WorldWideScience

Sample records for boron isotopes

  1. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  2. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  3. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  4. Method of separating boron isotopes

    Science.gov (United States)

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  5. Boron isotopes and groundwater pollution

    International Nuclear Information System (INIS)

    Vengosh, A.

    1999-01-01

    Boron can be used as a tracer in ground water because of its high solubility in aqueous solutions, natural abundance in all waters, and the lack of effects by evaporation, volatilisation, oxidation-reduction reactions. Since the boron concentrations in pristine ground waters are generally low and contaminant sources are usually enriched in boron, the δ 11 B of groundwater is highly sensitive to the impact of contamination. The large isotopic variations of the potential sources can be used to trace the origin of the contamination and to reconstruct mixing and flow paths

  6. Boron Isotope Fractionation in Bell Pepper

    OpenAIRE

    Geilert, Sonja; Vogl, Jochen; Rosner, Martin; Voerkelius, Susanne; Eichert, Thomas

    2015-01-01

    Various plant compartments of a single bell pepper plant were studied to verify the variability of boron isotope composition in plants and to identify possible intra-plant isotope fractionation. Boron mass fractions varied from 9.8 mg/kg in the fruits to 70.0 mg/kg in the leaves. Boron (B) isotope ratios reported as δ11B ranged from -11.0‰ to +16.0‰ (U ≤ 1.9‰, k=2) and showed a distinct trend to heavier δ11B values the higher the plant compartments were located in the plant. A fractionatio...

  7. Boron Isotopes Enrichment via Continuous Annular Chromatography

    OpenAIRE

    Sağlam, Gonca

    2016-01-01

    ABSTRACT Boron has two stable isotopes namely 10B and 11B isotopes. The large cross section of 10B isotope for thermal neutrons is used for reactor control in nuclear fission reactors. The thermal neutrons absorption cross sections of pure 10B and 11B are 3837 and 0.005 barns respectively. In the literature, amongst others, batch elution chromatography techniques are reported for 10B isotope enrichment. This work focuses on continuous chromatographic 10B isotope separation system via continuo...

  8. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  9. Studies on Separation Process and Production Technology of Boron Isotope

    OpenAIRE

    LI Jian-ping

    2014-01-01

    The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material di...

  10. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-06

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  11. Boron isotopes as an artificial tracer.

    Science.gov (United States)

    Quast, Konrad W; Lansey, Kevin; Arnold, Robert; Bassett, Randy L; Rincon, Martha

    2006-01-01

    A field study was conducted using a combination of intrinsic and artificial tracers to estimate travel times and dilution during transport of infiltrate from a reclaimed water infiltration basin to nearby monitoring wells. A major study objective was to validate boric acid enriched in (10)B as an artificial tracer. Basin 10E at the Rio Hondo Spreading Grounds in Whittier, California, was the site of the test. The basin normally receives a mixture of treated municipal waste water, purchased State Project water, and local runoff from the San Gabriel River. Approximately 3.5 kg of (10)B-enriched boric acid was dispersed among 2.05 x 10(5) m(3) of basin water to initiate the experiment. The resultant median delta(11)B in the infiltration basin was -71 per thousand. Prior to tracer addition, the basin water had an intrinsic delta(11)B of +2 per thousand. Local monitoring wells that were used to assess travel times had delta(11)B values of +5 per thousand and +8 per thousand at the time of tracer addition. Analytic results supported an assumption that boron is conserved during ground water transport and that boron enriched in (10)B is a useful artificial tracer. Several intrinsic tracers were used to reinforce the boric acid tracer findings. These included stable isotopes of oxygen (delta(18)O) and hydrogen (deltaD), sulfate concentration, and the boron to chloride ratio. Xenon isotopes, (136)Xe and (124)Xe, also supported boron isotope results. Xenon isotopes were added to the recharge basin as dissolved gases by investigators from the Lawrence Livermore National Laboratory.

  12. Isotopic compositions of boron in sediments and their implications

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Yingkai, X.

    The abundance and isotopic compositions of boron in sediments from the salt lakes of Qaidam Basin, China have been determined by thermal ionization mass spectrometry of cesium borate. The results show large variations in the isotopic compositions...

  13. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  14. Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, J.K.; Palmer, M.R.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

  15. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    OpenAIRE

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass ...

  16. Boron isotope fractionation in column chromatography with glucamine type fibers

    International Nuclear Information System (INIS)

    Sonoda, Akinari; Makita, Yoji; Hirotsu, Takahiro

    2008-01-01

    Glucamine type polymers have specific affinity toward boric acid and borate ion. Among them, Chelest Fiber GRY-L showed larger fractionation for boron isotopes than other polymers in our previous study. For this study, we used Chelest Fibers with different fiber lengths (1.0 mm, 0.5 mm, and 0.3 mm) as column packing materials to perform chromatographic separation of boron isotopes. The shorter fiber has larger packing density when packed into the column using a dry method. The 0.3-mm-long fiber has a larger backpressure than fibers of other lengths. Boron adsorption capacities were measured using the breakthrough operation. At this time, the 0.5-mm-long fiber showed the highest capacity. When we measured the isotope ratio profile for fibers of different length using column chromatography, 0.5-mm-long fibers displayed the highest boron isotope fractionation. The 0.5-mm-long fiber is promising as a packing material of column chromatography for boron isotope separation. We also changed operation methods. The lower eluent concentration and the slower flow rate are suitable for boron isotope separation. (author)

  17. Isotopic effect on thermal physical properties of isotopically modified boron single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Quanli [Japan Science and Technology Corporation, Kawaguchi, Saitama (Japan); Noda, Tetsuji; Suzuki, Hiroshi; Araki, Hiroshi; Numazawa, Takenori; Hirano, Toshiyuki [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Nogi, Naoyuki; Tanaka, Satoru [University of Tokyo, Department of Quantum Engineering and Systems Science, Tokyo (Japan)

    2002-04-01

    The measurement of specific heat and thermal conductivity at low temperature for isotopically modified boron single crystals was performed between 0.5 and 100K using relaxation method and steady heat flow method, respectively. The results indicate that the specific heat has obvious divergences at T<5K. At 40K, the thermal conductivity of {sup 10}B-enriched crystal is about 570 W/m{center_dot}K, which is 40% larger than that of natural boron crystal. The influence of lattice vibration modes and the isotopic effect on specific heat and thermal conductivity for isotopically modified boron are discussed. (author)

  18. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    Science.gov (United States)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  19. Pressure-dependent boron isotopic fractionation observed by column chromatography

    Science.gov (United States)

    Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.

    2007-12-01

    Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.

  20. Separation of the isotopes of boron by chemical exchange reactions

    Science.gov (United States)

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  1. Separation of the isotopes of boron by chemical exchange reactions

    Science.gov (United States)

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  2. Isotopic composition of cosmic-ray boron and nitrogen

    Science.gov (United States)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  3. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  4. Development and validation of a method to determine the boron isotopic composition of crop plants.

    Science.gov (United States)

    Rosner, Martin; Pritzkow, Wolfgang; Vogl, Jochen; Voerkelius, Susanne

    2011-04-01

    We present a comprehensive chemical and mass spectrometric method to determine boron isotopic compositions of plant tissue. The method including dry ashing, a three-step ion chromatographic boron-matrix separation, and (11)B/(10)B isotope ratio determinations using the Cs(2)BO(2)(+) graphite technique has been validated using certified reference and quality control materials. The developed method is capable to determine δ(11)B values in plant tissue down to boron concentrations of 1 mg/kg with an expanded uncertainty of ≤1.7‰ (k = 2). The determined δ(11)B values reveal an enormous isotopic range of boron in plant tissues covering three-quarters of the natural terrestrial occurring variation in the boron isotopic composition. As the local environment and anthropogenic activity mainly control the boron intake of plants, the boron isotopic composition of plants can be used for food provenance studies.

  5. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  6. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  7. Separation of boron isotopes by aminated polystyrene-divinylbenzene resins

    International Nuclear Information System (INIS)

    Choi, Sei Young; Baek, Joong Hyun; Kim, Hee Lake

    1991-01-01

    Separation of boron isotopes was carried out by using nonporous aminated polystyrene-divinylbenzene as ion exchangers. After 0.1 M boric acid containing 10% sucrose solution was passed through the column, the boric acid band formed on the column was eluted with pure water of 50% methyl alchol water solution. The contents of boric acid of the fraction were determined with neutralization titrations. The relative mass of boron isotopes of the fractions was analyzed on a mass spectrometer. From these results, we found that separation factors for porous aminated polystyrene-divinylbenzene ion exchanger is larger than value of non porous ion exchanger, and then separation factors for 50%-methanol as eluting agent is larger than the value of pure water. (Author)

  8. An anion-exchange chromatographic study on boron isotopic fractionation at 2 MPa at 293 K.

    Science.gov (United States)

    Musashi, Masaaki; Matsuo, Motoyuki; Oi, Takao; Nomura, Masao

    2006-10-27

    To study boron isotopic fractionation at high pressure, column chromatography operated in the breakthrough manner was performed at 2.0 MPa at 25.0 degrees C. The fractionation factor (S) between boron adsorbed onto strongly basic anion-exchange resin and boron in solution was obtained as 1.013, which was smaller than the values at 0.1 MPa (atmospheric pressure) found in literature. The pressure dependence of S was discussed based on the polymerization of boron in the solution and resin phases and on the occurrence of the pressure dependent isotope effect relating to the molar volume changes of boron species upon isotope substitution.

  9. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Qingcai Xu

    2015-01-01

    Full Text Available Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰ with a mean value of 2.61±11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  10. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry.

    Science.gov (United States)

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  11. Isotopic analysis of boron by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.; Souza, I.M.S.

    1991-07-01

    This paper presents a methodology for isotopic analysis of boron by thermal ionization mass spectrometry technique through the ion intensity measurement of Na 2 BO + 2 in H 3 BO 3 , B o and B 4 C. The samples were loaded on single tantalum filaments by different methods. In the case of H 3 BO 3 , the method of neutralization with NaOH was used. For B 4 C the alcaline fusion with Na 2 CO 3 and for B o dissolution with 1:1 nitric sulfuric acid mixture followed by neutralization with NaOH was used. The isotopic ratio measurements were obtained by the use of s Faraday cup detector with external precision of ±0,4% and accuracy of ±0,1%, relative to H 3 BO 3 isotopic standard NBS 951. The effects of isotopic fractionation was studied in function of the time during the analyses and the different chemical forms of deposition. (author)

  12. Tracing recycled volatiles in a heterogeneous mantle with boron isotopes

    Science.gov (United States)

    Walowski, Kristina; Kirstein, Linda; de Hoog, Cees-Jan; Elliot, Tim; Savov, Ivan; Devey, Colin

    2016-04-01

    Recycling of oceanic lithosphere drives the chemical evolution of the Earth's mantle supplying both solids and volatiles to the Earth's interior. Yet, how subducted material influences mantle composition remains unclear. A perfect tracer for slab recycling should be only fractionated at the Earth's surface, have a strong influence on mantle compositions but be resistant to perturbations en route back to the surface. Current understanding suggests that boron concentrations linked to B isotope determinations fulfil all these requirements and should be an excellent tracer of heterogeneity in the deep mantle. Here, we present the trace element, volatile and the B isotope composition of basaltic glasses and melt inclusions in olivine from distinct end-member ocean island basalts (OIB) to track the fate of recycled lithosphere and ultimately document how recycling contributes to mantle heterogeneity. The chosen samples represent the different end member OIB compositions and include: EMI (Pitcairn), EMII (MacDonald), HIMU (St. Helena), and FOZO (Cape Verde & Reunion). The data is derived from both submarine and subaerial deposits, with B isotope determination of both basaltic glass and melt inclusions from each locality. Preliminary results suggest OIB have B isotopic compositions that overlap the MORB array (-7.5‰±0.7; Marschall et al., 2015) but extend to both lighter and heavier values. These results suggest that B isotopes will be useful for resolving mantle source heterogeneity at different ocean islands and contribute to our understanding of the volatile budget of the deep mantle.

  13. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  14. Isotopic phonon effects in β-rhombohedral boron--non-statistical isotope distribution.

    Science.gov (United States)

    Werheit, H; Filipov, V; Kuhlmann, U; Schwarz, U; Armbrüster, M; Antadze, M

    2012-05-02

    On the basis of the spectra of IR- and Raman-active phonons, the isotopic phonon effects in β-rhombohedral boron are analysed for polycrystalline (10)B- and (11)B-enriched samples of different origin and high-purity (nat)B single crystals. Intra- and inter-icosahedral B-B vibrations are harmonic, hence meeting the virtual crystal approximation (VCA) requirements. Deviations from the phonon shift expected according to the VCA are attributed to the anharmonic share of the lattice vibrations. In the case of icosahedral vibrations, the agreement with calculations on α-rhombohedral boron by Shirai and Katayama-Yoshida is quite satisfactory. Phonon shifts due to isotopic disorder in (nat)B are separated and determined. Some phonon frequencies are sensitive to impurities. The isotopic phonon effects yield valuable specific information on the nature of the different phonon modes. The occupation of regular boron sites by isotopes deviates significantly from the random distribution. © 2012 IOP Publishing Ltd

  15. Structure and superconductivity of isotope-enriched boron-doped diamond

    OpenAIRE

    Evgeny A Ekimov, Vladimir A Sidorov, Andrey V Zoteev, Yury B Lebed, Joe D Thompson and Sergey M Stishov

    2008-01-01

    Superconducting boron-doped diamond samples were synthesized with isotopes of 10B, 11B, 13C and 12C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the ‘diamond-carbon’-related nature of superconductivity and the importance of the electron–phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrat...

  16. Structure and superconductivity of isotope-enriched boron-doped diamond.

    Science.gov (United States)

    Ekimov, Evgeny A; Sidorov, Vladimir A; Zoteev, Andrey V; Lebed, Julia B; Thompson, Joe D; Stishov, Sergey M

    2008-12-01

    Superconducting boron-doped diamond samples were synthesized with isotopes of 10 B, 11 B, 13 C and 12 C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the 'diamond-carbon'-related nature of superconductivity and the importance of the electron-phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm -1 Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron. The absence of a superconducting transition (down to 1.6 K) in diamonds synthesized in the Co-C-B system at 1900 K correlates with the small boron concentration deduced from lattice parameters.

  17. Investigations on boron isotopic geochemistry of salt lakes in Qaidam basin, Qinghai

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.K.; Shirodkar, P.V.; Liu, W.G.; Wang, Y.H.; Jin, L.

    of brine and are related to boron origin, the corrosion of salt and to certain chemical constituents. The distribution of boron isotopes in Quidam Basin showed a regional feature: salt lake brines in the west and northwest basin have the highest d11B values...

  18. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Aida, Masao; Okamoto, Makoto; Kakihana, Hidetake

    1980-01-01

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  19. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  20. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  1. Boron isotope ratios of surface waters in Guadeloupe, Lesser Antilles

    International Nuclear Information System (INIS)

    Louvat, Pascale; Gaillardet, Jerome; Paris, Guillaume; Dessert, Celine

    2011-01-01

    Highlights: → Rivers outer of hydrothermal areas have d11B around 40 per mille and [B] of 10-31 μg/L. → Thermal springs have d11B of 8-15 per mille and [B] between 250 and 1000 μg/L. → With Na, SO 4 and Cl, boron shows mixing of rain, low and high-T weathering inputs. → Guadeloupe rivers and thermal springs have d11B 20-40 per mille higher than the local rocks. → Solid-solution fractionation during weathering pathways may explain this gap of d11B. - Abstract: Large variations are reported in the B concentrations and isotopic ratios of river and thermal spring waters in Guadeloupe, Lesser Antilles. Rivers have δ 11 B values around 40 per mille and B concentrations lower than 30 μg/L, while thermal springs have δ 11 B of 8-15 per mille and B concentrations of 250-1000 μg/L. River samples strongly impacted by hydrothermal inputs have intermediate δ 11 B and B contents. None of these surface water samples have δ 11 B comparable to the local unweathered volcanic rocks (around 0 per mille), implying that a huge isotopic fractionation of 40 per mille takes place during rock weathering, which could be explained by preferential incorporation of 10 B during secondary mineral formation and adsorption on clays, during rock weathering or in the soils. The soil-vegetation B cycle could also be a cause for such a fractionation. Atmospheric B with δ 11 B of 45 per mille represents 25-95% of the river B content. The variety of the thermal spring chemical composition renders the understanding of B behavior in Guadeloupe hydrothermal system quite difficult. Complementary geochemical tracers would be helpful.

  2. Ultralow-loss polaritons in isotopically pure boron nitride

    Science.gov (United States)

    Giles, Alexander J.; Dai, Siyuan; Vurgaftman, Igor; Hoffman, Timothy; Liu, Song; Lindsay, Lucas; Ellis, Chase T.; Assefa, Nathanael; Chatzakis, Ioannis; Reinecke, Thomas L.; Tischler, Joseph G.; Fogler, Michael M.; Edgar, J. H.; Basov, D. N.; Caldwell, Joshua D.

    2018-02-01

    Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called `flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.

  3. New Experimental Setup for Boron Isotopes Separation by the Laser Assisted Retardation of Condensation Method.

    Science.gov (United States)

    Lyakhov, Konstantin; Lee, Heon-Ju

    2015-11-01

    Demand in isotopically pure boron is steadily growing in industry and medicine. It makes necessary to search for cheaper ways of isotopes production. We propose a new experimental setup design for boron isotope separation by laser assisted retardation of condensation (SILARC) method based on an energy efficiency use relevant optimization method. This optimization method is based on the transport model for rarefied gas flow dynamics in laser field with frequency tuned for excitation of specific isotopomer. Because product cut and enrichment factor corresponding to the optimal conditions are rather small, target isotopomers should be recovered iteratively.

  4. Boron contents and isotope compositions of oceanic crusts from the Oman and Troodos ophiolites

    Science.gov (United States)

    Yamaoka, K.; Matsukura, S.; Ishikawa, T.; Kawahata, H.

    2011-12-01

    Boron is excellent tracer for elucidating crustal recycling in subduction zones because of the high concentration of boron in the upper part of the slab and the high mobility of boron during dehydration of the slab. However, fundamental data for vertical distribution of boron in hydrothermally altered oceanic crust are still limited. In this study, boron contents and isotopic compositions were determined for complete section of the oceanic crusts in the Oman and Troodos ophiolite. Although the boron contents of rocks decreased with depth in both the oceanic crusts, altered rocks from deep section showed obvious boron enrichment relative to fresh rocks. The pillow lavas in the Troodos ophiolite, which have been weathered on the seafloor for ~80 Myrs, was highly enriched in boron (>100 ppm), supporting that boron inventory of pillow lava section strongly depends on the crustal age. The δ11B of rocks in the Oman ophiolite systematically increased with depth and negatively correlate with the δ18O values, suggesting that the δ11B values are essentially controlled by alteration temperature. On the other hand, the δ11B profile in the Troodos ophiolite didn't show clear increase trend. The boron contents for the bulk oceanic crusts of the Oman and Troodos ophiolites are estimated to be 3.6 ppm and 12 ppm, respectively. About 8% of δ11B was estimated for both the bulk oceanic crusts. In contrast to previous views, hydrothermally altered gabbro section can be a large sink of boron. This boron-enriched, high-δ11B lower oceanic crust may impact on the estimate of the δ11B value for fluids librated from the subducted oceanic slab, which is believed to largely control the δ11B values of arc magmas generated in the mantle wedge.

  5. First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity.

    Science.gov (United States)

    Stewart, Derek A; Savić, Ivana; Mingo, Natalio

    2009-01-01

    Isotopic composition can dramatically affect thermal transport in nanoscale heat conduits such as nanotubes and nanowires. A 50% increase in thermal conductivity for isotopically pure boron ((11)B) nitride nanotubes was recently measured, but the reason for this enhancement remains unclear. To address this issue, we examine thermal transport through boron nitride nanotubes using an atomistic Green's function transport formalism coupled with phonon properties calculated from density functional theory. We develop an independent scatterer model for (10)B defects to account for phonon isotope scattering found in natural boron nitride nanotubes. Phonon scattering from (10)B dramatically reduces phonon transport at higher frequencies and our model accounts for the experimentally observed enhancement in thermal conductivity.

  6. Utilization of intrinsic boron isotopes as co-migrating tracers for identifying potential nitrate contamination sources

    International Nuclear Information System (INIS)

    Leenhouts, J.M.; Bassett, R.L.; Maddock, T. III.

    1998-01-01

    The stable isotopes of the conservative element boron, 11B and 10B, have been employed as co-migrating isotopic tracers to trace potential sources of nitrate observed in ground water pumped from a large capacity 0.167 m3/s irrigation well in the Avra Valley of southeastern Arizona. The isotopic ratios provided an identifying signature for two nitrogen carrying source waters: municipal waste water and agricultural return flow. Additional chemical parameters were also examined to corroborate the isotopic indications. Boron isotopes provided a superior delineation of mixing processes in the system compared to the general inorganic chemical parameters. Findings of this investigation indicate that the water pumped by the study well at the beginning of the 1993 irrigation season was composed of a mixture of approximately 25% municipal waste water and 75% background ground water. As the irrigation season progressed, an increasing proportion of water was contributed by irrigation return flow from neighboring agricultural fields

  7. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    Science.gov (United States)

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  8. Hydrochemistry and boron isotopes as natural tracers in the study of groundwaters from North Chianan Plain, Taiwan.

    Science.gov (United States)

    Lu, Hsueh-Yu

    2014-01-01

    In this paper, hydrochemistry and boron isotopes are successfully applied to elucidate hydrogeological processes by the use of natural tracers. The hydrochemical analysis identifies four end-members in the hydrochemical evolution of groundwater from the North Chianan plain groundwater district. A few groundwater contain extraordinary chlorine concentrations of up to 48,000 mg l(-1). However, the hydrochemistry of groundwater only reveals that high saline water is a dominant factor in groundwater hydrochemistry. It is thought that these groundwater experienced precipitation of carbonates during seawater evaporation that did not involve the precipitation of gypsum. Boron isotopes are very efficient tracers in determining the source of salinisation. The boron isotopes reveal the results of mixing of evaporated seawater and water-sediment interaction. In general, the boron isotope ratio of the groundwater is controlled by a two-end-member mixing system, which is composed of evaporated seawater (isotopically heavy) and fresh surface water (isotopically light). Due to a long lagoonal period in the coastal plain, the groundwaters in the downstream area generally have high Cl/B ratios and relatively heavy boron isotope ratios while those in the upstream area are composed of low Cl/B and light boron isotopes. However, there is not a resolvable mixing trend between the Cl/B ratio and the isotopic composition of boron. It is probably obscured by a highly variable boron isotope ratio in fresh surface water and through fractionation associated with water-rock interaction. Both factors would decrease the boron isotope ratio but one effect cannot be distinguished from the other.

  9. Boron isotopes in the Seine River, France: a probe of anthropogenic contamination.

    Science.gov (United States)

    Chetelat, Benjamin; Gaillardet, Jérôme

    2005-04-15

    Boron concentrations and isotopic compositions have been measured in the dissolved load of the Seine Basin rivers, France. Hydrology and chemistry of the Seine River and its tributaries are strongly influenced by human activities, as the anthropogenic pressure on the Seine catchment is one of the highest in Europe. The samples were collected between 1994 and 1996 during various stages of flow, complemented by a time-series of the Seine River in Paris for 1 yr. In particular, the decennial flood event of winter 1994 was sampled. Boron appears to be conservative in rivers and not influenced by adsorption onto suspended matter and/or consumption by microorganisms. Despite the complexity of the Seine River system, dissolved boron and its isotopes are found to be suitable tracers of contamination. The total dissolved boron of the Seine River at Paris is explained by the contribution from three distinct components: Urban effluents constitute 65% of the boron discharge measured in the Seine River whereas agriculture-affected waters contribute less than 10% with a more marked influence during high water discharges. Rainwater contribution is important (25% mean), reaching 30% of dissolved boron during high flood events.

  10. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites

    Science.gov (United States)

    Palmer, M.R.; Slack, J.F.

    1989-01-01

    Boron isotope ratios (11B/10B) have been measured on 60 tourmaline separates from over 40 massive sulfide deposits and tourmalinites from a variety of geologic and tectonic settings. The coverage of these localities is global (5 continents) and includes the giant ore bodies at Kidd Creek and Sullivan (Canada), Broken Hill (Australia), and Ducktown (USA). Overall, the tourmalines display a wide range in ??11B values from -22.8 to +18.3??? Possible controls over the boron isotopic composition of the tourmalines include: 1) composition of the boron source, 2) regional metamorphism, 3) water/rock ratios, 4) seawater entrainment, 5) temperature of formation, and 6) secular variations in seawater ??11B. The most significant control appears to be the composition of the boron source, particularly the nature of footwall lithologies; variations in water/ rock ratios and seawater entrainment are of secondary importance. The boron isotope values seem especially sensitive to the presence of evaporites (marine and non-marine) and carbonates in source rocks to the massive sulfide deposits and tourmalinites. ?? 1989 Springer-Verlag.

  11. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    Science.gov (United States)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  12. The atomic weight and isotopic composition of boron and their variation in nature

    International Nuclear Information System (INIS)

    Holden, N.E.

    1993-01-01

    The boron isotopic composition and atomic weight value and their variation in nature are reviewed. Questions are raised about the previously recommended value and the uncertainty for the atomic weight. The problem of what constitutes an acceptable range for normal material and what should then be considered geologically exceptional is discussed. Recent measurements make some previous decisions in need of re-evaluation

  13. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    International Nuclear Information System (INIS)

    Grounes, M.

    1967-07-01

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10 18 n/cm 2 (> 1 MeV) and 4 x 10 19 n/cm 2 (thermal) and also 9.0 x 10 18 n/cm 2 (> 1 MeV) and 6 x 10 19 n/cm 2 (thermal). Material from three laboratory melts, in which the boron consisted of 10 B, 11 B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the 10 B-alloyed material was changed more and the 11 B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the 10 B containing material compared to 5 kg/mm in the 11 B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the 10 B-alloyed material, 40 deg C in the 11 B-alloyed material and 80 deg C in the material containing natural boron

  14. Column chromatographic boron isotope separation at 5 and 17 MPa with diluted boric acid solution.

    Science.gov (United States)

    Musashi, Masaaki; Oi, Takao; Matsuo, Motoyuki; Nomura, Masao

    2008-08-01

    Boron isotopic fractionation factor (S) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25 degrees C, using 0.1 mM boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at the atmospheric pressure at 25 degrees C with the boron concentration of 10mM, but were larger than the values under the same condition with much higher concentration of 100 and 501 mM. Calculations based on the theory of isotope distribution between two phases estimated that 21% (5 MPa) and 47% (17 MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)(3)-form, instead of in the four-coordinated B(OH)(4)-form, at high pressures even with a very diluted boric acid solution. We discussed the present results by introducing (1) hydration and (2) a partial molar volume difference between isotopic molecules. Borate may have been partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Instead, it may be possible that the difference in the isotopic partial molar volume difference between B(OH)(3) and B(OH)(4)(-) caused the S value to decrease with increasing pressure.

  15. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  16. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes

    Science.gov (United States)

    Hulett, Samuel R. W.; Simonetti, Antonio; Rasbury, E. Troy; Hemming, N. Gary

    2016-12-01

    The global boron geochemical cycle is closely linked to recycling of geologic material via subduction processes that have occurred over billions of years of Earth’s history. The origin of carbonatites, unique melts derived from carbon-rich and carbonate-rich regions of the upper mantle, has been linked to a variety of mantle-related processes, including subduction and plume-lithosphere interaction. Here we present boron isotope (δ11B) compositions for carbonatites from locations worldwide that span a wide range of emplacement ages (between ~40 and ~2,600 Ma). Hence, they provide insight into the temporal evolution of their mantle sources for ~2.6 billion years of Earth’s history. Boron isotope values are highly variable and range between -8.6‰ and +5.5‰, with all of the young (-4.0‰), whereas most of the older carbonatite samples record lower B isotope values. Given the δ11B value for asthenospheric mantle of -7 +/- 1‰, the B isotope compositions for young carbonatites require the involvement of an enriched (crustal) component. Recycled crustal components may be sampled by carbonatite melts associated with mantle plume activity coincident with major tectonic events, and linked to past episodes of significant subduction associated with supercontinent formation.

  17. Use of inductively coupled plasma-mass spectrometry in boron-10 stable isotope experiments with plants, rats, and humans.

    Science.gov (United States)

    Vanderpool, R A; Hoff, D; Johnson, P E

    1994-11-01

    The commercial availability of inductively coupled plasma-mass spectrometry technology (ICP-MS) has presented the opportunity to measure the boron concentrations and isotope ratios in a large number of samples with minimal sample preparation. A typical analytical sequence for fecal samples consists of 25 acid blanks, 1 digestion blank, 5 calibration solutions, 4 standard reference material solutions, 10 samples, and 4 natural abundance bias standards. Boron detection limits (3 x 1 sigma) for acid blanks are 0.11 ppb for 10B, and 0.40 ppb for 11B. Isotope ratios were measured in fecal samples with 20 to 50 ppb boron with sample had a 1.0 ppb boron memory after a 6-min washout. Boron isotope ratios in geological materials are highly variable; apparently this variability is reflected in plants of a fixed natural abundance value for boron requires that a natural abundance ratio be determined for each sample or related data set. The natural abundance variability also prevents quantitation and calculation of isotope dilution by instrument-supplied software. To measure boron transport in animal systems, 20 micrograms of 10B were fed to a fasted rat. During the 3 days after a 10B oral dose, 95% of the 10B was recovered from the urine and 4% from the feces. Urinary isotope ratios, 11B/10B, changed from a natural abundance of 4.1140 to an enriched value of 0.95077, a 77% change.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Deglacial Western Equatorial Pacific pCO2 Reconstruction Using Boron Isotopes of Planktonic Foraminiferas

    Science.gov (United States)

    Kubota, K.; Yokoyama, Y.; Ishikawa, T.; Sagawa, T.; Ikehara, M.; Yamazaki, T.

    2017-12-01

    During the last deglaciation (ca. 19 - 11 ka), partial pressure of CO2 (pCO2) of the atmosphere increased by 80 μatm. Many paleoceanographers point out that the ocean had played an important role in atmospheric CO2 rise, since the ocean have 60 times larger capacity to store carbon compared to the atmosphere. However, evidence on where carbon was transferred from the ocean to the atmosphere is still lacking, hampering our understanding of global carbon cycles in glacial-interglacial timescales. Boron isotope of skeletons of marine calcifying organisms such as corals and foraminiferas can pin down where CO2 source/sink existed, because boron isotopes of marine calcium carbonates is dependent on seawater pH, from which pCO2 of the past seawater can be reconstructed. In previous studies using the boron isotope teqnique, Martinez-Boti et al. (2015, Nature) and Kubota et al. (2014, Scientific Reports) revealed that central and eastern parts of the equatorial Pacific acted as a CO2 source (i.e., CO2 emission) during the last deglaciation, suggesting the equatorial Pacific's contribution to atmospheric CO2 rise. However, some conflicting results have been confirmed in a marine sediment record from the western part of the equatorial Pacific (Palmer & Pearson, 2003, Science), making the conclusion elusive. In this presentation, we will show new results of Mg/Ca, oxygen isotope, and boron isotope measurements during the last 35 ka on two species of surface dwelling foraminiferas (Globigerinoides ruber and G. sacculifer) which was hand-picked separatedly from a well-dated marine sediment core recovered from the West Caroline Basin (KR05-15 PC01) (Yamazaki et al., 2008, GRL). From the new records, we will discuss how the equatorial Pacific behaved during the last deglaciation and how it related to the global carbon cycles.

  19. Stable carbon isotope discrimination: an indicator of cumulative salinity and boron stress in Eucalyptus camaldulensis.

    Science.gov (United States)

    Poss, J A; Grattan, S R; Suarez, D L; Grieve, C M

    2000-10-01

    Saplings of Eucalyptus camaldulensis Dehn. Clone 4544, irrigated with water of differing salinities (2 to 28 dS m-1) and boron concentrations (1 to 30 mg l-1), integrated the history of these stresses through the discrimination of stable isotopes of carbon in leaf and woody tissues. Carbon isotope discrimination (delta) was reduced primarily by salinity. Decreases in discrimination in response to boron stress were detected in the absence of salinity stress, but the decreases were significant only in leaf tissues with visible boron injury. Sapwood core samples indicated that salinity- and boron-induced reductions in delta increased with increasing tree age. Absolute values of delta varied with location of leaf or wood tissue, but relative effects of salinity on the relationship between delta and transpiration efficiency (W) were similar. In response to increasing salinity stress, relative decreases in delta paralleled relative decreases in biomass and both indices yielded similar salt tolerance model parameters. The strong correlations between delta, tree fresh weight, leaf area and W suggest that delta is a useful parameter for evaluating salt tolerance of eucalyptus

  20. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes.

    Science.gov (United States)

    Han, Wei-Qiang; Yu, Hua-Gen; Zhi, Chunyi; Wang, Jianbin; Liu, Zhenxian; Sekiguchi, Takashi; Bando, Yoshio

    2008-02-01

    We have carried out an isotope study on the band gap and radiative transition spectra of boron nitride nanotubes (BNNTs) using both experimental and theoretical approaches. The direct band gap of BNNTs was determined at 5.38 eV, independent of the nanotube size and isotope substitution, by cathodoluminescences (CL) spectra. At lower energies, several radiative transitions were observed, and an isotope effect was revealed. In particular, we confirmed that the rich CL spectra between 3.0 and 4.2 eV reflect a phonon-electron coupling mechanism, which is characterized by a radiative transition at 4.09 eV. The frequency red shift and peak broadening due to isotopic effect have been observed. Our Fourier transform infrared spectra and density functional theory calculations suggest that those radiative transitions in BNNTs could be generated by a replacement of some nitrogen atoms with oxygen.

  1. Boron and strontium isotopic characterization of coal combustion residuals: validation of new environmental tracers.

    Science.gov (United States)

    Ruhl, Laura S; Dwyer, Gary S; Hsu-Kim, Heileen; Hower, James C; Vengosh, Avner

    2014-12-16

    In the U.S., coal fired power plants produce over 136 million tons of coal combustion residuals (CCRs) annually. CCRs are enriched in toxic elements, and their leachates can have significant impacts on water quality. Here we report the boron and strontium isotopic ratios of leaching experiments on CCRs from a variety of coal sources (Appalachian, Illinois, and Powder River Basins). CCR leachates had a mostly negative δ(11)B, ranging from -17.6 to +6.3‰, and (87)Sr/(86)Sr ranging from 0.70975 to 0.71251. Additionally, we utilized these isotopic ratios for tracing CCR contaminants in different environments: (1) the 2008 Tennessee Valley Authority (TVA) coal ash spill affected waters; (2) CCR effluents from power plants in Tennessee and North Carolina; (3) lakes and rivers affected by CCR effluents in North Carolina; and (4) porewater extracted from sediments in lakes affected by CCRs. The boron isotopes measured in these environments had a distinctive negative δ(11)B signature relative to background waters. In contrast (87)Sr/(86)Sr ratios in CCRs were not always exclusively different from background, limiting their use as a CCR tracer. This investigation demonstrates the validity of the combined geochemical and isotopic approach as a unique and practical identification method for delineating and evaluating the environmental impact of CCRs.

  2. Use of inductively coupled plasma-mass spectrometry in boron-10 stable isotope experiments with plants, rats, and humans.

    Science.gov (United States)

    Vanderpool, R A; Hoff, D; Johnson, P E

    1994-01-01

    The commercial availability of inductively coupled plasma-mass spectrometry technology (ICP-MS) has presented the opportunity to measure the boron concentrations and isotope ratios in a large number of samples with minimal sample preparation. A typical analytical sequence for fecal samples consists of 25 acid blanks, 1 digestion blank, 5 calibration solutions, 4 standard reference material solutions, 10 samples, and 4 natural abundance bias standards. Boron detection limits (3 x 1 sigma) for acid blanks are 0.11 ppb for 10B, and 0.40 ppb for 11B. Isotope ratios were measured in fecal samples with 20 to 50 ppb boron with boron biological sample had a 1.0 ppb boron memory after a 6-min washout. Boron isotope ratios in geological materials are highly variable; apparently this variability is reflected in plants of a fixed natural abundance value for boron requires that a natural abundance ratio be determined for each sample or related data set. The natural abundance variability also prevents quantitation and calculation of isotope dilution by instrument-supplied software. To measure boron transport in animal systems, 20 micrograms of 10B were fed to a fasted rat. During the 3 days after a 10B oral dose, 95% of the 10B was recovered from the urine and 4% from the feces. Urinary isotope ratios, 11B/10B, changed from a natural abundance of 4.1140 to an enriched value of 0.95077, a 77% change.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889873

  3. Boron isotope determinations in waters and other geological materials: analytical techniques and inter-calibration of measurements.

