicator of the mechanisms by which P is remineralized. We develop a time-dependent model illustrating the sensitivity of the δ18O of dissolved phosphate to various modes of P remineralization. The model is informed by cell lysis experiments that reveal the relative proportions of P­i that are directly liberated from cytosol vs. regenerated from co-liberated dissolved organic phosphorus compounds via extracellular hydrolysis. By incorporating both cellular uptake and release fluxes of P, we show that the degree of isotopic disequilibrium in an aquatic ecosystem can be a strong indicator of P remineralization mode. Apparent oxygen isotope equilibrium between Pi and water arises in this model as a steady-state scenario in which fractionation upon cellular uptake of Pi counterbalances the hydrolytic source flux of disequilibrated Pi. Low and high rates of extracellular phosphohydrolase activity are shown to produce steady-state δ18Op values that are respectively above or below thermodynamic equilibrium compositions.

  15. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  16. Isotope composition of winter precipitation and snow cover in the foothills of the Altai

    Directory of Open Access Journals (Sweden)

    N. S. Malygina

    2017-01-01

    Full Text Available Over the past three decades, several general circulation models of the atmosphere and ocean (atmospheric and oceanic general circulation models  – GCMs have been improved by modeling the hydrological cycle with the use of isotopologues (isotopes of water HDO and H2 18O. Input parameters for the GCM models taking into account changes in the isotope composition of atmospheric precipitation were, above all, the results obtained by the network GNIP – Global Network of Isotopes in Precipitation. At different times, on the vast territory of Russia there were only about 40 simultaneously functioning stations where the sampling of atmospheric precipitation was performed. In this study we present the results of the isotope composition of samples taken on the foothills of the Altai during two winter seasons of 2014/15 and 2015/16. Values of the isotope composition of precipitation changed in a wide range and their maximum fluctuations were 25, 202 and 18‰ for δ18О, dexc and δD, respectively. The weighted-mean values of δ18О and δD of the precipitation analyzed for the above two seasons were close to each other (−21.1 and −158.1‰ for the first season and −21.1 and −161.9‰ for the second one, while dexc values differed significantly. The comparison of the results of isotope analysis of the snow cover integral samples with the corresponding in the time interval the weighted-mean values of precipitation showed high consistency. However, despite the similarity of values of δ18О and δD, calculated for precipitation and snow cover, and the results, interpolated in IsoMAP (from data of the GNIP stations for 1960–2010, the dexc values were close to mean annual values of IsoMAP for only the second winter season. According to the trajectory analysis (the HYSPLIT model, the revealed differences between both, the seasons, and the long-term average values of IsoMAP, were associated with a change of main regions where the air masses

  17. Origin of the Moon Unveiled by its Heavy Iron Isotope Composition

    Science.gov (United States)

    Poitrasson, F.; Halliday, A. N.; Lee, D.; Levasseur, S.; Teutsch, N.

    2002-12-01

    The origin of the Moon has long been of interest and although the Giant Impact theory is currently the preferred explanation, unequivocal supporting evidence has been lacking. We have measured the iron isotope compositions of Shergotty-Nakhla-Chassigny meteorites and eucrites thought to come from Mars and Vesta, as well as samples from the Moon and the mafic Earth using high precision plasma source mass spectrometry. The mean iron isotope composition of the lunar samples, expressed in the conventional delta notation (d57Fe/54Fe) with respect to the IRMM-14 isotopic standard, is heavier (0.221 per mil (0.041: one standard deviation, 10 samples)) than those of the Earth (0.119 per mil (0.044, 7 samples)), which themselves are heavier than Martian meteorites (0.009 per mil (0.024, 6 samples)) and the eucrites measured (0.033 per mil (0.038, 7 samples)). Student's t-test calculations show that the Moon and Earth means are different from each other and from those of the other planetary bodies at >99% level of significance. The iron isotope compositions show no simple relationship with planetary heliocentric position, mantle oxygen fugacity, volatile content, or planet size. Similarly, these results do not support an origin of the Moon through co-accretion with the Earth, or as a fragment ejected from the Earth's mantle, or as another planet captured by the early Earth. In contrast, these data can be explained if the Earth, and especially the Moon, went through partial vaporisation and condensation leading to kinetic iron isotopic fractionation. Our data are also consistent with the suggested levels of enrichment of refractory elements for the bulk Earth and Moon. These new iron isotope results thus provide strong support for the origin of the Moon through a giant impact between the proto-Earth and another planet. Raleigh kinetic fractionation calculations indicate that only 1% loss of the current Fe budget of the Moon is required to explain its heavier isotopic

  18. Quadrupole mass spectrometer for a mobile laboratory to measure isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.R.; Smith, D.H.; McKown, H.S.; Carter, J.A.

