WorldWideScience

Sample records for boron ions

  1. Channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    Channeled and random distributions of boron ions implanted over the energy range 50 keV--1.8 MeV into silicon have been measured using the differential capacitance technique. When implantations are performed along the or axis, profiles exhibit a strong orientation dependance. The best channeled profiles shows that more than 70% of the implanted dose is in the channeled peak

  2. Generation of a boron ion beam in a modified ion source for semiconductor applications

    International Nuclear Information System (INIS)

    Presented here are results of experimental studies on the production of intense beams of boron ions using a modified Bernas-Calutron ion source. Instead of using the conventional boron-trifluoride gas, a solid lithium-boron-tetrafluoride compound was heated to release boron-trifluoride. For optimum ion source parameters the measured 25-41 mA of total ion beam current was composed of 70% singly charged and about 1% doubly charged boron ions

  3. Channeling of boron ions into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lecrosnier, D.; Paugam, J.; Gallou, J.

    1977-04-01

    Channeled and random distributions of boron ions implanted over the energy range 50 keV--1.8 MeV into silicon have been measured using the differential capacitance technique. When implantations are performed along the <110> or <111> axis, profiles exhibit a strong orientation dependance. The best channeled profiles shows that more than 70% of the implanted dose is in the channeled peak.

  4. Ion implantation of boron in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.S.

    1985-05-01

    Ion implantation of /sup 11/B/sup +/ into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of /sup 11/B/sup +/ into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10/sup 11//cm/sup 2/ to 1 x 10/sup 14//cm/sup 2/) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses (<1 x 10/sup 12//cm/sup 2/). Three damage related hole traps are produced by ion implantation of /sup 11/B/sup +/. Two of these hole traps have also been observed in ..gamma..-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures (<300/sup 0/C). Boron, from room temperature implantation of BF/sub 2//sup +/ into Ge, is not substitutionally active prior to a post implant annealing step of 250/sup 0/C for 30 minutes. After annealing additional shallow acceptors are observed in BF/sub 2//sup +/ implanted samples which may be due to fluorine or flourine related complexes which are electrically active.

  5. Axial channeling of boron ions into silicon

    Science.gov (United States)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Setola, R.; Rimini, E.; Carbera, A.; Gasparotto, A.

    1992-04-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5 × 10 11 and 1 × 10 15 atoms/cm 2. The axial channeling concentration profiles of implanted B + were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, Sc, was extracted from the experimental maximum ranges for the [100] and [110] axis. The energ dependence of the electronic stopping power is given by Sc = KEp with p[100] = 0.469±0.010 and p[110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles.

  6. Axial channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x1011 and 1x1015 atoms/cm2. The axial channeling concentration profiles of implanted B+ were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, Sc, was extracted from the experimental maximum ranges for the [100] and [110] axis. The energy dependence of the electronic stopping power is given by Se = KEp with p[100] = 0.469±0.010 and p[110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.)

  7. Axial channeling of boron ions into silicon

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, A.; Galvagno, G. (Ist. di Tecnologie e Metodologie per la Microelettronica, CNR, Dipt. di Fisica, Catania (Italy)); Raineri, V.; Setola, R.; Rimini, E. (Dipt. di Fisica, Univ. di Catania (Italy)); Carnera, A.; Gasparotto, A. (Dipt. di Fisica, Univ. di Padova (Italy))

    1992-04-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x10{sup 11} and 1x10{sup 15} atoms/cm{sup 2}. The axial channeling concentration profiles of implanted B{sup +} were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, S{sub c}, was extracted from the experimental maximum ranges for the (100) and (110) axis. The energy dependence of the electronic stopping power is given by S{sub e} = KE{sup p} with p{sub (100)} = 0.469{+-}0.010 and p{sub (110)} = 0.554{+-}0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.).

  8. Determination of boron in silicates after ion exchange separation

    Science.gov (United States)

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  9. Investigations on the characterization of ion implanted hexagonal boron nitride

    Science.gov (United States)

    Aradi, E.; Naidoo, S. R.; Erasmus, R. M.; Julies, B.; Derry, T. E.

    2013-07-01

    The effect of ion implantation on hexagonal boron nitride (h-BN) is studied herein. We use boron as an ion of choice to introduce radiation damage into h-BN, at fluences ranging from 1 × 1014-1 × 1016 ions/cm2 and implantation energy ranges from 40 to 160 keV. The thermal dependence is also investigated by varying the annealing temperature from room temperature to 400 °C after implantation. Raman spectroscopy showed Raman active defects one of which is possibly related to the formation of cubic boron nitride nanocrystals (nc-BN) within the implanted range. The relationship of these defect induced Raman active peaks was investigated by varying the implantation parameters. The preliminary Transmission Electron Microscopy (TEM) results also are reported briefly.

  10. Mechanisms of the boron carbide and boron nitride preferred sputtering by low energy ions bombardment

    International Nuclear Information System (INIS)

    The ion irradiation of BN and B4C leads to enriching of the materials with the lighter component - borons as the experiment shows . With a view to explain this effect sputtering of BN and B4C under the irradiation by the He+ and Ar+ ions with the energy E0=0,5-5 keV has been calculated with computer modelling and the real structure of BN has been considered. In the case of B4C the calculations have been carried with Monte-Carlo code. It was shown that enriching of BN by boron may be accounted for building up the molecules N2 on the irradiated surface and their desorbing. The enriching of B4C with boron results from the difference of the binding energy of the B and C atoms. (author). 10 refs., 5 tabs

  11. Studies on separation of boron isotopes by ion exchange

    International Nuclear Information System (INIS)

    Studies have been carried out for the enrichment of boron isotopes by the ion exchange method using various anion exchange resins available. The elementary separation factors and heights equivalent of theoretical plate were measured at different concentrations and flow rates. A number of experiments were performed to study the displacement of borate band on ion exchange columns. The problem of CO2 evolution during displacement was also studied and a solution was found. (author). 9 refs

  12. Measuring the sensitivity of a boron-lined ion chamber

    International Nuclear Information System (INIS)

    Boron-lined ion chambers are used to monitor external neutron flux from fissionable materials assembled at the Los Alamos Critical Assembly Experiment Facility. The sensitivity of these chambers must be measured periodically in order to detect changes in filling gas and to evaluate other factors that may affect chamber performance. We delineate a procedure to measure ion chamber response using a particular neutron source (239PuBe) in a particular moderating geometry of polyethylene. We also discuss use of the amplifier, high-voltage power supply, recorders, and scram circuits that comprise the complete ion chamber monitoring system

  13. Determination of Boron Trifluoride in Boron Trifluoride Complex by Fluoride Ion Selective Electrode

    Institute of Scientific and Technical Information of China (English)

    郎五可; 张卫江; 唐银; 徐姣; 张雷

    2016-01-01

    A method was proposed to determine boron trifluoride in boron trifluoride complex using fluoride ion selective electrode(ISE). Hydroxide was chosen to mask aluminum for the determination of 0.01—0.1 mol/L of fluoride. The simulation indicated that the permissible aluminum masked at a certain pH value was limited and hardly related to F-concentration and boric acid. It is better to control pH value below 11.5 and the aluminum con-centration within 0.025 mol/L to minimize the interference of hydroxide to the fluoride ISE. The decomposition conditions of boron trifluoride by aluminum chloride were investigated. It is found that the F-detection ratio will approach 1.0 if the Al/F molar ratio is 0.3—0.7 and aluminum concentration is no more than 0.02 mol/L when heated at 80℃ for 10 min. In one word, hydroxide is quite fit to mask aluminum for samples which contain high content of fluoride and aluminum and the BF3 content can be successfully determined by this method.

  14. Determination of boron in uranium alloy samples by ion chromatography (IC)

    International Nuclear Information System (INIS)

    This paper describes a method for the determination of boron in uranium alloy samples containing less than 1ppm of boron by ion chromatography (IC) coupled with conductivity detector. Boron is separated from the alloy matrix by pyrohydrolysis and obtained as boric acid. The pyrohydrolysis conditions were optimised for the complete recovery of boron. The reproducibility and linearity were examined over a concentration range of 5ppb to 100ppb. The minimum detectable and measurable quantities for boron as obtained from this method are 0.005 mg/L and 0.008 mg/L respectively. (author)

  15. Preparation and characterization of sputtered boron nitride and boron carbide films and their modification by ion implantation

    International Nuclear Information System (INIS)

    Nanocrystalline cubic boron nitride and boron carbide films have been synthesized using sputtering. The relationship between the structures and properties as well as the influence of the deposition parameters, such as rf power, bias voltage, substrate temperature, composition and flow rate of the sputtering gas, on the structures and properties have been studied. The influence of the ion bombardment could be described by the specific ion momentum P*=[ion momentum.(ion flux/atom flux)]. The specific ion momentum was found to be proportional to the rf power and to the 1.5th power of the bias voltage. Two phases have been identified in our boron nitride films: hexagonal boron nitride (h-BN) and cubic boron nitride (c-BN); the films were either single phase or contained a mixture of these two phases. Nanocrystalline boron films have been grown with a deposition rate of 2 nm/s not only on Si but also on hard metal (WC-6%Co) substrates. Stoichiometric and crystalline films have already been grown at room temperature (about 0.1 Tm, Tm=melting point-3900 K). All the films contained about 8 at% carbon and 6 at% oxygen as impurities, which come mainly from the targt. The concentration of the impurities is independent of the deposition paramters. The growth of c-BN appears after the specific ion momentum larger than a threshold value, which is dependent on the substrate temperature, composition and on the flow rate of the sputtering gas. The volume content of c-BN runs through a maximum value with increasing specific ion momentum. (orig.)

  16. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

  17. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    International Nuclear Information System (INIS)

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%

  18. Graphitized boron-doped carbon foams: Performance as anodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: → Because of the catalytic effect of boron, graphite-like foams were prepared. → The presence of substitutional boron in carbon foams improves their anodic performance. → The graphitized boron-doped foams provide reversible capacities of 310 mA h g-1. - Abstract: The electrochemical performance as potential anodes in lithium-ion batteries of several boron-doped and non-doped graphitic foams with different degree of structural order was investigated by galvanostatic cycling. The boron-doped foams were prepared by the co-pyrolysis of a coal and two boron sources (boron oxide and a borane-pyridine complex), followed by heat treatment in the 2400-2800 deg. C temperature interval. The extent of the graphitization process of the carbon foams depends on boron concentration and source. Because of the catalytic effect of boron, lightweight graphite-like foams were prepared. Boron in the foams was found to be present as carbide (B4C), in substitutional positions in the carbon lattice (B-C), bonded to nitrogen (B-N) and forming clusters. Larger reversible lithium storage capacities with values up to ∼310 mA h g-1 were achieved by using the boron oxide-based carbon foams. Moreover, since the electrochemical anodic performance of these boron-doped foams with different degree of structural order is similar, the beneficial effect of the presence of the B-C boron phase was inferred. However, the bonding of boron with nitrogen in the pyridine borane-based has a negative effect on lithium intercalation.

  19. Study of the defects introduced by boron ion implantation in silicon

    International Nuclear Information System (INIS)

    Thermally stimulated current measurements have been performed on P-N junctions formed by implantation of boron ions in silicon, for the characterization of the created defects and particularly for the introduced traps

  20. Amorphisation of boron carbide under slow heavy ion irradiation

    Science.gov (United States)

    Gosset, D.; Miro, S.; Doriot, S.; Moncoffre, N.

    2016-08-01

    Boron carbide B4C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B4C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10-2 displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  1. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    International Nuclear Information System (INIS)

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  2. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  3. Experiments in connection with control of boron acid concentration by ion exchange in Hungary

    International Nuclear Information System (INIS)

    The results obtained with an experimental nuclear power plant output control with boron acid ion exchange technology are presented. The dependence of the ability of the ion exchanger to bind boron acid on the concentration of the boron acid solution, the temperature and the degree of the alkalinity of the resin has been studied. The results obtained for Hungarian resins are compared with those for some Duolite-type ones. Some results for a control system realized in big laboratory size are outlined. (K.A.)

  4. Boron enrichment by ion exchange with Dowex 1X8 anion resin

    International Nuclear Information System (INIS)

    An isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone lenght which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replces the boric acid troughout the columns to its total lenght. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author). 6 refs

  5. Characterization of green electroluminescent diodes obtained by boron ion implantation into ZnTe

    International Nuclear Information System (INIS)

    Reproducible electroluminescent ZnTe diodes were made by boron ion implantation. ZnTe crystals were obtained by the Bridgman method in solution at 920 deg C, or by the travelling solvent method at lower temperatures. Their physical properties are shortly described as well as the ion implantation technics used

  6. Copper diffusivity in boron-doped silicon wafer measured by dynamic secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: ► Effective copper diffusivity in boron-doped silicon wafer was measured. ► Dynamic secondary ion mass spectrometry was used. ► Interstitial copper ions were first drifted to surface region and allowed to back-diffuse. ► Boron concentration largely influenced the effect copper diffusivity. -- Abstract: The effective copper diffusivity (Deff) in boron-doped silicon wafer was measured using a Dynamic Secondary Ion Mass Spectrometry (D-SIMS) that was incorporated with an out-drift technique. By this technique, positive interstitial copper ions (CuI+) migrated to the surface region when a continuous charge of electrons showered on the oxidized silicon wafer, which was also bombarded by primary O2+ ions. The CuI+ ions at the surface region diffused back to the bulk when the electron showering stopped. The D-SIMS recorded the real-time distribution of CuI+ ions, generating depth profiles for in-diffusion of copper for silicon-wafer samples with different boron concentrations. These were curve-fitted using the standard diffusion expressions to obtain different Deff values, and compared with other measurement techniques

  7. Copper diffusivity in boron-doped silicon wafer measured by dynamic secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Songfoo [S.E.H (M) Sdn. Bhd., Lot 2, Lorong Enggang 35, Ulu Klang FTZ, 54200 Selangor (Malaysia); You, Ahheng [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka (Malaysia); Tou, Teckyong, E-mail: tytou@mmu.edu.my [Faculty of Engineering, Multimedia Univesity, Jalan Multimedia, 63100 Cyberjaya (Malaysia)

    2013-03-20

    Highlights: ► Effective copper diffusivity in boron-doped silicon wafer was measured. ► Dynamic secondary ion mass spectrometry was used. ► Interstitial copper ions were first drifted to surface region and allowed to back-diffuse. ► Boron concentration largely influenced the effect copper diffusivity. -- Abstract: The effective copper diffusivity (D{sub eff}) in boron-doped silicon wafer was measured using a Dynamic Secondary Ion Mass Spectrometry (D-SIMS) that was incorporated with an out-drift technique. By this technique, positive interstitial copper ions (Cu{sub I}{sup +}) migrated to the surface region when a continuous charge of electrons showered on the oxidized silicon wafer, which was also bombarded by primary O{sub 2}{sup +} ions. The Cu{sub I}{sup +} ions at the surface region diffused back to the bulk when the electron showering stopped. The D-SIMS recorded the real-time distribution of Cu{sub I}{sup +} ions, generating depth profiles for in-diffusion of copper for silicon-wafer samples with different boron concentrations. These were curve-fitted using the standard diffusion expressions to obtain different D{sub eff} values, and compared with other measurement techniques.

  8. Boron

    International Nuclear Information System (INIS)

    The trace element boron (B) is of interest in reclamation situations for several reasons. It plays an essential through largely unidentified role in the growth of higher plants. In argronomic situations B deficiencies are common, and deficiencies in reclamation situations have been suggested but not documented. Among micronutrients, B is unique because the range from deficient concentrations to toxic concentrations either in the soil solution or in plant tissue is narrower than for any other micronutrient. In reclamation situations excessive amounts of B can occur in the soil or in near-surface mining wastes and thus interfere with reclamation objectives, especially in arid and semiarid regions. Also, B is mobile and appears subject to both upward transport (and possible contamination of overlying material) and downward transport (and possible contamination of surface water and groundwater)

  9. Methods for separating boron from borated paraffin wax and its determination by ion chromatography

    International Nuclear Information System (INIS)

    Boron compounds are found to be useful in shielding against high-energy neutrons. In radiotherapy treatments, in order to protect occupational workers and patients from the undesirable neutron and gamma doses, paraffin wax containing B4C/boric acid is used. Low-level borate wastes generated from the nuclear power plants have been immobilized with paraffin wax using a concentrate waste drying system (CWDS). Borated paraffin waxes are prepared by mixing calculated amounts of either boric acid or boron carbide with the molten wax. This necessitates the determination of boron at different locations in order to check the homogeneous distribution of B over the borated wax. The determination of boron in nuclear materials is inevitable due to its high neutron absorption cross section. For the determination of boron in borated waxes, not many methods have been reported. A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H3BO3 and B4C. The B4C optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U3O8, which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O2 at 950℃ for 60 and 90 min for wax with H3BO3 and wax with B4C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H3BO3. In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N=3). The reproducibility was better than 5% (RSD)

  10. Atom probe field ion microscopy investigation of boron containing martensitic 9 Pct chromium steel

    Science.gov (United States)

    Hofer, P.; Miller, M. K.; Babu, S. S.; David, S. A.; Cerjak, H.

    2000-03-01

    The chemical compositions of the ferrite matrix and various other phases in an Fe-0.17 C-9 Cr-1.55 Mo-0.27 V-0.015 N-0.01B (mass pct) steel in as-received and crept conditions were measured with atom probe field ion microscopy (APFIM). The results showed the presence of some residual boron within the ferrite matrix. Analyses showed that boron was distributed within M23C6, M6C, MX, and Laves phases. Phosphor atoms were detected at the M23C6-ferrite interface in the crept condition. The results are compared to predictions from thermodynamic calculations.

  11. Some features of the transport processes of ion-implanted boron under conditions of transient enhanced diffusion suppression

    OpenAIRE

    Velichko, O. I.; Hundorina, A. A.; Axenov, V. V.

    2011-01-01

    It has been shown that during thermal treatments of silicon layers preamorphized by germanium implantation and then implanted with boron ions the transport of impurity atoms occurs right up to a temperature of 850^{\\circ}C due to migration of the nonequilibrium boron interstitials.

  12. Resonant transfer excitation followed by X-ray for boron-like ions

    OpenAIRE

    RAMADAN, Hassan

    2011-01-01

    Theoretical cross sections for resonant transfer excitation followed by x-ray emission (RTEX) are calculated for the collisions of some ions in the series of the Boron-like ions with H2 as a target. The calculations have been done for C II, N III, O IV, F V, Ar XIV and Fe XXII ions by folding their dielectronic recombination (DR) cross sections over the momentum distribution (Compton profile) of H2 target gas. Calculations have been performed from both ground and metastable initial st...

  13. Behavior of hydrogen ions, atoms, and molecules in alpha-boron studied using density functional calculations

    OpenAIRE

    Wagner, Philipp; Ewels, Christopher P.; Suarez-Martinez, Irene; Guiot, Vincent; Cox, Stephen F. J.; Lord, James S.; Briddon, Patrick R.

    2011-01-01

    We examine the behaviour of hydrogen ions, atoms and molecules in alpha-boron using density functional calculations. Hydrogen behaves as a negative-U centre, with positive H ions preferring to sit off-center on inter-layer bonds and negative H ions sitting preferably at in-plane sites between three B12 icosahedra. Hydrogen atoms inside B12 icosahedral cages are unstable, drifting off-center and leaving the cage with only a 0.09 eV barrier. While H0 is extremely mobile (diffusion barrier 0.25 ...

  14. Localization of dislocation-related luminescence centers in self-ion implanted silicon and effect of additional boron ion doping

    Energy Technology Data Exchange (ETDEWEB)

    Tetelbaum, D.I.; Mikhaylov, A.N.; Belov, A.I.; Korolev, D.S.; Shushunov, A.N.; Bobrov, A.I.; Pavlov, D.A. [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Shek, E.I.; Sobolev, N.A. [Ioffe Physical Technical Institute, St. Petersburg (Russian Federation)

    2015-01-01

    The depth distribution of light-emitting centers of the D1 dislocation-related photoluminescence line (∝ 1.5 μm) in silicon implanted with Si{sup +} ions and annealed at 1100 C in the oxidizing chlorine-containing atmosphere has been investigated by means of the layer-by-layer chemical etching. It is established with the application of cross-sectional transmission electron microscopy that the main contribution to the D1 line is made by the centers located at the depths of up to ∝ 150 nm, i.e. in the region of Si{sup +} ion ranges, whereas the dislocations produced by Si{sup +} implantation and annealing at 1100 C penetrate to the depth of ∝ 1000 nm. Additional boron ion doping with subsequent annealing at 800 C in N{sub 2} atmosphere improves the emission in comparison with the undoped but annealed reference sample, however the additional annealing at 800 C per se results in the photoluminescence weakening. The dependence of the D1 line intensity on boron ion dose is found to be nonmonotonous. The interpretation of the obtained results is given in relation to the key role of selfinterstitials and boron impurity in the formation of radiative and nonradiative centers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Evidence of amorphisation of B4C boron carbide under slow, heavy ion irradiation

    Science.gov (United States)

    Gosset, D.; Miro, S.; Doriot, S.; Victor, G.; Motte, V.

    2015-12-01

    Boron carbide is widely used either as armor-plate or neutron absorber. In both cases, a good structural stability is required. However, a few studies have shown amorphisation may occur in severe conditions. Hard impacts lead to the formation of amorphous bands. Some irradiations in electronic regime with H or He ions have also shown amorphisation of the material. Most authors however consider the structure is not drastically affected by irradiations in the ballistic regime. Here, we have irradiated at room temperature dense boron carbide pellets with Au 4 MeV ions, for which most of the damage is in the ballistic regime. This study is part of a program devoted to the behavior of boron carbide under irradiation. Raman observations have been performed after the irradiations together with transmission electron microscopy (TEM). Raman observations show a strong structural damage at moderate fluences (1014/cm2, about 0.1 dpa), in agreement with previous studies. On the other hand, TEM shows the structure remains crystalline up to 1015/cm2 then partially amorphises. The amorphisation is heterogeneous, with the formation of nanometric amorphous zones with increasing density. It then appears short range and long range disorder occurs at quite different damage levels. Further experiments are in progress aiming at studying the structural stability of boron carbide and isostructural materials (α-B, B6Si,…).

  16. Intracellular boron localization and uptake in cell cultures using imaging secondary ion mass spectrometry (ion microscopy) for neutron capture therapy for cancer.

    Science.gov (United States)

    Bennett, B D; Zha, X; Gay, I; Morrison, G H

    1992-01-01

    Quantitative ion microscopy of freeze-fractured, freeze-dried cultured cells is a technique for single cell and subcellular elemental analysis. This review describes the technique and its usefulness in determining the uptake and subcellular distribution of the boron from boron neutron capture therapy drugs. PMID:1511239

  17. Fundamental studies on the ion-exchange separation of boron isotopes

    International Nuclear Information System (INIS)

    The single-stage separation factors for boron isotopes between an ion-exchange resin and an external solution were determined, using an ion-exchange breakthrough operation. The lighter isotope boron-10 was considerably enriched in the anion-exchange resin phase. The separation factor was very much influenced by the boric acid concentration in the external solution, but not as much influenced by the kind of the anion exchange resin used and operation temperature. The separation factor increased with a decrease in the boric acid concentration of external solution from 1.008 (0.501 mol/l) to 1.016 (0.010 mol/l). The value of the separation factors obtained experimentally were compared with those estimated on the basis of the theory of the two-phase distribution of isotopes. (auth.)

  18. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  19. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  20. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  1. The Influence of Ion Dose and Energy on the Formation of ZnO/Boron P-N Junction

    International Nuclear Information System (INIS)

    Research on the influence of dose and energy of the boron ion to the formation of ZnO/boron P-N junction by using ion implantation technique has been carried out. The objective of this research is to study the formation of P-N junction between ZnO semiconductor and boron ion. To obtain a good P-N junction, variation of ion energy 70 keV and 100 keV as well as ion doses from 1.1 x 1017 ion/cm2 up to 4.8 x 1018 ion/cm2 had been done. While to investigate the formation of P-N junction, a measurement at backward and forward bias resistivity had been done using digital multi meter. Characteristics of voltage versus current was measured using curve tracer, while the sheet resistivity of the sample was measured using four point probe method. It was found the following best result : the smallest forward resistivity of 0.3 mega ohm, the highest backward bias resistivity was 20 mega ohm, the best forward bias voltage was 5 volt, and the 200 volt of the highest backward voltage as well as the best sheet resistivity of 110 ohm/cm2. These results were achieved by the implantation of ion boron at energy 100 keV and dose 3.6 x 1018 ion/cm2. (author)

  2. Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations.

    Science.gov (United States)

    Limited research has been conducted on the interactive effects of salinity and boron stresses on plants despite their common occurrence in natural systems. The purpose of this research was to determine and quantify the interactive effects of salinity, salt composition and boron on broccoli (Brassica...

  3. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles

    Science.gov (United States)

    Bai, Zhitong; Zhang, Lin; Liu, Ling

    2016-04-01

    Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically analyzing the effects of the incident angle and ion energy in determining the probabilities of six distinct types of physics that may occur in an ion bombardment event, including reflection, absorption, substitution, single vacancy, double vacancy, and transmission. By analyzing the atomic trajectories from 576 000 simulations, we identified three single vacancy creation mechanisms and four double vacancy creation mechanisms, and quantified their probability distributions in the angle-energy space. These findings further open the door for improved control of ion implantation towards a wide range of applications of graphene.Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically

  4. Structural modifications induced by ion irradiation and temperature in boron carbide B4C

    Science.gov (United States)

    Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.

    2015-12-01

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.

  5. Feasibility study of Boron Nitride coating on Lithium-ion battery casing

    International Nuclear Information System (INIS)

    Increasing in public awareness about global warming and exhaustion of energy resources has led to a flourishing electric vehicle industry that would help realize a zero-emission society. The thermal management of battery packs, which is an essential issue closely linked to a number of challenges for electric vehicles including cost, safety, reliability and lifetime, has been extensively studied. However, relatively little is known about the thermal effect of polymer insulation on the Lithium-ion battery casing. This study investigates the feasibility of replacing the polymer insulation with a Boron Nitride coating on the battery casing using the Taguchi experimental method. The effect of casing surface roughness, coating thickness and their interaction were examined using orthogonal array L9 (34). Nominal the best is chosen for the optimization process to achieve optimum adhesion strength. In addition, the thermal improvements of the coating as compared to conventional polymer insulator on the battery are further investigated. - Highlights: • We studied the Boron Nitride coating on battery casing using Taguchi method. • We investigated the effect of surface roughness and coating thickness on adhesion strength. • We compared the effect of coating and polymer insulator in heat transfer. • The Boron Nitride coating could enhance the thermal management of the battery

  6. R and D studies at IGCAR on boron enrichment using ion exchange chromatography process. Contributed Paper IT-10

    International Nuclear Information System (INIS)

    Boron Carbide enriched in 10B isotope is used as control rod material for fast reactors. The natural abundance of 10B isotope of boron is about 20%. In addition to the use in control rods for fast reactors, enriched boron compounds find many other applications in nuclear industry such as in neutron detection, shielding and burnable poison in moderators of thermal reactors and also in neutron capture therapy. To meet the growing demand for 10B enriched materials, it has become necessary to develop efficient processes to enrich this isotope of boron. Among the known processes, ion exchange chromatography is a viable option for the industrial enrichment of this isotope of boron. Pilot scale experiments were carried out to study the band velocity, influence of complexing agent, variation of HETP with time, influence of initial eed enrichment and particle size of the resin. A Model for ion exchange chromatography was developed and validated to predict HETP for different operating conditions. This model is effective in analysing plant operation and also design of new boron enrichment plants

  7. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    Directory of Open Access Journals (Sweden)

    Derbouz K.

    2013-09-01

    Full Text Available In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  8. Mass spectrometric determination of boron isotope in boron carbide

    International Nuclear Information System (INIS)

    Boron isotopes in boron carbide are measured by thermionic ionization mass spectrometry with no prior chemical separation. Boron is converted to sodium borate by fusion of the boron carbide with sodium hydroxide (or sodium carbonate) directly on the rhenium filament. The boron isotopic ratios are measured by using the Na2BO2+ ion

  9. Ion beam modification of the structure and properties of hexagonal boron nitride: An infrared and X-ray diffraction study

    Science.gov (United States)

    Aradi, E.; Naidoo, S. R.; Billing, D. G.; Wamwangi, D.; Motochi, I.; Derry, T. E.

    2014-07-01

    The vibrational mode for the cubic symmetry of boron nitride (BN) has been produced by boron ion implantation of hexagonal boron nitride (h-BN). The optimum fluence at 150 keV was found to be 5 × 1014 ions/cm2. The presence of the c-BN phase was inferred using glancing incidence XRD (GIXRD) and Fourier Transform Infrared Spectroscopy (FTIR). After implantation, Fourier Transform Infrared Spectroscopy indicated a peak at 1092 cm-1 which corresponds to the vibrational mode for nanocrystalline BN (nc-BN). The glancing angle XRD pattern after implantation exhibited c-BN diffraction peaks relative to the implantation depth of 0.4 μm.

  10. Ion beam modification of the structure and properties of hexagonal boron nitride: An infrared and X-ray diffraction study

    International Nuclear Information System (INIS)

    The vibrational mode for the cubic symmetry of boron nitride (BN) has been produced by boron ion implantation of hexagonal boron nitride (h-BN). The optimum fluence at 150 keV was found to be 5 × 1014 ions/cm2. The presence of the c-BN phase was inferred using glancing incidence XRD (GIXRD) and Fourier Transform Infrared Spectroscopy (FTIR). After implantation, Fourier Transform Infrared Spectroscopy indicated a peak at 1092 cm−1 which corresponds to the vibrational mode for nanocrystalline BN (nc-BN). The glancing angle XRD pattern after implantation exhibited c-BN diffraction peaks relative to the implantation depth of 0.4 μm

  11. New boron based salts for lithium-ion batteries using conjugated ligands.

    Science.gov (United States)

    Jankowski, P; Wieczorek, W; Johansson, P

    2016-06-28

    A new anion design concept, based on combining a boron atom as the central atom and conjugated systems as ligands, is presented as a route for finding alternative Li-salts for lithium-ion batteries. The properties of a wide range of novel anions designed in this way have been evaluated by DFT calculations focusing on three different fundamental success factors/measures: the strength of the cation-anion interaction, ultimately determining both the solubility and the ionic conductivity, the oxidation limit, determining their possible use vs. high voltage cathodes, and the reduction stability, revealing a possible role of the anion in the SEI-formation at the anode. For a few anions superior properties vs. today's existing or suggested anions are predicted, especially the very low cation-anion interaction strengths are promising features. The design route itself is shown to be versatile in determining the correlation between different choices of ligands and the resulting overall properties - where the most striking feature is the decreased lithium cation interaction energy upon using the (1Z,3Z)-buta-1,3-diene-1,2,3,4-tetracarbonitrile ligands. This also opens avenues for the further design of novel anions beyond those with a boron central atom. PMID:27253752

  12. Separation of boron isotopes by ion exchange chromatography: studies with Duolite-162, a type-II resin

    International Nuclear Information System (INIS)

    The selection of resin plays an important role in the process of separation of boron isotopes by ion exchange chromatography. The determination of (i) ion exchange capacity of Duolite-162 resin for hydroxyl - chloride exchange, (ii) hydroxyl - borate exchange, (iii) isotopic exchange separation factor by batch method and (iv) effect of concentration of boric acid on isotopic exchange separation factor to test the suitability of the above resin for this process are discussed in this report. (author)

  13. Ion exchange chromatographic separation and MS analysis of isotopes of boron

    International Nuclear Information System (INIS)

    Using electrochemical techniques of pH-metry and conductimetry, the choice of a suitable complexing reagent was made amongst ethylene glycol, propylene glycol, dextrose and mannitol for cost-effective separation of isotopes of boron by ion exchange chromatography. Quantitative relationships between pH and concentration; pKa and concentration of each of these complexing reagents were determined by least square polynomial curve fitting and an attempt was made to determine the formation constants of mannitol-borate complex. The results of experiments carried out for selection; regeneration of a resin; separation factor determinations using batch as well as column techniques and monitoring of band movements using these electrochemical techniques are discussed. (author)

  14. Determination of degradation constants of energetic 7*Li ion in liquid media using a thin boron film on silicon wafer

    International Nuclear Information System (INIS)

    A novel method to determine degradation constants has been developed for energetic 7*Li ions produced from the 10B (n, α) 7*Li reaction, moving in liquid media. The energetic 7*Li generated in a thin boron film on silicon wafer plunged into a liquid sample in which the wafer was immersed. The degradation constants were determined by analyzing the Doppler-broadened lineshapes of prompt γ-ray at 478 keV emitted from 7*Li. For comparison, degradation constants were also measured for solutions of boron compounds. Values obtained by the two methods gave fair agreement. (author)

  15. Formation of structure defects and behaviour of ion-implanted boron in silicon under annealing in various ambients

    International Nuclear Information System (INIS)

    Structure defects and the electrically active impurity distribution within (001)-oriented silicon layers after implantation of 100 keV 11B+ ions to a dose of 6.25 x 1014 ions/cm2 and subsequent annealing in inert (dry N2) and oxidizing (dry O2, steam) ambients are studied. It is found that annealing in oxidizing ambients as compared to that in N2 leads to the following results: i) a substantial increase in the density and size of the imperfect Frank dislocation loops; ii) a formation of dislocation configurations close to the misfit dislocations; iii) an enhancement of the boron diffusion; iv) a decrease in the electrically active boron near the silicon-oxide interface. The results obtained are interpreted in terms of the lattice oversaturation with silicon self-interstitials generated during the process of ion implantation and thermal oxidation as well as of the misfit stress influence. (author)

  16. Damage effects from medium-energy ion bombardment during the growth of cubic-boron nitride films

    International Nuclear Information System (INIS)

    Cubic-boron nitride (c-BN) films with low stress have been produced by simultaneous 35 keV N+ ion implantation during growth by ion assisted sputtering. The stress release is achieved at the lost of a decrease in the c-BN content. Despite this fact, films with a high c-BN content and relatively large thickness (∼0.4 μm) have been produced. The decrease on the c-BN content is discussed in terms of the damage induced by the medium-energy ion implantation

  17. The influence of boron ion implantation on hydrogen blister formation in n-type silicon

    International Nuclear Information System (INIS)

    We have studied the formation of surface blisters in left-angle 100 right-angle n-type silicon following co-implantation with boron and hydrogen. The silicon substrates had four different n-type dopant levels, ranging from 1014 to 1019 and h;cm-3. These substrates were implanted with 240 keV B+ ions to a dose of 1015 and h;cm-2, followed by a rapid thermal anneal at 900 and h;degree C for 30 - 60 s to force the boron atoms into substitutional lattice positions (activation). The samples were then implanted with 40 keV H+ to a dose of 5x1016 and h;cm-2. The implanted H+ distribution peaks at a depth of about 475 nm, whereas the distribution in the implanted B+ is broader and peaks at about 705 nm. To evaluate the role of the B+ implantation, control samples were prepared by implanting with H+ only. Following the H+ implantation, all the samples were vacuum annealed at 390 and h;degree C for 10 min. Blisters resulting from subsurface cracking at depths of about 400 nm, were observed in most of the B+ implanted samples, but not in the samples implanted with H+ only. This study indicates that the blistering results from the coalescence of implanted H into bubbles. The doping with B facilitates the short-range migration of the H interstitials and the formation of bubbles. A comparison of the observed crack depth with the depth of the damage peak resulting from the H+ implantation (evaluated by the computer code TRIM) suggests that the nucleation of H bubbles occurs at the regions of maximum radiation damage, and not at the regions of maximum H concentration. For given values of B+ and H+ doping, the blister density was found to decrease with increasing n-type doping, when the boron is activated. Blister formation was also observed in B+ implanted samples which had not been activated. In this case, the blister density was found to increase with increasing value of n-type doping. copyright 1999 American Institute of Physics

  18. An atom probe field ion microscope investigation of the role of boron in precipitates and at grain boundaries in NiAl

    International Nuclear Information System (INIS)

    This paper reports that the high resolution analytical technique of Atom Probe Field Ion Microscopy (APFIM) has been used to characterize grain boundaries and the matrix of a stoichiometric NiAl alloy doped with 0.04 (100 wppm) and 0.12 at. % (300 wppm) boron. Field ion images revealed boron segregation to the grain boundaries. Atom probe elemental analysis of the grain boundaries measured a boron coverage of up to 30% of a monolayer. Extensive atom probe analyses also revealed a fine dispersion of nanoscale boride precipitates in the matrix. The boron segregation to the grain boundaries was found to correlate with the observed suppression of intergranular fracture. However, the decrease in ductility of boron-doped NiAl is attributed in part to the precipitation hardening effect of the boride phases

  19. A basic study for the operation of boron thermal regeneration system : Adsorption equilibrium of boric acid on ion exchange resin

    International Nuclear Information System (INIS)

    The adsorption characteristics of boric acid on a strong-base anion exchange resin, an Amberlite IRN-78LC resin in OH- form, were investigated at temperature from 10 deg C to 60 deg C in the concentrations of boron up to 1500 ppm covering the BTRS operational conditions. A computer code was developed to calculate the composition of borate ions in solution as a function of boron concentration, temperature and pH. From the calculated composition of borate ions and experimental data of adsorption equilibrium, the model was proposed for the adsorption isotherm of boric acid on the resin. The results in this study can be applied for the optimum operation of BTRS. (Author)

  20. Determination of boron range distribution in ion-implanted silicon by the 10B(n, α) 7Li reaction

    International Nuclear Information System (INIS)

    A measuring technique based on the alpha particles being released by the 10B(n, α) nuclear reaction and using the time-of-flight technique at a periodically pulsing reactor was developed. Nondestructive determinations for the range distribution of boron impurities in ion-implanted silicon have been performed. In a silicon sample of 1016 atoms/cm2 concentration, irradiated with a neutron beam of 106ncm-2sec-1 flux, the range of the B+ ions could be determined up to an accuracy of +-200 A, which is higher than the accuracy of the electric measurements. Projected ranges obtained in the energy region 20-80 keV are compared with calculated results and other experiments. Examples are shown for some typical boron distributions before and after annealing the sample. The depth resolution permits the study of the mechanism of diffusion in silicon. (T.G.)