    Science.gov (United States)

    Tonarini, Sonia; Pennisi, Maddalena; Gonfiantini, Roberto

    2009-06-01

    The (11)B/(10)B ratio exhibits wide variations in nature; thus, boron isotopes have found numerous applications in geochemistry, hydrology, and environmental studies. The main analytical techniques used are as follows: positive thermal ionisation mass spectrometry is the most precise (about 0.2 per thousand of the boron isotope ratio), but requires complex and laborious sample preparation; negative thermal ionisation mass spectrometry is less precise (about 0.5 per thousand), but rapid and suitable for water samples, whereas total evaporation-NTIMS allows for identification of the precise boron isotope composition of marine carbonates. It is expected that multi-collection system inductively coupled plasma mass spectrometry (MC-ICPMS) will eventually combine high precision with simple analytical procedures. Secondary ion mass spectrometry and laser ablation (LA)-MC-ICPMS allow in situ determinations on solid samples, but require the availability of calibration materials which are chemically and mineralogically similar to samples. These features of boron isotope measurement techniques were confirmed by the results of the first inter-laboratory comparison of measurements, organised by the Istituto di Geoscienze e Georisorse in Pisa. Finally, two examples of boron isotope applications in groundwater investigations are reported.

  4. Boron isotope variations in geothermal systems on Java, Indonesia

    Science.gov (United States)

    Purnomo, Budi Joko; Pichler, Thomas; You, Chen-Feng

    2016-02-01

    This paper presents δ11B data for hot springs, hot acid crater lakes, geothermal brines and a steam vent from Java, Indonesia. The processes that produce a large range of the δ11B values were investigated, including the possible input of seawater as well as the contrast δ11B compositions of acid sulfate and acid chloride crater lakes. The δ11B values of hot springs ranged from - 2.4 to + 28.7‰ and acid crater lakes ranged from + 0.6 to + 34.9‰. The δ11B and Cl/B values in waters from the Parangtritis and Krakal geothermal systems confirmed seawater input. The δ11B values of acid sulfate crater lakes ranged from + 5.5 to + 34.9‰ and were higher than the δ11B of + 0.6‰ of the acid chloride crater lake. The heavier δ11B in the acid sulfate crater lakes was caused by a combination of vapor phase addition and further enrichment due to evaporation and B adsorption onto clay minerals. In contrast, the light δ11B of the acid chloride crater lake was a result of acid water-rocks interaction. The correlations of δ11B composition with δ18O and δ2H indicated that the B isotope corresponded to their groundwater mixing sources, but not for J21 (Segaran) and J48 (Cikundul) that underwent 11B isotope enrichment by B adsorption into minerals.

  5. Boron isotopic compositions in growing corals from the South China Sea

    Science.gov (United States)

    Xiao, Jun; Xiao, Yingkai; Jin, Zhangdong; Liu, Congqiang; He, Maoyong

    2013-01-01

    In order to determine incorporation of boron species, boron isotopic fractionation, and influence of trace elements on isotopic compositions of boron in corals (δ11Bcoral), concentrations of Mg, Sr, Na, B and δ11Bcoral in growing corals from the South China Sea were measured. Relative to seawater, Sr enriched while Mg depleted in corals in the South China Sea. Although the δ11Bcoral values were different from various species and were not closely correlated with the element concentrations in corals in the South China Sea, Mg(OH)2 existed in corals can result in high δ11Bcoral. Thus, it is necessary to examine the existence of Mg(OH)2 and to choose the same species when δ11Bcoral is used in the δ11B-pH proxy. Based on the measured δ11B values of corals and coexisting seawater as well as the seawater pH in the South China Sea, a new isotopic fractionation factor a4-3 between B(OH)4- and B(OH)3 was determined to be 0.979. Besides B(OH)4- into corals, our results showed that B(OH)3 may also be incorporated into corals with variable proportions. The incorporation of B(OH)3 into corals may challenge the hypothesis of δ11Bcoral = δ11B4, resulting in increasing uncertainty to the calculated seawater pH values to the δ11B-pH proxy. We suggested that a best-fit empirical equation between δ11B of bio-carbonates and seawater pH needs to be established by the precipitation experiments of inorganic carbonates or culture experiments of corals or foraminifera.

  6. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation

    International Nuclear Information System (INIS)

    Zhang, Wenjie; Tan, Hongbing; Zhang, Yanfei; Wei, Haizhen; Dong, Tao

    2015-01-01

    The Tibetan plateau is characterized by intense hydrothermal activity and abnormal enrichment of trace elements in geothermal waters. Hydrochemistry and B isotope samples from geothermal waters in Tibet were systematically measured to describe the fractionation mechanisms and provide constraints on potential B reservoirs. B concentrations range from 0.35 to 171.90 mg/L, and isotopic values vary between −16.57 ‰ and +0.52 ‰. Geothermal fields along the Indus-Yarlung Zangbo suture zone and N–S rifts are observed with high B concentrations and temperatures. The similar hydrochemical compositions of high-B geothermal waters with magmatic fluid and consistent modeling of B isotopic compositions with present δ 11 B values imply that the B in high-B geothermal waters is mainly contributed by magmatic sources, probably through magma degassing. In contrast, geothermal fields in other regions of the Lhasa block have relatively low B concentrations and temperatures. After considering the small fractionation factor and representative indicators of Na/Ca, Cl/HCO 3 , Na + K and Si, the conformity between modeling results and the isotopic compositions of host rocks suggests that the B in low-temperature geothermal fields is mainly sourced from host rocks. According to simulated results, the B in some shallow geothermal waters not only originated from mixing of cold groundwater with deep thermal waters, but it was also contributed by equilibration with marine sedimentary rocks with an estimated proportion of 10%. It was anticipated that this study would provide useful insight into the sources and fractionation of B as well as further understanding of the relationships between B-rich salt lakes and geothermal activities in the Tibetan plateau. - Highlights: • Chemical and boron isotopic data of geothermal waters in Tibetan plateau were introduced. • Unusual enrichment of boron in Tibetan geothermal waters is related to magmatic and host rocks. • Boron

  7. Boron and chlorine isotopic signatures of seawater in the Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Xiao, Y.K.; Hai, L

    and then through the Dowex resin to remove all cations and co n vert Cl ? ions to HCl and finally through the Cs - resin bed to convert HCl to CsCl. Nearly 0.5 to 1.0 ml of CsCl sample was co l lected for the isotopic measurements of chlorine by mass spe c... measured by positive thermal ionization mass spe c- trometry of Cs 2 BO 4 + and Cs 2 Cl + ions 17,18 using VG 354 model mass spectrometer. Sample solutions (3 ? 6 ?l) co n- taining 1 ?g of boron per ?l and 5 ?g of chlorine per ?l solution...

  8. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    Science.gov (United States)

    Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.

    2017-06-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this

  9. A high-throughput system for boron microsublimation and isotope analysis by total evaporation thermal ionization mass spectrometry.

    Science.gov (United States)

    Liu, Yi-Wei; Aciego, Sarah M; Wanamaker, Alan D; Sell, Bryan K

    2013-08-15

    Research on the ocean carbon cycle is vitally important due to the projected impacts of atmospheric CO2 on global temperatures and climate change, but also on ocean chemistry. The direct influence of this CO2 rise on the seawater pH can be evaluated from the boron isotopic composition in biogenic carbonates; however, conscientious laboratory techniques and data treatment are vital in obtaining accurate and precise results. A rapid-throughput boron purification and Total Evaporation Thermal Ionization Mass Spectrometry method was developed for high accuracy and precision boron isotopic analysis for small (ng) sample sizes. An improved microsublimation method, in which up to 20 samples can be processed simultaneously under identical temperature conditions, was developed. Several tests have confirmed the viability of this technique. First, seawater and Porites coral samples were processed with H2 O2 and the results compared with those obtained using microsublimation; second, the impact of various sublimation times was evaluated; and third, quantitative recovery was assessed using standard addition. Microsublimation provides a valid method for the quantitative recovery and separation of boron from both major elements and organic matter under low-blank conditions. The close agreement of our results with published values validates the accuracy of the measurements. The isotopic ratio for SRM 951a boric acid isotopic standard was 4.0328 ± 0.0054 (2 STD, n = 25). The reproducibility of boron isotopic composition for standards including AE121, IAEA B-1 and an in-house coral standard UM-CP1 was ±0.68‰ (2 STD, n = 15), ±1.12‰ (2 STD, n = 24), and ±1.17‰ (2 STD, n = 14), respectively. The sample sizes were boron isotopic values in a variety of carbonate materials should facilitate the reconstruction of past ocean pH conditions with decadal-scale resolution. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Differentiation analysis of boron isotopic fractionation in different forms within plant organ samples.

    Science.gov (United States)

    Sun, Aide; Xu, Qingcai; Wei, Gangjian; Zhu, Huayu; Chen, Xuefei

    2018-03-01

    As a critical micronutrient, boron (B) plays an important role in plant growth and embryonic development. To further understand the effects of B uptake, transportation and isotopic fractionation, the contents and isotopic compositions of hydro-soluble B in the sap and structural B fixed in the cell within individual plant tissues were investigated. The B isotope ratio was determined by multi-collector inductively coupled plasma mass spectrometry. The δ 11 B values in hydro-soluble and structural B in the investigated plant samples ranged from -1.57‰ to +11.30‰ and from +6.57‰ to +16.64‰, respectively. Different fractionation factors of the B isotopes, in the range of 0.9954-1.0150, were observed in these samples, indicating that in most plant tissues, the heavy isotope ( 11 B) was preferentially enriched in structural B, which was fixed into the cell. However, there was a reversal in the fractionation of B isotopic compositions in the fruit samples compared with the other plant tissue samples. It is more powerful to examine the molecular mechanisms of B transport, uptake and utilization than the use of limited plant organ samples containing a mixture of hydro-soluble and structural B within different intra-plant compartments and in inter-plant interactions. These isotopic shifts, which may be used as important isotopic indicators, contribute to the surface processes interactions in the plant-soil system and the knowledge of the molecular mechanisms of B in the uptake and absorption by different plant species in nature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Boron and lithium isotopic composition in chondrules from the mokoia meteorite

    Science.gov (United States)

    Robert, F.; Chaussidon, M.

    2003-04-01

    Introduction: Large Boron isotopic variations have been reported in individual chondrules from several meteorites [1, 2]. These variations were interpreted as resulting from the incomplete mixing of two isotopically distinct sources of Boron. Spallation is the only known nucleosynthetic process that can yield Boron in substantial amounts at the scale of the Universe. Therefore it has been proposed that the two sources observed in chondrules correspond to two different types of spallation reactions, namely at high and low energies. Indeed, in the case of Boron, the 11B/10B ratio is sensitive to the energy at which the spallation reaction takes place. Since this report of large B isotopic variations in chondrules, two observations have allowed to identify the natural conditions under which at least one of such spallation reactions may have taken place in the early solar system. First, X-ray observations of T-Tauri stars have revealed daily outbursts which mimic the present day solar activity during the emission of flares [3]. Second, the decay product (i.e. 10B) of the short lived radio-isotope 10Be was discovered in Calcium-Aluminum-rich inclusions (CAIs) [4]. This is an indication that spallation did occurr in the solar system, shortly (i.e. less than a few million years) before the formation of the CAIs. In addition the possible occurrence of 7Be in CAIs suggests that this duration can be as short as a few months [5]. Sampling and Results: In the 8 chondrules from Mokoia, the δ11B values range between -39±6.8 ppm and -0.6±7.8 ppm (2 sigma). In one Boron depleted area of one chondrule, the δ11B value was found to be as low as -68.5 ppm and -61.5 ppm (±29; 2 sigma). In one chondrule from Mokoia the δ11B values range between -33.7±5.4 ppm and -3.8±5.4 ppm. These data confirm with a resolution of ≈ ±6 ppm the presence of a significant Boron isotopic heterogeneity,.The δ^7Li were also measured along with the ^delta11B. They range from -53.7±2.4 and -0.15

  12. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis.

    Science.gov (United States)

    Widory, David; Petelet-Giraud, Emmanuelle; Négrel, Philippe; Ladouche, Bernard

    2005-01-15

    Nitrate (NO3) is one of the world's major pollutants of drinking water resources. Although recent European Directives have reduced input from intensive agriculture, NO3 levels in groundwater are approaching the drinking water limit of 50 mg L(-1) almost everywhere. Determining the sources of groundwater contamination is an important first step toward improving its quality by emission control. It is with this aim that we review here the benefit of using a coupled isotopic approach (delta15N and delta11B), in addition to conventional hydrogeological analyses, to trace the origin of NO3 in water. The studied watersheds include both fractured bedrock and alluvial (subsurface and deep) hydrogeological contexts. The joint use of nitrogen and boron isotope systematics in each context deciphers the origin of NO3 in the groundwater and allows a semi-quantification of the contributions of the respective pollution sources (mineral fertilizers, wastewater, and animal manure).

  13. Rapid, high-precision measurements of boron isotopic compositions in marine carbonates.

    Science.gov (United States)

    McCulloch, Malcolm T; Holcomb, Michael; Rankenburg, Kai; Trotter, Julie A

    2014-12-30

    The isotopic composition and elemental abundance of boron (B) in marine carbonates provide a powerful tool for tracking changes in seawater pH and carbonate chemistry. Progress in this field has, however, been hampered by the volatile nature of B, its persistent memory, and other uncertainties associated with conventional chemical extraction and mass spectrometric measurements. Here we show that for marine carbonates, these limitations can be overcome by using a simplified, low-blank, chemical extraction technique combined with robust multi-collector inductively couple plasma mass spectrometry (MC-ICPMS) methods. Samples are dissolved in dilute HNO3 and loaded first onto on a cation-exchange column with the major cations (Ca, Mg, Sr, Na) being quantitatively retained while the B fraction is carried in the eluent. The eluent is then passed directly through an anion column ensuring that any residual anions, such as SO4(2-), are removed. Isotopic measurements of (11)B/(10)B ratios are undertaken by matching both the B concentration and the isotopic compositions of the samples with the bracketing standard, thereby minimising corrections for cross-contamination. The veracity of the MC-ICPMS procedure is demonstrated using a gravimetrically prepared laboratory standard, UWA24.7, relative to the international reference standard NIST SRM 951 (δ(11)B = 0‰). This gives values consistent with gravimetry (δ(11)B = 24.7 ± 0.3‰ 2sd) for solutions ranging in concentration from 50 to 500 ppb, equivalent to ~2-10 mg size coral samples. The overall integrity of the method for carbonate analysis is demonstrated by measurements of the international carbonate standard JCp-1 (δ(11)B = 24.3 ± 0.34‰ 2sd). A streamlined, integrated approach is described here that enables rapid, accurate, high-precision measurements of boron isotopic compositions and elemental abundances in commonly analysed biogenic carbonates, such as corals, bivalves, and large benthic forams. The overall

  14. Alternative Filament Loading Solution for Accurate Analysis of Boron Isotopes by Negative Thermal Ionization Mass Spectrometry

    Science.gov (United States)

    Dwyer, G. S.; Vengosh, A.

    2008-12-01

    The negative thermal ionization mass spectrometry technique has become the major tool for investigating boron isotopes in the environment. The high sensitivity of BO2- ionization enables measurements of ng levels of boron. However, B isotope measurement by this technique suffers from two fundamental problems (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; and (2) CNO- interference on mass 42 that is often present in some load solutions (such as B-free seawater processed through ion-exchange resin). Here we report a potentially improved methodology using an alternative filament loading solution with a recently-installed Thermo Scientific TRITON thermal ionization mass spectrometer. Our initial results suggest that this solution -- prepared by combining high-purity single- element standard solutions of Ca, Mg, Na, and K in proportions similar to those in seawater in a 5% HCl matrix -- may offer significant improvement over some other commonly used load solutions. Total loading blank is around 15pg as determined by isotope dilution (NIST952). Replicate analyses of NIST SRM951 and modern seawater thus far have yielded 11B/10B ratios of 4.0057 (±0.0008, n=14) and 4.1645 (±0.0017, n=7; δ11B=39.6 permil), respectively. Replicate analyses of samples and SRM951 yield an average standard deviation (1 σ) of approximately 0.001 (0.25 permil). Fractionation during analysis (60-90 minutes) has thus far typically been less than 0.002 (0.5 permil). The load solution delivers ionization efficiency similar to directly-loaded seawater and has negligible signal at mass 26 (CN-), a proxy for the common interfering molecular ion (CNO-) on mass 42. Standards and samples loaded with the solution behave fairly predictably during filament heating and analysis, thus allowing for the possibility of fully automated data collection.

  15. Boron and strontium isotope compositions of groundwater from the La Paz arid coastal aquifer, Baja California Sur, Mexico

    Science.gov (United States)

    Mahlknecht, Jürgen; Rosner, Martin; Meixner, Anette

    2016-04-01

    In groundwater studies boron and strontium isotopic compositions can be used to identify natural and anthropogenic sources as well as processes related to groundwater recharge, flow and mixing. The La Paz arid costal aquifer in Baja California Sur, Mexico, is the most important source of drinking and irrigation water for La Paz area and suffers from anthropogenic contamination and intensive exploitation of the aquifer causing seawater intrusion and general groundwater abatement. The relatively un-radiogenic 87Sr/86Sr isotope ratios of the La Paz groundwater range in a narrow field between 0.7054 and 0.7062. In contrast to strontium the boron isotope composition displays a large variability between +27 and +55 permil d11B. The relatively low 87Sr/86Sr ratios of the La Paz groundwater highlight a significant contribution of strontium derived from local terrestrial sediments and igneous rocks with known 87Sr/86Sr ratios between 0.705 and 0.7035. The large variability of d11B values indicate that multiple sources and processes determine the boron isotope composition of La Paz groundwater. Rainwater (high d11B), seawater (~+40 permil) due to seawater intrusions, wastewater (low to medium d11B) and boron derived from the local geology (low to medium d11B) explain most of the observed groundwater d11B variability. However, d11B values higher than modern seawater point to significant boron isotope fractionation by preferential absorption of 10B onto clay minerals during the evolution of some groundwater samples. Due to low boron concentrations in rainwater a significant contribution of 11B-rich rainwater (>+40 permil) on the La Paz groundwater is unlikely.

  16. Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada

    Science.gov (United States)

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1999-01-01

    We report here the results of 54 boron isotope analyses of tourmaline associated with the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia, Canada. The ??11B values range from -11.1 to -2.9???, which is almost as great as the range found worldwide in tourmalines from 33 massive sulfide deposits and tourmalinites in dominantly clastic metasedimentary terranes. The major control on the overall ??11B values of the Sullivan tourmalinites is the boron source. Potential controls over the large range of the data also include: (1) differences in formation temperatures of the tourmalinites, (2) different stages of tourmaline formation, (3) variations in the proportions of dissolved boron incorporated into the tourmaline (Rayleigh fractionation), (4) seawater entrainment, and (5) post-depositional metamorphism. The boron isotope data at Sullivan are consistent with boron derivation from leaching of footwall clastic sediments. However, the great abundance of tourmaline in the Sullivan deposit suggests that the local clastic sediments were not the sole source of boron, and we argue that non-marine evaporites, buried deep below the orebody, are the most viable source of this additional boron. It is likely that some of the variation in tourmaline ??11B values reflect mixing of boron from these two sources. Comparison of the potential effects of these controls with geologic and other geochemical evidence suggests that major causes for the wide range of ??11B values measured at Sullivan are seawater entrainment and Rayleigh fractionation, although in places, post-depositional alteration and thermal metamorphism were important in determining ??11B values of some of the recrystallized tourmalinites.

  17. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  18. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, N Gary; Yang, Jing-Hong; Yang, Tao; Wu, He-Pin; Yang, Tang-Li; Yan, Xiong; Pu, Wei

    2014-06-01

    In order to eliminate boron loss and potential isotopic fractionation during chemical pretreatment of natural samples with complex matrices, a three-column ion-exchange separation/purification procedure has been modified, which ensures more than 98% recovery of boron from each step for a wide range of sample matrices, and is applicable for boron isotope analysis by both TIMS and MC-ICP-MS. The PTIMS-Cs2BO2(+)-static double collection method was developed, ensuring simultaneous collection of (133)Cs2(11)B(16)O2(+)(m/z 309) and (133)Cs2(10)B(16)O2(+) (m/z 308) ions in adjacent H3-H4 Faraday cups with typical zoom optics parameters (Focus Quad: 15 V, Dispersion Quad: -85 V). The external reproducibilities of the measured (11)B/(10)B ratios of the NIST 951 boron standard solutions of 1000 ng, 100 ng and 10 ng of boron by PTIMS method are ±0.06‰, ±0.16‰ and ±0.25‰, respectively, which indicates excellent precision can be achieved for boron isotope measurement at nanogram level boron in natural samples. An on-peak zero blank correction procedure was employed to correct the residual boron signals effect in MC-ICP-MS, which gives consistent δ(11)B values with a mean of 39.66±0.35‰ for seawater in the whole range of boron content from 5 ppb to 200 ppb, ensuring accurate boron isotope analysis in few ppb boron. With the improved protocol, consistent results between TIMS and MC-ICP-MS data were obtained in typical geological materials within a wide span of δ(11)B values ranging from -25‰ to +40‰. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    Science.gov (United States)

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  20. Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota

    Science.gov (United States)

    Komor, S.C.

    1997-01-01

    Boron-isotope (δ11B) values may be useful as surrogate tracers of contaminants and indicators of water mixing in agricultural settings. This paper characterizes the B contents and isotopic compositions of hog manure and selected fertilizers, and presents δ11B data for ground and surface water from two agricultural areas. Boron concentrations in dry hog manure averaged 61 mg/kg and in commercial fertilizers ranged from below detection limits in some brands of ammonium nitrate and urea to 382 mg/kg in magnesium sulfate. Values of δ11B of untreated hog manure ranged from 7.2 to 11.2o/oo and of N fertilizers were −2.0 to 0.7o/oo. In 22 groundwater samples from a sand-plain aquifer in east-central Minnesota, B concentrations averaged 0.04 mg/L and δ11B values ranged from 2.3 to 41.5o/oo. Groundwater beneath a hog feedlot and a cultivated field where hog manure was applied had B-isotope compositions consistent with the water containing hog-manure leachate. In a 775-km2 watershed with silty-loam soils in southcentral Minnesota: 18 samples of subsurface drainage from corn (Zea mays L.) and soybean (Glycine max L. Merr.) fields had average B concentrations of 0.06 mg/L and δ11B values of 5.3 to 15.1o/oo; 27 stream samples had average B concentrations of 0.05 mg/L and δ11B values of 1.0 to 19.0o/oo; and eight groundwater samples had average B concentrations of 0.09 mg/L and δ11B values of −0.3 to 23.0o/oo. Values of δ11B and B concentrations, when plotted against one another, define a curved mixing trend that suggests subsurface drainage and stream water contain mixtures of B from shallow and deep groundwater.

  1. Boron isotopes reveal multiple metasomatic events in the mantle beneath the eastern North China Craton

    Science.gov (United States)

    Li, Hong-Yan; Zhou, Zhou; Ryan, Jeffrey G.; Wei, Gang-Jian; Xu, Yi-Gang

    2016-12-01

    Linkages inferred between the geochemical heterogeneity of the mantle beneath eastern Eurasia and the stagnant Pacific slab documented geophysically in its mantle transition zone are as yet not clearly characterized. In this paper we report new elemental and isotopic data for boron (B) on a suite of well-characterized Cenozoic basalts (alkali basalts, basanites and nephelinites), with ocean island basalt (OIB)-like trace element signatures from western Shandong of the eastern North China Craton (NCC). Correlations between major elements (e.g., FeOT versus SiO2), trace elements (e.g., CeN/PbN versus BaN/ThN) and radiogenic isotopes (e.g., 206Pb/204Pb versus 87Sr/86Sr) suggest these basalts are derived via the mixing of melts from two mantle components: a fluid mobile element (FME; such as Ba, K, Pb and Sr) enriched component, which is most evident in the alkali basalts, and a FME depleted mantle component that is more evident in the basanites and nephelinites. The alkali basalts in this study have lower B concentrations (1.4-2.2 μg/g) but higher δ11B (-4.9 to -1.4) values than the basanites and nephelinites (B = 2.1-5.0 μg/g; δ11B = -6.9 to -3.9), and all the samples have nearly constant B/Nb ratios between 0.03 and 0.07, similar to the observed range in B/Nb for intraplate lavas. Our high-SiO2 samples have higher δ11B than that of our low SiO2 samples, indicating that the B isotopic differences among our samples do not result from the addition of a continental crustal component in the mantle source, or direct crustal assimilation during the eruption process. The positive B versus Nb correlation suggests the B isotopic compositions of the western Shandong basalts primarily reflect the pre-eruptive compositions of their mantle sources. Correlations among B, Nd and Sr isotope signatures of the western Shandong basalts differ from those among basalts from plume settings (e.g., Azores and Hawaii), and are inconsistent with models suggesting single-step metasomatic

  2. A study of galactic cosmic ray propagation models based on the isotopic composition of the elements lithium, beryllium and boron

    Science.gov (United States)

    Hinshaw, G. F.; Wiedenbeck, M. E.; Greiner, D. E.

    1982-01-01

    A good test for a cosmic ray propagation model is its ability to predict the abundances of the light secondary nuclei lithium, beryllium, and boron. By using measured isotopic abundances of lithium, beryllium, and boron, Garcia-Munoz et al. (1979) were able to place limits on three important parameters of a leaky box propagation model. The considered parameters include the source spectral parameter, the leakage mean free path, and the characteristic adiabatic energy loss due to solar modulation. The present investigation is concerned with a critical evaluation of the information which can be deduced about these parameters from isotopic composition alone, taking into account the effects of uncertainties in the spallation cross section data.

  3. H-isotope retention and thermal/ion-induced release in boronized films

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Wampler, W.R.; Hays, A.K.

    1990-01-01

    Over the past decade, it has been clearly demonstrated that the composition of the very near surface (∼100nm) of plasma-interactive components plays a determinant role in most processes which occur in the plasma-edge of Tokamaks. Two very successful techniques to effect control of the plasma-wall interaction are (1) in-situ deposition of amorphous carbon or boron-carbon films and (2) the use of He/C conditioning discharges or He glow discharge cleaning to modify the near surface of bulk graphite components. We have deposited boronized layers into Si using plasma-assisted CVD and sputter deposition. The PCVD deposition conditions were as close as possible to those used in TFTR, and some films deposited in TFTR have also been studied. Using these two deposition techniques, B x CH y films have been produced with x varying from 1/2 -- 4, and y from ∼1 (sputtered) to ∼3 (PCVD). Most films also contained significant amounts of 0. Thermal and ion-induced release of H-isotopes from BC films is qualitatively similar to that measured for graphite. Implanted H saturates in these films at a H/host atom ratio of 0.7 which is considerably higher than that of graphite(∼0.4). As-deposited PCVD films are already saturated with H, while sputtered films are not. Sputtered BC films therefore possess an inherent H-pumping capability which could prove to be extremely beneficial to TFTR. 16 refs., 5 figs., 1 tab

  4. Study on distribution and origin of boron in groundwater in the area of Chalkidiki, Northern Greece by employing chemical and isotopic tracers.

    Science.gov (United States)

    Voutsa, D; Dotsika, E; Kouras, A; Poutoukis, D; Kouimtzis, Th

    2009-12-30

    This paper presents an integrate study on the occurrence and distribution of boron in groundwater in the area of Chalkidiki, Northern Greece. Groundwater samples were collected from wells used for drinking and irrigation purposes. Samples were analysed for boron, various physicochemical parameters (T, pH, EC, Ca, Mg, Na, K, Br, Cl, HCO(3), SO(4), NO(3) and As) and isotopes ((18)O, (2)H, (11)B). Boron showed high spatial variation ranged from 0.04 to 6.5mg/L. Almost 60% of the examined wells exhibited boron concentration higher than the limit of 1mg/L proposed for water intended for human consumption. The higher concentrations were determined in geothermal waters with relatively high temperature. Correlation analysis and hierarchical cluster analysis were employed to find out possible relationships among the examined parameters and groundwater samples. Chemical and isotopic fingerprints have been used to investigate the origin of boron.

  5. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  6. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2018-04-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  7. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2017-07-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  8. Determination of boron content and isotopic composition in gypsum by inductively coupled plasma optical emission spectroscopy and positive thermal ionization mass spectrometry using phase transformation.

    Science.gov (United States)

    Ma, Yun-Qi; Peng, Zhang-Kuang; Yang, Jian; Xiao, Ying-Kai; Zhang, Yan-Ling

    2017-12-01

    As a stable isotope, boron plays an important role in hydrogeology, environmental geochemistry, ore deposit geochemistry and marine paleoclimatology. However, there is no report of boron isotopic composition in gypsum. This is mainly confined to complete dissolution of Gypsum by water or acid. In this study, gypsum was converted to calcium carbonate (CaCO 3 ) with ammonium bicarbonate(NH 4 HCO 3 ) by two steps at 50°C. In every step, the mass ratio of NH 4 HCO 3 /CaSO 4 ·2H 2 O was twice, and conversion rate reached more than 98%. Converted CaCO 3 was totally dissolved with hydrochloric acid (the dissolution rate was over 99%). In order to overcome the difficulties of the matrix interference and the detection limit of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), we use Amberlite IRA 743 resin to purify and enrichment the boron at first, then eluting boron from the resin with 10mL 0.1mol/L hydrochloric acid at 75°C. The boron isotopic composition of natural gypsum samples was determined using positive thermal ionization mass spectrometry (P-TIMS). The boron isotopic composition of gypsum may be an excellent indicator for the formation environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development of an on-line isotope dilution laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method for determination of boron in silicon wafers.

    Science.gov (United States)

    Yang, Chao-Kai; Chi, Po-Hsiang; Lin, Yong-Chine; Sun, Yuh-Chang; Yang, Mo-Hsiung

    2010-01-15

    A method has been developed based on an on-line isotope dilution technique couple with laser ablation/inductively coupled plasma mass spectrometry (LA-ICP-MS), for the determination of boron in p-type silicon wafers. The laser-ablated sample aerosol was mixed on-line with an enriched boron aerosol supplied continuously using a conventional nebulization system. Upon mixing the two aerosol streams, the isotope ratio of boron changed rapidly and was then recorded by the ICP-MS system for subsequent quantification based on the isotope dilution principle. As an on-line solid analysis method, this system accurately quantifies boron concentrations in silicon wafers without the need for an internal or external solid reference standard material. Using this on-line isotope dilution technique, the limit of detection for boron in silicon wafers is 2.8x10(15)atomscm(-3). The analytical results obtained using this on-line methodology agree well with those obtained using wet chemical digestion methods for the analysis of p-type silicon wafers containing boron concentrations ranging from 1.0x10(16) to 9.6x10(18)atomscm(-3).

  10. Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes.

    Science.gov (United States)

    Lasagna, Manuela; De Luca, Domenico Antonio

    2017-11-24

    Diffuse nitrate pollution in groundwater is currently considered one of the major causes of water quality degradation. Determining the sources of nitrate contamination is an important first step for a better management of water quality. Thus, the isotopic composition of nitrate (δ 15 N NO3 and δ 18 O NO3 ) and boron (δ 11 B) were used to evaluate nitrate contamination sources and to identify geochemical processes occurring in the shallow and deep aquifers of the Turin-Cuneo plain (NW Italy). The study area is essentially an agricultural zone, where use of synthetic nitrogenous fertilizers and organic manure is a common practice and the connection to sewer services is locally lacking. Also livestock farming are highly developed. A groundwater sampling campaign was performed on 34 wells in the shallow aquifer and 8 wells in the deep aquifers, to analyze nitrate, chloride, boron, δ 15 N NO3 , δ 18 O NO3 and δ 11 B. Isotope data of nitrate indicate that nitrate contamination in the Turin-Cuneo plain originates from mixtures of synthetic and organic sources, slightly affected by denitrification, and manure or septic tank effluents. Moreover, boron isotopes were used to discriminate further among the main anthropogenic sources of pollution. The analyses results confirm that both animal manure and domestic sewage, especially under the city of Turin, can contribute to the nitrate contamination. The isotope analysis was also used for the evaluation of denitrification and nitrification processes: contrary to expectations, a significant denitrification phenomenon was assessed only in the shallow unconfined aquifer, especially in the Poirino Plateau, the most contaminated sector of the study area.

  11. Basic features of boron isotope separation by SILARC method in the two-step iterative static model

    Science.gov (United States)

    Lyakhov, K. A.; Lee, H. J.

    2013-05-01

    In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.

  12. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    Science.gov (United States)

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  13. LITHIUM-BERYLLIUM-BORON ISOTOPIC COMPOSITIONS IN METEORITIC HIBONITE: IMPLICATIONS FOR ORIGIN OF 10Be AND EARLY SOLAR SYSTEM IRRADIATION

    International Nuclear Information System (INIS)

    Liu, Ming-Chang; Nittler, Larry R.; Alexander, Conel M. O'D.; Lee, Typhoon

    2010-01-01

    NanoSIMS isotopic measurements of Li, Be, and B in individual hibonite grains extracted from the Murchison meteorite revealed that 10 B excesses correlate with the 9 Be/ 11 B ratios in 26 Al-free PLAty hibonite Crystals. From these data, an initial 10 Be/ 9 Be = (5.5 ± 1.6) x 10 -4 (2σ) and 10 B/ 11 B = 0.2508 ± 0.0015 can be inferred. On the other hand, chondritic boron isotopic compositions were found in 26 Al-bearing Spinel-HIBonite spherules, most likely due to contamination with normal boron. No 7 Li excesses due to 7 Be decay were observed. When combined with previously reported data, the new data yield the best defined 10 Be/ 9 Be = (5.3 ± 1.0) x 10 -4 (2σ) and 10 B/ 11 B = 0.2513 ± 0.0012 for PLACs. A comparison of this value and the best constrained 10 Be/ 9 Be = (8.8 ± 0.6) x 10 -4 in CV Ca-Al-rich inclusions supports a heterogeneous distribution of 10 Be and its protosolar irradiation origin. We consider two possible irradiation scenarios that could potentially lead to the observed Li-Be-B isotopic compositions in PLACs. Although in situ irradiation of solids with hibonite chemistry seems to provide the simplest explanation, more high quality data will be needed for quantitatively constraining the irradiation history.

  14. Possible roles of pH, temperature, and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera

    Science.gov (United States)

    Wara, M.W.; Delaney, M.L.; Bullen, T.D.; Ravelo, A.C.

    2003-01-01

    We present the first continuous records from 0 to 5 Ma (in 0.333 m.y. integrated time steps) of paired boron/calcium (B/Ca) ratios and boron isotopes (??11B) in the planktonic foraminifera Globogerinoides sacculifer (without sacc) from a site in the western equatorial Pacific Ocean (Ocean Drilling Program Site 806). These measurements, the first made in conjunction with calcification temperature (magnesium/calcium ratios) and average shell mass measurements, indicate that pH is not the sole environmental variable controlling B in planktonic foraminiferal calcite. Our data are consistent with calcification temperature exerting a primary control on B concentration and isotopic composition in planktonic foraminifera. If so, calcification temperature must be taken into account if pH for past oceans and atmospheric pCO2 are to be estimated from B isotope measurements in foraminiferal calcite. Doing so will substantially increase the uncertainty of PH estimates. Although this work was designed as a temporal study, its results define new aspects of calibrating the ??11B paleo-pH tracer. Copyright 2003 by the American Geophysical Union.

  15. Geochemistry of the Congo and Amazon river systems. Boron isotopic geochemistry in corals. Continental erosion and ocean pH

    International Nuclear Information System (INIS)

    Gaillardet, J.

    1995-01-01

    Two main geological processes control the CO 2 concentration in the atmosphere at a geological time scale: CO 2 outgasing from the interior of the Earth and CO 2 consumption by continental weathering. In the thesis, we initiate two different directions that can be useful to constraint the past climate evolution models. The first one is the extensive study of the largest rivers of the world using the classical geochemical analyses (major and trace elements, Sr-Nd-Pb isotopes) and modelling approaches. The study case of this thesis are the Congo and Amazon Basin. In particular, the coupling between chemical and physical erosion is examined and related to the hydrologic and tectonic parameters. Relief, thus tectonics appear to best control CO 2 consumption by rock weathering. The second part of the work is devoted to the measurement of boron isotopic ratio in corals because it may be used as a proxy for paleo-ocean pH. It could thus bring important pieces of information on the global C cycle and climate evolution. The technical part is extensively described and the method applied to the corals from the last interglacial period. Our conclusion is that corals are likely to be influence by early diagenetic changes that modify the boron isotopic composition of corals. We thus propose a test to select the samples. (author)

  16. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.

    Science.gov (United States)

    Martínez-Botí, M A; Marino, G; Foster, G L; Ziveri, P; Henehan, M J; Rae, J W B; Mortyn, P G; Vance, D

    2015-02-12

    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon.

  17. A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon and nitrogen. Ph.D. Thesis

    Science.gov (United States)

    Zumberge, J. F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.

  18. Unlocking the coral calcification process: Insights from boron isotope measurements and a skeletal growth model

    Science.gov (United States)

    Mollica, N. R.; Guo, W.; Cohen, A. L.; Huang, K. F.; Foster, G. L.; Donald, H.; Solow, A.