    1981-01-01

    A mobile laboratory has been assembled for on-site inspection of plant operations handlng special nuclear materials. The isotopic composition of U, Pu, and other elements can be analyzed using a quadrupole mass spectrometer. Some results of analysis of uranium and boron standards are given. (DLC)

  19. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  20. Isotopic composition of strontium in volcanic rocks from oahu.

    Science.gov (United States)

    Powell, J L; Delong, S E

    1966-09-09

    Analysis of several well-documented specimens from each of the three volcanic series on Oahu gives the following mean ratios of Sr(87) to Sr(86): the Waianae series, 0.7030 +/- 0.00010 (sigma); the Koolau series, 0.70385+/- 0.00009 (sigma); and the Honolulu series, 0.7029 ++/- 0.00006 ( sigma). The mean ratio of Sr(87) to Sr(86) of the Koolau series specimens is significantly higher than the means of the other two series. With one exception, significant differences in Sr(87)/ Sr(86) within a series were not found, even though some large compositional differences existed.

  1. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    Dissolved gas ratios and isotopic compositions provide essential information about the biological and physical mechanisms influencing N-2, O-2, and Ar in aquatic systems. Current methods available are either limited by overall cost, labor-intensive sample collection and analysis, or insufficient...... ratio mass spectrometer (IRMS). A continuous flow of He carrier gas completely degasses the sample, and passes through the preparation and purification system before entering the IRMS for analysis. The use of this continuous He carrier permits short analysis times (less than 8 min per sample......) as compared with current high-precision methods. In addition to reference gases, calibration is achieved using air-equilibrated water standards of known temperature and salinity. Assessment of reference gas injections, air equilibrated standards, as well as samples collected in the field shows the accuracy...

  2. The neodymium stable isotope composition of the silicate Earth and chondrites

    Science.gov (United States)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  3. Stable chromium isotopic composition of meteorites and metal-silicate experiments: Implications for fractionation during core formation

    Science.gov (United States)

    Bonnand, P.; Williams, H. M.; Parkinson, I. J.; Wood, B. J.; Halliday, A. N.

    2016-02-01

    We present new mass independent and mass dependent Cr isotope compositions for meteorites measured by double spike thermal ionisation mass spectrometry. Small differences in both mass independent 53Cr and 54Cr relative to the Bulk Silicate Earth are reported and are very similar to previously published values. Carbonaceous chondrites are characterised by an excess in 54Cr compared to ordinary and enstatite chondrites which make mass independent Cr isotopes a useful tool for distinguishing between meteoritic groups. Mass dependent stable Cr isotope compositions for the same samples are also reported. Carbonaceous and ordinary chondrites are identical within uncertainty with average δ53 Cr values of - 0.118 ± 0.040 ‰ and - 0.143 ± 0.074 ‰ respectively. The heaviest isotope compositions are recorded by an enstatite chondrite and a CO carbonaceous chondrite, both of which have relatively reduced chemical compositions implying some stable Cr isotope fractionation related to redox processes in the circumstellar disk. The average δ53 Cr values for chondrites are within error of the estimate for the Bulk Silicate Earth (BSE) also determined by double spiking. The lack of isotopic difference between chondritic material and the BSE provides evidence that Cr isotopes were not fractionated during core formation on Earth. A series of high-pressure experiments was also carried out to investigate stable Cr isotope fractionation between metal and silicate and no demonstrable fractionation was observed, consistent with our meteorites data. Mass dependent Cr isotope data for achondrites suggest that Cr isotopes are fractionated during magmatic differentiation and therefore further work is required to constrain the Cr isotopic compositions of the mantles of Vesta and Mars.

  4. Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT).