  1. Focused ion beam (FIB)-induced changes in the electrochemical behavior of boron-doped diamond (BDD) electrodes

    International Nuclear Information System (INIS)

    Micro- and nanostructured electrodes play a significant role in modern electroanalytical chemistry. Here, we report on the effect of focused ion beam-induced changes in the surface layers of nanocrystalline highly boron-doped diamond (BDD). The impact of gallium ions induces an amorphization of the surface layers of the BDD lattice, and hence, changes the electron transfer behavior of redox species, which electron transfer is sensitive to surface properties. These changes in heterogeneous electron transfer behavior are investigated in dependence of FIB patterning parameters. The effects of electrochemical post-milling treatments were studied for restoring the electrochemical properties. In addition, Raman spectroscopic and electron backscatter diffraction (EBSD) measurements revealed that amorphous carbon is largely removed during the post-milling electrochemical treatment at very negative potentials. Hence, FIB-based nanostructuring of BDD-electrodes with an optimized post fabrication treatment enables the fabrication of miniaturized devices based on boron-doped diamond for a wide variety of electroanalytical applications

  2. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  3. Sputtering behavior of boron and boron carbide

    International Nuclear Information System (INIS)

    Sputtering yields of boron were measured with D+ and B+ ions for normal and oblique angles of incidence. Self-sputtering data of boron carbide were simulated in the experiment by using Ne+ ions. The energies of the impinging ions were between 20 eV and 10 keV. The measured data are compared with computer simulated values calculated with the TRIMSP program. The boron data for normal ion impact are higher than the calculated values, whereas those for oblique ion incidence are smaller than the calculation predicts. This discrepancy is explained by the surface roughness and supported by SEM micrographs. The comparison of the boron carbide data with TRIMSP calculations shows much better agreement than the boron data. In this case the target surface was much smoother. (orig.)

  4. Tuning the Colors of the Dark Isomers of Photochromic Boron Compounds with Fluoride Ions: Four-State Color Switching.

    Science.gov (United States)

    Mellerup, Soren K; Rao, Ying-Li; Amarne, Hazem; Wang, Suning

    2016-09-01

    Combining a three-coordinated boron (BMes2) moiety with a four-coordinated photochromic organoboron unit leads to a series of new diboron compounds that undergo four-state reversible color switching in response to stimuli of light, heat, and fluoride ions. Thus, these hybrid diboron systems allow both convenient color tuning/switching of such photochromic systems, as well as visual fluoride sensing by color or fluorescent emission color change. PMID:27534683

  5. Low-energy outer-shell photodetachment of the negative ion of boron.

    Science.gov (United States)

    Wang, Kedong; Zatsarinny, Oleg; Bartschat, Klaus

    2016-05-01

    The photodetachment of the negative ion of boron, B-(2s2 2p2) 3 P , was investigated by employing the B-spline R-matrix method for photon energies ranging from threshold to 12 eV. A multi-configuration Hartree-Fock method with nonorthogonal, term-dependent orbitals was used to generate accurate initial bound-state and final continuum-state wavefunctions. The close-coupling expansion included all principal scattering channels for photodetachment from both the 2p and 2s orbitals. The resulting equation were solved using a parallelized version of the BSR computer code. The calculated photodetachment cross sections are in good agreement with the available experimental data. Several prominent resonance features are predicted, thereby providing new challenges in the study of this highly correlated process. To classify the resonance structure, both the partial cross sections and the main contributions of the individual scattering channels are discussed. Work supported by the China Scholarship Council and the United States National Science Foundation under Grants PHY-1403245 and PHY-1520970, and by the XSEDE allocation PHY-090031.

  6. Nucleation and growth of cubic boron nitride films produced by ion-assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, T.A.; Medlin, D.L.; Mirkarimi, P.B.; McCarty, K.F.; Klaus, E.J.; Boehme, D.R.; Johnsen, H.A.; Mills, M.J.; Ottesen, D.K. [Sandia National Labs., Livermore, CA (United States)

    1993-12-31

    We are studying the boron nitride system using a pulsed excimer laser to ablate from hexagonal BN (cBN) targets to form cubic BN (cBN) films. We are depositing BN films on heated (25--800C) Si (100) surfaces and are using a broad-beam ion source operated with Ar and N{sub 2} source gases to produce BN films with a high percentage of sp{sup 3}-bonded cBN. In order to optimize growth and nucleation of cBN films, parametric studies of the growth parameters have been performed. The best films to date show >85% sp{sup 3}-bonded BN as determined from Fourier-transform infrared (FTIR) reflection spectroscopy. High resolution transmission electron microscopy (TEM) and selected area electron diffraction confirm the presence of cBN in these samples. The films are polycrystalline and show grain sizes up to 30--40 mn. We find from both the FTIR and TEM analyses that the cBN content in these films evolves with growth time. Initially, the films are deposited as hBN and the cBN nucleates on this hBN underlayer. Importantly, the position of the cBN IR phonon also changes with growth time. Initially this mode appears near 1130 cm{sup {minus}1} and the position decreases with growth time to a constant value of 1085 cm{sup {minus}1}. Since in bulk cBN this IR mode appears at 1065 cm{sup {minus}1}, a large compressive stress induced by the ion bombardment is suggested. In addition, we report on the variation in cBN percentage with temperature.

  7. A comparative study of 30MeV boron4+ and 60MeV oxygen8+ ion irradiated Si NPN BJTs

    International Nuclear Information System (INIS)

    The impact of 30MeV boron4+ and 60MeV oxygen8+ ion irradiation on electrical characteristics of 2N3773 Si NPN Bipolar junction transistors (BJTs) is reported in the present study. The transistors were decapped and irradiated at room temperature. Gummel characteristics, DC current gain and Capacitance-voltage (C-V) characteristics were studied before and after irradiation at different fluences. DC current gain has decreased significantly in both boron and oxygen ion irradiation. Also the value of capacitance decreased 3-4 times with increase in fluence. Both 30MeV boron ion and 60MeV oxygen ion induced similar extent of degradation in electrical characteristics of the transistor

  8. A comparative study of 30MeV boron{sup 4+} and 60MeV oxygen{sup 8+} ion irradiated Si NPN BJTs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. Vinay, E-mail: Vkm288@gmail.com; Krishnaveni, S. [Department of studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India); Yashoda, T. [Deparment of Physics, AVK College for women, Hassan-573201 (India); Dinesh, C. M. [Department of Physics, Govt. First grade college for women, Chintamani-563125 (India); Krishnakumar, K. S. [Department of Physics, APS College of Engineering (India); Jayashree, B. [Department of Physics, Maharanis Science College for Women, Bangalore-560001 (India); Ramani [Department of Physics, Bangalore University, Jnanabharathi, Bangalore-560056 (India)

    2015-06-24

    The impact of 30MeV boron{sup 4+} and 60MeV oxygen{sup 8+} ion irradiation on electrical characteristics of 2N3773 Si NPN Bipolar junction transistors (BJTs) is reported in the present study. The transistors were decapped and irradiated at room temperature. Gummel characteristics, DC current gain and Capacitance-voltage (C-V) characteristics were studied before and after irradiation at different fluences. DC current gain has decreased significantly in both boron and oxygen ion irradiation. Also the value of capacitance decreased 3-4 times with increase in fluence. Both 30MeV boron ion and 60MeV oxygen ion induced similar extent of degradation in electrical characteristics of the transistor.

  9. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  10. A deep level transient spectroscopic study of boron-ion-implanted Si1-xGex/Si single quantum wells

    International Nuclear Information System (INIS)

    The defects induced by boron-ion implantation with a relatively low dosage of 1x1012 cm-2 in Si1-xGex/Si single quantum wells are studied by deep level transient spectroscopy (DLTS). For low Ge content x, a defect level H2 at an energy of 0.52 eV above the silicon valence band edge was found in the well region and its boundaries. For samples with higher Ge content, such that the strain is released, an electron trap E2 rather than H2 is formed by the ion implantation. Rapid thermal annealing at 600 deg. C removes most of the H2 defects induced by the ion implantation without changing the properties of the quantum well. (author)

  11. Peculiarities in formation of dislocation loops in silicon following ion implantation of boron and phosphorus and subsequent annealing

    International Nuclear Information System (INIS)

    Peculiar features of defective structure formation have been studied in samples of monocrystalline low-dislocation silicon cut out along plane 111 after implantation of boron and phosphorus (under conditions excluding channelling) and subsequent annealing. Ion energy is 40 Kev, radiation dose varies from 1.8x1013 to 1.8x10-16 cm-2. The annealing has been carried out for 60 min in an atmosphere of dry oxygen; the samples alloyed with phosphorus have been annealed at a temperature of 1.150 deg C and those alloyed with boron, at 1.050 deg C. The layers 0-1.5 μ deep from the irradiated surface have been studied with an electron microscope. In the boron-alloyed samples dislocation loops exceeding or equal to 1.000 A are mainly perfect, which confirms the theoretical suppositions. The phosphorus alloying results in anomalously large Frank loops. With the implantation of phosphorus into silicon the stacking fault energy remains unaffected. Thus, it is assumed that the Frank loops are stabilized by the impurity atmosphere. The difference between a total concentration of phosphorus and a concentration of electrically active phosphorus is stipulated by a formation of the impurity atmospheres on prismatic dislocation loops

  12. Separation of boron from borated paraffin wax by pyrohydrolysis and alkali extraction methods and its determination using ion chromatography.

    Science.gov (United States)

    Raut, Vaibhavi Vishwajeet; Jeyakumar, Subbiah; Shah, Dipti Jayesh; Thakur, Uday Kumar; Tomar, Bhupendra Singh; Ramakumar, Karanam Lakshminarayana

    2015-01-01

    A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H3BO3 and B4C. The optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U3O8, which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O2 at 950°C for 60 and 90 min for wax with H3BO3 and wax with B4C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H3BO3. In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained it between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N = 3). The reproducibility was better than 5% (RSD). PMID:25765277

  13. Separation of boron isotopes by ion exchange chromatography: studies on regeneration of strong base anion exchange resins

    International Nuclear Information System (INIS)

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography where the hydroxyl form of an anion exchange resin is equilibrated with boric acid solution containing mannitol as a complexing reagent. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH)2 was studied to avoid waste disposal problems. (author)

  14. Ion beam-assisted deposition of boron nitride from a condensed layer of diborane and ammonia at 78 K

    International Nuclear Information System (INIS)

    This paper examines the ion beam-assisted deposition (IBAD) of thin boron nitride films using cryogenically condensed precursors. Low energy (1100 eV) argon ad (2000 eV) deuterated ammonia beams with currents of 600--850 nA were used to mix and initiate reactions in frozen (90 K) layers of diborane (B2H6 and ammonia (NH3) or only B2H6, respectively. The resulting film is shown to be an amorphous BN coating approximately 30 Angstrom thick

  15. K-shell photoionization of boron-like carbon ions: analysis of 1s-2p resonances

    Institute of Scientific and Technical Information of China (English)

    Wang Guo-Li; Zhou Xiao-Xin

    2007-01-01

    Close-coupling calculations based on an R-matrix formalism are performed for the 1s-2p resonance photoionizations from the low-lying states of boron-like carbon ions. The resonance energies, widths and oscillator strengths of 1s-2p core excitations are determined by analysing the calculated photoionization cross sections. Our calculations are in reasonable agreement with the experimental and theoretical results presented by other authors. The present numerical values may help to analyse the astrophysical and laboratory plasmas.

  16. Determination of boron concentration in oilfield water with a microfluidic ion exchange resin instrument.

    Science.gov (United States)

    Floquet, Cedric F A; Sieben, Vincent J; MacKay, Bruce A; Mostowfi, Farshid

    2016-07-01

    We developed and validated a microfluidic instrument for interference-free determination of boron in produced water. The instrument uses a boron-specific chelating resin to separate the analyte from its complex matrix. Ten produced water samples were analyzed with the instrument and the results were successfully validated against ICP-MS measurements. Removing interference effects enables precise boron measurement for wastewater even with high total dissolved solid (TDS) levels. 1,4-Piperazinediethanesulfonic acid conditions the resin and maintains the optimum pH for boron adsorption from the sample. Boron is then eluted from the resin using a 10% sulfuric acid solution and its concentration measured with the colorimetric carminic acid assay in 95% sulfuric acid. The use of a microfluidic mixer greatly enhances the sensitivity and kinetics of the carminic acid assay, by factors of 2 and 7.5, respectively, when compared against the same assay performed manually. A maximum sensitivity of 2.5mg(-1)L, a precision of 4.2% over the 0-40.0mgL(-1) measuring range, a 0.3mgL(-1) limit of detection, and a sampling rate of up to four samples per hour were achieved. Automation and microfluidics reduce the operator workload and fluid manipulation errors, translating into safer and higher-quality measurements in the field. PMID:27154679

  17. Use of type-II strong base anion exchange resins for ion exchange chromatographic separation of isotopes of boron

    International Nuclear Information System (INIS)

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost - effective separation of isotopes of boron by ion exchange chromatography. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH)2 was studied to avoid waste disposal problems. The determination of (i) ion exchange capacity of Duolite-162 resin for hydroxyl - chloride and hydroxyl - borate exchanges, (ii) isotopic exchange separation factor by batch method and (iii) effect of concentration of boric acid (in presence and absence of mannitol) on isotopic exchange separation factor to test the suitability of the type-II resin for this process are discussed. (author)

  18. About effect of magnesium chloride and some ions in brines on boron coprecipitation by iron hydroxide

    International Nuclear Information System (INIS)

    Studies were made of conditions of precipitation of boron with iron hydroxide from the brines of the mixing zone of the Kara-Bogaz Gol, the mother liquor after the precipitation of potassium salts and artificial manganese chloride solutions at a temperature of 7-45 dee C. The maximum extraction of boron from the brines investigated is observed both in a weakly acid and a weakly alkaline medium. The extraction intensity increases drastically in the range of the maximum with an increase in brine concentration. The anions Cl-, SO42-, and HCO3- present in the brines produce the maximum effect on boron precipitation at a definite pH. This effect depends on the nature of the anions and their ratio in the brine. With a rise in temperature the degree of boron precipitations from the magnesium chloride brine and the precipitate capacity increase as a result of the release of active magnesium hydroxide. When the ratio of Fe2O3 to 100 ml initial solution changes towards increase in precipitating agent at a constant temperature, the precipitate capacity for B2O3 decreases

  19. The Combined Effects of Salinity and Excess Boron on Mineral Ion Relations in Broccoli

    Science.gov (United States)

    Two plant stress factors, salinity and high levels of boron, often co-occur in natural and agricultural environments. Many investigations have been conducted to document the influence of the combined stresses on crop growth and yield. Only limited information, however, is available concerning the c...

  20. Highly Luminescent Microporous Organic Polymer with Lewis Acidic Boron Sites on the Pore Surface: Ratiometric Sensing and Capture of F(-) Ions.

    Science.gov (United States)

    Suresh, Venkata M; Bandyopadhyay, Arkamita; Roy, Syamantak; Pati, Swapan K; Maji, Tapas Kumar

    2015-07-20

    Reversible and selective capture/detection of F(-) ions in water is of the utmost importance, as excess intake leads to adverse effects on human health. Highly robust Lewis acidic luminescent porous organic materials have potential for efficient sequestration and detection of F(-) ions. Herein, the rational design and synthesis of a boron-based, Lewis acidic microporous organic polymer (BMOP) derived from tris(4-bromo-2,3,5,6-tetramethylphenyl)boron nodes and diethynylbiphenyl linkers with a pore size of 1.08 nm for selective turn-on sensing and capture of F(-) ion are reported. The presence of a vacant pπ orbital on the boron center of BMOP results in intramolecular charge transfer (ICT) from the linker to boron. BMOP shows selective turn-on blue emission for F(-) ions in aqueous mixtures with a detection limit of 2.6 μM. Strong B-F interactions facilitate rapid sequestration of F(-) by BMOP. The ICT emission of BMOP can be reversibly regenerated by addition of an excess of water, and the polymer can be reused several times. PMID:26074403

  1. Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries

    Science.gov (United States)

    Woo, Jihoon; Baek, Seong-Ho; Park, Jung-Soo; Jeong, Young-Min; Kim, Jae Hyun

    2015-12-01

    We introduce a one-step process that consists of thermal disproportionation and impurity doping to enhance the reversible capacity and electrical conductivity of silicon monoxide (SiO)-based negative electrode materials in Li-ion batteries. Transmission electron microscope (TEM) results reveal that thermally treated SiO at 900 °C (H-SiO) consists of uniformly dispersed nano-crystalline Si (nc-Si) in an amorphous silicon oxide (SiOx) matrix. Compared to that of prinstine SiO, the electrochemical performance of H-SiO shows improved specific capacity, due mainly to the increased reversible capacity by nc-Si and to the reduced volume expansion by thermally disproportionated SiOx matrix. Further electrochemical improvements can be obtained by boron-doping on SiO (HB-SiO) using solution dopant during thermal disproportionation. HB-SiO electrode without carbon coating exhibits significantly enhanced specific capacity superior to that of undoped H-SiO electrode, having 947 mAh g-1 at 0.5C rate and excellent capacity retention of 93.3% over 100 cycles. Electrochemical impedance spectroscopy (EIS) measurement reveals that the internal resistance of the HB-SiO electrode is significantly reduced by boron doping.

  2. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    OpenAIRE

    Masunaga, S; Sakurai, Y.; Tanaka, H.; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M.; Kondo, N; Narabayashi, M.; Maruhashi, A; Ono, K.

    2013-01-01

    [Objectives] To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). [Methods] EL4 tumour-bearing C57BL/J mice received 5-bromo-2′-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of...

  3. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  4. Raman studies on the effect of multiple-energy ion implantation on single-crystal hexagonal boron nitride

    Science.gov (United States)

    Aradi, E.; Naidoo, S. R.; Erasmus, R. M.; Julies, B.; Derry, T. E.

    2015-03-01

    Single energy ion implantation of hexagonal boron nitride (h-BN) at various fluences and keV energies has shown that there is a change in the local symmetry of the crystal from hexagonal to the cubic (c-BN) symmetry. These conclusions have been primarily based on Raman scattering (RS) and Fourier transform infrared spectroscopy. Transmission electron microscopy (TEM) analyses have been a challenge because the sample preparation for cross-sectional study of both the polycrystalline substrates and single-crystal material used in the study presented problems that were difficult to circumvent. A multiple-energy implant with different fluence fractions has been used to create a uniform implanted layer in the material from the surface to the end of range of the implant in this study. We report on the initial RS studies on these samples.

  5. Preparation of diamond-like carbon and boron nitirde films by high-intensity pulsed ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Davis, H.A. [Los Alamos National Lab., NM (United States); Remnev, G.E. [Tomsk Polytechnic Univ., Tomsk (Russian Federation). Nuclear Physics Institute.] [and others

    1995-05-01

    Intense ion beams (300-keV C{sup +}, O{sup +}, and H{sup +}, 20--30 kA, 50 to 400-ns pulsewidth, up to 0.3-Hz repetition rate) were used to prepare diamond-like carbon (DLC) and boron nitride (BN) films. Deposition rates of up to 25{plus_minus}5 nm/pulse were obtained with instantaneous rates exceeding 1 mm/s. Most films were uniform, light brown, translucent, and nonporous with some micron-size particulates. Raman and parallel electron energy loss spectroscopy indicated the presence of DLC. The films possessed favorable electron field-emission characteristics desirable for cold-cathode displays. Transmission electron microscopy (TEM) and transmission electron diffraction (TED) revealed that the C films contained diamond crystals with 25 to 125-nm grain size. BN films were composed of hexagonal, cubic and wurtzite phases.

  6. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Nazé, C.; Verdebout, S. [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Rynkun, P.; Gaigalas, G. [Vilnius University, Institute of Theoretical Physics and Astronomy, LT-01108 Vilnius (Lithuania); Godefroid, M., E-mail: mrgodef@ulb.ac.be [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Jönsson, P. [Group for Materials Science and Applied Mathematics, Malmö University, 205-06 Malmö (Sweden)

    2014-09-15

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  7. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    International Nuclear Information System (INIS)

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available

  8. Formation and annealing of radiation damage in boron ion implanted MOS structures

    International Nuclear Information System (INIS)

    Processes of accumulation of defects induced by radiation and annealing characteristics of 1.25 x 1012 cm-2 boron implanted MOS structures are investigated at implantation energy varied from 30 to 125 keV. Parameters of centres formed under these conditions at the SiO2-Si interface and in a thin surface region of silicon are determined by the method of thermally stimulated charge release. The anneal temperatures required to remove some types of defects are established. The dielectric-semiconductor interface is shown to affect significantly the anneal processes of traps induced by implantation. (author)

  9. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    Science.gov (United States)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  10. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  11. Chemical state of boron in coal fly ash investigated by focused-ion-beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) and satellite-transition magic angle spinning nuclear magnetic resonance (STMAS NMR).

    Science.gov (United States)

    Hayashi, Shun-ichi; Takahashi, Takafumi; Kanehashi, Koji; Kubota, Naoyoshi; Mizuno, Kaoru; Kashiwakura, Shunsuke; Sakamoto, Tetsuo; Nagasaka, Tetsuya

    2010-08-01

    The chemical states of boron in coal fly ash, which may control its leaching into the environment, were investigated by focused-ion-beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) and satellite-transition magic angle spinning nuclear magnetic resonance (STMAS NMR) spectroscopy. The distribution of boron on the surface and in the interior of micron-sized fly ash particles was directly observed by FIB-TOF-SIMS. Coordination numbers of boron and its bonding with different atoms from particles of bulk samples were investigated by STMAS NMR. Boron in coal fly ash with relatively poor leaching characteristics appears as trigonal BO(3) and coexists with Ca and Fe at the outer layer of every particle and inside CaO-MgO particles. In contrast, boron in coal fly ash with better leaching characteristics appears as CaO- or MgO-trigonal BO(3) and tetragonal BO(4), and it is distributed only on the outer surface of each ash particle without showing any correlation with a particular element. PMID:20570315

  12. Hyperfine structures and Landé gJ-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    International Nuclear Information System (INIS)

    Energy levels, hyperfine interaction constants, and Landé gJ-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature

  13. Atomistic simulations of the implantation of low energy boron and nitrogen ions into graphene

    OpenAIRE

    Åhlgren, E. H.; Kotakoski, J.; Krasheninnikov, A. V.

    2011-01-01

    By combining classical molecular dynamics simulations and density functional theory total energy calculations, we study the possibility of doping graphene with B/N atoms using low-energy ion irradiation. Our simulations show that the optimum irradiation energy is 50 eV with substitution probabilities of 55% for N and 40% for B. We further estimate probabilities for different defect configurations to appear under B/N ion irradiation. We analyze the processes responsible for defect production a...

  14. Boron ion beam production with the supernanogan ECR ion source for the CERN BIO-LEIR facility

    CERN Document Server

    Stafford-Haworth, J; Scrivens, R; Toivanen, V; Röhrich, J

    2014-01-01

    To deliver B3+ ions for medical research the compounds decaborane and m-carborane were tested using the metal ions from volatile compounds (MIVOC) method with the Supernanogan 14.5 GHz ECR ion source. Using decaborane the source delivered less than 10 A intensity of B3+ and after operation large deposits of material were found inside the source. Using m-carborane 50 A of B3+ were delivered without support gas. For m-carborane, helium and oxygen support gasses were also tested, and the effects of different source tuning parameters are discussed. The average consumption of m-carborane was 0:1 mg/Ah over all operation.

  15. Mechanical strength and tribological behavior of ion-beam deposited boron nitride films on non-metallic substrates

    International Nuclear Information System (INIS)

    An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2

  16. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  17. Study of high energy ion implantation of boron and oxygen in silicon

    International Nuclear Information System (INIS)

    Three aspects of high energy (0.5-3 MeV) light ions (11B+ and 16O+) implantation in silicon are examined: (1)Spatial repartition; (2) Target damage and (3) Synthesis by oxygen implantation of a buried silicon oxide layer

  18. Effect of alkali and chloride ions on pitting corrosion behaviour of boron added modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Modified 9Cr-1Mo ferritic steel is used as a structural material for the steam generator of Prototype Fast Breeder Reactor (PFBR) due to its high temperature corrosion and oxidation resistance. Since all the components (tube, tube sheet and shell) of steam generator are made of modified 9Cr-1Mo, it is also required to be resistant against general and localized corrosion. Modified 9Cr-1Mo steel with 100 ppm boron addition is being considered as the structural material for the steam generators of future fast reactors, owing to its improved creep properties. In the present work, an attempt has been made to study the pitting corrosion behaviour of this material in alkaline environment containing chloride ions. Alkaline environment was chosen to simulate the caustic condition generated in the steam generator due to the accidental leak of feed water containing chloride ions (as impurity) with hot sodium. Potentiodynamic anodic polarization studies were carried out in deaerated 0.1, 0.2 and 0.5M sodium hydroxide solutions containing 0.1, 0.2 and 0.5M sodium chloride. During the experiments current value was allowed to increase up to 1 mA to ensure that stable pits were developed. Pitting potentials (Epp) were determined from the anodic polarization diagrams. The pitted specimens etched in Villela's reagent were observed under an optical microscope as well as a scanning electron microscope (SEM). Most of the pits observed under optical microscope were found to be hemispherical in nature. The diameters of 30 random pits were measured (two diameters at right angles for each pit) and an average diameter for each pit was calculated

  19. Influence of deposition parameters on surface roughness and mechanical properties of boron carbon nitride coatings synthesized by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Boron carbon nitride (BCN) coatings were deposited on Si(100) wafers and Si3N4 disks by using ion beam assisted deposition from a boron carbide target. The BCN coatings were synthesized by the reaction between boron and carbon vapor as well as nitrogen ion simultaneously. The influence of deposition parameters such as ion acceleration voltage, ion acceleration current density and deposition ratio on the surface roughness and mechanical properties of the BCN coatings was investigated. The surface roughness was determined by using atomic force microscopy and the mechanical properties of the BCN coatings were evaluated by nano-indentation tests and friction tests in N2 gas. The composition and chemical bonding of the BCN coatings were analyzed by using X-ray photoelectron spectroscopy. The results showed that the lower deposition rate, the smaller surface roughness and higher nano-hardness the BCN coatings were. The BCN coating with the smoothest surface (R a = 0.25 nm and R P-V = 2.8 nm) and the highest nanohardness of 33 GPa as well as excellent friction property were obtained at 0.5 nm/s and the nitrogen ions were generated at 2.0 kV and 60 μA/cm2, and the chemical composition of this BCN coating was 49 at.% B, 42 at.% C and 9 at.% N. Moreover, there were several bonding states such as B-N, B-C and C-N with B-C-N hybridization in this BCN coating

  20. Investigation of defect formation in boron ion-implanted silicon during annealing

    International Nuclear Information System (INIS)

    Kinetics of secondary structure defect formation in B+ ion-implanted Si crystals are investigated in isochronal and isothermal annealing experiments. The implantation dose is below the critical dose which forms a continuous amorphized layer. On the basis of quantitative results obtained an analysis of the behaviour of various defects is performed and the main factors and mechanisms which determine the evolution of such structures are established. (author)

  1. A Comparison of the Effects of RF Plasma Discharge and Ion Beam Supply on the Growth of Cubic Boron Nitride Films Formed by Laser Physical Vapor Deposition

    Science.gov (United States)

    Kaneda, Kayo; Shibata, Kimihiro

    1994-01-01

    This paper presents a comparison of the effects of RF plasma discharge and ion beam supply on the growth of cubic boron nitride films formed by excimer laser physical vapor deposition (laser PVD). The film structure was analyzed by fourier transformation infrared region (FT-IR) spectroscopy and thin-film X-ray diffraction analysis. The structure of the film deposited with an RF plasma discharge provided between the substrate and target was hexagonal BN. On the other hand, that of the film deposited by irradiating the substrate directly with an ion beam was hexagonal BN (hBN) and cubic BN (cBN). It is thought that direct irradiation of the vapor generated from the target by accelerated ions increased the activation energy of the vapor, with the result that the film structure was changed. Besides irradiating the substrate directly with the ion beam resulted primarily in the etching of hBN while cBN remained.

  2. The energy levels and transition probabilities for silicon, phosphorous, sulfur, and chlorine ions of the boron iso-electronic sequence

    International Nuclear Information System (INIS)

    The slater type radial wave functions of the 1S, 2S, and 2P orbitals have been employed in order to construct the hartree-fock (HF) wave functions of the ground states 1S2 2S2 2P for Si X, ph XI, S XII and C1 XIII of the boron iso-electronic sequence. The radial functions of the excited orbitals ns, np, and nf (n=3-5) have been optimized using the CIV3 code which uses the multi-configuration hartree-fock (MCHF) method in evaluating these functions. The wave functions thus obtained have been used in calculating energy levels, oscillator strengths and transition probabilities. The calculated energies (in au) relative to the ground state were in a good agreement with the available published experimental and theoretical values within the experimental error for all levels of the ions of the sequence except for the 3 p, 4 p, and 5 p levels of Si X, Ph XI, S XII and CI XIII. The deviation may be attributed to relativistic effects in case of highly ionized members of the sequence. The oscillator strengths for the allowed electric dipole transitions have been computed in dipole-length from by using the same code. The transition probabilities for spontaneous emission Aji (sec1) are calculated using the equation Aji=6.6 x 1015 gi fij / Lambda2 gj (sec1) where lambda is the wavelength of the transition (in A0) from state (i) to state (j) and gi. gj are the statistical weights for these states, fg is the oscillator strength of the transition. More over results of oscillator strengths and transition probabilities are found to be in a fairly good agreement with the available published experimental and theoretical values

  3. Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Nemeth, Karoly; Bareño, Javier; Dogan, Fulya; Bloom, Ira D.; Shaw, Leon L.

    2016-01-01

    The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. DFT calculations have provided physical insights into the observed electrochemical properties derived from the FBN.

  4. Range parameters of gold ions in boron calculated with a first-principles potential

    International Nuclear Information System (INIS)

    Interatomic potential for the Au-B system have been calculated with density-functional theory in order to clarify the origins of discrepancies between available experimental data and the values predicted by Ziegler, Biersack and Littmark theory for range parameters of heavy ions in light targets at energies of about 1-1000 keV. Relativistic effects were taken into account in the evaluations of the potential. Range parameters have been obtained within the framework of the standard transport theory. Good agreement between the calculated projected range and the available experimental data gives use in the range-projection equations the nuclear stopping power, determined with the density-functional theory potential, and the velocity-proportional electronic stopping powers by Lindhard, Scharff and Schioett. Considerable improvement has also been achieved in the description of the projected range straggling. It is concluded that correlations between the nuclear and electronic energy losses can be neglected in the studied energy range. (authors)

  5. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  6. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  7. Boron thermal regeneration system

    International Nuclear Information System (INIS)

    An ion exchanger which allows flow in both directions along a selected flow path is described. A separator plate divides the exchanger tank into two chambers each of which has a flow conduit so that flow may enter or leave from either chamber while prohibiting the resin particles from migrating from one side of the tank to the other. This ion exchanger permits a dual-directional flow process to be practised which results in immediate changes in the boron concentration within a nuclear reactor coolant system even if the ion exchanger resins have not been completely equilibrated during a previous operation. (author)

  8. Role of swift heavy ions irradiation on the emission of boron doped ZnO thin films for near white light application

    International Nuclear Information System (INIS)

    Highlights: • ZnO:B thin film irradiated by 80 MeV Br6+ ions. • Compressive to tensile stress was observed with increase in fluences. • Oxygen related defect is decreased after irradiation. • Near white light emission was achieved in the ZnO:B. • The colour of the emitted light can be tuned by SHI. - Abstract: Boron doped ZnO (ZnO:B) thin films on silicon substrates were synthesized with the sol–gel method using the spin coating technique. The films were irradiated by 80 MeV Br+6 ions at various ion fluences. The X-ray diffraction results indicate that ZnO:B crystallized in the normal hexagonal wurtzite structure of ZnO. X-ray photoelectron spectroscopy data indicated that the O1s peak consist of three components designated as O1 (coming from ZnO), O2 (coming from defects) and O3 (coming from adsorbed species). Defect level emission (DLE) was obtained in the luminescence spectra of the pristine ZnO:B sample while the strong UV emission was observed for the ion irradiated films. The intensity of the DLE emission decreased after irradiation while the band to band emission increased after ion irradiation. A direct correlation between the amount of defects (O2 peak of XPS) and the DLE was observed. The emission of the ZnO:B is exponentially correlated with the swift heavy ion induced stress and the amount of defects. These ZnO:B thin films may be used for near white light emission applications

  9. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  10. Electroextraction of boron from boron carbide scrap

    International Nuclear Information System (INIS)

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron (10B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of 10B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron

  11. A study of the effect of addition of calcium, boron, cobalt and the combination of the three ions on biogas production from cow dung

    International Nuclear Information System (INIS)

    The individual and combined effects of calcium (Ca2+ ; 51.16) mg/cm3), boron (B3+; 0.07 mg/cm3) and cobalt (Co2+; 2.97 mg/cm3) ions on biogas production from cow dung was investigated. The gas yield was recorded at 24 hours interval for 63 days under an average room temperature of 28.19 Celsius. It was found that the digesters containing Ca2+, B3+, Co2+ and a combination of the three ions produced 3101 cm3, 3229 cm3 and 2481 cm3 of gas respectively, while the control digester produced 3290 cm3 of gas. Analysis of variance conducted on the gas yield data at the significance level of α = 0.05 and critical region of F(4,∞)≥ 2.37 lead to the acceptance of the null hypothesis that the mean biogas yield of the five digesters are equal. The least significant difference (LSD) between the means is 17.61 cm3. Thus, these ions have no significant effect on the quantity of biogas produced from the cow dung investigated, at the concentration level tested

  12. Biodistribution and Subcellular Localization of an Unnatural Boron-Containing Amino Acid (Cis-ABCPC) by Imaging Secondary Ion Mass Spectrometry for Neutron Capture Therapy of Melanomas and Gliomas

    Science.gov (United States)

    Chandra, Subhash; Barth, Rolf F.; Haider, Syed A.; Yang, Weilian; Huo, Tianyao; Shaikh, Aarif L.; Kabalka, George W.

    2013-01-01

    The development of new boron-delivery agents is a high priority for improving the effectiveness of boron neutron capture therapy. In the present study, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC) as a mixture of its L- and D- enantiomers was evaluated in vivo using the B16 melanoma model for the human tumor and the F98 rat glioma as a model for human gliomas. A secondary ion mass spectrometry (SIMS) based imaging instrument, CAMECA IMS 3F SIMS Ion Microscope, was used for quantitative imaging of boron at 500 nm spatial resolution. Both in vivo and in vitro studies in melanoma models demonstrated that boron was localized in the cytoplasm and nuclei with some cell-to-cell variability. Uptake of cis-ABCPC in B16 cells was time dependent with a 7.5:1 partitioning ratio of boron between cell nuclei and the nutrient medium after 4 hrs. incubation. Furthermore, cis-ABCPC delivered boron to cells in all phases of the cell cycle, including S-phase. In vivo SIMS studies using the F98 rat glioma model revealed an 8:1 boron partitioning ratio between the main tumor mass and normal brain tissue with a 5:1 ratio between infiltrating tumor cells and contiguous normal brain. Since cis-ABCPC is water soluble and can cross the blood-brain-barrier via the L-type amino acid transporters (LAT), it may accumulate preferentially in infiltrating tumor cells in normal brain due to up-regulation of LAT in high grade gliomas. Once trapped inside the tumor cell, cis-ABCPC cannot be metabolized and remains either in a free pool or bound to cell matrix components. The significant improvement in boron uptake by both the main tumor mass and infiltrating tumor cells compared to those reported in animal and clinical studies of p-boronophenylalanine strongly suggest that cis-ABCPC has the potential to become a novel new boron delivery agent for neutron capture therapy of gliomas and melanomas. PMID:24058680

  13. Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas.

    Directory of Open Access Journals (Sweden)

    Subhash Chandra

    Full Text Available The development of new boron-delivery agents is a high priority for improving the effectiveness of boron neutron capture therapy. In the present study, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC as a mixture of its L- and D-enantiomers was evaluated in vivo using the B16 melanoma model for the human tumor and the F98 rat glioma as a model for human gliomas. A secondary ion mass spectrometry (SIMS based imaging instrument, CAMECA IMS 3F SIMS Ion Microscope, was used for quantitative imaging of boron at 500 nm spatial resolution. Both in vivo and in vitro studies in melanoma models demonstrated that boron was localized in the cytoplasm and nuclei with some cell-to-cell variability. Uptake of cis-ABCPC in B16 cells was time dependent with a 7.5:1 partitioning ratio of boron between cell nuclei and the nutrient medium after 4 hrs. incubation. Furthermore, cis-ABCPC delivered boron to cells in all phases of the cell cycle, including S-phase. In vivo SIMS studies using the F98 rat glioma model revealed an 8:1 boron partitioning ratio between the main tumor mass and normal brain tissue with a 5:1 ratio between infiltrating tumor cells and contiguous normal brain. Since cis-ABCPC is water soluble and can cross the blood-brain-barrier via the L-type amino acid transporters (LAT, it may accumulate preferentially in infiltrating tumor cells in normal brain due to up-regulation of LAT in high grade gliomas. Once trapped inside the tumor cell, cis-ABCPC cannot be metabolized and remains either in a free pool or bound to cell matrix components. The significant improvement in boron uptake by both the main tumor mass and infiltrating tumor cells compared to those reported in animal and clinical studies of p-boronophenylalanine strongly suggest that cis-ABCPC has the potential to become a novel new boron delivery agent for neutron capture therapy of gliomas and melanomas.