    2017-12-01

    Carbonate skeletons of scleractinian corals are important archives of ocean climate and environmental change. However, corals don't accrete their skeletons directly from ambient seawater, but from a calcifying fluid whose composition is strongly regulated. There is mounting evidence that the carbonate chemistry of this calcifying fluid significantly impacts the amount of carbonate the coral can precipitate, which in turn affects the geochemical composition of the skeleton produced. However the mechanistic link between calcifying fluid (cf) chemistry, particularly the up-regulation of pHcf and thereby aragonite saturation state (Ωcf), and coral calcification is not well understood. We explored this link by combining boron isotope measurements with in situ measurements of seawater temperature, salinity, and DIC to estimate Ωcf of nine Porites corals from four Pacific reefs. Associated calcification rates were quantified for each core via CT scanning. We do not observe a relationship between calcification rates and Ωcf or Ωsw. Instead, when we deconvolve calcification into linear extension and skeletal density, a significant correlation is observed between density and Ωcf, and also Ωsw while extension does not correlate with either. These observations are consistent with the two-step model of coral calcification, in which skeleton is secreted in two distinct phases: vertical extension creating new skeletal elements, followed by lateral thickening of existing elements that are covered by living tissue. We developed a numerical model of Porites skeletal growth that builds on this two-step model and links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validated the model using existing coral skeletal datasets from six Porites species collected across five reef sites, and quantified the effects of each seawater parameter (e.g. temperature, pH, DIC) on skeletal density. Our findings illustrate

  19. Accurate and precise determination of boron isotopic ratios at low concentration by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions.

    Science.gov (United States)

    He, Mao-yong; Xiao, Ying-kai; Jin, Zhang-dong; Ma, Yun-qi; Xiao, Jun; Zhang, Yan-ling; Luo, Chong-guang; Zhang, Fei

    2013-07-02

    A static double-collector system for accurate, precise, and rapid boron isotope analysis has been established by employing a newly fixed Faraday H3 and H4 cup enabling simultaneously collected Cs2BO2(+) ion beams (m/z = 308 and 309) on a Finnigan-MAT Triton thermal ionization mass spectrometer of boron (Triton B). The experimental result indicated that Cs2BO2(+) ion beams (m/z = 308 and 309) were simultaneously collected using a fixed Faraday H3 and H4 cup without using the "Zoom Quad" function and reduced accelerating voltage. Furthermore, the method enabled the measurement of samples containing as little as 20 ng of boron. An analysis of the National Institute of Standards and Technology standard reference material (NIST SRM) 951 standard showed external reproducibility (2RSD) of ±0.013‰, ± 0.013‰, and ±0.019‰ for 100, 50, and 20 ng of boron, respectively. The present method of static multicollection of Cs2BO2(+) ions is applicable to a wide field of boron isotopic research that requires high precision and accuracy to analyze samples with low boron concentrations, including pore fluids, foraminifera, rivers, rainwater, and other natural samples.

  20. Effect of 10B isotope and vacancy defects on the phonon modes of two-dimensional hexagonal boron nitride

    Science.gov (United States)

    Sherajul Islam, Md.; Anindya, Khalid N.; Bhuiyan, Ashraful G.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    We report the details of the effects of the 10B isotope and those of B and N vacancies combined with the isotope on the phonon modes of two-dimensional hexagonal boron nitride (h-BN). The phonon density of states and localization problems are solved using the forced vibrational method, which is suitable for an intricate and disordered system. We observe an upward shift of Raman-active E2g-mode optical phonons (32 cm‑1) for a 100% 10B isotope, which matches well with the experiment and simple harmonic oscillator model. However, a downward shift of E2g-mode phonons is observed for B or N vacancies and the combination of the isotope and vacancy-type disordered BN. Strong localized eigenmodes are found for all types of defects, and a typical localization length is on the order of ∼7 nm for naturally occurring BN samples. These results are very important for understanding the heat dissipation and electron transport properties of BN-based nanoelectronics.

  1. Evaluation of Ground-Water and Boron Sources by Use of Boron Stable-Isotope Ratios, Tritium, and Selected Water-Chemistry Constituents near Beverly Shores, Northwestern Indiana, 2004

    Science.gov (United States)

    Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.

    2007-01-01

    Concentrations of boron greater than the U.S. Environmental Protection Agency (USEPA) 900 ?g/L removal action level (RAL) standard were detected in water sampled by the USEPA in 2004 from three domestic wells near Beverly Shores, Indiana. The RAL regulates only human-affected concentrations of a constituent. A lack of well logs and screened depth information precluded identification of whether water from sampled wells, and their boron sources, were from human-affected or natural sources in the surficial aquifer, or associated with a previously defined natural, confined aquifer source of boron from the subtill or basal sand aquifers. A geochemically-based classification of the source of boron in ground water could potentially determine the similarity of boron to known sources or mixtures between known sources, or classify whether the relative age of the ground water predated the potential sources of contamination. The U.S. Geological Survey (USGS), in cooperation with the USEPA, investigated the use of a geochemical method that applied boron stable isotopes, and concentrations of boron, tritium, and other constituents to distinguish between natural and human-affected sources of boron in ground water and thereby determine if the RAL was applicable to the situation. Boron stable-isotope ratios and concentrations of boron in 17 ground-water samples and tritium concentrations in 9 ground-water samples collected in 2004 were used to identify geochemical differences between potential sources of boron in ground water near Beverly Shores, Indiana. Boron and d11B analyses for this investigation were made on unacidified samples to assure consistency of the result with unacidified analyses of d11B values from other investigations. Potential sources of boron included surficial-aquifer water affected by coal-combustion products (CCP) or domestic-wastewater, upward discharge of ground water from confined aquifers, and unaffected water from the surficial aquifer that was distant

  2. Boron isotopic composition of tertiary borate deposits in the Puna Plateau of the Central Andes, NW Argentina

    International Nuclear Information System (INIS)

    Kasemann, Simone; Franz, Gerhard; Viramonte, Jose G.; Alonso, Ricardo N.

    1998-01-01

    precipitation at variable pH values (Palmer and Helvaci 1995, Oi et al. 1989). Because of the identical δ 11 B values of each borate sequence from Sijes, similarly composed thermal brines are likely. Taking the Antuco data into account we calculate an original δ 11 B of -12%0 for the Sijes brines. The difference to the value (-16%0), calculated according to Oi et al. (1989), is small and can be explained by lower temperature and pH as well different chemical composition in the required fluid. In Tincalayu we measured the boron isotopes from different minerals with the same boron atomic coordination. The δ 11 B values are similar for the borates, which agrees with the work from Oi et al. (1989). The calculated δ 11 B value for the boron rich brines is around -10%0. In a first approximation, the isotopic composition of the boron source must be similar for Tincalayu and Sijes. A different situation is found in Loma Blanca. There a δ 11 B value between 0.0%0 and +4%0 for the fluid is calculated, which is clearly due to different source material. (author)

  3. Use of water as displacing agent in ion exchange chromatographic separation of isotope of boron using weak base ion exchange resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Mohanakrishnan, G.; Anand Babu, C.; Krishna Prabhu, R.

    2008-01-01

    Experiments were undertaken to study the feasibility of using weakly basic anion exchange resin for enrichment of isotopes of boron by ion exchange chromatography and water as eluent. The results of experiments carried out to determine total chloride capacity (TCC), strong base capacity (SBC) of the resin at different concentrations of boric acid and enrichment profiles are reported in this paper. (author)

  4. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral.

    Science.gov (United States)

    Thil, François; Blamart, Dominique; Assailly, Caroline; Lazareth, Claire E; Leblanc, Thierry; Butsher, John; Douville, Eric

    2016-02-15

    Laser Ablation coupled to Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS) is a powerful tool for the high-precision measurement of the isotopic ratios of many elements in geological samples, with the isotope ratio ((11) B/(10) B) of boron being used as an indicator of the pH of oceanic waters. Most geological samples or standards are polished and ablation occurs on flat surfaces. However, the shape and the irregularities of marine biocarbonates (e.g., corals, foraminifera) can make precise isotopic measurements of boron difficult. Even after polishing, the porosity properties and the presence of holes or micro-fractures affect the signal and the isotopic ratio when ablating the material, especially in raster mode. The effect of porosity and of the crater itself on the (11) B signal and the isotopic ratio acquired by LA-MC-ICPMS in both raster and spot mode was studied. Characterization of the craters was then performed with an optical profilometer to determine their shapes and depths. Surface state effects were examined by analyzing the isotopic fractionation of boron in silicate (NIST-SRM 612 and 610 standards) and in carbonate (corals). Surface irregularities led to a considerable loss of signal when the crater depth exceeded 20 µm. The stability and precision were degraded when ablation occurred in a deep cavity. The effect of laser focusing and of blank correction was also highlighted and our observations indicate that the accuracy of the boron isotopic ratio does not depend on the shape of the surface. After validation of the analytical protocol for boron isotopes, a raster application on a Porites coral, which grew for 18 months in an aquarium after field sampling, was carried out. This original LA-MC-ICPMS study revealed a well-marked boron isotope ratio temporal variability, probably related to growth rate and density changes, irrespective of the pH of the surrounding seawater. Copyright © 2015 John Wiley & Sons, Ltd. Copyright

  5. Isotopic fractionation of boron in growing corals and its palaeoenvironmental implication

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.K.; Shirodkar, P.V.; Zhang, C.G.; Wei, H.Z.; Liu, W.G.; Zhou, W.J.

    observed in this study, gave the average pH va l ues of sea water to be 8.85, 8.17, 7.76 and 8.22 respe c ti vely. This indicates the closeness of a43 value of 0.980 with that of the well - accepted r e ported a43 of 0.981 as the recalculated p... function calculati ons and boron adsorption e x- periments on ion exchange resin. Thereafter, a lower a43 of 0.968 was determined 7 based on adsorption exper i ments of boron onto marine clays. Moreover, Hemming et al. 8 calculated a fractionation...

  6. Boron compartmentation in roots of sunflower plants of different boron status: A study using the stable isotopes 10B and 11B adopting two independent approaches

    International Nuclear Information System (INIS)

    Pfeffer, H.; Dannel, F.; Roemheld, V.

    2001-01-01

    The intracellular compartmentation of boron (B) in roots of sunflower plants precultured with 100 μM B (high B) or 1 μM B (low B) was studied using two independent approaches. In the first approach, short-term efflux studies using the stable isotopes 11 B and 10 B were carried out. In roots of high B plants, the calculated concentrations of B (nmol g FW -1 ) were 52.6 in the cell wall, 7.5 in the vacuole, 27.1 in the cytosol and 48.0 in the free space. In roots of low B plants, the concentrations of B (nmol g FW -1 ) were 43.4 in the cell wall, 2.8 in the vacuole, 17.9 in the cytosol and almost zero in the free space. Although the B supply differed by a factor 100, the B concentrations in the cytosol and the vacuole of low B plants were 66 and 37% of the respective concentrations in high B plants. This suggests an additional role for B in plant metabolism, besides its function in the cell wall. In the second approach, root B pools (cell sap and water-insoluble residue) were determined for comparison, and found to be in good agreement with the results from the efflux study. (au)

  7. Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios.

    Science.gov (United States)

    Serra, Francesca; Guillou, Claude G; Reniero, Fabiano; Ballarin, Luciano; Cantagallo, Maria I; Wieser, Michael; Iyer, Sundaram S; Héberger, Károly; Vanhaecke, Frank

    2005-01-01

    In this study we show that the continental origin of coffee can be inferred on the basis of coupling the isotope ratios of several elements determined in green beans. The combination of the isotopic fingerprints of carbon, nitrogen and boron, used as integrated proxies for environmental conditions and agricultural practices, allows discrimination among the three continental areas producing coffee (Africa, Asia and America). In these continents there are countries producing 'specialty coffees', highly rated on the market that are sometimes mislabeled further on along the export-sale chain or mixed with cheaper coffees produced in other regions. By means of principal component analysis we were successful in identifying the continental origin of 88% of the samples analyzed. An intra-continent discrimination has not been possible at this stage of the study, but is planned in future work. Nonetheless, the approach using stable isotope ratios seems quite promising, and future development of this research is also discussed. (c) 2005 John Wiley & Sons, Ltd.

  8. Boron isotope fractionation in groundwaters as an indicator of past permafrost conditions in the fractured crystalline bedrock of the fennoscandian shield.

    Science.gov (United States)

    Casanova, Joël; Négrel, Philippe; Blomqvist, Runar

    2005-01-01

    The Fennoscandian Shield has been subjected to several glaciations over the past million years, the last of which (Weichselian Ice Age) ended only at about 10Ka. Here we used boron isotopes and B contents to (a) establish the degree of water-rock interaction (WRI) and (b) clarify freezing processes within groundwaters from the Aspo site in Sweden and from various sites in Finland. The high delta(11)B values recorded by all groundwaters (up to 51.9 per thousand) including diluted, boron-poor, inland groundwaters suggest selective uptake of (10)B into ice related to freezing processes under permafrost conditions. According to co-existing ice and residual brines in a Canadian frozen mine, this fractionation process, enhanced by Rayleigh fractionation, can generate a natural field of isotopic variation around 60 per thousand and provides a new application of B isotope that makes possible to easily characterise groundwaters that underwent past permafrost conditions.

  9. Geochemical evolution of tourmaline in the Darasun gold district, Transbaikal region, Russia: evidence from chemical and boron isotopic compositions

    Science.gov (United States)

    Baksheev, Ivan A.; Prokofiev, Vsevolod Yu.; Trumbull, Robert B.; Wiedenbeck, Michael; Yapaskurt, Vasilii O.

    2015-01-01

    The Darasun gold district, Transbaikal region, eastern Russia comprises three deposits: Teremkyn, Talatui, and Darasun, where gold-bearing quartz veins are hosted in metagabbro and granitoids. Tourmaline is a common gangue mineral in these deposits and a useful indicator of fluid source. The tourmaline compositions are oxy-dravite-povondraite, dravite, and schorl. We report here in situ B-isotope analyses by secondary ion mass spectrometry (SIMS) on tourmaline from veins in metagabbro and K-rich granodiorite, as well as from a breccia pipe at the margin of granodiorite porphyry. The B-isotope composition of tourmalines from the Darasun gold district as a whole covers a very wide range from -15.7 to +11.2 ‰, with distinctive differences among the three deposits. The δ11B values in the Teremkyn tourmalines are the most diverse, from -15.7 to +2.5 ‰. Tourmaline core compositions yield an inferred δ11B value of the initial fluid of ca. -12 ‰, suggesting granitic rocks as the B source, whereas the heavier rims and late-stage grains reflect Rayleigh fractionation. The δ11B values of tourmaline from Talatuiare -5.2 to -0.9 ‰. Taking into account fluid inclusion temperatures from vein quartz (ca. 400 °C), the inferred δ11B value of fluid is heavy (-2.5 to +2.2 ‰) suggesting a B source from the host metagabbro. At the Darasun deposit, tourmaline from the breccia pipe is isotopically uniform (δ11 B -6 to -5 ‰) and suggested to have precipitated from a 10B-depleted, residual fluid derived from granitic rocks. The Darasun vein-hosted tourmalines I and II (δ11B from -4.4 to +1.5 ‰) may have crystallized from strongly fractionated residual granitic fluid although mixing with heavy boron from the metagabbro rocks probably occurred as well; the boron isotopic composition of tourmaline III (-11.2 ‰) is attributed to a less-fractionated fluid, possibly a recharge from the same source.

  10. Environmental controls on the boron and strontium isotopic composition of aragonite shell material of cultured Arctica islandica

    Directory of Open Access Journals (Sweden)

    Y.-W. Liu

    2015-06-01

    Full Text Available Ocean acidification, the decrease in ocean pH associated with increasing atmospheric CO2, is likely to impact marine organisms, particularly those that produce carbonate skeletons or shells. Therefore, it is important to investigate how environmental factors (seawater pH, temperature and salinity influence the chemical compositions in biogenic carbonates. In this study we report the first high-resolution strontium (87Sr / 86Sr and δ88 / 86Sr and boron (δ11B isotopic values in the aragonite shell of cultured Arctica islandica (A. islandica. The 87Sr / 86Sr ratios from both tank water and shell samples show ratios nearly identical to the open ocean, which suggests that the shell material reflects ambient ocean chemistry without terrestrial influence. The 84Sr–87Sr double-spike-resolved shell δ88 / 86Sr and Sr concentration data show no resolvable change throughout the culture period and reflect no theoretical kinetic mass fractionation throughout the experiment despite a temperature change of more than 15 °C. The δ11B records from the experiment show at least a 5‰ increase through the 29-week culture season (January 2010–August 2010, with low values from the beginning to week 19 and higher values thereafter. The larger range in δ11B in this experiment compared to predictions based on other carbonate organisms (2–3‰ suggests that a species-specific fractionation factor may be required. A significant correlation between the ΔpH (pHshell − pHsw and seawater pH (pHsw was observed (R2 = 0.35, where the pHshell is the calcification pH of the shell calculated from boron isotopic composition. This negative correlation suggests that A. islandica partly regulates the pH of the extrapallial fluid. However, this proposed mechanism only explains approximately 35% of the variance in the δ11B data. Instead, a rapid rise in δ11B of the shell material after week 19, during the summer, suggests that the boron uptake changes when a thermal

  11. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea

    Science.gov (United States)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.

    2016-12-01

    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  12. Development and method of use of a mass spectrometric isotope dilution analysis within the use of negative thermoionisation for determination of boron traces

    International Nuclear Information System (INIS)

    Zeininger, H.

    1984-01-01

    A mass spectrometric trace boron determination using negative thermionisation was developed. It is based on the determination of the ratio of BO 2 - isotopes ( 10 B and 11 B). A high stability and a constant intensity at a given temperature of the BO 2 - ion currents allow for a computer controlled measurement with a programmed heating. The reproducibility lies at around 0,004-0,08%. The boron determination using Mels potentiometry with a BF 4 - -ion selective electrode was used as an analytical comparison method. The MS-IDA was first used on metal samples, such as Al, Zr, and steel. Later on the boron in reagents, biological material (milk powder, spinach, water plants) and water were determined. For this material-dependent hydrolysation and separation procedures were worked out. The MS-IDA in comparison to all other analytical methods used by other collaborators offers the greatest accuracy. (RB) [de

  13. The isotopic composition of galactic cosmic-ray lithium, beryllium, and boron

    Science.gov (United States)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1975-01-01

    The isotopes of cosmic-ray Li, Be, and B near 100 MeV per nucleon have been measured with cosmic-ray telescopes on board the IMP-7 and IMP-8 satellites during 1973 and 1974. The measured isotopic abundances provide a stringent test for models of interstellar propagation and solar modulation. It is found that the isotopic abundances can be explained using a steady-state interstellar propagation model with a 5-g/sq cm leakage mean free path. These results, taken along with Be-10 abundance measurements, indicate a longer lifetime for cosmic rays than that predicted by the usual assumption of an average interstellar density of 1 to 3 atoms per cu cm.

  14. Isotopic substitution of boron and carbon in superconducting diamond epilayers grown by MPCVD

    Czech Academy of Sciences Publication Activity Database

    Achatz, P.; Omnès, F.; Ortega, L.; Marcenat, C.; Vacík, Jiří; Hnatowicz, Vladimír; Koster, U.; Jomard, F.; Bustarret, E.

    2010-01-01

    Roč. 19, č. 7 (2010), s. 814-817 ISSN 0925-9635 R&D Projects: GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : Isotopic effects * Vibrational properties * p-type doping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.825, year: 2010

  15. The isotopic composition of galactic cosmic ray lithium, beryllium and boron

    Science.gov (United States)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1978-01-01

    The isotopic composition of galactic-cosmic-ray Li, Be, and B has been measured near 100 MeV/nucleon by using the University of Chicago IMP 7 and IMP 8 cosmic-ray telescopes during 1973-1975. The measured abundances allow detailed checks of models of interstellar propagation and solar modulation to be made and conclusions to be drawn concerning the spectral forms at the source and the minimum solar modulation level. For example, comparing these results with local interstellar spectra calculated by using a 'leaky box' model, it is found that if solar modulation is ignored, there is no unique leakage mean free path consistent with all the observations. However, by taking account of a sizable level of residual solar modulation, excellent agreement is obtained between the calculated and measured abundances. Thus, these isotopic abundances confirm the old hypothesis that cosmic-ray Li, Be, and B are produced as secondaries in interstellar space.

  16. Lithium and boron in late-orogenic granites - Isotopic fingerprints for the source of crustal melts?

    Science.gov (United States)

    Romer, Rolf L.; Meixner, Anette; Förster, Hans-Jürgen

    2014-04-01

    Geochemically diverse late- and post-Variscan granites of the Erzgebirge-Vogtland, the Saxon Granulite Massif, and Thuringia (Germany) formed by anatectic melting of Palaeozoic sedimentary successions and associated mafic to felsic volcanic rocks. The compositional diversity of the least evolved of these granites is largely inherited from the protoliths. We present Li and B-isotopic data of these granites and compare them with the isotopic composition of their protoliths, to investigate whether (i) there exist systematic differences in the Li and B-isotopic composition among different granite types and (ii) Li and B-isotopic compositions provide information on the granite sources complementary to information from the isotopic composition of Sr, Nd, and Pb and the trace-element signatures. Low-F biotite and two-mica granite types have flat upper continental crust (UCC)-normalized trace-element pattern with variable enrichments in Li, Rb, Cs, Sn, and W and depletions in Sr, Ba, and Eu. These signatures are least pronounced for the Niederbobritzsch biotite granite, which has the largest contribution of mafic material, and most pronounced for the two-mica granites. The granites show a relatively narrow range of δ7Li values (-3.0 to -0.5) and a broad range of δ11B values (-13.4 to +20.1). The δ11B values are lower in rocks with distinctly higher contents of Li, Rb, Cs, and Sn. The high δ11B of the Niederbobritzsch granite may be explained by the melting of former altered oceanic crust in its source. Relative to UCC, intermediate-F to high-F low-P granites show strong depletions in Sr, Ba, Eu as well as Zr and Hf, strong enrichments in Li, Rb, and Cs as well as Nb, Sn, Ta, and W, and REE pattern with stronger enrichments for HREE than for LREE. These granites show narrow ranges of δ7Li (-2.0 to +1.6) and δ11B values (-14.7 to -9.1), reflecting the smaller variability of the Li and B-isotopic composition in their source lithologies. The anomalously high δ7Li value

  17. Boron abundances and isotopic ratios of olivine grains on Itokawa returned by the Hayabusa spacecraft

    Science.gov (United States)

    Fujiya, Wataru; Hoppe, Peter; Ott, Ulrich

    2016-09-01

    We report the B abundances and isotopic ratios of two olivine grains from the S-type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic-ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic-ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.

  18. Chemical and isotopic analysis of boron in uranium by mass spectrometry; Analyse chimique et isotopique du bore dans l'uranium par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Chenouard, J.; Nief, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A method is described for the determination by mass spectrometry of the concentration and the isotopic composition of small quantities of boron in uranium. The concentration range is between 10 and 100 ppm. The boron is extracted by distillation of methyl borate. The concentration is attained by isotopic dilution. Many precautions have to be taken to limit and correct contaminations. This method of analysis is applicable for at least 0.2 {mu}g of boron; the relative accuracy is about 2 per cent. (authors) [French] On decrit une methode de determination par spectrometrie de masse de la concentration et de la composition isotopique de faibles quantites de bore dans l'uranium. Le domaine de concentration est compris entre 10 et 100 ppm. L'extraction du bore s'effectue par distillation du borate de methyle. La concentration est atteinte par dilution isotopique. De nombreuses precautions doivent etre prises pour limiter et corriger les contaminations. L'analyse est possible a partir de 0,2 {mu}g de bore avec une precision relative de l'ordre de 2 pour cent. (auteurs)

  19. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    OpenAIRE

    Marschall, H.R.; Wanless, V.D.; Shimizu, N.; Pogge von Strandmann, Philip A.E.; Elliott, T.; Monteleone, B.D.

    2017-01-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([Li]=1.39±0.10[Li]=1.39±0.10 μg/g and [B]=0.19±0.02[B]=0.19±0.02 μg/g) and depleted mantle abundances ([Li]=1.20±0.10...

  20. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    Science.gov (United States)

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  1. Isotope effects associated with the preparation and methylation of fatty acids by boron trifluoride in methanol for compound-specific stable hydrogen isotope analysis via gas chromatography/thermal conversion/isotope ratio mass spectrometry.

    Science.gov (United States)

    Chivall, David; Berstan, Robert; Bull, Ian D; Evershed, Richard P

    2012-05-30

    Compound-specific stable hydrogen isotope analysis of fatty acids is being used increasingly as a means of deriving information from a diverse range of materials of archaeological, geological and environmental interest. Preparative steps required prior to isotope ratio mass spectrometry (IRMS) analysis have the potential to alter determined δD values and hence must be accounted for if accurate δD values for target compounds are to be obtained. Myristic, palmitic, stearic, arachidic and behenic saturated fatty acids were derivatised to their respective fatty acid methyl esters (FAMEs), using 14% (w/v) boron trifluoride in methanol then analysed by gas chromatography/thermal conversion/IRMS (GC/TC/IRMS). FAMEs generated from fatty acid sodium salts of unknown δD values were then used to test a correction factor determined for this method of derivatisation. Derivatisation was found to alter the hydrogen isotopic composition of FAMEs although this effect was reproducible and can be accounted for. The difference between the mean corrected and mean bulk δD values was always less than 6.7 ‰. Extraction of saturated fatty acids and acyl lipids from samples, subsequent hydrolysis, then separation on a solid-phase extraction cartridge, was found to alter the determined δD values by less than one standard deviation. Overall, it has been shown that for natural abundance hydrogen isotope determinations, the isolation and derivatisation of extracted fatty acids alters the determined δD values only by a numerical increment comparable with the experimental error. This supports the use of the described analytical protocol as an effective means of determining fatty acid δD values by GC/TC/IRMS. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Boron Isotopes as Tracers of the Tectonic Origin and Geological History of Serpentinites in Subduction and Suture Zones.

    Science.gov (United States)

    Martin, C.; Harlow, G. E.; Flores, K. E.; Angiboust, S.

    2017-12-01

    Serpentinites are known to play a key role in subduction, because they contain significant water content and can be enriched in elements such as As, B, Li, Sb, and U. They originate by hydration of peridotite by two different processes: (i) by a seawater source reacting with peridotite beneath the ocean crust and (ii) by reaction of peridotite at the base of the mantle-wedge with fluids released from the slab during subduction. In suture zones, it is relatively common to find serpentinite from both exhumed subduction channel mélange (from the mantle wedge) and ophiolite (from the oceanic crust), but recognizing them and their tectonic origin can be difficult. A recent study based on samples from the Guatemala Suture Zone demonstrated that boron (B) isotopes can be used as a probe of the fluid from which serpentinites form. Serpentinites from an ophiolite complex have positive δ11B, as expected for peridotites hydrated by seawater-derived fluid, whereas serpentinite samples from the matrix of the mélange (coming from the roof of the subducting channel) have negative δ11B, in agreement with hydration of mantellic peridotites by fluids released at 30-70 km depth from metamorphic rocks. Serpentinites from tectonically well-constrained locations were selected to extend our knowledge of metasomatism in subduction-related areas. The trace-element contents and B isotopes were measured in situ, respectively by LA-ICP-MS and LA-MC-ICP-MS on samples from the oceanic crust (ophiolite = Guatemala, Iran, Cuba), the subduction forearc (Nicaragua), and the mantle wedge (Guatemala, Iran, Japan, Myanmar). The spider diagrams and REE patterns, as well as a B/La vs. As/La diagram do not show any reliable difference to distinguish the tectonic origin of the serpentinite. However, in a δ11B vs. B content diagram, the serpentinites seem to plot in a triangle with fluid endmembers representing (i) seawater (δ11B = 40‰, [B] = 5ppm), (ii) metabasite-issued metamorphic fluids, and

  3. A 10-fold improvement in the precision of boron isotopic analysis by negative thermal ionization mass spectrometry.

    Science.gov (United States)

    Shen, Jason Jiun-San; You, Chen-Feng

    2003-05-01

    Boron isotopes are potentially very important to cosmochemistry, geochemistry, and paleoceanography. However, the application has been hampered by the large sample required for positive thermal ionization mass spectrometry (PTIMS), and high mass fractionation for negative-TIMS (NTIMS). Running as BO(2)(-), NTIMS is very sensitive and requires only nanogram sized samples, but it has rather poor precision (approximately 0.7-2.0 per thousand) as a result of the larger mass fractionation associated with the relatively light ion. In contrast, running as the much heavier molecule of Cs(2)BO(2)(+), PTIMS usually achieves better precision around 0.1-0.4 per thousand. Moreover, there is a consistent 10 per thousand offset in the (11)B/(10)B ratio for NIST SRM 951 standard boric acid between the NTIMS and the certified value, but the cause of this offset is unclear. In this paper, we have adapted a technique we developed earlier to measure the (138)La/(139)La using LaO(+) (1) to improve the NTIMS technique for BO(2). We were able to correct for instrumental fractionation by measuring BO(2)(-) species not only at masses of 42 and 43, but also at 45, which enabled us to normalize (45)BO(2)/(43)BO(2) to an empirical (18)O/(16)O value. We found that both I(45)/I(42) = ((11)B(16)O(18)O/(10)B(16)O(16)O) and (I(43)/I(42))(C) = ((11)B(16)O(16)O/(10)B(16)O(16)O) vary linearly with (I(45)/I(43))(C) x 0.5 = ((11)B(16)O(18)O/(11)B(16)O(16)O) x 0.5 = (18)O/(16)O. In addition, different activators and different chemical forms of B yield different slopes for the fractionation lines. After normalizing (11)B(16)O(18)O/(11)B(16)O(16)O x 0.5 to a fixed (18)O/(16)O value, we obtained a mean (11)B/(10)B value of NIST SRM 951 that matches the NIST certified value at 4.0430 +/- 0.0015 (+/-0.36 per thousand, n = 11). As a result, our technique can achieve precision and accuracy comparable to that of PTIMS with only 1 per thousand of the sample required. This new NTIMS technique for B isotopes is

  4. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    Science.gov (United States)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  5. The Role of Boron Chloride and noble gas isotope ratios in Taupo Volcanic Zone geothermal systems

    International Nuclear Information System (INIS)

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater con noble gases, at air saturated water concentrations, mixes with hot fluids of man origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks 'en route' the surface. It is demonstrated that this interaction is responsible for most of CO/sub 2/ in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed th the modelling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks like to be encountered in the geothermal system, but further information on the behaviour of B may be needed. If these problems can be overcome this modelling technique has promise for the estimation of the recharge of geothermal systems a hence the sustainability of these systems. (author). 17 refs., 4 figs

  6. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Itoh, S.; Aida, M.; Okamoto, M.; Nomura, M.; Fujii, Y.

    1985-01-01

    Influences of operating temperatures and concentrations of feed boric acid solutions were examined on the above titled process over the ranges of 25 - 70 0 C and 0.1 - 1.6 mol/dm 3 (M), respectively. The ideal displacement chromatography with a very sharp-cut boundary of the boric acid adsorption band was realized at higher temperatures and lower boric acid concentrations within the experimental conditions. The isotope separation coefficient epsilon was found to decrease with increases in either temperature or the boric acid concentration. The observed values of epsilon at 25 0 C were 0.013, 0.012 and 0.011 corresponding to feed boric acid concentrations of 0.1 M, 0.4 M and 0.8 M, respectively. The epsilon's at 70 0 C were 0.0097 (0.1 M), 0.0086 (0.4 M), 0.0083 (0.8 M) and 0.0073 (1.6 M). A temperature of 40 0 C and 0.4 M of boric acid concentration was considered the optimum operating condition for the production of enriched 10 B. (author)

  7. Experimental dissolution vs. transformation of micas under acidic soil conditions: Clues from boron isotopes

    Science.gov (United States)

    Voinot, A.; Lemarchand, D.; Collignon, C.; Granet, M.; Chabaux, F.; Turpault, M.-P.

    2013-09-01

    Minerals in soils evolve through contact with water and other weathering agents (protons, organic acids and ligands) from the atmosphere or released by the surrounding vegetation and associated fauna. Determining the respective contribution of these agents to weathering budgets and the mechanisms by which they interact with soil minerals is a key step toward obtaining refined models of soil development, plant/mineral interactions and, ultimately, soil sustainability. To test the influence of different chemical agents on the processes of mica weathering (dissolution and transformation), we conducted a series of laboratory flow-through experiments on biotite using three chemical groups of reactants found in forest soils: protons (HCl), organic acids (citric acid) and ligands (siderophores). These experiments were performed at two different pH values (pH 3 and pH 4.5) for 37 days at 20 °C. Biotite was chosen as a test-mineral because it is reactive with acids and water and because it is commonly found in granite soils. To investigate the weathering reactions, the chemical and isotopic compositions of B (δ11B) and the concentrations of predominant cation (Si, Al, Mg, K and Fe) were monitored in the outflowing solutions. The choice of B as a proxy for weathering processes is based on the fact that B is located in different crystallographic sites in biotite (interlayers and structural sites, named I- and S-sites, respectively). We observed a large δ11B contrast between these sites (Δ11BS-I sites˜80‰), which allows for a precise quantification of the respective contribution of I- and S-sites to B released during biotite weathering. The individual reaction rates for these crystallographic sites were inferred from the B chemical and isotopic compositions of the outflowing solutions. A comparison with the major elements reveals that B is preferentially released to solution under all tested experimental conditions (up to 4 times more), particularly in the presence of

  8. Tackling the salinity-pollution nexus in coastal aquifers from arid regions using nitrate and boron isotopes.

    Science.gov (United States)

    Re, V; Sacchi, E

    2017-05-01

    pollution drivers. The results indicate two main origins for human-induced pollution: (i) manure and septic effluents, especially in urban areas, and (ii) synthetic fertilizers in agricultural areas. In the latter, δ 15 N-enriched values highlight a mixture of those sources, possibly related to unbalanced fertilization and agricultural return flow. Boron isotopes (δ 11 B) were hence studied to further distinguish the nitrate origin in the presence of multiple sources and mixing processes. The results indicate that in the study area, the high geochemical background for B and Cl, associated to the complex water-rock interaction processes, limit the application of the coupled δ 11 B and δ 15 N isotopic systematics to the detection of sources of groundwater pollution. In fact, despite the exceedingly high nitrate contents, the depleted δ 11 B values that characterize synthetic fertilizers and sewage leakages could not be detected. Therefore, even if in saline groundwater the anthropogenic contribution has a negligible effect in terms of salinity input, with both sewage and irrigation water not very charged, the associated nitrate content fuels up water-rock interaction processes, eventually leading to a mineralization increase.

  9. Quantitative subcellular secondary ion mass spectrometry (SIMS) imaging of boron-10 and boron-11 isotopes in the same cell delivered by two combined BNCT drugs: in vitro studies on human glioblastoma T98G cells.

    Science.gov (United States)

    Chandra, Subhash; Lorey II, Daniel R; Smith, Duane R

    2002-06-01

    Ion microscopy was used for subcellular quantitative imaging of the isotopes 10B and 11B in the same cell to evaluate boron delivery using a mixture of two neutron capture therapy drugs, p-boronophenylalanine-fructose (BPA-F) and sodium borocaptate (BSH). The application of 10B-labeled BPA-F and 11B-labeled BSH allowed independent imaging of both 10B and 11B in the same cell using a CAMECA IMS-3f ion microscope. Mixed-drug treatments were compared to single-drug exposures given under identical conditions. 10BPA-F delivered 10B heterogeneously to T98G human glioblastoma cells, with a significantly reduced concentration in an organelle-rich perinuclear region. The intracellular distribution of 11B from 11BSH contrasted with that of the 10B from 10BPA-F, with 11B distributed nearly homogeneously throughout cells. The subcellular distributions of 10B and 11B were sustained in mixed-drug treatments and resembled their localizations after the single-drug treatments. In both single- and mixed-drug treatments, cellular levels of 10B from 10BPA-F nearly doubled between 1 h and 6 h, with a 3:1 intracellular to nutrient medium partitioning, while cellular levels of 11BSH remained essentially unchanged. The net effect of the combined treatment with 10BPA-F and 11BSH was an additive delivery of boron to cells. This study introduces a novel approach for checking potential synergistic, antagonistic or simple additive delivery of two mixed boronated compounds in cellular/subcellular compartments.

  10. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga

    Science.gov (United States)

    Donald, Hannah K.; Ries, Justin B.; Stewart, Joseph A.; Fowell, Sara E.; Foster, Gavin L.