    Science.gov (United States)

    Wittig, Andrea; Michel, Jean; Moss, Raymond L; Stecher-Rasmussen, Finn; Arlinghaus, Heinrich F; Bendel, Peter; Mauri, Pier Luigi; Altieri, Saverio; Hilger, Ralf; Salvadori, Piero A; Menichetti, Luca; Zamenhof, Robert; Sauerwein, Wolfgang A G

    2008-10-01

    Boron Neutron Capture Therapy (BNCT) is based on the ability of the stable isotope 10B to capture neutrons, which leads to a nuclear reaction producing an alpha- and a 7Li-particle, both having a high biological effectiveness and a very short range in tissue, being limited to approximately one cell diameter. This opens the possibility for a highly selective cancer therapy. BNCT strongly depends on the selective uptake of 10B in tumor cells and on its distribution inside the cells. The chemical properties of boron and the need to discriminate different isotopes make the investigation of the concentration and distribution of 10B a challenging task. The most advanced techniques to measure and image boron are described, both invasive and non-invasive. The most promising approach for further investigation will be the complementary use of the different techniques to obtain the information that is mandatory for the future of this innovative treatment modality.

  5. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  6. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment

    Science.gov (United States)

    Anagnostou, E.; Huang, K.-F.; You, C.-F.; Sikes, E. L.; Sherrell, R. M.

    2012-10-01

    The boron isotope ratio (δ11B) of foraminifers and tropical corals has been proposed to record seawater pH. To test the veracity and practicality of this potential paleo-pH proxy in deep sea corals, samples of skeletal material from twelve archived modern Desmophyllum dianthus (D. dianthus) corals from a depth range of 274-1470 m in the Atlantic, Pacific, and Southern Oceans, ambient pH range 7.57-8.05, were analyzed for δ11B. The δ11B values for these corals, spanning a range from 23.56 to 27.88, are found to be related to seawater borate δ11B by the linear regression: δ11Bcoral=(0.76±0.28) δ11Bborate+(14.67±4.19) (1 standard error (SE)). The D. dianthus δ11B values are greater than those measured in tropical corals, and suggest substantial physiological modification of pH in the calcifying space by a value that is an inverse function of seawater pH. This mechanism partially compensates for the range of ocean pH and aragonite saturation at which this species grows, enhancing aragonite precipitation and suggesting an adaptation mechanism to low pH environments in intermediate and deep waters. Consistent with the findings of Trotter et al. (2011) for tropical surface corals, the data suggest an inverse correlation between the magnitude of a biologically driven pH offset recorded in the coral skeleton, and the seawater pH, described by the equation: ΔpH=pH recorded by coral-seawater pH=-(0.75±0.12) pHw+(6.88±0.93) (1 SE). Error analysis based on 95% confidence interval(CI) and the standard deviation of the regression residuals suggests that the uncertainty of seawater pH reconstructed from δ11Bcoral is ±0.07 to 0.12 pH units. This study demonstrates the applicability of δ11B in D. dianthus to record ambient seawater pH and holds promise for reconstructing oceanic pH distribution and history using fossil corals.

  7. Facile synthesis of a boronate affinity sorbent from mesoporous nanomagnetic polyhedral oligomeric silsesquioxanes composite and its application for enrichment of catecholamines in human urine

    Energy Technology Data Exchange (ETDEWEB)

    He, Haibo, E-mail: hbhe2006@shu.edu.cn [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Zhou, Ziqing; Dong, Chen; Wang, Xin [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Yu, Qiong-wei [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Lei, Yunyi; Luo, Liqiang [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Feng, Yuqi [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2016-11-09

    A boronate-decorated nanomagnetic organic-inorganic hybrid material was facilely synthesized by utilizing the nanomagnetic polyhedral oligomeric silsesquioxanes (POSS) composite (Fe{sub 3}O{sub 4}@POSS) as the base platform. A simple copolymerization occurred between 3-acrylamidophenylboronic acid (AAPBA) and the residual end vinyl groups supplied by the substrate. Here the special emphasis was placed on the octavinyl POSS, which not only acted as the building blocks for a hybrid architecture but also facilitated the process of grafting boronate groups onto the surface of POSS based nanomagnetic composite (Fe{sub 3}O{sub 4}@POSS). The successful immobilization of affinity ligand-AAPBA on the Fe{sub 3}O{sub 4}@POSS was confirmed by Fourier transform infrared (FT-IR), elemental analysis, inductively coupled plasma atomic emission spectrometer (ICP-AES), field emission scanning electron microscope. A magnetic solid-phase extraction (MSPE) for cis-diols enrichment was developed using the as-prepared Fe{sub 3}O{sub 4}@POSS-AAPBA material as an affinity sorbent and three catecholamines (CAs), namely noradrenaline, epinephrine and isoprenaline, as model analytes. Under the optimal extraction conditions, sensitive and simultaneous analysis of three CAs from the urine sample was achieved by high-performance liquid chromatography with UV detection (HPLC-UV). The limits of detection (LOD, S/N = 3) and the limits of quantitation (LOQ, S/N = 10) for the target analytes were 0.81–1.32 ng mL{sup −1} and 2.70–4.40 ng mL{sup −1}, respectively. Also good recoveries (85.5–101.7%) and repeatability (RSD≤10.1%) were obtained by this method. This work not only showed a facility for the utilization of Fe{sub 3}O{sub 4}@POSS as a substrate for constructing a boronate functionalized nanomagnetic sorbent, but also demonstrated the capability of the derived material for recognition of trace amount of cis-diols biomolecules presented in complicated biological matrices