  14. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    10B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH)4-) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10B and 11B

  15. Simultaneous analysis of silicon and boron dissolved in water by combination of electrodialytic salt removal and ion-exclusion chromatography with corona charged aerosol detection.

    Science.gov (United States)

    Mori, Masanobu; Sagara, Katsuya; Arai, Kaori; Nakatani, Nobutake; Ohira, Shin-Ichi; Toda, Kei; Itabashi, Hideyuki; Kozaki, Daisuke; Sugo, Yumi; Watanabe, Shigeki; Ishioka, Noriko S; Tanaka, Kazuhiko

    2016-01-29

    Selective separation and sensitive detection of dissolved silicon and boron (DSi and DB) in aqueous solution was achieved by combining an electrodialytic ion isolation device (EID) as a salt remover, an ion-exclusion chromatography (IEC) column, and a corona charged aerosol detector (CCAD) in sequence. DSi and DB were separated by IEC on the H(+)-form of a cation exchange resin column using pure water eluent. DSi and DB were detected after IEC separation by the CCAD with much greater sensitivity than by conductimetric detection. The five-channel EID, which consisted of anion and cation acceptors, cathode and anode isolators, and a sample channel, removed salt from the sample prior to the IEC-CCAD. DSi and DB were scarcely attracted to the anion accepter in the EID and passed almost quantitatively through the sample channel. Thus, the coupled EID-IEC-CCAD device can isolate DSi and DB from artificial seawater and hot spring water by efficiently removing high concentrations of Cl(-) and SO4(2-) (e.g., 98% and 80% at 0.10molL(-1) each, respectively). The detection limits at a signal-to-noise ratio of 3 were 0.52μmolL(-1) for DSi and 7.1μmolL(-1) for DB. The relative standard deviations (RSD, n=5) of peak areas were 0.12% for DSi and 4.3% for DB. PMID:26755416

  16. Mechanical properties of boron coatings

    International Nuclear Information System (INIS)

    Internal stress of coatings will cause reliability problems, such as adhesion failure and peeling. We measured the internal stress in boron coatings, which was prepared by the ion plating method, with an apparatus based on the optically levered laser technique. The boron coatings exhibited large compressive stress in the range from -0.5 GPa to -2.6 GPa. It was found that these compressive stresses were decreasing functions of the deposition rate and were increasing functions of the ion bombardment energy. ((orig.))

  17. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Verdebout, S.; Nazé, C. [Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, B 1050 Brussels (Belgium); Jönsson, P., E-mail: per.jonsson@mah.se [Faculty of Technology and Society, Group for Materials Science and Applied Mathematics, Malmö University, 205-06 Malmö (Sweden); Rynkun, P. [Institute of Theoretical Physics and Astronomy, Vilnius University, LT-01108 Vilnius (Lithuania); Godefroid, M. [Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, B 1050 Brussels (Belgium); Gaigalas, G. [Institute of Theoretical Physics and Astronomy, Vilnius University, LT-01108 Vilnius (Lithuania)

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  18. Flow-injection determination of iodide ion in nuclear emergency tablets, using boron-doped diamond thin film electrode

    International Nuclear Information System (INIS)

    The electrochemical determination of iodide was studied at boron-doped diamond thin film electrodes (BDD) using cyclic voltammetry (CV) and flow-injection (FI) analysis, with amperometric detection. Cyclic voltammetry of iodide was conducted in a phosphate buffer pH 5. Experiments were performed using glassy carbon (GC) electrode as a comparison. Well-defined oxidation waves of the quasi-reversible cyclic voltammograms were observed at both electrodes. Voltammetric signal-to-background ratios (S/B) were comparable. However, the GC electrode gives much greater in the background current as usual. The potential sweep rate dependence exhibited that the peak current of iodide oxidation at 1mM varied linearly (r2 = 0.998) with the square root of the scan rate, from 0.01 to 0.30Vs-1. This result indicates that the reaction is a diffusion-controlled process with negligible adsorption on BDD surface, at this iodide concentration. Results of the flow-injection analysis show a highly reproducible amperometric response. The linear working range was observed up to 200μM (r2 = 0.999). The detection limit, as low as 0.01μM (3σ of blank), was obtained. This method was successfully applied for quantification of iodide contents in nuclear emergency tablets

  19. Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: Effect of current density, pH, and chloride ions

    International Nuclear Information System (INIS)

    The electrochemical oxidation of acid black 210 dye (AB-210) on the boron-doped diamond (BDD) was investigated under different pH conditions. The best performance for the AB-210 oxidation occurred in alkaline phosphate solution. This is probably due to oxidizing agents such as phosphate radicals and peroxodiphosphate ions, which can be electrochemically produced with good yields on the BDD anode, mainly in alkaline solution. Under this condition, the COD (chemical oxygen demand) removal was higher than that obtained from the model proposed by Comninellis. Electrolyses performed in phosphate buffer and in the presence of chloride ions resulted in faster COD and color removals in acid and neutral solutions, but in alkaline phosphate solution, a better performance in terms of TOC removal was obtained in the absence of chloride. Moreover, organochloride compounds were detected in all electrolyses performed in the presence of chloride. The AB-210 electrooxidation on BDD using phosphate as supporting electrolyte proved to be interesting since oxidizing species generated from phosphate ions were able to completely degrade the dye without producing organochloride compounds.

  20. Determination of boron content in boron carbide, boron nitride and amorphous boron

    International Nuclear Information System (INIS)

    In the present article an analyzing method of determination of boron content in boron carbide, boron nitride and amorphous boron described. Examined samples were digested with potassium hydroxide and potassium nitrate in nickel crucible and the boron contents determined subsequently by an alcalimetric titration of boric acid in presence of mannite resp. sorbite. (author)

  1. Reduced Graphene Oxide/Boron Nitride Composite Film as a Novel Binder-Free Anode for Lithium Ion Batteries with Enhanced Performances

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted - Abstract: Reduced graphene oxide (rGO)/boron nitride (BN) composite films were successfully fabricated by facile vacuum filtration and subsequent thermal treatment. Their morphology, structure and electrochemical performance were systematically characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Importantly, the as-prepared rGO/BN composite film with a 2 wt.% BN content as binder-free anode material for lithium ion batteries (LIBs) exhibited a high reversible capacity of 278 mAh·g−1 at a high current density of 100 mA·g−1, high rate capability, and high capacity retention over the first 200 cycles. The enhanced electrochemical performances of rGO/BN composite film are attributed to the unique structure and the synergistic effects between layered BN and graphene, which favored electrolyte penetration and buffered the volume expansion during the lithiation and delithiation process. In addition, this work not only provides a versatile strategy for fabrication of other graphene-based films, but also shows the potential promise of rGO/BN composite film for other energy storage devices

  2. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  3. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition

    Science.gov (United States)

    Meng, Jun Hua; Zhang, Xing Wang; Wang, Hao Lin; Ren, Xi Biao; Jin, Chuan Hong; Yin, Zhi Gang; Liu, Xin; Liu, Heng

    2015-09-01

    Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were obtained by using the continuous h-BN film as a substrate. Furthermore, the well-designed sub-bilayered h-BN substrates provide direct evidence that the monolayered h-BN on Cu exhibits higher catalytic activity than the bilayered h-BN on Cu. The growth method applied here may have great potential in the scalable preparation of large-area high-quality graphene/h-BN heterostructures.Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were

  4. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.; Kampmann, R.; Höche, D.; Lorenz, U.; Müller, M.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht (Germany); Becker, H.-W. [RUBION-Zentrale Einrichtung für Ionenstrahlen und Radionuklide, Ruhr-Universität Bochum, 44780 Bochum (Germany); Haese-Seiller, M.; Moulin, J.-F.; Pomm, M. [Helmholtz-Zentrum Geesthacht, Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Randau, C. [Georg-August Universität Göttingen, Geowissenschaftliches Zentrum, 37077 Göttingen, Germany and Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Hall-Wilton, R. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden)

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.

  5. Elementary boron and metal-boron compounds

    International Nuclear Information System (INIS)

    Elementary boron is of interest for its peculiar and difficult bonding behaviour in solids. Due to its high oxygen affinity we find no elementary boron in nature. For the same reason it is difficult to isolate pure, elementary boron, and much confusion about 'boron crystals' has been the result of more than 100 years of research. The polymorphic forms of elementary boron and its closely related higher carbides and higher metal borides as well as the simple metal borides, B3C and BN are reported. The quantum-mechanical background responsible for structure and stoichiometry of these crystals is given. (orig.)

  6. Removal properties of dissolved boron by glucomannan gel.

    Science.gov (United States)

    Oishi, Kyoko; Maehata, Yugo

    2013-04-01

    Boron ions have long been known to form complexes with the cis-diol group of a polysaccharide. Konjac glucomannan (KGM) which is one of polysaccharides was used to remove dissolved boron in this study. KGM forms a complex with boron, but does not remove boron from contaminated waters as well as other polysaccharides because of its high water solubility. Therefore, the removal efficiencies of dissolved boron were examined using both an insoluble KGM gel and KGM semi-gel. The former did not remove dissolved boron, but the latter did. The difference in the ability of boron removal was due to the presence of diol group inside. KGM loses free diol group during the process of gelation. On the other hand, the semi-gel gelated only surface layer in water has diol group inside. The boron removal capacity of the semi-gel was highest at pHs⩾11, when the boron species is present as B(OH)4(-). The capacity was slightly increased by the addition of Al, Ca and Mg under high pH conditions. This was due to co-precipitation of boron with Ca dissolved from the semi-gel. The boron adsorbed to the semi-gel easily was desorbed under low pH conditions and the hysteresis was not found. PMID:23260255

  7. Enhanced surface hardness by boron implantation in Nitinol alloy.

    Science.gov (United States)

    Lee, D H; Park, B; Saxena, A; Serene, T P

    1996-10-01

    Boron implantation into Nitinol alloy has a potential for developing improved Nitinol root canal instruments with excellent cutting properties, without affecting their superelastic bulk-mechanical properties. The surface hardness of nickel-titanium (NiTi) alloy, also known as "Nitinol" (50 atm% nickel+50 atm% titanium), has been improved by ion-beam surface modification. With an implantation dose of 4.8 x 10(17) boron/cm2, a high concentration of boron (30 atm%) is incorporated into NiTi alloy by 110 keV boron ions at room temperature (25 degrees C). Boron-implanted and unimplanted (pure) Nitinol alloys show surface hardness of 7.6 +/- 0.2 and 3.2 +/- 0.2 GPa, respectively, at the nanoindentation depth of 0.05 micron. The ion-beam-modified NiTi alloy exceeds the surface hardness of stainless steel. PMID:9198443

  8. Boron sorption characteristics in resins

    International Nuclear Information System (INIS)

    The purpose of boron addition in a nuclear power plant is to control the reactivity. In PHWRs, it is injected into the moderator system in the form of boric anhydride solution, while in PHWRs, it is added to the primary heat transport system in the form of boric acid solution. The required boron levels in PHWRs are controlled by valving in strong base anion exchangers having exchangeable species in OD- form while in PHWRs, the same can be achieved by restoring to the use of Boron Thermal Regeneration System (BTRS). This system operates on the principle of existence of different amounts of various polyborate ions at different temperatures, solution pH's and the boric acid concentrations and on the reversible sorption of these polyions on strong base anion exchange resins. This report describes the salient features of boron sorption characteristics on four types of anion exchange resins, based on experimental data generated in the chemical laboratories of Reactor Engineering Division of the Bhabha Atomic Research Centre, Bombay. The report further makes an attempt to calculate the pH of the resin and solution phases and the percentages of different polyborates and undissociated boric acid, under the experimental conditions investigated. (author). 30 refs., 4 figs., 20 tables

  9. Doping Silicon Wafers with Boron by Use of Silicon Paste

    Institute of Scientific and Technical Information of China (English)

    Yu Gao; Shu Zhou; Yunfan Zhang; Chen Dong; Xiaodong Pi; Deren Yang

    2013-01-01

    In this work we introduce recently developed silicon-paste-enabled p-type doping for silicon.Boron-doped silicon nanoparticles are synthesized by a plasma approach.They are then dispersed in solvents to form silicon paste.Silicon paste is screen-printed at the surface of silicon wafers.By annealing,boron atoms in silicon paste diffuse into silicon wafers.Chemical analysis is employed to obtain the concentrations of boron in silicon nanoparticles.The successful doping of silicon wafers with boron is evidenced by secondary ion mass spectroscopy (SIMS) and sheet resistance measurements.

  10. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  11. Simultaneous determination of boron-10 and boron-11 under proton bombardment

    International Nuclear Information System (INIS)

    The isotopic analysis of boron gained importance with increased use of boron-10 in nuclear technology. Former techniques for determining the stable boron isotope either were limited to the determination of a single isotope or required tedious experimental prodecure. The use of proton induced reactions was therefore investigated as an alternative method for the simultaneous analysis of both stable isotopes of boron through a relatively simple experimental procedure. Aqueous solutions of natural boric acid (19,78 at. % 10B) and enriched boric acid (92,41 at. % 10B) were mixed and evaporated to dryness in order to obtain samples in which the isotopic concentration of boron was known. Thin targets were produced by evaporating boron oxide, converted by heat from the boric acid mixture, onto tantalum backing material. Standard samples with known contents of boron oxide were prepared by dry mixing standard reference boron-containing glass powers in a ball mill. Thick targets containing boron of different isotopic compositions were prepared in matrices of potassium bromide and of ion-exchange resins by mixing the matrix with aqueous solutions of boric acid and of sodium carbonate by fusion with boric oxide. The most intense prompt gamma-rays emitted from boron isotopes under irradiation with protons up to 4,5 MeV were the 428-KeV 10B α(1,0), 718-KeV 10B p(1,0) and the 2124-KeV 11B p(1,0) gamma-rays. Excitation functions for the production of each of these were measured using both thick and thin targets

  12. Boronization during the first plasma operation on EAST

    International Nuclear Information System (INIS)

    Both ion cyclotron rf and glow discharge boronization have been successfully used for wall conditioning on EAST tokamak device. The whole process is monitored continuously by residual gas analyzer and film thickness monitor. These diagnostics provide detailed information about the boronization. High hydrogen inventory level observed after boronization maybe due to the boronization material used (C2B10H12). Ion cyclontron rf conditioning is proved to be an efficient wall conditioning method for superconducting device because it could be carried out under toroidal magnetic field. In this paper, the procedure of boronization is described, and subsequently sample analysis and the effect on plasma operation are introduced. Conclusion is given at the end

  13. Determination of boron in nuclear grade sodium metal

    International Nuclear Information System (INIS)

    Determination of boron in nuclear grade sodium metal as rosocyanin and rubrocurcumin complexes is described. Separation of sodium matrix was attempted by vacuum distillation of sodium, methyl borate distillation and ion exchange methods. The ion exchange method was found to be most suitable. Optimum conditions were standardised for the estimation of boron in nuclear grade sodium. In the 200 ppb range an RSD of 5 per cent was obtained. (author). 12 refs

  14. Application of Boron-Based Lithium Salt for Li-Ion Battery%硼基锂盐电解质在锂离子电池中的应用

    Institute of Scientific and Technical Information of China (English)

    仇卫华; 阎坤; 连芳; 乔亚非

    2011-01-01

    Electrolyte is considered as one of the key materials to decide the performance of Li-ion batteries.Novel boron-based lithium salts have attracted people' s interests because of its varieties and environmental-friendly property. Lithium bis(oxalato) borate (LiBOB) , as one of boron-based lithium salts, is believed to be a candidate for commercial LiPF6 due to its good film-forming property and high thermal stability. In the paper, the new development of boron-based lithium salts is introduced, and LiBOB is also evaluated as lithium salt of electrolyte for Li-ion battery. The main influencing factors of LiBOB-based electrolyte are summarized. Especially, it has focused on the compatibility of LiBOB-based electrolyte with anode and metal oxide cathode. The application of LiBOBbased polymer electrolyte and LiBOB plastic chip electrolyte are introduced.%电解质材料是锂离子电池的关键材料之一,它直接影响电池的性能.新型硼酸锂盐由于种类繁多且环境友好而越来越引起人们的重视.双草酸硼酸锂(LiBOB)是一种新型的锂盐,具有很好的成膜性能和热稳定性,是一种很有潜力替代现有商品化锂盐LiPF6的物质.本文介绍了近期新型硼基锂盐的发展状况,归纳了LiBOB基电解质的研究概况,综述了影响LiBOB基电解质的因素,讨论了LiBOB与正负极材料的相容性,并对LiBOB基聚合物电解质和LiBOB塑晶电解质的应用进行了介绍.

  15. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.

    Science.gov (United States)

    Zhang, Jinli; Nie, Ning; Liu, Yuanyuan; Wang, Jiao; Yu, Feng; Gu, Junjie; Li, Wei

    2015-09-16

    An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1). PMID:26305802

  16. A method for selective separation and preconcentration of boron in nuclear grade graphite at trace levels

    International Nuclear Information System (INIS)

    Determination of trace amounts of boron in nuclear grade graphite was carried out using ICP-OES after selective preconcentration of boron on the boron specific anion exchange resin Amberlite IRA 743. Borate ion was quantitatively separated from aqueous solution by the anion exchange resin. Analytical parameters for pre-concentration of boron as borate ion from the matrix and its quantitative elution were optimized. The preconcentration achieved by the use of anion exchanger has improved the detection limit of boron using ICP-OES from 10 mgkg-1 to 0.1 mgkg-1. The recovery of boron in graphite matrix was in the range 95-99 %. This methodology has been applied to determine boron in graphite samples. (author)

  17. In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries

    Science.gov (United States)

    Zhang, Lijun; Xia, Guanglin; Guo, Zaiping; Sun, Dalin; Li, Xingguo; Yu, Xuebin

    2016-08-01

    This paper reports the fabrication of three-dimensional porous carbon nanofibers network with high doping level of nitrogen (N, 5.17 at.%) and boron (B, 6.87 at.%) through a general electrospinning strategy followed by a calcination process. The employed ammonia borane (NH3BH3, denote as AB) not only functions as a porogen reagent to generate porous structures but also as the heteroatoms source to induce N and B co-doping. Such highly unique nanoarchitectures offer remarkably improved Li storage performance including high reversible capacity (∼910 mAh g-1 at a current density of 100 mA g-1) with good cycling and rate performances.

  18. The sorption capacity of boron on anionic-exchange resin

    International Nuclear Information System (INIS)

    Boron sorption capacities on anionic-exchange resins vary with temperature, concentration, and resin cross-linkage. A semiempirical correlation, developed from boron solution chemistry, is presented to account for these variations. The relationship, based on boron chemistry and changes in Gibb's energy, can be stated approximately as Q = a1CBa2Za3 exp[-(a4T + a5T2 + a6Z0.5)]. Correlation parameters, which vary with resin type, are evaluated experimentally. Parameter values for macroporous resin Diaion PA 300 and for gel-type resins Diaion SA10 and Amberlite IRN 78LC are presented. The resulting expression is used to determine boron sorption and desorption limitations on ion exchangers at various temperatures and concentrations, and to determine the interfacial boron concentration in equilibrium and rate models

  19. Determination of boron and silicon in boron carbide

    International Nuclear Information System (INIS)

    A sodium carbonate fusion technique for the dissolution of boron carbide followed by the determination of boron by alkalimetric titration and silicon impurity by spectrophotometry is described. The elemental boron content in the commercially available boron carbide ranged from 77.2 to 77.60 % and the silicon in the range 1170 to 2500 ppm. (author)

  20. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  1. The Adhesion Improvement of Cubic Boron Nitride Film on High Speed Steel Substrate Implanted by Boron Element

    Institute of Scientific and Technical Information of China (English)

    CAI Zhi-hai; ZHANG Ping; TAN Jun

    2005-01-01

    Cubic boron nitride(c-BN) films were deposited on W6Mo5Cr4V2 high speed steel(HSS) substrate implanted with boron ion by RF-magnetron sputtering. The films were analyzed by the bending beam method, scratch test, XPS and AFM. The experimental results show that the implantation of boron atom can reduce the in ternal stress and improve the adhesion strength of the films. The critical load of scratch test rises to 27.45 N, compared to 1.75 N of c-BN film on the unimplanted HSS. The AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. Then the composition of the boron implanted layer was analyzed by the XPS. And the influence of the boron implanted layer on the internal stress and adhesion strength of c-BN films were investigated.

  2. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst. PMID:18961131

  3. Development of TIMS for isotopic ratio analysis of boron

    International Nuclear Information System (INIS)

    A magnetic sector based Thermal Ionisation Mass Spectrometer (TIMS) has been developed at Technical Physics Division, for high precision isotope ratio analysis of Boron (in the form of Sodium Meta-borate) at the Boron enrichment facility, Heavy Water Plant, Manuguru. The performance of this indigenously developed TIMS has been tested for sensitivity, isotope ratio precision and accuracy for different levels of enrichment in the plant samples. The sensitivity of this instrument was found to be 1 ion per 200 atoms. The internal and external precision for natural concentration levels Boron isotopes were better than 0.05%. (author)

  4. Separation of boron isotopes using NMG type anion exchange resin

    International Nuclear Information System (INIS)

    Ion exchange separation of boron isotopes (B-10 and B-11) has been studied by using a special boron selective ion exchange resin; NMG (n-methyl glucamine)-type anion exchange resin. The resin has shown a large isotope separation coefficient of 1.02 at the experimental conditions of temperature, 80degC, and boric acid concentration, 0.2 M (mole/dm3). Enriched B-10 (92%) was obtained after the migration of 1149 m by a recyclic operation of ion exchange columns in a merry-go-round method. (author)

  5. Research of nanocomposite structure of boron nitride at proton radiation

    OpenAIRE

    Borodin, Yuri Viktorovich; Ermolaev, D. S.; Pak, V.; Zhang, K.

    2016-01-01

    Using roentgen diffraction and electron microscopy, the influence of nanosecond irradiation by ion beams of high energy on forming of self-organized nanoblocks in near surface's layers of boron nitride (BN) has been studied. It was shown that low temperature transitions from hexagonal to wrutz boron nitrides is associated with changes of shape and sizes of self-organized particles consisting the nanoblocks. We have calculated the parameters of nanoblocks using the meanings of interplane dista...

  6. Recent results of boronization on EAST and HT-7 superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.H., E-mail: wujinhua@ipp.ac.cn [Institute of Plasma Physics, P.O. Box 1126, Hefei, Anhui 230031 (China); Hu, J.S., E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, P.O. Box 1126, Hefei, Anhui 230031 (China); Chen, Y. [Institute of Plasma Physics, P.O. Box 1126, Hefei, Anhui 230031 (China); Ashikawa, N. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yu, Y.W.; Li, J.H.; Zuo, G.Z.; Wang, X.M.; Zhao, Y.P.; Li, J.G. [Institute of Plasma Physics, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2011-08-01

    The importance of wall conditionings for the reduction of the impurities in plasmas has been recognized in most tokamaks. Boronization associated with Ion Cyclotron Resonance Frequency discharge (ICRF boronization) has been developed on HT-7 superconducting tokamak since 1998, and now this boronization technique has become a routine method for wall conditioning on HT-7 and also on EAST. Carborane (C{sub 2}B{sub 10}H{sub 12}) was used for the boronization and helium was usually provided as the auxiliary gas. However, after this kind boronization, lots of H{sub 2} released from the boron film make the controlling of the plasma density very difficulty. Recently, to reduce H{sub 2} content in the film, we change the auxiliary gas from He to D{sub 2} during the whole boronization procedure and find the release of H{sub 2} during plasma discharges was greatly reduced.

  7. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  8. First boronization in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H., E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, K.S.; Kim, K.M.; Kim, H.T.; Kim, G.P. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, J.H.; Woo, H.J. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Park, J.M.; Kim, W.C.; Kim, H.K.; Park, K.R.; Yang, H.L.; Na, H.K. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Chung, K.S. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    First boronization in KSTAR is reported. KSTAR boronization system is based on a carborane (C{sub 2}B{sub 10}H{sub 12}) injection system. The design, construction, and test of the system are accomplished and it is tested by using a small vacuum vessel before it is mounted to a KSTAR port. After the boronization in KSTAR, impurity levels are significantly reduced by factor of 3 (oxygen) and by 10 (carbon). Characteristics of a-C/B:H thin films deposited by carborane vapor are investigated. Re-condensation of carborane vapor during the test phase has been reported.

  9. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-01

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite. PMID:17830955

  10. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  11. Studies on thermal stability of type I and type II anion exchange resins used for separation of isotopes of boron by ion exchange chromatography

    International Nuclear Information System (INIS)

    Thermal stability of indigenously available type I and type II anion exchange resins were studied in chloride and hydroxyl forms. The results of the study indicated that the resins under study were thermally stable up to 50 deg C even when heated in an oven for 180 days and there was no appreciable loss in ion exchange capacity of the resins for boric acid. (author)

  12. Novel Boron Based Multilayer Thermal Neutron Detector

    CERN Document Server

    SCHIEBER, M

    2010-01-01

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accor...

  13. RAMAN SPECTRUM STUDIES OF THE COORDINATIONS OF ALUMINIUM AND BORON IN Na2O-Al2O3-B2O3-P2O5 GLASSES

    OpenAIRE

    Yifen, Yin; Dehua, Jiang; Xiangsheng, Chen; Beiya, Bian; Xihuai, Huang

    1985-01-01

    The coordination states of aluminium and boron in Na2O-Al2O3-B2O3-P2O5 glasses have been studied by means of Raman spectroscopy. The study shows that when boron and aluminium ions exist simultaneously in phosphate glasses, it is possible that boron ions form BO4 tetrahedra prior to aluminium ions, and the former has three and four coordinations while the latter has four and six.

  14. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  15. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  16. Magnetron sputter deposition of boron and boron carbide

    International Nuclear Information System (INIS)

    The fabrication of X-ray optical coatings with greater reflectivity required the development of sputter deposition processes for boron and boron carbide. The use of high density boron and boron carbide (B4C) and a vacuum-brazed target design was required to achieve the required sputter process stability and resistance to the thermal stress created by high rate sputtering. Our results include a description of the target fabrication procedures and sputter process parameters necessary to fabricate B4C and boron modulated thin film structures. (orig.)

  17. Boron Plays an Important Role in the Regulation of Plant Cell Growth

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Boron is an essential nutrition for higher plants.However, the primary function of boron remains a matter of discussion.Boron may function by forming complexes with compounds having cis-hydroxyl groups(diols), e.g., pectic materials in cell walls, glycoproteins or glycolipids in membranes and o-diphenols.The well-defined functions of boron are its involvement in maintaining cell wall structure and both the structural and the functional integrity of plasma membrane.Lack of boron causes an increase in the leakage of ions and compounds which reflects the impairment of plasma membrane.Boron is functionally important in forming a pectic network in cell wall which is responsible for the extensibility of cell wall and consequently regulates cell growth.

  18. Boron cures cancer

    International Nuclear Information System (INIS)

    In this work the authors cite a few examples of the use of radiopharmaceuticals for diagnostic and therapeutic purposes in nuclear medicine. They point to the possibility of boron neutron capture therapy and the use for the neutron capture therapy of other light elements.

  19. Process for microwave sintering boron carbide

    International Nuclear Information System (INIS)

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy

  20. {sup 1}H and {sup 10}B NMR and MRI investigation of boron- and gadolinium-boron compounds in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, M., E-mail: marco.bonora@unipv.it [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Corti, M.; Borsa, F. [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S. [Nuclear and Theoretical Physics Department, University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [INFN Pavia (Italy); Zonta, C.; Clerici, A.M.; Cansolino, L.; Ferrari, C.; Dionigi, P. [Surgical Sciences Department, Experimental Surgery Laboratory, University of Pavia, Pavia (Italy); Porta, A.; Zanoni, G.; Vidari, G. [Organic Chemistry Department, University of Pavia, Via Taramelli 10, 27100 Pavia (Italy)

    2011-12-15

    {sup 10}B molecular compounds suitable for Boron Neutron Capture Therapy (BNCT) are tagged with a Gd(III) paramagnetic ion. The newly synthesized molecule, Gd-BPA, is investigated as contrast agent in Magnetic Resonance Imaging (MRI) with the final aim of mapping the boron distribution in tissues. Preliminary Nuclear Magnetic Resonance (NMR) measurements, which include {sup 1}H and {sup 10}B relaxometry in animal tissues, proton relaxivity of the paramagnetic Gd-BPA molecule in water and its absorption in tumoral living cells, are reported.

  1. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  2. Lateral boron distribution in polycrystalline SiC source materials

    DEFF Research Database (Denmark)

    Linnarsson, M. K.; Kaiser, M.; Liljedahl, R.;

    2013-01-01

    Polycrystalline SiC containing boron and nitrogen are used in growth of fluorescent SiC for white LEDs. Two types of doped polycrystalline SiC have been studied in detail with secondary ion mass spectrometry: sintered SiC and poly-SiC prepared by sublimation in a physical vapor transport setup. The...

  3. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  4. Low-energy electronic stopping for boron in beryllium

    International Nuclear Information System (INIS)

    The range distribution for 50-keV boron bombarding beryllium was measured by an energetic ion-beam backscattering technique using helium ions. This distribution was compared with the range calculated with computer code EDEP1, with the result k 0.101 ± 0.013 for the electronic-stopping k-value. This value is compared with the results of recent interpolations from measurements of other elements. (author)

  5. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  6. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    International Nuclear Information System (INIS)

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved

  7. Extractive fixed-site polymer sorbent for selective boron removal from natural water

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Neha; Kumar, Sanjukta A. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Shinde, Rakesh N.; Pandey, Ashok K. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Sangita D., E-mail: sangdk@barc.gov.in [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Reddy, A.V.R. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-09-15

    Highlights: • N-methyl-D-glucamine was anchored in pores of poly(propylene) membranes. • Functionalized membrane was found to extract boron from natural waters. • Functionalized membrane was easy to prepare, robust and reusuable. • Membrane was characterized in terms of parameters affecting boron sorption. • Applications of membrane were examined for boron removal and quantification. -- Abstract: Water contamination by boron is a widespread environmental problem. The World Health Organization (WHO) recommends maximum boron concentration of 2.4 mg L{sup −1} for drinking water. The paper presents a simple method for preparation of functionalized sheet sorbent for selective extraction of boron from natural water. The pores of commercially available poly(propylene) membrane were functionalized by room temperature in situ crosslinking of poly(vinylbenzyl chloride) with a cyclic diamine piperazine. The precursor membranes were chemically modified with N-methyl D-glucamine which is selective for boron. Characterization of membrane was carried out using scanning electron microscopy (SEM) and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) techniques. The functionalized membrane has been characterized in terms of parameters that influence the sorption of boron from aqueous streams like pH, uptake capacity, contact time, effects of competing ions and reusability. The maximum boron sorption capacity determined experimentally was 28 mg g{sup −1}. The studies showed that trace concentrations of boron were quantitatively removed from water at neutral pH. The developed fixed site polymer sorbent exhibited high sorption capacity and fast kinetics as compared to various sorbents reported in literature. It was successfully applied for the removal of boron from ground water and seawater samples in presence of high concentration of interfering ions.

  8. Sintered boron, production and properties

    International Nuclear Information System (INIS)

    Microhardness HV, tensile properties and Young modulus of sintered boron of different porosity were studied. It was shown that with density growth tensile properties improve. HV and brittle-ductile transition temperature Tsub(b) of sintered boron on the one hand and for silicon and titanium carbide on the other were compared and discussed. It was noted that the general level of HV and Tsub(b) for boron is rather high and at similar relative temperatures these characteristics are much higher. Temperature dependences of linear expansion coefficient, thermal capacity, thermal and temperature conductivity of sintered boron of 20% porosity were studied. Gruneisen parameter was evaluated

  9. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties. PMID:19687534

  10. Large-area boron and carbon scatterers and filters

    Energy Technology Data Exchange (ETDEWEB)

    Woehrle, T.G.

    1979-03-16

    A technique was developed for making large-area boron and carbon scatterers or filters for use on nuclear field experiments and in the ion accelerator/subkilovolt x-ray facility in the Lawrence Livermore Laboratory. These scatterers and filters were made by spraying a mixture of boron in ethyl alcohol or of carbon in isopropyl alcohol on a backing material of 0.00185-cm polyethylene (-CH/sub 2/CH/sub 2/-). In place of the polyethelene, any suitable backing material can be used.

  11. Enhanced diffusion of oxygen depending on Fermi level position in heavily boron-doped silicon

    Energy Technology Data Exchange (ETDEWEB)

    Torigoe, Kazuhisa, E-mail: ktorigoe@sumcosi.com; Fujise, Jun; Ono, Toshiaki [Technology Division, Advanced Evaluation and Technology Development Department, SUMCO Corporation, 1-52 Kubara, Yamashiro-cho, Imari, Saga 849-4256 (Japan); Nakamura, Kozo [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan)

    2014-11-21

    The enhanced diffusivity of oxygen in heavily boron doped silicon was obtained by analyzing oxygen out-diffusion profile changes found at the interface between a lightly boron-doped silicon epitaxial layer and a heavily boron-doped silicon substrate by secondary ion mass spectrometry. It was found that the diffusivity is proportional to the square root of boron concentration in the range of 10{sup 18 }cm{sup −3}–10{sup 19 }cm{sup −3} at temperatures from 750 °C to 950 °C. The model based on the diffusion of oxygen dimers in double positive charge state could explain the enhanced diffusion. We have concluded that oxygen diffusion enhanced in heavily boron-doped silicon is attributed to oxygen dimers ionized depending on Fermi level position.

  12. Enhanced diffusion of oxygen depending on Fermi level position in heavily boron-doped silicon

    International Nuclear Information System (INIS)

    The enhanced diffusivity of oxygen in heavily boron doped silicon was obtained by analyzing oxygen out-diffusion profile changes found at the interface between a lightly boron-doped silicon epitaxial layer and a heavily boron-doped silicon substrate by secondary ion mass spectrometry. It was found that the diffusivity is proportional to the square root of boron concentration in the range of 1018 cm−3–1019 cm−3 at temperatures from 750 °C to 950 °C. The model based on the diffusion of oxygen dimers in double positive charge state could explain the enhanced diffusion. We have concluded that oxygen diffusion enhanced in heavily boron-doped silicon is attributed to oxygen dimers ionized depending on Fermi level position

  13. Spectrophotometric determination of boric acid in boron powder with curcumin

    International Nuclear Information System (INIS)

    A rapid and accurate method was needed to determine trace amounts of boric acid for quality control and specification testing of elemental boron. The reaction between boric acid and curcumin occurs at a measurable rate only when the curcumin molecule is protonated. Protonation takes place at the carbonyl groups in the presence of a strong acid and occurs completely and rapidly when sulfuric acid is added to a solution of curcumin in acetic acid. Spectrophotometric measurements were made. The extraction of boric acid from boron powder was found to be complete within 2h when either water or the diol solution was used. Whatman No. 40 cr 42 filter paper was used to obtain diol samples free of boron particles. The extraction efficiency of 2-ethyl-1,3-hexanediol was evaluated by adding 1 ml of 500 ppM aqueous boric acid and 1 drop of 10% NaOH to accurately weighed samples of boron powder. The water then was evaporated at room temperature and the samples were extracted with diol solution. The data obtained are included. The extraction efficiency also was evaluated by determining the boric acid content of boron which had been recovered from a previous extraction and boric acid determination. The determination of boric acid using curcumin is unaffected by the presence of other compounds, except for fluoride and nitrate ions. 2 tables

  14. BORONIZING OF STEEL

    Directory of Open Access Journals (Sweden)

    Arzum ULUKÖY

    2006-02-01

    Full Text Available Boride layer has many advantages in comparison with traditional hardening methods. The boride layer has high hardening value and keeps it's hardeness at high temperatures, and it also shows favorible properties, such as the resistance to wear, oxidation and corrosion. The process can be applied at variety of materials, for instance steel, cast iron, cast steel, nickel and cobalt alloys and cermets. In this rewiew, boronizing process properties, boride layer on steel surfaces and specifications and the factors that effect boride layer are examined

  15. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF-4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF-4-MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF4. To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed

  16. Towards an understanding of deep boron: study of type IIb blue diamonds

    Science.gov (United States)

    Gaillou, E.; Rost, D.; Post, J. E.; Butler, J. E.

    2012-12-01

    diamonds, which was confirmed by mapping active boron using synchrotron FTIR. ToF-SIMS gives the spectrum of all the masses at once, so both 11B and 10B were detected. However, the counts on 10B were too low at the counting time we used (several hours) to provide significant δ11B measurements. We observed that there is not a strong correlation between the amount of boron and the color intensity in type IIb diamonds (Gaillou et al., 2012). However, the deep-blue colored diamonds are always associated with a "high" boron content, and therefore, future attempted measurements of boron isotopic ratios should be conducted on deep blue (and unfortunately, valuable) diamonds, using either a much longer counting time, or a different ion mass spectrometer (with different standards), that would consume more material. This study shows that the range of boron concentration, even if in the lower range of instrument detectability, should soon be able to provide boron isotopic measurements, and perhaps gives insights into the origin of boron in diamonds, e.g. from a subducted slab and/or from primitive mantle reservoir. Chaussidon M., Marty B. (1995) Primitive boron isotope composition of the mantle, Science, 269, 383-386. Gaillou E., Rost D., Post J.E., Butler J.E. (2012) Boron in natural type IIb blue diamonds: chemical and spectroscopic measurements. Am. Min., 1, 1-18.