    2017-11-01

    The increase in atmospheric carbon dioxide (CO2) observed since the industrial revolution has reduced surface ocean pH by ∼0.1 pH units, with further change in the oceanic system predicted in the coming decades. Calcareous organisms can be negatively affected by extreme changes in seawater pH (pHsw) such as this due to the associated changes in the oceanic carbonate system. The boron isotopic composition (δ11B) of biogenic carbonates has been previously used to monitor pH at the calcification site (pHcf) in scleractinian corals, providing mechanistic insights into coral biomineralisation and the impact of variable pHsw on this process. Motivated by these investigations, this study examines the δ11B of the high-Mg calcite skeleton of the coralline red alga Neogoniolithon sp. to constrain pHcf, and investigates how this taxon's pHcf is impacted by ocean acidification. δ11B was measured in multiple algal replicates (n = 4-5) cultured at four different pCO2 scenarios - averaging (±1σ) 409 (±6), 606 (±7), 903 (±12) and 2856 (±54) μatm, corresponding to average pHsw (±1σ) of 8.19 (±0.03), 8.05 (±0.06), 7.91 (±0.03) and 7.49 (±0.02) respectively. Results show that skeletal δ11B is elevated relative to the δ11B of seawater borate at all pHsw treatments by up to 18‰. Although substantial variability in δ11B exists between replicate samples cultured at a given pHsw (smallest range = 2.32‰ at pHsw 8.19, largest range = 6.08‰ at pHsw 7.91), strong correlations are identified between δ11B and pHsw (R2 = 0.72, p ocean acidification via increase of pHcf relative to pHsw in a similar manner to scleractinian corals. However, these results also indicate that pHcf cannot be sufficiently increased by algae exposed to a larger reduction in pHsw, adversely impacting calcification rates of coralline red algae.

  11. Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: Implications for δ 11B vital effects and paleo-pH reconstructions

    Science.gov (United States)

    Rollion-Bard, C.; Erez, J.

    2010-03-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ 11B has some limitations such as the knowledge of the fractionation factor ( α4-3) between boric acid and the borate ion and the amplitude of "vital effects" on this proxy that are not well constrained. Using secondary ion mass spectrometry (SIMS) we have examined the internal variability of the boron isotope ratio in the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24 ± 0.1 °C) in seawater with pH ranging between 7.90 and 8.45. Intra-shell boron isotopes showed large variability with an upper limit value of ≈30‰. Our results suggest that the fractionation factor α4-3 of 0.97352 ( Klochko et al., 2006) is in better agreement with our experiments and with direct pH measurements in seawater vacuoles associated with the biomineralization process in these foraminifera. Despite the large variability of the skeletal pH values in each cultured specimen, it is possible to link the lowest calculated pH values to the experimental culture pH values while the upper pH limit is slightly below 9. This variability can be interpreted as follows: foraminifera variably increase the pH at the biomineralization site to about 9. This increase above ambient seawater pH leads to a range in δ 11B (Δ 11B) for each seawater pH. This Δ 11B is linearly correlated with the culture seawater pH with a slope of -13.1 per pH unit, and is independent of the fractionation factor α4-3, or the δ 11B sw through time. It may also be independent of the p KB (the dissociation constant of boric acid) value. Therefore, Δ 11B in foraminifera can potentially reconstruct paleo-pH of seawater.

  12. Effects of foliar boron application on seed composition, cell wall boron, and seed δ(15)N and δ(13)C isotopes in water-stressed soybean plants.

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A; Abel, Craig A

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha(-1). The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS-B); water stressed plants with FB (WS+B); watered plants without FB (W-B), and watered plants with FB (W+B). The treatment W-B was used as a control. Comparing with WS-B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W-B. However, seed stachyose concentrations increased by 43% in WS-B plants seed compared with W-B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS-B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ(15)N and δ(13)C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids.

  13. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    Science.gov (United States)

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  14. Boron isotope variations in Tonga-Kermadec-New Zealand arc lavas: Implications for the origin of subduction components and mantle influences

    Science.gov (United States)

    Leeman, William P.; Tonarini, Sonia; Turner, Simon

    2017-03-01

    The Tonga-Kermadec-New Zealand volcanic arc is an end-member of arc systems with fast subduction suggesting that the Tonga sector should have the coolest modern slab thermal structure on Earth. New data for boron concentration and isotopic composition are used to evaluate the contrasting roles of postulated subduction components (sediments and oceanic slab lithologies) in magma genesis. Major observations include: (a) Tonga-Kermadec volcanic front lavas are enriched in B (as recorded by B/Nb and similar ratios) and most have relatively high δ11B (>+4‰), whereas basaltic lavas from New Zealand have relatively low B/Nb and δ11B (enrichments in the arc magma sources are likely dominated by serpentinite domains deeper within the subducting slab (±altered oceanic crust), and B systematics are consistent with dominant transport by slab-derived aqueous fluids. Effects of this process are amplified by mantle wedge source depletion due to prior melt extraction.Plain Language SummaryBoron isotope and other geochemical data are used to evaluate contributions from subducted materials to magma sources for volcanoes of the Tonga-Kermadec-New Zealand volcanic arc. The data are used to estimate the composition of modified mantle sources for the arc magmas as well as the extent of melting to produce them. It is shown that the mantle was previously depleted in melt components, and then overprinted by B and other components from the subducting slab, predominantly by aqueous fluids produced by dehydration of the slab. Some elements (e.g., Th, Be, La) considered to be relatively immobile in aqueous fluids, show strong correlation with B-enrichment, suggesting that they too can be mobilized in this manner. This result is important for understanding the origin of arc magmas from other localities. In addition our data imply that slab inputs to arc magma sources are cumulative over time.

  15. Compression and Associated Properties of Boron Carbide

    Science.gov (United States)

    2008-12-01

    Klandadze, G.I., and Eristavi, A.M., 1999: IR- Active Phonons and Structure Elements of Isotope - Enriched Boron Carbide, J. Sol. State Chem. 154, 79- 86...COMPRESSION AND ASSOCIATED PROPERTIES OF BORON CARBIDE D. P. Dandekar*and J. A. Ciezak Army Research Laboratory, APG, MD 21005 M. Somayazulu...of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress

  16. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  17. Reconstruction of pH and partial pressure of carbon dioxide during the Mesozoic era period using boron and oxygen isotopic compositions of fresh ammonoids & nautiloids

    Science.gov (United States)

    Kawahata, Hodaka; Fukushima, Ayaka; Moriya, Kazuyori; Ishikawa, Tsuyoshi; Suzuki, Atsushi; Tanabe, Kazushige

    2013-04-01

    The increase of partial pressure of carbon dioxide (pCO2) in the atmosphere induces global warming and ocean acidification at the modern condition. The reconstruction of pCO2 during the geological time is required together with proxy calibration by laboratory experiments to predict the future environments. Boron isotopic ratio is an excellent proxy for pH and the relevant partial pressure of carbon dioxide in the seawater (PCO2). This study is the first to quantify pH dependence of delta 11B of the ammonoids and nautiloids mainly in the Cretaceous and in Jurassic (70-162 Ma), which are expected to be much warmer due to higher PCO2. However, no reliable reconstruction data using foraminiferal delta 11B before Cenozoic era has been reported. We used the very fresh aragonite shells of ammonoids and nautiloids by big advantages. Since aragonite changes into secondary calcite by diagenesis, it is easy and effective to identify the degree of alteration at each sample by measuring calcite/aragonite ratio. Also we carefully conducted the assessment of secondary alteration from three perspectives: 1) Determination of calcite/aragonite ratio by X-ray diffraction (XRD), 2) Observation of microstructures of the nacreous layers by scanning electron microscope (SEM), and 3) Measurement of trace element contents and stable isotope ratios. We conducted high precision boron isotope analysis of biogenic carbonates with +/- 0.1 per mil reproducibility by adopting positive thermal ionization mass spectrometry (P-TIMS) methods. Also we analyzed delta 18O to estimate paleo-temperature, at which biogenic aragonite was formed. Combination of delta 11B and delta 18O of biogenic aragonite in 80 Ma and 86 Ma revealed that deeper dwellers showed lower delta 11B values, which corresponded to lower pH. This feature is consistent with those observed in the modern vertical water column. The respective shallow water temperature was 19.7 and 19.1 centigrade. Based on these results, the

  18. Content of lithium, beryllium, boron, and titanium, and the isotopic composition of lithium, boron, and magnesium in Luna 16 regolith sample

    Science.gov (United States)

    Eugster, O.

    1974-01-01

    The abundance of the following elements in the L 16-19 No. 118 regolith sample, zone V was determined by isotopic dilution using a mass spectrometer equipped with a scattering ion source: Li -- 9.8, Be -- 1.2, Be -- 2.6, and Ti -- 1.92 percent. For comparison, these same elements were measured in samples of surface material returned by Apollo 11, Apollo 12, and Apollo 14, and in the terrestrial reference standard diabase W-1. The content of Li, Be, and B in the Luna 16 sample is nearly the same as in the Apollo 11 surface material. The surface material returned by Apollo 12 and Apollo 14 contains two to four times more of these elements. However, the abundance ratios of Li, Be, and B are remarkably similar in the surface materials from the four different lunar regions. With respect to basaltic achondrites and especially with respect to chondrites, the lunar basalts are enriched in Li, Be, and B up to 100 times.

  19. Geographic determination of coffee beans using multi-element analysis and isotope ratios of boron and strontium.

    Science.gov (United States)

    Liu, Hou-Chun; You, Chen-Feng; Chen, Chiou-Yun; Liu, Yu-Ching; Chung, Ming-Tsung

    2014-01-01

    This study aims to evaluate the feasibility of using chemical and isotopic compositions of coffee beans to identify their geographic origins. Twenty-one Coffea arabica beans collected from 14 countries in 3 major coffee-producing regions, Africa, America and Asia, were analysed for multi-element of B, Rb, Sr, Ba, Fe, Mn and Zn, as well as isotopic compositions of B and Sr. Our results demonstrate that the geographic origin of coffee beans could be classified based on concentrations of Rb, Sr and Ba. However, the isotope ratios of B and Sr provide more sensitive information for the growth localities. Combined with literature data, this study indicates that B and Sr isotopes are excellent indicators of the origin of coffee beans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Boron Isotope Compositions of Selected Fresh MORB Glasses From the Northern EPR (8-10° N): Implications for MORB Magma Contamination

    Science.gov (United States)

    Le Roux, P. J.; Shirey, S. B.; Hauri, E. H.; Perfit, M. R.

    2003-12-01

    . These MORB samples have 0.56 to 2.61 ppm B, and B isotope compositions that are surprisingly restricted ranging from δ 11B -5.50 to -8.96‰ . The low δ 11B values are close to the depleted upper mantle value (-10‰ ). The δ 11B data do not correlation with B concentrations, Mg#, Sr, Nd or Pb isotopes, or proxies for brine addition (e.g. Cl/Nb). The lowest δ 11B samples are also the most-incompatible element depleted (high B/Nb ratios). The δ 11B of the on-axis samples increases slightly with increased levels of magma degassing (i.e. lowest δ 11B values in samples extracted undegassed from depths closest to AMC top).Therefore, although the Cl data indicate significant addition of probably a saline brine component to both on- and off-axis MORB magmas, their δ 11B compositions were not significantly affected by this process and the observed variations in δ 11B may have a different origin. Possibly, the low B/Cl ratio of seawater ( ˜ 0.001) coupled with preferential partitioning of Cl relative to B into brines during supercritical phase separation (Berndt and Seyfried, 1990) of seawater in hydrothermal system, results in very saline brines with low boron concentrations. The coupled B-Cl data effectively eliminates simple magmatic assimilation of altered Cl-rich high-B isotope composition oceanic crust in this region.

  1. The boron geochemistry of siliceous sponges

    Science.gov (United States)

    de Leon, A.; Wille, M.; Eggins, S. M.; Ellwood, M. J.

    2009-12-01

    The boron content and isotopic composition (δ11B) of marine carbonate organisms can be linked to the pH of the seawater in which they have grown, making carbonates a useful tool for palaeo-seawater pH reconstruction. A study by Furst (1981) documented unusually high boron concentrations in siliceous sponge spicules, in range from hundreds to a thousand ppm. This observation and the potential for preferential incorporation of the tetrahedral borate species into biogenic silica raises the question as to whether the boron chemistry of biogenic silica might also be influenced by seawater pH. We have measured the boron concentration and isotopic composition of siliceous sponges from the Southern Ocean region, with a view to (1) confirming the observations of Furst (1981), (2) assessing the factors that control boron incorporation and isotopic compositions of sponge silica, and (3) investigating the potentially significant role of siliceous sponges in the marine boron cycle. The measured boron concentrations in a diverse range of both demosponge and hexactinellid sponges confirm the high boron concentrations previously reported. The boron isotope compositions of these sponges vary from around +2‰ to +25‰ and greatly exceed the range in marine carbonates. This isotopic variation is inconsistent with seawater pH control but is correlated with ambient seawater silicon concentration, in a manner that suggests a link to silicon uptake kinetics and demand by sponges.

  2. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  3. Substoichiometric isotope dilution mass spectrometry of boron by the ion-pair extraction with halogenated salicyl alcohol derivatives and a quaternary ammonium salt.

    Science.gov (United States)

    Morita, Keisuke; Imura, Hisanori

    2012-01-01

    Novel salicyl alcohol derivatives (H(2)X(n)sal), 5-bromo-, 3,5-dibromo-, and 3,5-diiodosalicyl alcohol which were abbreviated to H(2)Brsal, H(2)Br(2)sal, and H(2)I(2)sal, respectively, were synthesized and used for the selective extraction of boric acid. Boric acid was extracted with each H(2)X(n)sal into chlorobenzene containing trioctylmethylammonium chloride (TOMACl) as an ion-pair complex, TOMA·B(X(n)sal)(2), at a different pH range. The extraction constant (K(ex)) of boric acid was determined by the equilibrium analyses including the formation of hydrogen-bonded complex of each H(2)X(n)sal with TOMACl in the organic phase. The K(ex) values obtained by salicyl alcohol (H(2)sal) and its derivatives were decreased in the order of H(2)I(2)sal ≥ H(2)Br(2)sal > H(2)Brsal > H(2)sal. The most powerful extractant, H(2)I(2)sal, was employed for the substoichiometric extraction of boric acid, which was extracted at pH 5 - 9 with a substoichiometric amount of TOMACl in the presence of an excess of H(2)I(2)sal. The present substoichiometric separation method combined with the stable isotope dilution analysis using inductively coupled plasma mass spectrometry (ICP-MS) could be successfully applied to the determination of boron in a reference material of high-analysis compound fertilizer (FAMIC-A-08) without any correction as to the isotopic abundance.

  4. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Coetzee, Paul P. [University of Johannesburg, Department of Chemistry, Johannesburg (South Africa); Vanhaecke, Frank [Institute for Nuclear Sciences, Laboratory of Analytical Chemistry Ghent University, Ghent (Belgium)

    2005-11-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO{sub 3} was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the {sup 11}B/{sup 10}B ratios can be used to characterize wines from different geographical origins. Average {sup 11}B/{sup 10}B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  5. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    International Nuclear Information System (INIS)

    Coetzee, Paul P.; Vanhaecke, Frank

    2005-01-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO 3 was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the 11 B/ 10 B ratios can be used to characterize wines from different geographical origins. Average 11 B/ 10 B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  6. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios.

    Science.gov (United States)

    Coetzee, Paul P; Vanhaecke, Frank

    2005-11-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO3 was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the 11B/10B ratios can be used to characterize wines from different geographical origins. Average 11B/10B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%.

  7. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.

    Science.gov (United States)

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P

    2008-07-17

    Quasi-one-dimensional cylindrical pores of single-walled boron nitride and carbon nanotubes efficiently differentiate adsorbed hydrogen isotopes at 33 K. Extensive path integral Monte Carlo simulations revealed that the mechanisms of quantum sieving for both types of nanotubes are quantitatively similar; however, the stronger and heterogeneous external solid-fluid potential generated from single-walled boron nitride nanotubes enhanced the selectivity of deuterium over hydrogen both at zero coverage and at finite pressures. We showed that this enhancement of the D(2)/H(2) equilibrium selectivity results from larger localization of hydrogen isotopes in the interior space of single-walled boron nitride nanotubes in comparison to that of equivalent single-walled carbon nanotubes. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly depending on both the type as well as the size of the nanotube. For all investigated nanotubes, we predicted the occurrence of the minima of the D(2)/H(2) equilibrium selectivity at finite pressure. Moreover, we showed that those well-defined minima are gradually shifted upon increasing of the nanotube pore diameter. We related the nonmonotonic shape of the D(2)/H(2) equilibrium selectivity at finite pressures to the variation of the difference between the average kinetic energy computed from single-component adsorption isotherms of H(2) and D(2). In the interior space of both kinds of nanotubes hydrogen isotopes formed solid-like structures (plastic crystals) at 33 K and 10 Pa with densities above the compressed bulk para-hydrogen at 30 K and 30 MPa.

  8. Fluid sources and metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, U.S.A.: Insights from major-element and boron isotopic compositions of tourmaline

    Science.gov (United States)

    Trumbull, Robert B.; Slack, John F.; Krienitz, M.-S.; Belkin, Harvey E.; Wiedenbeck, M.

    2011-01-01

    Tourmaline is a widespread mineral in the Mesoproterozoic Blackbird Co–Cu–Au–Bi–Y–REE district, Idaho, where it occurs in both mineralized zones and wallrocks. We report here major-element and B-isotope compositions of tourmaline from stratabound sulfide deposits and their metasedimentary wallrocks, from mineralized and barren pipes of tourmaline breccia, from late barren quartz veins, and from Mesoproterozoic granite. The tourmalines are aluminous, intermediate in the schorl–dravite series, with Fe/(Fe + Mg) values of 0.30 to 0.85, and 10 to 50% X-site vacancies. Compositional zoning is prominent only in tourmaline from breccias and quartz veins; crystal rims are enriched in Mg, Ca and Ti, and depleted in Fe and Al relative to cores. The chemical composition of tourmaline does not correlate with the presence or absence of mineralization. The δ11B values fall into two groups. Isotopically light tourmaline (−21.7 to −7.6‰) occurs in unmineralized samples from wallrocks, late quartz veins and Mesoproterozoic granite, whereas heavy tourmaline (−6.9 to +3.2‰) is spatially associated with mineralization (stratabound and breccia-hosted), and is also found in barren breccia. At an inferred temperature of 300°C, boron in the hydrothermal fluid associated with mineralization had δ11B values of −3 to +7‰. The high end of this range indicates a marine source of the boron. A likely scenario involves leaching of boron principally from marine carbonate beds or B-bearing evaporites in Mesoproterozoic strata of the region. The δ11B values of the isotopically light tourmaline in the sulfide deposits are attributed to recrystallization during Cretaceous metamorphism, superimposed on a light boron component derived from footwall siliciclastic sediments (e.g., marine clays) during Mesoproterozoic mineralization, and possibly a minor component of light boron from a magmatic–hydrothermal fluid. The metal association of Bi–Be–Y–REE in the Blackbird

  9. Utilizing geochemical, hydrologic, and boron isotopic data to assess the success of a salinity and selenium remediation project, Upper Colorado River Basin, Utah.

    Science.gov (United States)

    Naftz, David L; Bullen, Thomas D; Stolp, Bert J; Wilkowske, Christopher D

    2008-03-15

    Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R(2) values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177 metric tons/month and decreased after remediation to less than 590 metric tons/month. The net gain in dissolved Se load during the same pre-closure period exceeded 120 kg/month and decreased to less than 18 kg/month. Sen's slope estimator verified the statistical significance of the modeled reduction in monthly salinity and Se loads. Measured gain in dissolved constituent loads during seepage tests conducted during September and November 2003 ranged from 0.334 to 0.362 kg/day for dissolved Se and 16.9 to 26.1 metric tons/day for dissolved salinity. Stream discharge and changes in the isotopic values of delta boron-11 (delta(11)B) were used in a mixing model to differentiate between constituent loadings contributed by residual sewage effluent and naturally occurring ground-water seepage entering Ashley Creek. The majority of the modeled delta(11)B values of ground-water seepage were positive, indicative of minimal seepage contributions from sewage effluent. The stream reach between sites S3 and AC2A contained a modeled ground-water seepage delta(11)B value of -2.4 per thousand, indicative of ground-water seepage composed of remnant water still draining from the abandoned sewage lagoons.

  10. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  11. Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT).

    Science.gov (United States)

    Wittig, Andrea; Michel, Jean; Moss, Raymond L; Stecher-Rasmussen, Finn; Arlinghaus, Heinrich F; Bendel, Peter; Mauri, Pier Luigi; Altieri, Saverio; Hilger, Ralf; Salvadori, Piero A; Menichetti, Luca; Zamenhof, Robert; Sauerwein, Wolfgang A G

    2008-10-01

    Boron Neutron Capture Therapy (BNCT) is based on the ability of the stable isotope 10B to capture neutrons, which leads to a nuclear reaction producing an alpha- and a 7Li-particle, both having a high biological effectiveness and a very short range in tissue, being limited to approximately one cell diameter. This opens the possibility for a highly selective cancer therapy. BNCT strongly depends on the selective uptake of 10B in tumor cells and on its distribution inside the cells. The chemical properties of boron and the need to discriminate different isotopes make the investigation of the concentration and distribution of 10B a challenging task. The most advanced techniques to measure and image boron are described, both invasive and non-invasive. The most promising approach for further investigation will be the complementary use of the different techniques to obtain the information that is mandatory for the future of this innovative treatment modality.

  12. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment

    Science.gov (United States)

    Anagnostou, E.; Huang, K.-F.; You, C.-F.; Sikes, E. L.; Sherrell, R. M.

    2012-10-01

    The boron isotope ratio (δ11B) of foraminifers and tropical corals has been proposed to record seawater pH. To test the veracity and practicality of this potential paleo-pH proxy in deep sea corals, samples of skeletal material from twelve archived modern Desmophyllum dianthus (D. dianthus) corals from a depth range of 274-1470 m in the Atlantic, Pacific, and Southern Oceans, ambient pH range 7.57-8.05, were analyzed for δ11B. The δ11B values for these corals, spanning a range from 23.56 to 27.88, are found to be related to seawater borate δ11B by the linear regression: δ11Bcoral=(0.76±0.28) δ11Bborate+(14.67±4.19) (1 standard error (SE)). The D. dianthus δ11B values are greater than those measured in tropical corals, and suggest substantial physiological modification of pH in the calcifying space by a value that is an inverse function of seawater pH. This mechanism partially compensates for the range of ocean pH and aragonite saturation at which this species grows, enhancing aragonite precipitation and suggesting an adaptation mechanism to low pH environments in intermediate and deep waters. Consistent with the findings of Trotter et al. (2011) for tropical surface corals, the data suggest an inverse correlation between the magnitude of a biologically driven pH offset recorded in the coral skeleton, and the seawater pH, described by the equation: ΔpH=pH recorded by coral-seawater pH=-(0.75±0.12) pHw+(6.88±0.93) (1 SE). Error analysis based on 95% confidence interval(CI) and the standard deviation of the regression residuals suggests that the uncertainty of seawater pH reconstructed from δ11Bcoral is ±0.07 to 0.12 pH units. This study demonstrates the applicability of δ11B in D. dianthus to record ambient seawater pH and holds promise for reconstructing oceanic pH distribution and history using fossil corals.

  13. Boron cycling in subduction zones

    OpenAIRE

    Palmer, Martin R.

    2017-01-01

    Subduction zones are geologically dramatic features, with much of the drama being driven by the movement of water. The “light and lively” nature of boron, coupled with its wide variations in isotopic composition shown by the different geo-players in this drama, make it an ideal tracer for the role and movement of water during subduction. The utility of boron ranges from monitoring how the fluids that are expelled from the accretionary prism influence seawater chemistry, to the subduction of c...

  14. Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic - A multispecies approach using habitat preference of planktonic foraminifera

    Science.gov (United States)

    Raitzsch, Markus; Bijma, Jelle; Benthien, Albert; Richter, Klaus-Uwe; Steinhoefel, Grit; Kučera, Michal

    2018-04-01

    The boron isotopic composition of planktonic foraminiferal shell calcite (δ11BCc) provides valuable information on the pH of ambient water at the time of calcification. Hence, δ11BCc of fossil surface-dwelling planktonic foraminifera can be used to reconstruct ancient aqueous pCO2 if information on a second carbonate system parameter, temperature and salinity is available. However, pH and pCO2 of surface waters may vary seasonally, largely due to changes in temperature, DIC, and alkalinity. As also the shell fluxes of planktonic foraminifera show species-specific seasonal patterns that are linked to intra-annual changes in temperature, it is obvious that δ11BCc of a certain species reflects the pH and thus pCO2 biased towards a specific time period within a year. This is important to consider for the interpretation of fossil δ11BCc records that may mirror seasonal pH signals. Here we present new Multi-Collector Inductively Coupled Mass Spectrometry (MC-ICPMS) δ11BCc coretop data for the planktonic foraminifera species Globigerina bulloides, Globigerinoides ruber, Trilobatus sacculifer and Orbulina universa and compare them with δ11Bborate derived from seasonally resolved carbonate system parameters. We show that the inferred season-adjusted δ11BCc /δ11Bborate relationships are similar to existing calibrations and can be combined with published δ11BCc field and culture data to augment paleo-pH calibrations. To test the applicability of these calibrations, we used a core drilled on the Walvis Ridge in the Southeast Atlantic spanning the last 330,000 years to reconstruct changes in surface-water pCO2. The reconstruction based on G. bulloides, which reflects the austral spring season, was shown to yield values that closely resemble the Vostok ice-core data indicating that surface-water pCO2 was close to equilibrium with the atmosphere during the cooler spring season. In contrast, pCO2 estimated from δ11BCc of O. universa, T. sacculifer and G. ruber that

  15. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-12-12

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxide and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.

  16. Analytical developments in the measurements of boron, nitrate, phosphate and sulphate isotopes and case examples of discrimination of nitrogen and sulphur sources in pollution studies

    International Nuclear Information System (INIS)

    Aggarwal, J.; Sheppard, D.S.; Robinson, B.W.

    1998-01-01

    Methods are documented for the analysis of B isotopes, O and N isotopes in nitrates. B isotopes can be measured by negative ion thermal ionisation mass spectrometry. Nitrate is recovered from groundwaters by ion exchange and the resulting silver nitrate combusted for stable isotope gas analysis. Oxygen isotope analysis of phosphates can be determined by generating and analysing CO 2 gas from the combustion of silver phosphate produced from aqueous samples. Sulphate in ground and surface waters can be separated and concentrated by ion exchange and precipitated as barium sulphate. This is reacted with graphite to yield CO 2 and CO, the latter being spark discharged to CO 2 and the total CO 2 measured for oxygen isotope analysis. Barium sulphide from this reaction is converted to silver sulphide which is reacted with cuprous oxide to give SO 2 gas for sulphur isotope measurements. A case study of the semi-rural Manakau area in New Zealand was conducted to see if nitrate isotopes could be used to detect the source of nitrate contamination (groundwater nitrate - 3- N). Nitrogen isotope (+4 to +12 per mille) coupled with oxygen isotope measurements (+5 to +9 per mille) demonstrated that the nitrogen is not sources from fertilisers but from some combination of septic tank and animal waste. For the case study of sulphate isotope use, sulphur and oxygen isotopic compositions of sulphate in river and lake water from seven major catchments of New Zealand were determined. The isotope analyses have allowed the distinction between natural (geological, geothermal and volcanic) and anthropogenic (fertiliser) sulphur sources. (author)

  17. Appraisal of SIMS applicability to boron studies in plants.

    Science.gov (United States)

    Dérue, Cedric; Gibouin, David; Verdus, Marie-Claire; Lefebvre, Fabrice; Demarty, Maurice; Ripoll, Camille; Thellier, Michel

    2002-07-15

    In the search for a new methodological approach applicable to the determination of the still poorly known primary role of boron in plant physiology, we have undertaken to appraise the potential of the SIMS method for the analytical imaging of the boron isotopes, (10)B and (11)B, at physiological concentrations in plants. With our own, CAMECA IMS4F SIMS ion analyser, and using O(2)(+) as primary ions for the detection of B(+) (plus (12)C(+) and (40)Ca(+)) secondary ions, we have been able to map quantitatively the two boron isotopes in control and boron-enriched plants, to evaluate boron concentrations at the level of individual cells and to determine boron isotopic ratios. This provides the opportunity to carry out the simultaneous labeling and imaging of boron, using enrichment with the stable isotopes, (10)B and (11)B. The method has also the potential for the simultaneous, quantitative detection of the boron isotopes and of the borate-binding sites in plant cells. Copyright 2002 Wiley-Liss, Inc.

  18. Density separation of boron particles. Final report

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-04-01

    A density distribution much broader than expected was observed in lots of natural boron powder supplied by two different sources. The material in both lots was found to have a rhombohedral crystal structure, and the only other parameters which seemed to account for such a distribution were impurities within the crystal structure and varying isotopic ratios. A separation technique was established to isolate boron particles in narrow densty ranges. The isolated fractions were subsequently analyzed for B 10 and total boron content in an effort to determine whether selective isotopic enrichment and nonhomogeneous impurity distribution were the causes for the broad density distribution of the boron powders. It was found that although the B 10 content remained nearly constant around 18%, the total boron content varied from 37.5 to 98.7%. One of the lots also was found to contain an apparently high level of alpha rhombohedral boron which broadened the density distribution considerably. During this work, a capability for removing boron particles containing gross amounts of impurities and, thereby, improving the overall purity of the remaining material was developed. In addition, the separation technique used in this study apparently isolated particles with alpha and beta rhombohedral crystal structures, although the only supporting evidence is density data

  19. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  20. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  1. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  2. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  3. Boron Dissolved and Particulate Atmospheric Inputs to a Forest Ecosystem (Northeastern France).

    Science.gov (United States)

    Roux, Philippe; Turpault, Marie-Pierre; Kirchen, Gil; Redon, Paul-Olivier; Lemarchand, Damien

    2017-12-19

    Boron concentrations and isotopic compositions of atmospheric dust and dissolved depositions were monitored over a two-year period (2012-2013) in the forest ecosystem of Montiers (Northeastern France). This time series allows the determination of the boron atmospheric inputs to this forest ecosystem and contributes to refine our understanding of the sources and processes that control the boron atmospheric cycle. Mean annual dust and dissolved boron atmospheric depositions are comparable in size (13 g·ha -1 ·yr -1 and 16 g·ha -1 ·yr -1 , respectively), which however show significant intra- and interannual variations. Boron isotopes in dust differ from dissolved inputs, with an annual mean value of +1 ‰ and +18 ‰ for, respectively. The notable high boron contents (190-390 μg·g -1 ) of the dust samples are interpreted as resulting from localized spreading of boron-rich fertilizers, thus indicating a significant local impact of regional agricultural activities. Boron isotopes in dissolved depositions show a clear seasonal trend. The absence of correlation with marine cyclic solutes contradicts a control of atmospheric boron by dissolution of seasalts. Instead, the boron data from this study are consistent with a Rayleigh-like evolution of the atmospheric gaseous boron reservoir with possible but limited anthropogenic and/or biogenic contributions.

  4. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  5. Boron and strontium isotope ratios and major/trace elements concentrations in tea leaves at four major tea growing gardens in Taiwan.

    Science.gov (United States)

    Chang, Cheng-Ta; You, Chen-Feng; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Chao, Hung-Chun; Liu, Hou-Chun

    2016-06-01

    Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial sources. This study aims to test whether tea leaf origin can be discriminated using (10)B/(11)B and Sr isotopic composition data, along with concentrations of major/trace elements, in tea specimens collected from major plantation gardens in Taiwan. The tea leaves were digested by microwave and analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The data showed significant variations in (87)Sr/(86)Sr ratios (from 0.70482 to 0.71462), which reflect changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Taitung garden and the least radiogenic ones were from the Hualien garden. The δ (11)B was found to change appreciably (δ (11)B = 0.38-23.73 ‰) which could be due to fertilizers. The maximum δ (11)B was also observed in tea samples from the Hualien garden. Principal component analysis combining (87)Sr/(86)Sr, δ (11)B and major/trace elements results successfully discriminated different sources of major tea gardens in Taiwan, except the Hualien gardens, and this may be due to rather complicated local geological settings.

  6. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman)

    Science.gov (United States)

    Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M.

    2018-02-01

    The basal part of the Semail ophiolitic mantle was (de)formed at relatively low temperature (LT) directly above the plate interface during "nascent subduction" (the prelude to ophiolite obduction). This subduction-related LT deformation was associated with progressive strain localization and cooling, resulting in the formation of porphyroclastic to ultramylonitic shear zones prior to serpentinization. Using petrological and geochemical analyses (trace elements and B isotopes), we show that these basal peridotites interacted with hydrous fluids percolating by porous flow during mylonitic deformation (from ∼850 down to 650 °C). This process resulted in 1) high-T amphibole crystallization, 2) striking enrichments of minerals in fluid mobile elements (FME; particularly B, Li and Cs with concentrations up to 400 times those of the depleted mantle) and 3) peridotites with an elevated δ11B of up to +25‰. These features indicate that the metasomatic hydrous fluids are most likely derived from the dehydration of subducting crustal amphibolitic materials (i.e., the present-day high-T sole). The rapid decrease in metasomatized peridotite δ11B with increasing distance to the contact with the HT sole (to depleted mantle isotopic values in <1 km) suggests an intense interaction between peridotites and rapid migrating fluids (∼1-25 m.y-1), erasing the initial high-δ11B subduction fluid signature within a short distance. The increase of peridotite δ11B with increasing deformation furthermore indicates that the flow of subduction fluids was progressively channelized in actively deforming shear zones parallel to the contact. Taken together, these results also suggest that the migration of subduction fluids/melts by porous flow through the subsolidus mantle wedge (i.e., above the plate interface at sub-arc depths) is unlikely to be an effective mechanism to transport slab-derived elements to the locus of partial melting in subduction zones.

  7. Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites

    Directory of Open Access Journals (Sweden)

    A. Juillet-Leclerc

    2010-08-01

    Full Text Available The "δ11B-pH" technique was applied to modern and ancient corals Porites from the sub-equatorial Pacific areas (Tahiti and Marquesas spanning a time interval from 0 to 20.720 calendar years to determine the amplitude of pH changes between the Last Glacial Period and the Holocene. Boron isotopes were measured by Multi-Collector – Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS with an external reproducibility of 0.25‰, allowing a precision of about ±0.03 pH-units for pH values between 8 and 8.3. The boron concentration [B] and isotopic composition of modern samples indicate that the temperature strongly controls the partition coefficient KD for different aragonite species. Modern coral δ11B values and the reconstructed sea surface pH values for different Pacific areas match the measured pH expressed on the seawater scale and confirm the calculation parameters that were previously determined by laboratory calibration exercises. Most ancient sea surface pH reconstructions near Marquesas are higher than modern values. These values range between 8.19 and 8.27 for the Holocene and reached 8.30 at the end of the last glacial period (20.7 kyr BP. At the end of the Younger Dryas (11.50±0.1 kyr BP, the central sub-equatorial Pacific experienced a dramatic drop of up to 0.2 pH-units from the average pH of 8.2 before and after this short event. Using the marine carbonate algorithms, we recalculated the aqueous pCO2 to be 440±25 ppmV at around 11.5 kyr BP for corals at Marquesas and ~500 ppmV near Tahiti where it was assumed that pCO2 in the atmosphere was 250 ppmV. Throughout the Holocene, the difference in pCO2 between the ocean and the atmosphere at Marquesas (ΔpCO2 indicates that the surface waters behave as a moderate CO2 sink or source (−53 to 20 ppmV during El Niño-like conditions. By contrast, during the last glacial/interglacial transition, this area was a marked source of CO2 (21 to 92 ppmV for the atmosphere, highlighting

  8. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  9. Accelerator-driven boron neutron capture therapy

    Science.gov (United States)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  10. Lattice dynamics of {alpha} boron and of boron carbide; Proprietes vibrationnelles du bore {alpha} et du carbure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Vast, N

    1999-07-01

    The atomic structure and the lattice dynamics of {alpha} boron and of B{sub 4}C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In {alpha} boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B{sub 4}C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  11. New Isotopic Tracers for Shale Gas and Hydraulic Fracturing Fluids

    Science.gov (United States)

    The combined application of geochemistry, stable isotopes (δ18O, δ2H), strontium isotopes (87Sr/86Sr), boron isotopes (δ11B), and radium isotopes (228Ra/226Ra) provides a unique methodology for tracing and monitoring shale gas and fracking fluids in the environment.

  12. Boron and marine life: a new look at an enigmatic bioelement.

    Science.gov (United States)

    Carrano, Carl J; Schellenberg, Stephen; Amin, Shady A; Green, David H; Küpper, Frithjof C

    2009-01-01

    On the occasion of the 200th anniversary of the discovery of boron, we review the oceanic biogeochemistry of boron as well as suitable analytical techniques for its determination. This overview includes aspects of biogeochemistry including geochemical stable isotope variations, uptake, transport, storage, nutritional value, toxicity, and distribution within biological materials, providing a framework for discussion of the role of boron in marine organisms, which remains largely enigmatic.