  8. Primary Life Stage Boron Isotope and Trace Elements Incorporation in Aposymbiotic Acropora millepora Coral under Ocean Acidification and Warming

    Directory of Open Access Journals (Sweden)

    Henry C. Wu

    2017-05-01

    Full Text Available Early-life stages of reef-building corals are vital to coral existence and reef maintenance. It is therefore crucial to study juvenile coral response to future climate change pressures. Moreover, corals are known to be reliable recorders of environmental conditions in their skeletal materials. Aposymbiotic Acropora millepora larvae were cultured in different seawater temperature (27 and 29°C and pCO2 (390 and 750 μatm conditions to understand the impacts of “end of century” ocean acidification (OA and ocean warming (OW conditions on skeletal morphology and geochemistry. The experimental conditions impacted primary polyp juvenile coral skeletal morphology and growth resulting in asymmetric translucent appearances with brittle skeleton features. The impact of OA resulted in microstructure differences with decreased precipitation or lengthening of fasciculi and disorganized aragonite crystals that led to more concentrations of centers of calcifications. The coral skeletal δ11B composition measured by laser ablation MC-ICP-MS was significantly affected by pCO2 (p = 0.0024 and water temperature (p = 1.46 × 10−5. Reconstructed pH of the primary polyp skeleton using the δ11B proxy suggests a difference in coral calcification site and seawater pH consistent with previously observed coral pH up-regulation. Similarly, trace element results measured by laser ablation ICP-MS indicate the impact of pCO2. Primary polyp juvenile Sr/Ca ratio indicates a bias in reconstructed sea surface temperature (SST under higher pCO2 conditions. Coral microstructure content changes (center of calcification and fasciculi due to OA possibly contributed to the variability in B/Ca ratios. Our results imply that increasing OA and OW may lead to coral acclimation issues and species-specific inaccuracies of the commonly used Sr/Ca-SST proxy.

  9. A rapid method for determination of the isotopic composition of uranium samples by alpha spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martin Sanchez, A.; Tome, F.V.; Diaz Bejarano, J.; Jurado Vargas, M. (Dept. de Fisica, Univ. Extremadura, Badajoz (Spain))

    1992-03-01

    A simple method of analyzing alpha spectra from natural and enriched or depleted uranium samples is developed. The procedure is non-iterative, and takes into consideration low-energy tail and branching-ratio corrections to accurately calculate the area corresponding to each uranium isotope ({sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U) in the spectrum, and then the isotopic composition of the sample. A BASIC computer program, called ENURA, has been developed to perform all the necessary calculations to give the results together with their uncertainties. Several samples were prepared with different uranium concentrations made from standard solutions with known compositions, and the method was checked against the experimental measurements from these samples. Other series of uranium spectra were theoretically constructed using a given line shape in order to cover the required range of enriched or depleted uranium. (orig.).

  10. A rapid method for determination of the isotopic composition of uranium samples by alpha spectrometry

    Science.gov (United States)

    Sánchez, A. Martín; Tomé, F. Vera; Bejarano, J. Díaz; Vargas, M. Jurado

    1992-03-01

    A simple method of analyzing alpha spectra from natural and enriched or depleted uranium samples is developed. The procedure is non-iterative, and takes into consideration low-energy tail and branching-ratio corrections to accurately calculate the area corresponding to each uranium isotope (234U, 235U, 236U, 238U) in the spectrum, and then the isotopic composition of the sample. A BASIC computer program, called ENURA, has been developed to perform all the necessary calculations to give the results together with their uncertainties. Several samples were prepared with different uranium concentrations made from standard solutions with known compositions, and the method was checked against the experimental measurements from these samples. Other series of uranium spectra were theoretically constructed using a given line shape in order to cover the required range of enriched or depleted uranium.