  17. Effect of boron-doping on thermoelectric properties of rutile-type titanium dioxide sintered materials

    International Nuclear Information System (INIS)

    Research highlights: → Boron-doped rutile-type TiO2 was prepared by pulsed current sintering method. → The B and TiB2 addition was effective for boron-doping of RTO. → Both electrical resistivity and thermal conductivity decreased using B or TiB2 as a additive. The thermoelectric figure of merit was enhanced by boron-doping. - Abstract: The electrical and thermal transport properties of boron-doped rutile-type TiO2 were investigated. The rutile-type TiO2 powder was mixed with B2O3, TiB2 or B and the mixtures were sintered using the pulse current sintering method at 1473 K. Secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD) measurements showed that B or TiB2 addition was effective for boron-doping. The boron was well distributed in the sintered materials and the unit cell volume of rutile increased as the amounts of added B or TiB2 increased. The electrical resistivity and Seebeck coefficient at 300 K decreased with an increase in the unit cell volume indicating that boron addition leads to an increase in the electron concentration. Thermal conductivity at room temperature also decreased with an increase in unit cell volume and as a result the thermoelectric figure of merit for rutile-type TiO2 was enhanced by boron-doping.

  18. The implementation of a DSSSD in the upgraded boron analysis at LIBAF for applications in geochemistry

    International Nuclear Information System (INIS)

    Interest in high spatial resolution boron analyses from a geochemical perspective is related to the recognition of boron as an important tracer of chemical recycling in the Earth, due to the high solubility of boron in aqueous fluids and silicate melts. Although boron is not a nominal component in common silicates they may still contain significant B-concentrations and hence constitute important boron reservoirs in the deeper parts of the Earth. Boron analyses have been performed at the Lund Ion Beam Analytical Facility for almost 20 years. For the analysis the nuclear reaction p+11B is used with beam energy just below 700 keV where the reaction has a broad resonance. In this paper we describe an upgrade of the system with a double sided silicon strip detector, which allows for much higher count rates compared to the old annular surface detector based system. A gain close to 20 in the data rate allows for high resolution mapping of boron distributions in crystals. This is illustrated by a number of examples. In addition, the detection limits for boron in geological samples are improved, now around 5 ppmw. In this work we address issues with data quality, especially charge normalization, lifetime correction and subtraction of different background components

  19. Structure-phase transformations in surface layer of high speed steel during high current boron implantation

    International Nuclear Information System (INIS)

    High current ion ion implantation (HCII) of boron with energy of 20 keV, current density of 0.53 m A/cm2, dose of 2·1018 B/cm2 at temperature of 500 0C into AISI M2 high speed steel was carried out. The dominant process determining structure-phase state of steel during boron HCII was found to be radiation induced segregation. It leads to clusterization of boron in near-surface region (up to 0.6 μm), inhibition of borides formation processes (borides concentration doesn't exceed 14 %), preferable synthesis of Fe B boride being more rich with boron comparing to Fe2B

  20. Resonant laser-SNMS of boron for analysis of paleoceanographic samples

    Science.gov (United States)

    Vering, G.; Crone, C.; Kathers, P.; Bijma, J.; Arlinghaus, H. F.

    2006-07-01

    Calcite shells of foraminifera, which are accumulated in the ocean sediment, are an important object of paleoceanographic studies to reconstruct environmental parameters of the past. Foraminifera are unicellular organisms living in almost all parts of the ocean during the entire paleoceanographic time scale. The isotope ratio of boron incorporated in the calcite shell delivers information about the pH-value of the ocean at the time the shell was formed. Since the boron fraction of such a shell is about 5 ppm, an extremely sensitive technique is necessary for an exact boron isotope ratio determination. Resonant laser secondary neutral mass spectrometry (r-laser-SNMS) was used to measure boron isotope ratios in calcite shells. Analysis was carried out with a time-of-flight mass spectrometer equipped with an electron impact gun for sputtering and a Ga + primary ion source. Resonant ionization of sputtered boron neutrals was performed via a three-step ionization scheme accomplished with two tunable dye lasers and the fundamental wavelength of a Nd:YAG laser. After optimizing the boron ionization and detection process, boron isotope ratios were directly measured on single foraminiferal shells after removing contaminants by Ar + ion beam sputtering.

  1. Resonant laser-SNMS of boron for analysis of paleoceanographic samples

    Energy Technology Data Exchange (ETDEWEB)

    Vering, G. [Physikalisches Institut, Universitaet Muenster, Wilhelm-Klemm-Str 10, D-48149 Muenster (Germany); Crone, C. [Physikalisches Institut, Universitaet Muenster, Wilhelm-Klemm-Str 10, D-48149 Muenster (Germany); Kathers, P. [Physikalisches Institut, Universitaet Muenster, Wilhelm-Klemm-Str 10, D-48149 Muenster (Germany); Bijma, J. [Carbon Group, Alfred Wegener Institute for Polar and Marine Research, D-27570 Bremerhaven (Germany); Arlinghaus, H.F. [Physikalisches Institut, Universitaet Muenster, Wilhelm-Klemm-Str 10, D-48149 Muenster (Germany)]. E-mail: arlinghaus@uni-muenster.de

    2006-07-30

    Calcite shells of foraminifera, which are accumulated in the ocean sediment, are an important object of paleoceanographic studies to reconstruct environmental parameters of the past. Foraminifera are unicellular organisms living in almost all parts of the ocean during the entire paleoceanographic time scale. The isotope ratio of boron incorporated in the calcite shell delivers information about the pH-value of the ocean at the time the shell was formed. Since the boron fraction of such a shell is about 5 ppm, an extremely sensitive technique is necessary for an exact boron isotope ratio determination. Resonant laser secondary neutral mass spectrometry (r-laser-SNMS) was used to measure boron isotope ratios in calcite shells. Analysis was carried out with a time-of-flight mass spectrometer equipped with an electron impact gun for sputtering and a Ga{sup +} primary ion source. Resonant ionization of sputtered boron neutrals was performed via a three-step ionization scheme accomplished with two tunable dye lasers and the fundamental wavelength of a Nd:YAG laser. After optimizing the boron ionization and detection process, boron isotope ratios were directly measured on single foraminiferal shells after removing contaminants by Ar{sup +} ion beam sputtering.

  2. Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The standard covers analytical procedures to determine compliance of nuclear-grade boron carbide powder and pellets to specifications. The following methods are described in detail: total carbon by combustion and gravimetry; total boron by titrimetry; isotopic composition by mass spectrometry; chloride and fluoride separation by pyrohydrolysis; chloride by constant-current coulometry; fluoride by ion-selective electrode; water by constant-voltage coulometry; impurities by spectrochemical analysis; soluble boron by titrimetry; soluble carbon by a manometric measurement; metallic impurities by a direct reader spectrometric method. (JMT)

  3. The feasibility of boron removal from water by capacitive deionization

    Energy Technology Data Exchange (ETDEWEB)

    Avraham, Eran, E-mail: eranchem@gmail.com [Department of Chemistry, Bar Ilan University, Ramat-Gan 52900 (Israel); Noked, Malachi; Soffer, Abraham; Aurbach, Doron [Department of Chemistry, Bar Ilan University, Ramat-Gan 52900 (Israel)

    2011-07-15

    Highlights: > Boron removal by electrochemical means. > Temporary local pH changes developed within the pores were indicated by using MgCl{sub 2} in the solution as a probe. > The process of Boron extraction from water takes place in two stages: 1. dissociation of boric acid on the negatively polarized electrode. 2. Electro-adsorption of borate ion onto the positively polarized electrode. - Abstract: We report on the possibility of removing boron (in the form of boric acid) from water by electrochemical means. We explore capacitive de-ionization (CDI) processes in which local changes in pH near the surface of high-surface-area activated carbon fiber (ACF) electrodes during charging are utilized, in order to dissociate boric acid into borate ions which can be electro-adsorbed onto the positive electrode in the CDI cells. For this purpose, a special flow-through CDI cell was constructed in which the feed solution flows through the electrodes. Local pH changes near the carbon electrode surface were investigated using a MgCl{sub 2} solution probe in three- (with reference) and two-electrode cells, and described qualitatively. We show that, to a certain extent, boron can indeed be removed from water by CDI.

  4. Dietary boron, brain function, and cognitive performance.

    OpenAIRE

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and wo...

  5. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  6. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B4C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B4C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  7. Banishing brittle bones with boron

    Energy Technology Data Exchange (ETDEWEB)

    A 6-month study indicates that boron, not even considered an essential nutrient for people and animals, may be a key to preventing osteoporosis, say nutritionist Forrest H. Nielsen and anatomist Curtiss D. Hunt at ARS' Grand Forks, North Dakota, Human Nutrition Research Center. They believe the results of the study - the first to look at the nutritional effects of boron in humans - will generate a lot of interest in the element. In the study, 12 postmenopausal women consumed a very low boron diet (0.25 milligrams per day) for 17 weeks then were given a daily 3-mg supplement - representing the boron intake from a well-balanced diet - for 7 more weeks. Within 8 days after the supplement was introduced, the lost 40 percent less calcium, one-third less magnesium, and slightly less phosphorus through the urine. In fact, their calcium and magnesium losses were lower than prestudy levels, when they were on their normal diets. Since boron isn't considered essential for people, there is not recommended intake and no boron supplement on the market. Nielsen says the supplement of sodium borate used in the study was specially prepared based on the amount of boron a person would get from a well-balanced diet containing fruits and vegetables. He says the average boron intake is about 1.5 mg - or half the experimental dose - but average means a lot of people get less and a lot get more. Hunt cautioned that large doses of boron can be toxic, even lethal. The lowest reported lethal dose of boric acid is about 45 grams (1.6 ounces) for an adult and only 2 grams (0.07 ounce) for an infant.

  8. A Preliminary experimental study of the boron concentration in vapor and the isotopic A preliminary experimental study of the boron concentrationin vapor and the isotopic fractionation of boron betweenseawater and vapor during evaporation of seawater

    Institute of Scientific and Technical Information of China (English)

    XIAO; Yingkai

    2001-01-01

    [1]Gast, J. A., Thompson, T. G., Evaporation of boric acid from seawater, Tellus, 1959, 6: 344-347.[2]Nishimura, M., Tanaka, K., Seawater may not be a source of boron in the atmosphere, J. Geoph. Res., 1972, 77: 5239-5242.[3]Fogg, T. R., Duce, R. A., Fasching, J. L., Sampling and determination of boron in the atmosphere, Anal. Chem., 1983, 55:2179-2184.[4]Fogg, T. R., Duce, R. A., Boron in the troposphere: Distribution and fluxes, J. Geoph. Res., 1985, 90: 3781-3796.[5]Spivack, A. J., Berndt, M. E., Seyfreid, W. E., Boron isotope fractionation during supercritical phase separation, Geochim.Cosmochim. Acta, 1990, 54: 2337-2339.[6]Palmer, M. R., London, D., Morgan, G. B. et al., Experimental determination of fractionation of 11B/10B between tourma-line and aqueous vapor: A temperature and pressure-dependent isotopic system, Chem. Geol., 1992, 101:123-129.[7]Hervig, R. L., London, D., Morgan, G. B. et al., Large boron isotope fractionation between hydrous vapor and silicate meltat igneous temperatures, in the Seventh Annual V. M. Goldschmidt Conf., LPI Contribution No. 921, Houston: Lunar and Planetary Institute, 1997, 93-94.[8]Vengosh, A., Starinsky, A., Kolodny, Y. et al., Boron isotope variations during fractional evaporation of seawater: New constraints on the marine vs. nonmarine debate, Geology, 1992, 20: 799-802.[9]Zhang, X. P., Shi, Y. E, Yao, T. D., The variation characteristics of δo18O in precipitation in Northeastern Qing-Zhang Plateau, Science in China, Series B (in Chinese), 1995, 25(5): 540-547.[10]Yu, J. S., Yu, E J., Liu, D. P., The hydrogen and oxygen of isotopic compositions of meteoric water in the eastern part of China, Geochimica (in Chinese), 1987, (1): 22-26.[11]Xiao, Y. K., Xiao, Y., Swihart, G. H. et al., Separation of boron by ion exchange with boron specific resin, Acta Geosci.Sinica (in Chinese), 1997, 18: 286-289.[12]Kiss, E., Ion-exchange separation and spectrophotometric determination of

  9. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    The atomic structure and the lattice dynamics of α boron and of B4C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B4C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  10. Progress in bright ion beams for industry, medicine and fusion at LBNL

    International Nuclear Information System (INIS)

    Recent progresses at LBNL in developing ion beams for industry, radiation therapy and inertial fusion applications were discussed. The highlights include ion beam lithography, boron neutron capture therapy (BNCT), and heavy ion fusion (HIF) drivers using multiple linacs

  11. Determination of Boron in soils and plants samples using spectrophotometric method

    International Nuclear Information System (INIS)

    In this work, the concentration of boron in soil and plant samples was determined with UV-vis spectrophotometer by using azomethine-H as a complex reagent. The calibration curve for boron determination in the range of (0μ3 g.mL-1) was constructed by plotting the measured absorption of the yellow azomethine-H-B complex at λmax = 412.6 nm against boron concentration in the aqueous phase. The detection limit, repeatability limit, intermediate precision, accuracy, and recovery coefficient of this method were calculated and found to be 0.021 μg.mL-1, 0.335% , 0.81%, 2.93%, (98.4-101.5)% respectively. The influence of some foreign ions on the determination of boron were also investigated in detail, most of the studied ions, like iron, iodide, and calcium can be tolerated within the ranges of (20-35μg.mL-1), (3000-5000μg.mL-1) , (15000-30000μg.mL-1) respectively. This is due to the fact, that ascorbic acid and EDTA in the buffer masking reagent reaction system can be very effective in masking these ions. This method was found to be economic and suitable for boron determination in standard and local samples (soil, plant) and requires small amount of sample (1g). This method can also be applied for boron determination in water samples (drinking and industrial waste water).(author)

  12. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  13. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Science.gov (United States)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  14. Molecular ion sources for low energy semiconductor ion implantation (invited)

    International Nuclear Information System (INIS)

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described

  15. Molecular ion sources for low energy semiconductor ion implantation (invited).

    Science.gov (United States)

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described. PMID:26932065

  16. Very high energy implants of boron into silicon

    Science.gov (United States)

    La Ferla, A.; Rimini, E.; Ciavola, G.; Ferla, G.

    1989-02-01

    Boron ions of energy in the 15-50 MeV range and doses in the 10 13-10 15 cm -2 range were implanted into 1 kΩ cm n-type silicon wafers. The samples, after annealing at 800-1250 ° C, were analyzed by spreading resistance profilometry. A simple model was used to predict the range distribution of the implanted ions. The measured projected ranges compare moderately well with calculations, while the concentration in the long tail up to the surface is two to three orders of magnitude higher than that calculated. Annealing at 1250 ° C for 24 h of multiple energy boron implants gives rise to a nearly flat profile with a concentration of 5 × 10 16 cm -3 over 100 μm. A diode with a junction depth of about 120 μm was realized.

  17. Selection of anion exchange resins for boron thermal regeneration systems

    International Nuclear Information System (INIS)

    Boron concentration changes in the reactor coolant are effected using a new development called the boron thermal regeneration system (BTRS). Thermal regeneration refers to the use of ion-exchange resins in either retaining or releasing borate ions as a function of temperature. For the BTRS the equilibrium capacity of commercial and special anion exchange resins was investigated for the degree of cross-linking of anion resins. The equilibrium capacity increases with decreased temperature and depends strongly on the degree of cross-linking having the maximum point at about 7% of DVB. The temperature coefficient of equilibrium capacity of boric acid is also a function of the concentration of external solution and of the cross-linking having a maximum point of around 7% of DVB. Other basic characteristics of anion exchange resin were also investigated. (author)

  18. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  19. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  20. Irreversibility of Pressure Induced Boron Speciation Change in Glass

    OpenAIRE

    Morten M. Smedskjaer; Youngman, Randall E.; Simon Striepe; Marcel Potuzak; Ute Bauer; Joachim Deubener; Harald Behrens; John C. Mauro; Yuanzheng Yue

    2014-01-01

    It is known that the coordination number (CN) of atoms or ions in many materials increases through application of sufficiently high pressure. This also applies to glassy materials. In boron-containing glasses, trigonal BO3 units can be transformed into tetrahedral BO4 under pressure. However, one of the key questions is whether the pressure-quenched CN change in glass is reversible upon annealing below the ambient glass transition temperature (T g). Here we address this issue by performing 11...

  1. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  2. Boron diffusion into nitrogen doped silicon films for P{sup +} polysilicon gate structures

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, Farida; Mahamdi, Ramdane; Jalabert, Laurent; Temple-Boyer, Pierre

    2003-06-23

    This paper deals with the study of the boron diffusion in nitrogen doped silicon (NIDOS) deposited from disilane Si{sub 2}H{sub 6} and ammonia NH{sub 3} for the development of P{sup +} polysilicon gate metal oxide semiconductor (MOS) devices. NIDOS films with varied nitrogen content have been boron implanted, then annealed and finally analysed by secondary ion mass spectroscopy (SIMS). In order to simulate the experimental SIMS of boron concentration profiles in the NIDOS films, a model adapted to the particular conditions of the samples elaboration, i.e. the very high boron concentration and the nitrogen content, has been established. The boron diffusion reduction in NIDOS films with increasing nitrogen rates has been evidenced by the profiles as well as by the obtained diffusion coefficients, which shows that the nitrogen incorporation reduces the boron diffusion. This has been confirmed by capacitance-voltage (C-V) measurements performed on MOS capacitors: the higher the nitrogen content, the lower the flat-band voltage. Finally, these results demonstrate that the improvement of the gate oxide quality occurs with the suppression of the boron penetration.

  3. Production of polyoxoboronate as novel boron compound

    International Nuclear Information System (INIS)

    Polyoxometalates are negatively charged inorganic substances which contain early transitional metal ions such as tungsten, molybdenum, making a cluster with the surrounding oxygen atoms. We prepared novel boron compound, (H15[V1210B32O84Na4]·13H2O; 10B32), as the structure of polyoxometalates. With thermal neutron irradiation, 10B32 shows cytotoxic effect on the proliferation of AsPC-1 cells in colony formation assay. On BNCT model mice bearing AsPC-1, 10B32 shows tumor growth suppression, as well. These results indicate that 10B32 has anti-tumor activity being functioned as a novel neutron capture agent. (author)

  4. Wettability of boron carbide

    International Nuclear Information System (INIS)

    The wettability of boron carbide has been examined by means of the sessile drop method, using the following candidate alloys: (96wt%AG-4wt%Ti), (Ag-26.5wt%Cu-3wt%Ti), (Sn-10wt%Ag-4wt%Ti), Sn(99.95wt%) and Al(99.99wt%). The results show that B4C is completely wetted by the Ag-based alloys. Sn-10wt%Ag-4wt%Ti alloy and pure Al partly wet the B4C surface, while pure Sn does not wet B4C at all. For all the alloys used, except pure Sn, a reaction layer was observed at the interface between the ceramic part and the metal drop. Although the spreading kinetics of the Al-drop was much slower compared with the Ti-containing alloys, the reaction rate was considerably higher in the former case. This suggests that aluminium is an attractive candidate material for brazing of B4C. Formation of the low melting B2O3 at the B4C surface may cause oxidation of the filler metal during joining, which, in turn, leads to a low bond strength

  5. Cathodoluminescence of boron nitride nanotubes doped by ytterbium

    International Nuclear Information System (INIS)

    Boron nitride nanotubes (BNNTs) are wide band gap semiconducting material with super thermal and chemical stabilities, which make them an ideal nano-sized host for luminescent ions. In this work, we report an in situ synthesis of Ytterbium (Yb) doped BNNTs using a ball milling and annealing approach. Yb doped BNNTs show more red-light emissions in the cathodoluminescent (CL) spectrum in comparison with pure BNNTs. The light emission is due to the insertion of Yb ions into the nanotube wall as the BNNTs serve as a host and contribute directly to the light emission. The cathodoluminescent image demonstrates strong cathodoluminescent emission of whole Yb doped BNNTs.

  6. Thermal conductivity of boron carbide-boron nitride composites

    International Nuclear Information System (INIS)

    This paper reports that because of their preferred orientation, the addition of boron nitride dispersions to hot-pressed boron carbide was found to result in a considerable degree of anisotropy in thermal conductivity of the resulting composite, indicated by an increase in the thermal conductivity perpendicular to the hot-pressing direction by as much as a factor of 3 at the highest boron nitride volume fractions of this study, and a decrease in the thermal conductivity parallel to the hot-pressing direction by as much as a factor of 2. The composite data were found to be below the values expected from composite theory, which may represent indirect evidence for the existence of an interfacial thermal barrier

  7. Significance of ICPMS in performance evaluation of Boron Enrichment Plant and elemental boron plant at Heavy Water Plant, Manuguru - an indigenization effort

    International Nuclear Information System (INIS)

    Boron has two naturally occurring stable isotopes viz. 10B (natural abundance ∼ 20%) and 11B. Due to very high neutron absorption cross section, 10B has important applications in the nuclear field. It is used in neutron detector (10B ≅90%) and as control material in fast breeder reactor (10B ≅65%). Heavy Water Board is involved in production of enriched boron (10B) using Ion Exchange Chromatography technique and Exchange Distillation technique. For boron isotope ratio measurement, properly tuned ICPMS gives quick analysis with good precision. During Plant operation, monitoring of each stage is essential. As sample load is very high, therefore a quick analysis technique is required. Though boron isotope ratio measurement on ICPMS has some limitation in terms of its low mass, memory effect etc., if proper care, in terms of plasma stability, can be taken, then ICPMS is the best choice. As ICPMS covers the full isotope concentration range, boron samples from Boron Enrichment Plant have been analysed on the above mentioned ICPMS routinely

  8. Rate effects during radiation-enhanced diffusion of boron in silicon

    International Nuclear Information System (INIS)

    The influence of the rate of defect generation on radiation-enhanced diffusion (RED) of preimplanted boron atoms in silicon due to postbombardment at 750 0C is investigated using SIMS-depth profiling. The generation rate is varied by the beam current density and the ion species, respectively. The excess diffusivity of boron increases proportional to the generation rate for light ion irradiation, but for production rates larger than about 0.2 s-1 displ./atom it decreases again. The rate effects are explained by a dynamical overlapping model. (author)

  9. The boron doping of single crystal diamond for high power diode applications

    Science.gov (United States)

    Nicley, Shannon Singer

    Diamond has the potential to revolutionize the field of high power and high frequency electronic devices as a superlative electronic material. The realization of diamond electronics depends on the control of the growth process of both lightly and heavily boron doped diamond. This dissertation work is focused on furthering the state of the art of boron doped diamond (BDD) growth toward the realization of high power diamond Schottky barrier diodes (SBDs). The achievements of this work include the fabrication of a new dedicated reactor for lightly boron doped diamond deposition, the optimization of growth processes for both heavily and lightly boron doped single crystal diamond (SCD), and the proposal and realization of the corner architecture SBD. Boron doped SCD is grown in microwave plasma-assisted chemical vapor deposition (MPACVD) plasma disc bell-jar reactors, with feedgas mixtures including hydrogen, methane, carbon dioxide, and diborane. Characterization methods for the analysis of BDD are described, including Fourier-transformed infrared spectroscopy (FTIR), Secondary Ion Mass Spectroscopy (SIMS) and temperature-dependent four point probe conductivity for activation energy. The effect of adding carbon dioxide to the plasma feedgas for lightly boron doped diamond is investigated. The effect of diborane levels and other growth parameters on the incorporated boron levels are reported, and the doping efficiency is calculated over a range of boron concentrations. The presence of defects is shown to affect the doping uniformity. The substrate growth temperature dependence of the plasma gas-phase to solid-phase doping efficiency in heavily boron doped SCD deposition is investigated. The substrate temperature during growth is shown to have a significant effect on the grown sample defect morphology, and a temperature dependence of the doping efficiency is also shown. The effect of the growth rate on the doping efficiency is discussed, and the ratio of the boron

  10. The boron trifluoride nitromethane adduct

    Science.gov (United States)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  11. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  12. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  13. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  14. Plasma-assisted Recoil Implantation for Shallow Boron Doping in Silicon

    Science.gov (United States)

    Liu, H. L.; Gearhart, S. S.; Booske, J. H.; Wang, W.

    1997-10-01

    An ion beam mixing technique is used to fabricate ultra-shallow p+/n junctions for the application of sub-micron CMOS source/drain formation. In this method, a thin boron layer is first sputtered onto the Si wafer. Then -3kV argon Plasma Source Ion Implantation (PSII) drives the boron atoms into the Si substrate by means of ion beam mixing. This process avoids the hazardous toxic gases, undesirable F co-implantation and F etching effects. Sub-100nm deep p+/n junctions have been formed with this method. Numerical simulations were performed to predict the recoiled boron profiles, which are in agreement with the experimental data. The boron sputter deposition process has been optimized. Auger electron spectroscopy (AES) confirms high purity of the deposited boron films. Numerical Simulations show that the B films with thickness ranging from 5nm to 10nm result in very similar recoiled B profiles. The thickness of 7.5nm is chosen for the deposited B layer to make the entire process more reproducible. Moreover, a part of the implantation damage will be contained in the B layer, which will be removed prior to the annealing step. This should help to alleviate the transient enhanced B diffusion. The research for the recoil implantation of 7.5nm thick B layer is currently underway.

  15. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    International Nuclear Information System (INIS)

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B10H14) and carborane (C2B10H12) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  16. Methods of Boron-carbon Deposited Film Removal

    Science.gov (United States)

    Airapetov, A.; Terentiev, V.; Voituk, A.; Zakharov, A.

    Boron carbide was proposed as a material for in-situ renewable protecting coating for tungsten tiles of the ITER divertor. It is necessary to develop a method of gasification of boron-carbon film which deposits during B4C sputtering. In this paper the results of the first stage investigation of gasification methods of boron-carbon films are presented. Two gasification methods of films are investigated: interaction with the ozone-oxygen mixture and irradiation in plasma with the working gas composed of oxygen, ethanol, and, in some cases, helium. The gasification rate in the ozone-oxygen mixture at 250 °C for B/C films with different B/C ratio and carbon fiber composite (CFC), was measured. For B/C films the gasification rate decreased with increasing B/C ratio (from 45 nm/h at B/C=0.7 to 4 nm/h at B/C=2.1; for CFC - 15 μm/h). Films gasification rates were measured under ion irradiation from ethanol-oxygen-helium plasma at different temperatures, with different ion energies and different gas mixtures. The maximum obtained removal rate was near 230 nm/h in case of ethanol-oxygen plasma and at 150°C of the sample temperature.

  17. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe2B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  18. Shear amorphization of boron suboxide

    International Nuclear Information System (INIS)

    We report for the first time the shear-induced local amorphization of boron suboxide subjected to nanoindentation. The amorphous bands have a width of ∼1–3 nm and a length of 200–300 nm along the (01¯11) crystal plane. We show direct experimental evidence that the amorphous shear bands of boron suboxide are driven from the coalescence of dislocation loops under high shear stresses. These observations provide insights into the microscopic deformation and failure of high-strength and lightweight ceramics

  19. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  20. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B+, the threshold implantation dose which leads to BED lies between 3 x 1014 and of 1 x 1015/cm-2. Formation of the shallowest possible junctions by 0.5 keV B+ requires that the implant dose be kept lower than this threshold

  1. Pressure-dependent boron isotopic fractionation observed by column chromatography

    Science.gov (United States)

    Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.

    2007-12-01

    Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.

  2. Boron carbide (B4C) coating. Deposition and testing

    International Nuclear Information System (INIS)

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed

  3. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  4. Radiometric determination of boron with mandelic acid and zinc-65-labelled bis(1,10-phenanthroline)zinc(II)

    International Nuclear Information System (INIS)

    The use of solvent extraction methods for the radiometric determination of boron is scarce. This work was undertaken to examine the feasibility of an indirect radiometric method for the determination of trace amounts of boron by solvent extraction. Mandelic acid was used as the complexing agent for boron and the complex anion formed was extracted as an ion associate with zinc-65-labelled bis(1,10-phenanthroline)zinc(II) into isobutyl methyl ketone. The activity of zinc in the organic layer was measured using an NaI-Tl well-type scintillation detector, and was a linear function of the concentration of boron in the aqueous phase over the range 0-10 μg in a final volume of 15 ml. A detection limit of 0.25 μg of boron in a 15 ml aqueous volume could be achieved. The interfering effect of various ions was overcome by selective distillation of boron as methyl borate. The method was applied to the determination of boron in Cr-Mo-B alloy, ointments, talcum powder and eye lotion samples. The reliability of the proposed method was checked by comparing the results obtained for the above samples with those given by ICP-AES. (author)

  5. Analysis of boronized wall in LHD

    International Nuclear Information System (INIS)

    Boronization has been carried out in some experimental fusion devices as one of wall conditioning Methods. The well-known merits of the boronization are as follows: 1) coated-boron on the first wall has strong gettering function for oxygen impurities and oxygen has been kept into boron films as a boron-oxide and 2) boron film covers first wall with apparently low Z materials facing the plasma. However, an operation scenario of boronization for next generation devices such as ITER is not optimized. In this paper, we discuss an optimized method of coated film uniformity in a wide area and a lifetime of boron film as an oxygen getter using experimental data in the large helical device (LHD). In LHD, boronization by glow discharges has been carried out a few times during each experimental campaign. Helium-diborane mixtured gas is used and plasma facing components (PFM) are stainless steel (SS) for the first wall and carbon for the divertor plates kept in the room temperature. Material probes made of SS316 and Si were installed in the vacuum vessel and exposed during the experimental campaign. Depth profiles of their impurities were analyzed using the X-ray Photoelectron Spectroscopy (XPS) and the Auger electron spectroscopy (AES). Two types of gettering process by boron film have been investigated. One is the process during boronization and the other is that after boronization. Concerning a lifetime of boron film, the distribution of oxygen near the top surface region (0 to 20 nm) indicates a process of oxygen gettering, it shows a contribution after boronization. In this paper, these kinds of process using material probes are shown. (authors)

  6. Boron Poisoning of Plutonium Solutions

    International Nuclear Information System (INIS)

    The results of a theoretical investigation into the possible relaxation of criticality concentration limits in wet chemical reprocessing plants, due to the introduction of boron poisoning, are reported. The following systems were considered: 1. 1 in. stainless steel tubes filled with boron carbide at various pitches in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 2. 1 in. and 2 in borosilicate glass Raschig rings in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 3. The concentration of natural boron required for k∞ = 1 in homogeneous mixtures of 239Pu-B-H2O. The method of calculation was Monte Carlo using the GEM code with Nuclear Data File cross-sections. The Raschig rings used are those commercially available. The core model consisted of a cubic arrangement of unit cubes of solution within each of which a Raschig ring was centrally placed. The arrangement was such that the rings were regularly stacked with axes parallel, but the side of the unit cube was fixed to preserve the random packing density. Comparison is made with other reported results on boron poisoning. (author)

  7. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution. PMID:22945740

  8. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  9. Raman spectroscopy of boron carbides and related boron-containing materials

    International Nuclear Information System (INIS)

    Raman spectra of crystalline boron, boron carbide, boron arsenide (B12As2), and boron phosphide (B12P2) are reported. The spectra are compared with other boron-containing materials containing the boron icosahedron as a structural unit. The spectra exhibit similar features some of which correlate with the structure of the icosahedral units of the crystals. The highest Raman lines appear to be especially sensitive to the B-B distance in the polar triangle of the icosahedron. Such Raman structural markers are potentially useful in efforts to tailor electronic properties of these high temperature semiconductors and thermoelectrics

  10. Contributions te the study of methods and factors affecting the spectrophotometric determination of boron traces with carmin uranium compounds

    International Nuclear Information System (INIS)

    The study of some factors affecting the spectrophotometric determination of boron traces with carmin is made; the influence of carmin from different origin, the stability of complex carmin-boric acid in relation with the sulphuric acid concentration, the interference produced by ion nitrate, and the ion uraline and light influence are discussed. (Author) 36 refs

  11. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  12. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  13. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  14. Determination of plant available boron in agricultural soil by using voltammetric method

    Directory of Open Access Journals (Sweden)

    Ebru Çetinkaya

    2014-08-01

    Full Text Available In this study, a novel voltammetric method has been developed to determine the amount of boron in soil. 50 soil samples were collected from 5 typical sites of agricultural area. After hot water extraction of available boron in the soil samples, all boron is complexed by addition of Alizarin Red S (ARS to the extraction solutions.Differential pulse anodic stripping voltammetry was used to determine the amount of the boron complexes. The electrochemical parameters have been optimized according to the experimental results. The optimum scan rate, stirring rate, deposition potential, deposition time and pH values were determined as 5 mVs-1 , 200 rpm, -0.5 V (vs. Ag/AgCl, sat., 15sec. and 7.5, respectively. An oxidation peak was occurred at the peak potential of -0.45 V for Boron-Alizarin complex. The limit of detection, limit of quantification and linear working range were determined for the voltammetric soil-boron analysis. In addition, the interference effects of coexisting ions were successfully investigated. Comparison of the analytical data for analyzing real samples was carried out between the differential pulse anodic stripping voltammetric method and the Azometine H spectrophotometric method have shown good agreement. A great advantage of voltammetry over the spectrophotometric method is found to be simplicity, selectivity and shortening of the analysis time.

  15. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes

    KAUST Repository

    Rahmawati, Karina

    2012-12-01

    Seawater reverse osmosis (SWRO) desalination process provides high quality of fresh water. However, due to some operational constraints mainly scaling control some trace contaminant removal, such as acceptable boron concentration, cannot be achieved in a single pass SWRO system. The objective of this study was to investigate the efficiency of five difference reverse osmosis (RO) membranes (seawater SW and brackish water BW) provided by different manufacturers for boron removal. RO experiments using pretreated real Red Sea water were conducted in parallel to compare membrane performance under the same operating conditions. As expected, results showed that boron rejection increased as the feed pH increased. This was caused by dissociation of boric acid to negatively charged borate ions and more negatively charged membrane surface at elevated pH which enhanced boron rejection. Single pass RO system, with and without elevating the pH, may not be sufficient for two reasons. First, boron concentration in permeate does not fulfill local regulations (<0.5ppm). Second, severe scaling occurs due to operation in alkaline condition, since Ca 2+ and Mg 2+ concentrations are still high to cause salts precipitation. Techno-economical study was performed to select the best configuration and membrane giving the highest performance in terms of boron and TDS rejections and energy consumption. © 2012 Elsevier B.V.

  16. Delta-doping of boron atoms by photoexcited chemical vapor deposition

    International Nuclear Information System (INIS)

    Boron delta-doped structures in Si crystals were fabricated by means of photoexcited chemical vapor deposition (CVD). Core electronic excitation with high-energy photons ranging from vacuum ultraviolet to soft x rays decomposes B2H6 molecules into fragments. Combined with in situ monitoring by spectroscopic ellipsometry, limited number of boron hydrides can be delivered onto a Si(100) surface by using the incubation period before the formation of a solid boron film. The boron-covered surface is subsequently embedded in a Si cap layer by Si2H6 photo-excited CVD. The crystallinity of the Si cap layer depended on its thickness and the substrate temperature. The evaluation of the boron depth profile by secondary ion mass spectroscopy revealed that boron atoms were confined within the delta-doped layer at a concentration of 2.5 x 1020 cm-3 with a full width at half maximum of less than 9 nm, while the epitaxial growth of a 130-nm-thick Si cap layer was sustained at 420 deg. C.

  17. Surface analysis of VPS-W coatings boronized by an ICRF discharge in HT-7

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhongshi, E-mail: zsyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China); Wang Wanjing [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China); Radiosicence Research Laboratory, Shizuoka University, 836 Oya, Shizuoka 422-8529 (Japan); Li Qiang; Wu Jing [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China); Okuno, Kenji; Oya, Yasuhisa [Radiosicence Research Laboratory, Shizuoka University, 836 Oya, Shizuoka 422-8529 (Japan); Luo Guangnan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China)

    2011-10-01

    To understand the surface compositions and the hydrogen isotope behavior in boronized Vacuum plasma spraying (VPS)-W, the boron coating has been achieved by means of Ion Cyclotron Radio Frequency (ICRF) boronization using carborane (C{sub 2}B{sub 10}H{sub 12}) powder as the precursor material in HT-7. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to observe the morphology of the VPS-W and boronized W surfaces. The X-ray Photoelectron Spectroscopy (XPS) of W-4f, O-1s, C-1s and B-1s on the VPS-W sample before and after boronization and after plasma exposure have been measured. The B-B and B-C bonds were observed after boronization treatment for VPS-W. Thermal Desorption Spectroscopy (TDS) experiments were also carried out to investigate the thermal desorption behavior of D implanted into the samples. After HT-7 plasma exposure, the desorption spectrum had a low temperature peak associated with trapping in intrinsic defects in polycrystalline W and a high temperature peak associated with B-O-D and B-C-D bonds.

  18. Photoluminescence and Raman spectroscopy characterization of boron- and nitrogen-doped 6H silicon carbide

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Liu, Chuan; Berg, Rolf W.; Linnarsson, Margareta; Kamiyama, Satoshi; Lu, Zhaoyue; Yakimova, Rositza; Syväjärvi, Mikael; Ou, Haiyan

    2011-01-01

    Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could be...