  13. Biological evaluation of boronated unnatural amino acids as new boron carriers

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W. [Departments of Radiology and Chemistry, University of Tennessee, Knoxville, TN (United States)], E-mail: kabalka@utk.edu; Yao, M.-L.; Marepally, S.R. [Departments of Radiology and Chemistry, University of Tennessee, Knoxville, TN (United States); Chandra, S. [Cornell SIMS Laboratory, Department of Earth and Atmospheric Sciences, Snee Hall, Cornell University, Ithaca, NY (United States)

    2009-07-15

    There is a pressing need for new and more efficient boron delivery agents to tumor cells for use in boron neutron capture therapy (BNCT). A class of boronated unnatural cyclic amino acids has demonstrated a remarkable selectivity toward tumors in animal and cell culture models, far superior to currently used agents in clinical BNCT. One of these amino acids, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC), has shown a tumor to blood ratio of 8 and a tumor to normal brain ratio of nearly 21 in a melanoma bearing mouse model. This work represents further biological characterization of this compound for tumor targeting in an EMT6 murine mammary carcinoma mouse model and a T98G human glioblastoma cell line. Female BALB/c mice bearing EMT6 tumors were injected with the fructose complex form of racemic mixtures of cis and trans isomers of ABCPC in identical concentrations. Boron concentrations were measured in the tumor, blood, brain, skin, and liver tissues at 1, 3, and 5 h post-injection. These observations revealed a remarkable difference in racemic mixtures of cis and trans isomers in tumor targeting by boron. This implies that further separation of the L and D forms of this compound may enhance tumor targeting to an even higher degree than that provided by the racemic mixtures. Since the uptake measurements were made in homogenized tumor and normal tissues, little is known about the subcellular location of the boron arising from the various isomeric forms of the amino acid. To study subcellular delivery of boron from ABCPC in T98G human glioblastoma cells, we employed secondary ion mass spectrometry (SIMS) based technique of ion microscopy, which is capable of quantitatively imaging isotopic (elemental) gradients in cells and tissues at 500 nm spatial resolution. The T98G cells were exposed to the nutrient medium containing 100 ppm boron equivalent of a mixture of both L and D isomers of ABCPC in the form of a fructose complex for 1 h. Following this treatment

  14. Biological Evaluation of Boronated Unnatural Amino Acids as New Boron Carriers

    Science.gov (United States)

    Kabalka, G.W.; Yao, M.-L.; Marepally, S.R.; Chandra, S.

    2010-01-01

    There is a pressing need for new and more efficient boron delivery agents to tumor cells for use in boron neutron capture therapy (BNCT). A class of boronated unnatural cyclic amino acids has demonstrated a remarkable selectivity toward tumors in animal and cell culture models, far superior to currently used agents in clinical BNCT. One of these amino acids, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC), has shown a tumor to blood ratio of 8 and a tumor to normal brain ratio of nearly 21 in a melanoma bearing mouse model. This work represents further biological characterization of this compound for tumor targeting in an EMT6 murine mammary carcinoma mouse model and a T98G human glioblastoma cell line. Female BALB/c mice bearing EMT6 tumors were injected with the fructose complex form of racemic mixtures of cis- and trans isomers of ABCPC in identical concentrations. Boron concentrations were measured in the tumor, blood, brain, skin, and liver tissues at 1, 3, and 5 hr post injection. These observations revealed a remarkable difference in racemic mixtures of cis and trans isomers in tumor targeting by boron. This implies that further separation of the L and D forms of this compound may enhance tumor targeting to an even higher degree than that provided by the racemic mixtures. Since the uptake measurements were made in homogenized tumor and normal tissues, little is known about the subcellular location of the boron arising from the various isomeric forms of the amino acid. To study subcellular delivery of boron from ABCPC in T98G human glioblastoma cells, we employed secondary ion mass spectrometry (SIMS) based technique of ion microscopy, which is capable of quantitatively imaging isotopic (elemental) gradients in cells and tissues at 500 nm spatial resolution. The T98G cells were exposed to the nutrient medium containing 100 ppm boron equivalent of a mixture of both L and D isomers of ABCPC in the form of a fructose complex for 1 hr. Following this

  15. Composite boron nitride neutron detectors

    Science.gov (United States)

    Roth, M.; Mojaev, E.; Khakhan, O.; Fleider, A.; Dul`kin, E.; Schieber, M.

    2014-09-01

    Single phase polycrystalline hexagonal boron nitride (BN) or mixed with boron carbide (BxC) embedded in an insulating polymeric matrix acting as a binder and forming a composite material as well as pure submicron size polycrystalline BN has been tested as a thermal neutron converter in a multilayer thermal neutron detector design. Metal sheet electrodes were covered with 20-50 μm thick layers of composite materials and assembled in a multi-layer sandwich configuration. High voltage was applied to the metal electrodes to create an interspacing electric field. The spacing volume could be filled with air, nitrogen or argon. Thermal neutrons were captured in converter layers due to the presence of the 10B isotope. The resulting nuclear reaction produced α-particles and 7Li ions which ionized the gas in the spacing volume. Electron-ion pairs were collected by the field to create an electrical signal proportional to the intensity of the neutron source. The detection efficiency of the multilayer neutron detectors is found to increase with the number of active converter layers. Pixel structures of such neutron detectors necessary for imaging applications and incorporation of internal moderator materials for field measurements of fast neutron flux intensities are discussed as well.

  16. Multidimensional potential of boron-containing molecules in ...

    Indian Academy of Sciences (India)

    Administrator

    10 all due to the acceptor effect of B. Boron is an excellent element for studying the spin distribution in paramagnetic species because both stable isotopes. 10 ..... and drug therapies. The reports of enhanced water solubility of CNTs through side-wall derivatisation with biologically important moieties. 76–93 caused.

  17. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  18. Molecular medicine: Synthesis and in-vivo detection of agents for use in boron neutron capture therapy. Final report, May 1, 1993--April 30, 1996

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1997-08-01

    During the early stages of this project, the author developed the first whole-body boron MRI technique. They found that, for the first time, information concerning both the location and the quantity of boron present in living tissues could be obtained through the use of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) respectively. However, it was also discovered that boron MRI was not without problems. Both naturally occurring isotopes of boron (boron-10 and boron-11) possess magnetic moments, making them amenable to MR detection. The author found that there are difficulties in obtaining boron MRI images which are a consequence of the inherently poor magnetic resonance characteristics of the boron nucleus. The magnetogyric ratios of both boron-10 and boron-11 are smaller than those of hydrogen, which makes boron much less sensitive to magnetic resonance detection. In addition, both isotopes of boron posses nuclear electric quadrupole moments which serve to shorten their magnetization relaxation times; this causes the MR signal to broaden and decay rapidly, often before the receiver coils can collect the MR information. The rapid rate of signal decay is enhanced in biological systems which leads to further signal loss and a decrease in the signal to noise ratio (SNR)

  19. Molecular medicine: Synthesis and in-vivo detection of agents for use in boron neutron capture therapy. Final report, May 1, 1993--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.

    1997-08-01

    During the early stages of this project, the author developed the first whole-body boron MRI technique. They found that, for the first time, information concerning both the location and the quantity of boron present in living tissues could be obtained through the use of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) respectively. However, it was also discovered that boron MRI was not without problems. Both naturally occurring isotopes of boron (boron-10 and boron-11) possess magnetic moments, making them amenable to MR detection. The author found that there are difficulties in obtaining boron MRI images which are a consequence of the inherently poor magnetic resonance characteristics of the boron nucleus. The magnetogyric ratios of both boron-10 and boron-11 are smaller than those of hydrogen, which makes boron much less sensitive to magnetic resonance detection. In addition, both isotopes of boron posses nuclear electric quadrupole moments which serve to shorten their magnetization relaxation times; this causes the MR signal to broaden and decay rapidly, often before the receiver coils can collect the MR information. The rapid rate of signal decay is enhanced in biological systems which leads to further signal loss and a decrease in the signal to noise ratio (SNR).

  20. Neutron sensitivity improvement in boron-lined proportional counters

    International Nuclear Information System (INIS)

    Dighe, P.M.; Prasad, K.R.; Kataria, S.K.

    2002-01-01

    Various techniques have been employed to improve the neutron sensitivity of boron-coated proportional counters developed indigenously. A boron-lined proportional counter (67 mm ID x 750 mm length) of 17 cps/nv thermal neutron sensitivity is developed by coating 92% enriched 10 B on the inner wall of the counter. This counter can be used for low thermal neutron flux (∼0.2 nv) at various applications such as neutron area monitoring, reactor start-up instrumentation, assay of fissile materials and detection of fuel failure. An improvement in sensitivity was also achieved by summing the output signals from four 10 B lined counters and two BF 3 proportional counters. The summation did not change the susceptibility of the device to gamma interference. In view of the scarcity of enriched 10 B isotope, indigenously available natural boron coated two prototype proportional counters are developed of 0.8 cps/nv and 1.1 cps/nv thermal neutron sensitivity. Efforts have been made to improve the sensitivity with boron coated 3-dimensional structures introduced into the sensitive volume. Tests in thermal neutron flux showed 50% improvement in the sensitivity due to the introduction of additional boron coated wires. Another counter with 51 boron-coated annular discs (23 mm OD X 10 mm ID X 1 mm thick) mounted perpendicular to the axis of the cathode showed 1.7 cps/nv neutron sensitivity, an improvement by a factor of 2.5. (author)

  1. Boron analyses in the reactor coolant system of French PWR by acid-base titration ([B]) and ICP-MS (10B atomic %): key to NPP safety

    International Nuclear Information System (INIS)

    Jouvet, Fabien; Roux, Sylvie; Carabasse, Stephanie; Felgines, Didier

    2012-09-01

    Boron is widely used by Nuclear Power Plants and especially by EDF Pressurized Water Reactors to ensure the control of the neutron rate in the reactor coolant system and, by this way, the fission reaction. The Boron analysis is thus a major factor of safety which enables operators to guarantee the permanent control of the reactor. Two kinds of analyses carried out by EDF on the Boron species, recently upgraded regarding new method validation standards and developed to enhance the measurement quality by reducing uncertainties, will be discussed in this topic: Acid-Base titration of Boron and Boron isotopic composition by Inductively Coupled Plasma Mass Spectrometer - ICP MS. (authors)

  2. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  3. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  4. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    mental phase contrast images and the diffraction pattern. Figure 3. (a) Bright field image of electrodeposited boron spec- imen showing a crystallite of size ∼10 × 5 nm; (b) phase contrast image of electrodeposited boron specimen showing a resolved la- ttice and (c) power spectrum of electrodeposited boron specimen.

  5. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  6. Analysis of variation in few-group cross section behavior subjected to burnup and boron concentration

    International Nuclear Information System (INIS)

    Zhang Zongyao; Li Dongsheng.

    1986-01-01

    The paper analyzes the variations of few-group cross section behavior in neutron diffusion subjected to fuel burnup and critical boron concentration in a core. The influences of the behavior on the core excess reactivity, crirical boron concentration, power distribution and the yield of isotopes are also analyzed. A reactor core of samll-medium-sized nuclear power plant is analyzed as an example

  7. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  8. Bright prospects for boron

    NARCIS (Netherlands)

    Nanver, L.; Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  9. Methods of producing continuous boron carbide fibers

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  10. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M.; Iglesias, J.; Casas, J.; Saviron, J. M.; Quintanilla, M.

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  11. The production of stable isotopes in Spain

    International Nuclear Information System (INIS)

    Urgel, M.; Iglesias, J.; Casas, J.; Saviron, J. M.; Quintanilla, M.

    1965-01-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs

  12. Targeted and non-targeted boron complex formation followed by electrospray Fourier transform ion cyclotron mass spectrometry: a novel approach for identifying boron esters with natural organic matter.

    Science.gov (United States)

    Gaspar, Andras; Lucio, Marianna; Harir, Mourad; Schmitt-Kopplin, Philippe

    2011-01-01

    The formation of boron esters was investigated in peat-soluble humified materials with a detailed molecular-level description of boron-organic interactions. Thousands of individually baseline separated signals were obtained from the analysis of natural organic matter of peat samples, using Fourier transform ion cyclotron resonance mass spectrometry. This technique offers unsurpassed isotope-specific mass resolution that can lead to precise molecular formula assignments by means of mathematical data analysis and visualisation techniques, such as mass defect (Kendrick) or elemental ratio (van Krevelen) plots. The analysis of potential boron binding structures within the sample of natural organic matter was described based on prior results. Herein, we describe an algorithm that can be used to effectively distinguish and filter complexes through data obtained from boron-enriched systems with highly intricate mass spectra, such as natural organic matter.

  13. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; J. X. Zhong

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  14. Sieving hydrogen isotopes through two dimensional crystals

    OpenAIRE

    Lozada-Hidalgo, M.; Hu, S.; Marshall, O.; Mishchenko, A.; Grigorenko, A. N.; Dryfe, R. A. W.; Radha, B.; Grigorieva, I. V.; Geim, A. K.

    2015-01-01

    One-atom-thick crystals are impermeable to atoms and molecules, but hydrogen ions (thermal protons) penetrate through them. We show that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes. Employing electrical measurements and mass spectrometry, we find that deuterons permeate through these crystals much slower than protons, resulting in a separation factor of ~10 at room temperature. The isotope effect is attributed to a difference of about 60 meV between ...

  15. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-09

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  16. The Determination of 11 B/ 10 B and 87 Sr/ 86 Sr Isotope Ratios by ...

    African Journals Online (AJOL)

    Both wine and soil samples were prepared using microwave-assisted digestion followed by the isolation of boron and strontium from the sample matrix through element-specific ion exchange. Isotope ratio measurements with good precision, ~0.1 % RSD, for both boron and strontium have been obtained. The 87Sr/86Sr ...

  17. ISOTOPE SUBSTITUTION IN B2O3 GLASS - A MOLECULAR-DYNAMICS STUDY

    NARCIS (Netherlands)

    VERHOEF, AH; DENHARTOG, HW

    1994-01-01

    The results of molecular dynamics simulations of boron oxide glasses with different isotopic compositions (B-11, B-10, O-16, O-18) are presented. The influence of boron and oxygen mass on the vibrational spectra is considered and compared with experimental data from the literature. The position of

  18. Energy and mass dependence of isotopic enrichment in sputtering

    CERN Document Server

    Shutthanandan, V; Ray, P

    2003-01-01

    Silver, copper, and boron (from a boron nitride target) were sputtered with xenon ions. The isotopic composition of secondary ions of silver was measured at ion energies ranging from 300 eV to 3 keV and, for copper and boron, at 2.0, 2.5, and 3.0 keV. An ion gun was used to generate the ion beam. The secondary ions were detected at a small emission angle by a quadrupole mass spectrometer. The secondary-ion flux of silver was found to be enriched in heavy isotopes at lower incident-ion energies. The heavy-isotope enrichment was observed to decrease with increasing primary-ion energy. Beyond 500 eV, light isotopes of silver were sputtered preferentially with the enrichment increasing to a constant value of 1.018. The sputtered flux of copper and boron also indicated constant enrichments (1.008 and 1.281 for copper and boron respectively) in light isotopes at high ion energies. (orig.)

  19. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies ...

  20. Chromatographic separation process with pellicular ion exchange resins that can be used for ion or isotope separation and resins used in this process

    International Nuclear Information System (INIS)

    Carles, M.; Neige, R.; Niemann, C.; Michel, A.; Bert, M.; Bodrero, S.; Guyot, A.

    1989-01-01

    For separation of uranium, boron or nitrogen isotopes, an isotopic exchange is carried out betwen an isotope fixed on an ion exchange resin and another isotope of the same element in the liquid phase contacting the resin. Pellicular resins are used comprising composite particulates with an inert polymeric core and a surface layer with ion exchange groups [fr

  1. An Exploration of Neutron Detection in Semiconducting Boron Carbide

    Science.gov (United States)

    Hong, Nina

    The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section---3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order to determine the advantages and drawbacks of these devices for neutron detection. Improved handling of the PECVD system has resulted in an extremely stable plasma, enabling deposition of thick films of semiconducting boron carbide. A variety of material and semiconducting characterization tools have been used to investigate the structure and electronic properties of boron carbide thin films, including X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, infrared/Raman spectroscopy, current-voltage measurements and capacitance-voltage measurements. Elemental concentrations in the boron carbide films have been obtained from Rutherford backscattering and elastic recoil detection analysis. Solid state neutron detection devices have been fabricated in the form of heterostructured p-n diodes, p-type boron carbide/n-type Si. Operating conditions, including applied bias voltage, and time constants, have been optimized for maximum detection efficiency and correlated to the semiconducting properties investigated in separate electronic measurements. Accurate measurements of the neutron detection efficiency and the response of the detector to a wide range of neutron wavelengths have been performed at a well calibrated, tightly collimated, "white" cold neutron beam source using time-of-flight neutron detection technique

  2. Regulation of iron transport related genes by boron in the marine bacterium Marinobacter algicola DG893.

    Science.gov (United States)

    Romano, Ariel; Trimble, Lyndsay; Hobusch, Ashtian R; Schroeder, Kristine J; Amin, Shady A; Hartnett, Andrej D; Barker, Ryan A; Crumbliss, Alvin L; Carrano, Carl J

    2013-08-01

    While there has been extensive interest in the use of boron isotope ratios as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the high (0.4 mM) concentration and the depth-independent (conservative or non-nutrient-like) concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the modern ocean. Here we report that boron affects the expression of a number of protein and genes in the "algal-associated" Gram-negative marine bacterium Marinobacter algicola DG893. Most intriguingly, a number of these proteins and genes are related to iron uptake. In a recent separate publication we have shown that boron regulates one such iron transport related protein, i.e. the periplasmic iron binding protein FbpA via a direct interaction of the metalloid with this protein. Here we show that a number of other iron uptake related genes are also affected by boron but in the opposite way i.e. they are up-regulated. We propose that the differential effect of boron on FbpA expression relative to other iron transport related genes is a result of an interaction between boron and the global iron regulatory protein Fur.

  3. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  4. Boron Activated Neutron Thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Lapsley, A. C. [Argonne National Lab. (ANL), Argonne, IL (United States). Instrument Research & Development

    1952-01-09

    The Brown Instrument Division of Minneapolis-Honeywell Regulator Co. have been making pilot models of boron coated neutron sensitive thermopiles, which show considerable promise of being effective indicators of slow neutron flux. Their loss in sensitivity in a year of operation in the maximum flux of CP-6 calculates to be less than 6 per cent. When used as rooftop indicators, the ratio of the signal of the two units would change by about 2 per cent in a year's time.

  5. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  6. Advances in isotope ratio mass spectrometry and required isotope reference materials.

    Science.gov (United States)

    Vogl, Jochen

    2013-01-01

    The article gives a condensed version of the keynote lecture held at the International Mass Spectrometry Conference 2012 in Kyoto. Starting with some examples for isotope research the key requirements for metrologically valid procedures enabling traceable and comparable isotope data are discussed. Of course multi-collector mass spectrometers are required which offer sufficiently high isotope ratio precision for the intended research work. Following this, corrections for mass fractionation/discrimination, validation of the analytical procedure including chemical sample preparation and complete uncertainty budgets are the most important issues for obtaining a metrologically valid procedure for isotope ratio determination. Only the application of such metrologically valid procedures enables the generation of traceable and comparable isotope data. To realize this suitable isotope and/or δ-reference materials are required, which currently are not sufficiently available for most isotope systems. Boron is given as an example, for which the situation regarding isotope and δ-reference materials is excellent. Boron may therefore serve as prototype for other isotope systems.

  7. Advances in Isotope Ratio Mass Spectrometry and Required Isotope Reference Materials

    Science.gov (United States)

    Vogl, Jochen

    2013-01-01

    The article gives a condensed version of the keynote lecture held at the International Mass Spectrometry Conference 2012 in Kyoto. Starting with some examples for isotope research the key requirements for metrologically valid procedures enabling traceable and comparable isotope data are discussed. Of course multi-collector mass spectrometers are required which offer sufficiently high isotope ratio precision for the intended research work. Following this, corrections for mass fractionation/discrimination, validation of the analytical procedure including chemical sample preparation and complete uncertainty budgets are the most important issues for obtaining a metrologically valid procedure for isotope ratio determination. Only the application of such metrologically valid procedures enables the generation of traceable and comparable isotope data. To realize this suitable isotope and/or δ-reference materials are required, which currently are not sufficiently available for most isotope systems. Boron is given as an example, for which the situation regarding isotope and δ-reference materials is excellent. Boron may therefore serve as prototype for other isotope systems. PMID:24349939

  8. Studies of control materials of isotope transformation

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Tetsuji; Suzuki, Hiroshi; Araki, Hiroshi; Fujita, Mitsutane; Hirano, Toshiyuki; Abe, Fujio; Numazawa, Takenori [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1999-02-01

    To control wavelength of laser, the physical properties of control materials of molecular excitation and isotope should be studied. We carried out isotopic enrichment, Si thin film growth, and preparation of boron isotope crystal and to make a calculation code of nuclear transmutation simulation. A gas circulation system for developing isotope laser was produced in order to control of molecular vibration excitation. We developed a single straight system of silicon isotope enrichment and silicon thin film preparation by infrared laser. When laser irradiated Si{sub 2}F{sub 6}, unreacted Si{sub 2}F{sub 6} contained 99.72% of {sup 28}Si at about 956 cm{sup -1} wavelength. When SiF{sub 4} or Si{sub 2}F{sub 6} with enriched isotope were directly decomposed by the plasma CVD method at about from 350 to 450degC, the yield of silicon crystal was about 28%. A homogeneous crystal with 10 mm diameter was obtained as the control material of boron isotope. The computer code for simulation of nuclear transmutation was improved to calculate the displacement damage, change of composition, induced radioactivity and decay heat. (S.Y.)

  9. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  10. Nothing Boring About Boron

    Science.gov (United States)

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  11. Nano boron nitride flatland.

    Science.gov (United States)

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-02-07

    Recent years have witnessed many breakthroughs in research on two-dimensional (2D) nanomaterials, among which is hexagonal boron nitride (h-BN), a layered material with a regular network of BN hexagons. This review provides an insight into the marvellous nano BN flatland, beginning with a concise introduction to BN and its low-dimensional nanostructures, followed by an overview of the past and current state of research on 2D BN nanostructures. A comprehensive review of the structural characteristics and synthetic routes of BN monolayers, multilayers, nanomeshes, nanowaves, nanoflakes, nanosheets and nanoribbons is presented. In addition, electronic, optical, thermal, mechanical, magnetic, piezoelectric, catalytic, ecological, biological and wetting properties, applications and research perspectives for these novel 2D nanomaterials are discussed.

  12. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  13. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  14. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  15. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.

    1981-01-01

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential

  16. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  17. Radio response of human lymphocytes pretreated with boron and gadoliniums assessed by the, comet assay

    International Nuclear Information System (INIS)

    Kim, J. K.; Park, T. W.; Cebulska-Wasiewska, A.; Nili, M.

    2009-01-01

    Boron and gadolinium are among the nuclides that hold a unique property of being a neutron capture therapy agent. Neutron beams have often a considerable portion of gamma rays with fast neutrons. Gamma rays, as beam contaminants, can cause considerable damage to normal tissues even if such tissues do contain high boron concentrations. Materials and Methods: The modification of radio response in human lymphocytes pretreated with boron or gadolinium compound was studied by assessing the DNA damage using single cell gel electrophoresis, the comet assay. The lymphocytes from the human peripheral blood were irradiated with 0, 1, 2 and 4 Gy of gamma rays from a 60 Co isotopic source with or without pretreatment of boron or gadolinium compound for 10 minutes at 4 d egree C . Post-irradiation procedures included slide preparation, cell-lysing, unwinding and electrophoresis, neutralization, staining, and analytic steps, gel electrophoresis. Results: The results indicate that pretreatment with boron compound (50 n M or 250 n M of 10 B) is effective in reducing the radiosensitivity of the lymphocyte DNA. Conversely, pretreatment with gadolinium compound (50 n M) led to a dose-dependent increase in the radiosensitivity, most prominently with a dose of 4 Gy (P<0.001). Furthermore, when the lymphocytes were pretreated with a Combined mixture (1:1) of boron (250 n M) and gadolinium (50 n M) compounds, the reduced radiosensitivity was also observed.

  18. Neutron Detection using Amorphous Boron-Carbide Hetero-Junction Diodes

    Science.gov (United States)

    2012-03-22

    states. Special nuclear material as defined by Title I of the Atomic Energy Act of 1954 includes Pu, 233U, and uranium enriched in the isotopes 233U...NEUTRON DETECTION USING AMORPHOUS BORON -CARBIDE HETERO-JUNCTION DIODES THESIS Thomas P. McQuary, Major, USA AFIT/NUCL/ENP/12-M06 DEPARTMENT OF THE...is not subject to copyright protection in the United States. AFIT/NUCL/ENP/12-M06 NEUTRON DETECTION USING AMORPHOUS BORON -CARBIDE HETERO-JUNCTION

  19. Future boronated molecules for neutron capture therapy

    International Nuclear Information System (INIS)

    Soloway, A.H.; Alam, F.; Barth, R.F.

    1986-01-01

    The ability of several boron compounds to localize in tumor cells is examined. A number of first and second generation compounds which were not synthesized specifically for localization are described. Among these are the boron hydrides and boranes. A third generation of boron compounds are designed for selective localization. These fall into two groups: relatively small organic compounds and boronated antibodies, both of which are discussed here

  20. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  1. Synthesis of oligomeric boron-containing phospolyols

    International Nuclear Information System (INIS)

    Bondarenko, S.N.; Khokhlova, T.V.; Orlova, S.A.; Tuzhikov, O.I.

    2006-01-01

    Structure is investigated and reactivity of oligomeric boron-containing phospolyols is studied. Oligomeric boron-containing compound interacts with ethylene glycol, diethylene glycol, glycerol, 1,4-butandiol with formation of linear boron-containing phospolyols. Reactions proceed in noncatalytic conditions with stoichiometric quantities of reagents at 170-200 Deg C in inert gas media. Boron-containing phospolyols are viscous uncolored liquids, their physicochemical characteristics are represented [ru

  2. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  3. Experimental Evaluation of pH and Temperature Effects on the Adsorption of Boron onto Clay Minerals

    Science.gov (United States)

    Hoenisch, B.; Marone, D.; Ruprecht, J.

    2017-12-01

    Modeling the secular evolution of the concentration [B] and isotopic composition (δ11B) of boron in seawater is hampered by limited constraints on the relative sources (i.e. riverine input of weathering products, hydrothermal convection at mid-ocean ridges and fluids expelled from accretionary prisms) and sinks (i.e. alteration of the oceanic crust, adsorption onto clays, and co-precipitation in carbonates) of boron to and from the ocean. Clays remove approximately 28% of total boron from the ocean and quantification of this sink thus represents a major factor for reconstructing the secular evolution of seawater [B] and δ11B over the Cenozoic. However, the relative strength of the clay sink could have been much smaller in the early Cenozoic compared to today, because borate ion as the charged species is preferentially adsorbed onto detrital clays over boric acid, and because the relative abundance of borate in seawater should have been lower under the more acidic conditions of the early Cenozoic. In addition, different clay minerals tend to fractionate boron isotopes differentially, and the relative composition of clay minerals has varied in the past with the dominant climate and weathering patterns on the continents. We have conducted a range of pH (7.5-8.4) and temperature (3-32°C) experiments with four clay minerals (Kaolinite, Illite, Montmorillonite and Chlorite), to build on previously published but limited experimental data. Similar to a previous study and as expected based on the relative abundance of borate ion in seawater, boron adsorption onto these clays increases at higher pH and lower temperatures, but whereas Montmorillonite and Illite absorb similar quantities of boron, Kaolinite is most and Chlorite least efficient in this process. We are now in the process of characterizing the boron isotope fractionation associated with these adsorption experiments.

  4. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  5. Isotope separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1978-11-01

    Separation of isotopes is treated in a general way, with special reference to the production of enriched uranium. Uses of separated isotopes are presented quickly. Then basic definitions and theoretical concepts are explained: isotopic effects, non statistical and statistical processes, reversible and irreversible processes, separation factor, enrichment, cascades, isotopic separative work, thermodynamics. Afterwards the main processes and productions are reviewed. Finally the economical and industrial aspects of uranium enrichment are resumed [fr

  6. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  7. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    Jaraiz Franco, E.; Esteban Hernandez, J. A.

    1960-01-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe 2 B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  8. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  9. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  10. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  11. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    Science.gov (United States)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  12. Synthesis of boron nitride from boron containing poly (vinyl alcohol ...

    Indian Academy of Sciences (India)

    A ceramic precursor, prepared by condensation reaction from poly(vinyl alcohol) (PVA) and boric acid (H3BO3) in 1:1, 2:1 and 4:1 molar ratios, was synthesized as low temperature synthesis route for boron nitride ceramic. Samples were pyrolyzed at 850°C in nitrogen atmosphere followed by characterization using Fourier ...

  13. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  14. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  15. Boron removal from wastewater using adsorbents.

    Science.gov (United States)

    Kluczka, J; Trojanowska, J; Zolotajkin, M; Ciba, J; Turek, M; Dydo, P

    2007-01-01

    In the present study, boron adsorption on activated alumina and activated carbon impregnated with calcium chloride, tartaric acid and mannitol was investigated. The adsorbate in question was the wastewater from the chemical landfill in Tarnowskie Gory of 25-70 mg l(-1) boron content. The removal of boron from the above-described wastewater was examined in the static (batch) and dynamic (column) experiments. The static experiments were carried out to assess boron adsorption isotherms, based on which the most efficient adsorbent as well as the rough resin load was determined. On the basis of the dynamic experiment results, the boron adsorptive capacities of the examined resins were deduced. It was concluded that the use of the impregnants increased the ability of activated carbon to adsorb boron. Granulated activated carbon WG-12 impregnated with mannitol was found to be the most promising for the boron removal from wastewater of the Chemical Wastewater Plant in Tarnowskie Gory.

  16. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    electrolysis was crystalline in nature, X-ray diffraction pat-. ∗. Author for correspondence (sas@igcar.gov.in) .... Elemental boron was synthesized by the electrolysis of molten potassium fluroborate dissolved in a ... A high-throughput Renishaw micro-Raman spectrome- ter (model Invia) was employed to record Raman ...

  17. Preparation process of boron nitride

    International Nuclear Information System (INIS)

    Mignani, G.; Ardaud, P.

    1990-01-01

    High purity boron nitride, without Si and a low carbon content, is prepared by pyrolysis, under an ammoniac atmosphere, of the reaction product between a B-trihalogenoborazole and a primary amine RNH 2 when R is a hydrocarbon radical eventually substituted containing from 1 to 6 carbon atoms inclusively [fr

  18. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  19. Prevention of uncontrolled boron dilution

    International Nuclear Information System (INIS)

    Sere, J. L.

    1997-01-01

    The paper presents a synthesis of the global analysis of uncontrolled boron dilution risk performed by (European Consortium Mochovce (EUCOM) in the frame of Safety Measures RC 01 and AA 11. Recommendation for additional improvements (mainly I and C interlocks or inhibition) are presented. (author)

  20. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  1. Boron filled siloxane polymers for radiation shielding

    Science.gov (United States)

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton; Simmonds, Steve; Cox, Brad; Pacheco, Adam; Cady, Carl

    2018-03-01

    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield, and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. Our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.

  2. Orthorhombic boron oxide under pressure: In situ study by X-ray diffraction and Raman scattering

    Science.gov (United States)

    Cherednichenko, Kirill A.; Le Godec, Yann; Kalinko, Aleksandr; Mezouar, Mohamed; Solozhenko, Vladimir L.

    2016-11-01

    High-pressure phase of boron oxide, orthorhombic β-B2O3, has been studied in situ by synchrotron X-ray diffraction to 22 GPa and Raman scattering to 46 GPa at room temperature. The bulk modulus of β-B2O3 has been found to be 169(3) GPa that is in good agreement with our ab initio calculations. Raman and IR spectra of β-B2O3 have been measured at ambient pressure; all experimentally observed bands have been attributed to the theoretically calculated ones, and the mode assignment has been performed. Based on the data on Raman shift as a function of pressure, combined with equation-of-state data, the Grüneisen parameters of all experimentally observed Raman bands have been calculated. β-B2O3 enriched by 10B isotope has been synthesized, and the effect of boron isotopic substitution on Raman spectra has been studied.

  3. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  4. The certification of boron in primary ingot aluminium. BCR No.25

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Colinet, E.

    1984-01-01

    This report sets out the experimental procedures used for the certification of boron in primary ingot aluminium, which has already been certified for carbon and oxygen. Samples were analysed by seven different laboratories using the following methods: spectrophotometry, ICP-emission spectrometry, isotope dilution mass spectrometry, spark source mass spectrometry and charged particle activation analysis. The analytical methods and the statistical approach to analyse the data are described

  5. Effects of boron-water on cattle

    Energy Technology Data Exchange (ETDEWEB)

    Green, G.H.; Weeth, H.J.

    1975-01-01

    To determine the effects of subtoxic concentrations of boron in drinking water, 12 Hereford heifers were used in a 3 x 3 latin-square experiment with four squares. Treatments were tap-water (0.8 ppm boron), 150 ppm boron-water, and 300 ppm boron-water. Periods were 30 days each. Total urine was collected during the last week of each period, and renal clearance observations (based on creatinine) were made on the last day of each period. While water consumption and total urine weight were not affected by the boron treatments, hay consumption decreased, and weight loss was noted. Plasma boron concentrations were 0.53 +/- 0.151 ppm, 11.2 +/- 0.91 ppm, and 18.9 +/- 0.60 ppm while the heifers were drinking tap-water, 150 ppm boron-water, and 300 ppm boron-water respectively. Urinary boron excretion rates were tap water, 64 +/- 5.6 mg/day; 150 ppm, 2841 +/- 181.2 mg/day; 300 ppm, 4932 +/- 173.3 mg/day. Although glomerular filtration and osmolal clearance were unaffected by the boron-waters, a relative diuresis was indicated by the free water clearance effects. The percent of filtered boron which was reabsorbed decreased with increased exogenous boron, as well as both plasma and urinary phosphate. These data indicate that 300 ppm boron is not acutely toxic to heifers when consumed via the drinking water. The safe tolerance concentration, however, must lie below 150 ppm because this concentration was responsible for some deleterious effects.

  6. Preparação e caracterização espectroscópica de complexos de boro: uma proposta para uma prática integrada de química inorgânica Preparation and spectroscopic characterization of boron complexes: a proposal for an integrated inorganic laboratory

    Directory of Open Access Journals (Sweden)

    Karl Eberhard Bessler

    2010-01-01

    Full Text Available As a proposal for an undergraduate second or third year inorganic laboratory course, the present paper describes the preparation of three representative boron complexes: potassium tetrafluoroborate, pyridoxin boron complex and potassium bis(oxalatoborate. The complexes are characterised by infrared and multinuclear magnetic resonance spectroscopy (¹H, 11B and 19F where isotopic effects are demonstrated.

  7. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    Science.gov (United States)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy

  8. Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same

    Energy Technology Data Exchange (ETDEWEB)

    Lavens, T.R.; Corrigan, F.R.; Shott, R.L.; Bovenkerk, H.P.

    1987-06-16

    A method is described for making re-sintered polycrystalline cubic boron nitride (CBN) which comprises: (a) placing sintered substantially catalyst-free boron-rich polycrystalline cubic boron nitride particles in a high pressure/high temperature apparatus, the particles being substantially free of sintering inhibiting impurities; (b) subjecting the boron-rich cubic boron nitride particles to a pressure and a temperature adequate to re-sinter the particles, the temperature being below the CBN reconversion temperature; (c) maintaining the temperature and pressure for a time sufficient to re-sinter the boron-rich cubic boron nitride particles in the apparatus, and (d) recovering the re-sintered polycrystalline cubic boron nitride from the apparatus.

  9. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  10. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  11. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.

  12. Boron-10 ABUNCL Active Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  13. Boron removal from geothermal waters by electrocoagulation.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar; Yilmaz, M Tolga; Paluluoğlu, Cihan

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm(2), but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  14. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  15. Mineral resource of the month: boron

    Science.gov (United States)

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  16. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  17. Separation and sampling technique of light element isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    Kato, Shunsaku; Oi, Kenta; Takagi, Norio; Hirotsu, Takafumi; Kano, Hirofumi; Sonoda, Akinari; Makita, Yoji

    2000-01-01

    Lithium and boron isotope separation technique were studied. Granulation of lithium isotope separation agent was carried out by cure covering in solution. Separation of lithium isotope was stepped up by ammonium carbonate used as elusion agent. Styrene and ester resin derived three kinds of agents such as 2-amino-1, 3-propanediol (1, 3-PD), 2-amino-2-methyl-1, 3-propanediol (Me-1,3-PD) and tris(2-hydroxyethyl)amine (Tris) were used as absorbent.The ester resin with Tris showed larger amount of adsorption (1.4 mmol/g) than other resins. However, all resins with agent indicated more large adsorption volume of boron than the objective value (0.5 mmol/g). Large isotope shift was shown by the unsymmetrical vibration mode of lithium ion on the basis of quantum chemical calculation of isotope effect on dehydration of hydrated lithium ion. (S.Y.)

  18. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    International Nuclear Information System (INIS)

    Kabalka, G. W.

    2005-01-01

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharmacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCT agents that could be labeled with radioactive nuclides for the in vivo detection of boron

  19. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  20. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  1. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  2. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  3. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  4. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  5. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  6. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  7. Compression and associated properties of boron carbide

    Science.gov (United States)

    Ciezak, Jennifer; Dandekar, Dattatraya

    2009-06-01

    The observed loss of shear strength of boron carbide around 22 GPa has been attributed to presence of amorphous material in the shock recovered, and statically indented and pressurized boron carbide. The present work presents a more direct association of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress compression. This evidence is obtained from in-situ measurement of Raman, and infrared vibrational spectra of boron carbide confined in a Diamond Anvil Cell (DAC) under hydrostatic and non-hydrostatic pressures. X-ray-diffraction measurements do show a shift in the compression of boron carbide around 27 GPa. However, X-ray diffraction measurements indicate that the amorphization does not extend to micron scale, as there is no evidence of a loss of crystallinity in the recorded diffraction pattern of boron carbide to 47 GPa. Our work shows that shear plays a very dominant role in the stress-induced amorphization of boron carbide.