  11. The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae

    NARCIS (Netherlands)

    Chivall, D.; M'Boule, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity

  12. In-Situ Oxygen Isotopic Composition of Individual Minerals in Tagish Lake, a Unique Type 2 Carbonaceous Meteorite

    Science.gov (United States)

    Engrand, C.; Gounelle, M.; Duprat, J.; Zolensky, M. E.

    2001-01-01

    We measured the oxygen isotopic composition of individual minerals in Tagish Lake. The relationship with carbonaceous chondrites is confirmed. We found very O-16 enriched olivines. The carbonates will require a dedicated study of their C and O isotopes. Additional information is contained in the original extended abstract.

  13. In-Situ Oxygen Isotopic Composition of Tagish Lake: An Ungrouped Type 2 Carbonaceous Chondrite

    Science.gov (United States)

    Zolensky, Michael E.; Engrand, Cecile; Gounelle, Matthieu; Zolensky, Mike E.

    2001-01-01

    We have measured the oxygen isotopic composition of several components of Tagish Lake by ion microprobe. This meteorite constitutes the best preserved sample of C2 matter presently available for study. It presents two different lithologies (carbonate-poor and -rich) which have fairly comparable oxygen isotopic composition, with regard to both the primary or secondary minerals. For the olivine and pyroxene grains, their delta O-18 values range from - 10.5% to + 7.4% in the carbonate-poor lithology, with a mean Delta O-17 value of - 3.7 2.4%. In the carbonate-rich lithology, delta O-18 varies from - 7.9% to + 3.3%, and the mean Delta O-17 value is - 4.7 +/- 1.4%. Olivine inclusions (Fo(sub >99)) with extreme O-16-enrichment were found in both lithologies: delta O-18 = - 46.1 %, delta O-187= - 48.3% and delta O-18 = - 40.6%, delta O-17 = - 41.2% in the carbonate-rich lithology; delta O-18 = - 41.5%, delta O-17 = -43.4%0 in the carbonate-poor lithology. Anhydrous minerals in the carbonate-poor lithology are slightly more O-16-rich than in the carbonate-rich one. Four low-iron manganese-rich (LIME) olivine grains do not have an oxygen isotopic composition distinct from the other "normal" olivines. The phyllosilicate matrix presents the same range of oxygen isotopic compositions in both lithologies: delta O-18 from approximately 11 % to approximately 6%, with an average Delta. O-17 approximately 0%. Because the bulk Tagish Lake oxygen isotopic composition given by Brown et al. is on the high end of our matrix analyses, we assume that this "bulk Tagish Lake" composition probably only represents that of the carbonate-rich lithology. Calcium carbonates have delta O-18 values up to 35%, with Delta O-17 approximately 0.5%0. Magnetite grains present very high Delta O-17 values approximately + 3.4%0 +/- 1.2%. Given our analytical uncertainties and our limited carbonate data, the matrix and the carbonate seem to have formed in isotopic equilibrium. In that case, their large

  14. Mineralogy and Oxygen Isotope Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    Science.gov (United States)

    Keller, L. P.; Snead, C.; Rahman, Z.; McKeegan, K. D.

    2012-01-01

    Hibonite-rich Ca- and Al-rich inclusions (CAIs) are among the earliest formed solids that condensed in the early nebula. We discovered an unusual refractory inclusion from the Allende CV3 chondrite (SHAL) containing an approx 500 micron long single crystal of hibonite and co-existing coarse-grained perovskite. The mineralogy and petrography of SHAL show strong similarities to some FUN inclusions, especially HAL. Here we report on the mineralogy, petrography, mineral chemistry and oxygen isotopic compositions in SHAL.

