WorldWideScience

Sample records for boron iodides

  1. A novel method of boron delivery using sodium iodide symporter for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) effectiveness depends on the preferential sequestration of boron in cancer cells relative to normal tissue cells. We present a novel strategy for sequestering boron using an adenovirus expressing the sodium iodide symporter (NIS). Human glioma grown subcutaneously in athymic mice and orthotopic rat brain tumors were transfected with NIS using a direct tumor injection of adenovirus. Boron bound as sodium tetrafluoroborate (NaBF4) was administered systemically several days after transfection. Tumors were excised hours later and assessed for boron concentration using inductively coupled plasma atomic emission spectroscopy. In the human glioma transfected with NIS, boron concentration was more than 10 fold higher with 100 mg/kg of NaBF4, compared to tumor not transfected. In the orthotopic tumor model, the presence of NIS conferred almost 4 times the boron concentration in rat tumors transfected with human virus compared with contralateral normal brain not transfected. We conclude that adenovirus expressing NIS has the potential to be used as a novel boron delivery agent and should be explored for future clinical applications. (author)

  2. Flow-injection determination of iodide ion in nuclear emergency tablets, using boron-doped diamond thin film electrode

    International Nuclear Information System (INIS)

    The electrochemical determination of iodide was studied at boron-doped diamond thin film electrodes (BDD) using cyclic voltammetry (CV) and flow-injection (FI) analysis, with amperometric detection. Cyclic voltammetry of iodide was conducted in a phosphate buffer pH 5. Experiments were performed using glassy carbon (GC) electrode as a comparison. Well-defined oxidation waves of the quasi-reversible cyclic voltammograms were observed at both electrodes. Voltammetric signal-to-background ratios (S/B) were comparable. However, the GC electrode gives much greater in the background current as usual. The potential sweep rate dependence exhibited that the peak current of iodide oxidation at 1mM varied linearly (r2 = 0.998) with the square root of the scan rate, from 0.01 to 0.30Vs-1. This result indicates that the reaction is a diffusion-controlled process with negligible adsorption on BDD surface, at this iodide concentration. Results of the flow-injection analysis show a highly reproducible amperometric response. The linear working range was observed up to 200μM (r2 = 0.999). The detection limit, as low as 0.01μM (3σ of blank), was obtained. This method was successfully applied for quantification of iodide contents in nuclear emergency tablets

  3. Copper-catalyzed cross-coupling of boronic esters with aryl iodides and application to the carboboration of alkynes and allenes.

    Science.gov (United States)

    Zhou, Yiqing; You, Wei; Smith, Kevin B; Brown, M Kevin

    2014-03-24

    Copper-catalyzed Suzuki–Miyaura-type cross-coupling and carboboration processes are reported. The cross-couplings function well with a variety of substituted aryl iodides and aryl boronic esters and allows for orthogonal reactivity compared to palladium-catalyzed processes. The carboboration method includes both alkynes and allenes and provides access to highly substituted and stereodefined vinyl boronic esters. The alkyne carboboration method is highlighted in the simple one-pot synthesis of Tamoxifen. PMID:24677502

  4. Concentration and electrode material dependence of the voltammetric response of iodide on platinum, glassy carbon and boron-doped diamond in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide

    International Nuclear Information System (INIS)

    The electro-oxidation of iodide has been investigated as a function of concentration using steady-state microelectrode voltammetry, transient cyclic voltammetry and linear-sweep semi-integral voltammetry on platinum, glassy carbon and boron-doped diamond electrodes in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Two oxidation processes are observed on all of the investigated electrode materials, with the first being assigned to the oxidation of iodide to triiodide (confirmed by UV/visible spectroscopy) and the second being attributed to the oxidation of triiodide to iodine. Iodide oxidation is kinetically more facile on platinum compared to glassy carbon or boron-doped diamond. At elevated bulk iodide concentrations, the nucleation and growth of sparingly soluble electrogenerated iodine at the electrode surface was observed and imaged in situ using optical microscopy. The diffusion coefficient of iodide was determined to be 2.59 (±0.04) × 10−7 cm2 s−1 and independent of the bulk concentration of iodide. The steady-state iodide oxidation current measured at a platinum microelectrode was found to be a linear function of iodide concentration, as expected if there are no contributions from non-Stokesian mass-transport processes (electron hopping and/or Grotthuss-type exchange) under the investigated conditions

  5. Potassium Iodide

    Science.gov (United States)

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released during ... the thyroid gland. You should only take potassium iodide if there is a nuclear radiation emergency and ...

  6. Boron

    International Nuclear Information System (INIS)

    The trace element boron (B) is of interest in reclamation situations for several reasons. It plays an essential through largely unidentified role in the growth of higher plants. In argronomic situations B deficiencies are common, and deficiencies in reclamation situations have been suggested but not documented. Among micronutrients, B is unique because the range from deficient concentrations to toxic concentrations either in the soil solution or in plant tissue is narrower than for any other micronutrient. In reclamation situations excessive amounts of B can occur in the soil or in near-surface mining wastes and thus interfere with reclamation objectives, especially in arid and semiarid regions. Also, B is mobile and appears subject to both upward transport (and possible contamination of overlying material) and downward transport (and possible contamination of surface water and groundwater)

  7. Potassium Iodide (KI)

    Science.gov (United States)

    ... Planning Information on Specific Types of Emergencies Potassium Iodide (KI) Language: English Español (Spanish) Recommend on Facebook ... I get KI (potassium iodide)? What is Potassium Iodide (KI)? KI (potassium iodide) is a salt of ...

  8. Methyl Iodide

    Science.gov (United States)

    Methyl iodide (MeI, iodomethane, CH3I) was reported as a potential alternative to the stratospheric ozone-depleting fumigant methyl bromide (MeBr) in the mid-1990s (Sims et al., 1995; Ohr et al., 1996). It has since received significant research attention to determine its environmental fate and tran...

  9. Neutron Detection with Mercuric Iodide

    International Nuclear Information System (INIS)

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the 10B(n, α)7Li* reaction. However, the 374 barn thermal capture cross section of natHg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant 199Hg(n, γ)200Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in 10B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both the 478 and 368 keV gamma rays removes the ambiguity associated with the observation of only one of them. Pulse height spectra, obtained with and without lead and cadmium absorbers, showed the expected gamma rays and demonstrated that they were caused by neutrons

  10. Neutron Detection with Mercuric Iodide

    CERN Document Server

    Bell, Z A

    2003-01-01

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the sup 1 sup 0 B(n, alpha) sup 7 Li* reaction. However, the 374 barn thermal capture cross section of sup n sup a sup t Hg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant sup 1 sup 9 sup 9 Hg(n, gamma) sup 2 sup 0 sup 0 Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in sup 1 sup 0 B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both ...

  11. Mercury iodide crystal growth

    Science.gov (United States)

    Cadoret, R.

    1982-01-01

    The purpose of the Mercury Iodide Crystal Growth (MICG) experiment is the growth of near-perfect single crystals of mercury Iodide (HgI2) in a microgravity environment which will decrease the convection effects on crystal growth. Evaporation and condensation are the only transformations involved in this experiment. To accomplish these objectives, a two-zone furnace will be used in which two sensors collect the temperature data (one in each zone).

  12. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  13. The sodium/iodide symporter and radio-iodide therapy

    International Nuclear Information System (INIS)

    The sodium/iodide symporter (NIS) is an intrinsic membrane protein that mediates the active transport of iodide into the thyroid and other tissues. NIS plays key roles in thyroid pathophysiology as the route by which iodide reaches the gland for thyroid hormone biosynthesis and as a means for diagnostic scintigraphic imaging and for radio-iodide therapy in hyperthyroidism and thyroid cancer. The continued molecular analysis of NIS clearly holds the potential of an even greater impact on the diagnosis and radio-iodide treatment of cancer, both in thyroid and beyond

  14. 21 CFR 184.1265 - Cuprous iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS Reg... with potassium iodide under slightly acidic conditions. (b) The ingredient must be of a purity...

  15. Hydrogen iodide decomposition

    Science.gov (United States)

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  16. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  17. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn; Jacobsen, Torben

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri-iodide...... layer on top of the FTO glass to lower the tri-iodide reduction rate....

  18. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  19. Electroextraction of boron from boron carbide scrap

    International Nuclear Information System (INIS)

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron (10B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of 10B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron

  20. Mercuric iodide sensor technology

    International Nuclear Information System (INIS)

    This report describes the improvement in the performance and the manufacturing yield of mercuric iodide detectors achieved by identifying the dominant impurities, carrier traps, and processing steps limiting device performance. Theoretical studies of electron and hole transport in this material set fundamental limits on detector performance and provided a standard against which to compare experimental results. Spectroscopy techniques including low temperature photoluminescence and thermally stimulated current spectroscopy were applied to characterize the deep level traps in this material. Traps and defects that can be introduced into the detector during growth, from the contact, and during the various steps in detector fabrication were identified. Trap energy levels and their relative abundances were determined. Variations in material quality and detector performance at the micron scale were investigated to understand the distribution in electric field in large volume detectors suitable for gamma-ray spectroscopy. Surface aging and contact degradation was studied extensively by techniques including atomic force microscopy, transmission electron microscopy, and variable angle spectroscopic ellipsometry. Preferred handling and processing procedures for maximizing detector performance and yield were established. The manufacturing yield of high resolution gamma-ray detectors was improved from a few percent to more than 30%

  1. 21 CFR 582.5634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  2. Determination of boron content in boron carbide, boron nitride and amorphous boron

    International Nuclear Information System (INIS)

    In the present article an analyzing method of determination of boron content in boron carbide, boron nitride and amorphous boron described. Examined samples were digested with potassium hydroxide and potassium nitrate in nickel crucible and the boron contents determined subsequently by an alcalimetric titration of boric acid in presence of mannite resp. sorbite. (author)

  3. The durability of iodide sodalite

    International Nuclear Information System (INIS)

    Highlights: • Dense iodide sodalite prepared by HIP of hydrothermally synthesised powders. • Sodalite was free from leachable secondary phases. • Leach tests indicate self-arresting congruent dissolution. - Abstract: An iodide sodalite wasteform has been prepared by Hot Isostatic Pressing of powder produced by hydrothermal synthesis. The wasteform was free of leachable secondary phases which can mask leaching mechanisms. Leaching is by congruent dissolution and leach rates decrease as Si and Al accumulate in the leachate. Differential normalised leach rates are 0.005–0.01 g m−2 d−1 during the 7–14 day period. This indicates that sodalite dissolution in natural groundwater, already saturated in these elements, will be very low

  4. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. PMID:26057987

  5. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  6. Elementary boron and metal-boron compounds

    International Nuclear Information System (INIS)

    Elementary boron is of interest for its peculiar and difficult bonding behaviour in solids. Due to its high oxygen affinity we find no elementary boron in nature. For the same reason it is difficult to isolate pure, elementary boron, and much confusion about 'boron crystals' has been the result of more than 100 years of research. The polymorphic forms of elementary boron and its closely related higher carbides and higher metal borides as well as the simple metal borides, B3C and BN are reported. The quantum-mechanical background responsible for structure and stoichiometry of these crystals is given. (orig.)

  7. Rare, severe hypersensitivity reaction to potassium iodide

    DEFF Research Database (Denmark)

    Nielsen, Anne Sofie Korsholm; Ebbehøj, Eva; Richelsen, Bjørn

    2014-01-01

    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acne...

  8. Large area mercuric iodide photodetectors

    International Nuclear Information System (INIS)

    Results of an investigation of large area mercuric iodide (HgI2) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI2 photodetectors with active area up to 4 cm2 were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained

  9. Large area mercuric iodide photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Iwanczyk, J.S.; Dabrowski, A.J.; Markakis, J.M.; Ortale, C.; Schnepple, W.F.

    1984-02-01

    Results of an investigation of large area mercuric iodide (HgI/sub 2/) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI/sub 2/ photodetectors with active area up to 4 cm/sup 2/ were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained.

  10. Predissociation dynamics of lithium iodide

    CERN Document Server

    Schmidt, H; Stienkemeier, F; Bogomolov, A S; Baklanov, A V; Reich, D M; Skomorowski, W; Koch, C P; Mudrich, M

    2015-01-01

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li+ and LiI+ ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V=650(20) reciprocal cm. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  11. Mercuric iodide light detector and related method

    Science.gov (United States)

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  12. 21 CFR 520.763a - Dithiazanine iodide tablets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide tablets. 520.763a Section 520... iodide tablets. (a) Chemical name. 3-Ethyl-2- -benzothiazolium iodide. (b) Specifications. Dithiazanine iodide tablets contain 10 milligrams, 50 milligrams, 100 milligrams, or 200 milligrams of...

  13. 21 CFR 520.763b - Dithiazanine iodide powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide powder. 520.763b Section 520... iodide powder. (a) Chemical name. 3-Ethyl-2- -benzothiazoliumiodide. (b) Specifications. Dithiazanine iodide powder contains 200 milligrams of dithiazanine iodide per level standard tablespoon. (c)...

  14. Reaction of bis[trialkyl(aryl)arsonium]-1,4-dihydronaphthalene iodides with mercury(2) iodide in aqueous-alcoholic solutions of potassium iodide

    International Nuclear Information System (INIS)

    Composition of mercury complex iodides, formed in the course of interaction between bis[trialkyl(aryl)arsonium]-1,4-dihydronaphthalene iodides and mercury(2) iodide in aqueous-alcoholic solution in the presence of potassium iodide excess was studied using the methods of chemical analysis, conductivity and IR spectroscopy. It was ascertained that under the conditions mentioned bisarsonium triiodomercurates are formed with the yield of 72-87%. The studies conducted confirm the potentiality of formation of mercury complex iodides of [HgI3]- composition in aqueous solutions of alkali metal iodides in the presence of some organic cations

  15. Sputtering behavior of boron and boron carbide

    International Nuclear Information System (INIS)

    Sputtering yields of boron were measured with D+ and B+ ions for normal and oblique angles of incidence. Self-sputtering data of boron carbide were simulated in the experiment by using Ne+ ions. The energies of the impinging ions were between 20 eV and 10 keV. The measured data are compared with computer simulated values calculated with the TRIMSP program. The boron data for normal ion impact are higher than the calculated values, whereas those for oblique ion incidence are smaller than the calculation predicts. This discrepancy is explained by the surface roughness and supported by SEM micrographs. The comparison of the boron carbide data with TRIMSP calculations shows much better agreement than the boron data. In this case the target surface was much smoother. (orig.)

  16. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  17. Processing. alpha. -mercuric iodide by zone refining

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A.; Morgan, S.H.; Henderson, D.O.; Biao, Y.; Zhang, K.; Silberman, E. (Fisk Univ., Nashville, TN (United States). Dept. of Physics); Nason, D.; van den Berg, L.; Ortale-Baccash, C.; Cross, E. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)

    1992-01-01

    An investigation is being conducted on zone refining {alpha}-mercuric iodide. Analytical studies using differential scanning calorimetry and anion chromatography indicate that impurities are segregated mainly at the end where zone travel terminates. Early results indicate that single crystals can be readily grown from zone refined material, and the effects of the process on the performance of radiation detectors fabricated from {alpha}-mercuric iodide are being evaluated.