  8. Ultratough single crystal boron-doped diamond

    Science.gov (United States)

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  9. Spectral tailoring for boron Neutron capture therapy

    NARCIS (Netherlands)

    Nievaart, V.A.

    2007-01-01

    In several places in the world, such as Petten and Delft in the Netherlands, investigations are in progress in the fight against certain types of cancer with Boron Neutron Capture Therapy. The basic idea is very simple: boron is loaded only into the cancer cells, using a special drug, after which

  10. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  11. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  12. Isotope separation

    International Nuclear Information System (INIS)

    Coleman, J.H.; Marks, T.J.

    1981-01-01

    A process for separating uranium isotopes is described which includes: preparing a volatile compound U-T, in which U is a mixture of uranium isotopes and T is a chemical moiety containing at least one organic or deuterated borohydride group, and which exhibits for at least one isotopic species thereof a fundamental, overtone or combination vibrational absorption excitation energy level at a frequency between 900 and 1100 cm -1 ; and irradiating the compound in the vapour phase with energy emitted by a radiation source at a frequency between 900 and 1100 cm -1 (e.g. a CO 2 laser). (author)

  13. NMR investigation of boron impurities in refined metallurgical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  15. Continuum modeling of boron nitride nanotubes

    International Nuclear Information System (INIS)

    Song, J; Wu, J; Hwang, K C; Huang, Y

    2008-01-01

    Boron nitride nanotubes display unique properties and have many potential applications. A finite-deformation shell theory is developed for boron nitride nanotubes directly from the interatomic potential to account for the effect of bending and curvature. Its constitutive relation accounts for the nonlinear, multi-body atomistic interactions, and therefore can model the important effect of tube chirality and radius. The theory is then used to determine whether a single-wall boron nitride nanotube can be modeled as a linear elastic isotropic shell. Instabilities of boron nitride nanotubes under different loadings (e.g., tension, compression, and torsion) are also studied. It is shown that the tension instability of boron nitride nanotubes is material instability, while the compression and torsion instabilities are structural instabilities.

  16. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  17. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  18. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  19. Isotope Identification

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  20. Optimization of neutron flux using fission converter plates for Boron Neutron Capture Therapy study in Tehran reactor

    International Nuclear Information System (INIS)

    Hamidi, S.; Babaei, H.

    2003-01-01

    Boron Neutron Capture Therapy is a binary from of radiation therapy for treatment of deep seated brain tumor, based on the nuclear reaction that occur when boron ( 10 B) is exposed to the thermal neutrons. The stable isotope 10 B is irradiated with low energy or thermal neutrons to yield 4 He nuclei (i.e a particles) and recoiling 7 Li ions. These are absorbed in tumor cells and released their energy in them and destroy tumor cells. This work has tried to optimize neutron flux from Tehran reactor in order to be used in a Boron Neutron Capture Therapy program. Fission converter plates (20% enriched Uranium) have been applied to increase the neutron flux

  1. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  2. Chemical vapor deposited boron carbide

    International Nuclear Information System (INIS)

    Mackinnon, I.D.R.; Smith, K.L.

    1987-01-01

    Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD) show that two basic types of whiskers are produced at low temperatures (between 1200 0 C and 1400 0 C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanisms

  3. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  4. Boron Enrichment in Martian Clay

    Science.gov (United States)

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  5. Positron annihilation in boron nitride

    Directory of Open Access Journals (Sweden)

    N.Amrane

    2006-01-01

    Full Text Available Electron and positron charge densities are calculated as a function of position in the unit cell for boron nitride. Wave functions are derived from pseudopotential band structure calculations and the independent particle approximation (IPM, respectively, for electrons and positrons. It is observed that the positron density is maximum in the open interstices and is excluded not only from ion cores but also to a considerable degree from valence bonds. Electron-positron momentum densities are calculated for (001,110 planes. The results are used in order to analyse the positron effects in BN.

  6. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-01-01

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope 10 B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/ 10 B reactions ( 10 B(n,α) 7 Li) resulting in the production of localized high LET radiation from alpha and 7 Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams

  7. Preparation and characterization of liposomal systems entrapping the boronated compound o-carboranylpropylamine.

    Science.gov (United States)

    Moraes, A M; Santana, M H; Carbonell, R G

    1999-01-01

    Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when the stable isotope, Boron-10, is irradiated with low-energy thermal neutrons to yield ionizing Helium and Lithium ions that are highly damaging and usually lethal to cells. The successful treatment of cancer by BNCT requires the selective concentration of Boron-10 within malignant tumours. Liposomes have been used as therapeutic compound delivery vehicles for in vivo application, including several anticancer agents. The ability of the boron-containing compound, o-carboranylpropylamine chloride, to accumulate within unilamellar liposomes in response to a transmembrane pH gradient is evaluated. Characterization of the systems obtained is performed for conventional and polyethylene glycol (PEG)-modified (stealth) liposomes, in terms of lipid and CPA contents, vesicle size and stability in detergent solutions. Results demonstrate that CPA loading and vesicle stability can be controlled by the experimental procedure. The loading of CPA into liposomes with average diameters of 100 nm is estimated at 13000 molecules per vesicle for the most stable systems. CPA toxicity to normal human peripheral blood lymphocytes and to adherent glioblastoma multiforme SK-MG-1 cells in vitro is observed to decrease as a result of the entrapment of CPA in liposomes.

  8. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  9. Monte Carlo calculations on efficiency of boron neutron capture therapy for brain cancer

    International Nuclear Information System (INIS)

    Awadalla, Galaleldin Mohamed Suliman

    2015-11-01

    The search for ways to treat cancer has led to many different treatments, including surgery, chemotherapy, and radiation therapy. Among these treatments, boron neutron capture therapy (BNCT) has shown promising results. BNCT is a radiotherapy treatment modality that has been proposed to treat brain cancer. In this technique, cancerous cells are being injected with 1 0B and irradiated by thermal neutrons to increase the probability of 1 0B (n, a)7 L i reaction to occur. This reaction can potentially deliver a high radiation dose sufficient to kill cancer cells by concentrating boron in them. The short rang of 1 0B (n, a) 7 L i reaction limits the damage to only cancerous cells without affecting healthy tissues. The effectiveness and safety of radiotherapy are dependent on the radiation dose delivered to the tumor and healthy tissues. In this thesis, after reviewing the basics and working principles of boron neutron capture therapy (BNCT), monte Carlo simulations were carried out to model a thermal neutron source suitable for BNCT and to examine the performance of proposed model when used to irradiate a sample of boron containing both 1 0B and 1 1B isotopes. MCNP5 code was used to examine the modeled neutron source through different shielding materials. The results were presented, analyzed and discussed at the end of the work. (author)

  10. Boron nutrition and yield of alfalfa cultivar crioula in relation to boron supply

    Directory of Open Access Journals (Sweden)

    Santos Anacleto Ranulfo dos

    2004-01-01

    Full Text Available Alfalfa cultivar Crioula (Medicago sativa cv. Crioula is grown in South Brazil and only a few studies on the plants' boron requirement are available. A greenhouse experiment was carried out with alfalfa to measure boron acquisition, production and distribution in the plant; data on critical level and production potentials were recorded. Plants were grown in ground quartz added with 1 L of solution, with the following boron rates: 0, 0.0625, 0.125, 0.25, 0.50, 1.00, and 2.00 mg L-1. Plants were harvested at 46 days of growth. Forage dry mass was increased by boron supply and dry matter accumulation was considerably low in control. Boron concentration in the leaves was higher than in the stems or roots. Boron utilization from the external solution reached 90% at 0.0625 mg L-1 and sharply decreased with further increasing boron rates. Boron concentration and content in the leaves and in plant tops were at maximum when applied boron was between 1.5 and 1.6 mg L-1. Critical levels of boron in plant were 61 mg kg-1 in the leaves and 39 mg kg-1 in plant tops for this cultivar of alfalfa.

  11. Experimental boron neutron capture therapy for melanoma: Systemic delivery of boron to melanotic and amelanotic melanoma

    International Nuclear Information System (INIS)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Greenberg, D.; Packer, S.

    1990-01-01

    The boron-containing melanin precursor analogue p-boronophenylalanine (BPA) has previously been shown to selectively deliver boron to pigmented murine melanomas when administered in a single intragastric dose. If boron neutron capture therapy is to become a clinically useful method of radiation therapy for human malignant melanoma, the boron carrier must be capable of delivering useful amounts of boron to remote tumor sites (metastases) and to poorly pigmented melanomas. The authors have now determined the ability of BPA to accumulate in several nonpigmented melanoma models including human melanoma xenografts in nude mice. The absolute amount of boron in the nonpigmented melanomas was about 50% of the observed in the pigmented counterparts but was still selectively concentrated in the tumor relative to normal tissues in amounts sufficient for effective neutron capture therapy. Single intragastric doses of BPA resulted in selective localization of boron in the amelanotic Greene melanoma carried in the anterior chamber of the rabbit eye and in a pigmented murine melanoma growing in the lungs. The ratio of the boron concentration in these tumors to the boron concentration in the immediately adjacent normal tissue was in the range of 3:1 to 4:1. These distribution studies support the proposal that boron neutron capture therapy may be useful as a regional therapy for malignant melanoma

  12. Study of ceramic mixed boron element as a neutron shielding

    International Nuclear Information System (INIS)

    Ismail Mustapha; Mohd Reusmaazran Yusof; Md Fakarudin Ab Rahman; Nor Paiza Mohamad Hasan; Samihah Mustaffha; Yusof Abdullah; Mohamad Rabaie Shari; Airwan Affandi Mahmood; Nurliyana Abdullah; Hearie Hassan

    2012-01-01

    Shielding upon radiation should not be underestimated as it can causes hazard to health. Precautions on the released of radioactive materials should be well concerned and considered. Therefore, the combination of ceramic and boron make them very useful for shielding purpose in areas of low and intermediate neutron. A six grades of ceramic tile have been produced namely IMN05 - 5 % boron, IMN06 - 6 % boron, IMN07 - 7 % boron, IMN08 - 8 % boron, IMN09 - 9 % boron, IMN10 - 10 % boron from mixing, press and sintered process. Boron is a material that capable of absorbing and capturing neutron, so that neutron and gamma test were conducted to analyze the effectiveness of boron material in combination with ceramic as shielding. From the finding, percent reduction number of count per minute shows the ceramic tiles are capable to capture neutron. Apart from all the percentage of boron used, 10 % is the most effective shields since the percent reduction indicating greater neutron captured increased. (author)

  13. Analysis of Boron Distribution in Steel using Neutron at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun-Joo; Seong, Baek-Seok; Kim, Hark-Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    Boron is very useful element in steels to improve the mechanical properties. In steel matrix, boron exist several types such as solute, segregation in grain boundary and many kinds of precipitate, which influence the properties of the steel. But, detecting of boron using X-ray or ion-beam is not easy because boron is very light atom than iron. However neutron gives the clear image of boron distribution from the particle tracking autoradiography (PTA) method. The PTA method of boron uses the phenomenon that boron irradiated by neutron emits Liion and alpha particle. Boron distribution can be obtained by observing the traces of the emitted Li-ion and alpha particle. At HANARO, the study for observing of boron distribution has been performed several years ago. Recently, the experimental techniques were improved for the reactor power of 30 MW. In this paper, improved experimental techniques were described and some results for boron added low-carbon steel plate were introduced.

  14. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  15. Proceedings of workshop on 'Boron Chemistry and Boron Neutron Capture Therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Y.

    1991-07-01

    This volume contains the proceedings of the 3rd Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 12, in 1991. In this workshop, our attention was focused on the chemical nature of boron compounds and the boron neutron capture therapy (BNCT). First, clinical experiences of BNCT in KURRI in 1990 and 1991 were reported (Chap. 3). The feasibility of the gadolinium neutron capture therapy for brain tumors was discussed (Chap. 4). In the chemical field, a rapid spectrophotometric determination of trace amounts of borons in biological samples is described (Chap. 5). The chemical behaviours of p-boronophenylalanine and its analogs in aqueous solutions were investigated by a paper electrophoresis and infrared spectroscopy (Chap. 6). On the molecular design and synthesis of new boron carriers for BNCT, several new synthetic methods for B-10 containing nucleoside derivatives were shown (Chap. 7). (author)

  16. Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: hamze.mousavi@gmail.com [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Khodadadi, Jabbar [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Moradi Kurdestany, Jamshid [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65201 (United States); Yarmohammadi, Zahra [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-11-25

    Density of states, electrical and thermal conductivities of electrons in graphene, boron nitride and silicon boron single sheets are studied within the tight-binding Hamiltonian model and Green's function formalism, based on the linear response theory. The results show that while boron nitride keeps significantly the lowest amounts overall with an interval of zero value in low temperatures, due to its insulating nature, graphene exhibits the most electrical and thermal conductivities, slightly higher than silicon boron except for low temperature region where the latter surpasses, owing to its metallic character. This work might make ideas for creating new electronic devices based on honeycomb nanostructures. - Highlights: • Electronic properties of graphene, silicon boron, and boron nitride planes are compared. • Tight-binding Hamiltonian model and Green's function formalism are implemented. • This work might make ideas for creating new electronic devices based on honeycomb nanostructures.

  17. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  18. Quantitative boron detection by neutron transmission method

    International Nuclear Information System (INIS)

    Okka, M.; Genceli, M.; Eren, E.; Bayulken, A.

    2008-01-01

    //Quantitative boron detection is mainly performed by chemical methods like colorimetric titration. High neutron absorption cross section of natural boron makes attractive its detection by absorption measurements. This work is an extension of earlier investigations where neutron radiography technique was used for boron detection. In the present investigation, the neutron absorption rate of boron containing solutions is the way to measure quantitatively the boron content of the solutions. The investigation was carried out in Istanbul TRIGA Mark-II reactor. In the end of the experiments, it was observed that even |ppw| grade boron in aqueous solution can be easily detected. The use of this method is certainly very useful for boron utilizing industries like glass and steel industries.The major disadvantage of the method is the obligation to use always aqueous solutions to be able to detect homogeneously the boron content. Then, steel or glass samples have to be put first in an appropriate solution form. The irradiation of steel samples can give the distribution of boron by the help of a imaging and this suggested method will give its quantitative measurement. The superiority of this method are its quick response time and its accuracy. To test this accuracy, a supposed unknown , solution of boric acid is irradiated and then calculated by the help of the calibration curve. The measured value of boric acid was 0.89 mg and the calculated value was found to be 0.98 mg which gives an accuracy of 10 %. It was also seen that the method is more accurate for low concentration. (authors)

  19. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry.

    Science.gov (United States)

    Betti, M; Rasmussen, G; Koch, L

    1996-07-01

    A double-focusing Glow Discharge Mass Spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from Thermal Ionization Mass Spectrometry (TIMS). For boron and lithium at microg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques.

  20. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Keru, Godfrey; Ndungu, Patrick G.; Nyamori, Vincent O., E-mail: nyamori@ukzn.ac.za

    2015-03-01

    Boron-doped carbon nanotubes (B-CNTs) were synthesized using chemical vapour deposition (CVD) floating catalyst method. Toluene was used as the carbon source, triphenylborane as boron as well as the carbon source while ferrocene was used as the catalyst. The amount of triphenylborane used was varied in a solution of toluene and ferrocene. Ferrocene was kept constant at 2.5 wt.%. while a maximum temperature of 900 °C was used for the synthesis of the shaped carbon nanomaterial (SCNMs). SCNMs obtained were characterized by the use of transmission electron microscope (TEM), scanning electron microscope (SEM), high resolution-electron microscope, electron dispersive X-ay spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma-optical emission spectroscopy (ICP-OES), vibrating sample magnetometer (VSM), nitrogen adsorption at 77 K, and inverse gas chromatography. TEM and SEM analysis confirmed SCNMs obtained were a mixture of B-CNTs and carbon nanofibres (B-CNF). EDX and ICP-OES results showed that boron was successively incorporated into the carbon hexagonal network of CNTs and its concentration was dependent on the amount of triphenylborane used. From the VSM results, the boron doping within the CNTs introduced ferromagnetic properties, and as the percentage of boron increased the magnetic coactivity and squareness changed. In addition, boron doping changed the conductivity and the surface energy among other physicochemical properties of B-CNTs. - Highlights: • Boron-doping of carbon nanotubes (CNTs) changes their physiochemical properties. • Amount of boron-doping was dependent on the wt.% of boron precursor used. • Boron-doping changed CNTs surfaces and the distribution of dispersive energy sites. • Boron-doping affected the conductivity and ferromagnetic properties. • Increased boron-doping results in a more favourable interaction with polar probes.

  1. Study on plasma sprayed boron carbide coating

    Science.gov (United States)

    Zeng, Yi; Lee, Soo W.; Ding, Chuanxian

    2002-03-01

    The microstructure, phase composition, and mechanical properties of boron carbide coatings formed by atmospheric plasma spraying (APS) are studied in the present work. The boron carbide coating with high microhardness and low porosity could be produced by APS. The decomposition of boron carbide powder during the plasma spray process would result in the formation of the BxC phase and an increase of the carbon phase, which is confirmed by transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction results.

  2. Radiologic assessment of a self-shield with boron-containing water for a compact medical cyclotron.

    Science.gov (United States)

    Horitsugi, Genki; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Eto, Akihisa; Iwamoto, Yasuo; Hashimoto, Hiromi; Hamada, Seiki; Obara, Satoshi; Watanabe, Hiroshi; Hatazawa, Jun

    2012-07-01

    The cyclotron at our hospital has a self-shield of boron-containing water. The amount of induced radioactivity in the boron-containing water shield of a compact medical cyclotron has not yet been reported. In this study, we measured the photon and neutron dose rates outside the self-shield during cyclotron operation. We estimated the induced radioactivities of the boron-containing water used for the self-shield and then measured them. We estimated the activation of concrete outside the self-shield in the cyclotron laboratory. The thermal neutron flux during cyclotron operation was estimated to be 4.72 × 10(2) cm(-2) s(-1), and the activation of concrete in a cyclotron laboratory was about three orders of magnitude lower than the clearance level of RS-G-1.7 (IAEA). The activity concentration of the boron-containing water did not exceed the concentration limit for radioactive isotopes in drainage in Japan and the exemption level for Basic Safety Standards. Consequently, the boron-containing water is treatable as non-radioactive waste. Neutrons were effectively shielded by the self-shield during cyclotron operation.

  3. Early clinical experience of boron neutron capture therapy for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Joel, D.D.; Bergland, R.; Capala, J.

    1995-01-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. BNCT uses drugs containing a stable isotope of boron. 10 B, to sensitize tumor cells to irradiation by low energy (thermal) neutrons. The interaction of the 10 B with a thermal neutron (neutron capture) causes the 10 B nucleus to split, releasing an alpha particle and a lithium nucleus. These products of the 10 B(n, α) 7 Li reaction are very damaging to cells but have a combined path length in tissue of approximately 14 μm, or roughly the diameter of one or two cells. Thus, most of the ionizing energy imparted to tissue is localized to 10 B-loaded cells

  4. Application of ICPMS for performance evaluation of boron enrichment plant at HWP, Manuguru

    International Nuclear Information System (INIS)

    Murthy, P.K.; Mohapatra, C.; Vithal, G.K.

    2011-01-01

    10 B enriched compounds are used in neutron control rod in Fast Breeder Reactors (FBR), Neutron Detector, Neutron Capture Therapy, and Neutron Shielding. Heavy Water Board (HWB) is given a mandate to produce enriched elemental boron which is being produced using Ion exchange chromatography and BF 3 - ether complex distillation methods. Ion Exchange Chromatography based Boron Enrichment Plant is operating at HWP, Manuguru. Ion Exchange Chromatography based process depends, besides other process parameters, on column run time and movement of band length. For effective process and quality control, it is necessary to analyze 10 B/ 11 B ratio in feed, process stream, waste and the product. 10 B/ 11 B ratio measurements are possible by Thermal Ionization Mass Spectrometer (TIMS) and Inductively Coupled Plasma Mass Spectrometer (ICPMS), the former offers better accuracy but takes longer analysis time whereas the later offers quick analysis of isotopic ratios and as well as trace metal impurities in the Boric acid

  5. Early clinical experience of boron neutron capture therapy for glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Bergland, R.; Capala, J. [and others

    1995-12-31

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. BNCT uses drugs containing a stable isotope of boron. {sup 10}B, to sensitize tumor cells to irradiation by low energy (thermal) neutrons. The interaction of the {sup 10}B with a thermal neutron (neutron capture) causes the {sup 10}B nucleus to split, releasing an alpha particle and a lithium nucleus. These products of the {sup 10}B(n, {alpha}){sup 7}Li reaction are very damaging to cells but have a combined path length in tissue of approximately 14 {mu}m, or roughly the diameter of one or two cells. Thus, most of the ionizing energy imparted to tissue is localized to {sup 10}B-loaded cells.

  6. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  7. Isotope production

    International Nuclear Information System (INIS)

    Lewis, Dewi M.

    1995-01-01

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the

  8. Boron Doped Graphene 3-Dimensi untuk Superkapasitor Kapasitas Tinggi

    Directory of Open Access Journals (Sweden)

    Nurlia Pramita Sari

    2017-08-01

    Full Text Available Chemical doping is an effective approach to improve the property of carbon material. In this study boron doped graphene with 3D structure used as the electrode was investigated. Boron doped graphene was prepared through freeze-dried process followed by pyrolysis of graphene oxide (GO with three types of chemical substances; boron oxide, boric acid, and boron powder in an argon and hydrogen atmosphere at 1000 C for 3 hours. The difference of chemical composition generated a different percentage of boron bond with GO. The results shows that the highest electrochemical performance was found in graphene samples with the addition of boric acid (BA 86 F/g, followed by boron oxide (BO 59.2 F/g, and boron powder (BP 2 F/g. It can be caused by boron concentration bound with graphene. The higher concentration of boron could be increased the electrochemical performance due to better of ion movement.

  9. Breaking the icosahedra in boron carbide.

    Science.gov (United States)

    Xie, Kelvin Y; An, Qi; Sato, Takanori; Breen, Andrew J; Ringer, Simon P; Goddard, William A; Cairney, Julie M; Hemker, Kevin J

    2016-10-25

    Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials.

  10. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    Gainer, G.M.

    1993-01-01

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  11. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  12. Boron precipitates in ion implanted silicon

    International Nuclear Information System (INIS)

    Wu, W.K.; Washburn, J.

    1975-03-01

    Long rod-like defects are observed in ion implanted silicon when boron is present either as a prior dopant addition or as the implanted species. Results of recent work indicates that these defects have the characteristics of narrow extrinsic dipoles or elongated dislocation loops and that there are two different types along each of the six (110) directions. An annealing kinetics method has been used to identify the nature of these defects formed during post-implantation annealing in boron ion (100 keV) implanted silicon irradiated at room temperature to a dose of 2 x 10 14 /cm 2 . It is concluded that at least two different kinds of rod-like defects exist in boron ion implanted silicon. From the activation energy for shrinkage, it is also concluded that one type (anti A) is composed largely of boron atoms. (U.S.)

  13. Behaviour of boron in Mandovi estuary (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Anand, S.P.

    and alkalinity gave positive correlations with a linear variation. Though the overall behavioural pattern of boron indicated non-conservative nature, it showed a quasi-conservative character during premonsoon and a non-conservative during rest of the seasons...

  14. Boron

    Science.gov (United States)

    ... feeding women over 19 years of age. For adolescents 14 to 18 years of age and pregnant or breast-feeding women 14 to 18 years of age, the ... be expected, is 17 mg per day for adolescents 14 to 18 years of age and pregnant or breast-feeding women 14 to 18 years of age. For ...

  15. Abrasive slurry composition for machining boron carbide

    Science.gov (United States)

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  16. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  17. Single photon image from PET with insertable collimator for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Jung, Jooyoung; Suh, Tae Suk; Hong, Key Jo

    2014-01-01

    Boron neutron capture therapy (BNCT) is a radiation therapy technique for treating deep-seated brain tumors by irradiation with a thermal neutron in which boron-labelled low molecular weight compounds. Once completed, a single photon emission computed tomography (SPECT) scan is conducted to investigate for the region of therapy using an isotope exclusive to SPECT. In the case of an existing PET/SPECT combination system, at least two types of isotopes should be used for each scan with their purposes. Recently, researchers examined the effects of PET/SPECT dual modality on animal imaging systems. They reported that the PET/SPECT combination system was effective for simultaneous achievement of a single event and coincidence. The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one PET module with an insertable collimator for brain tumor treatment during the BNCT. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector

  18. Quadrupole mass spectrometer for a mobile laboratory to measure isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.R.; Smith, D.H.; McKown, H.S.; Carter, J.A.

    1981-01-01

    A mobile laboratory has been assembled for on-site inspection of plant operations handlng special nuclear materials. The isotopic composition of U, Pu, and other elements can be analyzed using a quadrupole mass spectrometer. Some results of analysis of uranium and boron standards are given. (DLC)

  19. Isotope generator

    International Nuclear Information System (INIS)

    1979-01-01

    The patent describes an isotope generator incorporating the possibility of stopping elution before the elution vessel is completely full. Sterile ventilation of the whole system can then occur, including of both generator reservoir and elution vessel. A sterile, and therefore pharmaceutically acceptable, elution fluid is thus obtained and the interior of the generator is not polluted with non-sterile air. (T.P.)

  20. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    Mueller, D.; Dylla, H.F.; LaMarche, P.H.; Bell, M.G.; Blanchard, W.; Bush, C.E.; Gentile, C.; Hawryluk, R.J.; HIll, K.W.; Janos, A.C.; Jobes, F.C; Owens, D.K.; Pearson, G.; Schivell, J.; Ulrickson, M.A.; Vannoy, C.; Wong, K.L.

    1991-05-01

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 10 5 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  1. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  2. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.

  3. Real-time boronization in PBX-M using erosion of solid boronized targets

    International Nuclear Information System (INIS)

    Kugel, H.W.; Timberlake, J.; Bell, R.

    1994-01-01

    Thirty one real-time boronizations were applied to PBX-M using the plasma ablation of solid target probes. More than 17 g of boron was deposited in PBX-M using this technique. The probes were positioned at the edge plasma to optimize ablation and minimize spallation. Auger depth profile analysis of poloidal and toroidal deposition sample coupon arrays indicate that boron was transported by the plasma around the torus and deep into the divertors. During discharges with continuous real-time boronization, low-Z and high-Z impurities decreased rapidly as plasma surfaces were covered during the first 20--30 discharges. After boronization, a short-term improvement in plasma conditions persisted prior to significant boron erosion from plasma surfaces, and a longer term, but less significant, improvement persisted as boron farther from the edge continued gettering. Real-time solid target boronization has been found to be very effective for accelerating conditioning to new regimes and maintaining high performance plasma conditions

  4. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    Science.gov (United States)

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  5. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  6. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  7. Enhanced diffusion of boron by oxygen precipitation in heavily boron-doped silicon

    Science.gov (United States)

    Torigoe, Kazuhisa; Ono, Toshiaki

    2017-06-01

    The enhanced diffusion of boron has been investigated by analyzing out-diffusion profiles in the vicinity of the interface between a lightly boron-doped silicon epitaxial layer and a heavily boron-doped silicon substrate with a resistivity of 8.2 mΩ cm and an oxide precipitate (O.P.) density of 108-1010 cm-3. It is found that the boron diffusion during annealing at 850-1000 °C is enhanced with the increase of the oxide precipitate density. On the basis of a model for boron diffusion mediated by silicon self-interstitials, we reveal that the enhanced diffusion is attributed to self-interstitials supersaturated as a result of the emission from oxide precipitates and the absorption by punched-out dislocations. In addition, the temperature dependence of the fraction of the self-interstitial emission obtained analyzing the diffusion enhancement well explains the morphology changes of oxide precipitates reported in literature.

  8. Boron-containing thioureas for neutron capture therapy

    International Nuclear Information System (INIS)

    Ketz, H.

    1993-01-01

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of 10 B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the 10 B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.) [de

  9. Atmospheric contribution to boron enrichment in aboveground wheat tissues.

    Science.gov (United States)

    Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick

    2017-05-01

    Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Isotope hydrology

    International Nuclear Information System (INIS)

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  11. Isotope separation

    International Nuclear Information System (INIS)

    Coleman, G.H.; Bett, R.; Cuninghame, J.G.; Sims, H.

    1982-01-01

    In the separation of short-lived isotopes for medical usage, a solution containing sup(195m)Hg is contacted with vicinal dithiol cellulose which adsorbs and retains the sup(195m)Hg. sup(195m)Au is eluted from the vicinal dithiol cellulose by using a suitable elutant. The sup(195m)Au arises from the radioactive decay of the sup(195m)Hg. The preferred elutant is a solution containing CN - ion. (author)

  12. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121 ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  13. Removal of boron from aqueous solution using cryptocrystalline magnesite

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2016-05-01

    Full Text Available The present study aimed to evaluate the efficiency of using cryptocrystalline magnesite to remove boron ions from aqueous systems. Batch experimental protocols were used to evaluate the adsorption capacity of magnesite for boron. Parameters...

  14. Boron: out of the sky and onto the ground

    International Nuclear Information System (INIS)

    Kuehl, D.K.

    1975-01-01

    Now an accepted, engineered material for aerospace applications, boron is taking its place on the ground. Both current production applications, prototype (development) applications, and speculative applications abound. In the leisure product market, boron epoxy or boron aluminum has been used or tried in golf clubs (in combination with graphite epoxy or to reinforce aluminum or steel), in tennis racquets, in bicycles, racing shells, skis and skipoles, bows and arrows, and others. In the industrial area, boron has been used to reduce fatigue, increase stiffness, or for its abrasive properties. Textile machinery, honing tools, and cut off wheels or saws are among the applications. In the medical field, prosthetics and orthotic braces, wheel chairs, canes, and crutches are all good applications for boron. Applications for boron in transportation, construction, and heavy industry are also possible. The volume of boron used in these applications could have a major impact on prices, making boron composite parts cost competitive with conventional materials. (U.S.)

  15. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  16. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  17. Impact scenarios in boron carbide: A computational study

    OpenAIRE

    Bell, R. G.; Sugden, I. J.; Plant, D. F.

    2016-01-01

    The effect of radiative impacts on the structure of boron carbide has been studied by both classical and ab initio simulations. As a part of this study, a new forcefield was developed for use in studying boron carbide materials. Impact scenarios in boron carbide were simulated in order to investigate the exceptional resistance of this material, and other icosahedral boron solids, to high-energy impact events. It was observed that interstitial defects created by radiative impacts are likely to...

  18. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    Aldabergenov, M.K.; Balakaeva, T.G.

    1995-01-01

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P 2 O 5 ) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  19. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  20. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  1. Boron-Loaded Silicone Rubber Scintillators

    CERN Document Server

    Bell, Z W; Maya, L; Sloop, F V J

    2003-01-01

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon respons...

  2. Hot ductility behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; Cabrera, J.M.

    2007-01-01

    The current study analyses the influence of boron contents (between 29 and 105 ppm) on the hot ductility of boron microalloyed steels. For this purpose, hot tensile tests were carried out at different temperatures (700, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . In general, results revealed an improvement of the hot ductility of steels at increasing boron content. At 700, 900 and 1000 deg. C the ductility is higher than at 800 deg. C, where boron microalloyed steels exhibit a region of ductility loss (trough region). Likewise, dynamic recrystallization only occurred at 900 and 1000 deg. C. The fracture surfaces of the tested steels at temperatures giving the high temperature ductility regime show that the fracture mode is a result of ductile failure, whereas it is ductile-brittle failure in the trough region. Results are discussed in terms of dynamic recrystallization and boron segregation towards austenite grain boundaries, which may retard the formation of pro-eutectoid ferrite and increase grain boundary cohesion

  3. Update on human health effects of boron.

    Science.gov (United States)

    Nielsen, Forrest H

    2014-10-01

    In vitro, animal, and human experiments have shown that boron is a bioactive element in nutritional amounts that beneficially affects bone growth and central nervous system function, alleviates arthritic symptoms, facilitates hormone action and is associated with a reduced risk for some types of cancer. The diverse effects of boron suggest that it influences the formation and/or activity of substances that are involved in numerous biochemical processes. Several findings suggest that this influence is through the formation of boroesters in biomolecules containing cis-hydroxyl groups. These biomolecules include those that contain ribose (e.g., S-adenosylmethionine, diadenosine phosphates, and nicotinamide adenine dinucleotide). In addition, boron may form boroester complexes with phosphoinositides, glycoproteins, and glycolipids that affect cell membrane integrity and function. Both animal and human data indicate that an intake of less than 1.0mg/day inhibits the health benefits of boron. Dietary surveys indicate such an intake is not rare. Thus, increasing boron intake by consuming a diet rich in fruits, vegetables, nuts and pulses should be recognized as a reasonable dietary recommendation to enhance health and well-being. Published by Elsevier GmbH.

  4. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  5. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Yoshinori

    1992-09-01

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  6. Simulating the effect of boron doping in superconducting carbon

    Science.gov (United States)

    Sakai, Yuki; Chelikowsky, James R.; Cohen, Marvin L.

    2018-02-01

    We examine the effect of boron doping in superconducting forms of amorphous carbon. By judiciously optimizing boron substitutional sites in simulated amorphous carbon, we predict a superconducting transition temperature near 37 K at 14% boron concentration. Our findings have direct implications for understanding the recently discovered high-Tc superconductivity in Q-carbon.

  7. Effects of dietary boron on performance, egg production, egg quality ...

    African Journals Online (AJOL)

    engin

    Body weight was not affected by dietary boron supplementation at 16 and 40 weeks of age. ... and human nutrition. In bone metabolism, boron interacts with Ca, vitamin D and Mg (Chapin et al., 1998). In animals and plants, boron affects at least 26 enzymes involved in substrate metabolism, insulin release, oxidation and.

  8. Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals

    Science.gov (United States)

    2013-05-01

    occurs in ballistic impact, and accompanies amorphization in diamond anvil cell (DAC) experiments (Yan et al., 2009). Fracture in boron carbide ...Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals by J. D. Clayton ARL-RP-440 May 2013...Ground, MD 21005-5069 ARL-RP-440 May 2013 Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals J. D. Clayton

  9. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  10. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    Science.gov (United States)

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  11. Dietary boron: possible roles in human and animal physiology

    Science.gov (United States)

    Boron is a bioactive element of low molecular weight. Since discovery of the first boron biomolecule, boromycin, in 1967, several other similar biomolecules are now well-characterized. Most recently described was a bacterial cell-to-cell communication signal that requires boron, autoinducer-II. Boro...

  12. Analysis of oxygen concentration in boron target and study of CPAA

    International Nuclear Information System (INIS)

    Liu Guangzhi; Tang Guoyou; Chen Jinxiang; Wu Jun; Zhang Guohui; Zhang Yong

    1999-09-01

    Using Charged Particle Activation Analysis (CPAA), the concentration of oxygen in a thin boron target was determined, and the method of analyzing the thin unknown sample in comparison with the thick standard was studied. 3 He particles were accelerated to 8.0 MeV energy by 4.5 MV Van de Graaff accelerator to irradiate the isotope 16 O in samples and the artificial radioisotope 18 F was created by the reaction 16 O( 3 He, p) 18 F. The β + radioactivity of 18 F was measured by the high resolution gamma-ray spectroscopy. By comparing the radioactivity of the sample and the standard, the concentration of isotope 16 O was determined

  13. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Gambarini, G.; Valente, M.; Moss, R.L.; Daquino, G.G.; Nievaart, V.A.; Mariani, M.; Vanossi, E.; Carrara, M.

    2006-01-01

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  14. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    Science.gov (United States)

    Halverson, Danny C.; Landingham, Richard L.

    1988-01-01

    A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.

  15. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Petersen, P.I.; Winter, J.

    1991-09-01

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  16. The ternary system nickel-boron-silicon

    International Nuclear Information System (INIS)

    Lugscheider, E.; Reimann, H.; Knotek, O.

    1975-01-01

    The ternary system Nickel-Boron-Silicon was established at 850 0 C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiBsub(4-x) with x approximately 0.7 and SiB 6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni 6 Si 2 B, the phase Nisub(4,6)Si 2 B published by Uraz and Rundqvist can better be described by the formula Nisub(4.29)Si 2 Bsub(1.43). In relation to further investigations we measured melting temperatures in ternary Ni-10 B-Si alloys by differential thermoanalysis. (author)

  17. Structure of Boron Carbide: Where's the Carbon?

    Science.gov (United States)

    Marx, David; Seidler, Gerald; Fister, Timothy; Nagle, Kenneth; Segre, Carlo

    2008-03-01

    Although the structure of the boron carbide series, B12-xCx with 0.06 x x-ray scattering (LERIX) spectrometer on the PNC-CAT beamline at the Advanced Photon Source at Argonne National Lab has enabled differentiation of the boron and carbon absorption edge data for the various crystallographic sites. The structure (R-3m) consists of twelve-atom icosahedra and three-atom chains. Boron carbide may have a maximum of three carbon atoms, which may be located on the two end of chain sites and in one of two inequivalent sites on the icosahedra. At least one carbon atom must be present in the structure for it to be stable. In this presentation, structural results from non-resonant x-ray scattering for seven samples, ranging from B4C to B10.1C will be presented.