  19. Characterization of device isolation in GaAs MESFET circuits by boron implantation

    International Nuclear Information System (INIS)

    The use of boron implantation for the electrical isolation of MESFET's and other electronic components in GaAs high speed digital IC's has been investigated. The sheet isolation resistance was measured as a function of the implantation energy and dose and of the anneal temperature and time. Topics considered include fabrication, integrated circuits, electric conductivity, annealing, transistors, ion implantation, and digital systems

  20. Improving the electrochemical properties of nanosized LiFePO4-based electrode by boron doping

    International Nuclear Information System (INIS)

    Highlights: • Thermal treatment of boron phosphate with LiFePO4 provides electrode materials with high performance in lithium half-cells: 160 mAh·g-1 (90% of theoretical capacity) under C/5 rate • The products are composites containing boron-modified LiFePO4, FePO4 and an amorphous phase with ionic diffusion properties • The boron treatment affects textural, conductive and lithium diffusivity of the electrode material leading to higher performance • A limited boron-doping of the phospholivine structure is observed - Abstract: Electrode materials with homogeneous distribution of boron were obtained by heating mixtures of nanosized carbon-coated lithium iron phosphate and BPO4 in 3-9% weight at 700 °C. The materials can be described as nanocomposites containing i) LiFePO4, possibly doped with a low amount of boron, ii) FePO4 and iii) an amorphous layer based on Li4P2O7-derived material that surrounds the phosphate particles. The thermal treatment with BPO4 also triggered changes in the carbon coating graphitic order. Galvanostatic and voltammetric studies in lithium half-cells showed smaller polarisation, higher capacity and better cycle life for the boron-doped composites. For instance, one of the solids, called B6-LiFePO4, provided close to 150 and 140 mAhg-1 (87% and 81% of theoretical capacity, respectively) under C/2.5 and C regimes after several cycles. Improved specific surface area, carbon graphitization, conductivity and lithium ion diffusivity in the boron-doped phospholivine network account for this excellent rate performance. The properties of an amorphous layer surrounding the phosphate particles also account for such higher performance

  1. Synthesis of boron nitride nanotubes by boron ink annealing.

    Science.gov (United States)

    Li, Lu Hua; Chen, Ying; Glushenkov, Alexey M

    2010-03-12

    Ball-milling and annealing is one effective method for the mass production of boron nitride nanotubes (BNNTs). We report that the method has been modified to a boron (B) ink annealing method. In this new process, the nanosize ball-milled B particles are mixed with metal nitrate in ethanol to form an ink-like solution, and then the ink is annealed in nitrogen-containing gas to form nanotubes. The new method greatly enhances the yield of BNNTs, giving a higher density of nanotubes. These improvements are caused by the addition of metal nitrate and ethanol, both of which can strongly boost the nitriding reaction, as revealed by thermogravimetric analysis. The size and structure of BNNTs can be controlled by varying the annealing conditions. This high-yield production of BNNTs in large quantities enables the large-scale application of BNNTs. PMID:20154372

  2. Synthesis of boron nitride nanotubes by boron ink annealing

    International Nuclear Information System (INIS)

    Ball-milling and annealing is one effective method for the mass production of boron nitride nanotubes (BNNTs). We report that the method has been modified to a boron (B) ink annealing method. In this new process, the nanosize ball-milled B particles are mixed with metal nitrate in ethanol to form an ink-like solution, and then the ink is annealed in nitrogen-containing gas to form nanotubes. The new method greatly enhances the yield of BNNTs, giving a higher density of nanotubes. These improvements are caused by the addition of metal nitrate and ethanol, both of which can strongly boost the nitriding reaction, as revealed by thermogravimetric analysis. The size and structure of BNNTs can be controlled by varying the annealing conditions. This high-yield production of BNNTs in large quantities enables the large-scale application of BNNTs.

  3. Synthesis of vinyl boronates from aldehydes by a practical boron-Wittig reaction.

    Science.gov (United States)

    Coombs, John R; Zhang, Liang; Morken, James P

    2015-04-01

    A highly stereoselective boron-Wittig reaction between stable and readily accessible 1,1-bis(pinacolboronates) and aldehydes furnishes a variety of synthetically useful di- and trisubstituted vinyl boronate esters. PMID:25799147

  4. Mass-spectrometric investigation of boron derivatives of fluorinated. beta. -diketones

    Energy Technology Data Exchange (ETDEWEB)

    Lozinskii, M.O.; Fialkov, Yu.A.; Khomenko, V.S.; Rasshinina, T.A.

    1986-07-01

    A series of complexes of fluorinated ..beta..-diketones with boron difluoride were synthesized. Paths of their fragmentation and stability during an electron impact were established. For the complexes studied in the gaseous phase, a specific decomposition of perfluorinated and adamantyl groups with the formation of new ..beta..-diketonate ions with a linear or cyclic structure is characteristic. The possibility of capture of hydrogen atoms by the ..beta..-diketonate ions in the gaseous phase has been discovered.

  5. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  6. Analysis of magnetron sputtered boron oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Buc, Dalibor [Slovak University of Technology in Bratislava (Slovakia); Bello, Igor [City University of Hong Kong, Kowloon, Hong Kong (China); Caplovicova, Maria [Comenius University in Bratislava (Slovakia); Mikula, Milan; Kovac, Jaroslav; Hotovy, Ivan [Slovak University of Technology in Bratislava (Slovakia); Chong, Yat Min [City University of Hong Kong, Kowloon, Hong Kong (China); Siu, Guei Gu [City University of Hong Kong, Kowloon, Hong Kong (China)], E-mail: apggsiu@cityu.edu.hk

    2007-10-15

    Boron oxide films were grown on silicon substrates by radio-frequency (rf) unbalanced magnetron sputtering of a boron target in argon-oxygen gas mixtures with different compositions. Microscopic analyses show that overall boron oxide films are amorphous. The film prepared at oxygen/argon flow rate ratio > 0.05 developed large crystallites of boric acid in localize areas of amorphous boron oxide matrices. These crystallites were unstable and at electron microscopic analysis they continuously transformed to a cubic HBO{sub 2} phase and then completely vanished leaving an underlying amorphous boron oxide film behind. The analyses indicate the coexistence of B{sub 6}O, HBO{sub 2} crystallites and amorphous boron oxide matrices. Fourier transform infrared (FTIR) spectra revealed spectral bands of BOH, BO, BOB and BH groups. Nanohardness and elastic modulus of a film prepared at low oxygen concentration approach 30 and 300 GPa, respectively. These parameters however vary with deposition conditions.

  7. Microwave sintering of boron carbide composites

    International Nuclear Information System (INIS)

    Boron carbide is an important ceramic material because of its high hardness and low specific gravity. it is used for applications involving impact and wear resistance. The disadvantages of boron carbide materials are difficulty in fabrication and sensitivity to brittle fracture. These problems are significantly reduced by production of cermets based on boron carbide and aluminum or aluminum alloys. Microwave heating of boron carbide materials results in ultrarapid heating and high temperatures. Therefore, a finer microstructure is obtained. The objective of this work was to define a technology that would allow the manufacture of boron carbide ceramics having mechanical properties similar to those exhibited by hot-pressed specimens. microwave heating would be used for the densification step. Mixtures of boron carbide and aluminum were considered for this research because aluminum simultaneously acts as a sintering aid and introduces phases that contribute to toughness enhancement

  8. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  9. Electrical Characteristics and Desorption Kinetics of Soil Boron

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The status and activities of boron in soils were studied by the approach of electro-ultrafiltration (EUF). The samples of soils, including brown-red soil and calcareous alluvial soil, were collected from Hubei Province of China. The soil samples were incubated in saturated water and then their nutrients were ultrafiltrated with EUF equipment. Filtration and extraction were conducted in accordance with routine process, but fractions in anode and cathode were all collected. Analyses of B, K+, Mg2+, Ca2+, C1- and pH in fractions supposed that boron existed not only in a simple form of borate but also in ion-pair with cations partly in acidic soil,and borate was the primary form existing in the calcareous soil. In studying desorption kinetics with EUF,the boron content of Fractions 2~6 was accumulated, and the accumulative quantities were fit to time factors in three kinetic equations: the zero-order, first-order, and arabolic diffusion equations. Fit degree of the parabolic diffusion equation was the best, followed by the zero-order quation, and the first-order equation was the worst.

  10. Isotope geochemistry of boron in mantle rocks, tektites and meteorites

    International Nuclear Information System (INIS)

    Recent ion microprobe studies of fresh oceanic basalt glasses and chondrules from primitive meteorites give an overview of the distribution of boron isotopes in the mantle and in extra-terrestrial rocks. After removal of secondary boron isotope variations due to interactions between mantle melts and the oceanic crust, the primitive mantle is found to have a constant δ11B value of -10 ± 2 per mill, similar to that of the bulk continental crust. In contrast, large isotopic variations between -50 and +40 per mill are present at the micron scale in meteoritic chondrules which are among the most primitive objects of the solar system. These isotopic variations imply that a significant part of the boron of the solar system was synthesized in the presolar cloud, likely by spallation reactions between lo-energy cosmic rays and nebular hydrogen. These heterogeneities were partly preserved in chondrules which formed early in the evolution of the solar system but are not observed for the silicate Earth implying an efficient mixing just before or during the accretion of the Earth. (authors). 74 refs., 5 figs., 2 tabs

  11. Tribological properties of cubic, amorphous and hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Cubic boron nitride (c-BN), amorphous boron nitride (a-BN) and hexagonal boron nitride (h-BN) films were deposited onto a silicon substrate using a magnetically enhanced plasma ion plating method which has a hot cathode plasma discharge in a parallel magnetic field. A reciprocating tribometer was used to examine friction and wear properties for these three BN films, whose crystal structures were identified by IR spectroscopy. The tribological properties were revealed to be highly dependent on the films' crystal structures. The c-BN film showed the highest wear and peeling resistance of the tested films. The lubricating performance of the c-BN film proved significant with a long lubricating life and low friction. In contrast, the a-BN and h-BN films showed short lubricating endurance lives and large friction changes in spite of the fact that they are good in general as solid lubricants. These unexpected results are speculated to reflect the premature debonding of the h-BN and a-BN films during sliding and the subsequent discharge of their flakes out of the nip between the substrate and the ball indenter, owing to their lower adhesion to the substrate. (orig.)

  12. Mechanism of boron uptake by hydrocalumite calcined at different temperatures.

    Science.gov (United States)

    Qiu, Xinhong; Sasaki, Keiko; Takaki, Yu; Hirajima, Tsuyoshi; Ideta, Keiko; Miyawaki, Jin

    2015-04-28

    Hydrocalumite (Ca-Al-layered double hydroxide (LDH)) was prepared and applied for the removal of borate. The properties of Ca-Al-LDH calcined at different temperatures were diverse, which affected the sorption density and mechanism of boron species. The sorption density increased with increase in calcined temperature and the sample calcined at 900°C (Ca-Al-LDH-900) showed the maximum sorption density in this work. The solid residues after sorption were characterized by (11)B NMR, (27)Al NMR, SEM, and XRD to investigate the sorption mechanism. Dissolution-reprecipitation was the main mechanism for sorption of borate in Ca-Al-LDH. For Ca-Al-LDH calcined at 300 and 500°C, regeneration occurred in a short time and the newly forming LDHs were decomposed to release Ca(2+) ions and formed ettringite with borate. Two stages occurred in the sorption of boron by Ca-Al-LDH calcined at 900°C. In the first stage, boron species adsorbed on the alumina gel resulting from the hydration of calcined products. In this stage, borate was included as an interlayer anion into the newly forming LDHs in the following stage, and then immobilized as HBO3(2-) into the interlayer, most the LDHs. PMID:25661174

  13. CVD-produced boron filaments

    Science.gov (United States)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  14. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  15. Measurements and applications of high energy boron implants in silicon

    Science.gov (United States)

    La Ferla, A.; Rimini, E.; Carnera, A.; Gasparotto, A.; Ciavola, G.; Ferla, G.

    1991-04-01

    Boron ions were implanted into high resistivity Si wafers at energies in the 15-50 MeV range and doses in the 10 11-10 16 cm -2 range. The distribution of the implanted ions was analyzed by spreading resistance profilometry and for the high fluences by secondary ion mass spectrometry. Some samples were implanted with the beam normal to the wafer surface to study the channeling effect in a pure electronic stopping power regime of slowing down. The experimental measurements of the projected ranges and of the stragglings are compared with calculations based on the usual LSS and Bethe-Bloch formulas for the stopping power. This classic approach justifies quantitatively the distribution for the samples implanted in a random direction. The I- V characteristic of a diode performed by multiple energy boron implants of 15, 22 and 50 MeV is presented. The obtained breakdown voltage, 5 × 10 3 V, represents a possible application of the high energy implants.

  16. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  17. Sintering behavior of boron carbide

    International Nuclear Information System (INIS)

    Pressureless sintering behavior of boron carbide (B4C) in argon was studied, with change in time and temperature, using carbon as sintering aid. Carbon was added via fenolic resin, acting also as a binder. After isostatic pressing the specimens were sintered in a graphite furnace at 19600C/1h, 21600C/15 minutes and 1h and 22000C/1h. The achieved density was 97% of the theoretical. Some mechanical properties and microstructural aspects have been evaluated. (author)

  18. Boron Enrichment in Martian Clay

    OpenAIRE

    James D Stephenson; Lydia J Hallis; Kazuhide Nagashima; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest minera...

  19. Electrodeposited tungsten-nickel-boron: A replacement for hexavalent chromium

    International Nuclear Information System (INIS)

    Chromium, deposited from acidic solutions of its hexavalent ion, has been the rule for wear resistant, corrosion resistant coatings for many years. Although chromium coatings are durable, the plating process generates air emissions, effluent rinse waters, and process solutions that are toxic, suspected carcinogens, and a risk to human health and the environment. Tungsten-nickel-boron (W-Ni-B) alloy deposition is a potential substitute for hexavalent chrome. It has excellent wear, corrosion, and mechanical properties and also may be less of an environmental risk. This study examines the electroplating process and deposit properties of W-Ni-B and compares them with those of hexavalent chrome

  20. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm2, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  1. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  2. Boron deposition from fused salts. Final report

    International Nuclear Information System (INIS)

    A partial evaluation of the feasibility of a process to electrodeposit pure coherent coatings of elemental boron from molten fluorides has been performed. The deposit produced was powdery and acicular, unless the fluoride melt was purified to have very low oxygen concentration. When the oxygen activity was reduced in the melt by addition of crystalline elemental boron, dense, amorphous boron deposit was produced. The boron deposits produced had cracks but were otherwise pure and dense and ranged up to 0.35 mm thick. Information derived during this project suggests that similar deposits might be obtained crack-free up to 1.00 mm thick by process modifications and improvements

  3. Deep levels of nitrogen vacancies complexes in graphite-like boron nitride

    CERN Document Server

    Grinyaev, S N; Lopatin, V V

    2002-01-01

    Paper presents results of theoretical studies using methods of model pseudopotential and of extended elementary cell of deep levels of nitrogen vacancies, small clusters from di- and trivacancies of nitrogen covering nearest defects in one layer of graphite-like boron nitride. On the basis of calculated spectra and intensities of oscillators one interpreted local bands of optical absorption, luminescence, photoconductivity in pyrolytic boron nitride prior to and subsequent to irradiation by fast neutrons, protons and ions of carbon (50-150 keV). One identified not deep levels of activation of thermally stimulated luminescence and conductivity prior to and subsequent to irradiation

  4. Mechanism of boron uptake by hydrocalumite calcined at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xinhong, E-mail: qxinhong@gmail.com [Department of Earth Resources Engineering, Kyushu University,Fukuoka 819-0395 (Japan); Sasaki, Keiko; Takaki, Yu; Hirajima, Tsuyoshi [Department of Earth Resources Engineering, Kyushu University,Fukuoka 819-0395 (Japan); Ideta, Keiko; Miyawaki, Jin [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8180 (Japan)

    2015-04-28

    Highlights: • Higher sorption density of borate was observed at higher calcination temperature. • Sorption of borate by Ca-Al-LDH was mainly through DR mechanism. • Removal of borate by Ca-LDH-300 and Ca-LDH-500 were through forming of ettringite. • Boron was mainly adsorbed and intercalated into hydration of Ca-Al-LDH-900. - Abstract: Hydrocalumite (Ca-Al-layered double hydroxide (LDH)) was prepared and applied for the removal of borate. The properties of Ca-Al-LDH calcined at different temperatures were diverse, which affected the sorption density and mechanism of boron species. The sorption density increased with increase in calcined temperature and the sample calcined at 900 °C (Ca-Al-LDH-900) showed the maximum sorption density in this work. The solid residues after sorption were characterized by {sup 11}B NMR, {sup 27}Al NMR, SEM, and XRD to investigate the sorption mechanism. Dissolution–reprecipitation was the main mechanism for sorption of borate in Ca-Al-LDH. For Ca-Al-LDH calcined at 300 and 500 °C, regeneration occurred in a short time and the newly forming LDHs were decomposed to release Ca{sup 2+} ions and formed ettringite with borate. Two stages occurred in the sorption of boron by Ca-Al-LDH calcined at 900 °C. In the first stage, boron species adsorbed on the alumina gel resulting from the hydration of calcined products. In this stage, borate was included as an interlayer anion into the newly forming LDHs in the following stage, and then immobilized as HBO{sub 3}{sup 2−} into the interlayer, most the LDHs.

  5. Mechanism of boron uptake by hydrocalumite calcined at different temperatures

    International Nuclear Information System (INIS)

    Highlights: • Higher sorption density of borate was observed at higher calcination temperature. • Sorption of borate by Ca-Al-LDH was mainly through DR mechanism. • Removal of borate by Ca-LDH-300 and Ca-LDH-500 were through forming of ettringite. • Boron was mainly adsorbed and intercalated into hydration of Ca-Al-LDH-900. - Abstract: Hydrocalumite (Ca-Al-layered double hydroxide (LDH)) was prepared and applied for the removal of borate. The properties of Ca-Al-LDH calcined at different temperatures were diverse, which affected the sorption density and mechanism of boron species. The sorption density increased with increase in calcined temperature and the sample calcined at 900 °C (Ca-Al-LDH-900) showed the maximum sorption density in this work. The solid residues after sorption were characterized by 11B NMR, 27Al NMR, SEM, and XRD to investigate the sorption mechanism. Dissolution–reprecipitation was the main mechanism for sorption of borate in Ca-Al-LDH. For Ca-Al-LDH calcined at 300 and 500 °C, regeneration occurred in a short time and the newly forming LDHs were decomposed to release Ca2+ ions and formed ettringite with borate. Two stages occurred in the sorption of boron by Ca-Al-LDH calcined at 900 °C. In the first stage, boron species adsorbed on the alumina gel resulting from the hydration of calcined products. In this stage, borate was included as an interlayer anion into the newly forming LDHs in the following stage, and then immobilized as HBO32− into the interlayer, most the LDHs

  6. Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

    Science.gov (United States)

    Moro, M. V.; Silva, T. F.; Trindade, G. F.; Added, N.; Tabacniks, M. H.

    2014-11-01

    The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beans (LAMFI-USP) by the 10B ( p ,αγ(7Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 1016 at/cm2.

  7. Investigations to increase the efficiency of fluorine and boron removal from groundwater using radiation-induced graft polymerization adsorbent

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Agency is performing a research project in the Mizunami Underground Research Laboratory (MIU) to build a firm scientific and technological basis for the studies of the deep underground environment in crystalline rock. In the project, it is necessary to reduce the fluorine and boron concentrations in groundwater pumped from the MIU shafts to levels below the environmental standards. This is done at the MIU water treatment facility using coagulation and ion exchange treatment for fluorine and boron, respectively. In addition, in 2006, research started on the efficient treatment of groundwater for removal of fluorine and boron using a radiation-induced graft polymerization adsorbent. The adsorbent removed boron at a flow rate (space velocity (SV)=120 h-1) higher than that of a general ion exchange resin (SV=10 h-1) and the adsorbent could be used repeatedly. It was also apparent that the pH of groundwater had an influence on adsorption performance. With respect to fluorine removal, more than 90% of fluorine was removed. However, the adsorbent for fluorine showed a lower adsorption capacity than that for boron. The reason for this difference is considered to be related to the initial concentration difference between fluorine and boron in the groundwater. Therefore, it is necessary to define the initial concentrations of dissolved materials, which can be used as better indicators of the performance of the adsorbent. (author)

  8. Highly-focused boron implantation in diamond and imaging using the nuclear reaction 11B(p, α)8Be

    Science.gov (United States)

    Ynsa, M. D.; Ramos, M. A.; Skukan, N.; Torres-Costa, V.; Jakšić, M.

    2015-04-01

    Diamond is an especially attractive material because of its gemological value as well as its unique mechanical, chemical and physical properties. One of these properties is that boron-doped diamond is an electrically p-type semiconducting material at practically any boron concentration. This property makes it possible to use diamonds for multiple industrial and technological applications. Boron can be incorporated into pure diamond by different techniques including ion implantation. Although typical energies used to dope diamond by ion implantation are about 100 keV, implantations have also been performed with energies above MeV. In this work CMAM microbeam setup has been used to demonstrate capability to implant boron with high energies. An 8 MeV boron beam with a size of about 5 × 3 μm2 and a beam current higher than 500 pA has been employed while controlling the beam position and fluence at all irradiated areas. The subsequent mapping of the implanted boron in diamond has been obtained using the strong and broad nuclear reaction 11B(p, α)8Be at Ep = 660 keV. This reaction has a high Q-value (8.59 MeV for α0 and 5.68 MeV for α1) and thus is almost interference-free. The sensitivity of the technique is studied in this work.

  9. Method for determination of boron carbide in wurtzite-like boron nitride

    International Nuclear Information System (INIS)

    A technique for increase of sensitivity and analysis accuracy while boron carbide determination in wurtzite-like boron nitride is proposed. Boron nitride with an addition of boron carbide is bjected to treatment by the mixture of concentrated sulphuric acid and 0.1-0.5 N of porassium bichromate solution at ratio of (2-1):1 at the temperature of mixture boiling. Boron carboide content is calculated according to the quantity of restored Cr(3+), which is determined by titration of Cr(6+) excess with the Mohr's salt solution

  10. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durmazucar, Hasan H.; Guenduez, Guengoer E-mail: ggunduz@metu.edu.tr

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  11. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    International Nuclear Information System (INIS)

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed

  12. Acid dissolution of soils and rocks for the determination of boron by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    The boron concentration in rocks, soils and standard reference materials was determined using hydrofluoric acid-aqua regia dissolution followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) using the B 1 249.773 -nm line, corrected for spectral interference by iron. An excess of fluoride was complexed with aluminium to release boron from the stable fluoroborate ion and to protect the borosilicate and quartz components of the instrument. Boron was not lost by volatilisation during volume reduction. Soil and rock boron values determined using the recommended dissolution procedures were comparable to those obtained using the accepted sodium carbonate fusion procedure and by d.c. arc emission spectrophotometry, and those for standard reference materials showed good agreement and precision with the literature values. (author)

  13. Some physical properties of compacted specimens of highly dispersed boron carbide and boron suboxide

    International Nuclear Information System (INIS)

    Structure, shear modulus and internal friction (IF) of compacted specimens of boron carbide and boron suboxide have been investigated. Microtwins and stacking faults were observed along the {100} plane systems of polycrystalline specimens of boron carbide. Electrical conductivity of the specimens was that of p-type. Concentration of holes varied from 1017 to 1019 cm-3. The IF was measured in the temperature range 80-300 K. It was shown that the IF of boron carbide and that of boron suboxide were characterized with a set of similar relaxation processes. Mechanisms of the relaxation processes in boron carbide and boron suboxide are discussed in terms of the Hasiguti model of interaction between dislocations and point defects

  14. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Boron carbide (B4C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B4C by carbothermic reduction of B2O3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B4C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author)

  15. Growth of boric acid crystallites on the surface of boron-doped silicon carbide samples

    International Nuclear Information System (INIS)

    White crystallites were visually observed on fractured or polished surfaces of SiC samples (grain sizes below ∼500 nm) during exposure to air at room temperature for several days. Characterization of the crystallites by scanning electron microscopy, secondary ion mass spectroscopy, and X-ray diffraction identified B(OH)3 crystals with a strong (002) texture. The rate of boric acid formation was determined by a gravimetric experiment. The rate of weight gain increased significantly after an incubation period of 1 week. Nucleation is initially the rate-limiting process. Subsequently small B(OH)3 crystals form on the surface, whose growth rate is determined by grain boundary diffusion of boron to the SiC surface. An estimated grain boundary boron to the SiC surface. An estimated grain boundary diffusion coefficient of boron in SiC was many orders of magnitude higher than extrapolated literature values

  16. A multiple quantum NMR (MQNMR) study of hydrogen microstructure in boron doped a-Si:H

    International Nuclear Information System (INIS)

    In this paper, an IR and multiple quantum NMR (MQNMR) study of hydrogen microstructure in three boron doped a-Si:H is discussed. The total Si-bonded H content of all films was 6.5 ± 1.0 at. % as determined by the 640 cm-1 IR wagging mode, but their boron content, which was determined by secondary ion mass spectrometry, ranged from 0.02 to 0.3 at %. The number of correlated hydrogen, as measured at a preparation time of 600 μs, was found to be more weakly dependent on the boron content than previously observed in phosphorous-doped glow-discharge films. Upon annealing at 220 degrees C the MQNMR spectrum show a moderate increase in the number of correlated hydrogen in all three samples

  17. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  18. Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas

    International Nuclear Information System (INIS)

    Unnatural cyclic amino acids (UNAAs) are a new class of boron delivery agents that are in a pre-clinical stage of evaluation. In the present study, the biodistribution of racemic forms of the cis- and trans-isomers of the boronated UNAA 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC) and 1-amino-3-boronocycloheptanecarboxylic acid (ABCHC) were evaluted in B16 melanoma bearing mice and this was compared to L-p-boronophenylalanine (BPA). Boron concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) at 2.5 h following intraperitoneal (i.p.) injection of the test agents at a concentration equivalent to 24 mg/B/kg. While all compounds attained comparable tumor boron concentrations, the tumor/blood (T/Bl) boron concentration ratios were far superior for both cis-ABCPC and cis-ABCHC compared to BPA (T/Bl=16.4, and 15.1 vs. 5.4). Secondary ion mass spectrometry (SIMS) imaging revealed that the cis-ABCPC delivered boron to the nuclei, as well as the cytoplasm of B16 cells. Next, a biodistribution study of cis-ABCPC and BPA was carried out in F98 glioma bearing rats following i.p. administration. Both compounds attained comparable tumor boron concentrations but the tumor/brain (T/Br) boron ratio was superior for cis-ABCPC compared to BPA (6 vs. 3.3). Since UNAAs are water soluble and cannot be metabolized by tumor cells, they could be potentially more effective boron delivery agents than BPA. Our data suggest that further studies are warranted to evaluate these compounds prior to the initiation of clinical studies. - Highlights: • Unnatural cyclic amino acids (UNAAs) are a new class of boron delivery agents for neutron capture therapy. • ABCPC and ABCHC attained higher tumor/blood ratios vs. BPA in B16 melanoma bearing mice. • The tumor/brain ratio of cis-ABCPC was superior to BPA (6 vs. 3.3) suggesting that further studies are warranted

  19. Application of ICPMS for performance evaluation of boron enrichment plant at HWP, Manuguru

    International Nuclear Information System (INIS)

    10B enriched compounds are used in neutron control rod in Fast Breeder Reactors (FBR), Neutron Detector, Neutron Capture Therapy, and Neutron Shielding. Heavy Water Board (HWB) is given a mandate to produce enriched elemental boron which is being produced using Ion exchange chromatography and BF3 - ether complex distillation methods. Ion Exchange Chromatography based Boron Enrichment Plant is operating at HWP, Manuguru. Ion Exchange Chromatography based process depends, besides other process parameters, on column run time and movement of band length. For effective process and quality control, it is necessary to analyze 10B/11B ratio in feed, process stream, waste and the product. 10B/11B ratio measurements are possible by Thermal Ionization Mass Spectrometer (TIMS) and Inductively Coupled Plasma Mass Spectrometer (ICPMS), the former offers better accuracy but takes longer analysis time whereas the later offers quick analysis of isotopic ratios and as well as trace metal impurities in the Boric acid

  20. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  1. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration nc for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm-1) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance gc. The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  2. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  3. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  4. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  5. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  6. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  7. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  8. Nuclear fuel management and boron carbide coating

    International Nuclear Information System (INIS)

    In recent years one way of introducing burnable absorber is to coat the fuel pellets by a thin layer of burnable absorber so called integral fuel burnable absorber (IFBA). In this method the fuel is coated with boron nitride or boron carbide. Boron has low absorption cross-section and when it exists on the surface of the fuel, it interacts with thermalized neutron. B4C is a boron compound, which can be used for coating the nuclear fuel. It has high thermal stability and withstands high pressure and temperatures. High technology product of boron carbide has different ratio of B: C. But in nuclear reactor when boron carbide is used, it must be rich with boron. In this research chemical vapor decomposition (CVD) has been using boron trichloride and carbon tetra chloride for reactant materials. The experiments were carried out at high temperatures (1050 degree Celsius, 1225 degree Celsius and 1325 degree Celsius). The coated samples were analyzed using X-Ray diffractometer (XRD), scanning electron microscopy (SEM) and will be presented in this paper. It was seen that decreasing the reaction temperature caused an increase on the quality and thickness of the coating

  9. XPS, SIMS and FTIR-ATR characterization of boronized graphite from the thermonuclear plasma device RFX-mod

    Science.gov (United States)

    Ghezzi, F.; Laguardia, L.; Caniello, R.; Canton, A.; Dal Bello, S.; Rais, B.; Anderle, M.

    2015-11-01

    In this paper the characterization of a thin (tens of nanometers) boron layer on fine grain polycrystalline graphite substrate is presented. The boron film is used as conditioning technique for the full graphite wall of the Reversed Field eXperiment-modified (RFX-mod) experiment, a device for the magnetic confinement of plasmas of thermonuclear interest. Aim of the present analysis is to enlighten the chemical structure of the film, the trapping mechanism that makes it a getter for oxygen and hydrogen and the reason of its loss of effectiveness after exposure to about 100 s of hydrogen plasma. X-ray Photoelectron Spectroscopy (XPS), Secondary Ions Mass Spectrometry (SIMS) and Fourier Transform Infra Red spectroscopy in combination with the Attenuated Total Reflectance (FTIR-ATR) were used to obtain the structure and the chemical composition of graphitic samples as coated or coated and subsequently exposed to hydrogen plasma after boron deposition. The boron layers on the only coated samples were found to be amorphous hydrogenated boron carbide plus a variety of bonds like B-B, B-H, B-O, B-OH, C-C, C-H, C-O, C-OH. Both the thickness and the homogeneity of the layers were found to depend on the distance of the sample from the anode during the deposition. The samples contained oxygen along the layer thickness, at level of 5%, bound to boron. The gettering action of the boron is therefore already active during the deposition itself. The exposure to plasma caused erosion of the boron film and higher content of H and O bound to boron throughout the whole thickness. The interaction of the B layer with plasma is therefore a bulk phenomenon.

  10. Spectrophotometric determination of boron by solvent extraction with hydrobenzoin and crystal violet

    International Nuclear Information System (INIS)

    A highly sensitive and simple method for the spectrophotometric determination of boron was developed. Boron was found to react with hydrobenzoin in weak alkaline medium to form a complex anion extractable into benzene with crystal violet, and the measurement of the absorbance of crystal violet in the extract at 600 nm enabled the determination of boron indirectly. The recommended procedure is as follows: Take an aliquot of the boron solution (2.0 x 10-4 mol l-1) into a 10-ml test tube. Add 1 ml of carbonate buffer solution (pH 9.4) and 0.25 ml of crystal violet solution (1.0 x 10-2 mol l-1), and dilute the mixed solution to 4 ml with deionized water. Shake the solution with 4 ml of benzene solution containing hydrobenzoin (2.0 x 10-2 mol l-1) for 2 min. Measure the absorbance of the organic phase at 600 nm using a 10-mm glass cell against benzene. The calibration curve obeyed Beer's law on the concentration range from 2.5 x 10-6 mol l-1 to 2.5 x 10-5 mol l-1 of boron, and the apparent molar absorptivity was 3.0 x 104 l mol-1 cm-1 at 200C. It was found that many kinds of co-existing ions interfered with the determination. However, this method was applicable to the determination of boron in sea water when chloride ion and cations such as Ca(II) and Mg(II) were previously eliminated by treating the sample solution with Ag2O and cation exchanger resin. The proposed method is a very simple and rapid one, because this method does not require apparatus other than common laboratories and the evaporation to dryness of sample or removal of the excess of reagent. (author)

  11. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  12. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping. PMID:25427850

  13. Stabilization of boron carbide via silicon doping

    Science.gov (United States)

    Proctor, J. E.; Bhakhri, V.; Hao, R.; Prior, T. J.; Scheler, T.; Gregoryanz, E.; Chhowalla, M.; Giulani, F.

    2015-01-01

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  14. The boron-tailing myth in hydrogenated amorphous silicon solar cells

    Science.gov (United States)

    Stuckelberger, M.; Park, B.-S.; Bugnon, G.; Despeisse, M.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C.

    2015-11-01

    The boron-tailing effect in hydrogenated amorphous silicon (a-Si:H) solar cells describes the reduced charge collection specifically in the blue part of the spectrum for absorber layers deposited above a critical temperature. This effect limits the device performance of state-of-the art solar cells: For enhanced current density (reduced bandgap), the deposition temperature should be as high as possible, but boron tailing gets detrimental above 200 °C. To investigate this limitation and to show potential paths to overcome it, we deposited high-efficiency a-Si:H solar cells, varying the deposition temperatures of the p-type and the intrinsic absorber (i) layers between 150 and 250 °C. Using secondary ion mass spectroscopy, we study dedicated stacks of i-p-i layers deposited at different temperatures. This allows us to track boron diffusion at the p-i and i-p interfaces as they occur in the p-i-n and n-i-p configurations of a-Si:H solar cells for different deposition conditions. Finally, we prove step-by-step that the common explanation for boron tailing—boron diffusion from the p layer into the i layer leading to enhanced recombination—is not generally true and propose an alternative explanation for the experimentally observed drop in the external quantum efficiency at short wavelengths.

  15. Determination of boron in Jabroc wood used as a shielding material in nuclear reactors

    International Nuclear Information System (INIS)

    Jabroc are non-impregnated, densified wood laminates developed commercially for a wide range of industrial applications. Jabroc can be used with other neutron shielding materials such as Lead to form complex shielding structures. Its relative light weight and cleanliness in handling are additional features that make it a suitable candidate for the standard design of neutron shielding equipment. Jabroc can also be impregnated with Boron up to a maximum of 4% to be used in areas where Gamma radiation produced on Neutron capture reaches unacceptable dose rates. Boron impregnated Jabroc wood finds application in TAPS 3 and 4 as a shielding material for the Ion Chambers and the Horizontal Flux Units (HFU). The shielding property of this material is optimized by incorporating requisite amount of boron in wood. Boron content in this material has to be determined accurately prior to its use in the nuclear reactors. In this work a method was standardized to determine boron in Jabroc wood samples to check for conformance to specifications. The wood sample flakes were wetted with saturated barium hydroxide solution and dries under IR. The sample was ashed in a muffle furnace at 600℃ for 2 h

  16. The boron-tailing myth in hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stuckelberger, M., E-mail: michael.stuckelberger@alumni.ethz.ch; Bugnon, G.; Despeisse, M.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71, CH-2000 Neuchâtel (Switzerland); Park, B.-S. [SIMS Services, Evans Analytical Group, 810 Kifer Road, Sunnyvale, California 94086 (United States)

    2015-11-16

    The boron-tailing effect in hydrogenated amorphous silicon (a-Si:H) solar cells describes the reduced charge collection specifically in the blue part of the spectrum for absorber layers deposited above a critical temperature. This effect limits the device performance of state-of-the art solar cells: For enhanced current density (reduced bandgap), the deposition temperature should be as high as possible, but boron tailing gets detrimental above 200 °C. To investigate this limitation and to show potential paths to overcome it, we deposited high-efficiency a-Si:H solar cells, varying the deposition temperatures of the p-type and the intrinsic absorber (i) layers between 150 and 250 °C. Using secondary ion mass spectroscopy, we study dedicated stacks of i-p-i layers deposited at different temperatures. This allows us to track boron diffusion at the p-i and i-p interfaces as they occur in the p-i-n and n-i-p configurations of a-Si:H solar cells for different deposition conditions. Finally, we prove step-by-step that the common explanation for boron tailing—boron diffusion from the p layer into the i layer leading to enhanced recombination—is not generally true and propose an alternative explanation for the experimentally observed drop in the external quantum efficiency at short wavelengths.

  17. The boron-tailing myth in hydrogenated amorphous silicon solar cells

    International Nuclear Information System (INIS)

    The boron-tailing effect in hydrogenated amorphous silicon (a-Si:H) solar cells describes the reduced charge collection specifically in the blue part of the spectrum for absorber layers deposited above a critical temperature. This effect limits the device performance of state-of-the art solar cells: For enhanced current density (reduced bandgap), the deposition temperature should be as high as possible, but boron tailing gets detrimental above 200 °C. To investigate this limitation and to show potential paths to overcome it, we deposited high-efficiency a-Si:H solar cells, varying the deposition temperatures of the p-type and the intrinsic absorber (i) layers between 150 and 250 °C. Using secondary ion mass spectroscopy, we study dedicated stacks of i-p-i layers deposited at different temperatures. This allows us to track boron diffusion at the p-i and i-p interfaces as they occur in the p-i-n and n-i-p configurations of a-Si:H solar cells for different deposition conditions. Finally, we prove step-by-step that the common explanation for boron tailing—boron diffusion from the p layer into the i layer leading to enhanced recombination—is not generally true and propose an alternative explanation for the experimentally observed drop in the external quantum efficiency at short wavelengths

  18. Boron-doped MnO{sub 2}/carbon fiber composite electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hong Zhong, E-mail: hzchi@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhu, Hongjie [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Gao, Linhui [Center of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Interstitial ion in MnO{sub 2} lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO{sub 2}/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO{sub 2}/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO{sub 2} crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO{sub 2} lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO{sub 2} still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn{sup 2+} and the absence of active site on the outer surface.