  18. Iodide refining of calcium-thermal zirconium

    International Nuclear Information System (INIS)

    The possibility of high zirconium of calcium - thermal zirconium KTC-HP and metallic wastes production by iodide refining is examined. The impurities behavior is studied,the refining coefficient dependence on the impurity concentration in the initial material is determined. The impurities minimum concentration in iodide zirconium are evaluated by extrapolation.It is determined that the refining efficiency decreases in the range: Ni=Mn > Cr >F>C>N>O>Fe and aluminium and silicon removal during the iodide refining of calcium thermal zirconium is problematic. By comparison of iodide metal of KTC-HP expected quality with the specifications and the iodide zirconium purity real level obtained in the adopted practice the possibility of standard metal production of KTC-HP and metal wastes is demonstrated. The principal merit of KTC - hafnium content <0,01 mass % is preserved. Alloys melting of double or triple on the base of KTC according TS 95.2185-90 with the addition of 35...50 % of iodide zirconium by the method VDP will allow to obtain the alloys KTC-110 and KTC-125 with oxygen fraction of total mass 0,06...0,10% and hafnium content, meeting the world standards

  19. Mass spectrometric determination of boron isotope in boron carbide

    International Nuclear Information System (INIS)

    Boron isotopes in boron carbide are measured by thermionic ionization mass spectrometry with no prior chemical separation. Boron is converted to sodium borate by fusion of the boron carbide with sodium hydroxide (or sodium carbonate) directly on the rhenium filament. The boron isotopic ratios are measured by using the Na2BO2+ ion

  20. Recovery of anhydrous hydrogen iodide

    Science.gov (United States)

    O'Keefe, Dennis R.; McCorkle, Jr., Kenneth H.; de Graaf, Johannes D.

    1982-01-01

    Relatively dry hydrogen iodide can be recovered from a mixture of HI, I.sub.2 and H.sub.2 O. After the composition of the mixture is adjusted so that the amounts of H.sub.2 O and I.sub.2 do not exceed certain maximum limits, subjection of the mixture to superatmospheric pressure in an amount equal to about the vapor pressure of HI at the temperature in question causes distinct liquid phases to appear. One of the liquid phases contains HI and not more than about 1 weight percent water. Often the adjustment in the composition will include the step of vaporization, and the distinct layers appear following the increase in pressure of the vapor mixture. Adjustment in the composition may also include the addition of an extraction agent, such as H.sub.3 PO.sub.4, and even though the adjusted composition mixture contains a significant amount of such an agent, the creation of the distinct liquid phases is not adversely affected.

  1. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.; Jacobsen, T.

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide/tri-iodide...... layer on top of the FTO glass in lowering the tri-iodide reduction rate. (c) 2005 Elsevier B.V. All rights reserved....

  2. Kinetics of gold dissolution in iodide solutions

    Science.gov (United States)

    Yang, Kang

    Cyanide has been used as a lixiviant for free milling gold ores for a long time. Cyanide solutions are highly toxic and their use poses long term environmental problems. Cyanidation process is efficient for oxide gold ores but it is ineffective for gold ores containing sulfides. Among the noncyanide based lixiviants, iodide has the potential of replacing cyanide due to its ability to leach gold at a wider pH range and higher rate of gold dissolution. The emerging technology of bio-oxidation is an accepted process for pretreatment of sulfide gold ores. The bio-oxidation is conducted at acidic pH which makes direct cyanidation without pH adjustment impractical. On the contrary, iodide leaching of gold from the bio-oxidized ore can be accomplished without any pH adjustment. The present study was undertaken in order to investigate the kinetics of gold dissolution in various iodide-oxidant solutions under conditions similar to those prevailing in a solution containing bio-oxidized ore. The thermodynamic study indicated that gold can be spontaneously dissolved in iodide-hydrogen peroxide, iodide-ferric ion and iodide-persulfate solutions. Dissolution of gold powder was carried out in these solutions and the results showed that the gold dissolution was dependent on solution pH, concentrations of iodide, oxidants and temperature. Gold dissolution was found to increase with decreasing pH and substantial gold dissolution could be achieved at pH ≤ 2. Increasing concentration of oxidant till an optimum oxidant/iodide molar ratio increased gold dissolution and much higher concentration of oxidant would result in a decrease in gold dissolution. With increasing iodide concentration and temperature, gold dissolution increased significantly. The activation energy data which ranged between 9.6 and 13.6 kcal/mole for various oxidants indicated that surface reaction was the rate controlling step. At higher temperatures a change in rate limiting step with passage of time was observed

  3. Experimental study on preparing gaseous methyl iodide by chlorotrimelthylsilane/sodium iodide

    International Nuclear Information System (INIS)

    The experiments were carried out to study the feasibility of substituting the extremely toxic dimethyl sulfate (DMS) with nontoxic reagents in preparing the gaseous methyl iodide to measure the scrubbing efficiency of iodine adsorber. The test results show that the reaction of chlorotrimelthylsilane/sodium iodide (or potassium iodide) as a iodating agent and phosphate methylesters is a good substitution method, the reaction conditions and productivity of methyl iodide can meet the requirements of both workshop and in-place tests of iodine adsorber, and the substitutes have little influence on the nuclear grade immersed activated carbon filled in the iodine adsorber. The substitution method can substitute the DMS method to prepare gaseous methyl iodide. (authors)

  4. Plasma etching of cesium iodide

    International Nuclear Information System (INIS)

    Thick films of cesium iodide (CsI) are often used to convert x-ray images into visible light. Spreading of the visible light within CsI, however, reduces the resolution of the resulting image. Anisotropic etching of the CsI film into an array of micropixels can improve the image resolution by confining light within each pixel. The etching process uses a high-density inductively coupled plasma to pattern CsI samples held by a heated, rf-biased chuck. Fluorine-containing gases such as CF4 are found to enhance the etch rate by an order of magnitude compared to Ar+ sputtering alone. Without inert-gas ion bombardment, however, the CF4 etch becomes self-limited within a few microns of depth due to the blanket deposition of a passivation layer. Using CF4+Ar continuously removes this layer from the lateral surfaces, but the formation of a thick passivation layer on the unbombarded sidewalls of etched features is observed by scanning electron microscopy. At a substrate temperature of 220 deg. C, the minimum ion-bombardment energy for etching is Ei∼50 eV, and the rate depends on Ei1/2 above 65 eV. In dilute mixtures of CF4 and Ar, the etch rate is proportional to the gas-phase density of atomic fluorine. Above 50% CF4, however, the rate decreases, indicating the onset of net surface polymer deposition. These observations suggest that anisotropy is obtained through the ion-enhanced inhibitor etching mechanism. Etching exhibits an Arrhenius-type behavior in which the etch rate increases from ∼40 nm/min at 40 deg. C to 380 nm/min at 330 deg. C. The temperature dependence corresponds to an activation energy of 0.13±0.01 eV. This activation energy is consistent with the electronic sputtering mechanism for alkali halides

  5. Luminescent properties of calcium iodide crystals

    International Nuclear Information System (INIS)

    The influence of preparation conditions, temperature and X radiation on luminescent properties of calcium iodide scintillating crystals is studied, the results are provided. The results obtained when studying spectral characteristics of CaI2 and CaI2:H2 crystals in case of optical and X-ray excitation in the temperature range of 90-400 K, allowance made for data obtained when studying luminescent properties of calcium iodide crystals activated by Cl-, Br-, OH- and Ca2+ impurities, permit assumption that band 236 nm observed in excitation spectra of calcium iodide crystals can stem from noncontrolled hydrogen impurity. Luminescence of the crystals with the maximum in the range of 395 nm is assigned to radiation recombination of excitons localized on H- ions

  6. Adsorption of radioactive iodide by natural zeolites

    International Nuclear Information System (INIS)

    Two natural zeolites from Iranian deposits (clinoptilolite and natrolite) were characterized and their ability for adsorption of iodide from nuclear wastewaters was evaluated. The adsorption behavior was studied on natural and modified zeolites by γ-spectrometry using 131I as radiotracer. Adsorption isotherms and distribution coefficient (Kd) were measured. The results showed that clinoptilolite is a more promising zeolite for removal of iodide compared to natrolite. Furthermore, the adsorption was higher in silver, lead and thallium forms, whereas the lowest desorption was observed in lead modified zeolite. (author)

  7. The partitioning of iodides into steam

    International Nuclear Information System (INIS)

    In order to estimate the likely releases of radioactive iodine during steam generator tube rupture (SGTR) faults, it is necessary to know the relevant partition coefficients as a function of temperature and solution composition. It has been suggested previously that, under SGTR fault conditions, partitioning of free or ion-paired I- into the steam may be more extensive than that for molecular HI. This report uses available information on the partitioning of iodides and other salts to provide a means of estimating the partition coefficient of the iodide ion as a function of boric acid concentration and temperature. (author)

  8. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a-Deuterium kinetic isotope effects (KIE's) have been determined for the reaction of methyl iodide with a series of reducing agents. Reagents which transfer hydride ion in an SN2 reaction show small inverse or small normal KIE's. Reagents which transfer an electron to methyl iodide to produce...... methyl radical show large normal KIE's up to 20 % per a-D. Large KIE's were found for the reaction of methyl iodide with sodium, for Pd-catalyzed reaction of methyl iodide with hydrogen, for ET at a platinum cathode, for ET from benzophenone ketyl or from sodium naphthalenide, for iron catalyzed ET from...... a Grignard reagent to methyl iodide, and for reduction of methyl iodide with tributyltin hydride or with gaseous hydrogen iodide. Very small KIE's were found for electron transfer to methyl iodide from magnesium in ether or from sodium in ammonia. The reason may be that these reactions are transport...

  9. Determination of boron and silicon in boron carbide

    International Nuclear Information System (INIS)

    A sodium carbonate fusion technique for the dissolution of boron carbide followed by the determination of boron by alkalimetric titration and silicon impurity by spectrophotometry is described. The elemental boron content in the commercially available boron carbide ranged from 77.2 to 77.60 % and the silicon in the range 1170 to 2500 ppm. (author)

  10. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    Science.gov (United States)

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  11. Developments in mercuric iodide gamma ray imaging

    International Nuclear Information System (INIS)

    A mercuric iodide (HgI2) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented. (orig.)

  12. Developments in mercuric iodide gamma ray imaging

    Science.gov (United States)

    Patt, B. E.; Beyerle, A. G.; Dolin, R. C.; Ortale, C.

    1989-11-01

    A mercuric iodide (HgI2) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented.

  13. Developments in mercuric iodide gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Beyerle, A.G.; Dolin, R.C.; Ortale, C.

    1987-01-01

    A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented. 2 refs., 7 figs.

  14. Developments in mercuric iodide gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Beyerle, A.G.; Dolin, R.C.; Ortale, C. (EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations)

    1989-11-01

    A mercuric iodide (HgI{sub 2}) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented. (orig.).

  15. Scintillator handbook with emphasis on cesium iodide

    Science.gov (United States)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  16. 21 CFR 184.1634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... ingredient meets the specifications of the “Food Chemicals Codex,” 3d Ed. (1981), pp. 246-247, which is... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  17. Iodide-trapping defect of the thyroid

    International Nuclear Information System (INIS)

    We describe a grossly hypothyroid 50-year-old woman, mentally retarded since birth. On the basis of her history of recurrent goitre, absence of 131I neck uptake and a low saliva/plasma 131I ratio, congenital hypothyroidism due to a defect of the iodide-trapping mechanism was diagnosed. Other family members studied did not have the defect

  18. Cu-catalyzed trifluoromethylation of aryl iodides with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide

    OpenAIRE

    Yuzo Nakamura; Motohiro Fujiu; Tatsuya Murase; Yoshimitsu Itoh; Hiroki Serizawa; Kohsuke Aikawa; Koichi Mikami

    2013-01-01

    The trifluoromethylation of aryl iodides catalyzed by copper(I) salt with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide and Zn dust was accomplished. The catalytic reactions proceeded under mild reaction conditions, providing the corresponding aromatic trifluoromethylated products in moderate to high yields. The advantage of this method is that additives such as metal fluoride (MF), which are indispensable to activate silyl groups for transmetallation in the corresp...

  19. Determining Of Iodide Concentration In Salt Using Iodide Ion Selective Electrode

    International Nuclear Information System (INIS)

    There are various studies about the determination of iodide or iodinate in table salt samples. Iodo metric method (5), spectrophotometric method(8), gravimetric method (2), chromatographic method (6), differential potentiometric method (3).But with ion selective electrode technicality the determination of iodide in geothermal water was only determined. So, in this work, the concentration of iodide in control table salt, iodinate table salt samples were determination, using iodide ion selective electrode . Iodide calibration graph was plotted according to the standard method, and the results of control salt samples which contain a defined concentration of iodide, and known amount of ionic strength adjustment buffer, were compatible with the assigned values. The linearity and sensitivity of method were studied, the results were 50 mg.L-1 and 0.2 mg.L-1 respectively . While, when the method applied on iodinate table salt samples which contain a amount concentration of potassium iodate (KIO3), the results were inconsistent. So, we had to convert the KIO3 to I-1 with oxidation - reduction reaction. By using convenient reduction in acidic medium . Iodate calibration graph was plotted according to the last standard method, and the results of control iodinate table salt samples were good with relative standard deviation was 3 %. (author)

  20. Transfer of the human sodium/iodide symporter gene enhances iodide uptake in melanoma cells

    International Nuclear Information System (INIS)

    Aim: Radioiodide therapy using 131I is effective for patients who have benign thyroid diseases or differentiated thyroid carcinoma. The transport of iodide across the cell membrane is mediated by the human sodium/iodide symporter (hNIS). To investigate the feasibility of 131I therapy for melanoma, we established melanoma cells stably expressing hNIS gene that can be modulated and studied in vivo and in vitro. Material and Methods: We transfected hNIS gene into a mouse melanoma cell line (B16) by electroporation. Iodide accumulation was assessed under various extracellular concentrations of sodium and iodide, and iodide efflux was also evaluated. Biodistribution and tumor imaging were studied using tumor-bearing mice. Results: We established a novel cell line B16-3 stably expressing the hNIS gene from B16. 125I uptake by B16-3 cells is between 6-17-fold that of B16 cells and 8-33-fold that of cell lines transduced with the eukaryotic expression vector pcDNA3 only. Iodide uptake was completely inhibited by 1mmol/L perchlorate and was dependent on external sodium and iodide concentrations. The velocity of iodide efflux from B16-3 cells was almost equal to that of FRTL-5 thyroid cells (T1/2 = 4min). In the biodistribution study using B16-3-xenografted mice, high tumor uptake of 131I was shown at 1 hour after injection, and tumor-to-normal tissue ratios were also high, except in the thyroid and stomach. However, the residual iodide in tumor lessened with time, reaching less than 3% at 24 h after injection. Conclusion: The transduction of he hNIS gene per se is sufficient to induce iodide transport in melanoma cells in vivo and in vitro. With regard to therapeutic application, however, further investigation is necessary to determine a method of maintaining radioiodide in the cells long enough to produce greater therapeutic effects

  1. First boronization in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H., E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, K.S.; Kim, K.M.; Kim, H.T.; Kim, G.P. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, J.H.; Woo, H.J. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Park, J.M.; Kim, W.C.; Kim, H.K.; Park, K.R.; Yang, H.L.; Na, H.K. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Chung, K.S. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    First boronization in KSTAR is reported. KSTAR boronization system is based on a carborane (C{sub 2}B{sub 10}H{sub 12}) injection system. The design, construction, and test of the system are accomplished and it is tested by using a small vacuum vessel before it is mounted to a KSTAR port. After the boronization in KSTAR, impurity levels are significantly reduced by factor of 3 (oxygen) and by 10 (carbon). Characteristics of a-C/B:H thin films deposited by carborane vapor are investigated. Re-condensation of carborane vapor during the test phase has been reported.

  2. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-01

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite. PMID:17830955

  3. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  4. Mercuric iodide X-ray camera

    Science.gov (United States)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  5. Mercuric iodide x-ray camera

    International Nuclear Information System (INIS)

    A prototype x-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV. 5 refs., 7 figs

  6. Mercuric iodide X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype x-ray camera utilizing a 1.5- by 1.5-inch, 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  7. Mercuric iodide x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Del Duca, A.; Dolin, R.; Ortale, C.