  15. GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater

    OpenAIRE

    Grasse, Patricia; Brzezinski, Mark A.; Cardinal, Damien; De Souza, Gregory F.; Andersson, Per; Closset, Ivia; Cao, Zhimian; Dai, Minhan; Ehlert, Claudia; Estrade, Nicolas; Francois, Roger; Frank, Martin; Jiang, Guibin; Jones, Janice L.; Kooijman, Ellen

    2017-01-01

    The first inter-calibration study of the stable silicon isotope composition of dissolved silicic acid in seawater, delta Si-30(OH)(4), is presented as a contribution to the international GEOTRACES program. Eleven laboratories from seven countries analyzed two seawater samples from the North Pacific subtropical gyre (Station ALOHA) collected at 300 m and at 1000 m water depth. Sampling depths were chosen to obtain samples with a relatively low (9 mmol L-1, 300 m) and a relatively high (113 mmo...

  16. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2016-08-01

    Full Text Available High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS and a quantum cascade laser absorption spectroscopy (QCLAS-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR in the Netherlands and performed in situ, high-frequency (approx. hourly measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04 ‰ for δ13C and (−4.3 ± 0.4 ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for

  17. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Science.gov (United States)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  18. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Directory of Open Access Journals (Sweden)

    T. J. Griffis

    2016-04-01

    Full Text Available Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL over a 3-year period (2010 to 2012. These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from −40.2 to −15.9 ‰ and δ2Hv ranged from −278.7 to −113.0 ‰ and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( >  25 mmol mol−1

  19. In-situ observations of the isotopic composition of methane at the Cabauw tall tower site

    Science.gov (United States)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; E Popa, Maria; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2017-04-01

    High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +0.05 ± 0.03 ‰ for δ13C-CH4 and -3.6 ± 0.4 ‰ for δD-CH4. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European

  20. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  1. Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions

    Directory of Open Access Journals (Sweden)

    Weiguo Hou

    2012-05-01

    Full Text Available Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be used as inoculants to improve the survival rates of plantation. Saprophytic fungi use the nutrition from the debris of plant or animals, and it is difficult to distinguish the saprophytic and ectomycorrhizal fungi by morphological and anatomic methods. In this research, the differences of stable carbon and nitrogen isotopic compositions of these fungi were analyzed. The results showed that the abundances of 13C of were higher than those of ectomycorrhizal fungi and the abundances of 15N of saprophytic fungi were lower than those of ectomycorrhizal fungi. Such differences of stable carbon and nitrogen isotopic compositions between ectomycorrhizal fungi and saprophytic fungi can be ascribed to their different nutrition sources and ecological functions. These results collectively indicate that stable carbon and nitrogen isotopic compositions are an effective proxy for distinguishing between ectomycorrhizal and saprophytic fungi.

  2. Changes in Isotopic Composition of Bottled Waters due to different Storage Conditions

    International Nuclear Information System (INIS)

    Ferjan, T.; Brencic, M.; Vreca, P.

    2011-01-01

    The aim of the study is to determine possible changes in isotopic composition of natural mineral waters stored in PET bottles in different environmental conditions from filling to consumption and to find out the rate to which described changes mask the primary natural mineral water characteristics. Packages of low mineralized natural mineral water of one particular brand were collected at the filling plant immediately after the end of production process to obtain representative state and chemical composition of water. Three storage sites with different physical conditions were appointed for bottled water storage. Comparative brands of low mineralised bottled water with different sources were located at one of the storage locations. During the first two months of the two years sampling period, sampling was carried out every 14 days and later on every two months. Water characteristics (pH, temperature, electroconductivity) were measured for each taken sample. Hydrogen and oxygen isotope analyses of the water samples were performed at the Joanneum Research Institute of Water Resources Management in Graz, Austria, while isotopic composition of dissolved inorganic carbon (δ 13 C DIC ) was determined at the Jozef Stefan Institute in Ljubljana.

  3. The Lu-Hf isotope composition of cratonic lithosphere: disequilibrium between garnet and clinopyroxene in kimberlite xenoliths

    NARCIS (Netherlands)

    Simon, N.S.C.; Carlson, R.W.; Pearson, D.G.; Davies, G.R.

    2002-01-01

    12th Annual V.M. Goldschmidt Conference Davos Switzerland, The Lu-Hf isotope composition of cratonic lithosphere: disequilibrium between garnet and clinopyroxene in kimberlite xenoliths (DTM, Carnegie Institution of Washington), Pearson, D.G. (University of Durham)

  4. Boron carbides formed by coevaporation of B and C atoms: Vapor reactivity, BxC1-x composition, and bonding structure

    Science.gov (United States)

    Caretti, I.; Gago, R.; Albella, J. M.; Jiménez, I.