  19. Boron-doped MnO2/carbon fiber composite electrode for supercapacitor

    International Nuclear Information System (INIS)

    Highlights: • Interstitial ion in MnO2 lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO2/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO2/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO2 crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO2 lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO2 still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn2+ and the absence of active site on the outer surface

  20. Caborane beam from ITEP Bernas ion source for semiconductor implanters

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, D.; Hershcovitch, A.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Koshelev, V.; Kulevoy, T.; Jonson, B.; Poole, J.; Alexeyenko, O.; Gurkova, E.; Oks, E.; Gushenets, V.; Polozov, S.; Masunov, E.

    2010-02-01

    A joint research and development of steady state intense boron ion sources for hundreds of electron-volt ion implanters has been in progress for the past 5 years. The difficulties of extraction and transportation of low energy boron beams can be solved by implanting clusters of boron atoms. In Institute for Theoretical and Experimental Physics (ITEP) the Bernas ion source successfully generated the beam of decaborane ions. The carborane (C{sub 2}B{sub 10}H{sub 12}) ion beam is more attractive material due to its better thermal stability. The results of carborane ion beam generation are presented. The result of the beam implantation into the silicon wafer is presented as well.

  1. Burnup performances of boron nitride and boron coated nuclear fuels

    International Nuclear Information System (INIS)

    The nuclear fuels of urania (UOV) and 5% and 10% gadolinia (Gd2O3) containing UO2 previously produced by sol-gel technique were coated with first boron nitride (BN) then boron (B) thin layer by chemical vapor deposition (CVD) and also by plasma enhanced chemical vapor deposition (PECVD) techniques to increase the fuel cycle length and to improve the physical properties. From the cross-sectional view of BN and B layers taken from scanning electron microscope (SEM), the excellent adherence of BN onto fuel and B onto BN layer was observed in both cases. The behavior of fuel burnup, depletion of BN and B, the effect of coating thickness and also Gd2O3 content on the burnup performances of the fuels were identified by using the code WIMS-D/4 for Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) cores. The optimum thickness ratio of B to BN was found as 4 and their thicknesses were chosen as 40 mm and 10 mm respectively in both reactor types to get extended cycle length. The assemblies consisting of fuels with 5% Gd2O3 and also coated with 10 mm BN and 40 mm B layers were determined as candidates for getting higher burnup in both types of reactors

  2. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  3. Boron enrichment in martian clay.

    Science.gov (United States)

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  4. Temperature dependence of damage in boron-implanted silicon

    International Nuclear Information System (INIS)

    The authors have performed a systematic investigation of boron implantation at 30 keV into n-type silicon in the 77-300 K temperature range and mostly at 9 x 1015 cm-2 fluence. The analyses have been performed with ion channeling and cross sectional transmission electron microscopy both in as-implanted samples and in samples annealed in vacuum furnace at 500 degree C and 850 degree C for 30 min. They confirm the impossibility of amorphization at room temperature and the presence of residual damage mainly located at the boron projected range. On the contrary, a continuous amorphous layer can be obtained for implants at 77 K and 193 K; the thickness of the implanted layer is increased by lowering the temperature, at the same time the amorphous-crystalline interface becomes sharper. Sheet resistance measurements performed after isochronal annealing shows an apparent reverse annealing of the dopant only in the sample implanted at 273 K. The striking differences between light and heavy ions observed at room temperature implantation disappears at 77 K and full recovery with no residual damage of the amorphous layer is observed. 10 refs., 5 figs

  5. Experimental boron neutron capture therapy for melanoma: Systemic delivery of boron to melanotic and amelanotic melanoma

    International Nuclear Information System (INIS)

    The boron-containing melanin precursor analogue p-boronophenylalanine (BPA) has previously been shown to selectively deliver boron to pigmented murine melanomas when administered in a single intragastric dose. If boron neutron capture therapy is to become a clinically useful method of radiation therapy for human malignant melanoma, the boron carrier must be capable of delivering useful amounts of boron to remote tumor sites (metastases) and to poorly pigmented melanomas. The authors have now determined the ability of BPA to accumulate in several nonpigmented melanoma models including human melanoma xenografts in nude mice. The absolute amount of boron in the nonpigmented melanomas was about 50% of the observed in the pigmented counterparts but was still selectively concentrated in the tumor relative to normal tissues in amounts sufficient for effective neutron capture therapy. Single intragastric doses of BPA resulted in selective localization of boron in the amelanotic Greene melanoma carried in the anterior chamber of the rabbit eye and in a pigmented murine melanoma growing in the lungs. The ratio of the boron concentration in these tumors to the boron concentration in the immediately adjacent normal tissue was in the range of 3:1 to 4:1. These distribution studies support the proposal that boron neutron capture therapy may be useful as a regional therapy for malignant melanoma

  6. Atomic data from the iron project. 3: Rate coefficients for electron impact excitation of boron-like ions: Ne VI, Mg VIII, Al IX, Si X, S XII, Ar XIV, Ca XVI and Fe XXII

    Science.gov (United States)

    Zhang, Hong Lin; Graziani, Mark; Pradhan, Anil K.

    1994-01-01

    Collison strengths and maxwellian averaged rate coefficients have been calculated for the 105 transitions among all 15 fine structure levels of the 8 LS terms 2s(sup 2) 2 P(P-2(sup 0 sub 1/, 3/2)), 2s2p(sup 2)(P-4(sub 1/2,3/2,5/2), D-2(sub 3/2, 5/2), S-2(sub 1/2), P-2(sub 1/2, 3/2)), 2p(sup 3)(S-4(sup 0)(sub 3/2), D-2(sup 0 sub 3/2, 5/2), P-2(sup 0 sub 1/2, 3/2)) in highly- charged B-like Ne, Mg, Al, Si, S, Ar, Ca and Fe. Rate coefficients have been tabulated at a wide range of temperatures, depending on the ion charge and abundance in plasma sources. Earlier work for O IV has also been extended to include the high temperature range. A brief discussion of the calculations, sample results, and comparison with earlier works is also given. While much of the new data should be applicable to UV spectral diagnostics, the new rates for the important ground state fine structure transition P-2(sup 0 sub 1/2)-P-2(sup 0 sub 3/2) should result in significant revision of the IR cooling rates in plasmas where B-like ions are prominent constituents, since the new rate coefficients are generally higher by several factors compared with the older data.

  7. Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions

    Science.gov (United States)

    Rollion-Bard, C.; Erez, J.

    2009-12-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.

  8. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    OpenAIRE

    Yuya Egawa; Ryotaro Miki; Toshinobu Seki

    2014-01-01

    In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conj...

  9. Synthesis and characterization of ammonium phosphate fertilizers with boron

    OpenAIRE

    ANGELA MAGDA; RODICA PODE; CORNELIA MUNTEAN; MIHAI MEDELEANU; ALEXANDRU POPA

    2010-01-01

    The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the ...

  10. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    International Nuclear Information System (INIS)

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3

  11. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 3000C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 10500C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  12. Proceedings of workshop on 'Boron Chemistry and Boron Neutron Capture Therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 3rd Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 12, in 1991. In this workshop, our attention was focused on the chemical nature of boron compounds and the boron neutron capture therapy (BNCT). First, clinical experiences of BNCT in KURRI in 1990 and 1991 were reported (Chap. 3). The feasibility of the gadolinium neutron capture therapy for brain tumors was discussed (Chap. 4). In the chemical field, a rapid spectrophotometric determination of trace amounts of borons in biological samples is described (Chap. 5). The chemical behaviours of p-boronophenylalanine and its analogs in aqueous solutions were investigated by a paper electrophoresis and infrared spectroscopy (Chap. 6). On the molecular design and synthesis of new boron carriers for BNCT, several new synthetic methods for B-10 containing nucleoside derivatives were shown (Chap. 7). (author)

  13. Quantitative boron detection by neutron transmission method

    International Nuclear Information System (INIS)

    //Quantitative boron detection is mainly performed by chemical methods like colorimetric titration. High neutron absorption cross section of natural boron makes attractive its detection by absorption measurements. This work is an extension of earlier investigations where neutron radiography technique was used for boron detection. In the present investigation, the neutron absorption rate of boron containing solutions is the way to measure quantitatively the boron content of the solutions. The investigation was carried out in Istanbul TRIGA Mark-II reactor. In the end of the experiments, it was observed that even |ppw| grade boron in aqueous solution can be easily detected. The use of this method is certainly very useful for boron utilizing industries like glass and steel industries.The major disadvantage of the method is the obligation to use always aqueous solutions to be able to detect homogeneously the boron content. Then, steel or glass samples have to be put first in an appropriate solution form. The irradiation of steel samples can give the distribution of boron by the help of a imaging and this suggested method will give its quantitative measurement. The superiority of this method are its quick response time and its accuracy. To test this accuracy, a supposed unknown , solution of boric acid is irradiated and then calculated by the help of the calibration curve. The measured value of boric acid was 0.89 mg and the calculated value was found to be 0.98 mg which gives an accuracy of 10 %. It was also seen that the method is more accurate for low concentration. (authors)

  14. Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur

    Science.gov (United States)

    Wieser, Michael Eugene

    1998-09-01

    Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron

  15. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  16. Electrical conductivity enhancement by boron-doping in diamond using first principle calculations

    International Nuclear Information System (INIS)

    Graphical abstract: Representation of the electrical charge distributions of boron-doped diamond. - Highlights: • DFT calculations of boron doping in diamond films using VASP codes. • Electron charge distributions using TDOS/PDOS for B-doped diamond. • B–C bond populations and bond lengths determined to verify structure. • Creation of impurity states in band gap region enhances conductivity. • DFT calculations verify our experimental results for B-doped diamond. - Abstract: Boron doping in diamond plays a vital role in enhancing electrical conductivity of diamond by making it a semiconductor, a conductor or even a superconductor. To elucidate this fact, partial and total density of states has been determined as a function of B-content in diamond. Moreover, the orbital charge distributions, B–C bond lengths and their population have been studied for B-doping in pristine diamond thin films by applying density functional theory (DFT). These parameters have been found to be influenced by the addition of different percentages of boron atoms in diamond. The electronic density of states, B–C bond situations as well as variations in electrical conductivities of diamond films with different boron content and determination of some relationship between these parameters were the basic tasks of this study. Diamond with high boron concentration (∼5.88% B-atoms) showed maximum splitting of energy bands (caused by acceptor impurity states) at the Fermi level which resulted in the enhancement of electron/ion conductivities. Because B atoms either substitute carbon atoms and/or assemble at grain boundaries (interstitial sites) inducing impurity levels close to the top of the valence band. At very high B-concentration, impurity states combine to form an impurity band which accesses the top of the valence band yielding metal like conductivity. Moreover, bond length and charge distributions are found to decrease with increase in boron percentage in diamond. It is

  17. Sintering of boron carbide (B4C)

    International Nuclear Information System (INIS)

    Boron carbide (B4C) is used as a control element in different types of reactors due to the high fast and thermal neutron absorption cross-section of B-10. Requirements of the Advanced Reactor Division of the Bariloche Atomic Center triggered the study of the possibilities of fabricating B4C pellets by cold-pressing and sintering. The results of essays of sinterability of two different commercial boron carbide powders, sintered at temperatures between 1200 and 2200 deg C, are given. Characterizations of the samples were made to determine the evolution of density, porosity, microstructure and boron content as a function of sintering temperature. (Author)

  18. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  19. First boronization in KSTAR: Experiences on carborane

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Suk-Ho, E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Kun-Su; Kim, Kwang-Pyo; Kim, Kyung-Min; Kim, Hong-Tack [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, Jong-Ho; Woo, Hyun-Jong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jae-Min [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Park, Eun-Kyong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Woong-Chae; Kim, Hak-Kun; Park, Kap-Rai; Yang, Hyung-Lyeol; Oh, Yeong-Kook; Na, Hoon-Kyun [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lho, Taehyeop [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, Kyu-Sun [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-08-01

    First boronization was performed in KSTAR tokamak during 2009 campaign in order to reduce oxygen impurities and to lower the power loss due to radiation. We report the results from the experiences on carborane during the first boronization in KSTAR. After the boronization, H{sub 2}O and O{sub 2} level in the vacuum vessel are reduced significantly. The characteristics of the deposited thin films were analyzed by variable angle spectroscopic ellipsometry, XPS, and AES. {approx}1.78 x 10{sup 16} cm{sup -2} s{sup -1} of carbon flux on the wall is estimated by using cavity technique.

  20. Boron site preference in ternary Ta and Nb boron silicides

    International Nuclear Information System (INIS)

    X-ray single crystal (XSC) and neutron powder diffraction data (NPD) were used to elucidate boron site preference for five ternary phases. Ta3Si1−xBx (x=0.112(4)) crystallizes with the Ti3P-type (space group P42/n) with B-atoms sharing the 8g site with Si atoms. Ta5Si3−x (x=0.03(1); Cr5B3- type) crystallizes with space group I4/mcm, exhibiting a small amount of vacancies on the 4a site. Both, Ta5(Si1−xBx)3, x=0.568(3), and Nb5(Si1−xBx)3, x=0.59(2), are part of solid solutions of M5Si3 with Cr5B3-type into the ternary M–Si–B systems (M=Nb or Ta) with B replacing Si on the 8h site. The D88-phase in the Nb–Si–B system crystallizes with the Ti5Ga4-type revealing the formula Nb5Si3B1−x (x=0.292(3)) with B partially filling the voids in the 2b site of the Mn5Si3 parent type. - Graphical abstract: The crystal structures of a series of compounds have been solved from X-ray single crystal diffractometry revealing details on the boron incorporation. Highlights: ► Structure of a series of compounds have been solved by X-ray single crystal diffractometry. ► Ta3(Si1−xBx) (x=0.112) crystallizes with the Ti3P-type, B and Si atoms randomly share the 8g site. ► Structure of Nb5Si3B1−x (x=0.292; Ti5Ga4-type) was solved from NPD.

  1. Synthesis of Boron Nanorods by Smelting Non-Toxic Boron Oxide in Liquid Lithium

    OpenAIRE

    Amartya Chakrabarti; Tao Xu; Laura K. Paulson; Krise, Kate J.; Maguire, John A; Hosmane, Narayan S.

    2010-01-01

    In contrast to the conventional bottom-up syntheses of boron nanostructures, a unique top-down and greener synthetic strategy is presented for boron nanorods involving nontoxic boron oxide powders ultrasonically smelted in liquid lithium under milder conditions. The product was thoroughly characterized by energy dispersive X-ray analysis, atomic emission spectroscopy, thermogravimetric analysis and, UV-Vis spectroscopy, including structural characterization by transmission electron microscop...

  2. Determination of boron isotope ratios in boron carbide by mass spectrometry

    International Nuclear Information System (INIS)

    This paper introduces the direct determination of boron isotope ratios in the boron carbide powder by thermal ionization mass spectrometry. The technique for sample loading, the procedure for heating and the eliminating of effects induced by oxygen are studied. The study indicates that the preparing process for the sample will be shorted, and the time for determination and the exposure dose of the laboratory assistant will be reduced for the reason of directly determination of boron carbide. (authors)

  3. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes

    International Nuclear Information System (INIS)

    Boron-doped carbon nanotubes (B-CNTs) were synthesized using chemical vapour deposition (CVD) floating catalyst method. Toluene was used as the carbon source, triphenylborane as boron as well as the carbon source while ferrocene was used as the catalyst. The amount of triphenylborane used was varied in a solution of toluene and ferrocene. Ferrocene was kept constant at 2.5 wt.%. while a maximum temperature of 900 °C was used for the synthesis of the shaped carbon nanomaterial (SCNMs). SCNMs obtained were characterized by the use of transmission electron microscope (TEM), scanning electron microscope (SEM), high resolution-electron microscope, electron dispersive X-ay spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma-optical emission spectroscopy (ICP-OES), vibrating sample magnetometer (VSM), nitrogen adsorption at 77 K, and inverse gas chromatography. TEM and SEM analysis confirmed SCNMs obtained were a mixture of B-CNTs and carbon nanofibres (B-CNF). EDX and ICP-OES results showed that boron was successively incorporated into the carbon hexagonal network of CNTs and its concentration was dependent on the amount of triphenylborane used. From the VSM results, the boron doping within the CNTs introduced ferromagnetic properties, and as the percentage of boron increased the magnetic coactivity and squareness changed. In addition, boron doping changed the conductivity and the surface energy among other physicochemical properties of B-CNTs. - Highlights: • Boron-doping of carbon nanotubes (CNTs) changes their physiochemical properties. • Amount of boron-doping was dependent on the wt.% of boron precursor used. • Boron-doping changed CNTs surfaces and the distribution of dispersive energy sites. • Boron-doping affected the conductivity and ferromagnetic properties. • Increased boron-doping results in a more favourable interaction with polar probes

  4. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    International Nuclear Information System (INIS)

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and 10B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 µm and 0.5 µm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors

  5. Fully automated measuring equipment for aqueous boron and its application to online monitoring of industrial process effluents.

    Science.gov (United States)

    Ohyama, Seiichi; Abe, Keiko; Ohsumi, Hitoshi; Kobayashi, Hirokazu; Miyazaki, Naotsugu; Miyadera, Koji; Akasaka, Kin-ichi

    2009-06-01

    Fully automated measuring equipment for aqueous boron (referred to as the online boron monitor) was developed on the basis of a rapid potentiometric determination method using a commercial BF4(-) ion-selective electrode (ISE). The equipment can measure boron compounds with concentration ranging from a few to several hundred mg/L, and the measurement is completed in less than 20 min without any pretreatment of the sample. In the monitor, a series of operations for the measurement, i.e., sampling and dispensing of the sample, addition of the chemicals, acquisition and processing of potentiometric data, rinsing of the measurement cell, and calibration of the BF4(-) ISE, is automated. To demonstrate the performance, we installed the monitor in full-scale coal-fired power plants and measured the effluent from a flue gas desulfurization unit. The boron concentration in the wastewater varied significantly depending on the type of coal and the load of power generation. An excellent correlation (R2 = 0.987) was obtained in the measurements between the online boron monitor and inductively coupled plasma atomic emission spectrometry, which proved that the developed monitor can serve as a useful tool for managing boron emission in industrial process effluent. PMID:19569339

  6. Determination of boron in human serum by inductively coupled plasma mass spectrometry after a simple dilution of the sample

    International Nuclear Information System (INIS)

    A method for the determination of boron in human serum is described. Serum samples were only treated with 0.14 M HNO3 (a five-fold dilution). After addition of beryllium as internal standard to correct for matrix effects, samples were introduced with a concentric nebulizer to an inductively coupled plasma mass spectrometer. The magnitude of the boron ion signal was optimized by adjusting the lens voltages and the nebulizer gas flow rate and memory effects, which can be experienced with the conventional methodology for sample introduction, were reduced to an acceptable level by the use of a short (2 min) cleanout procedure. To avoid the overlap from the intense 12C+-peak with the 11B+-peak, the 10B+-peak was used for the boron determinations. This procedure gave a boron blank level of about 1.7 μg l-1 and a detection limit of 0.5 μg l-1 for human serum. External calibration was applied for the quantitation of boron. The proposed method was tested by analysing a 'second-generation' biological reference material Freeze-Dried Human Serum (University of Ghent). Results are also given for three other biological reference materials, namely Wheat Flour SRM 1567a, Bovine Liver SRM 1577a and Total Diet SRM 1548 (National Institute of Standards and Technology). Analyses of serum samples from twelve healthy individuals yielded boron concentrations ranging from 4.1 to 25.8 μg l-1

  7. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    Science.gov (United States)

    Chaudhari, Pradip; Singh, Arvind; Topkar, Anita; Dusane, Rajiv

    2015-04-01

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and 10B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 μm and 0.5 μm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  8. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Pradip, E-mail: pradipcha@gmail.com [Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai – 400076 (India); Singh, Arvind, E-mail: arvindsingh1884@gmail.com [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai – 400085 (India); Topkar, Anita, E-mail: anita.topkar@gmail.com [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai – 400085 (India); Dusane, Rajiv, E-mail: rodusane@iitb.ac.in [Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai – 400076 (India)

    2015-04-11

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and {sup 10}B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 µm and 0.5 µm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  9. A DMS kinetic study of the boron oxides vapor in the combustion front of SHS system Mo + B

    International Nuclear Information System (INIS)

    The distribution of the boron oxides vapor in the combustion wave of the SHS system Mo + B has been studied by the dynamic mass spectrometry technique (DMS) to test the thermodynamically based hypothesis for the key role of gas-phase transport in solid-state combustion. The molecular beam sampling of the gases over the burning tablet was performed by a stationary probe cone from the moving combustion wave. Ion currents of boron oxides were recorded at 10--20 ms intervals that afforded spatial resolution of 0.1--0.2 mm. It has been found that the distribution of the boron oxides vapor pressure along the combustion wave corresponds to the known zones of preheating, reaction, and postcombustion. The rapid increase of B2O2 pressure takes place in the preheating zone as a result of the reaction B(s) + B2O3(g) = B2O2(g). Boron oxides are not observed over the reaction zone because of their complete decay in the reaction with Mo(s) to form molybdenum boride(s). The appearance The appearance of boron oxide vapors over the postcombustion zone is due to the evaporation of B2O3(l). The effective kinetic parameters are estimated from the data obtained. The results show that solid-state combustion of the Mo + B system proceeds predominantly through formation of gas-phase boron oxides

  10. High energy electron irradiation of ion implanted MOS structures with different oxide thickness

    International Nuclear Information System (INIS)

    The effects of 11 MeV electron irradiation of boron ion implanted Si-SiO2 structures with different oxide thickness have been investigated by thermally stimulated charge (TSC) method. It has been shown that electron irradiation of implanted with 20 keV boron ions structures results in the formation of a trap spectrum which locates in the same temperature range as the spectrum of the as-implanted samples. The density of radiation-induced interface traps after electron irradiation has been found to depend on the disposition of the maximum of the previously implanted boron ions with respect to the Si-SiO2 interface

  11. Boron

    International Nuclear Information System (INIS)

    This paper reports that borate minerals and refined borates are used extensively for the manufacture of vitreous materials such as insulation and textile fiberglasses, borosilicate glass, and porcelain enamels and frits. In North America, these applications are estimated to account for over 54% of the borate consumption. Other substantial uses are in soaps and detergents, metallurgy, fire retardants, industrial biocides, agriculture, and various miscellaneous applications. Reported domestic borate consumption in 1990 was estimated by the U.S. Bureau of Mines to be 320 000 metric tons B2O3 versus 354 000 metric tons B2O3 in 1989. Consumption is projected to remain essentially static in 1991. Imports were estimated by the Bureau to be 50 000 metric tons B2O3 in 1990. Exports of boric acid and refined borates were approximately 650 000 metric tons of product, a 15 000 metric ton increase from the 1989 level. This increase partially offsets the drop in the 1990 consumption level

  12. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  13. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11B and 10B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11B relative to the nutrient solution, and the leaves were enriched in 10B and the stem in 11B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  14. Synthesis of Boron-Containing Primary Amines

    Directory of Open Access Journals (Sweden)

    Sheng-Hsuan Chung

    2013-10-01

    Full Text Available In this study, boron-containing primary amines were synthesized for use as building blocks in the study of peptoids. In the first step, Gabriel synthesis conditions were modified to enable the construction of seven different aminomethylphenyl boronate esters in good to excellent yields. These compounds were further utilized to build peptoid analogs via an Ugi four-component reaction (Ugi-4CR under microwave irradiation. The prepared Ugi-4CR boronate esters were then successfully converted to the corresponding boronic acids. Finally, the peptoid structures were successfully modified by cross-coupling to aryl/heteroaryl chlorides via a palladium-mediated Suzuki coupling reaction to yield the corresponding derivatives in moderate to good yields.

  15. Boron toxicity in oil palm (Elaeis guineensis)

    Energy Technology Data Exchange (ETDEWEB)

    Rajaratnam, J.A.

    1973-01-01

    Potted oil palms were treated with fertilizer of borate-46 at several concentrations and the plants were observed for boron toxicity effects. Toxicity symptoms were apparent at high rates but not at rates equivalent to typical Malaysian soils.

  16. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  17. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  18. Boron neutron capture therapy. What is next?

    International Nuclear Information System (INIS)

    BNCT (Boron Neutron Capture Therapy) will have difficulties establishing itself without efficient and conclusive clinical trials of glioma, without the expansion to other tumors, and without efficient programs for compound development and testing. (author)

  19. Ni doping of semiconducting boron carbide

    International Nuclear Information System (INIS)

    The wide band gap, temperature stability, high resistivity, and robustness of semiconducting boron carbide make it an attractive material for device applications. Undoped boron carbide is p type; Ni acts as a n-type dopant. Here we present the results of controlled doping of boron carbide with Ni on thin film samples grown using plasma enhanced chemical vapor deposition. The change in the dopant concentration within the thin film as a function of the dopant flow rate in the precursor gas mixture was confirmed by x-ray photoelectron spectroscopy measurements; with increasing dopant concentration, current-voltage (I-V) curves clearly establish the trend from p-type to n-type boron carbide.

  20. Analysis of boron at Koeberg Power Station

    International Nuclear Information System (INIS)

    Soluble reactivity poisons, also called chemical shim, produce spatially uniform neutron absorption when dissolved in reactor coolant water. The boron-10 isotope having a high neutron absorption coefficient is used in commercial pressurised water reactors (PWR) to limit and control reactivity. This is achieved at Koeberg Nuclear Power Station (KNPS) and the majority of commercial PWR's worldwide by the addition of natural boric acid to the reactor coolant. The boric acid dissolved in the coolant decreases the thermal utilisation factor, causing a decrease in reactivity. By varying the concentration of boric acid (and hence also the B-10 concentration) in the coolant, a process referred to as boration and dilution, the reactivity of the core can be easily managed. An increase in boron concentration (boration) creates negative reactivity and if the boron concentration is reduced (dilution), positive reactivity is added. The changing of boron concentration in a PWR is used primarily to compensate for fuel burn-up or poison build-up. The variation in boron concentration allows control rod use to be minimised, which results in a flatter flux profile over the core than can be produced by control rod manipulation. Accurate laboratory and on-line chemical analysis of boron concentration is important because of its operational implications associated with reactivity control and also for nuclear safety. In a normal fuel cycle, as the nuclear fuel is being consumed, the reactor coolant boric acid (B-10) concentration must be reduced by dilution with purified water to maintain the reactor at constant power. Besides in the reactor coolant water, boric acid concentration is also important in the chemical and volume control system and reactor make-up system for operation. For nuclear safety, boric acid concentrations are technical specification parameters, maintained and monitored in the spent fuel system and safety injection systems. Boron concentration determination is

  1. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  2. Application of drug delivery system for boron neutron capture therapy. Basic research toward clinical application

    International Nuclear Information System (INIS)

    Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10B and thermal neutrons (10B+1n → 7Li+4He (α) +2.31 MeV (93.7%)/2.79 MeV (6.3%)). The resulting lithium ions and αparticles are high linear energy transfer (LET) particles which give high biological effect. Their short range in tissue (5-9 μm) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma etc, recently. Sodium borocaptate (Na210B12H11SH; BSH) and borono-phenylalanine (10BPA) are currently being used in clinical treatments. To achieve the selective delivery of boron atoms to cancer cells, drug delivery system (DDS) becomes an attractive intelligent technology as targeting and controlled release of drugs. We have firstly reported that 10B atoms delivered by immunoliposomes are cytotoxic to human pancreatic carcinoma cells (AsPC-1) after thermal neutron irradiation in vitro. The intra-tumoural injection of boronated immunoliposomes can increase the retention of 10B atoms in tumour cells, causing suppression of tumour growth in vivo following thermal neutron irradiation. We prepared polyethylene-glycol binding liposomes (PEG-liposomes) as an effective 10B carrier to obviate phagocytosis by reticuloendotherial systems. We had prepared 10BSH entrapped Water-in-Oil-in-Water (WOW) emulsion. The 10B concentration in VX-2 tumour after intra-arterial injection of 10BSH entrapped WOW emulsion was superior to the groups of 10BSH entrapped conventional Lipiodol mix emulsion. 10Boron entrapped WOW emulsion is one of the most useful for intra-arterial boron delivery carrier on BNCT to hepatocellular carcinoma. (author)

  3. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  4. Lithium-Beryllium-Boron : Origin and Evolution

    OpenAIRE

    Vangioni-Flam, Elisabeth; Casse, Michel; Audouze, Jean

    1999-01-01

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to...

  5. Innovative boron nitride-doped propellants

    OpenAIRE

    Thelma Manning; Richard Field; Kenneth Klingaman; Michael Fair; John Bolognini; Robin Crownover; Carlton P. Adam; Viral Panchal; Eugene Rozumov; Henry Grau; Paul Matter; Michael Beachy; Christopher Holt; Samuel Sopok

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower ...

  6. A neutron diffraction study of amorphous boron

    Science.gov (United States)

    Delaplane, R. G.; Lundström, T.; Dahlborg, U.; Howells, W. S.

    1991-07-01

    The structure of amorphous boron has been studied with pulsed neutron diffraction techniques using the ISIS facilities at the Rutherford Appleton Laboratory. The experimental static structure factor S(Q) and radial distribution function support a structural model based on units of B12 icosahedra resembling those found in crystalline β-rhombohedral boron, but with a certain degree of disorder occurring in the linking between these subunits.

  7. Structure and composition of plasma deposited boron-containing carbon films

    International Nuclear Information System (INIS)

    Deposition of boron-carbon films on silicon, nickel, graphite, Kh18N10T steel from gas discharge plasma, the film chemical composition and erosion resistance to ion-plasma effects are studied. Conclusion is made on possibility of such film application as well coating for discharge chambers of thermonuclear facilities. Method of deposition from plasma makes it possible to avoid application of the previously used high-toxic and dangerously explosive B2H6

  8. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 105 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  9. Amorphous boron nitride at high pressure

    Science.gov (United States)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  10. Inheritance of Boron Efficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; WANG Yun-Hua; NIAN Fu-Zhao; LU Jian-Wei; MENG Jin-Ling; XU Fang-Sen

    2009-01-01

    Field experiments were conducted to study the inheritance of boron efficiency in oilseed rape (Brassica napus L.) by evaluating the boron (B) efficiency coefficient (BEC,the ratio of the seed yield at below the critical boron level to that at the boron-sufficient level) with 657 F2:3 fines of a population derived from a cross between a B-efficient cultivar,Qingyou 10,and a B-inefficient cultivar,Bakow.Qingyou i0 had high BEC as well as high seed yield at low available soil B.On the contrary,Bakow produced low seed yield at low B status.Boron deficiency decreased the seed yield of the F2:3 lines to different extents and the distribution of BEC of the population showed a bimodal pattern.When the 657 F2:3 lines were grouped into B-efficient lines and B-inefficient lines according to their BEC,the ratio of B-efficient lines to B-inefficient lines fitted the expected ratio (3:1),indicating that one major gene controlled the B-efficiency trait.127 F2:3 lines selected from the population at random,with distribution of BEC similar to that of the overall population,were used to identify the target region for fine mapping of the boron efficiency gene.

  11. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  12. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  13. Boronization of Russian tokamaks from carborane precursors

    International Nuclear Information System (INIS)

    A new and cheap boronization technique using the nontoxic and nonexplosive solid substance carborane has been developed and successfully applied to the Russian tokamaks T-11M, T-3M, T-10 and TUMAN-3. The glow discharge in a mixture of He and carborane vapor produced the amorphous B/C coating with the B/C ratio varied from 2.0-3.7. The deposition rate was about 150 nm/h. The primary effect of boronization was a significant reduction of the impurity influx and the plasma impurity contamination, a sharp decrease of the plasma radiated power, and a decrease of the effective charge. Boronization strongly suppressed the impurity influx caused by additional plasma heating. ECR- and ICR-heating as well as ECR current drive were more effective in boronized vessels. Boronization resulted in a significant extension of the Ne- and q-region of stable tokamak operation. The density limit rose strongly. In Ohmic H-mode energy confinement time increased significantly (by a factor of 2) after boronization. It rose linearly with plasma current Ip and was 10 times higher than Neo-Alcator time at maximum current. ((orig.))

  14. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 17000C was an important technical part of this work

  15. Salt rejection and water transport through boron nitride nanotubes.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Daniel; Chung, Shin-Ho

    2009-10-01

    Nanotube-based water-purification devices have the potential to transform the field of desalination and demineralization through their ability to remove salts and heavy metals without significantly affecting the fast flow of water molecules. Boron nitride nanotubes have shown superior water flow properties compared to carbon nanotubes, and are thus expected to provide a more efficient water purification device. Using molecular dynamics simulations it is shown that a (5, 5) boron nitride nanotube embedded in a silicon nitride membrane can, in principle, obtain 100% salt rejection at concentrations as high as 1 M owing to a high energy barrier while still allowing water molecules to flow at a rate as high as 10.7 water molecules per nanosecond (or 0.9268 L m(-2) h(-1)). Furthermore, ions continue to be rejected under the influence of high hydrostatic pressures up to 612 MPa. When the nanotube radius is increased to 4.14 A the tube becomes cation-selective, and at 5.52 A the tube becomes anion-selective. PMID:19582727

  16. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  17. Development of magnetic resonance technology for noninvasive boron quantification

    International Nuclear Information System (INIS)

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa trademark MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs

  18. Geochemical study of boron isotopes in the process of loess weathering

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Zhiqi; (

    2003-01-01

    [1]Palmer, M. R., Swihart, G. H., Boron isotope geochemistry: An overview, in Rev. Mineral 33, Boron Mineralogy, Petrology and Geochemistry (eds. Grew, E. S., Anovitz, L. M.), Washington, D. C.: Mineral Soc. Am., 1996, 709-744.[2]Chaussidon, M., Albarède, F., Secular boron isotope variations in the continental crust: An ion microprobe study, Earth Planet Sci. Lett., 1992, 108: 229-241.[3]Spivack, A. J., Edmond, J. M., Boron isotope exchange between seawater and the oceanic crust, Geochim. Cosmochim. Acta, 1987, 51: 1033-1043.[4]Vengosh, A., Chivas, A. R., Mcculloch, M. T. et al., Boron isotope geochemistry of Australian salt lakes, Geochim. Cosmochim. Acta, 1991, 55: 2591-2606.[5]Xiao, Y. K., Sun, D. P., Wang, Y. H. et al., Boron isotopic compositions of brine, sediments and source water in Da Qaidam Lake, Qinghai, China, Geochim Cosmochim Acta, 1992,56: 1561-1568.[6]Mcmullen, C. C., Cragg, C. B., Thode, H. G., Absolute rations of 11B/10B in Searles Lake borax, Geochim. Cosmochim. Acta, 1961, 23: 147-150.[7]Palmer, M. R., Sturchio, N. C., The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance, Geochim. Cosmochim. Acta, 1990, 54: 2811-2815.[8]Arndsson, S., Andrèsdèttir, A., Processes controlling the distribution of boron and chlorine in natural waters in Iceland, Geochim. Cosmochim. Acta, 1995, 59: 4125-4146.[9]Aggarwal, J. K., Palmer, M. R., Bullen, T. D. et al., The boron isotope systematics of Iceland geothermal waters: 1. Meteoric water charged systems, Geochim. Cosmochim. Acta, 2000, 64: 579-585.[10]Spivack, A. J., Palmer, M. R., Edmond, J. M., The sedimentary cycle of the boron isotopes, Geochim. Cosmochim. Acta, 1987, 51: 1939-1949.[11]Liu Yingjun, Cao Liming, Li Zhaolin et al., Element Geochemistry (in Chinese), Beijing: Science Press, 1984, 422-428.[12]Schwarcz, H. P., Agyei, E. K., Mcmullen, C. C., Boron isotopic fractionation during clay adsorption

  19. A novel method of boron delivery using sodium iodide symporter for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) effectiveness depends on the preferential sequestration of boron in cancer cells relative to normal tissue cells. We present a novel strategy for sequestering boron using an adenovirus expressing the sodium iodide symporter (NIS). Human glioma grown subcutaneously in athymic mice and orthotopic rat brain tumors were transfected with NIS using a direct tumor injection of adenovirus. Boron bound as sodium tetrafluoroborate (NaBF4) was administered systemically several days after transfection. Tumors were excised hours later and assessed for boron concentration using inductively coupled plasma atomic emission spectroscopy. In the human glioma transfected with NIS, boron concentration was more than 10 fold higher with 100 mg/kg of NaBF4, compared to tumor not transfected. In the orthotopic tumor model, the presence of NIS conferred almost 4 times the boron concentration in rat tumors transfected with human virus compared with contralateral normal brain not transfected. We conclude that adenovirus expressing NIS has the potential to be used as a novel boron delivery agent and should be explored for future clinical applications. (author)

  20. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    International Nuclear Information System (INIS)

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of 10B in tumour cells after injection of a boron compound (in our case B12H11SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  1. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  2. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  3. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  4. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  5. Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Aluminum oxide pellets are used in a reactor core as filler or spacers within fuel, burnable poison, or control rods. In order to be suitable for this purpose, the material must meet certain criteria for impurity content. The test methods in the standard are designed to show whether or not a given material meets these specifications. The following analytical procedures are described in detail: boron by titrimetry; separation of boron by mass spectrometry; isotopic composition by mass spectrometry; separation of halides by pyrohydrolysis; fluoride by ion-selective electrode; chloride, bromide, and iodide by amperometric microtitrimetry; trace elements by emission spectroscopy. (JMT)

  6. ICRF Impurity Behavior with Boron Coated Molybdenum Tiles in Alcator C-Mod

    International Nuclear Information System (INIS)

    Full text: Although ion cyclotron range of frequency (ICRF) heating is considered an excellent candidate for bulk heating, minimizing impurity production associated with ICRF operation, particularly with metallic plasma facing components (PFC), remains one of the primary challenges for ICRF utilization. In C-Mod and present experiments, boronization, an in-situ applied boron film, is utilized to control impurities and its effectiveness has a limited lifetime. In C-Mod, the lifetime has been observed to be proportional to integrated injected RF Joules and the degradation is faster than in equivalent ohmic heated discharges the ICRF is enhancing the erosion rate of the boron film. In an effort to identify important erosion and impurity source locations, we have vacuum plasma sprayed ∼ 100 microns of boron on molybdenum tiles from the outer divertor shelf, main plasma limiters, and the RF antennas. We have also modified the shape of the main plasma limiter and increased our spectroscopic monitoring diagnostics of the main plasma limiter. Finally, we have installed a set of probes to monitor the plasma potential and RF fields on field lines connected an antenna. For ICRF heated H-modes, the core molybdenum levels was significantly reduced and remained at low levels for increased integrated injected RF Joules. The core molybdenum levels also no longer scales with RF power in L-mode in contrast with previous results with boronization and molybdenum plasma facing components. Initial Post campaign analysis of the boron coating will also be presented. Boronization and impurity, typically nitrogen or neon, seeded discharges enabled high plasma and ICRF antenna performance. The boronization suggests that other impurity sources are important but are yet to be identified. Impurity seeding had two important effects: reduced core molybdenum levels and suppressed antenna faults due to arcs and injections from antenna structure. The lower core molybdenum level is surprising since

  7. Boron-11 NMR spectroscopy of excised mouse tissues after infusion of boron compound used in neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is based on selective boron uptake by the tumor and in situ activation by neutron beam. The authors propose the use of B-11 MR spectroscopy to noninvasively study boron uptake in animal tumor models. Sodium mercaptoundeca-hydrododecaborate was infused into female BALB/cJ mice and liver, brain, spleen, kidney, and tumor tissues were excised for MR (27.4MHz) and total boron content measurements. Boron-11 was easily detectable in tumor, liver, spleen, and skin. The results gave a very good correlation (correlation coefficient of .997) between B-11 MR measurements and total boron content of excised mouse tissues

  8. Transport line for beam generated by ITEP Bernas ion source

    International Nuclear Information System (INIS)

    A joint research and development program is underway to investigate beam transport systems for intense steady-state ion sources for ion implanters. Two energy extremes of MeV and hundreds of eV are investigated using a modified Bernas ion source with an indirectly heated cathode. Results are presented for simulations of electrostatic systems performed to investigate the transportation of ion beams over a wide mass range: boron to decaborane

  9. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    Science.gov (United States)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  10. Characteristics of Boron Decorated TiO2 Nanoparticles for Dye-Sensitized Solar Cell Photoanode

    Directory of Open Access Journals (Sweden)

    Ching-Yuan Ho

    2015-01-01

    Full Text Available Different boron weight percents on mixed-phase (anatase and rutile TiO2 nanoparticles were synthesized to investigate structure morphology, defect states, luminescence properties, and energy conversion. The measured results indicate that boron doping of TiO2 both increases the crystallite size and rutile-phase percent in an anatase matrix. Decreasing the band gap by boron doping can extend the absorption to the visible region, while undoped TiO2 exhibits high UV absorption. Oxygen vacancy defects generated by boron ions reduce Ti+4 and affect electron transport in dye-sensitized solar cells. Excess electrons originating from the oxygen vacancies of doped TiO2 downward shift in the conduction band edge and prompt the transfer of photoelectrons from the conduction band of the rutile phase to the lower energy anatase trapping sites; they then separate charges to enhance the photocurrent and Jsc. Although the resistance of the electron recombination (Rk between doped TiO2 photoanode and the electrolyte for the doped TiO2 sample is lower, a longer electron lifetime (τ of 19.7 ms with a higher electron density (ns of 2.1 × 1018 cm−3 contributes to high solar conversion efficiency.