    1985-01-01

    A prototype x-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV. 5 refs., 7 figs.

  8. Mercuric iodide X-ray camera

    International Nuclear Information System (INIS)

    A prototype x-ray camera utilizing a 1.5- by 1.5-inch, 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV

  9. Composition and properties of thallium mercury iodide

    Science.gov (United States)

    Kennedy, John H.; Schaupp, Christopher; Yang, Yuan; Zhang, Zhengming; Novinson, Thomas; Hoffard, Theresa

    1990-10-01

    Conflicting reports exist in the literature concerning the composition of thallium mercury iodide. Solid state synthesis with HgI 2 and TlI has been reported to give Tl 4HgI 6 while synthesis from solution has been reported to give Tl 2HgI 4. In this report we show that the "orange compound" precipitating from solution is actually a 1:1 mole ratio mixture of Tl 4HgI 6 and HgI 2. Pure Tl 4HgI 6, which is yellow, can be produced by heating the mixture at 100°C for several days to volatilize HgI 2 or more simply, by adding Tl(I) to a solution containing 2:1 KI:K 2HgI 4 to provide the additional iodide ions needed for Tl 4HgI 6. Tl 4HgI 6, unlike Ag 2HgI 4 and Cu 2HgI 4, has no sharp thermochromic changes and has no measurable ionic conductivity. This provides another example of the significant role the metal ion plans in determining structure and properties of metal mercury iodide compounds.

  10. UV-VIS-NIR spectral optical properties of silver iodide borate glasses

    International Nuclear Information System (INIS)

    We present a study of optical properties of a series of silver iodide borate glasses(AgI)x(Ag2O·B2O3)1−xby UV-VIS-NIR spectroscopy. The results show an increased absorbance in the whole analysed spectral range when the AgI concentration is augmented. In particular, the enhanced intensity of the wavelength band at 400–500 nm with silver iodine content suggests that this band arises from plasmon-related absorption, describing the formation of silver nanoparticles. With respect to this study, our results could motivate novel target designs consisting of ternary silver boron based bulk glasses for generating resonant absorption of laser light by plasma.

  11. Determination of Boron in soils and plants samples using spectrophotometric method

    International Nuclear Information System (INIS)

    In this work, the concentration of boron in soil and plant samples was determined with UV-vis spectrophotometer by using azomethine-H as a complex reagent. The calibration curve for boron determination in the range of (0μ3 g.mL-1) was constructed by plotting the measured absorption of the yellow azomethine-H-B complex at λmax = 412.6 nm against boron concentration in the aqueous phase. The detection limit, repeatability limit, intermediate precision, accuracy, and recovery coefficient of this method were calculated and found to be 0.021 μg.mL-1, 0.335% , 0.81%, 2.93%, (98.4-101.5)% respectively. The influence of some foreign ions on the determination of boron were also investigated in detail, most of the studied ions, like iron, iodide, and calcium can be tolerated within the ranges of (20-35μg.mL-1), (3000-5000μg.mL-1) , (15000-30000μg.mL-1) respectively. This is due to the fact, that ascorbic acid and EDTA in the buffer masking reagent reaction system can be very effective in masking these ions. This method was found to be economic and suitable for boron determination in standard and local samples (soil, plant) and requires small amount of sample (1g). This method can also be applied for boron determination in water samples (drinking and industrial waste water).(author)

  12. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H.; Endo, M. [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  13. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  14. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  15. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  16. Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Aluminum oxide pellets are used in a reactor core as filler or spacers within fuel, burnable poison, or control rods. In order to be suitable for this purpose, the material must meet certain criteria for impurity content. The test methods in the standard are designed to show whether or not a given material meets these specifications. The following analytical procedures are described in detail: boron by titrimetry; separation of boron by mass spectrometry; isotopic composition by mass spectrometry; separation of halides by pyrohydrolysis; fluoride by ion-selective electrode; chloride, bromide, and iodide by amperometric microtitrimetry; trace elements by emission spectroscopy. (JMT)

  17. Tritium and iodide diffusion through opalinus clay

    International Nuclear Information System (INIS)

    The International Mont Terri Project started in 1995 under the patronage of the Swiss National Hydrological and Geological Survey (SNHGS), and has the authorization of the Republique et Canton du Jura. The underground rock laboratory is located at the northwestern part of Switzerland (Canton Jura), in and beside the reconnaissance gallery of the Mont Terri motorway tunnel, one of the several tunnels of the A16 'Transjurane' motorway. The depth of overburden above the rock laboratory is approximately 300 meters. The project is aimed to investigate the geological, hydrogeological, geochemical and rock mechanical properties of the Opalinus Clay for assessing the feasibility and safety of a repository for radioactive waste placed in this type of host rock. One of the issues under study is radionuclide migration by diffusion through clays. As a part of this investigation, an interlaboratory comparison on small-scale diffusion experiments was carried out by three research laboratories: AEA Technology (UK), SCK-CEN (Belgium) and CIEMAT (Spain). The radionuclides investigated were tritium and iodine. This paper concerns to the methodological approach and results of the experiments undertaken by CIEMAT. The effective diffusion coefficients were measured for tritiated water and iodine (as Γ), resulting larger for tritium [(1.7±0.4)x10-11 m2/s] than for iodide [(2.7±0.3)x10-12 m2/s]. The porosity available for diffusion was calculated by using the time-lag method, but some results seemed unrealistic and showed a large variability. In general, tritium exhibited higher values of porosity than iodide (17 to 26% and 12 to 17%, respectively), which were consistent with the anion exclusion affecting the distribution of iodide into the clay pores. Copyright (2001) Material Research Society

  18. Magnetron sputter deposition of boron and boron carbide

    International Nuclear Information System (INIS)

    The fabrication of X-ray optical coatings with greater reflectivity required the development of sputter deposition processes for boron and boron carbide. The use of high density boron and boron carbide (B4C) and a vacuum-brazed target design was required to achieve the required sputter process stability and resistance to the thermal stress created by high rate sputtering. Our results include a description of the target fabrication procedures and sputter process parameters necessary to fabricate B4C and boron modulated thin film structures. (orig.)

  19. Transfer of the human sodium/iodide symporter gene enhances iodide uptake in melanoma cells

    International Nuclear Information System (INIS)

    Objective: To obtain human sodium/iodide symporter (hNIS) cDNA and to study its biological property and potential use as a therapeutic radioiodide for melanoma. Methods: hNIS gene cDNA was amplified with total RNA from human thyroid tissue by RT-PCR. The hNIS cDNA was inserted into cloning vector pUCm-T and subcloned into eukaryotic expression vector pcDNA3. The recombinant plasmid pcDNA3-hNIS was introduced into B16 cells using the electroporation technique. The uptake and efflux of iodide was examined in vitro. Results: The cloned hNIS cDNA sequence was identical to the published sequence. Two novel cell lines named B16-A containing hNIS and B16-B containing pcDNA3 only were established. The resultant cell line B16-A accumulated 17 and 19 times more radioiodide in vitro than B16 and B16-B did, respectively. However the efflux of iodide from B16-A was also rapid ( T1/2=10 min). Conclusions: Our preliminary data indicate that the transduction of the hNIS gene per se is sufficient to induce iodide transport in melanoma cells in vitro, but its T1/2 is short. With regard to therapeutic application, however, further investigation is necessary so as to develop a method of maintaining more radioiodide in the cells for long enough to produce greater therapeutic effects

  20. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    Science.gov (United States)

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive

  1. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    Science.gov (United States)

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-01

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere. PMID:26745029

  2. Recent developments in thick mercuric iodide spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hull, K.; Beyerle, A.; Lopez, B.; Markakis, J.; Ortale, C.; Schnepple, W.; van den Berg, L.

    1982-01-01

    Thick (approx. 1 cm) mercuric iodide gamma-ray detectors have been produced which show spectroscopic qualities at moderate detector biases (approx. 5 kV) comparable to those of thin spectrometers. Efficiency measurements indicate that the entire volume of the detectors is active. Spectra resolutions of less than 10% have been obtained for gamma-ray energies above 1 MeV. Short charge collection times have produced the best results. Measurement of crystal charge transport properties is discussed. A small amount of bias conditioning is necessary for best performance. Operating parameters of the detectors have been investigated.

  3. Large-area mercuric iodide photodectors

    Science.gov (United States)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1983-07-01

    The limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection are discussed. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI2 photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers.

  4. Large-area mercuric iodide photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1983-01-01

    This article discusses the limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI/sub 2/ photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers.

  5. The addition of iodine to tetramethylammonium iodide

    Science.gov (United States)

    Foote, H.W.; Fleischer, M.

    1953-01-01

    The system tetramethylammonium iodide-iodine-toluene has been studied by the solubility method at 6 and at 25??. The compounds (CH3)4NI3, (CH3)4NI5 and (CH3)4NI11 were found to be stable phases at both temperatures. In addition, the compound (CH3)4NI10 was found at 6?? and the compound (CH3)4NI9 at 25??. The dissociation pressures of the compounds at these temperatures were calculated from the solubility data.

  6. Novel mercuric iodide polycrystalline nuclear particles counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Lab., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel)] [and others

    1996-12-31

    Polycrystalline mercuric iodide nuclear radiation detectors having areas between 0.01 to 100 cm{sup 2} and thicknesses 30 to 600 microns, have been fabricated with single, linear strip and square pixel contact. The large area detectors 10 to 600 cm{sup 2} were produced by industrial ceramic equipment while the smaller ones, about 1 cm{sup 2} area, were produced in the laboratory. The large detectors still had large leakage currents and the production process is being revised. The smaller detectors were tested and their response to lower and higher gamma energy, beta and even 100 GeV muons at CERN will be reported.

  7. Novel mercuric iodide polycrystalline nuclear particles counters

    International Nuclear Information System (INIS)

    Polycrystalline mercuric iodide nuclear radiation detectors having areas between 0.01 to 100 cm2 and thicknesses 30 to 600 microns, have been fabricated with single, linear strip and square pixel contact. The large area detectors 10 to 600 cm2 were produced by industrial ceramic equipment while the smaller ones, about 1 cm2 area, were produced in the laboratory. The large detectors still had large leakage currents and the production process is being revised. The smaller detectors were tested and their response to lower and higher gamma energy, beta and even 100 GeV muons at CERN will be reported

  8. Large-area mercuric iodide photodetectors

    International Nuclear Information System (INIS)

    This article discusses the limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI2 photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers

  9. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.;

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...... detector material with a large technological applicability. Its band-gap energy as a function of temperature has also been measured by optical absorption. The temperature dependence has been fitted by two different relations, and a discussion of these fittings is given. ©2002 American Institute of Physics....

  10. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  11. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Dithiazanine iodide oral dosage forms....

  12. Experimental research on performance of gaseous methyl iodide removal

    International Nuclear Information System (INIS)

    Under the circumstance of gaseous methyl iodide removal process in containment venting system, taking the deionized water and alkalescent sodium thiosulphate as absorber, the experimental researches on the performance of gaseous methyl iodide removal were carried out at different solution temperatures and concentrations. And the effects of two types of mechanisms, namely mass transfer and chemical reaction, on gaseous methyl iodide removal process were analyzed based on the experimental results. The research results show that at room temperature, the mass transfer mechanism plays a dominant role in gaseous methyl iodide removal process through the absorption of alkalescent sodium thiosulphate solution. Thus, the slow chemical reaction rate is the major factor that limits gaseous methyl iodide removal efficiency. With temperature increasing, the effect of chemical reaction is constantly enhanced in the methyl iodide removal process. However, the gas absorption process will get into an insensitive region when the reaction rate reaches to a certain point and the continuously enhancing chemical reaction rate will not greatly influence the removal efficiency. At that point, mass transfer performance becomes the major factor that limits gaseous methyl iodide removal process. The efficiency of gaseous methyl iodide removal can be further improved by necessary means of enhancing mass transfer process through increasing contact surface and so on. (authors)

  13. Dissolution of gaseous methyl iodide into aqueous sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Absorption process of gaseous methyl iodide by water or sodium hydroxide solutions was investigated using a semi-flow type experimental apparatus by measuring the concentration of all measurable chemical species in both the gas and the liquid phase. The experimental temperature ranged from 288 to 311 K and the gaseous methyl iodide and aqueous sodium hydroxide concentrations were approximately 0.6 x 10-3 to 7 x 10-3 and 0 to 0.2 mol/dm3, respectively. It is estimated that the dissolution of methyl iodide into the sodium hydroxide solution proceeds according to the following steps. Step (1) Methyl iodide in air dissolves physically into the aqueous phase. Physical dissolution process obeys Henry's law. Step (2) Methyl iodide dissolved into the aqueous phase is decomposed by a base catalytic hydrolysis and produces methyl alcohol and iodide ion. The equilibrium constants of physical dissolution were obtained from the steady concentration in both the gas and the liquid phases in the semi-flow type experiment because the hydrolysis reaction rate of methyl iodide is very slow in comparison with the physical dissolution in this experimental conditions. The obtained value of the standard heat of solution of methyl iodide into water was 7.2 kcal/mol. Salting-out effect was observed when the concentration of sodium hydroxide in the absorbent was over 0.01 mol/dm3. (auth.)

  14. Iodide sensing via electrochemical etching of ultrathin gold films

    International Nuclear Information System (INIS)

    Iodide is an essential element for humans and animals and insufficient intake is still a major problem. Affordable and accurate methods are required to quantify iodide concentrations in biological and environmental fluids. A simple and low cost sensing device is presented which is based on iodide induced electrochemical etching of ultrathin gold films. The sensitivity of resistance measurements to film thickness changes is increased by using films with a thickness smaller than the electron mean free path. The underlying mechanism is demonstrated by simultaneous cyclic voltammetry experiments and resistance change measurements in a buffer solution. Iodide sensing is conducted in buffer solutions as well as in lake water with limits of detection in the range of 1 μM (127 μg L−1) and 2 μM (254 μg L−1), respectively. In addition, nanoholes embedded in the thin films are tested for suitability of optical iodide sensing based on localized surface plasmon resonance. (paper)

  15. Boron cures cancer

    International Nuclear Information System (INIS)

    In this work the authors cite a few examples of the use of radiopharmaceuticals for diagnostic and therapeutic purposes in nuclear medicine. They point to the possibility of boron neutron capture therapy and the use for the neutron capture therapy of other light elements.

  16. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  17. Process for microwave sintering boron carbide

    International Nuclear Information System (INIS)

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy

  18. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  19. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Directory of Open Access Journals (Sweden)

    Liang Ji-An

    2010-11-01

    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  20. Carrier traps and transport in mercuric iodide

    Science.gov (United States)

    Schlesinger, T. E.; Bao, X. J.; James, R. B.; Cheng, A. Y.; Ortale, C.; van den Berg, L.

    1992-11-01

    Thermally stimulated current spectroscopy (TSC) was performed on a variety of mercuric iodide samples and detectors to determine the nature and origin of deep traps in this material. It is shown that the trap type and concentration is a function of the metal overlayer employed as a contact material. The energy barrier height as well as the type (electron or hole) of barrier at the metal/semiconductor interface has also been determined by internal photoemission measurements. When polarization effects are not present, as is the case in most Pd contacted samples, the barrier height can be accurately determined by this technique. A value of 1.05 eV was measured for a hole barrier at the Pd/Hgl 2 interface.

  1. Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite

    KAUST Repository

    Hermes, Ilka M.

    2016-02-12

    Methylammonium lead iodide (MAPbI3) perovskite materials show an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI3(Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with x-ray diffraction, the preferred domain orientation was suggested to be the a1-a2-phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film texture and thus the preparation route. The formation of the ferroelastic twin domains could be induced by internal strain during the cubic-tetragonal phase transition.