  18. On the Mechanism of Boron Ignition

    Science.gov (United States)

    Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.

    1997-01-01

    Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.

  19. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and

  20. Enhancement and retardation of thermal boron diffusion in silicon from atmospheric pressure chemical vapor deposited boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2014-03-01

    Thermal boron diffusion into silicon from boron silicate glass (BSG) prepared by atmospheric pressure CVD (AP-CVD) has been investigated in terms of the BSG boron concentration dependence on diffusion mechanism for N-type solar cell applications. With thermal diffusion at 950 °C in N2 for 20 min, the sheet resistance of the boron-diffused layer decreases with BSG boron concentration up to approximately 4 × 1021 cm-3 at which a boron-rich layer (BRL) is formed at the surface. However, the resistance increases with BSG boron concentration when the BSG boron concentration is higher than 4 × 1021 cm-3. It is also confirmed that the diffusion depth decreases with increasing BSG boron concentration within this BSG concentration region. To clarify this mechanism, the BSG boron concentration dependence on boron diffusivity has also been studied. From extracted diffusivities, the anomalous diffusion can be explained by silicon interstitials formed owing to kick-out by diffused boron atoms and by silicon interstitial generation-degradation due to BRL formation.

  1. Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering

    Science.gov (United States)

    Munhollon, Tyler Lee

    Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with

  2. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Survey of large-scale isotope applications: nuclear technology field

    Energy Technology Data Exchange (ETDEWEB)

    Dewitt, R.

    1977-01-21

    A preliminary literature survey of potential large-scale isotope applications was made according to topical fields; i.e., nuclear, biological, medical, environmental, agricultural, geological, and industrial. Other than the possible expansion of established large-scale isotope applications such as uranium, boron, lithium, and hydrogen, no new immediate isotope usage appears to be developing. Over the long term a change in emphasis for isotope applications was identified which appears to be more responsive to societal concerns for health, the environment, and the conservation of materials and energy. For gram-scale applications, a variety of isotopes may be required for use as nonradioactive ''activable'' tracers. A more detailed survey of the nuclear field identified a potential need for large amounts (tons) of special isotopic materials for advanced reactor components and structures. At this need for special materials and the development of efficient separation methods progresses, the utilization of isotopes from nuclear wastes for beneficial uses should also progress.

  4. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  5. Thermal conductivity behavior of boron carbides

    Science.gov (United States)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  6. Designing your boron-charging system

    International Nuclear Information System (INIS)

    Miller, J.

    1979-01-01

    High-pressure positive-displacement pumps used in the boron-charging setups of pressurized-water (PWR) nuclear plants because of their inherently high efficiencies over a wide range of pressures and speeds are described. Hydrogen-saturated water containing 4-12% boric acid is fed to the pump from a volume-control tank under a gas blanket. Complicated piping and the pulsation difficulties associated with reciprocating pumps make hydrogen-saturated boron-charging systems a challenge to the designer. The article describes the unusual hydraulics of the systems to help assure a trouble-free design

  7. Unveiling polytype transformation assisted growth mechanism in boron carbide nanowires

    Science.gov (United States)

    Song, Ningning; Li, Xiaodong

    2018-01-01

    We demonstrate direct evidence that the lattice distortion, induced by boron carbide (BxCy) stoichiometry, assists the growth of boron carbide nanowires. The transformation between different polytypic boron carbide phases lowers the energy barrier for boron diffusion, promoting boron migration in the nanowire growth. An atomistic mass transport model has been established to explain such volume-diffusion-induced nanowire growth which cannot be explained by the conventional surface diffusion model alone. These findings significantly advance our understanding of nanowire growth processes and mass transport mechanisms and provide new guidelines for the design of nanowire-structured devices.

  8. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  9. Removal properties of dissolved boron by glucomannan gel.

    Science.gov (United States)

    Oishi, Kyoko; Maehata, Yugo

    2013-04-01

    Boron ions have long been known to form complexes with the cis-diol group of a polysaccharide. Konjac glucomannan (KGM) which is one of polysaccharides was used to remove dissolved boron in this study. KGM forms a complex with boron, but does not remove boron from contaminated waters as well as other polysaccharides because of its high water solubility. Therefore, the removal efficiencies of dissolved boron were examined using both an insoluble KGM gel and KGM semi-gel. The former did not remove dissolved boron, but the latter did. The difference in the ability of boron removal was due to the presence of diol group inside. KGM loses free diol group during the process of gelation. On the other hand, the semi-gel gelated only surface layer in water has diol group inside. The boron removal capacity of the semi-gel was highest at pHs⩾11, when the boron species is present as B(OH)4(-). The capacity was slightly increased by the addition of Al, Ca and Mg under high pH conditions. This was due to co-precipitation of boron with Ca dissolved from the semi-gel. The boron adsorbed to the semi-gel easily was desorbed under low pH conditions and the hysteresis was not found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Determination of boron concentration in biopsy-sized tissue samples

    International Nuclear Information System (INIS)

    Hou, Yougjin; Fong, Katrina; Edwards, Benjamin; Autry-Conwell, Susan; Boggan, James

    2000-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is the most sensitive analytical method for boron determination. However, because boron is volatile and ubiquitous in nature, low-concentration boron sample measurement remains a challenge. In this study, an improved ICP-MS method was developed for quantitation of tissue samples with low (less than 10 ppb) and high (100 ppb) boron concentrations. The addition of an ammonia-mannitol solution converts volatile boric acid to the non-volatile ammonium borate in the spray chamber and with the formation of a boron-mannitol complex, the boron memory effect and background are greatly reduced. This results in measurements that are more accurate, repeatable, and efficient. This improved analysis method has facilitated rapid and reliable tissue biodistribution analyses of newly developed boronated compounds for potential use in neutron capture therapy. (author)

  11. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  12. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  13. A colorimetric determination of boron in biological sample for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Camilo, M.A.P.; Tomac Junior, U.

    1989-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of gliomas and glioblastomas grade III and IV than other therapies. During the treatment of levels of Na 2 10 B 12 H 11 S H must be known in several compartments of the organism and with this purpose the method of colorimetric determination of boron using curcumin was established. This method is simples, reproducible and has adequate sensitivity for this control. (author). 7 refs, 3 figs, 1 tab

  14. Effect of low temperature oxidation (LTO) in reducing boron skin in boron spin on dopant diffused emitter

    Energy Technology Data Exchange (ETDEWEB)

    Singha, Bandana; Solanki, Chetan Singh [Department of Energy Science and Technology, Indian Institute of Technology, Bombay Mumbai-400076, Maharashtra (India)

    2016-05-06

    Formation of boron skin is an unavoidable phenomenon in p-type emitter formation with boron dopant source. The boron skin thickness is generally less than 100 nm and difficult to remove by chemical and physical means. Low temperature oxidation (LTO) used in this work is useful in removing boron skin thickness up to 30 nm and improves the emitter performance. The effective minority carrier lifetime gets improved by more than 30% after using LTO and leakage current of the emitter gets lowered by 100 times thereby showing the importance of low temperature oxidation in boron spin on dopant diffused emitters.

  15. Sieving hydrogen isotopes through two-dimensional crystals.

    Science.gov (United States)

    Lozada-Hidalgo, M; Hu, S; Marshall, O; Mishchenko, A; Grigorenko, A N; Dryfe, R A W; Radha, B; Grigorieva, I V; Geim, A K

    2016-01-01

    One-atom-thick crystals are impermeable to atoms and molecules, but hydrogen ions (thermal protons) penetrate through them. We show that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes. Using electrical measurements and mass spectrometry, we found that deuterons permeate through these crystals much slower than protons, resulting in a separation factor of ≈10 at room temperature. The isotope effect is attributed to a difference of ≈60 milli-electron volts between zero-point energies of incident protons and deuterons, which translates into the equivalent difference in the activation barriers posed by two-dimensional crystals. In addition to providing insight into the proton transport mechanism, the demonstrated approach offers a competitive and scalable way for hydrogen isotope enrichment. Copyright © 2016, American Association for the Advancement of Science.

  16. Boron exposure through drinking water during pregnancy and birth size.

    Science.gov (United States)

    Igra, Annachiara Malin; Harari, Florencia; Lu, Ying; Casimiro, Esperanza; Vahter, Marie

    2016-10-01

    Boron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction. To evaluate potential effects of boron exposure through drinking water on pregnancy outcomes. In a mother-child cohort in northern Argentina (n=194), 1-3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth. Drinking water boron ranged 377-10,929μg/L. The serum boron concentrations during pregnancy ranged 0.73-605μg/L (median 133μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80μg/L were inversely associated with birth length (B-0.69cm, 95% CI -1.4; -0.024, p=0.043, per 100μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73-447μg/L). An increase in serum boron of 100μg/L in the third trimester corresponded to 0.9cm shorter and 120g lighter newborns (p=0.001 and 0.021, respectively). Considering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT

    Directory of Open Access Journals (Sweden)

    Joo-Young Jung

    2016-09-01

    Full Text Available We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT. Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0 simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR thickness, BUR location, and boron concentration with differing proton beam energy (60–90 MeV. We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60–70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  18. Testing boron carbide under triaxial compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Dannemann, Kathryn A.; Nicholls, Arthur E.

    2012-03-01

    This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens of boron carbide under confinement in a pressure vessel and in a thick steel sleeve. The failure curves obtained are presented, and the data compared to experimental data from the literature.

  19. Kinetic analysis of boron carbide sintering

    International Nuclear Information System (INIS)

    Borchert, W.; Kerler, A.R.

    1975-01-01

    The kinetics of the sintering of boron carbide were investigated by shrinkage measurements with a high-temperature dilatometer under argon atmosphere in dependence on temperature, grain size, and pressure. The activation energies and the reaction mechanisms of the different stages of sintering were determined. (orig.) [de

  20. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  1. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  2. Energetics of Boron Doping of Carbon Pores

    Science.gov (United States)

    Wexler, Carlos; St. John, Alexander; Connolly, Matthew

    2014-03-01

    Carbon-based materials show promise, given their light weight, large surface areas and low cost for storage of hydrogen and other gases, e.g., for energy applications. Alas, the interaction of H2 and carbon, 4-5kJ/mol, is insufficient for room-temperature operation. Boron doping of carbon materials could raise the binding energy of H2 to 12-15kJ/mol. The nature of the incorporation of boron into a carbon structure has not been studied so far. In this talk we will address the energetics of boron incorporation into a carbon matrix via adsorption and decomposition of decaborane by first principles calculations. These demonstrate: (a) A strong adsorption of decaborane to carbon (70-80kJ/mol) resulting in easy incorporation of decaborane, sufficient for up to 10-20% B:C at low decaborane vapour pressures. (b) Identification that boron acts as an electron acceptor when incorporated substitutionally into a graphene-like material, as expected due to its valence. (c) The electrostatic field near the molecule is responsible for ca. 2/3 of the enhancement of the H2-adsorbent interaction in aromatic compounds such as pyrene, coronene and ovalene. Supported by DOE DE-FG36-08GO18142, ACS-PRF 52696-ND5, and NSF 1069091.

  3. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  4. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  5. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  6. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  7. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  8. Perfomance analysis of boron carbide in LMFBR

    International Nuclear Information System (INIS)

    Pitner, A.L.; Birney, K.R.

    1975-01-01

    Reactivity control in the FFTF and LMFBR's will be maintained by control elements utilizing boron carbide pellets contained in stainless steel pins. Computer performance codes predict irradiation service conditions of absorber pellets and identify required experimental testing. Test results are incorporated in the codes to improve performance prediction capabilities

  9. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  10. Investigation into organic boron compounds complexing

    International Nuclear Information System (INIS)

    Yuzhakova, G.A.; Belonovich, M.I.; Rybakova, M.N.; Morozova, T.L.; Lapkin, I.I.

    1983-01-01

    Triarylboranes interact with 4-amino-1, 2, 4-triazole With the formation of complexes of the composition 1:1. Ligand forms coordination bond with boron at the expense of pyridine atom of triazole cycle nitrogen. IR spectra, yields and decomposition temperatures of the complexes are presented

  11. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre......-incubated with boron nanoparticles for 12 hours, were injected subcutaneously into C57BL16J mice. The tumour sites were exposed to different doses of neutron radiation one, four, or eight days after tumour cell inoculation. Results: When the tumour site was irradiated with thermal neutrons one day after injection......, tumour growth was delayed and the treated mice survived longer than untreated controls (median survival time 20 days (N=8) compared with 10 days (N=7) for untreated mice). Conclusion: Boron nanoparticles significantly delay the growth of an aggressive B16-OVA tumour in vivo by boron neutron capture...

  12. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    Science.gov (United States)

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Isotope separation

    International Nuclear Information System (INIS)

    Bett, R.; Sims, H.E.; Cuninghame, J.G.

    1983-01-01

    sup(195m)Au is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg, wherein sup(195m)Au is generated by radioactive decay of the sup(195m)Hg, by contacting the solution with an adsorbing agent to adsorb the sup(195m)Hg as Hg ++ ions followed by elution of sup(195m)Au arising from said radioactive decay. The adsorbing agent is 3-thio-2-hydroxypropyl-ether-Sepharose (R.T.M.); sup(195m)Au may be prepared in this way in a medical isotope generator and is suitable for use in gamma-scan studies of heart action. (author)

  14. Natural isotopes

    International Nuclear Information System (INIS)

    Vogel, J.C.

    1986-01-01

    14 C dates between 600 and 900 AD were obtained for early Iron Age sites in Natal, and from 1300 to 1450 AD for rock engraving sites in Bushmanland. Palaeoenvironmental data derived from the dating of samples related to sedimentary and geomorphic features in the central and northern Namib Desert enabled the production of a tentative graph for the changes in humidity in the region over the past 40000 years. These results suggest that relatively humid conditions came to an end in the Namib at ±25000 BP (before present). The increased precision of the SIRA mass spectrometer enabled the remeasurement of 13 C and 18 O in the Cango stalagmite. This data confirmed that the environmental temperatures in the Southern Cape remained constant to within ±1 o C during the past 5500 years. Techniques and applications for environmental isotopes in hydrology were developed to determine the origin and movement of ground water. Isotopic fractionation effects in light elements in nature were investigated. The 15 N/ 14 N ratio in bones of animals and humans increases in proportion to the aridity of the environment. This suggests that 15 N in bone from dated archaeological sites could be used to detect changes in past climatic conditions as naturally formed nitrate minerals are higly soluble and are only preserved in special, very dry environments. The sources and sinks of CO 2 on the South African subcontinent were also determined. The 13 C/ 12 C ratios of air CO 2 obtained suggest that the vegetation provides the major proportion of respired CO 2 . 9 refs., 1 fig

  15. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  16. Platiniferous gold-tourmaline aggregates in the gold-palladium belt of Minas Gerais, Brazil: implications for regional boron metasomatism

    Science.gov (United States)

    Cabral, Alexandre Raphael; Tupinambá, Miguel; Zeh, Armin; Lehmann, Bernd; Wiedenbeck, Michael; Brauns, Michael; Kwitko-Ribeiro, Rogerio

    2017-12-01

    The platiniferous gold-palladium belt of Minas Gerais, Brazil, forms an approximately 240-km-long, roughly north-south-trending domain that includes numerous auriferous lodes and platiniferous alluvium. The belt transects two Precambrian terranes, the Quadrilátero Ferrífero in the southern part, and the southern Serra do Espinhaço in the northern part. Both terranes were overprinted by regional fluid flow that led to tourmalinisation, with or without hematitisation, and precious-metal mineralisation. Here, we report the occurrence of coarse-grained gold-tourmaline aggregates and integrate recently obtained ages and tourmaline boron-isotope values published elsewhere. One type of aggregate is unique because it has patches that are close to stoichiometric PdPt, in which gold content varies from 2.5 to 33.5 at.%. The gold-tourmaline aggregates seem to be the ultimate expression of the boron metasomatism.

  17. Boron Proxy Evidence for Ocean Acidification during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Hoenisch, B.; Penman, D. E.; Zeebe, R. E.; Zachos, J. C.; Thomas, E.

    2013-12-01

    Quantifying the magnitude and rate of carbon cycle perturbations is key to identifying and interpreting past intervals of ocean acidification. However, paleocean acidification has commonly been inferred from biotic changes, which could have been caused by other environmental changes, including temperature, nutrient supply and oxygenation. Independent geochemical proxy evidence for paleo- seawater pH and carbonate saturation is therefore critical to confirm that ocean acidification did indeed take place, and how severe it was. We focus on the Paleocene/Eocene Thermal Maximum (56 Ma), an extreme climate perturbation that closely resembles worst-case scenarios for the future, in terms of massive carbon release (~4,500 Pg C) as expressed in a global negative carbon isotope excursion (CIE), and associated global warming (5-9°C). We used samples from the central equatorial Pacific to perform high resolution boron isotope and B/Ca analyses in shells of the surface dwelling, symbiont-bearing planktic foraminifer Morozovella velascoensis, to quantify the extent of ocean acidification during this event. We found a significant decrease in values of both proxies, paralleling the CIE, and followed by recovery to pre-event conditions. Onset and duration of the observed geochemical anomalies are similar to carbon cycle model simulations, but the magnitude of both the boron isotope and B/Ca excursions is larger than suggested by the model. Quantification of the pH change is difficult because of a number of uncertainties, including the largely unknown boron isotopic composition of seawater, the baseline-pH prior to the event, temperature and salinity, and the effects of partial dissolution, recrystallization, and potential loss of symbionts. Complementary analyses of M. velascoensis from two sites in the Pacific and Atlantic Oceans yield similar results, confirming that diagenesis likely did not bias the records. Using the best possible constraints, we estimate that the ocean

  18. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  19. The isotopic contamination in electromagnetic isotope separators

    International Nuclear Information System (INIS)

    Cassignol, Ch.

    1959-01-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  20. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  1. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  2. Boron removal from aqueous solution by direct contact membrane distillation.

    Science.gov (United States)

    Hou, Deyin; Wang, Jun; Sun, Xiangcheng; Luan, Zhaokun; Zhao, Changwei; Ren, Xiaojing

    2010-05-15

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 microg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  4. Hydrogen isotopes retention in divertor tiles of DIII-D tokamak

    International Nuclear Information System (INIS)

    Skorodumov, B.G.; Buzhinskij, O.I.; West, W.P.; Ulanov, V.G.

    1996-01-01

    The absolute concentration of hydrogen isotopes in graphite divertor tiles coated with boron carbide after the exposure in DIII-D during 16 operational weeks of the 1993 campaign was obtained using the 14 MeV neutron-induced recoil detection (NERD) method. It is shown that the absolute concentration of H in tile's surface layers correlates with thickness of the deposited layers. The graphite tile without boron carbide coating had a H concentration similar to that of the tile with the thickest deposited layer. Deuterium and tritium were not detected in any of the investigated tiles. The proposed method can be used for the determination of the thickness of coatings without sample destruction. Thus, the thickness of boron carbide coatings on the tiles obtained with this method varied from 80 to 115 μm, which corresponded well to electron microscope data. (orig.)

  5. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    Science.gov (United States)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  6. Analytical techniques for boron and boron 10 analysis in a solid experimental tumor EO.771

    International Nuclear Information System (INIS)

    Porschen, W.; Marx, J.; Feinendegen, L.E.

    1987-01-01

    If a tumor can be preferentially loaded with a suitable boron-10 compound and irradiated with thermal neutrons, malignant cells can be selectively destroyed via the α-particle + Li 7-nucleus from the reaction 10 B(n,α) 7 Li. Neutron capture therapy with two boron-10 amino acid analogs of low toxicity has been tested in recent years: (a) trimethylamine carboxyborane, (A3) and (b) amine-carboxyborane, (A7). Now the boron-10 glycineamide analog (A8), amineboryl carboxamide has been synthsized; it contains 13.81% boron (90% Boron 10+10% Boron 11) and shows a very low toxicity in mice. The effects of this compund were tested on the syngeneic solid adenocarcinoma EO 771 on the right hind leg of male C57 BL/6J mice under standard conditions, by measuring tumor volume growth delay and cell cycle changes using flow cytometry. Boron distribution between tumor and muscle was analyzed by emission spectroscopy with inductively coupled plasma (ICP) following injection of a suspension of peanut oil emulsion. In addition, boron-10 concentration in the tumor were analyzed with prompt γ-activation analysis and neutron capture radiography (Kodak-Pathe LR115) at the MRR reactor in Brookhaven after i.p. injection of 0.4 mg/g A8. Application of A8 alone (0.4 mg/g i.p.) or thermal neutron irradiation of the tumor EO. 771 produced a tumor growth delay of 1-2 days for tumor volume doubling. Application of the boron 10 glycine-amide analog A8 i.p. plus 5x10 12 n/cm 2 resulted in a growth delay of 3-6 days. In contrast intratumoral application of A8 plus 4x10 12 n/cm 2 neutrons gave a growth delay of 7-14 days; the fraction of (G2+M) cells rose from 35% (neutrons alone) to 52%, as evaluated from flow cytometry. (orig.)

  7. Diffusion Boronizing of H11 Hot Work Tool Steel

    Science.gov (United States)

    Jurči, Peter; Hudáková, Mária

    2011-10-01

    The H11 hot work tool steel was boronized at various processing parameters, austenitized, quenched, and tempered to a core hardness of 47-48 HRC. Microstructure, phase constitution, and microhardness of boronized layers were investigated. Effect of boronized region on the bulk properties was determined by the Charpy impact test. Structure of boronized regions is formed by the compound layers and diffusion inter-layer. The compound layers consisted of only (Fe,Cr)2B phase, but in the case of longer processing time, they contained also of the (Fe,Cr)B-phase. The inter-layer contained enhanced portion of carbides, formed due to carbon diffusion from the boride compounds toward the substrate. Microhardness of boronized layers exceeded considerably 2000 HV 0.1. However, boronizing led to a substantial lowering of the Charpy impact toughness of the material.

  8. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    Science.gov (United States)

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  9. Influence of dopants, particularly carbon, on β-rhombohedral boron

    Science.gov (United States)

    Werheit, H.; Flachbart, K.; Pristáš, G.; Lotnyk, D.; Filipov, V.; Kuhlmann, U.; Shitsevalova, N.; Lundström, T.

    2017-09-01

    Due to the high affinity of carbon to boron, the preparation of carbon-free boron is problematic. Even high-purity (6 N) β-rhombohedral boron contains 30-60 ppm of C. Hence, carbon affects the boron physical properties published so far more or less significantly. We studied well-defined carbon-doped boron samples based on pure starting material carefully annealed with up to about 1% C, thus assuring homogeneity. We present and discuss their electrical conductivity, optical absorption, luminescence and phonon spectra. Earlier attempts of other authors to determine the conductivity of C-doped boron are revised. Our results allow estimating the effects of oxygen and iron doping on the electrical conductivity using results taken from literature. Discontinuities at low T impair the electronic properties.

  10. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  11. Boron autoradiography method applied to the study of steels

    International Nuclear Information System (INIS)

    Gugelmeier, R.; Barcelo, G.N.; Boado, J.H.; Fernandez, C.

    1986-01-01

    The boron state, contained in the steel microestructure, is determined. The autoradiography by neutrons is used, permiting to obtain boron distribution images by means of additional information which is difficult to acquire by other methods. The application of the method is described, based on the neutronic irradiation of a polished steel sample, over which a celulose nitrate sheet or other appropriate material is fixed to constitute the detector. The particles generated by the neutron-boron interaction affect the detector sheet, which is subsequently revealed with a chemical treatment and can be observed at the optical microscope. In the case of materials used for the construction of nuclear reactors, special attention must be given to the presence of boron, since owing to the exceptionaly high capacity of neutron absorption, lowest quantities of boron acquire importance. The adaption of the method to metallurgical problems allows the obtainment of a correlation between the boron distribution images and the material's microstructure. (M.E.L.) [es

  12. Boron nitride - Composition, optical properties, and mechanical behavior

    Science.gov (United States)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  13. Boron nitride: Composition, optical properties and mechanical behavior

    Science.gov (United States)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  14. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  15. Strongly Phosphorescent Transition Metal π-Complexes of Boron-Boron Triple Bonds.

    Science.gov (United States)

    Braunschweig, Holger; Dellermann, Theresa; Dewhurst, Rian D; Hupp, Benjamin; Kramer, Thomas; Mattock, James D; Mies, Jan; Phukan, Ashwini K; Steffen, Andreas; Vargas, Alfredo

    2017-04-05

    Herein are reported the first π-complexes of compounds with boron-boron triple bonds with transition metals, in this case Cu I . Three different compounds were isolated that differ in the number of copper atoms bound to the BB unit. Metalation of the B-B triple bonds causes lengthening of the B-B and B-C NHC bonds, as well as large upfield shifts of the 11 B NMR signals, suggesting greater orbital interactions between the boron and transition metal atoms than those observed with recently published diboryne/alkali metal cation complexes. In contrast to previously reported fluorescent copper(I) π-complexes of boron-boron double bonds, the Cu n -π-diboryne compounds (n = 2, 3) show intense phosphorescence in the red to near-IR region from their triplet excited states, according to their microsecond lifetimes, with quantum yields of up to 58%. While the Cu diborene bond is dominated by electrostatic interactions, giving rise to S 1 and T 1 states of pure IL(π-π*) nature, DFT studies show that the Cu I π-complexes of diborynes reported herein exhibit enhanced metal d orbital contributions to HOMO and HOMO-1, which results in S 1 and T 1 having significant MLCT character, enabling strong spin-orbit coupling for highly efficient intersystem-crossing S 1 → T n and phosphorescence T 1 → S 0 .

  16. Apparatus for the production of boron nitride nanotubes

    Science.gov (United States)

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  17. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  18. Steam activation of boron doped diamond electrodes

    International Nuclear Information System (INIS)

    Ohashi, Tatsuya; Zhang Junfeng; Takasu, Yoshio; Sugimoto, Wataru

    2011-01-01

    Highlights: → Steam activation of boron doped diamond (BDD) electrodes. → Steam activated BDD has a porous columnar texture. → Steam activated BDD has a wide potential window. - Abstract: Boron doped diamond (BDD) electrodes were activated in steam at various temperatures, resulting in high quality BDD electrodes with a porous microstructure. Distinct columnar structures were observed by scanning electron microscopy. The electrochemically active surface area of the steam-activated BDD was up to 20 times larger than the pristine BDD electrode owing to the porous texture. In addition, a widening of the potential window was observed after steam activation, suggesting that the quality of BDD was enhanced due to oxidative removal of graphitic impurities during the activation process.

  19. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  20. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  1. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  2. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  3. Characterization of boron doped nanocrystalline diamonds

    International Nuclear Information System (INIS)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V

    2008-01-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range

  4. Development of boron epoxy rocket motor chambers.

    Science.gov (United States)

    Jensen, W. M.; Knoell, A. C.; Zweben, C.

    1972-01-01

    A 71 cm diameter 74 cm length boron/epoxy composite rocket motor chamber was designed based on the geometric configuration of the JPL Applications Technology Satellite titanium alloy apogee motor chamber. Because analyses showed large stress concentrations in the domes, the configuration was modified using the same basic constraints for openings and attachments. The rocket motor chamber was then fabricated by filament winding with boron/epoxy tape and hydrostatically tested to failure at 264 N/sq cm, 57.2 N/sq cm above the design value. Two more rocket motor chambers were fabricated with the same basic constraints, but shortened to 57.6 cm for a smaller propellant load. The first of these short chambers failed in proof because of filament winding fabrication difficulties. The second chamber was successfully fabricated and passed the hydrostatic proof test.

  5. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  6. Dependence of boron cluster dissolution on the annealing ambient

    International Nuclear Information System (INIS)

    Radic, Ljubo; Lilak, Aaron D.; Law, Mark E.

    2002-01-01

    Boron is introduced into silicon via implantation to form p-type layers. This process creates damage in the crystal that upon annealing causes enhanced diffusion and clustering of the boron layer. Reactivation of the boron is not a well-understood process. In this letter we experimentally investigate the effect of the annealing ambient on boron reactivation kinetics. An oxidizing ambient which injects silicon interstitials is compared to an inert ambient. Contrary to published theory, an excess of interstitials does not accelerate the reactivation process

  7. Molecular Dynamics Modeling of Piezoelectric Boron Nirtride Nanotubes

    Data.gov (United States)

    National Aeronautics and Space Administration — Conduct a systematic computational study on the physical and electro-mechanical properties of Boron Nitride Nanotubes (BNNTs) to evaluate their functional...

  8. Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene

    National Research Council Canada - National Science Library

    Carlson, Lonnie

    2007-01-01

    .... This temperature dependent surface photovoltage effect is not compelling evidence for the majority carrier type but does suggest an increase in the carrier concentration in semiconducting boron...

  9. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  10. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  11. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  12. Clinical aspects of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goodman, J.H.; Gahbauer, R.; Clendenon, N.

    1986-01-01

    Boron neutron capture therapy is potentially useful in treating malignant tumors of the central nervous system and is technically possible. Additional in vitro and in vivo testing is required to determine toxicities, normal tissue tolerances and tissue responses to treatment parameters. Adequate tumor uptake of the capture agent can be evaluated clinically prior to implementation of a finalized treatment protocol. Phase I and Phase II protocol development, clinical pharmacokinetic studies and neutron beam development

  13. Nanotwins soften boron-rich boron carbide (B13C2)

    Science.gov (United States)

    An, Qi; Goddard, William A.

    2017-03-01

    Extensive studies of metals and alloys have observed that nanotwins lead to strengthening, but the role of nanotwins in ceramics is not well established. We compare here the shear strength and the deformation mechanism of nanotwinned boron-rich boron carbide (B13C2) with the perfect crystal under both pure shear and biaxial shear deformations. We find that the intrinsic shear strength of crystalline B13C2 is higher than that of crystalline boron carbide (B4C). But nanotwins in B13C2 lower the strength, making it softer than crystalline B4C. This reduction in strength of nanotwinned B13C2 arises from the interaction of the twin boundary with the C-B-C chains that connect the B12 icosahedra.

  14. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    Science.gov (United States)

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  15. Boron determination in U3O8

    International Nuclear Information System (INIS)

    Ogura, Nadia S.; Sarkis, Jorge E.S.; Rosa, Daniele S.; Ulrich, Joao C.

    2009-01-01

    There exist specifications of the concentration as far the limit of impurities in the used uranium compounds is concerned. Among those impurities the boron element is detached. that in the uranium compounds acts as neutron absorber in nuclear reactions. Therefore, the determination of this element in uranium compounds, it is fundamental for the quality and performance of the nuclear fuels. However, the determination of this element is many times prejudiced by the presence of the uranium. For solving this problem, it is performed a chemical separation of the uranium (matrix) out of the interest. The most used methods to accomplish that separation are the solvent extraction and the ion exchange. In this work, the boron concentration will be done through the ion exchange technique, using polypropylene columns and Dowex AG 50W - X8 100-200 mesh cation resin in chloricide medium 0.25 M. The boron concentration will be determined through high resolution inductive coupling plasma mass spectrometry (HRICP-MS)

  16. A fundamental study of industrial boron carbide

    International Nuclear Information System (INIS)

    Zuppiroli, L.; Kormann, R.; Lesueur, D.

    1983-09-01

    Some of the physical properties of boron carbide, before and after irradiation are reviewed on the basis of several new experiments performed in our laboratory. The layered aspect of the grains of this ceramic, due to a microtwinning of the rhomboedral structure, is emphasized first. Then, the location of free carbon in samples of composition close to B 4 C is discussed in relation with new sputtering experiments. Coupled studies of the electric conductivities and the electron spin resonance lines have demonstrated the important role of free carbon in the electronic properties of boron carbide and revealed the existence of a homogeneous short range disorder, the origin of which is not very clear (amorphous concept). The elementary processes responsible of the swelling and microcracking of neutron irradiated boron carbide are rather well understood. The role of the point defects in these processes is reported. The displacement threshold energies and formation volumes are discussed in relation with electron irradiation experiments, and displacement rates are calculated in different irradiation situations including neutron irradiations [fr

  17. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Faria Gaspar, P. de.

    1994-01-01

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  18. Synovectomy by neutron capture in boron

    International Nuclear Information System (INIS)

    Vega C, H.R.

    2002-01-01

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, α) in the 10 B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a 239 Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the blood tissue

  19. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  20. SHELL ISOTOPE GEOCHEMISTRY

    African Journals Online (AJOL)

    THE LAND SNAIL LIMICOLARIA KAMBEUL CHUDEAUI GERMAIN. IN THE ETHIOPIAN RIFT VALLEY: HABITAT, ECOLOGY AND. SHELL ISOTOPE GEOCHEMISTRY. Melanie J. Lengl, Henry F. Lamb',. Mohammed Umer Mohammed''* and Elias Dadebo4. 'NERC Isotope Geosciences Laboratory, Keyworth, Nottingham, ...

  1. A new adsorbent for boron removal from aqueous solutions.

    Science.gov (United States)

    Kluczka, Joanna; Korolewicz, Teofil; Zołotajkin, Maria; Simka, Wojciech; Raczek, Malwina

    2013-01-01

    A new adsorbent based on natural clinoptilolite and amorphous zirconium dioxide (ZrO2) was prepared for the uptake of boron from fresh water. The sorption behaviour of this adsorbent for boron was investigated using a batch system and found to obey Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The ZrO2 loading level, pH, temperature, contact time, initial boron concentration and adsorbent dose, on the removal of boron were studied. It was found that the removal of boron increased while the adsorbent dose increased and the temperature decreased at an optimum pH (pH = 8) and a contact time of 30 min. At optimum conditions, the maximum boron percentage removal was 75%. According to the D-R model, the maximum capacity was estimated to be > 3 mg B/g of the adsorbent. The adsorption energy value (calculated as 9.13 kJ/mol) indicated that the adsorption of boron on clinoptilolite modified with ZrO2 was physical in nature. The parameters of the adsorption models and the pH investigations pointed to the possibility of a chemisorption process. The thermodynamic parameters (standard entropy deltaS degrees, enthalpy deltaH degrees , and free energy deltaG degrees changes) of boron adsorption were also calculated. The negative value of deltaS degrees indicated a decreased randomness at the solid-solution interface during the boron adsorption. Negative values of deltaH degrees showed the exothermic nature of the process. The negative values of deltaG degrees implied that the adsorption of boron on clinoptilolite modified with amorphous ZrO2 at 25 degrees C was spontaneous. It was considered that boron dissolved in water had been adsorbed both physically and chemically on clinoptilolite modified with 30% ZrO2.

  2. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    International Nuclear Information System (INIS)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon

    2014-01-01

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration

  3. Optical isotope shifts for unstable samarium isotopes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Griffith, J.A.R.; Evans, D.E.; Grant, I.S.; England, J.G.; Fawcett, M.J.

    1984-01-01

    Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144 Sm and 154 Sm, covering the well known transition region from spherical to deformed shapes. (orig.)

  4. Towards laser spectroscopy of the proton-halo candidate boron-8

    Energy Technology Data Exchange (ETDEWEB)

    Maaß, Bernhard, E-mail: bmaass@ikp.tu-darmstadt.de [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Müller, Peter [Argonne National Laboratory, Physics Division (United States); Nörtershäuser, Wilfried [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Clark, Jason [Argonne National Laboratory, Physics Division (United States); Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Levand, Anthony; Orford, Rodney [Argonne National Laboratory, Physics Division (United States); Sánchez, Rodolfo [GSI Helmholtzzentrum für Schwerionenforschung (Germany); Savard, Guy [Argonne National Laboratory, Physics Division (United States); Sommer, Felix [Technische Universität Darmstadt, Institut für Kernphysik (Germany)

    2017-11-15

    We propose to determine the nuclear charge radius of {sup 8}B by high-resolution laser spectroscopy. {sup 8}B (t {sub 1/2} = 770 ms) is perhaps the best candidate of a nucleus exhibiting an extended proton wave-function or “one-proton-halo” in a more descriptive picture. Laser spectroscopic measurements of the isotope shift will be used to probe the change in nuclear charge radius along the three boron isotopes {sup 8}B, {sup 10}B and {sup 11}B. The change in nuclear charge radius directly correlates with the extent of the proton wave function. In-flight production and preparation of sufficient yields of {sup 8}B ions at low energies is provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory (ANL) in Chicago, IL, USA. Subsequently, the ions will be guided through a charge exchange cell for neutralization and the fluorescence signal of the atoms which interact with the resonant laser light will be detected. The charge radius can then be extracted from the measured isotope shift by employing highly accurate atomic theory calculations of this five-electron system which are carried out presently.