  11. Plasma deposition of boron films with high growth rate and efficiency using carborane

    International Nuclear Information System (INIS)

    The injection of carborane (C2B10H12) on the PISCES-B linear plasma device has been used to produce boron containing films on various target species. Film growth rates achieved are extremely high (up to 30 nm/s) compared to those typically found for glow discharges (∼0.01 nm/s). For low-Z target materials (C and Al) the film production is highly efficient, with the boron film growth rate comparable to the incident ion flux and the injection rate of boron atoms. The boron to carbon ratio is 3.0-3.6 for these films. Similarly high growth rates (∼10 nm/s) are obtained with high-Z target (W), but with lower deposition efficiency and higher B/C film ratio. The high film growth rate/efficiency are apparently linked to the high degree of carborane ionization and dissociation caused by the ∼40 eV PISCES-B plasma, compared with T<1 eV plasmas of glow discharges. This technique opens the possibility of continuously producing protective B films in thermonuclear devices where net erosion rates approach 10 nm/s

  12. Modelisation of boron diffusion from ultra-low-energy implantation in crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ihaddadene-Le Coq, L.; Marcon, J.; Dush-Nicolini, A.; Masmoudi, K.; Ketata, K

    2003-12-31

    We have investigated and modeled the boron diffusion in silicon following ultra-low-energy implantation (500 eV). It is well known that reducing implant energies is an effective way to eliminate transient enhanced diffusion due to the excess of interstitials from the implant. However, for sub-keV B implants diffusion remains enhanced. This enhancement is linked to the presence of a silicon boride layer located at the silicon surface which creates interstitials. This phenomenon is named 'boron enhanced diffusion' (BED). The BED effect is of obvious interest since it counteracts the advantage obtained by reducing the ion implantation energy. For these reasons, we have investigated the diffusion of low-energy boron implanted in crystalline silicon and tested a complete simulation program, which takes into account the effect of boron precipitation and the effect of the silicon boride layer as a source of self-interstitials. Experimental results have been simulated and consistent parameters have been found to fit the data. BED effect has been studied. Model parameters extractions have been discussed.

  13. Modelisation of boron diffusion from ultra-low-energy implantation in crystalline silicon

    International Nuclear Information System (INIS)

    We have investigated and modeled the boron diffusion in silicon following ultra-low-energy implantation (500 eV). It is well known that reducing implant energies is an effective way to eliminate transient enhanced diffusion due to the excess of interstitials from the implant. However, for sub-keV B implants diffusion remains enhanced. This enhancement is linked to the presence of a silicon boride layer located at the silicon surface which creates interstitials. This phenomenon is named 'boron enhanced diffusion' (BED). The BED effect is of obvious interest since it counteracts the advantage obtained by reducing the ion implantation energy. For these reasons, we have investigated the diffusion of low-energy boron implanted in crystalline silicon and tested a complete simulation program, which takes into account the effect of boron precipitation and the effect of the silicon boride layer as a source of self-interstitials. Experimental results have been simulated and consistent parameters have been found to fit the data. BED effect has been studied. Model parameters extractions have been discussed

  14. Isotopic analysis of boron by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    This paper presents a methodology for isotopic analysis of boron by thermal ionization mass spectrometry technique through the ion intensity measurement of Na2BO+2 in H3BO3, Bo and B4C. The samples were loaded on single tantalum filaments by different methods. In the case of H3BO3, the method of neutralization with NaOH was used. For B4C the alcaline fusion with Na2CO3 and for Bo dissolution with 1:1 nitric sulfuric acid mixture followed by neutralization with NaOH was used. The isotopic ratio measurements were obtained by the use of s Faraday cup detector with external precision of ±0,4% and accuracy of ±0,1%, relative to H3BO3 isotopic standard NBS 951. The effects of isotopic fractionation was studied in function of the time during the analyses and the different chemical forms of deposition. (author)

  15. Radiation-enhanced self- and boron diffusion in germanium

    DEFF Research Database (Denmark)

    Schneider, S.; Bracht, H.; Klug, J.N.;

    2013-01-01

    We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘ C and 720 ∘ C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction...... and the interstitialcy and dissociative diffusion mechanisms. The numerical simulations ascertain concentrations of Ge interstitials and B-interstitial pairs that deviate by several orders of magnitude from their thermal equilibrium values. The dominance of self-interstitial related defects under...... irradiation leads to an enhanced self- and B diffusion in Ge. Analysis of the experimental profiles yields data for the diffusion of self-interstitials (I ) and the thermal equilibrium concentration of BI pairs in Ge. The temperature dependence of these quantities provides the migration enthalpy of I and...

  16. Effects of ion implantation on surface charges in dielectrics. MOS structures

    International Nuclear Information System (INIS)

    Surface charges in SiO2 layers implanted with boron ions have been investigated by thermally stimulated methods, such as thermally stimulated depolarization and potential difference measurements, in the temperature range 300-900 K

  17. Removal of europium from boric acid for recycling of boron carbide in fast reactors

    International Nuclear Information System (INIS)

    This paper describes results of work aimed at the removal of europium from boric acid solution. This study was undertaken as part of our efforts towards development of a flow-sheet for recycling of partially depleted boron carbide discharged from fast reactors. Commercially available sorbents such as Duolite, IR-77 and phosphinic acid resin (MPBPA) were evaluated for removal of europium from boric acid solution. The ion exchange of H+/Eu3+ increased with decrease in the concentration of nitric acid, sodium ion and boric acid. The selectivity of the sorbents toward europium was found to be in the order Duolite ≥ IR-77 ≥ MPBPA. (author)

  18. Boron: out of the sky and onto the ground

    International Nuclear Information System (INIS)

    Now an accepted, engineered material for aerospace applications, boron is taking its place on the ground. Both current production applications, prototype (development) applications, and speculative applications abound. In the leisure product market, boron epoxy or boron aluminum has been used or tried in golf clubs (in combination with graphite epoxy or to reinforce aluminum or steel), in tennis racquets, in bicycles, racing shells, skis and skipoles, bows and arrows, and others. In the industrial area, boron has been used to reduce fatigue, increase stiffness, or for its abrasive properties. Textile machinery, honing tools, and cut off wheels or saws are among the applications. In the medical field, prosthetics and orthotic braces, wheel chairs, canes, and crutches are all good applications for boron. Applications for boron in transportation, construction, and heavy industry are also possible. The volume of boron used in these applications could have a major impact on prices, making boron composite parts cost competitive with conventional materials. (U.S.)

  19. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121. ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  20. Research on the boron contamination at the p/i interface of microcrystalline silicon solar cells deposited in a single PECVD chamber

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Dan; Sun Fu-He; Wei Chang-Chun; Sun Jian; Zhang De-Kun; Geng Xin-Hua; Xiong Shao-Zhen; Zhao Ying

    2009-01-01

    This paper studies boron contamination at the interface between the p and i layers of μc-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary Ion Mass Spectroscopy. It is found that the mixed-phase μc-Si:H materials with 40% crystalline volume fraction is easy to be affected by the residual boron in the reactor. The experimental results showed that a 500-nm thick μc-Si:H covering layer or a 30-seconds of hydrogen plasma treatment can effectively reduce the boron contamination at the p/i interface. However, from viewpoint of cost reduction, the hydrogen plasma treatment is desirable for solar cell manufacture because the substrate is not moved during the hydrogen plasma treatment.

  1. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    Science.gov (United States)

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  2. Boron isotope fractionation during brucite deposition from artificial seawater

    OpenAIRE

    J. Xiao; Xiao, Y. K.; Liu, C. Q.; Z. D. Jin

    2011-01-01

    Experiments involving boron incorporation into brucite (Mg(OH)2) from magnesium-free artificial seawater with pH values ranging from 9.5 to 13.0 were carried out to better understand the incorporation behavior of boron into brucite. The results show that both concentration of boron in deposited brucite ([B]d) and its boron partition coefficient (Kd) between deposited brucite and final seawater are controll...

  3. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  4. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P2O5) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  5. Glass manufacturing process having boron and fluorine pollution abating features

    Energy Technology Data Exchange (ETDEWEB)

    Froberg, M.L.; Schroeder, C.F.

    1981-11-03

    Boron and/or fluorine values are reclaimed from a boron and/or fluorine laden gas stream emanating from a glass melter by means of a preheating bed of glass-forming batch agglomerates. The boron and/or fluorine values in such gases are first reacted with a boron and/or fluorine reactive material and the gases then conveyed into such a preheating bed to separate at least a portion of the reaction products.

  6. Glass manufacturing process having boron and fluorine pollution abating features

    International Nuclear Information System (INIS)

    Boron and/or fluorine values are reclaimed from a boron and/or fluorine laden gas stream emanating from a glass melter by means of a preheating bed of glass-forming batch agglomerates. The boron and/or fluorine values in such gases are first reacted with a boron and/or fluorine reactive material and the gases then conveyed into such a preheating bed to separate at least a portion of the reaction products

  7. Plasma Processing of Boron-Doped Nano-Crystalline Diamond Thin Film Fabricated on Poly-Crystalline Diamond Thick Film

    International Nuclear Information System (INIS)

    Plasma treatments of boron-doped nano-crystalline diamond (NCD) thin films were carried out in order to improve their electrical properties of the films. Boron-doped NCD thin films were fabricated on well polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor, then they were processed in methane, argon, hydrogen and B2H6 (0.1% diluted by H2) plasmas, respectively. Scanning electron microscopy (SEM) and atomic force microscope (AFM) results show that the surface morphology changed little during the 10 min treatment. Secondary ion mass spectroscopy (SIMS) results indicate that B2H6 plasma was efficient for increasing boron concentration in NCD films, while the carrier analyses demonstrates that CH4 plasma processing was effective to activate the dopants and resulted in good electrical properties.

  8. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  9. Synthesis of multiwall boron nitride nanotubes dependent on crystallographic structure of boron

    International Nuclear Information System (INIS)

    Synthesis and growth of multiwall boron nitride nanotubes (BNNTs) under the B and ZrO2 seed system in the milling–annealing process were investigated. BNNTs were synthesized by annealing a mechanically activated boron powder under nitrogen environment. We explored the aspects of the mechanical activation energy transferred to milled crystalline boron powder producing structural disorder and borothermal reaction of the ZrO2 seed particles on the synthesis of BNNTs during annealing. Under these circumstances, the chemical reaction of amorphous boron coated on the seed nanoparticles with nitrogen synthesizing amorphous BN could be enhanced. It was found that amorphous BN was crystallized to the layer structure and then grown to multiwall BNNTs during annealing. Especially, bamboo-type multiwall BNNTs were mostly produced and grown to the tail-side of the nanotube not to the round head-side. Open gaps with ∼0.3 nm of the bamboo side walls of BNNTs were also observed. Based on these understandings, it might be possible to produce bamboo-type multiwall BNNTs by optimization of the structure and shape of boron coat on the seed nanoparticles. -- Highlights: ► Structure of B is a key factor for BNNT synthesis for milling–annealing method. ► Amorphous boron is coated on the seed during milling of crystalline boron. ► Amorphous BN nanoclusters are crystallized during annealing. ► Growing of bamboo BNNTs is not to the round head-side but to the tail-side.

  10. Modelling of Boron Trapping at End-of-Range defects in pre-amorphized ultra-shallow junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bazizi, E.M. [LAAS/CNRS, University of Toulouse, 7 av. Col. Roche, 31077 Toulouse (France); STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); CEMES/CNRS, 29 rue J. Marvig, 31055 Toulouse (France)], E-mail: bazizi@laas.fr; Fazzini, P.F. [LAAS/CNRS, University of Toulouse, 7 av. Col. Roche, 31077 Toulouse (France); Zechner, C.; Tsibizov, A. [Synopsys Switzerland LLC, Affolternstrasse 52, 8050 Zuerich (Switzerland); Kheyrandish, H. [CSMA, Queens Road, Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ (United Kingdom); Pakfar, A.; Ciampolini, L.; Tavernier, C. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Cristiano, F. [LAAS/CNRS, University of Toulouse, 7 av. Col. Roche, 31077 Toulouse (France)

    2008-12-05

    In this work, the evolution of boron trapping at End-of-Range (EOR) defects was investigated by secondary ion mass spectrometry (SIMS) and transmission electron microscope (TEM). Si wafers with a constant boron concentration of 2 x 10{sup 18} cm{sup -3} were implanted with 30 keV germanium and with a dose of 10{sup 15} cm{sup -2} and then annealed at 700, 800, or 900 deg. C in an N{sub 2} ambient for various times. The experimental results suggest that the evolution of boron-trapping peak is driven by the evolution of {l_brace}3 1 1{r_brace} defects and that the dislocation loops contribution to the trapping mechanism is less pronounced. An analytic model for the concurrent boron trapping at {l_brace}3 1 1{r_brace} defects and dislocation loops was developed by taking into account the geometry of the EOR defects. The trapped species is represented by neutral BI pairs which can be captured either by {l_brace}3 1 1{r_brace} defects or by dislocation loops. The model accurately reproduces the complex evolution of the trapping peak as a function of both the annealing time and temperature. These results confirm that the evolution of the boron-trapping peak is closely related to the evolution of the {l_brace}3 1 1{r_brace} defects, therefore suggesting that boron trapping is associated to the capture and release of boron atoms at the {l_brace}3 1 1{r_brace} defects formed in the EOR region.

  11. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2016-02-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  12. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  13. Boron-containing amino carboxylic acid compounds and uses thereof

    International Nuclear Information System (INIS)

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed

  14. Enhanced Plasma Performance by ICRF Boronization

    Institute of Scientific and Technical Information of China (English)

    万宝年; 赵燕平; 李建刚; 宋梅; 吴振伟; 罗家融; 李成富; 王小明

    2002-01-01

    Boronization with carborane (C2B10H12) by ICRF has been applied routinely to the walls of HT-7 super-conducting tokamak for the reduction of impurity influx, especially carbon and oxygen. Significant suppression of metallic impurities and radiating power fraction are achieved. The improved confinement for both particle and energy is observed in full range of operation parameters. Energy balance analysis shows that electron heat diffusion coefficient is strongly reduced. Measurements by Langmuir probes at the edge plasma show that the poloidal velocity shear after boronization is changed to a profile favoring to good confinement. The main emphasis of this paper is to describe effects of boronization on aspects of the enhanced plasma performance.

  15. Anomalous electronic transport in boron carbides

    Science.gov (United States)

    Emin, D.; Samara, G. A.; Wood, C.

    The boron carbides are composed of icosahedral units, B12 and B11C1, linked together by strong intericosahedral bonds. With such distributions of icosahedral and intericosahedral compositions, boron carbides, B/sub 1-x/C/sub x/, are single phase over 0.1 less than or equal to x less than or equal to 0.2. The electronic transport properties of the boron carbides were examined within this single-phase region. Results are inconsistent with conventional analyses of both itinerant and hopping transport. Most striking are Seebeck coefficients which are both large and rapidly increasing functions of temperature despite thermally activated dc conductivities. These results manifest the hopping of small bipolaronic holes between carbon-containing icosahedral that are inequivalent in energy and electron-lattice coupling strength. Under hydrostatic pressures up to approx. 25 kbar, the dc conductivities increase with pressure. This anomalous behavior for hopping conduction reflects the distinctive structure and bonding of these materials.

  16. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT)

  17. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    Science.gov (United States)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  18. boron and boron nitride coated nuclear fuel production in plasma atmosphere

    International Nuclear Information System (INIS)

    In these study uranium dioxide (UO2) and 5, 10 % gadolinium oxide (Gd2O3) containing UO2 nuclear fuel pellets were coated with first boron nitride (BN) then boron (B) layers as the results of the reactions between boron trichloride (BCl3) with ammonia (NH3) and BCl3 with hydrogen (H2) in the medium of argon (Ar) plasma created at 650 W and 500 W and 27.12 MHz to increase the fuel burnup efficiency and reactor core life by the method of plasma enhanced chemical vapor deposition (PECVD). Grainy BN and B structures were observed on the photographs taken from scanning electron microscope (SEM)

  19. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  20. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  1. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    International Nuclear Information System (INIS)

    In this study, 4 x 4 mm2 freestanding boron-doped diamond single crystals with thickness up to 260 μm have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 1018 to 1020 cm-3 which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 Ω cm have been obtained.

  2. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Science.gov (United States)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A.; Bisaro, R.; Servet, B.; Garry, G.; Barjon, J.

    2012-03-01

    In this study, 4 × 4 mm2 freestanding boron-doped diamond single crystals with thickness up to 260 μm have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 1018 to 1020 cm-3 which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 Ω cm have been obtained.

  3. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  4. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  5. Can Two-Dimensional Boron Superconduct?

    Science.gov (United States)

    Penev, Evgeni S; Kutana, Alex; Yakobson, Boris I

    2016-04-13

    Two-dimensional boron is expected to exhibit various structural polymorphs, all being metallic. Additionally, its small atomic mass suggests strong electron-phonon coupling, which in turn can enable superconducting behavior. Here we perform first-principles analysis of electronic structure, phonon spectra, and electron-phonon coupling of selected 2D boron polymorphs and show that the most stable structures predicted to feasibly form on a metal substrate should also exhibit intrinsic phonon-mediated superconductivity, with estimated critical temperature in the range of Tc ≈ 10-20 K. PMID:27003635

  6. Thermal conductivity behavior of boron carbides

    Science.gov (United States)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  7. Mass spectroscopic analysis of a plume induced by laser ablation of pyrolytic boron nitride

    CERN Document Server

    Chae, H B; Lee, I H; Park, S M

    1998-01-01

    The laser ablation of a pyrolytic boron nitride (pBN) target was investigated by time-of- flight quadrupole mass spectroscopy. According to the laser-correlated ion mass spectra, B sup + and B sub 2 sup + ions were produced, but neither N sup + , N sub 2 sup + , or BN sup + ions were observed at laser fluences below 1 J/cm sup 2. Instead, neutral N sub 2 molecules were found to be formed. The mean velocities and kinetic energies of the B sup + ions were obtained by time-of-flight analysis. Also, reactive laser ablation under a N sub 2 atmosphere was attempted by using a pulsed valve synchronized with the laser pulse.

  8. The electrical properties of sulfur-implanted cubic boron nitride thin films

    Institute of Scientific and Technical Information of China (English)

    Deng Jin-Xiang; Qin Yang; Kong Le; Yang Xue-Liang; Li Ting; Zhao Wei-Ping; Yang Ping

    2012-01-01

    Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions.The implantation energy of the ions is 19 keV,and the implantation dose is between 1015 ions/cm2 and 1016 ions/cm2.The doped c-BN thin films are then annealed at a temperature between 400 ℃ and 800 ℃.The results show that the surface resistivity of doped and annealed c-BN thin films is lowered by two to three orders,and the activation energy of c-BN thin films is 0.18 eV.

  9. Boron carbide-based ceramics via polymer route synthesis

    International Nuclear Information System (INIS)

    Boron carbide is a ceramic material with excellent high temperature physical properties. As compared to conventional techniques, the preparation of boron carbide from polymeric precursors is attractive as this technique offers a number of unique advantages. In this paper, the screening of polymeric precursors to boron carbide will be discussed. Two promising boron carbide, carborane containing polymeric precursors have resulted in 60-70 wt.% ceramic yields. The chemistry of polymer synthesis and the transformations from the polymer to amorphous and crystalline boron carbide were investigated with infrared spectroscopy, NMR spectroscopy, thermal analysis, and x-ray diffraction

  10. Determination of carbon and sulphur in boron carbide

    International Nuclear Information System (INIS)

    Boron carbide is used in control rods of nuclear power reactors. The chemical specification for carbon in boron carbide ranges between 15 - 24 wt.% depending upon the grade of boron carbide. Hence carbon in boron carbide is to be determined accurately to find out the stoichiometry. Sulphur, which is present in trace quantities, is also to be determined to find out the purity of boron carbide. Carbon is determined by combustion followed by (i) thermal conductivity detection and (ii) infrared detection. Sulphur is determined by (i) combustion followed by infrared detection and (ii) vacuum combustion extraction - quadrupole mass spectrometry. The results are compared. (author)

  11. Direct evidence of metallic bands in a monolayer boron sheet

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Liu, Ro-Ya; Iimori, Takushi; Lian, Chao; Li, Hui; Chen, Lan; Wu, Kehui; Meng, Sheng; Komori, Fumio; Matsuda, Iwao

    2016-07-01

    The search for metallic boron allotropes has attracted great attention in the past decades and recent theoretical works predict the existence of metallicity in monolayer boron. Here, we synthesize the β12-sheet monolayer boron on a Ag(111) surface and confirm the presence of metallic boron-derived bands using angle-resolved photoemission spectroscopy. The Fermi surface is composed of one electron pocket at the S ¯ point and a pair of hole pockets near the X ¯ point, which is supported by the first-principles calculations. The metallic boron allotrope in β12 sheet opens the way to novel physics and chemistry in material science.

  12. Medical chemistry of boron neutron capture agents having pharmacological activity

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a cancer treatment that selectively destroys cancer cells following administering a cancer-selective drug containing stable isotope boron-10 and neutron irradiation. In clinical trial of BNCT, disodium mercaptoundecahydro-closo-dodecaborate (BSH) and p-boronophenylalanine (BPA) have been used, however, development of a new drugs with high cancer selectivity and therapeutic efficiency is expected. Therefore, we review boron-containing drugs as a boron neutron capture agents having pharmacological activity, BNCT research on boron-modified porphyrin derivatives which have photosensitivity and neutron capture activity and our proposed neutron sensitizing agent. (author)

  13. Inefficiency of high boron concentrations for cell killing in boron neutron capture therapy

    International Nuclear Information System (INIS)

    This study is to investigate the relationship between the cell-killing effect of the 10B(n, α)7Li capture reaction, intracellular boron concentration, and thermal neutron fluence in boron neutron capture therapy using in vitro cell survival based on a clonogenic assay, and biophysical analysis. Our results showed that the cell-killing yield of the 10B(n, α)7Li capture reaction per unit thermal neutron fluence declined with an increase in the intracellular boron concentration above 45 μg/ml 10B. The cell-killing effect was well described using an empirical power function of the intracellular boron concentration, with exponent 0.443. Knowledge of this effect will help in the optimization of BNCT. (author)

  14. Boron carbide (B{sub 4}C) coating. Deposition and testing

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E.; Barsuk, V. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Buzhinsky, O. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Evsin, A.; Gordeev, A.; Grunin, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Klimov, N. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Kurnaev, V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mazul, I. [Federal State Unitary Interprise Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA Efremov), St-Peterburg (Russian Federation); Otroshchenko, V.; Putric, A. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-15

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B{sub 4}C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B{sub 4}C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B{sub 4}C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B{sub 4}C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  15. Mapping boron in silicon solar cells using electron energy-loss spectroscopy

    DEFF Research Database (Denmark)

    Amorphous silicon solar cells typically consist of stacked layers deposited on plastic or metallic substrates making sample preparation for transmission electron microscopy (TEM) difficult. The amorphous silicon layer - the active part of the solar cell - is sandwiched between 10-nm-thick n- and p...... focused ion beam milling in order to map the boron distribution across a 200-nm-thick n-p amorphous silicon junction using energy-filtered TEM and EELS spectrum acquisition. EELS line scans are used to detect boron concentrations as low as 10^20cm-3. We also use monochromated EELS to measure changes in...... resolution using TEM is highly challenging [3]. Recently, scanning TEM (STEM) combined with electron energy-loss spectroscopy (EELS) and spherical aberration-correction has allowed the direct detection of dopant concentration of 10^20cm-3 in 65-nm-wide silicon devices [4]. Here, we prepare TEM samples by...

  16. The influence of residual gas on boron carbide thin films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Boron carbide (B4C) thin films were prepared by magnetron sputtering and residual gas impurities in the films were analyzed by X-ray photoelectron spectroscopy. The impurities, mainly oxygen, decrease with improving vacuum. By using argon ion beam etching of the films, the atomic concentration was measured as a function of etching depth. The binding energy spectra were analyzed using wavelet transform and curve fitting, showing that most of the oxygen impurity is in the form of boron oxides, and that the impurities are physically trapped among columnar structures in the film. In order to improve the base vacuum before coating the film, a range of methods were used, including argon gas filling on the target surface and titanium pre-sputtering. The experimental results show that the latter is an efficient and feasible method. Based on the titanium pre-sputtering technology, the optical performance of W/B4C multilayer was improved so much.

  17. Effect of metal hydrides on the burning characteristics of boron

    International Nuclear Information System (INIS)

    Highlights: • The effect of some metal hydrides on the burning characteristics of boron is studied for the first time. • We are the first to conduct a TG experiment on boron samples at high temperatures (a maximum of 1750 °C). • The thermal reaction process of boron is firstly divided into five stages according to the weight gain rate of the sample. • Specific values of metal hydrides on ignition delay time and combustion intensity of boron are obtained. - Abstract: In this study, the effect of four metal hydrides on the burning characteristics of boron was investigated. Thermogravimetric experiment results show that the thermal reaction process of boron samples can be divided into five stages. The thermal reactions of boron can be significantly promoted with LiH, which can reduce the initial temperature of the first violent reaction stage by ∼140 °C. The starting temperature of the post-reaction stage also decreases by ∼260 °C. The results of the laser ignition experiment suggest that all four metal hydrides can promote boron burning. Nonetheless, different metal hydrides display varied promotional effects. Among the studied hydrides, LiH is the most effective additive and shortens the ignition delay time of boron by ∼34.1%. Moreover, it enhances the combustion intensity of boron by ∼117.6%. The other three metal hydrides (CaH2, TiH2, and ZrH2) can also contribute to boron burning

  18. Synthesis of substituted gamma-lactams through petasis-type addition of boronic acids to N-acyliminium lons

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas Eiland

    2014-01-01

    remains the most widely utilized appro ach. Even though hydroxylactams are important precursors of cyclic N -acyliminium ions, few approaches for their synthesis hav e been reported so far. By implementing a reductive cyc lization reaction, linear L -malic acid derivatives were rapidly converted into cycl...... ic N -acyliminium ions. Under the optimized conditions, entail ing the use of HFIP as solvent, both electron-rich and electron -deficient boronic acids were successfully added to a ran ge of cyclic N -acyliminium ions, thereby obtaining a collection of phar maceutically relevant substituted g...

  19. Relationship Between Soil Boron Adsorption Kinetics and Rape Plant Boron Response

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; PIMEIMEI; 等

    1997-01-01

    The boron adsorption kinetic experiment in soil by means a flow displacement technique showed that the kinetic data could be described with some mathematic equations.The average values of the coorealtion coefficeint for zero-order,first-order,parabolic diffusion ,Elovich,power function and eponential equations were 0.957,0.982,0.981,0.984,0.981 and 0.902 ,respectively,The correlation between adsorbed boron or its other expression form and time were the highest for first-order ,parabloic diffusion Elovich,and pwer function equations,the second for the zeroorder equation,and the tlowest for the exponential equation.The parabloic diffusion equation fitted well the expermiental results,with the least standard error among the six kinetic equation,showing that the monvemetn of boron from soil solution to soil colloid surface may be controlled by boron diffusion speed.The boron content of rape seedling obtained from soil cultvation was correlated with the rate constants of the kinetic equations.The constants of first-order ,parabloic diffusion,and exponential equaitions were significanlty correlated with the boron content of the crop of NPK treatment at a 95% probaility level ,with correation coeffecients being 0.686,0.691 and 0.64 and 0.641,respectively.In the case of zero-order equation,it Was significant at 99% probability level(r=0.736),These results showed that the adsorption kinetic constants of soil boron were closely related with the rape plant response to boron.

  20. The structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron-nitride

    OpenAIRE

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H. G.; Liu, Zheng; Suenaga, Kazutomo

    2014-01-01

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra (EELS) of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sampl...

  1. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na210B12H11SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author)

  2. Effects of boron number per unit volume on the shielding properties of composites made with boron ores form China

    International Nuclear Information System (INIS)

    The total macroscopic removal cross sections, deposited energies and the absorbed doses of three new shielding composites loaded with specific boron-rich slag, boron concentrate ore and boron mud of China for 252Cf neutron source were investigated by experimental and Monte Carlo calculation. The results were evaluated by boron mole numbers per unit volume in composites. The half value layers of the composites were calculated and compared with that of Portland concrete, indicating that ascending boron mole numbers per unit volume in the composites can enhance the shielding properties of the composites for 252Cf neutron source. (authors)

  3. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  4. Coadsorption of lanthanum with boron and gadolinium with boron on Mo(1 1 0)

    Science.gov (United States)

    Magkoev, Tamerlan T.; Vladimirov, Georgij G.; Rump, Gennadij A.

    2008-05-01

    Submonolayer to multilayer coadsorption of lanthanum (La) with boron (B) and gadolinium (Gd) with boron on the surface of Mo(1 1 0) has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and work function ( ϕ) measurements. The equilibrium state of double adsorbate systems achieved either by adsorption of rare-earth metal (REM) on boron precovered Mo(1 1 0) surface held at room temperature or after moderate annealing of the system with opposite order of adsorption (B on REM films) is the layer which is the inhomogeneous mixture of boron and REM atoms with preferential concentration of boron in the surface area of the mixed film. The work function of such films even at REM to boron concentration ratio much higher than 1/6 are very close to the values of corresponding bulk LaB 6 and GdB 6, favoring assumption of surface rearrangement as the dominant reason of high electron emission efficiency of hexaborides. Almost total similarity of the results for La-B and Gd-B systems can be viewed as the consequence of weak participation of Gd f-electrons in determining the thermionic properties of corresponding double layers.

  5. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    International Nuclear Information System (INIS)

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis

  6. PWR core response to boron dilution transient

    International Nuclear Information System (INIS)

    This paper illustrates the steps followed in order to set up a tool (composed of a plant model and of a procedure) that allows accounting for boron reactivity feedbacks during plant transients. The procedure that has been developed allows to find out the values of the boron feedback coefficients, given the differential boron worth, and to properly initialize the Thermal Hydraulic and the Neutronic (TH/NEU) system. Once the tool has been developed, it has been used to analyze different scenarios, resulting from deborated water injection from the reactor make-up system. The most important parameter, during this Reactivity Insertion Accidents (RIAs), is the Energy Released to the Fuel (ERF) and it has been monitored, in order to identify the situations when the fuel might be damaged (ERF > 250 kJ/kg, for high burnup fuel). The analyses have been performed using the RELAP5-3D computer code. The conclusion of the study is that the limited capability of modeling mixing phenomena provided by most common plant codes (such as RELAP5-3D) is not suitable to perform BE analyses of RIAs, since those accidents are so sensitive to boron concentration changes that the effect of uncertainties cannot be neglected. The use of Computational Fluid Dynamics (CFD) codes could reduce uncertainties enough to perform BE analyses and thus it should be recommended. (author)

  7. Pechmann Reaction Promoted by Boron Trifluoride Dihydrate

    Directory of Open Access Journals (Sweden)

    J. Mezger

    2005-08-01

    Full Text Available The Pechmann reaction of substituted phenols 1a-e with methyl acetoacetate (2 can be activated by boron trifluoride dihydrate (3 to give the corresponding 4-methyl- coumarin derivatives 4a-e in excellent yield (98-99 %.

  8. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  9. Influence of pollution of boron chlorinity ratio

    Digital Repository Service at National Institute of Oceanography (India)

    Narvekar, P.V.; Zingde, M.D.

    Presence of boron in domestic wastewater has resulted in high B/CI ratio at some locations in the coastal water around Bombay. A widest range (0.215-0.281) of B/CI was observed at a location with high influence of wastewater release. The mean B...

  10. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  11. Boron carbide synthesis at plasma spray process

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, Vlastimil; Hofman, R.

    Bari : Department of Chemistry, University of Bari, 2003 - (d'Agostino, R.; Favia, P.; Fracassi, F.; Palumbo, F.). s. 631 [International Symposium on Plasma Chemistry/16th./. 22.06.2003-27.06.2003, Taormina] Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide , plasma spray process Subject RIV: BL - Plasma and Gas Discharge Physics

  12. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300degC a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250degC. The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  13. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32. ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.163, year: 2014

  14. The manufacturing method of boron carbide

    International Nuclear Information System (INIS)

    The new method for manufacturing of boron carbide as powder with controlled purity and surface development has been described. The suspension of boric acid aqueous solution and carbon black in alcohol has been homogenized mechanically. Water and alcohol are then evaporated during mixing. After drying homogenous mixture is heated in temperature range of 1270-1870 C during one hour

  15. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  16. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  17. Ion sources for energy extremes of ion implantation (invited)

    International Nuclear Information System (INIS)

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P2+ [8.6 pmA (particle milliampere)], P3+ (1.9 pmA), and P4+ (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb3+Sb4+, Sb5+, and Sb6+ respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources

  18. P13.09ADVANCES IN CLINICAL APPLICATION OF BORON NEUTRON CAPTURE THERAPY (BNCT) IN GLIOBLASTOMA

    Science.gov (United States)

    Detta, A.; Cruickshank, G.C.; Green, S.; Lockyer, N.P.; Ngoga, D.; Ghani, Z.; Phoenix, B.