  2. Photoluminescence studies of impurities and defects in mercuric iodide

    International Nuclear Information System (INIS)

    The authors have studied the effects of chemical etching in potassium iodide(KI) aqueous solution, vacuum exposure and bulk heating on the photoluminescence(PL) spectra of mercuric iodide(HgI2). Different contact materials deposited onto HgI2 were also investigated, such as Pd, Cu, Al, Ni, Sn, In, Ag and Ta. These processing steps and the choice of a suitable electrode material are very important in the manufacturing of high-quality mercuric iodide nuclear detectors. Comparisons are made between the front surface photoluminescence and transmission photoluminescence spectra

  3. Electro regeneration of iodide loaded resin. Contributed Paper RD-18

    International Nuclear Information System (INIS)

    Spent resins generated in the nuclear reactor contain essentially cationic activities due to Cesium, Strontium, Cobalt, and anionic activities due to Iodide, Iodate etc with activity loading to the extent of 0.1 Cim-3 and a surface dose of the order of 5 R. It is necessary to convert the spent resin into innocuous, reusable forms. An attempt has been made to regenerate Iodide containing spent resin into OH- electrolytically by using the OH- produced at the cathode compartment of an electrolytic cell. Results show that the regeneration of the spent resin containing Iodide could be completely accomplished electrolytically more efficiently than by addition of alkali. (author)

  4. Expression of the human sodium/iodide symporter (hNIS) in xenotransplanted human thyroid carcinoma

    NARCIS (Netherlands)

    Smit, J.W.A.; Schröder - van der Elst, J.P.; Karperien, M.; Que, I.; Romijn, J.A.; Heide, van der D.

    2001-01-01

    The uptake of iodide in thyroid epithelial cells is mediated by the sodium/iodide symporter (NIS). The uptake of iodide is of vital importance for thyroid physiology and is a prerequisite for radioiodine therapy in thyroid cancer. Loss of iodide uptake due to diminished expression of the human NIS (

  5. Sintered boron, production and properties

    International Nuclear Information System (INIS)

    Microhardness HV, tensile properties and Young modulus of sintered boron of different porosity were studied. It was shown that with density growth tensile properties improve. HV and brittle-ductile transition temperature Tsub(b) of sintered boron on the one hand and for silicon and titanium carbide on the other were compared and discussed. It was noted that the general level of HV and Tsub(b) for boron is rather high and at similar relative temperatures these characteristics are much higher. Temperature dependences of linear expansion coefficient, thermal capacity, thermal and temperature conductivity of sintered boron of 20% porosity were studied. Gruneisen parameter was evaluated

  6. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties. PMID:19687534

  7. The Effect on Sodium/Iodide Symporter and Pendrin in Thyroid Colloid Retention Developed by Excess Iodide Intake.

    Science.gov (United States)

    Chen, Xiao-Yi; Lin, Chu-Hui; Yang, Li-Hua; Li, Wang-Gen; Zhang, Jin-Wei; Zheng, Wen-Wei; Wang, Xiang; Qian, Jiang; Huang, Jia-Luan; Lei, Yi-Xiong

    2016-07-01

    It is well known that excess iodide can lead to thyroid colloid retention, a classic characteristic of iodide-induced goiter. However, the mechanism has not been fully unrevealed. Iodide plays an important role in thyroid function at multiple steps of thyroid colloid synthesis and transport among which sodium/iodide symporter (NIS) and pendrin are essential. In our study, we fed female BALB/c mice with different concentrations of high-iodine water including group A (control group, 0 μg/L), group B (1500 μg/L), group C (3000 μg/L), group D (6000 μg/L), and group E (12,000 μg/L). After 7 months of feeding, we found that excess iodide could lead to different degrees of thyroid colloid retention. Besides, NIS and pendrin expression were downregulated in the highest dose group. The thyroid iodide intake function detected by urine iodine assay and thyroidal (125)I experiments showed that the urine level of iodine increased, while the iodine intake rate decreased when the concentration of iodide used in feeding water increased (all p control group). In addition, transmission electron microscopy (TEM) indicated a reduction in the number of intracellular mitochondria of thyroid cells. Based on these findings, we concluded that the occurrence of thyroid colloid retention exacerbated by excess iodide was associated with the suppression of NIS and pendrin expression, providing an additional insight of the potential mechanism of action of excess iodide on thyroid gland. PMID:26660892

  8. Preparation and evaluation of mercuric iodide for crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, N.L.; Ortale, C.; Schieber, M.M.

    1988-01-01

    Large quantities, on the order of several hundred, of consistent, high quality mercuric iodide for crystal growth have not been commercially available. The hydrocarbon, anion, and cation impurity levels varied considerably, occasionally preventing crystal growth. This occurred even though the starting materials was from the same vendor and was subjected to the same purification treatment. This paper will describe an aqueous precipitation process of mercuric iodide preparation in batches of 3 kg using Hg(NO/sub 3/)/sub 2/ or HgCl/sub 2/and KI. Since these salts are produced in much larger quantities than mercuric iodide, more consistent quality is available. The impurity content of these batched and single crystals are compared. Some of the single crystals grown using the in-house prepared mercuric iodide have yielded a large number of spectroscopy grade nuclear radiation detectors. The influence of the major impuritites are discussed. 13 refs., 4 figs., 1 tab.

  9. Cesium iodide crystals fused to vacuum tube faceplates

    Science.gov (United States)

    Fleck, H. G.

    1964-01-01

    A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.

  10. Improved Stability of Mercuric Iodide Detectors for Anticoincidence Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize guard ring electrode structures and a new film growth technique to create improved polycrystalline mercuric iodide detectors for background...

  11. Kinetic determination of iodide by the oxidation reaction of benzidine with chloramine B

    International Nuclear Information System (INIS)

    Iodide catalyzed oxidation of benzidine with Chloramine B is studied for its possible application to kinetic determination of iodides. Based on the results of kinetic studies performed, optimal conditions for the catalytic reaction are revealed and a kinetic method for iodide determination is developed. The determination limit of iodide is 2x10-4 μg/ml. It was demonstrated that the proposed method can be used for the determination of iodides in water, soil, and kelp

  12. Processing {alpha}-mercuric iodide by zone refining

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A.; Morgan, S.H.; Henderson, D.O.; Biao, Y.; Zhang, K.; Silberman, E. [Fisk Univ., Nashville, TN (United States). Dept. of Physics; Nason, D.; van den Berg, L.; Ortale-Baccash, C.; Cross, E. [EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations

    1992-06-01

    An investigation is being conducted on zone refining {alpha}-mercuric iodide. Analytical studies using differential scanning calorimetry and anion chromatography indicate that impurities are segregated mainly at the end where zone travel terminates. Early results indicate that single crystals can be readily grown from zone refined material, and the effects of the process on the performance of radiation detectors fabricated from {alpha}-mercuric iodide are being evaluated.

  13. A review of polytypism in lead iodide

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, P.A. [Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania (United States)

    2010-05-15

    Lead Iodide (PbI{sub 2}) is an important inorganic solid for both basic scientific research and possible technological applications and in this brief review we discuss the structure of PbI{sub 2}. Although the basic structure is a simple I-Pb-I layered structure with a[PbI{sub 6}]{sup 4-} near-octahedron being the basic building block, there are many ways of stacking the layers which results in many polytypes. We present 20 of the 23 entries for the structure of PbI{sub 2} from the Inorganic Structural Database and order them by polytype. This represents more than 80 years of crystallographic research in the structure of this compound. We present a simple way to view the 2H, 4H, 6H, and 6R polytypes and extend the procedure to higher-order polytypes. We note a relationship, not generally appreciated, between the distortion of the near [PbI{sub 6}]{sup 4-} octahedrons and the polytype. We suggest that the significance of vacancies has only recently been appreciated. We suggest that small discrepancies in structure determination are probably due to different distributions of vacancies and that there are, in practice, very many structures for macroscopic or even mesoscopic samples of a given polytype when vacancies are considered. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Mercuric iodide photodetectors for scintillation spectroscopy

    International Nuclear Information System (INIS)

    We have measured the responses to 137Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-μmthick mercuric iodide (HgI2) photodetector, and a 1-cmdiam by 1-cm-thick CaWO4 scintillator coupled to a 1.3-cm-diam by 600-μm-thick HgI2 photodetector. Best spectral resolution to 137Cs was 7.8% FWHM for the NaI(Tl)-HgI2 and 12.5% FWHM for the CaWO4-HgI2 detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI2 detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal

  15. Mercuric iodide photodetectors for scintillation spectroscopy

    International Nuclear Information System (INIS)

    We have measured the responses to 137Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-μm-thick mercuric iodide (HgI2) photodetector, and a 1-cm-diam by 1-cm-thick CaWO4 scintillator coupled to a 1.3-cm-diam by 600-μm-thick HgI2 photodetector. Best spectral resolution to 137Cs was 7.8% FWHM for the NaI(Tl)-HgI2 and 12.5% FWHM for the CaWO4-HgI2 detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI2 detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal

  16. Mercuric iodide photodetectors for scintillation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Markakis, J.; Dabrowski, A.; Iwanczyk, J.; Ortale, C.; Schnepple, W.

    1985-02-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..mthick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cmdiam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  17. Mercuric iodide photodetectors for scintillation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1984-01-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..m-thick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cm-diam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  18. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration.

    Science.gov (United States)

    Serrano-Nascimento, Caroline; Calil-Silveira, Jamile; Nunes, Maria Tereza

    2010-04-01

    Iodide is an important regulator of thyroid activity. Its excess elicits the Wolff-Chaikoff effect, characterized by an acute suppression of thyroid hormone synthesis, which has been ascribed to serum TSH reduction or TGF-beta increase and production of iodolipids in the thyroid. These alterations take hours/days to occur, contrasting with the promptness of Wolff-Chaikoff effect. We investigated whether acute iodide administration could trigger events that precede those changes, such as reduction of sodium-iodide symporter (NIS) mRNA abundance and adenylation, and if perchlorate treatment could counteract them. Rats subjected or not to methylmercaptoimidazole treatment (0.03%) received NaI (2,000 microg/0.5 ml saline) or saline intraperitoneally and were killed 30 min up to 24 h later. Another set of animals was treated with iodide and perchlorate, in equimolar doses. NIS mRNA content was evaluated by Northern blotting and real-time PCR, and NIS mRNA poly(A) tail length by rapid amplification of cDNA ends-poly(A) test (RACE-PAT). We observed that NIS mRNA abundance and poly(A) tail length were significantly reduced in all periods of iodide treatment. Perchlorate reversed these effects, indicating that iodide was the agent that triggered the modifications observed. Since the poly(A) tail length of mRNAs is directly associated with their stability and translation efficiency, we can assume that the rapid decay of NIS mRNA abundance observed was due to a reduction of its stability, a condition in which its translation could be impaired. Our data show for the first time that iodide regulates NIS mRNA expression at posttranscriptional level, providing a new mechanism by which iodide exerts its autoregulatory effect on thyroid. PMID:20107044

  19. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    Science.gov (United States)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  20. Iodide kinetics and experimental I-131 therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line

    NARCIS (Netherlands)

    Smit, J.W.A.; Elst, van der J.P.; Karperien, M.; Que, I.; Stokkel, M.; Heide, van der D.; Romijn, J.A.

    2002-01-01

    Uptake of iodide is a prerequisite for radioiodide therapy in thyroid cancer. However, loss of iodide uptake is frequently observed in metastasized thyroid cancer, which may be explained by diminished expression of the human sodium-iodide symporter (hNIS). We studied whether transfection of hNIS int

  1. Boron thermal regeneration system

    International Nuclear Information System (INIS)

    An ion exchanger which allows flow in both directions along a selected flow path is described. A separator plate divides the exchanger tank into two chambers each of which has a flow conduit so that flow may enter or leave from either chamber while prohibiting the resin particles from migrating from one side of the tank to the other. This ion exchanger permits a dual-directional flow process to be practised which results in immediate changes in the boron concentration within a nuclear reactor coolant system even if the ion exchanger resins have not been completely equilibrated during a previous operation. (author)

  2. BORONIZING OF STEEL

    Directory of Open Access Journals (Sweden)

    Arzum ULUKÖY

    2006-02-01

    Full Text Available Boride layer has many advantages in comparison with traditional hardening methods. The boride layer has high hardening value and keeps it's hardeness at high temperatures, and it also shows favorible properties, such as the resistance to wear, oxidation and corrosion. The process can be applied at variety of materials, for instance steel, cast iron, cast steel, nickel and cobalt alloys and cermets. In this rewiew, boronizing process properties, boride layer on steel surfaces and specifications and the factors that effect boride layer are examined

  3. Methyl Iodide Formation Under Postulated Nuclear Reactor Accident Conditions

    International Nuclear Information System (INIS)

    The formation of methyl iodide under conditions of postulated nuclear reactor accidents is discussed. Although thermodynamic calculations indicate the equilibrium methyl iodide concentrations would be quite low, calculations based on a simple kinetic scheme involving reaction between small hydrocarbon species and iodine indicate that concentrations higher than equilibrium can occur during the course of the reaction. Such calculations were performed over a wide range of initial species concentrations and a range of temperatures representative of some reactor accident situations. These calculations suggest that little methyl iodide would be expected within the core volume where temperatures are maximum. As the gas leaves the core volume and expands into the plenum region, it cools and the concentration of methyl iodide increases. At the intermediate temperatures which might characterize this region, the formation of methyl iodide from thermally induced reactions could reach its maximum rate. The gas continues to cool, however, and it is probable that by the time it leaves the plenum region it has cooled to the point where thermally induced reactions may be of little importance. Although the thermally induced reactions will become slower as the gas expands and cools, the radiation-induced reactions will not be slowed to the same extent. The gases leaving the core carry fission products and hence a radiation source is available to initiate reaction by a temperature-independent process. An investigation of the radiation chemical formation and decomposition of methyl iodide in the presence of steam suggests that radiation-induced methyl iodide formation will generally be rapid under the postulated accident situations. Thus, in the plenum region where thermal reactions have become slow, the radiation-induced reaction can still proceed and may well become the dominant factor. The same situation probably pertains as well to the containment region. (author)

  4. Molecular imaging using sodium iodide symporter (NIS)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Je Yoel [School of Dentistry, Kyungpook National Univ., Daegu (Korea, Republic of)

    2004-04-01

    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

  5. Molecular imaging using sodium iodide symporter (NIS)

    International Nuclear Information System (INIS)

    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases

  6. Dietary boron, brain function, and cognitive performance.

    OpenAIRE

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and wo...

  7. Banishing brittle bones with boron

    Energy Technology Data Exchange (ETDEWEB)

    A 6-month study indicates that boron, not even considered an essential nutrient for people and animals, may be a key to preventing osteoporosis, say nutritionist Forrest H. Nielsen and anatomist Curtiss D. Hunt at ARS' Grand Forks, North Dakota, Human Nutrition Research Center. They believe the results of the study - the first to look at the nutritional effects of boron in humans - will generate a lot of interest in the element. In the study, 12 postmenopausal women consumed a very low boron diet (0.25 milligrams per day) for 17 weeks then were given a daily 3-mg supplement - representing the boron intake from a well-balanced diet - for 7 more weeks. Within 8 days after the supplement was introduced, the lost 40 percent less calcium, one-third less magnesium, and slightly less phosphorus through the urine. In fact, their calcium and magnesium losses were lower than prestudy levels, when they were on their normal diets. Since boron isn't considered essential for people, there is not recommended intake and no boron supplement on the market. Nielsen says the supplement of sodium borate used in the study was specially prepared based on the amount of boron a person would get from a well-balanced diet containing fruits and vegetables. He says the average boron intake is about 1.5 mg - or half the experimental dose - but average means a lot of people get less and a lot get more. Hunt cautioned that large doses of boron can be toxic, even lethal. The lowest reported lethal dose of boric acid is about 45 grams (1.6 ounces) for an adult and only 2 grams (0.07 ounce) for an infant.