  5. Towards laser spectroscopy of the proton-halo candidate boron-8

    Science.gov (United States)

    Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg; Levand, Anthony; Orford, Rodney; Sánchez, Rodolfo; Savard, Guy; Sommer, Felix

    2017-11-01

    We propose to determine the nuclear charge radius of 8B by high-resolution laser spectroscopy. 8B (t 1/2 = 770 ms) is perhaps the best candidate of a nucleus exhibiting an extended proton wave-function or "one-proton-halo" in a more descriptive picture. Laser spectroscopic measurements of the isotope shift will be used to probe the change in nuclear charge radius along the three boron isotopes 8B, 10B and 11B. The change in nuclear charge radius directly correlates with the extent of the proton wave function. In-flight production and preparation of sufficient yields of 8B ions at low energies is provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory (ANL) in Chicago, IL, USA. Subsequently, the ions will be guided through a charge exchange cell for neutralization and the fluorescence signal of the atoms which interact with the resonant laser light will be detected. The charge radius can then be extracted from the measured isotope shift by employing highly accurate atomic theory calculations of this five-electron system which are carried out presently.

  6. P{sup 2}IMS depth profile analysis of high temperature boron oxynitride dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Badi, N., E-mail: nbadi@uh.edu [Center for Advanced Materials (CAM), University of Houston, Houston, TX 77204-5004 (United States); Physics Department, University of Houston, Houston, TX 77204-5005 (United States); Vijayaraghavan, S. [Center for Advanced Materials (CAM), University of Houston, Houston, TX 77204-5004 (United States); Benqaoula, A. [Physics Department, University of Houston, Houston, TX 77204-5005 (United States); Tempez, A.; Tauziède, C.; Chapon, P. [Horiba Jobin Yvon, Longjumeau, F-91160 Paris (France)

    2014-02-15

    Existing silicon oxynitride (SiON) dielectric can only provide a very near term solution for the metal oxide semiconductor technology. The emerging high-k dielectric materials have a limited thermal stability and are prone to electrical behavior degradation which is associated with unwanted chemical reactions with silicon (Si). We investigated here applicability of amorphous boron oxynitride (BON) thin films as an emerging dielectric for high temperature capacitors. BON samples of thickness varying from 200 nm down to 10 nm were deposited in a high vacuum reactor using ion source assisted physical vapor deposition (PVD) technique. Plasma profiling ion mass spectrometry (P{sup 2}IMS) was utilized to specifically determine the interface quality and best capacitor performance as a function of growth temperatures of a graded sample with alternate layers of deposited titanium (Ti) and BON layers on Si. P{sup 2}IMS depth profiling of these layers were also performed to evaluate the stability of the dielectric layers and their efficacy against B dopant diffusion simulating processes occurring in activated polySi-based devices. For this purpose, BON layers were deposited on boron-isotope 10 (B{sup 10}) implanted Si substrates and subsequently annealed at high temperatures up to 1050 °C for about 10 s. Results comparing inter-diffusion of B{sup 10} intensities at the interfaces of BON–Si and SiON–Si samples suggest suitability of BON as barrier layers against boron diffusion at high temperature. Stable Ti/BON/Ti capacitor behavior was achieved at optimum growth temperature of 600 °C of the BON dielectric layer. Capacitance change with frequency (10 kHz to 2 MHz) and temperature up to 400 °C is about 1% and 10%, respectively.

  7. Statistical clumped isotope signatures

    NARCIS (Netherlands)

    Röckmann, T.; Popa, M.E.; Krol, M.C.; Hofmann, M.E.G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of

  8. Statistical clumped isotope signatures

    Science.gov (United States)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  9. Chromium isotope variations

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary

    Chromium (Cr) stable isotopes are a useful tracer of changes in redox conditions because changes in its oxidation state are accompanied by an isotopic fractionation. For this reason the Cr isotope system is being developed as a potential tool for paleo-redox reconstruction. Dissolved Cr in seawater...

  10. Thermal neutron detectors based on hexagonal boron nitride epilayers

    Science.gov (United States)

    Doan, T. C.; Marty, A.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-09-01

    Solid-state neutron detectors with high performances are urgently sought after for the detection of fissile materials. Until now, direct-conversion neutron detectors based on semiconductors with a measureable efficiency have not been realized. We have successfully synthesized hexagonal boron nitride (h-BN) epilayers with varying thicknesses (0.3 μm - 50 μm) by metal organic chemical vapor deposition (MOCVD) on sapphire substrates. In this paper, we present the detailed characterization of thermal neutron detectors fabricated from h-BN epilayers with a thickness up to 5 m to obtain insights into the h-BN epilayer thickness dependence of the device performance. The results revealed that the charge collection efficiency is almost independent of the h-BN epilayer thickness. By minimizing h-BN material removal by dry etching, it was shown that detectors incorporating an isotopically 10B-enriched h-BN epilayer of 2.7 μm in thickness exhibited an overall detection efficiency for thermal neutrons of 4% and a charge collection efficiency as high as 83%. By doing away altogether with dry etching, we have successfully realized a simple vertical 43 μm thick h-10BN detector which delivers a detection efficiency of 51.4% for thermal neutrons, which is the highest reported efficiency for any semiconductor-based neutron detector The h-BN detectors possess all the advantages of semiconductor devices including low cost, high efficiency and sensitivity, wafer-scale processing, compact size, light weight, and ability to integrate with other functional devices.

  11. CO2 TEA Laser-Enhanced Laser Ablation Molecular Isotopic Spectrometry (TELLAMIS)

    Science.gov (United States)

    Brown, Staci R.; Akpovo, Charlemagne A.; Ford, Alan; Herbert, Kenley; Johnson, Lewis

    2014-03-01

    Recently, it has been shown that the relative abundance of isotopes in enriched materials can be determined via laser-induced breakdown spectroscopy (LIBS) in a technique known as laser-ablation molecular isotopic spectroscopy (LAMIS). The original LAMIS work has focused on single-pulse (SP) LIBS for the excitation. However, dual-pulse (DP) LIBS reduces shot-to-shot variation and can lower detection limits of an element by about an order of magnitude or more. It also has the potential to improve the accuracy of the determination of the relative abundances of isotopes in LAMIS by minimizing the signal-to-noise ratio. In this work, a DP-LIBS technique for improving LAMIS relative-abundance information from a sample is presented. The new technique, called (TEA) Transverse-Excited breakdown in Atmosphere Laser-Enhanced Laser Ablation Molecular Isotopic Spectrometry (TELLAMIS), uses a carbon dioxide (CO2) laser to increase the breakdown emission from LIBS in the LAMIS method. This technique is demonstrated on a collection of relative abundance isotopes of boron- 10 and boron-11 in varying concentrations in boric acid. Least-squares fitting to theoretical models are used to deduce plasma parameters and understand reproducibility of results. DTRA.

  12. Removal of boron species by layered double hydroxides: a review.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Activation and deprotection of F-BODIPYs using boron trihalides.

    Science.gov (United States)

    Lundrigan, Travis; Cameron, T Stanley; Thompson, Alison

    2014-07-07

    The activation of F-BODIPYs with boron trihalides, followed by treatment with a nucleophile, effects facile substitution at boron; using water as the nucleophile promotes deprotective removal of the -BF2 moiety and thereby production of the corresponding parent dipyrrin salt in quantitative yield under extremely mild conditions.

  14. Method for removal of phosgene from boron trichloride

    Science.gov (United States)

    Freund, S.M.

    1983-09-20

    Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this method. 5 figs.

  15. Finite Element Analysis Of Boron Diffusion In Wood

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl

    2002-01-01

    The coupled heat and mass transfer equations for air, water and heat transfer are supplemented with a conservation equation for an additional species representing the concentration of boron in wood. Boundary conditions for wood-air. wood-soil and wood-boron interfaces arc discussed and finally...

  16. Boron Diffusion in Surface-Treated Framing Lumber

    Science.gov (United States)

    Patricia K. Lebow; Stan T. Lebow; Steven A. Halverson

    2013-01-01

    The extent of boron penetration in framing lumber treated by spray applications during construction is not well quantified. This study evaluated the effect of formulation and concentration on diffusion of boron in lumber specimens that were equilibrated in conditions that produced wood moisture contents of 18 to 21 percent. One set of specimens was pressure treated...

  17. Low-dimensional boron structures based on icosahedron B12

    Science.gov (United States)

    Kah, C. B.; Yu, M.; Tandy, P.; Jayanthi, C. S.; Wu, S. Y.

    2015-10-01

    One-dimensional icosahedral boron chains and two-dimensional icosahedral boron sheets (icosahedral α, δ6, and δ4 sheets) that contain icosahedra B12 as their building units have been predicted in a computer simulation study using a state-of-the-art semi-empirical Hamiltonian. These novel low-dimensional icosahedral structures exhibit interesting bonding and electronic properties. Specifically, the three-center, two-electron bonding between icosahedra B12 of the boron bulk (rhombohedral boron) transforms into a two-center bonding in these new allotropes of boron sheets. In contrast to the previously reported stable buckled α and triangular boron monolayer sheets, these new allotropes of boron sheets form a planar network. Calculations of electronic density of states (DOS) reveal a semiconducting nature for both the icosahedral chain and the icosahedral δ6 and δ4 sheets, as well as a nearly gapless (or metallic-like) feature in the DOS for the icosahedral α sheet. The results for the energy barrier per atom between the icosahedral δ6 and α sheets (0.17 eV), the icosahedral δ6 and δ4 sheets (0.38 eV), and the icosahedral α and δ4 sheets (0.27 eV), as indicated in the respective parentheses, suggest that these new allotropes of boron sheets are relatively stable.

  18. New applications of the interaction between diols and boronic acids

    NARCIS (Netherlands)

    Duval, F.L.

    2015-01-01

    Florine Duval - New applications of the interaction between diols and boronic acids – Summary Chapter 1 introduces the theory and known applications of the interaction between boronic acids and diols, and explains the context of this thesis. Diagnosis of

  19. Feasibility study of SMART core with soluble boron

    International Nuclear Information System (INIS)

    Kim, Kang Seog; Lee, Chung Chan; Zee, Sung Quun

    2000-11-01

    The excess reactivity of SMART core without soluble boron is effectively controlled by 49 CEDM. We suggest another method to control the core excess reactivity using both the checkerboard type of 25 CEDM and soluble boron and perform a feasibility calculation. The soluble boron operation is categorized into the on-line and the off-line mechanisms. The former is to successively control the boron concentration according to the excess reactivity during operation and the latter is to add and change some soluble boron during refueling and repairing. Since the on-line soluble boron control system of SMART is conceptually identical to that of the commercial pressurized water reactor, we did not perform the analysis. Since the soluble boron in the complete off-line system increases the moderator temperature coefficient, the reactivity defect between hot and cold moderator temperature is decreased. However, the decrease of the reactivity is not big to satisfy the core reactivity limits. When using 25 CEDM, the possible mechanism is to control the excess reactivity by both control rod and on-line boron control mechanism between cold and hot zero power and by only control rod at hot full power. We selected the loading pattern satisfying the requirement in the view of nuclear design

  20. Effect of boron on growth criteria of some wheat cultivars

    Directory of Open Access Journals (Sweden)

    Ashraf Metwally

    2012-01-01

    Full Text Available Introduction: Toxic soil concentrations of the essential micronutrient boron (B represent major limitations to crop production worldwide. Plants have a range of defense systems that might be involved in their affinity to resist and tolerate nutrients stress.Materials and methods: The experiments were carried out to study the differential responses in five wheat cultivars to boron toxicity. Results: The fresh and dry matter yield of the test wheat cultivars showed marked decrease as the concentration of boron was increased. Elevated concentration of boron had a notable inhibitory effect on the biosynthesis of pigments fractions in the test wheat cultivars as severely as dry matter gain. The adverse concentration effects of boron on some metabolic responses were clearly displayed by shoot and root systems, exhibited in the elevated rates of proline, hydrogen peroxide and malondialdehyde formation. Potassium leakage was severely affected by boron-stress in some cultivars at all tested concentrations, while in some others a moderate damage was manifested only at the higher boron concentrations.Conclusions: Sakha 93 out of all the different cultivars investigated was found to display the lowest sensitivity to boron-stress, while Gemmeza 9 was the most sensitive one.

  1. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    weight armour plates etc (Alizadeh et al 2004). It can also be used as a reinforcing material for ceramic matrix composites. It is an excellent neutron absorption material in nuclear industry due to its high neutron absorption co- efficient (Sinha et al 2002). Boron carbide can be prepared by reaction of elemental boron and ...

  2. Eleventh international conference on boron chemistry. Programme and abstracts

    International Nuclear Information System (INIS)

    2002-01-01

    Abstracts of reports at the Eleventh International Conference on Boron Chemistry are presented. Born chemistry as a connecting bridge between many fields maintains one of the leading positions in modern chemistry. Methods of synthesis of different boron compounds, properties of the compounds, their use in other regions of chemistry and medicine are widely presented in reports [ru

  3. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    Production of boron carbide powder by carbothermal synthesis of gel material. A K KHANRA. Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721 302, India. MS received 21 August 2006; revised 29 January 2007. Abstract. Boron carbide (B4C) powder has been produced ...

  4. Vacancy complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-10-01

    Full Text Available The effect of divacancies on the stability, structural and electronic properties of carbon and boron nitride nanotubes is studied using the ab initio density functional method. VBBN is more stable in the boron-rich and less stable in the nitrogen...

  5. Research on weed species for phytoremediation of boron polluted soil

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... This research was aimed to investigate the application of weed species for phytoremediation of soil polluted with boron. A greenhouse experiment was conducted to study the effect of increasing boron. (B) application on the growth and B uptake of common weed species, Sorghum halepense L. Pers.,.

  6. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

    Science.gov (United States)

    Coplen, Tyler B.; Shrestha, Yesha

    2016-01-01

    There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

  7. Boron desorption and fractionation in Subduction Zone Fore Arcs: Implications for the sources and transport of deep fluids

    Science.gov (United States)

    Saffer, Demian M.; Kopf, Achim J.

    2016-12-01

    At many subduction zones, pore water geochemical anomalies at seafloor seeps and in shallow boreholes indicate fluid flow and chemical transport from depths of several kilometers. Identifying the source regions for these fluids is essential toward quantifying flow pathways and volatile fluxes through fore arcs, and in understanding their connection to the loci of excess pore pressure at depth. Here we develop a model to track the coupled effects of boron desorption, smectite dehydration, and progressive consolidation within sediment at the top of the subducting slab, where such deep fluid signals likely originate. Our analysis demonstrates that the relative timing of heating and consolidation is a dominant control on pore water composition. For cold slabs, pore water freshening is maximized because dehydration releases bound water into low porosity sediment, whereas boron concentrations and isotopic signatures are modest because desorption is strongly sensitive to temperature and is only partially complete. For warmer slabs, freshening is smaller, because dehydration occurs earlier and into larger porosities, but the boron signatures are larger. The former scenario is typical of nonaccretionary margins where insulating sediment on the subducting plate is commonly thin. This result provides a quantitative explanation for the global observation that signatures of deeply sourced fluids are generally strongest at nonaccretionary margins. Application of our multitracer approach to the Costa Rica, N. Japan, N. Barbados, and Mediterranean Ridge subduction zones illustrates that desorption and dehydration are viable explanations for observed geochemical signals, and suggest updip fluid migration from these source regions over tens of km.

  8. Comparison of boron and neon damage effects in boron ion-implanted resistors

    International Nuclear Information System (INIS)

    MacIver, B.A.

    1975-01-01

    Boron and neon damage implants were used in fabricating integrated-circuit resistors in silicon. Resistor properties were studied as functions of damaging ion species and dose. Sheet resistances in the 10 000 Ω/square range were obtained with low temperature and voltage sensitivities and d.c. isolation. (author)

  9. Synthesis of boron nitride from boron containing poly(vinyl alcohol ...

    Indian Academy of Sciences (India)

    acid or borax, and a nitrogen-containing compound such as melamine, urea or dicyandiamide are heated in an atmo- sphere of non-oxidizing gas such as nitrogen or ammonia. ∗. Author for correspondence (mitun@cgcri.res.in). These h-BN powders have low crystallinity and crystal- lographically it belongs to boron nitride ...

  10. Synthesis of boron nitride from boron containing poly(vinyl alcohol)

    Indian Academy of Sciences (India)

    A ceramic precursor, prepared by condensation reaction from poly(vinyl alcohol) (PVA) and boric acid (H3BO3) in 1:1, 2:1 and 4:1 molar ratios, was synthesized as low temperature synthesis route for boron nitride ceramic. Samples were pyrolyzed at 850°C in nitrogen atmosphere followed by characterization using Fourier ...

  11. From boron analogues of amino acids to boronated DNA: potential new pharmaceuticals and neutron capture agents

    International Nuclear Information System (INIS)

    Spielvogel, B.F.; Sood, Anup; Duke Univ., Durham, NC; Shaw, B.R.; Hall, I.H.

    1991-01-01

    Isoelectronic and isostructural boron analogues of the α-amino acids ranging from simple glycine analogues such as H 3 NBH 2 COOH and Me 2 NHBH 2 COOH to alanine analogues have been synthesised. A diverse variety of analogues, including precursors and derivatives (such as peptides) have potent pharmacological activity, including anticancer, antiinflammatory, analgesic, and hypolipidemic activity in animal model studies and in vitro cell cultures. Boronated nucleosides and (oligo)nucleotides, synthetic oligonucleotide analogues of ''antisense'' agents interact with a complementary nucleic acid sequence blocking the biological effect of the target sequence. Nucleosides boronated on the pyrimidine and purine bases have been prepared. It has been established that an entirely new class of nucleic acid derivatives is feasible in which one of the non-bridging oxygens in the internucleotide phosphodiester linkage can be replaced by an isoelectronic analogue, the borane group, (BH 3 ). The boronated oligonucleotides can be viewed as hybrids of the normal oxygen oligonucleotides and the methylphosphonate oligonucleotides. (author)

  12. Dietary boron: progress in establishing essential roles in human physiology.

    Science.gov (United States)

    Hunt, Curtiss D

    2012-06-01

    This review summarizes the progress made in establishing essential roles for boron in human physiology and assesses that progress in view of criteria for essentiality of elements. The evidence to date suggests that humans and at least some higher animals may use boron to support normal biological functions. These include roles in calcium metabolism, bone growth and maintenance, insulin metabolism, and completion of the life cycle. The biochemical mechanisms responsible for these effects are poorly understood but the nature of boron biochemistry suggests further characterization of the cell signaling molecules capable of complexing with boron. Such characterization may provide insights into the biochemical function(s) of boron in humans. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Safety Assessment of Boron Nitride as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations. © The Author(s) 2015.

  14. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  15. Fracture toughness of borides formed on boronized ductile iron

    International Nuclear Information System (INIS)

    Sen, Ugur; Sen, Saduman; Koksal, Sakip; Yilmaz, Fevzi

    2005-01-01

    In this study, fracture toughness properties of boronized ductile iron were investigated. Boronizing was realized in a salt bath consisting of borax, boric acid and ferro-silicon. Boronizing heat treatment was carried out between 850 and 950 deg. C under the atmospheric pressure for 2-8 h. Borides e.g. FeB, Fe 2 B formed on ductile iron was verified by X-ray diffraction (XRD) analysis, SEM and optical microscope. Experimental results revealed that longer boronizing time resulted in thicker boride layers. Optical microscope cross-sectional observation of borided layers showed dentricular morphology. Both microhardness and fracture toughness of borided surfaces were measured via Vickers indenter. The harnesses of borides formed on the ductile iron were in the range of 1160-2140 HV 0.1 and fracture toughness were in the range of 2.19-4.47 MPa m 1/2 depending on boronizing time and temperature

  16. Metal-Free Boron-Containing Heterogeneous Catalysts.

    Science.gov (United States)

    Fang, Yuanxing; Wang, Xinchen

    2017-12-04

    Metal-free catalysts have distinct advantages over metal and metal oxide catalysts, such as lower cost as well as higher reliability and sustainability. Among the nonmetal compounds used in catalysis, boron-containing compounds with a few unique properties have been developed. In this Minireview, the recent advances in the field of boron-containing metal-free catalysts are presented, including binary and ternary boron-containing catalytic materials. Additionally, the three main applications in catalysis are considered, namely, electrocatalysis, thermal catalysis, and photocatalysis, with the role of boron discussed in depth for each specific catalytic application. Boron-containing compounds could have a substantial impact on the field of metal-free catalysts in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  18. Problems and possibilities of development of boron nitride ceramics

    International Nuclear Information System (INIS)

    Rusanova, L.N.; Romashin, A.G.; Kulikova, G.I.; Golubeva, O.P.

    1988-01-01

    The modern state of developments in the field of technology of ceramics produced from boron nitride is analyzed. Substantial difficulties in production of pure ceramics from hexagonal and wurtzite-like boron nitride are stated as related to the structure peculiarities and inhomogeneity of chemical bonds in elementary crystal cells of various modifications. Advantages and disadvantages of familiar technological procedures in production of boron nitride ceramics are compared. A new technology is suggested, which is based on the use of electroorganic compounds for hardening and protection of porous high-purity boron-nitride die from oxidation, and as high-efficient sintered elements for treatment of powders of various structures and further pyrolisis. The method is called thermal molecular lacing (TML). Properties of ceramics produced by the TML method are compared with characteristics of well-known brands of boron nitride ceramics

  19. Boron in nuclear medicine: New synthetic approaches to PET, SPECT, and BNCT agents

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1989-10-01

    The primary objective of the DOE Nuclear Medicine Program at The University of Tennessee is the creation of new methods for introducing short-lived isotopes into agents for use in PET and SPECT. A small, but significant portion of our effort is directed toward the design of boron-containing neutron therapy agents. The uniqueness of the UT program is its focus on the design of new chemistry (molecular architecture) and technology as opposed to the application of known reactions to the synthesis of specific radiopharmaceuticals, the new technology is then utilized in nuclear medicine research at the UT Biomedical Imaging Center and in collaboration with colleagues at other DOE facilities (Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Oak Ridge Associated Universities)

  20. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  1. Secondary hydrogen isotope effects

    International Nuclear Information System (INIS)

    Melander, L.; Sonders, U.

    1983-01-01

    Secondary isotope effects can be produced by isotopes of elements heavier than hydrogen, but secondary isotope effects of hydrogen are of greater interest, because they are larger and can be measured easier. Such aspects of the problem as solvolytic reactions (in the case of α-position and β-position in organic compounds), reactions of compounds with deuterium remoted from reaction centre, with deuterium in nonsaturated compounds, participation of neighbouring groups in the reaction, are considered. Besides, steric isotope effects and inductive isotope effects are considered

  2. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  3. Trends in Seawater Boron-based Proxies during the Late Paleocene and Early Eocene Associated with Long-term Warming

    Science.gov (United States)

    Harper, D. T.; Penman, D. E.; Hoenisch, B.; Zachos, J. C.

    2014-12-01

    Boron isotopes (δ11B) and boron/calcium ratios (B/Ca) in tests of planktic foraminifera are controlled by equilibrium reactions between boron and carbon species in seawater, and thus represent important proxies of past marine carbonate chemistry. Indeed, the recent application of these boron-based proxies to fossil shells of planktic foraminifera from cores spanning the Paleocene-Eocene Thermal Maximum (PETM; 56Ma, an abrupt global warming and ocean acidification event) reveal a decline of ~0.3 in the pH of the mixed-layer [1], an anomaly that is well within the range of estimates based on the observed shoaling of the carbonate compensation depth (CCD) [2, and references therein]. The PETM occurred superimposed on a long-term warming trend that initiated in the Late Paleocene and continued into the Early Eocene (LPEE; 53-59Ma). The magnitude of warming [3] and deepening of the CCD [4] indicate that the LPEE was driven by a rise in pCO2 nearly equivalent to that of the PETM [5]. Here we extend the PETM record of boron-based proxies at IODP Site 1209 across the LPEE, in conjunction with stable carbon and oxygen isotopes in planktic foraminifera, in order to better constrain the long-term changes in pH and carbonate chemistry that accompanied the suggested rise in atmospheric CO2. The 20kyr resolution B/Ca record shows a long-term decline of ~25% during the LPEE, as well as subtle 400kyr cycles associated with eccentricity that mirror those observed in δ13C, and thus might reflect on changes in pH. The lower resolution δ11B record exhibits little change during the Late Paleocene before decreasing step-wise to lower values following the PETM, indicating that either pH in the upper ocean did not change significantly prior to the PETM, despite warming and inferred pCO2 increase, or changes in δ11Bseawater compensated for pH driven changes. As verification of these observations at Site 1209, complementary B/Ca and δ11B records are being generated for Atlantic IODP

  4. Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets

    Science.gov (United States)

    Cabria, I.; López, M. J.; Alonso, J. A.

    2006-02-01

    Hydrogen adsorption on the recently discovered boron nanotubes, BNTs, and on boron sheets is investigated by density functional calculations. Both molecular physisorption and dissociative atomic chemisorption are considered. The geometric and electronic structures of BNTs and boron sheets have been elucidated. These two novel boron structures present buckled surfaces with alternating up and down rows of B atoms, with a large buckling height of about 0.8 Å. The buckled structures are about 0.20 eV/atom more stable than the corresponding flat ones. However, the helicity of some BNTs does not allow for the formation of alternating up and down B rows in the surface and, therefore, these nanotubes have flat surfaces. The buckled and flat nanostructures have different geometric and bonding characteristics, but both are metallic. Molecular hydrogen physisorption energies are about 30-60 meV/molecule on boron sheets and nanotubes, actually lower than in graphene and in carbon nanotubes and far from the energies of 300-400 meV/molecule necessary for efficient hydrogen storage at room temperature and moderate pressures for onboard automotive applications. Chemisorption binding energies on BNTs are about 2.4-2.9 eV/H atom, similar to the ones obtained in CNTs. Finally, the energy barrier from molecular physisorption to dissociative chemisorption of hydrogen is about 1.0 eV /molecule. Therefore, the calculations predict physisorption as the leading adsorption mechanism of hydrogen at moderate temperatures and pressures. The expected hydrogen adsorption capacity of these novel B materials is even smaller than that of CNTs.

  5. Continued biological investigations of boron-rich oligomeric phosphate diesters (OPDs). Tumor-selective boron agents for BNCT

    International Nuclear Information System (INIS)

    Lee, Mark W.; Shelly, Kenneth; Kane, Robert R.; Hawthorne, M. Frederick

    2006-01-01

    Clinical success of Boron Neutron Capture Therapy will rely on the selective intracellular delivery of high concentrations of boron-10 to tumor tissue. In order for a boron agent to facilitate clinical success, the simultaneous needs of obtaining a high tumor dose, high tumor selectivity, and low systemic toxicity must be realized. Boron-rich oligomeric phosphate diesters (OPDs) are a class of highly water-soluble compounds containing up to 40% boron by weight. Previous work in our groups demonstrated that once placed in the cytoplasm of tumor cells, OPDs quickly accumulate within the cell nucleus. The objective of the current study was to determine the biodistribution of seven different free OPDs in BALB/c mice bearing EMT6 tumors. Fructose solutions containing between 1.4 and 6.4 micrograms of boron per gram of tissue were interveinously injected in mice seven to ten days after tumor implantation. At intervals during the study, animals were euthanized and samples of tumor, blood, liver, kidney, brain and skin were collected and analyzed for boron content using ICP-AES. Tumor boron concentrations of between 5 and 29 ppm were achieved and maintained over the 72-hour time course of each experiment. Several OPDs demonstrated high tumor selectivity with one oligomer exhibiting a tumor to blood ratio of 35:1. The apparent toxicity of each oligomer was assessed through animal behavior during the experiment and necropsy of each animal upon sacrifice. (author)

  6. Meeting the challenge of homogenous boron targeting of heterogeneous tumors for effective boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Trivillin, Veronica A.; Itoiz, Maria E.; Rebagliati, J. Raul; Batistoni, Daniel; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.; Gonzalez, Beatriz N.

    2006-01-01

    BNCT is a tumor cell targeted radiation therapy. Inadequately boron targeted tumor populations jeopardize tumor control. Meeting the to date unresolved challenge of homogeneous targeting of heterogeneous tumors with effective boron carriers would contribute to therapeutic efficacy. The aim of the present study was to evaluate the degree of variation in boron content delivered by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of (BPA+GB-10) in different portions of tumor, precancerous tissue around tumor and normal pouch tissue in the hamster cheek pouch oral cancer model. Boron content was evaluated by ICP-AES. The degree of homogeneity in boron targeting was assessed in terms of the coefficient of variation ([S.D./Mean]x100) of boron values. Statistical analysis of the results was performed by one-way ANOVA and the least significant difference test. GB-10 and GB-10 plus BPA achieved respectively a statistically significant 1.8-fold and 3.3-fold increase in targeting homogeneity over BPA. The combined boron compound administration protocol contributes to homogeneous targeting of heterogeneous tumors and would increase therapeutic efficacy of BNCT by exposing all tumor populations to neutron capture reactions in boron. (author)

  7. The Combined Action of Duplicated Boron Transporters Is Required for Maize Growth in Boron-Deficient Conditions.

    Science.gov (United States)

    Chatterjee, Mithu; Liu, Qiujie; Menello, Caitlin; Galli, Mary; Gallavotti, Andrea

    2017-08-01

    The micronutrient boron is essential in maintaining the structure of plant cell walls and is critical for high yields in crop species. Boron can move into plants by diffusion or by active and facilitated transport mechanisms. We recently showed that mutations in the maize boron efflux transporter ROTTEN EAR (RTE) cause severe developmental defects and sterility. RTE is part of a small gene family containing five additional members ( RTE2 - RTE6 ) that show tissue-specific expression. The close paralogous gene RTE2 encodes a protein with 95% amino acid identity with RTE and is similarly expressed in shoot and root cells surrounding the vasculature. Despite sharing a similar function with RTE , mutations in the RTE2 gene do not cause growth defects in the shoot, even in boron-deficient conditions. However, rte2 mutants strongly enhance the rte phenotype in soils with low boron content, producing shorter plants that fail to form all reproductive structures. The joint action of RTE and RTE2 is also required in root development. These defects can be fully complemented by supplying boric acid, suggesting that diffusion or additional transport mechanisms overcome active boron transport deficiencies in the presence of an excess of boron. Overall, these results suggest that RTE2 and RTE function are essential for maize shoot and root growth in boron-deficient conditions. Copyright © 2017 by the Genetics Society of America.

  8. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.)

    Science.gov (United States)

    Soil pH is known to influence many important biochemical processes in plants and soils, however its role in salinity - boron interactions affecting plant growth and ion relations has not been examined. The purpose of this research was to evaluate the interactive effects of salinity, boron and soil ...

  9. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  10. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida

    International Nuclear Information System (INIS)

    Rámila, Consuelo d.P.; Contreras, Samuel A.; Di Domenico, Camila; Molina-Montenegro, Marco A.; Vega, Andrea; Handford, Michael; Bonilla, Carlos A.

    2016-01-01

    Highlights: • P. frigida presents an extremely high boron toxicity threshold. • Restricting uptake and internal tolerance mechanisms could confer boron tolerance. • P. frigida is a boron hyperaccumulator over a wide range of concentrations. • The species has potential for phytoremediation purposes. - Abstract: Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500 mg/L), and within its tissues (>5000 mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.

  11. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida

    Energy Technology Data Exchange (ETDEWEB)

    Rámila, Consuelo d.P. [Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Contreras, Samuel A.; Di Domenico, Camila [Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Molina-Montenegro, Marco A. [Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo (Chile); Instituto de Ciencias Biológicas, Universidad de Talca, Avda. Lircay s/n, Talca (Chile); Vega, Andrea [Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Handford, Michael [Departmento de Biología, Facultad de Ciencias, Universidad de Chile, Avenida Las Palmeras 3425, 7800024 Santiago (Chile); Bonilla, Carlos A. [Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Centro de Desarrollo Urbano Sustentable (CEDEUS), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); and others

    2016-11-05

    Highlights: • P. frigida presents an extremely high boron toxicity threshold. • Restricting uptake and internal tolerance mechanisms could confer boron tolerance. • P. frigida is a boron hyperaccumulator over a wide range of concentrations. • The species has potential for phytoremediation purposes. - Abstract: Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500 mg/L), and within its tissues (>5000 mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.

  12. Study of the boron distribution in pea and alfalfa plants using SSNTD

    International Nuclear Information System (INIS)

    Li Jianming; Inst. for Application of Atomic Energy)" data-affiliation=" (Chinese Academy of Agricultural Sciences, Beijing, BJ (China)> Inst. for Application of Atomic Energy)" >Deng Hongmin

    1988-01-01

    The distribution of boron in pea (Pisum sativum L.) and alfalfa (Medicago sativa L.) was determined by using SSNTD. The results show that boron concentrations in leaves are highest, furthermore boron concentrations of the base leaves are higher than those of the top leaves. Among flower tissues, calyx has the highest boron concentration

  13. Wettability of Pyrolytic Boron Nitride by Aluminum

    Science.gov (United States)

    Chiaramonte, Francis P.; Rosenthal, Bruce N.

    1991-01-01

    The wetting of pyrolytic boron nitride by molten 99.9999 percent pure aluminum was investigated by using the sessile drop method in a vacuum operating at approximately 660 micro-Pa at temperatures ranging from 700 to 1000 C. The equilibrium contact angle decreased with an increase in temperature. For temperatures at 900 C or less, the equilibrium contact angle was greater than 90 deg. At 1000 C a nonwetting-to-wetting transition occurred and the contact angle stabilized at 49 deg.

  14. Fabrication of boron nitride planar field emitters

    Science.gov (United States)

    Yokota, Yuuko; Tagawa, Shigeru; Sugino, Takashi

    1999-05-01

    Boron nitride (BN) films are grown on sapphire substrates by plasma-assisted chemical vapor deposition (PACVD). BN films are doped with sulfur. Insertion of the GaN layer between the BN film and sapphire leads to a tight adhesion of the BN film. The electrical resistivity of the sulfur-doped BN film is reduced to 10 3 Ω cm. The cathode electrode is formed on the BN film and the anode electrode on the sapphire substrate by evaporating Ti and Au. An emission current of 1 μA is obtained at an electric field strength of 16 V/μm.

  15. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  16. Stability analysis of zigzag boron nitride nanoribbons

    International Nuclear Information System (INIS)

    Rai, Hari Mohan; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R.; Jaiswal, Neeraj K.; Srivastava, Pankaj

    2015-01-01

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  17. Processing of boron carbide-aluminum composites

    International Nuclear Information System (INIS)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1989-01-01

    The processing problems associated with boron carbide and the limitations of its mechanical properties can be significantly reduced when a metal phase (e.g., aluminum) is added. Lower densification temperatures and higher fracture toughness will result. Based on fundamental capillarity thermodynamics, reaction thermodynamics, and densification kinetics, we have established reliable criteria for fabricating B 4 C-Al particulate composites. Because chemical reactions cannot be eliminated, it is necessary to process B 4 C-Al by rapidly heating to near 1200 degrees C (to ensure wetting) and subsequently heat-treating below 1200 degrees C (for microstructural development)

  18. Method for exfoliation of hexagonal boron nitride

    Science.gov (United States)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  19. Synthesis of a boron modified phenolic resin

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2010-08-01

    Full Text Available Phenolic resin has long been used as matrix for composites mainly because of its flame retardant behavior and high char yield after pyrolysis, which results in a self supporting structure. The addition of ceramic powders, such as SiC and B4C, as fillers to the phenolic resin, results in better thermo-oxidative stability, but as drawbacks, it has poor homogeneity, adhesion and processing difficulties during molding of the composites. The addition of single elements, such as boron, silicon and phosphorus in the main backbone of the thermo-set resin is a new strategy to obtain special high performance resins, which results in higher mechanical properties, avoiding the drawbacks of simply adding fillers, which results in enhanced thermo-oxidative stability compared to conventional phenol-formaldehyde resins. Therefore, the product can have several applications, including the use as ablative thermal protection for thermo-structural composites. This work describes the preparation of a boron-modified phenolic resin (BPR using salicyl alcohol and boric acid. The reaction was performed in refluxing toluene for a period of four hours, which produced a very high viscosity amber resin in 90% yield.The final structure of the compound, the boric acid double, substituted at the hydroxyl group of the aromatic ring, was determined with the help of the Infrared Spectroscopy, ¹H-NMR, TGA-DSC and boron elemental analysis. The absorption band of the group B-O at 1349 cm ˉ¹ can be visualized at the FT-IR spectrum. ¹H-NMR spectra showed peaks at 4.97-5.04 ppm and 3.60-3.90 ppm assigned to belong to CH2OH groups from the alcohol. The elemental analysis was also performed for boron determination.The product has also been tested in carbon and silicon fibers composite for the use in thermal structure. The results of the tests showed composites with superior mechanical properties when compared with the conventional phenolic resin.

  20. Hydrothermal synthesis of cubic boron nitride crystals

    International Nuclear Information System (INIS)

    Yu Meiyan; Cui Deliang; Kai Li; Yin Yansheng; Wang Qilong; Lei Chu

    2005-01-01

    Cubic boron nitride (cBN) crystals have been successfully synthesized by in situ hydrothermal method. In order to obtain cBN pure phase crystals, two comparative experiments were carried out. The experimental results indicated that compared to one-step in situ hydrothermal method, multi-step in situ hydrothermal method was beneficial to the synthesis of cBN. It is believed that the multi-step in situ hydrothermal method is the optimal route to synthesize pure cBN bulk crystals