    2014-01-01

    BNCT is a biologically targeted form of enhanced cellular radiotherapy where preferential accumulation of boron in the cancerous as opposed to adjacent normal cells is able to interact with incident neutrons to cause irreversible alpha particle DNA damage. The key to the implementation of this potentially powerful and selective therapy is the delivery of at least 30ppm 10B within the tumour tissue while minimising superfluous 10B in healthy tissue. It is thus an elegant technique for treating infiltrating tumours such as diffuse gliomas. In order to assess its clinical potential we carried out a pharmacokinetic study in glioblastoma patients where we sought to determine the optimal route of delivering a new formulation of the boronated drug (p-boronophenylalanine, BPA), its pharmacokinetic behaviour, toxicity profile, and cellular uptake. Using a number of analytical techniques, including inductively-coupled plasma mass spectrometry, secondary ion mass spectrometry (SIMS) and immunohistochemistry (IHC), boron was measured at various times in blood, urine, cerebrospinal fluid, extracellular fluid (ECF), and tumour-related solid tissue spanning 0.5 h pre- and up to 48 h post-BPA infusion in newly-diagnosed patients (n = 10). Blood was sampled through a central catheter whilst the ECF was sampled by parenchymal microdialysis catheters, placed remotely from the tumour site. Urine was collected over the same time period. Tumour and brain-around tumour (BAT) tissue was sampled stereotactically at 2.5 h and 3.5 h post-infusion. IHC expression levels of the BPA transporter molecule, L-amino acid transporter 1 (LAT-1), were recorded as % LAT-1 positive cells, and cellular boron levels were estimated as spatially resolved pixels in normalised-to-C+ isotopic SIMS images of the biopsies. There were no toxicity-related issues with this new formulation of BPA given at 375 mg/kg as a 2 h intravenous or intracarotid infusion with or without pre-infusion mannitol-induced BBB

  19. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu

    2006-08-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm{sup 2} treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm{sup 2} collimation was 21.9% per 100-ppm {sup 10}B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm{sup 2} fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm{sup 2} collimator. Five 1.0-cm thick 20x20 cm{sup 2} tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm {sup 10}B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth

  20. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  1. Boron removal from aqueous solution by direct contact membrane distillation

    International Nuclear Information System (INIS)

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 μg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution.

  2. ISOBORDAT: An Online Data Base on Boron Isotopes

    International Nuclear Information System (INIS)

    From 1986, boron isotope data in natural substances increased sharply in scientific publications. Analytical difficulties derived from complex geochemical matrices have been faced and interlaboratory calibrations reported in the boron literature. Boron isotopes are nowdays applied to investigate boron origin and migration in natural waters, sources of boron contamination, water-rock interactions and also contribute to water resource management. This is especially important in those areas where boron content exceeds the local regulations for drinking water supply and boron sources need to be identified. ISOBORDAT, an interactive database on boron isotope composition and content in natural waters is presented to the wider community of boron isotope users. The database's structure, scope and applications are reported, along with a discussion on δ11B values obtained in Italian waters. In the database boron data are structured in the following categories: rainwater, rivers, lakes, groundwater and potential contaminants. New categories (medium and high enthalpy fluids from volcanic and geothermal areas) are anticipated. ISOBORDAT aims to be as interactive as possible and will be developed taking into account information and suggestions received. The database is continually undergoing revision to keep pace with continuous data publication. Indications of data that are missing at present are greatly appreciated. (author)

  3. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  4. Structure and single-phase regime of boron carbides

    Science.gov (United States)

    Emin, David

    1988-09-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B4C (the boron carbide with nominally 20% carbon) has B11C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B4C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C-->C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B13C2, subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B11C-->B12. Maxima of the free energy occur at the most ordered compositions: B4C,B13C2,B14C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides. The significant entropies associated with compositional disorder within the boron carbides, the high temperatures at which boron carbides are formed (>2000 K), and the relatively modest energies associated with replacing carbon atoms with boron atoms enable the material's entropy to be usually important in determining its composition. As a result, boron carbides are able to exist in a wide range of compositions.

  5. Study on the Microstructure and Electrical Properties of Boron and Sulfur Codoped Diamond Films Deposited Using Chemical Vapor Deposition

    OpenAIRE

    2014-01-01

    The atomic-scale microstructure and electron emission properties of boron and sulfur (denoted as B-S) codoped diamond films grown on high-temperature and high-pressure (HTHP) diamond and Si substrates were investigated using atom force microscopy (AFM), scanning tunneling microscopy (STM), secondary ion mass spectroscopy (SIMS), and current imaging tunneling spectroscopy (CITS) measurement techniques. The films grown on Si consisted of large grains with secondary nucleation, whereas those on ...

  6. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg 10B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague–Dawley (SD) rats were studied by administrating 25 mg 10B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4–6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  7. Diffusion Boronizing of H11 Hot Work Tool Steel

    Science.gov (United States)

    Jurči, Peter; Hudáková, Mária

    2011-10-01

    The H11 hot work tool steel was boronized at various processing parameters, austenitized, quenched, and tempered to a core hardness of 47-48 HRC. Microstructure, phase constitution, and microhardness of boronized layers were investigated. Effect of boronized region on the bulk properties was determined by the Charpy impact test. Structure of boronized regions is formed by the compound layers and diffusion inter-layer. The compound layers consisted of only (Fe,Cr)2B phase, but in the case of longer processing time, they contained also of the (Fe,Cr)B-phase. The inter-layer contained enhanced portion of carbides, formed due to carbon diffusion from the boride compounds toward the substrate. Microhardness of boronized layers exceeded considerably 2000 HV 0.1. However, boronizing led to a substantial lowering of the Charpy impact toughness of the material.

  8. Boron Rich Solids Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  9. Boron carbide whisker and platelet reinforced ceramic matrix composites

    International Nuclear Information System (INIS)

    Boron carbide whisker and platelet-reinforced alumina and boron-carbide-whisker-reinforced silicon carbide composites were prepared by hot-pressing. The mechanical properties of hot-pressed boron carbide platelet and whisker-reinforced composites are better than the inherent ceramic matrix. A maximum fracture toughness, K(lc), of 9.5 MPa sq rt m is achieved for alumina/boron carbide whisker composites, 8.6 MPa sq rt m is achieved for alumina/boron carbide platelet composites, and 3.8 MPa sq rt m is achieved for silicon carbide/boron carbide whisker composites. The fracture toughness is dependent on the volume fraction of the platelets and whiskers. 12 refs

  10. Van Hove singularities of some icosahedral boron-rich solids by differential reflectivity spectra

    Science.gov (United States)

    Werheit, Helmut

    2015-09-01

    Differential reflectivity spectra of some icosahedral boron rich solids, β-rhombohedral boron, boron carbide and YB66-type crystals, were measured. The derivatives yield the van Hove singularities, which are compared with results obtained by other experimental methods.

  11. I. Charge exchange collisions of highly stripped ions with atomic hydrogen. II. Development of a three-stage double tandem accelerator-decelerator system for low energy, highly stripped ions. Final report, March 1, 1977-May 30, 1981

    International Nuclear Information System (INIS)

    The first measurements of charge exchange (electron transfer) in kiloelectron-volt-energy highly stripped boron, carbon, nitrogen and oxygen ion collisions with atoms have been extended to additional collision energies and charge values for the ions. A first accelerator-decelerator source of very highly stripped ions has been developed, and its usefulness in charge exchange studies established

  12. Analysis of graphite electrodes for determination of boron at trace levels

    International Nuclear Information System (INIS)

    Graphite has many industrial applications. The two most important applications are as electrodes in industries and as moderator in nuclear industry. Graphite being a dual use material, faces export restrictions under the Atomic Energy Act 1962. Analytical Chemistry Division, BARC receives regularly graphite samples for its characterization as nuclear/non nuclear grade. A method has been standardized at Analytical Chemistry Division, BARC for determining trace amounts of boron, which is a marker element for certifying the grade of graphite electrode. The method involves dry ashing of graphite after fixing boron using barium hydroxide and determination by inductively coupled plasma mass spectrometer (ICP-MS) using matrix matched standards. The method detection limit is 1 μg g-1 with a method RSD of 5%. The method was verified by spike recovery experiments. Recoveries were found to be 100 +2% in the concentration range of 1 to 100 μg g-1. Ion beam analysis (IBA) was used to validate the present method. Values were found to be in very good agreement. This method has been applied for the routine analysis of boron content in various graphite electrode samples received from the Customs and Central Excise Department. (author)

  13. Online detection of radiation produced in Boron-10 neutron capture reaction: preliminary studies

    International Nuclear Information System (INIS)

    Boron microdistribution in both tumor and normal tissue sections can be studied by the autoradiography technique in solid state nuclear track detectors (SSNTD). A measurement of boron concentration in tissue is obtained through the evaluation of the density of tracks produced by alpha and lithium ions generated in the neutron capture reaction 10B(n,α) 7Li. This knowledge is pivotal when a BNCT (Boron Neutron Capture Therapy) protocol is considered. A new methodology is proposed in order to record alpha and lithium events in real time, as light spots superimposed to the tissue section image. CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) are used as detectors, with the advantage of avoiding the superposition of events. Commercial web cams were employed for the preliminary experiments. They were partially disassembled in order to get the sensor chip uncovered. These devices were exposed to different radiation sources: 6.118 MeV alpha particles (252Cf), 0.662 MeV gamma rays (137Cs) and thermal neutrons (moderated 241Am-Be source, 103n.cm2.seg-1), to analyze the characteristics of the respective images. Pictures from tissue sections put in contact with the sensor surface were also acquired. A software was developed in Matlab to perform the image capture and processing. Early results show the feasibility of using these devices to study the distribution 10B in tissue samples. (author)

  14. Effect of the hexagonal phase interlayer on rectification properties of boron nitride heterojunctions to silicon

    International Nuclear Information System (INIS)

    Rectification properties of boron nitride/silicon p-n heterojunction diodes fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition are studied in terms of the resistive sp2-bonded boron nitride (sp2BN) interlayer. A two-step biasing technique is developed to control the fraction of cubic boron nitride (cBN) phase and, hence, the thickness of the sp2BN interlayer in the films. The rectification ratio at room temperature is increased up to the order of 104 at ±10 V of biasing with increasing the sp2BN thickness up to around 130 nm due to suppression of the reverse leakage current. The variation of the ideality factor in the low bias region is related to the interface disorders and defects, not to the sp2BN thickness. The forward current follows the Frenkel-Poole emission model in the sp2BN interlayer at relatively high fields when the anomalous effect is assumed. The transport of the minority carriers for reverse current is strongly limited by the high bulk resistance of the thick sp2BN interlayer, while that of the major carriers for forward current is much less affected

  15. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    CERN Document Server

    Nistor, L C; Dinca, G; Georgeoni, P; Landuyt, J V; Manfredotti, C; Vittone, E

    2002-01-01

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp sup 3 bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m sup - sup 2 is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD di...

  16. Mussel-mimetic self-healing polyaspartamide derivative gel via boron-catechol interactions

    Directory of Open Access Journals (Sweden)

    B. Wang

    2015-09-01

    Full Text Available The catechol group from catechol of 3,4-dihydroxyphenethylamine (DOP, dopamine has the ability to interact with metal ions to form non-covalent bonds in polymer chains. In this study, a novel kind of mussel-inspired copolymer, dopamine-conjugated poly(hydroxyethyl aspartamide, polyAspAm(DOP/EA, was synthesized and its interaction with boric acid (H3BO3 to form a cross-linked gel via boron-catechol coordinative binding was investigated. The copolymer was designed to contain a pH responsive adhesive catechol group, which reversibly underwent gelation through the metalcatechol binding, as proved by UV-Vis spectroscopy. When the pH is increased from acidic conditions to a specified pH (pH > 9, the B(OH3 is considered to have a functionality of two to bind catechols, leading to bis-complexes. In addition, the reversibility of the boron-catechol bonds provides self-healing characteristics to the polyAspAm gels. The rheological results showed that boron-catechol coordination could lead to quick and full recovery after the fracture of a gel specimen. This novel pH-responsive and self-healing gel system has potential in various applications including smart hydrogels, medical adhesives, and sealants.

  17. Effect of the hexagonal phase interlayer on rectification properties of boron nitride heterojunctions to silicon

    Energy Technology Data Exchange (ETDEWEB)

    Teii, K., E-mail: teii@asem.kyushu-u.ac.jp; Ito, H.; Katayama, N. [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Matsumoto, S. [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Exploratory Materials Research Laboratory for Energy and Environment, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-02-07

    Rectification properties of boron nitride/silicon p-n heterojunction diodes fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition are studied in terms of the resistive sp{sup 2}-bonded boron nitride (sp{sup 2}BN) interlayer. A two-step biasing technique is developed to control the fraction of cubic boron nitride (cBN) phase and, hence, the thickness of the sp{sup 2}BN interlayer in the films. The rectification ratio at room temperature is increased up to the order of 10{sup 4} at ±10 V of biasing with increasing the sp{sup 2}BN thickness up to around 130 nm due to suppression of the reverse leakage current. The variation of the ideality factor in the low bias region is related to the interface disorders and defects, not to the sp{sup 2}BN thickness. The forward current follows the Frenkel-Poole emission model in the sp{sup 2}BN interlayer at relatively high fields when the anomalous effect is assumed. The transport of the minority carriers for reverse current is strongly limited by the high bulk resistance of the thick sp{sup 2}BN interlayer, while that of the major carriers for forward current is much less affected.

  18. Crystallographic control on the boron isotope paleo-pH proxy

    Science.gov (United States)

    Noireaux, J.; Mavromatis, V.; Gaillardet, J.; Schott, J.; Montouillout, V.; Louvat, P.; Rollion-Bard, C.; Neuville, D. R.

    2015-11-01

    When using the boron isotopic composition (δ11B) of marine carbonates as a seawater pH proxy, it is assumed that only the tetrahedral borate ion is incorporated into the growing carbonate crystals and that no boron isotope fractionation occurs during uptake. However, the δ11B of the calcium carbonate from most modern foraminifera shells or corals skeletons is not the same as the δ11B of seawater borate, which depends on pH, an observation commonly attributed to vital effects. In this study, we combined previously published high-field 11B MAS NMR and new δ11B measurements on the same synthetic calcite and aragonite samples precipitated inorganically under controlled environments to avoid vital effects. Our results indicate that the main controlling factors of δ11B are the solution pH and the mineralogy of the precipitated carbonate mineral, whereas the aqueous boron concentration of the solution, CaCO3 precipitation rate and the presence or absence of growth seeds all appear to have negligible influence. In aragonite, the NMR data show that boron coordination is tetrahedral (BO4), in addition, its δ11B is equal to that of aqueous borate, thus confirming the paleo-pH hypothesis. In contrast, both trigonal BO3 and tetrahedral BO4 are present in calcite, and its δ11B values are higher than that of aqueous borate and are less sensitive to solution pH variations compared to δ11B in aragonite. These observations are interpreted in calcite as a reflection of the incorporation of decreasing amounts of boric acid with increasing pH. Moreover, the fraction of BO3 measured by NMR in calcite is higher than that inferred from δ11B which indicates a coordination change from BO4 to BO3 upon boron incorporation in the solid. Overall, this study shows that although the observed differences in δ11B between inorganic and biological aragonite are compatible with a pH increase at calcification sites, the B speciation and isotope composition of biological calcites call for a

  19. Multidimensional boron transport modeling in subchannel approach

    International Nuclear Information System (INIS)

    The main objective of this study is to implement a solute tracking model into the subchannel code CTF for simulations of boric acid transients. Previously, three different boron tracking models have been implemented into CTF and based on the applied analytical and nodal sensitivity studies the Modified Godunov Scheme approach with a physical diffusion term has been selected as the most accurate and best estimate solution. This paper will present the implementation of a multidimensional boron transport modeling with Modified Godunov Scheme within a thermal-hydraulic code based on a subchannel approach. Based on the cross flow mechanism in a multiple-subchannel rod bundle geometry, heat transfer and lateral pressure drop effects will be discussed in deboration and boration case studies. (author)

  20. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  1. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  2. The spectrophotometric determination of boron in tourmalines

    Directory of Open Access Journals (Sweden)

    LJILJANA JAKSIC

    2005-02-01

    Full Text Available A procedure for the spectrophotometric determination of macro amounts of boron in tourmaline with azomethine H is described. The used tourmaline concentrate was obtained by magnetic separation and heavy-liquids purification of the schorl zone of pegmatite or granite aplite. The samples of tourmaline were decomposed by fusion with anhydrous sodium carbonate and taken up in dilute hydrochloric acid. The interfering effects of iron and aluminium were eliminated by masking with an EDTA – NTA solution. After pH adjustment, the boron was reacted with azomethine H and the absorbance of the obtained coloured complex was measured at 415 nm. The results are compared with those obtained by other procedures. The relative error of the determination was less than 3 %.

  3. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  4. Boron-10 ABUNCL Models of Fuel Testing

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, Edward R.; Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.

    2013-10-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNP simulations of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) active configuration model with fuel pins previously measured at Los Alamos National Laboratory. A comparison of the GE-ABUNCL simulations and simulations of 3He based UNCL-II active counter (the system for which the GE-ABUNCL was targeted to replace) with the same fuel pin assemblies is also provided.

  5. Behavior of Disordered Boron Carbide under Stress

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W.; Chhowalla, Manish

    2006-07-01

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6GPa≈P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2 3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  6. Investigation of boron segregation in low carbon steel

    OpenAIRE

    J. Lis; Lis, A; Kolan, C.

    2011-01-01

    Traces of born in the range 0,002-0,009 % are usually added to many grades of steel. The effect of boron on phase transformations and hardenability of low carbon low alloy steels depends on the form of its behavior in solid solution either in segregations or in precipitations. Temperature and cooling rate determine the existence of boron segregations on grain boundaries. In present paper simulations of boron concentrations were calculated with computer programme DICTRA for low carbon 0,08 %C ...

  7. Boron/aluminum shelf for shuttle orbiter

    International Nuclear Information System (INIS)

    Boron/aluminum skins and channels were used in the fabrication of a prototype honeycomb sandwich avionics shelf. The avionic shelves are stiffness-critical and must be vibration tolerant. In conjunction with the shelf mounting system, they must isolate the avionics equipment from the severe vibration of the primary and secondary structure nearby. Design rationale, fabrication procedures, vibration test criteria and test results are presented. (9 fig) (U.S.)

  8. Boron Nitride Nanosheets for Metal Protection

    OpenAIRE

    Li, Lu Hua; Xing, Tan; Chen, Ying; Jones, Rob

    2015-01-01

    Although the high impermeability of graphene makes it an excellent barrier to inhibit metal oxidation and corrosion, graphene can form a galvanic cell with the underlying metal that promotes corrosion of the metal in the long term. Boron nitride (BN) nanosheets which have a similar impermeability could be a better choice as protective barrier, because they are more thermally and chemically stable than graphene and, more importantly, do not cause galvanic corrosion due to their electrical insu...

  9. Anomalous thermal conductivity of monolayer boron nitride

    Science.gov (United States)

    Tabarraei, Alireza; Wang, Xiaonan

    2016-05-01

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate the mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.

  10. Formation and Structure of Boron Nitride Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG; Zongquan LI; Jin XU

    2005-01-01

    Boron nitride (BN) nanotubes were simply synthesized by heating well-mixed boric acid, urea and iron nitrate powders at 1000℃. A small amount of BN nanowires was also obtained in the resultants. The morphological and structural characters of the BN nanostructures were studied using transmission electron microscopy. Other novel BN nanostructures, such as Y-junction nanotubes and bamboo-like nanotubes, were simultaneously observed. The growth mechanism of the BN nanotubes was discussed briefly.

  11. Thermal conductivity of nanostructured boron nitride materials.

    Science.gov (United States)

    Tang, Chengchun; Bando, Yoshio; Liu, Changhong; Fan, Shoushan; Zhang, Jun; Ding, Xiaoxia; Golberg, Dmitri

    2006-06-01

    We have measured the thermal conductivity of bulky pellets made of various boron nitride (BN)-based nanomaterials, including spherical nanoparticles, perfectly structured, bamboo-like nanotubes, and collapsed nanotubes. The thermal conductivity strongly depends on the morphology of the BN nanomaterials, especially on the surface structure. Spherical BN particles have the lowest thermal conductivity while the collapsed BN nanotubes possess the best thermoconductive properties. A model was proposed to explain the experimental observations based on the heat percolation passage considerations. PMID:16722739

  12. Boron content of the Freetown drinking water

    International Nuclear Information System (INIS)

    A method is described for the analyses of water samples in the Freetown area of Sierra Leone for their boron concentrations. The method involves alpha counting during thermal neutron irradiation of the samples utilising the 10Ba(n,α)7Li reaction. The alpha counting is via a liquid scintillator which also incorporates the water samples. A detailed outline of the experimental setup is given and the results obtained from measurement on water samples presented. (author)

  13. Boron carbide synthesis by plasma spray process

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, Vlastimil; Hofman, R.

    Bari : Department of Chemistry, University of Bari, 2003 - (d'Agostino, R.; Favia, P.; Fracassi, F.; Palumbo, F.), s. - [International Symposium on Plasma Chemistry/16th./. Taormina (IT), 22.06.2003-27.06.2003] R&D Projects: GA ČR GA104/01/0149 Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide , plasma spray, synthesis Subject RIV: BL - Plasma and Gas Discharge Physics

  14. Plasma Spray Deposition of Boron Carbide

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Hofman, R.; Ctibor, Pavel; Hrabovský, Milan

    Praha : MAXDORF, s.r.o., 2002 - (Nitsch, K.; Rodová, M.). s. 11-12 [Development of Materials Science in Research and Education.. 10.09.2002-12.09.2002, Ostravice] R&D Projects: GA ČR GA104/01/0149; GA ČR GA202/01/1563 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spray, boron carbide Subject RIV: BL - Plasma and Gas Discharge Physics

  15. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  16. Functionalized boron-dipyrromethenes and their applications

    OpenAIRE

    M. Ravikanth, M; Vellanki,Lakshmi; Sharma,Ritambhara

    2016-01-01

    Vellanki Lakshmi, Ritambhara Sharma, Mangalampalli Ravikanth Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, IndiaAbstract: Boron-dipyrromethenes/BF2-dipyrrins (BODIPYs) are highly fluorescent dyes with a wide range of applications in various fields because of their attractive photophysical properties. One of the salient features of BODIPYs is that the properties of the BODIPY can be fine-tuned at will by selectively introducing the substituent(s) at the desired locati...

  17. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  18. Clinical aspects of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is potentially useful in treating malignant tumors of the central nervous system and is technically possible. Additional in vitro and in vivo testing is required to determine toxicities, normal tissue tolerances and tissue responses to treatment parameters. Adequate tumor uptake of the capture agent can be evaluated clinically prior to implementation of a finalized treatment protocol. Phase I and Phase II protocol development, clinical pharmacokinetic studies and neutron beam development

  19. Application of Cycloaddition Reactions to the Syntheses of Novel Boron Compounds

    OpenAIRE

    John A. Maguire; Hosmane, Narayan S; Yinghuai Zhu; Xiao Siwei

    2010-01-01

    This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT) in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-c...

  20. Separation of copper and mercury as heavy metals from aqueous solution using functionalized boron nitride nanosheets: A theoretical study

    Science.gov (United States)

    Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo

    2016-03-01

    Molecular dynamics simulations were performed to investigate the separation of copper and mercury ions as heavy metals from aqueous solution through the functionalized pore of a boron nitride nanosheet (BNNS) membrane. The considered system was comprised of a BNNS with a functionalized pore located in the centre of a simulation box containing an aqueous ionic solution of copper chloride and mercuric chloride. An external voltage was applied along the simulated system in order to produce a separation of heavy metals using pore of BNNS. A functionalized pore of BNNS was obtained by passivating each nitrogen and boron atoms at the pore edge with a fluorine and hydrogen atom, respectively. Our results show that the voltage caused the Cu2+ and Hg2+ cations to pass selectively through the functionalized pore of the BNNS. This selective behaviour of the BNNS is due to the potential of the mean force of each ion. The potential of the mean force of the heavy metals shows that the heavy metals ions met an energy barrier and could not pass through the functionalized pores of the BNNS. By applying a voltage to the system, they overcame the energy barrier and crossed the pores. We calculated the radial distribution function of ion-water and its integrations; the ion retention time; the hydrogen bond; and the autocorrelation function of the hydrogen bond. Using these parameters, the structure of the water molecules and ions were investigated in the system.

  1. In operandi observation of dynamic annealing: A case study of boron in germanium nanowire devices

    Energy Technology Data Exchange (ETDEWEB)

    Koleśnik-Gray, Maria M.; Krstić, Vojislav, E-mail: vojislav.krstic@fau.de [Department of Physics, Chair for Applied Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen (Germany); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), and AMBER at CRANN, Trinity College Dublin, College Green, Dublin 2 (Ireland); School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); Sorger, Christian; Weber, Heiko B. [Department of Physics, Chair for Applied Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen (Germany); Biswas, Subhajit; Holmes, Justin D. [Materials Chemistry and Analysis Group, Department of Chemistry, Tyndall Institute, University College Cork, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), and AMBER at CRANN, Trinity College Dublin, College Green, Dublin 2 (Ireland)

    2015-06-08

    We report on the implantation of boron in individual, electrically contacted germanium nanowires with varying diameter and present a technique that monitors the electrical properties of a single device during implantation of ions. This method gives improved access to study the dynamic annealing ability of the nanowire at room temperature promoted by its quasi-one-dimensional confinement. Based on electrical data, we find that the dopant activation efficiency is nontrivially diameter dependent. As the diameter decreases, a transition from a pronounced dynamic-annealing to a radiation-damage dominated regime is observed.

  2. In operandi observation of dynamic annealing: A case study of boron in germanium nanowire devices

    International Nuclear Information System (INIS)

    We report on the implantation of boron in individual, electrically contacted germanium nanowires with varying diameter and present a technique that monitors the electrical properties of a single device during implantation of ions. This method gives improved access to study the dynamic annealing ability of the nanowire at room temperature promoted by its quasi-one-dimensional confinement. Based on electrical data, we find that the dopant activation efficiency is nontrivially diameter dependent. As the diameter decreases, a transition from a pronounced dynamic-annealing to a radiation-damage dominated regime is observed

  3. Nuclear recoil correction to the g factor of boron-like argon

    International Nuclear Information System (INIS)

    The nuclear recoil effect to the g factor of boron-like ions is investigated. The one-photon-exchange correction to the nuclear recoil effect is calculated in the nonrelativistic approximation for the nuclear recoil operator and in the Breit approximation for the interelectronic-interaction operator. The screening potential is employed to estimate the higher-order contributions. The updated g-factor values are presented for the ground 2P1/2 and first excited 2P3/2 states of B-like argon 40Ar13+, which are presently being measured by the ARTEMIS group at GSI

  4. Nuclear recoil correction to the g factor of boron-like argon

    CERN Document Server

    Shchepetnov, Arseniy A; Volotka, Andrey V; Shabaev, Vladimir M; Tupitsyn, Ilya I; Plunien, Guenter

    2014-01-01

    The nuclear recoil effect to the g factor of boron-like ions is investigated. The one-photon-exchange correction to the nuclear recoil effect is calculated in the non-relativistic approximation for the nuclear recoil operator and in the Breit approximation for the interelectronic-interaction operator. The screening potential is employed to estimate the higher-order contributions. The updated g-factor values are presented for the ground 2P_1/2 and first excited 2P_3/2 states of B-like argon 40^Ar^13+, which are presently being measured by the ARTEMIS group at GSI.

  5. High-quality, faceted cubic boron nitride films grown by chemical vapor deposition

    Science.gov (United States)

    Zhang, W. J.; Jiang, X.; Matsumoto, S.

    2001-12-01

    Thick cubic boron nitride (cBN) films showing clear crystal facets were achieved by chemical vapor deposition. The films show the highest crystallinity of cBN films ever achieved from gas phase. Clear evidence for the growth via a chemical route is obtained. A growth mechanism is suggested, in which fluorine preferentially etches hBN and stabilizes the cBN surface. Ion bombardment of proper energy activates the cBN surface bonded with fluorine so as to enhance the bonding probability of nitrogen-containing species on the F-stabilized B (111) surface.

  6. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  7. Boron impregnation treatment of Eucalyptus grandis wood.

    Science.gov (United States)

    Dhamodaran, T K; Gnanaharan, R

    2007-08-01

    Eucalyptus grandis is suitable for small timber purposes, but its wood is reported to be non-durable and difficult to treat. Boron compounds being diffusible, and the vacuum-pressure impregnation (VPI) method being more suitable for industrial-scale treatment, the possibility of boron impregnation of partially dry to green timber was investigated using a 6% boric acid equivalent (BAE) solution of boric acid and borax in the ratio 1:1.5 under different treatment schedules. It was found that E. grandis wood, even in green condition, could be pressure treated to desired chemical dry salt retention (DSR) and penetration levels using 6% BAE solution. Up to a thickness of 50mm, in order to achieve a DSR of 5 kg/m(3) boron compounds, the desired DSR level as per the Indian Standard for perishable timbers for indoor use, it was found that neither the moisture content of wood nor the treatment schedule posed any problem as far as the treatability of E. grandis wood was concerned. PMID:17046244

  8. Analysis of heterogeneous boron dilution sequences

    International Nuclear Information System (INIS)

    In the scope of the international SETH project (focused on boron dilution sequences), the Spanish Nuclear Regulatory Commission (CSN) and the electric energy industry of Spain (UNESA) have promoted in Spain a national project for the analysis and application of the SETH results to the Spanish nuclear power plants. As part of this project, our team has performed a review and analysis of the different sequences that could lead to a boron dilution in the primary circuit of a pressurized water reactor (PWR). On a first stage of the project we have analyzed the different sequences and the phenomenologies that could lead to inadvertent boron dilution in the primary system (about twenty different sequences are described in the literature), the core damage frequency of each one, the projects and experiments carried out on several experimental facilities and the modifications performed in order to avoid or to mitigate this kind of sequences. On a second one we have reviewed the relation between the operating procedures, Westinghouse design reactors, and this kind of sequences. Finally we have analyzed the simulation problems of these kind of sequences and performed several numerical simulations with the TRAC-M (TRACE) code applied to numerical benchmarks and also to a 3D vessel model. (author)

  9. Boron-containing nuclear safety materials

    International Nuclear Information System (INIS)

    As insurance against reactor runaway or other unplanned excursions, gas-cooled, graphite-moderated reactors are provided with a secondary shut-down mechanism which serves as a back-up to the primary control rod system. This back-up includes a hopper located above fuel channels in the core, equipped with a quick discharge mechanism, which is filled with boron-containing spheres. In an emergency, this hopper discharges the spheres which then cascade down the channels and ''poison'' the uranium fission reaction by absorbing thermal neutrons - the propagators of the chain reaction. Within six months time, a process was successfully developed based on silicon carbide reaction-bonding, which yielded a strong, hard, oxidation-resistant, boron-containing shut-down ball. Test materials were exposed to water saturated argon for three hours at each of several temperatures. While normal boron carbide-graphite balls were completely vaporized, the Cerashield balls remained basically unaffected. Had the reactor at Chernobyl been outfitted with Cerashield shut-down balls, it might never have become famous

  10. Boron dose enhancement for Cf-252 brachytherapy

    International Nuclear Information System (INIS)

    Full text: Monte Carlo modelling of a Cf-252 source in water and in tissue has shown that there is a significant therapeutic advantage obtained if B-10 is present in the tumour cells. This study analyses the advantage in terms of therapeutic margin, defined as the distance from the border of the treatment volume where boron-loaded tumour cells will receive a therapeutic dose. Calculations were made with MCNP version 4a on a Pentium 60 MHz computer. Large voxel sizes allowed 70 minute runs to achieve statistical uncertainties of 5% or less for 100,000 source neutrons. Later runs with smaller voxels confirmed the accuracy of the initial calculations. Calculations were made for treatment volume radii up to 11 cm and 30 ppm boron-10. The therapeutic margin for radii in the range 3-9 cm is approximately 10% of the tumour radius. This results in a 30% increase in the volume inside which peripheral tumour cells may receive a therapeutic dose. The median therapeutic ratio within the therapeutic margin varied from 1.05 at 3 cm up to 1.25 at 10 cm. Thus there is little benefit for less advanced tumours with thickness less than 3 cm. However, cervical cancer frequently presents in an advanced state in Southeast Asia and in Aboriginal communities in Australia, partially attributable to low Pap smear screening rates. These conclusions support the development and testing of boron compounds in in vitro and in vivo models for cervical cancer

  11. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  12. Boron distribution in normal and impaired vascular tissue

    International Nuclear Information System (INIS)

    The microdistribution of boron compounds and the response to Boron Neutron Capture Therapy (BNCT) in normal or impaired vascular structures have not been fully investigated. In this study, we measured the boron concentrations in rat normal vascular tissue for a potential application of BNCT to prevent restenosis following carotid stenting. Male inbred Wistar rats, 6 weeks of age, were used. After intravenous administration of boron compounds (BSH, BPA, or boron porphyrins), rats were killed at either 1, 2, or 3 hours, and the aortic arch, vena cava, blood, liver, kidney, muscle, skin, and brain were collected for measuring boron concentrations in the sample. Boron concentrations in vascular structures, although dependent on the time after administration, are higher than those in blood and surrounding tissue such as muscle or skin. Given that boron compounds such as boron porphyrins are incorporated into arterial tissues, and more into impaired than in normal intima, BNCT might be effective in inhibiting restenosis following carotid artery stenting or coronary artery stenting. (author)

  13. Boron isotope fractionation during brucite deposition from artificial seawater

    OpenAIRE

    J. Xiao; Xiao, Y. K.; Liu, C. Q.; Z. D. Jin

    2011-01-01

    Experiments involving boron incorporation into brucite (Mg(OH)2) from magnesium-free artificial seawater with pH values ranging from 9.5 to 13.0 were carried out to better understand the incorporation behavior of boron into brucite and the influence of it on Mg/Ca-SST proxy and δ11B-pH proxy. The results show that both the concentration of boron in deposited brucite ([B]d) and its boron partition coefficient (

  14. Boron isotope fractionation during brucite deposition from artificial seawater

    OpenAIRE

    J. Xiao; Xiao, Y. K.; Liu, C. Q.; Z. D. Jin

    2011-01-01

    Experiments involving boron incorporation into brucite (Mg(OH)2) from magnesium-free artificial seawater with pH values ranging from 9.5 to 13.0 were carried out to better understand the incorporation behavior of boron into brucite and the influence of it on Mg/Ca-SST proxy and δ11B-pH proxy. The results show that both the concentration of boron in deposited brucite ([B]d) and its boron partition coefficient (Kd) between deposited brucite and final seawater are control...

  15. Combustion synthesis of boron carbide - a spectroscopic studies

    International Nuclear Information System (INIS)

    Boron Carbide is one of the hardest materials known, ranking third behind diamond and cubic boron nitride. It is the hardest material produced in tonnage quantities. Boron carbide (BxCx) enriched in the 10B isotope is used as a control rod material in the nuclear industry due to its high neutron absorption cross section and other favorable physico-chemical properties. Conventional methods of preparation of boron carbide are energy intensive processes accompanied by huge loss of boron. Attempts were made at IGCAR Kalpakkam to develop energy efficient and cost effective methods to prepare boron carbide. Nuclear applications of boron carbide include shielding, control rod and shut down pellets. Within control rods, boron carbide is often powdered, to increase its surface area. The products of the gel combustion and microwave synthesis experiments were characterized for phase purity by X-ray diffraction (XRD). The carbide formation was ascertained using finger-print spectroscopy of Fourier transform infrared (FTIR). Samples of pyrolized/microwave heated powder were characterized for surface morphology using electron microscope (SEM). The present work shows the recent advances in understanding of structural and chemical variation in boron carbide and their influence on morphology, optical and vibrational property result discussed in details. (author)

  16. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.)

  17. ADSORPTION POTENTIAL OF UNMODIFIED RICE HUSK FOR BORON REMOVAL

    OpenAIRE

    Hasfalina Che Man,; Wei Hong Chin,; Maryam Rahmati Zadeh,; Mohd Rashid Mohd Yusof

    2012-01-01

    A batch study of boron removal from aqueous solutions by adsorption using rice husk was carried out. The effect of selected parameters such as particle size, pH, adsorbent dosage, and initial concentration of adsorbate on boron removal was investigated in the study. Results showed that the maximum boron removal was obtained with the rice husk particle size between 0.425 mm and 1.0 mm at pH 5. Boron removal was increased with an increasing amount of adsorbent dosage but decreased as the initia...

  18. Critical Range of Soil Boron for Prognosis of Boron Deficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    WEIYOUZHANG

    2001-01-01

    Relationships between seed yields of oilseed rape(Brassica napus L.) and extractable boron concen-trations in three soil layers(A,P and W) were investigated through ten experiments on three types of soils(Alluvic Entisols,Udic Ferrisols and Sagnic Anthrosols) in northern,Western and middle Zhejing Province.Among several mathematical models used to described the relationships,the polynomial equation,y=a+bx+cx2+dx3,where y is the yield of oilseed rape seed and x the extractable boron concentration in P layer of soil,was the best one.The critical range of the concentrations corresponding to 90% of the maximum oilseed rape yield was 0.40-0.52 mg kg-1,The extractable boron concentration of the P layers of the soils was the most stable,The critical range determined was verified through the production practices of oilseed rape in Zhejiang and Anhui provinces.

  19. Critical Range of Soil Boron for Prognosis of Boron Deficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Relationships between seed yields of oilseed rape (Brassica napus L.) and extractable boron concen- trations in three soil layers (A, P and W) were investigated through ten experiments on three types of soils (Alluvic Entisols, Udic Ferrisols and Stagnic Anthrosols) in northern, western and middle Zhejiang Province. Among several mathematical models used to described the relationships, the polynomial equation, y = a + bx + cx2 + dx3, where y is the yield of oilseed rape seed and x the extractable boron concentration in P layer of soil, was the best one. The critical range of the concentrations corresponding to 90% of the maximum oilseed rape yield was 0.40~0.52 mg kg-1. The extractable boron concentration of the P layers of the soils was the most stable. The critical range determined was verified through the production practices of oilseed rape in Zhejiang and Anhui provinces.

  20. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)