  8. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    The atomic structure and the lattice dynamics of α boron and of B4C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B4C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  9. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  10. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  11. Introduction of extrinsic defects into mercuric iodide during processing

    International Nuclear Information System (INIS)

    Low temperature (4.2 K) photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI2) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI2 has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance

  12. Introduction of extrinsic defects into mercuric iodide during processing

    Science.gov (United States)

    Hung, C.-Y.; Bao, X. J.; Schlesinger, T. E.; James, R. B.; Cheng, A. Y.; Ortale, C.; van den Berg, L.

    1993-05-01

    Low-temperature photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI2) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI2 has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance.

  13. Modified purification of mercuric iodide for crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, N.L.; Ortale, C.; Schieber, M.M.; van den Berg, L.

    1988-01-01

    The standard procedure used in our laboratory to purify commercially available mercuric iodide consists of a sequence of steps: (1) repeated sublimation under continous evacuation, followed by (2) melting and recrystallization, and (3) a sublimation process in a closed tube. This paper describes a modification of the standard purification sequence by adding recrystallization of the mercuric iodide in hydrochloric acid. Leaching cation impurities out of mercuric iodide powder with hydrochloric acid has been practiced before by Zaletin, (V.M. Zaletin, I.H. Nozhiua, I.N. Fomin, V.T. Shystov, and N.V. Protasov, Atomic Energy 48, 169 (1980)). Our objective for the hydrochloric acid treatment was to remove nitrates and hydrocarbons which were interfering with the vapor transport during crystal growth. Results of the procedure are presented in terms of total carbon and selected ion content of the treated and untreated material. 13 refs., 8 figs., 3 tabs.

  14. Introduction of extrinsic defects into mercuric iodide during processing

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.; Bao, X.J.; Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)); James, R.B. (Advanced Materials Research Division, Sandia National Laboratories, Livermore, California 94550 (United States)); Cheng, A.Y.; Ortale, C.; van den Berg, L. (EG G Energy Measurements, Incorporated, Goleta, California 93116 (United States))

    1993-05-01

    Low temperature (4.2 K) photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI[sub 2]) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI[sub 2] has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance.

  15. Removal efficiency of organic iodide by silver-exchanged zeolite

    International Nuclear Information System (INIS)

    The removal efficiency of radioactive organic iodide generated under accident conditions at nuclear power plants or nuclear fuel cycle processes by silver-exchanged zeolite(AgX) was experimentally evaluated. First of all, adsorption capacities of various adsorbents such as activated carbon, zeocarbon and zeolite 13X as a function of process temperature were analyzed. Optimal operating condition for the removal of methyl iodide using AgX was suggested, based on silver-exchanged amounts and adsorption temperature. The effective removal efficiency of methyl iodide by AgX was obtained at conditions that the process temperature is in the range of 150 .deg. C to 200 .deg. C and the silver exchanged amount is about 10 wt%

  16. Adsorption of Gaseous Methyl Iodide by Active Carbons

    International Nuclear Information System (INIS)

    The impregnation of active carbons is known to be a useful means of improving the ability of these carbons to retain methyl iodide which might be formed during the accidental release of fission products from a reactor. Some basic work was done on both impregnated and unimpregnated materials, which involved: (a) the texture: (b) the reaction of Mel with the impregnants; (c) the adsorption of Mel on the carbons under dry and wet conditions at different temperatures. It was found that the carbons are highly microporous. A large part of this porosity disappears on impregnation with organic amine; These impregnants react chemically with the methyl iodide, which is thereby fixed on the carbon. For carbon which is impregnated with KI, a rapid exchange reaction takes place between the methyl iodide and KI under both dry and wet conditions. Consequently most of the iodine activity can be removed from the gas. (author)

  17. Standard free energy of formation of iron iodide

    Science.gov (United States)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  18. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  19. A novel peculiar mutation in the sodium/iodide symporter gene in spanish siblings with iodide transport defect.

    Science.gov (United States)

    Kosugi, Shinji; Okamoto, Hiroomi; Tamada, Aiko; Sanchez-Franco, F

    2002-08-01

    Previously, we reported two Spanish siblings with congenital hypothyroidism due to total failure of iodide transport. These were the only cases reported to date who received long-term iodide treatment over 10 yr. We examined the sodium/iodide symporter (NIS) gene of these patients. A large deletion was observed by long and accurate PCR using primers derived from introns 2 and 7 of the NIS gene. PCR-direct sequencing revealed a deletion of 6192 bases spanning from exon 3 to intron 7 and an inverted insertion of a 431-base fragment spanning from exon 5 to intron 5 of the NIS gene. The patients were homozygous for the mutation, and their mother was heterozygous. In the mutant, deletion of exons 3-7 was suggested by analysis using programs to predict exon/intron organization, resulting in an in-frame 182-amino acid deletion from Met(142) in the fourth transmembrane domain to Gln(323) in the fourth exoplasmic loop. The mutant showed no iodide uptake activity when transfected into COS-7 cells, confirming that the mutation was the direct cause of the iodide transport defect in these patients. Further, the mutant NIS protein was synthesized, but not properly expressed, on the cell surface, but was mostly accumulated in the cytoplasm, suggesting impaired targeting to the plasma membrane. PMID:12161518

  20. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  1. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer

    Science.gov (United States)

    Hartsough, Neal; Iwanczyk, Jan

    2009-01-01

    A film-growth process was developed for polycrystalline mercuric iodide that creates cost-effective, large-area detectors for high-energy charged-particle detection. A material, called a barrier film, is introduced onto the substrate before the normal mercuric iodide film growth process. The barrier film improves the quality of the normal film grown and enhances the adhesion between the film and the substrate. The films grown using this improved technique were found to have adequate signal-to-noise properties so that individual high-energy charged -particle interactions could be distinguished from noise, and thus, could be used to provide an anticoincidence veto function as desired.

  2. Depolymerization of Lignin in Wood with Molecular Hydrogen Iodide

    OpenAIRE

    Shevchenko, Sergey M.

    2000-01-01

    Depolymerization of lignin in wood with hydrogen iodide in a non-polar solvent is a selective, high-yield reaction that releases a diiodide of potential synthetic value into the solution. Finely milled wood (Douglas-fir, spruce, aspen, and sugarcane), was suspended in CDCl3 and treated with dry hydrogen iodide in a NMR tube. The yields and composition of the chloroform-soluble monomeric lignin depolymerization products, 1,3-diiodo-1-(4-hydroxyaryl)propanes, originated from guaiacyl (G), syrin...

  3. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  4. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  5. 21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide and piperazine citrate... § 520.763c Dithiazanine iodide and piperazine citrate suspension. (a) Specifications. Each milliliter of the drug contains 69 milligrams of dithiazanine iodide and 83 milligrams of piperazine base...

  6. Degradation of Methyl Iodide in Soil: Effects of Environmental Factors

    Science.gov (United States)

    Methyl iodide (MeI) is a promising alternative to the phased-out fumigant methyl bromide, and its environmental fate following soil fumigation is of great concern. Experiments were conducted to investigate the effect of various environmental factors on the degradation rate of MeI in soil. The chem...

  7. Enthalpies of potassium iodide dissolution in isopropanol aqueous solutions

    International Nuclear Information System (INIS)

    At 298.15 K in air-tight microcalorimeter with isothermal shell enthalpies of potassium iodide dissolution in water and in water-isopropyl alcohol mixtures (5,10,20,30,50 and 70 mol.%) are measured. Dissolution enthalpies during infinite dilution in the above-mentioned mixed solvents are determined

  8. Iodide volatility under condition relevant to PWR steam generator faults

    International Nuclear Information System (INIS)

    The evaluation of iodine volatility during steam generator tube rupture (SGTR) is hampered by three factors: (i) lack of suitable plant data under fault conditions, (ii) lack of experimental data (mainly due to the difficulty of performing experiments under the conditions required) and (iii) uncertainty in theoretical methods to extrapolate experimental data to the required conditions. This report summarises methods of estimating the volatility of hydrogen iodide and iodide salts at the required conditions of temperature and pressure. A thermodynamic method has been used to estimate HI volatility and the density correlation method for iodide salt volatility. It is assumed throughout that it is more conservative to predict higher volatility. Consideration is given to two explanations of experiments carried out at Oak Ridge National Laboratory (ORNL) on the influence of boric acid concentration and pH on the volatility of radioiodine ostensibly under SGTR conditions: (i) the results have been interpreted in terms of reactions involving volatility of iodide salt/ion-pairs and complexation by boric acid in the gas phase and (ii) the possibility is explored that the observed results are due to the influence of oxidation leading to the formation of much more volatile iodine species. (author)

  9. Wettability of boron carbide

    International Nuclear Information System (INIS)

    The wettability of boron carbide has been examined by means of the sessile drop method, using the following candidate alloys: (96wt%AG-4wt%Ti), (Ag-26.5wt%Cu-3wt%Ti), (Sn-10wt%Ag-4wt%Ti), Sn(99.95wt%) and Al(99.99wt%). The results show that B4C is completely wetted by the Ag-based alloys. Sn-10wt%Ag-4wt%Ti alloy and pure Al partly wet the B4C surface, while pure Sn does not wet B4C at all. For all the alloys used, except pure Sn, a reaction layer was observed at the interface between the ceramic part and the metal drop. Although the spreading kinetics of the Al-drop was much slower compared with the Ti-containing alloys, the reaction rate was considerably higher in the former case. This suggests that aluminium is an attractive candidate material for brazing of B4C. Formation of the low melting B2O3 at the B4C surface may cause oxidation of the filler metal during joining, which, in turn, leads to a low bond strength

  10. Thermal conductivity of boron carbide-boron nitride composites

    International Nuclear Information System (INIS)

    This paper reports that because of their preferred orientation, the addition of boron nitride dispersions to hot-pressed boron carbide was found to result in a considerable degree of anisotropy in thermal conductivity of the resulting composite, indicated by an increase in the thermal conductivity perpendicular to the hot-pressing direction by as much as a factor of 3 at the highest boron nitride volume fractions of this study, and a decrease in the thermal conductivity parallel to the hot-pressing direction by as much as a factor of 2. The composite data were found to be below the values expected from composite theory, which may represent indirect evidence for the existence of an interfacial thermal barrier

  11. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  12. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    International Nuclear Information System (INIS)

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  13. Ru-Catalysed C–H Arylation of Indoles and Pyrroles with Boronic Acids: Scope and Mechanistic Studies

    Science.gov (United States)

    Sollert, Carina; Devaraj, Karthik; Orthaber, Andreas; Gates, Paul J; Pilarski, Lukasz T

    2015-01-01

    The Ru-catalysed C2–H arylation of indoles and pyrroles by using boronic acids under oxidative conditions is reported. This reaction can be applied to tryptophan derivatives and tolerates a wide range of functional groups on both coupling partners, including bromides and iodides, which can be further derivatised selectively. New indole-based ruthenacyclic complexes are described and investigated as possible intermediates in the reaction. Mechanistic studies suggest the on-cycle intermediates do not possess a para-cymene ligand and that the on-cycle metalation occurs through an electrophilic attack by the Ru centre. PMID:25689052

  14. The boron trifluoride nitromethane adduct

    Science.gov (United States)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  15. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  16. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  17. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  18. Formation of organic iodides from containment paint ingredients caused by gamma irradiation

    International Nuclear Information System (INIS)

    The formation of volatile alkyl iodides other than methyl iodide during a serious nuclear reactor accident may have radiological significance. The hypothesis that radioactive alkyl iodides, other than methyl iodide, could form from paint solvents under the conditions of a serious nuclear accident in light water reactors (under boiling water reactor (BWR) and pressurised water reactor (PWR) conditions) was tested using stable elemental iodine, a gamma irradiator and gas chromatography equipment. It was found that methyl and isopropyl iodides were formed from the texanol ester, which is used in many modern water-based paints. Methyl, ethyl, propyl and butyl iodides were formed from a hydrocarbon solvent (white spirit) commonly used in paint products used in the past. These results suggest that further work on the formation and behaviour of the higher alkyl iodides (containing more than one carbon atom) under the conditions of a serious nuclear accident is justified. (author)

  19. A novel mutation in the sodium/iodide symporter gene in the largest family with iodide transport defect.

    Science.gov (United States)

    Kosugi, S; Bhayana, S; Dean, H J

    1999-09-01

    We previously reported nine children with an autosomally recessive form of congenital hypothyroidism due to an iodide transport defect in a large Hutterite family with extensive consanguinity living in central Canada. Since the original report, we have diagnosed congenital hypothyroidism by newborn TSH screening in 9 additional children from the family. We performed direct sequencing of the PCR products of each NIS (sodium/iodide symporter) gene exon with flanking introns amplified from genomic DNA extracted from peripheral blood cells of the patients. We identified a novel NIS gene mutation, G395R (Gly395-->Arg; GGA-->AGA), in 10 patients examined in the present study. All of the parents tested were heterozygous for the mutation, suggesting that the patients were homozygous. The mutation was located in the 10th transmembrane helix. Expression experiments by transfection of the mutant NIS complimentary DNA into COS-7 cells showed no perchlorate-sensitive iodide uptake, confirming that the mutation is the direct cause of the iodide transport defect in these patients. A patient who showed an intermediate saliva/serum technetium ratio (14.0; normal, > or = 20) and was considered to have a partial or less severe defect in the previous report (IX-24) did not have a NIS gene mutation. It is now possible to use gene diagnostics of this unique NIS mutation to identify patients with congenital hypothyroidism due to an iodide transport defect in this family and to determine the carrier state of potential parents for genetic counseling and arranging rapid and early diagnosis of their infants. PMID:10487695

  20. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe2B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  1. Shear amorphization of boron suboxide

    International Nuclear Information System (INIS)

    We report for the first time the shear-induced local amorphization of boron suboxide subjected to nanoindentation. The amorphous bands have a width of ∼1–3 nm and a length of 200–300 nm along the (01¯11) crystal plane. We show direct experimental evidence that the amorphous shear bands of boron suboxide are driven from the coalescence of dislocation loops under high shear stresses. These observations provide insights into the microscopic deformation and failure of high-strength and lightweight ceramics

  2. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  3. Mechanical properties of boron coatings

    International Nuclear Information System (INIS)

    Internal stress of coatings will cause reliability problems, such as adhesion failure and peeling. We measured the internal stress in boron coatings, which was prepared by the ion plating method, with an apparatus based on the optically levered laser technique. The boron coatings exhibited large compressive stress in the range from -0.5 GPa to -2.6 GPa. It was found that these compressive stresses were decreasing functions of the deposition rate and were increasing functions of the ion bombardment energy. ((orig.))

  4. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B+, the threshold implantation dose which leads to BED lies between 3 x 1014 and of 1 x 1015/cm-2. Formation of the shallowest possible junctions by 0.5 keV B+ requires that the implant dose be kept lower than this threshold

  5. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  6. Mercuric iodide (HgI2) growth for nuclear detectors

    Science.gov (United States)

    Schnepple, W.

    1982-01-01

    The purpose of this investigation is to grow more-perfect mercuric iodide crystals in a low-gravity environment by taking advantage of diffusion-controlled growth conditions and by avoiding the problem of strain dislocations produced by the crystal's weight. This crystal has considerable practical importance as a sensitive gamma-ray detector and energy spectrometer that can operate at ambient temperature, as compared to presently available detectors that must be cooled to near liquid nitrogen temperatures. However, the performance of mercuric iodide crystals only rarely approaches the expected performance, presumably because some of the free electrical charges produced within the crystal are not collected at the electrodes, but instead remain trapped or immobilized at crystal defects. An efficient high atomic number semiconductor detector capable of operating at room temperature utilizing single HgI2 crystals offers a greater potential than existing detector technology.