    2008-05-01

    Boron carbides (BxC1-x) in thin film form have been synthesized in a high vacuum by coevaporation of B and C atoms from independent sources, allowing a study of the whole composition range from pure B films to pure C films. The relationship between the impinging B/C atomic fluxes and the film composition has been studied, providing information on the chemical reactivity between the B and C vapors. The composition was determined with x-ray emission energy dispersion spectroscopy and x-ray absorption near edge spectroscopy (XANES). Finally, the bonding structure of the films has been determined by XANES, showing a change from structures based on B12 -icosahedral units for the B-rich samples to hexagonal-like structures for the C-rich samples. The study shows that the structural transition takes place for xtilde 0.5 .

  5. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Hüglin, Christoph; Zellweger, Christoph; Tuzson, Béla; Ibraim, Erkan; Emmenegger, Lukas; Mohn, Joachim

    2017-02-01

    The isotopic composition of atmospheric nitrous oxide (N2O) was measured semicontinuously, at ˜35 min frequency in intermittent periods of 1-6 days over one and a half years, using preconcentration coupled to a quantum cascade laser spectrometer at the suburban site of Dübendorf, Switzerland. The achieved measurement repeatability was 0.08‰, 0.11‰, and 0.10‰ for δ18O, site preference, and δ15Nbulk respectively, which is better than or equal to standard flask sampling-based isotope ratio mass spectrometry performance. The observed mean diurnal cycle reflected the buildup of N2O from isotopically light sources on an isotopically heavy tropospheric background. The measurements were used to determine the source isotopic composition, which varied significantly compared to chemical and meteorological parameters monitored at the site. FLEXPART-COSMO transport modeling in combination with modified Emissions Database for Global Atmospheric Research inventory emissions was used to model N2O mole fractions at the site. Additionally, isotopic signatures were estimated for different source categories using literature data and used to simulate N2O isotopic composition over the measurement period. The model was able to capture variability in N2O mole fraction well, but simulations of isotopic composition showed little agreement with observations. In particular, measured source isotopic composition exhibited one magnitude larger variability than simulated, clearly indicating that the range of isotopic source signatures estimated from literature significantly underestimates true variability of source signatures. Source δ18O signature was found to be the most sensitive tracer for urban/industry versus agricultural N2O. δ15Nbulk and site preference may provide more insight into microbial and chemical emission processes than partitioning of anthropogenic source categories.

  6. Correlation Between Stable Isotope Composition and Cloud Altitude (Radar Echo Tops) in Tropical Rainfall: Puerto Rico and Hawaii

    Science.gov (United States)

    Scholl, M. A.; Coplen, T. B.

    2010-12-01

    Observed patterns of isotopic composition of rainfall in the tropics are different than those at higher latitudes, where seasonal temperature changes have a large effect. Land surface temperatures vary little over the course of the year in the tropics, and the amount effect (involving evaporative enrichment, droplet size, and rainout processes) has been invoked as an explanation for variations in isotopic composition of rain measured at the land surface. Previous work by Scholl et al. (2009) in Eastern Puerto Rico showed that variations in the altitude (and temperature) of the clouds producing rain were highly correlated with the monthly stable isotope composition of rainfall. The altitude of rain droplets within the clouds was obtained using NEXRAD echo tops, which indicate the maximum altitude of rainfall determined by radar. Atmospheric temperature in rainfall-producing clouds was then estimated with archived NCEP data at the mean and maximum echo top altitudes for large rain events during the sampling period. Isotopic signatures associated with the major climate patterns in Puerto Rico were determined and are being utilized in local hydrological studies. For Eastern Puerto Rico, at latitude 18° N, δ18O and δ2H values and mean monthly echo top altitude were significantly correlated (average coefficient = -0.69). The analysis was repeated using a 24-month stable isotope data set of rain from sites on windward and leeward Maui, Hawaii, latitude 21° N. Results were similar; mean monthly echo top altitude was highly correlated with rainfall isotopic composition (windward site correlation coefficient = -0.86, leeward = -0.87). The data also showed a significant rainout effect in monthly samples dominated by tropical storms, where cloud heights were similar to other monthly samples but δ18O and δ2H values were much more negative. Variations in water vapor isotopic composition also affect isotopic composition of rain, and ongoing work will focus on investigating