  7. Development of the semiconductor detector of lead iodide

    International Nuclear Information System (INIS)

    Lead iodide (PbI2) crystal is one of the most promising semiconductor detectors to be operated at room temperature. It is a semiconductor with a wide band gap energy and high atomic numbers. The preparation of a detector crystal consists of the purification of starting material, in quartz ampoules, by zone refining technique and growth of crystals by Bridgman method. The ability to obtain high purity crystals containing a relatively low number of defects and the physical-chemistry characterization are necessary pre-requisites for the production of good quality radiation detectors. This work reports the lead iodide monocrystal purification and growth methods to obtain those crystals with appropriate characteristics for their application as radiation detectors. (author)

  8. Behaviour of organic iodides under pwr accident conditions

    International Nuclear Information System (INIS)

    Laboratory experiments were performed to study the behaviour of radioactive methyl iodide under PWR loss-of-coolant conditions. The pressure relief equipment consisted of an autoclave for simulating the primary circuit and of an expansion vessel for simulating the conditions after a rupture in the reactor coolant system. After pressure relief, the composition of the CH3sup(127/131)I-containing steam-air mixture within the expansion vessel was analysed at 80 0C over a period of 42 days. On the basis of the values measured and of data taken from the literature, both qualitative and quantitative assessments have been made as to the behaviour of radioactive methyl iodide in the event of loss-of-coolant accidents. (author)

  9. (1,2-Dicarba-closo-dodecaboranyltrimethylmethanaminium iodide

    Directory of Open Access Journals (Sweden)

    Jong-Dae Lee

    2011-08-01

    Full Text Available The title compound, [1-(CH33NCH2-1,2-C2B10H11]+·I− or C6H22B10N+·I−, was obtained by the reaction of (1,2-dicarba-closo-dodecaboranyldimethylmethanamine with methyl iodide. The asymmetric unit contains two iodide anions and two (o-carboranyltetramethylammonium cations. The bond lengths and angles in the carborane cage are within normal ranges, but the N—Cmethylene—Ccage angle is very large [120.2 (2°] because of repulsion between the carborane and tetramethylammonium units. In the crystal, ions are linked through C—H...I hydrogen bonds.

  10. Analysis of boronized wall in LHD

    International Nuclear Information System (INIS)

    Boronization has been carried out in some experimental fusion devices as one of wall conditioning Methods. The well-known merits of the boronization are as follows: 1) coated-boron on the first wall has strong gettering function for oxygen impurities and oxygen has been kept into boron films as a boron-oxide and 2) boron film covers first wall with apparently low Z materials facing the plasma. However, an operation scenario of boronization for next generation devices such as ITER is not optimized. In this paper, we discuss an optimized method of coated film uniformity in a wide area and a lifetime of boron film as an oxygen getter using experimental data in the large helical device (LHD). In LHD, boronization by glow discharges has been carried out a few times during each experimental campaign. Helium-diborane mixtured gas is used and plasma facing components (PFM) are stainless steel (SS) for the first wall and carbon for the divertor plates kept in the room temperature. Material probes made of SS316 and Si were installed in the vacuum vessel and exposed during the experimental campaign. Depth profiles of their impurities were analyzed using the X-ray Photoelectron Spectroscopy (XPS) and the Auger electron spectroscopy (AES). Two types of gettering process by boron film have been investigated. One is the process during boronization and the other is that after boronization. Concerning a lifetime of boron film, the distribution of oxygen near the top surface region (0 to 20 nm) indicates a process of oxygen gettering, it shows a contribution after boronization. In this paper, these kinds of process using material probes are shown. (authors)

  11. Boron Poisoning of Plutonium Solutions

    International Nuclear Information System (INIS)

    The results of a theoretical investigation into the possible relaxation of criticality concentration limits in wet chemical reprocessing plants, due to the introduction of boron poisoning, are reported. The following systems were considered: 1. 1 in. stainless steel tubes filled with boron carbide at various pitches in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 2. 1 in. and 2 in borosilicate glass Raschig rings in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 3. The concentration of natural boron required for k∞ = 1 in homogeneous mixtures of 239Pu-B-H2O. The method of calculation was Monte Carlo using the GEM code with Nuclear Data File cross-sections. The Raschig rings used are those commercially available. The core model consisted of a cubic arrangement of unit cubes of solution within each of which a Raschig ring was centrally placed. The arrangement was such that the rings were regularly stacked with axes parallel, but the side of the unit cube was fixed to preserve the random packing density. Comparison is made with other reported results on boron poisoning. (author)

  12. Boron sorption characteristics in resins

    International Nuclear Information System (INIS)

    The purpose of boron addition in a nuclear power plant is to control the reactivity. In PHWRs, it is injected into the moderator system in the form of boric anhydride solution, while in PHWRs, it is added to the primary heat transport system in the form of boric acid solution. The required boron levels in PHWRs are controlled by valving in strong base anion exchangers having exchangeable species in OD- form while in PHWRs, the same can be achieved by restoring to the use of Boron Thermal Regeneration System (BTRS). This system operates on the principle of existence of different amounts of various polyborate ions at different temperatures, solution pH's and the boric acid concentrations and on the reversible sorption of these polyions on strong base anion exchange resins. This report describes the salient features of boron sorption characteristics on four types of anion exchange resins, based on experimental data generated in the chemical laboratories of Reactor Engineering Division of the Bhabha Atomic Research Centre, Bombay. The report further makes an attempt to calculate the pH of the resin and solution phases and the percentages of different polyborates and undissociated boric acid, under the experimental conditions investigated. (author). 30 refs., 4 figs., 20 tables

  13. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution. PMID:22945740

  14. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  15. Enhanced iodide sequestration by 3-biphenyl-5,6-dihydroimidazo 2,1-b thiazole in sodium/iodide sym-porter (NIS)-expressing cells

    International Nuclear Information System (INIS)

    The ability of the sodium/iodide sym-porter (NIS) to take up iodide has long provided the basis for cyto-reductive gene therapy and cancer treatment with radio-iodide. One of the major limitations of this approach is that radio-iodide retention in NIS-expressing cells is not sufficient for their destruction. We identified and characterized a small organic molecule capable of increasing iodide retention in HEK293 cells permanently transfected with human NIS cDNA (hNIS-HEK293) and in the rat thyroid-derived cell line FRTL-5. In the presence of 3-biphenyl-4'-yl-5,6-dihydroimidazo[2,1-b)thiazole (ISA1), the transmembrane iodide concentration gradient was increased up to 4.5-fold. Our experiments indicate that the imidazo-thiazole derivative acts either by inhibiting anion efflux mechanisms, or by promoting the relocation of iodide into subcellular compartments. This new compound is not only an attractive chemical tool to investigate the mechanisms of iodide flux at the cellular level, but also opens promising perspectives in the treatment of cancer after NIS gene transfer. (authors)

  16. Recovery of thallium-activated sodium iodide detectors

    International Nuclear Information System (INIS)

    A method for recovery and treatment of sodium iodide thallium activated detectors, NaI(Tl), is described. Special techniques of polishing and mounting in a dry environment (relative humidity less than 10%) are applied. The resolution was determined and compared with that obtained with a new detector and the results showed that a typical 3' phi x 3' recovered detector had a performance very similar to that of a new one. (Author)

  17. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis

    OpenAIRE

    Viroj Wiwanitkit

    2011-01-01

    The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 19...

  18. Lead iodide perovskite light-emitting field-effect transistor

    OpenAIRE

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-01-01

    Despite the widespread use of solution-processable hybrid organic–inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-eff...

  19. Radiative efficiency of lead iodide based perovskite solar cells

    OpenAIRE

    Kristofer Tvingstedt; Olga Malinkiewicz; Andreas Baumann; Carsten Deibel; Snaith, Henry J.; Vladimir Dyakonov; Bolink, Henk J.

    2015-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a...

  20. Ionic transport in hybrid lead iodide perovskite solar cells

    OpenAIRE

    Eames, Christopher; Frost, Jarvist Moore; Piers R. F. Barnes; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH...

  1. Structural insight into iodide uptake by AFm phases.

    Science.gov (United States)

    Aimoz, Laure; Wieland, Erich; Taviot-Guého, Christine; Dähn, Rainer; Vespa, Marika; Churakov, Sergey V

    2012-04-01

    The ability of cement phases carrying positively charged surfaces to retard the mobility of (129)I, present as iodide (I(-)) in groundwater, was investigated in the context of safe disposal of radioactive waste. (125)I sorption experiments on ettringite, hydrotalcite, chloride-, carbonate- and sulfate-containing AFm phases indicated that calcium-monosulfate (AFm-SO(4)) is the only phase that takes up trace levels of iodide. The structures of AFm phases prepared by coprecipitating iodide with other anions were investigated in order to understand this preferential uptake mechanism. X-ray diffraction (XRD) investigations showed a segregation of monoiodide (AFm-I(2)) and Friedel's salt (AFm-Cl(2)) for I-Cl mixtures, whereas interstratifications of AFm-I(2) and hemicarboaluminate (AFm-OH-(CO(3))(0.5)) were observed for the I-CO(3) systems. In contrast, XRD measurements indicated the formation of a solid solution between AFm-I(2) and AFm-SO(4) for the I-SO(4) mixtures. Extended X-ray absorption fine structure spectroscopy showed a modification of the coordination environment of iodine in I-CO(3) and in I-SO(4) samples compared to pure AFm-I(2). This is assumed to be due to the introduction of stacking faults in I-CO(3) samples on one hand and due to the presence of sulfate and associated space-filling water molecules as close neighbors in I-SO(4) samples on the other hand. The formation of a solid solution between AFm-I(2) and AFm-SO(4), with a short-range mixing of iodide and sulfate, implies that AFm-SO(4) bears the potential to retard (129)I. PMID:22376086

  2. Growth of mercuric iodide single crystals from dimethylsulfoxide

    Science.gov (United States)

    Carlston, Richard C.

    1976-07-13

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.

  3. New applications for the zinc iodide-osmium tetroxide technique.

    OpenAIRE

    Dağdeviren, A; ALP, H.; Ors, U

    1994-01-01

    The zinc iodide-osmium tetroxide (ZIO) fixation/staining method was applied for neurocytological studies and also to examine several other tissue samples including epidermal Langerhans cells, blood and bone marrow cells and lymphoid tissue. Although precise specificity cannot be attributed to the staining reaction, interesting staining patterns for different cell types were observed by using one of the ZIO staining solutions. The significance of ZIO positivity is briefly discussed.

  4. Transport of Iodide Ion in Compacted Bentonite Containing Ag2O - 12111

    International Nuclear Information System (INIS)

    Observations of the transport of iodide through compacted bentonite containing Ag2O as additive and that without additive were made. Compacted bentonite samples with densities of 1.41 g/cm3 and 1.60 g/cm3 were used in the experiment. The amount of Ag2O added to the compacted bentonite was in the range of 0.0064 ∼ 0.0468 wt/wt%. Two diffusion solutions were used: one in which iodide ion was dissolved in demineralized water (pure iodide solution), and one in which iodide ion was dissolved in 0.1 M NaCl solution (0.1 M NaCl-iodide solution). Experimental results confirmed that iodide ion was transported by the diffusion process in the compacted bentonite containing Ag2O as well as in the compacted bentonite without Ag2O. The time-lag of diffusion of iodide ion in the compacted bentonite containing Ag2O is larger than that in the compacted bentonite without Ag2O. The increase of the time-lag of diffusion was observed in pure iodide ion solution as well as in 0.1 M NaCl-iodide solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing Ag2O was smaller than in the compacted bentonite without Ag2O. The effective diffusion coefficient decreased as the amount of Ag2O in the compacted bentonite increased. (authors)

  5. Raman spectroscopy of boron carbides and related boron-containing materials

    International Nuclear Information System (INIS)

    Raman spectra of crystalline boron, boron carbide, boron arsenide (B12As2), and boron phosphide (B12P2) are reported. The spectra are compared with other boron-containing materials containing the boron icosahedron as a structural unit. The spectra exhibit similar features some of which correlate with the structure of the icosahedral units of the crystals. The highest Raman lines appear to be especially sensitive to the B-B distance in the polar triangle of the icosahedron. Such Raman structural markers are potentially useful in efforts to tailor electronic properties of these high temperature semiconductors and thermoelectrics

  6. The sodium iodide symporter: its implications for imaging and therapy

    International Nuclear Information System (INIS)

    The sodium iodide symporter (NIS) is an intrinsic plasma membrane glycoprotein that mediates the active transport of iodide in the thyroid gland and a number of extrathyroidal tissues, in particular lactating mammary gland. In addition to its key function in thyroid physiology, NIS-mediated iodide accumulation allows diagnostic thyroid scintigraphy as well as therapeutic radioiodine application in benign and malignant thyroid disease. NIS therefore represents one of the oldest targets for molecular imaging and therapy. Based on the effective administration of radioiodine that has been used for over 60 years in the management of follicular cell-derived thyroid cancer, cloning and characterization of the NIS gene has paved the way for the development of a novel cytoreductive gene therapy strategy based on targeted NIS expression in thyroidal and nonthyroidal cancer cells followed by therapeutic application of 131I or alternative radionuclides, including 188Re and 211At. In addition, the possibility of direct and non-invasive imaging of functional NIS expression by 123I- and 99mTc-scintigraphy or 124I-PET-imaging allows the application of NIS as a novel reporter gene. In conclusion, the dual role of NIS as diagnostic and therapeutic gene and the detection of extra-thyroidal endogenous NIS expression in breast cancer open promising perspectives in nuclear medicine and molecular oncology for diagnostic and therapeutic application of NIS outside the thyroid gland. (orig.)

  7. Synthesis and evaluation of iodide uptake inhibitors in thyroid gland

    International Nuclear Information System (INIS)

    This work was intended to discover small organic molecules acting as iodide uptake inhibitors in thyroid cells. These compounds can indeed be derivatized into biochemical probes for further characterization of proteins involved in iodide transport mechanisms. On the long term, these inhibitors also appear as attractive drug candidates for treatment of thyroid pathologies or radioprotection against iodine isotopes. A similar strategy was adopted for both of the two inhibitor families. First, we synthesized a chemical library of around 100 analogues; we measured their IC50 against iodide uptake in FRTL-5 cells to get structure-activity relationships. Absolute configuration of stereo-genic centers was also investigated, and a preferential stereochemistry was found to be responsible for activity. From this basis, around twenty 'second-generation' analogues were synthesized by combining fragments contributing to biological activity. Biological evaluation indicated that nine were very potent inhibitors, with IC50 ≤ 6 nM and satisfying physicochemical properties required for drug candidates. Finally, one photoactivatable biotinylated probe was developed in each family and used for photoaffinity labeling. Several specifically labeled proteins are still under identification and constitute new potential therapeutic targets. (author)

  8. Growth and luminescence properties of undoped strontium iodide crystals

    International Nuclear Information System (INIS)

    Highlights: •Undoped strontium iodide crystal with high optical quality was grown using the Bridgman method. •Metal impurities distribution throughout crystal boule was determined and discussed. •Reliable optical transmission spectrum of undoped strontium iodide crystal was obtained. •Luminescence properties for broad emission band at room temperature were studied. •The room temperature broad emission band was proposed to have an origin of self-trapped exciton. -- Abstract: High optical quality undoped strontium iodide crystal grown by using the Bridgman method was characterized. Crystal growth process was described and growth technical parameters were discussed. Impurity analysis of raw materials and as-grown crystal boule indicates that it is feasible to pre-purify the raw material by zone refining or recrystallization. Luminescence properties were studied by photoluminescence, radioluminescence, fluorescence decay time, and scintillation time response. As-grown crystal shows good optical transmittance with wavelength concerned and is transparent for its large Stoke shift, 540 nm peaked broad emission, which has a fluorescence decay time 494 ns at 300 K. The broad emission range from 350 nm to 800 nm was tentatively speculated to be intrinsic and have an origin of self-trapped exciton

  9. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  10. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  11. Electrochemistry of silver iodide the capacity of the double layer at the silver iodide-water interface

    NARCIS (Netherlands)

    Lyklema, J.; Overbeek, J.Th.G.

    1961-01-01

    A method is described for obtaining differential double layer capacities on silver iodide. Especially the influence of the nature and concentration of indifferent electrolytes was investigated, viz., the nitrates of Li·, K·, Rb·, NH4·, H·, Tl·, Mg··, Ba··, Co··, Cd··, Pb··, La···, Th····, the fluori

  12. Synthesis of boron nitride nanotubes by boron ink annealing.

    Science.gov (United States)

    Li, Lu Hua; Chen, Ying; Glushenkov, Alexey M

    2010-03-12

    Ball-milling and annealing is one effective method for the mass production of boron nitride nanotubes (BNNTs). We report that the method has been modified to a boron (B) ink annealing method. In this new process, the nanosize ball-milled B particles are mixed with metal nitrate in ethanol to form an ink-like solution, and then the ink is annealed in nitrogen-containing gas to form nanotubes. The new method greatly enhances the yield of BNNTs, giving a higher density of nanotubes. These improvements are caused by the addition of metal nitrate and ethanol, both of which can strongly boost the nitriding reaction, as revealed by thermogravimetric analysis. The size and structure of BNNTs can be controlled by varying the annealing conditions. This high-yield production of BNNTs in large quantities enables the large-scale application of BNNTs. PMID:20154372

  13. Synthesis of boron nitride nanotubes by boron ink annealing

    International Nuclear Information System (INIS)

    Ball-milling and annealing is one effective method for the mass production of boron nitride nanotubes (BNNTs). We report that the method has been modified to a boron (B) ink annealing method. In this new process, the nanosize ball-milled B particles are mixed with metal nitrate in ethanol to form an ink-like solution, and then the ink is annealed in nitrogen-containing gas to form nanotubes. The new method greatly enhances the yield of BNNTs, giving a higher density of nanotubes. These improvements are caused by the addition of metal nitrate and ethanol, both of which can strongly boost the nitriding reaction, as revealed by thermogravimetric analysis. The size and structure of BNNTs can be controlled by varying the annealing conditions. This high-yield production of BNNTs in large quantities enables the large-scale application of BNNTs.

  14. Synthesis of vinyl boronates from aldehydes by a practical boron-Wittig reaction.

    Science.gov (United States)

    Coombs, John R; Zhang, Liang; Morken, James P

    2015-04-01

    A highly stereoselective boron-Wittig reaction between stable and readily accessible 1,1-bis(pinacolboronates) and aldehydes furnishes a variety of synthetically useful di- and trisubstituted vinyl boronate esters. PMID:25799147

  15. Abiotic formation of methyl iodide on synthetic birnessite: A mechanistic study

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Sébastien, E-mail: s.allard@curtin.edu.au; Gallard, Hervé

    2013-10-01

    Methyl iodide is a well-known volatile halogenated organic compound that contributes to the iodine content in the troposphere, potentially resulting in damage to the ozone layer. Most methyl iodide sources derive from biological activity in oceans and soils with very few abiotic mechanisms proposed in the literature. In this study we report that synthetic manganese oxide (birnessite δ-MnO{sub 2}) can catalyze the formation of methyl iodide in the presence of natural organic matter (NOM) and iodide. Methyl iodide formation was only observed at acidic pH (4–5) where iodide is oxidized to iodine and NOM is adsorbed on δ-MnO{sub 2}. The effect of δ-MnO{sub 2}, iodide and NOM concentrations, nature of NOM and ionic strength was investigated. High concentrations of methyl iodide were formed in experiments conducted with the model compound pyruvate. The Lewis acid property of δ-MnO{sub 2} leads to a polarization of the iodine molecule, and catalyzes the reaction with natural organic matter. As manganese oxides are strong oxidants and are ubiquitous in the environment, this mechanism could significantly contribute to the global atmospheric input of iodine. Highlights: • Methyl iodide is formed when iodide, natural organic matter and MnO{sub 2} are in contact. • Iodide is oxidized to iodine by MnO{sub 2} which reacts with NOM already adsorbed on MnO{sub 2}. • High formation of methyl iodide was observed with pyruvate. • This abiotic mechanism could contribute to the input of iodine in the atmosphere. • This abiotic mechanism could impact the ozone layer in the troposphere.

  16. Abiotic formation of methyl iodide on synthetic birnessite: A mechanistic study

    International Nuclear Information System (INIS)

    Methyl iodide is a well-known volatile halogenated organic compound that contributes to the iodine content in the troposphere, potentially resulting in damage to the ozone layer. Most methyl iodide sources derive from biological activity in oceans and soils with very few abiotic mechanisms proposed in the literature. In this study we report that synthetic manganese oxide (birnessite δ-MnO2) can catalyze the formation of methyl iodide in the presence of natural organic matter (NOM) and iodide. Methyl iodide formation was only observed at acidic pH (4–5) where iodide is oxidized to iodine and NOM is adsorbed on δ-MnO2. The effect of δ-MnO2, iodide and NOM concentrations, nature of NOM and ionic strength was investigated. High concentrations of methyl iodide were formed in experiments conducted with the model compound pyruvate. The Lewis acid property of δ-MnO2 leads to a polarization of the iodine molecule, and catalyzes the reaction with natural organic matter. As manganese oxides are strong oxidants and are ubiquitous in the environment, this mechanism could significantly contribute to the global atmospheric input of iodine. Highlights: • Methyl iodide is formed when iodide, natural organic matter and MnO2 are in contact. • Iodide is oxidized to iodine by MnO2 which reacts with NOM already adsorbed on MnO2. • High formation of methyl iodide was observed with pyruvate. • This abiotic mechanism could contribute to the input of iodine in the atmosphere. • This abiotic mechanism could impact the ozone layer in the troposphere

  17. Discovery of aryl-tri-fluoroborates as potent sodium/iodide sym-porter (NIS) inhibitors

    International Nuclear Information System (INIS)

    The structure-based design of sodium/iodide sym-porter (NIS) inhibitors identified new active compounds. The organo-tri-fluoroborate shown was found to inhibit iodide uptake with an IC50 value of 0.4 μM on rat-derived thyroid cells. The biological activity is rationalized by the presence of the BF3- ion as a minimal binding motif for substrate recognition at the iodide binding site. (authors)

  18. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  19. Analysis of magnetron sputtered boron oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Buc, Dalibor [Slovak University of Technology in Bratislava (Slovakia); Bello, Igor [City University of Hong Kong, Kowloon, Hong Kong (China); Caplovicova, Maria [Comenius University in Bratislava (Slovakia); Mikula, Milan; Kovac, Jaroslav; Hotovy, Ivan [Slovak University of Technology in Bratislava (Slovakia); Chong, Yat Min [City University of Hong Kong, Kowloon, Hong Kong (China); Siu, Guei Gu [City University of Hong Kong, Kowloon, Hong Kong (China)], E-mail: apggsiu@cityu.edu.hk

    2007-10-15

    Boron oxide films were grown on silicon substrates by radio-frequency (rf) unbalanced magnetron sputtering of a boron target in argon-oxygen gas mixtures with different compositions. Microscopic analyses show that overall boron oxide films are amorphous. The film prepared at oxygen/argon flow rate ratio > 0.05 developed large crystallites of boric acid in localize areas of amorphous boron oxide matrices. These crystallites were unstable and at electron microscopic analysis they continuously transformed to a cubic HBO{sub 2} phase and then completely vanished leaving an underlying amorphous boron oxide film behind. The analyses indicate the coexistence of B{sub 6}O, HBO{sub 2} crystallites and amorphous boron oxide matrices. Fourier transform infrared (FTIR) spectra revealed spectral bands of BOH, BO, BOB and BH groups. Nanohardness and elastic modulus of a film prepared at low oxygen concentration approach 30 and 300 GPa, respectively. These parameters however vary with deposition conditions.

  20. Microwave sintering of boron carbide composites

    International Nuclear Information System (INIS)

    Boron carbide is an important ceramic material because of its high hardness and low specific gravity. it is used for applications involving impact and wear resistance. The disadvantages of boron carbide materials are difficulty in fabrication and sensitivity to brittle fracture. These problems are significantly reduced by production of cermets based on boron carbide and aluminum or aluminum alloys. Microwave heating of boron carbide materials results in ultrarapid heating and high temperatures. Therefore, a finer microstructure is obtained. The objective of this work was to define a technology that would allow the manufacture of boron carbide ceramics having mechanical properties similar to those exhibited by hot-pressed specimens. microwave heating would be used for the densification step. Mixtures of boron carbide and aluminum were considered for this research because aluminum simultaneously acts as a sintering aid and introduces phases that contribute to toughness enhancement

  1. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  2. Uptake of Iodide From Water in Atlantic Halibut Larvae (Hippoglossus Hippoglossus L.)

    DEFF Research Database (Denmark)

    Moren, Mari; Sloth, Jens Jørgen; Hamre, Kristin

    2008-01-01

    The natural diet of marine fish larvae, copepods, contain 60-350 mg I kg(-1), while live feed used in commercial hatcheries have iodine concentrations in the range of 1 mg kg(-1). Seawater is also considered to be an important source of iodine for marine fish. The question asked in this study is...... relative low levels of iodide (0-22 nM) and except for samples from one site; the levels of iodide and iodate were in agreement with previously published data. The uptake of iodide from seawater was measured by incubating Atlantic halibut larvae in water with a constant level of radioactive iodide (I-125...

  3. Expression of sodium-iodide symporter in thyroid gland tumors: immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Bondarenko O.O.

    2009-01-01

    Full Text Available One of the key moments of radioiodine therapy, and also radioisotope diagnostics of cancers of a thyroid gland is ability of their cells to accumulate iodide. This ability is provided with activity of the specific transporter – sodium-iodide symporter. Our research has shown disorders of sodium-iodide symporter immunoexpression in all tumors of thyroid gland: from overexpression and absence of plasma membrane expression in differentiated carcinomas, up to weak or actually absent in low differentiated cancers and Hurtle-cells tumors. Thus, there is a prospect of application of the sodium-iodide symporter, as the prognostic marker of thyroid cancers.

  4. Experimental studies on removal of airborne fission products methyl iodide by sprays in containment

    International Nuclear Information System (INIS)

    For reducing the amount of fission products leaked to environment under accident conditions of PWR, the experimental studies on the removal of airborne fission products methyl iodide by sprays in containment was carried out on the basis of the theoretical work in a simulation facility. Inactive methyl iodide was used for the experiment so the experiment facility was simplified. A gas chromatography was employed to measure the aerosol concentration of methyl iodide. A series of experiments on the removal of methyl iodide by sprays under different temperatures and various chemical additives has been made. The experimental results are useful for rationally selecting parameters of containment spray system of PWR

  5. CVD-produced boron filaments

    Science.gov (United States)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  6. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  7. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  8. Sintering behavior of boron carbide

    International Nuclear Information System (INIS)

    Pressureless sintering behavior of boron carbide (B4C) in argon was studied, with change in time and temperature, using carbon as sintering aid. Carbon was added via fenolic resin, acting also as a binder. After isostatic pressing the specimens were sintered in a graphite furnace at 19600C/1h, 21600C/15 minutes and 1h and 22000C/1h. The achieved density was 97% of the theoretical. Some mechanical properties and microstructural aspects have been evaluated. (author)

  9. Boron Enrichment in Martian Clay

    OpenAIRE

    James D Stephenson; Lydia J Hallis; Kazuhide Nagashima; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest minera...

  10. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm2, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  11. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  12. Boron deposition from fused salts. Final report

    International Nuclear Information System (INIS)

    A partial evaluation of the feasibility of a process to electrodeposit pure coherent coatings of elemental boron from molten fluorides has been performed. The deposit produced was powdery and acicular, unless the fluoride melt was purified to have very low oxygen concentration. When the oxygen activity was reduced in the melt by addition of crystalline elemental boron, dense, amorphous boron deposit was produced. The boron deposits produced had cracks but were otherwise pure and dense and ranged up to 0.35 mm thick. Information derived during this project suggests that similar deposits might be obtained crack-free up to 1.00 mm thick by process modifications and improvements

  13. Polarized spectral complexes of optical functions of monovalent mercury iodide

    Science.gov (United States)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  14. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    Science.gov (United States)

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  15. Mechanochromic and thermochromic luminescence of a copper iodide cluster.

    Science.gov (United States)

    Perruchas, Sandrine; Le Goff, Xavier F; Maron, Sébastien; Maurin, Isabelle; Guillen, François; Garcia, Alain; Gacoin, Thierry; Boilot, Jean-Pierre

    2010-08-18

    The mechanochromic and thermochromic luminescence properties of a molecular copper(I) iodide cluster formulated [Cu(4)I(4)(PPh(2)(CH(2)CH=CH(2)))(4)] are reported. Upon mechanical grinding in a mortar, its solid-state emission properties are drastically modified as well as its thermochromic behavior. This reversible phenomenon has been attributed to distortions in the crystal packing leading to modifications of the intermolecular interactions and thus of the [Cu(4)I(4)] cluster core geometry. Notably, modification of the Cu-Cu interactions seems to be involved in this phenomenon directly affecting the emissive properties of the cluster. PMID:20698644

  16. Electronic properties and Compton profiles of silver iodide

    Indian Academy of Sciences (India)

    Alpa Dashora; Ambica Marwal; K R Soni; B L Ahuja

    2010-06-01

    We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented plane-wave method to derive the energy bands and the density of states. To compare our theoretical data, isotropic Compton profile measurement on -AgI using 137Cs Compton spectrometer at an intermediate resolution of 0.38 a.u. has been undertaken. The theoretical anisotropies are also interpreted on the basis of energy bands.

  17. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    Energy Technology Data Exchange (ETDEWEB)

    Felter, T.E.; Stulen, R.H. (Sandia National Labs., Livermore, CA (USA)); Schnepple, W.F.; Ortale, C.; Van den Berg, L. (EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations)

    1989-11-01

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T {approx equal} 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored. (orig.).

  18. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    Science.gov (United States)

    James, R. B.; Bao, X. J.; Schlesinger, T. E.; Markakis, J. M.; Cheng, A. Y.; Ortale, C.

    1989-09-01

    Mercuric-iodide (HgI2 ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI2 interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse.

  19. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    Science.gov (United States)

    Felter, T. E.; Stulen, R. H.; Schnepple, W. F.; Ortale, C.; van den Berg, L.

    1989-11-01

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T ≈ 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored.

  20. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    James, R.B. (Theoretical Division, Sandia National Laboratories, Livermore, California 94551-0969 (US)); Bao, X.J. (Theoretical Division, Sandia National Laboratories, Livermore, California 94551-0969 (US)); Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213); Markakis, J.M. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213); Cheng, A.Y. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213); Ortale, C. (EG G Energy Measurements, Inc., Goleta, California 93116)

    1989-09-15

    Mercuric-iodide (HgI{sub 2} ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI{sub 2} interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse.

  1. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    International Nuclear Information System (INIS)

    Mercuric-iodide (HgI2 ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI2 interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse

  2. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    International Nuclear Information System (INIS)

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T ≅ 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored. (orig.)

  3. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  4. Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    OpenAIRE

    Baumann, A.; Tvingstedt, K.; Heiber, M. C.; Väth, S.; C. Momblona; H. J. Bolink; Dyakonov, V.

    2014-01-01

    We herein perform open circuit voltage decay (OCVD) measurements on methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CH3NH3PbI3 solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PC60BM and PTB7:PC70...

  5. Temperature dependent energy levels of methylammonium lead iodide perovskite

    International Nuclear Information System (INIS)

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature

  6. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Science.gov (United States)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  7. Method for determination of boron carbide in wurtzite-like boron nitride

    International Nuclear Information System (INIS)

    A technique for increase of sensitivity and analysis accuracy while boron carbide determination in wurtzite-like boron nitride is proposed. Boron nitride with an addition of boron carbide is bjected to treatment by the mixture of concentrated sulphuric acid and 0.1-0.5 N of porassium bichromate solution at ratio of (2-1):1 at the temperature of mixture boiling. Boron carboide content is calculated according to the quantity of restored Cr(3+), which is determined by titration of Cr(6+) excess with the Mohr's salt solution

  8. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durmazucar, Hasan H.; Guenduez, Guengoer E-mail: ggunduz@metu.edu.tr

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  9. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    International Nuclear Information System (INIS)

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed

  10. Some physical properties of compacted specimens of highly dispersed boron carbide and boron suboxide

    International Nuclear Information System (INIS)

    Structure, shear modulus and internal friction (IF) of compacted specimens of boron carbide and boron suboxide have been investigated. Microtwins and stacking faults were observed along the {100} plane systems of polycrystalline specimens of boron carbide. Electrical conductivity of the specimens was that of p-type. Concentration of holes varied from 1017 to 1019 cm-3. The IF was measured in the temperature range 80-300 K. It was shown that the IF of boron carbide and that of boron suboxide were characterized with a set of similar relaxation processes. Mechanisms of the relaxation processes in boron carbide and boron suboxide are discussed in terms of the Hasiguti model of interaction between dislocations and point defects

  11. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Boron carbide (B4C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B4C by carbothermic reduction of B2O3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B4C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author)

  12. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis.

    Science.gov (United States)

    Wiwanitkit, Viroj

    2011-04-01

    The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 1986 and the hazardous effects especially on the thyroid gland were studied. It was seen that radioactive iodine leakage from the nuclear plants mainly affected the thyroid gland, and especially children were at a higher risk at developing the cancers. Potassium Iodide prophylaxis can be administered in order to prevent an increase in the incidence of thyroid cancers in the population of an area affected by a nuclear disaster. However, one has to be cautious while giving it, as using it without indication has its own risks. PMID:21731865

  13. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 1986 and the hazardous effects especially on the thyroid gland were studied. It was seen that radioactive iodine leakage from the nuclear plants mainly affected the thyroid gland, and especially children were at a higher risk at developing the cancers. Potassium Iodide prophylaxis can be administered in order to prevent an increase in the incidence of thyroid cancers in the population of an area affected by a nuclear disaster. However, one has to be cautious while giving it, as using it without indication has its own risks.

  14. Progress in tumor therapy with human sodium iodide symporter

    International Nuclear Information System (INIS)

    The sodium iodide symporter (NIS) is an intrinsic plasma membrane protein that mediates active iodide transport into the thyroid gland and several extrathyroidal tissues, in particular the lactation mammary gland. Because of the cloning characterization of NIS, its key role in thyroid pathology and physiology could be investigated. The progress would be significant if the mechanisms of NIS expression in lactating mammary gland and breast cancer are elucidated, in which more than 80% of cases express endogenous NIS. In the future, two approaches could extend the use of radioiodide treatment to thyroid cancer and nonthyroidal cancer. One is by using the main mechanisms involving tumorous transformation to treat the tumor, based on the reinducing NIS expression in thyroid and cancer. The other is based on the application of NIS as a novel cytoreductive gene therapy strategy. NIS offers the unique advantage that it can be used both as a reporter and as a therapeutic gene, so that it is possible to image, monitor, and treat the tumor with radioiodide, just as in differentiated thyroid cancer. (authors)

  15. Polymorphic copper iodide clusters: insights into the mechanochromic luminescence properties.

    Science.gov (United States)

    Benito, Quentin; Le Goff, Xavier F; Maron, Sébastien; Fargues, Alexandre; Garcia, Alain; Martineau, Charlotte; Taulelle, Francis; Kahlal, Samia; Gacoin, Thierry; Boilot, Jean-Pierre; Perruchas, Sandrine

    2014-08-13

    An in-depth study of mechanochromic and thermochromic luminescent copper iodide clusters exhibiting structural polymorphism is reported and gives new insights into the origin of the mechanochromic luminescence properties. The two different crystalline polymorphs exhibit distinct luminescence properties with one being green emissive and the other one being yellow emissive. Upon mechanical grinding, only one of the polymorphs exhibits great modification of its emission from green to yellow. Interestingly, the photophysical properties of the resulting partially amorphous crushed compound are closed to those of the other yellow polymorph. Comparative structural and optical analyses of the different phases including a solution of clusters permit us to establish a correlation between the Cu-Cu bond distances and the luminescence properties. In addition, the local structure of the [Cu4I4P4] cluster cores has been probed by (31)P and (65)Cu solid-state NMR analysis, which readily indicates that the grinding process modifies the phosphorus and copper atoms environments. The mechanochromic phenomenon is thus explained by the disruption of the crystal packing within intermolecular interactions inducing shortening of the Cu-Cu bond distances in the [Cu4I4] cluster core and eventually modification of the emissive state. These results definitely establish the role of cuprophilic interactions in the mechanochromism of copper iodide clusters. More generally, this study constitutes a step further into the understanding of the mechanism involved in the mechanochromic luminescent properties of metal-based compounds. PMID:25076411

  16. Comparison of Germanium and Sodium Iodide: In Vivo Measurement Systems

    International Nuclear Information System (INIS)

    The experience several investigators have had with lithium-drifted germanium. Ge(Li), and lithium-drifted silicon, Si (Li), counting systems for in vivo measurements is compared with conventional scintillator detector systems in similar configurations. Measurements of plutonium and americium in lungs, other organs, and wounds using coaxial and planar-drift detectors are presented. A proposed large area planar Ge(Li) lung counter system is compared to two- and four-crystal sodium iodide counters (130 cm2 by 9 mm thick) currently used for uranium and plutonium lung measurements. A large Ge(Li) detector system being employed at Battelle-Northwest Laboratory to make whole-body measurements of radionuclide deposits in humans consists of four coaxial detectors, each 40 cm3 in volume (total 160 cm3). The individual detectors are enclosed in separate cryostats but mounted in a common 30 litre liquid nitrogen dewar of the ''chicken feeder'' design. The system is compared to the standard 23 cm diameter by 10 cm thick sodium iodide scintillator in the standard chair position. (author)

  17. Interruption with the Migration of Iodide by GR(CT)

    International Nuclear Information System (INIS)

    The purpose of this study is to understand the influence of green rust on the migration of iodide. GR(CT) would be major corrosion product of iron near the seawater or saline layer in underground. The GR(CT) may play an important role in the retardation of the iodide migration in a deep geological environment due to it's anionic exchange reaction. In underground radioactive waste repository, the corrosion of iron canisters would be proceed as follows; Fe(II) and/or Fe(III) dissolved from iron containers → Fe(II)(OH)2 and/or Fe(III)(OH)3 → Green rust → Lepidocrocite or Magnetite → Goetite etc. Generally, the green rust has known to exist in environments close to the Fe(Π)/Fe(ΠΙ) transition zone or between the oxidized layer and reduced layer in the underground. As anion exchanger and strong reducer, the green rusts can affect the migration of anions, reactions involving green rusts were poorly studied in relation to the safety assessment of radioactive waste repository

  18. Nonradiometric and radiometric testing of radioiodine sorbents using methyl iodide

    International Nuclear Information System (INIS)

    A nonradiometric test of adsorbents and adsorbers with normal methyl iodide (CH3127I) is desirable. Use of methyl radioiodide (CH3131I) requires special precautions and facilities and results in bed contamination. However, first it must be established to what extent the removal of CH3127I by adsorbents is indicative of the removal of CH3131I. An experimental apparatus was built and used to simultaneously measure the penetrations of CH3I molecules and the radioisotope in CH3131I through charcoal absorbent beds. Gas chromatography with electron capture detection was used to measure CH3I. Radioiodine was measured using charcoal traps within NaI scintillation well crystals. Real time (5-min interval) radioiodine measurement provided immediate penetration results directly comparable to the real time penetrations of methyl iodide. These penetrations were compared for typical charcoal adsorbents with these impregnants: (a) 5% KI3, (b) 5% KI3 + 2% TEDA, (c) 5% TEDA, and (d) metal salts (Whetlerite). Differences between CH3I and CH3131I penetrations observed for the two iodized charcoals were attributed to isotope exchange reactions. Equivalent penetrations were observed for non-iodized adsorbents and for iodized ones at initial time. First order rates were confirmed for reactions with TEDA and for isotope exchange. This was one more confirmation of the lack of a challenge concentration effect on efficiencies at low test bed loadings. In addition to other removal mechanisms, reversible physical adsorption was observed with all charcoals

  19. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    Science.gov (United States)

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  20. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  1. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  2. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  3. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  4. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  5. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  6. Nuclear fuel management and boron carbide coating

    International Nuclear Information System (INIS)

    In recent years one way of introducing burnable absorber is to coat the fuel pellets by a thin layer of burnable absorber so called integral fuel burnable absorber (IFBA). In this method the fuel is coated with boron nitride or boron carbide. Boron has low absorption cross-section and when it exists on the surface of the fuel, it interacts with thermalized neutron. B4C is a boron compound, which can be used for coating the nuclear fuel. It has high thermal stability and withstands high pressure and temperatures. High technology product of boron carbide has different ratio of B: C. But in nuclear reactor when boron carbide is used, it must be rich with boron. In this research chemical vapor decomposition (CVD) has been using boron trichloride and carbon tetra chloride for reactant materials. The experiments were carried out at high temperatures (1050 degree Celsius, 1225 degree Celsius and 1325 degree Celsius). The coated samples were analyzed using X-Ray diffractometer (XRD), scanning electron microscopy (SEM) and will be presented in this paper. It was seen that decreasing the reaction temperature caused an increase on the quality and thickness of the coating

  7. Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    We have modified gold nanoparticles (AuNPs) with triazole acetamide to obtain a material for the sensitive and selective colorimetric determination of iodide. The functionalized AuNPs were prepared by a reductive single chemical step using a Cu(I)-catalyzed click reaction. The presence of iodide ions induces the aggregation of these AuNPs and results in a color change from wine-red to purple. The iodide-induced aggregation can be detected visually with bare eyes, but also by photometry. The detection limit is as low as 15 nM. The method displays excellent selectivity for iodide over other anions due to the selective interaction with the amido groups of the triazole. The method was applied to the determination of iodide in spiked lake waters. (author)

  8. Advances of radioiodine therapy of tumor induced by sodium iodide symporter gene

    International Nuclear Information System (INIS)

    As a kind of membrane protein that mainly mediates iodide transport into thyroid follicular cells, sodium iodide symporter (NIS) plays a key role in radioiodine therapy of both thyroid and other cancers. Studies show that decreased NIS expression level or intracellular localization in thyroid carcinomas lead to low iodine uptake. So NIS gene therapy is a new method to overcome this problem. To be therapeutically effective, radioiodine has to be remained in the tumor cells for sufficient long time; this is still a problem which reduces therapeutic effect. It should increase iodide retention and decrease iodide efflux in tumor cells to optimize therapeutic scheme. This article reviews the studies on advances of radioiodine therapy of tumor induced by sodium iodide symporter gene. (authors)

  9. Recovery and separation for the trace amounts of iodide in PWR spent fuel

    International Nuclear Information System (INIS)

    An separation and recovery technique for iodide in spent pressurized water reactor (PWR) fuels has been established using a SIMFUEL simulated for spent PWR fuel. The spent PWR fuels were dissolved with mixture of nitric and hydrochloric acids(80; 20 mol%) which can oxidize iodide to iodate through dissolution process. Iodide in uranium matrix and co-exist fission products was separated and recovered by organic extraction of iodine with carbon tetrachloride and by back extraction of iodide with 0.1 M NaHSO3. Recovered iodide was measured using an ion chromatograph/shielding system available for analysis of radioactive materials. In practice, a spent PWR fuel whose burnup rate was 42,261 MWd/MtU was analyzed and then the relation between the burnup and the quantity of the fission products was compared to the calculated by burnup code, Origen 2

  10. Ultrasensitive iodide detection based on the resonance light scattering of histidine-stabilized gold nanoclusters

    International Nuclear Information System (INIS)

    We have developed a novel resonance light scattering (RLS) assay for the sensitive and selective determination of iodide. It is based on the use of histidine-stabilized gold nanoclusters (His-AuNCs) which undergo fusion and aggregation in the presence of iodide. The resulting enhancement in the intensity of RLS is proportional to the concentration of iodide in the 0.01 to 8.0 μM range, and the detection limit is as low as 1.8 nM at a signal-to-noise ratio of 3. This “turn-on” method is highly selective for iodide and not interfered by other ions commonly present. It was applied to the determination of iodide in (spiked) real water samples. (author)

  11. Iodine K-edge EXAFS analysis of iodide ion-cyclodextrin inclusion complexes in aqueous solution

    International Nuclear Information System (INIS)

    We study the structure of inclusion complexes of α-, β-, γ-cyclodextrin with mono-iodide ion in aqueous solution by means of iodine K-edge EXAFS spectroscopy. The analysis is based on the assumption that two kinds of iodide ions exist in KI-cyclodextrin aqueous solution i.e. hydrated mono-iodide ions and one-one mono-iodide-cyclodextrin inclusion complexes. In KI-α-cyclodextrin system, iodine K-edge EXAFS analyse show that the average coordination number of the oxygen atoms in water molecules in the first hydration shell decreases as the fraction of included ions increases. This result suggests that dehydration process accompanies the formation of the inclusion complex. This is not found in the case of β-cyclodextrin, indicating that in this case the iodide ions are included together with the whole first hydration shell.

  12. Evaluation of optimal silver amount for the removal of methyl iodide on silver-impregnated adsorbents

    International Nuclear Information System (INIS)

    The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver-impregnated zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver impregnation amount for the removal of methyl iodide at temperatures up to 300 deg. C. The degree of adsorption efficiency of methyl iodide on silver-impregnated adsorbent is strongly dependent on impregnation amount and process temperature. A quantitative comparison of adsorption efficiencies on three adsorbents in a fixed bed was investigated. The influence of temperature, methyl iodide concentration and silver impregnation amount on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It shows that the effective impregnation ratio was about 10wt%, based on the degree of silver utilization for the removal of methyl iodide. The practical applicability of silver-impregnated zeolite for the removal of radioiodine generated from the DUPIC process was consequently proposed. (author)

  13. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  14. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    10B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH)4-) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10B and 11B

  15. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping. PMID:25427850

  16. Stabilization of boron carbide via silicon doping

    Science.gov (United States)

    Proctor, J. E.; Bhakhri, V.; Hao, R.; Prior, T. J.; Scheler, T.; Gregoryanz, E.; Chhowalla, M.; Giulani, F.

    2015-01-01

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  17. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid

    OpenAIRE

    Shohei Sase; Ryo Kakimoto; Ryutaro Kimura; Kei Goto

    2015-01-01

    A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100 °C for 3 h in [D8]toluene. The selenenyl iodide was reduced to the corresponding selenol by treatment with dithiothreitol. Hydrolysis of the selenenyl iodide under alkaline conditions afforded the ...

  18. Burnup performances of boron nitride and boron coated nuclear fuels

    International Nuclear Information System (INIS)

    The nuclear fuels of urania (UOV) and 5% and 10% gadolinia (Gd2O3) containing UO2 previously produced by sol-gel technique were coated with first boron nitride (BN) then boron (B) thin layer by chemical vapor deposition (CVD) and also by plasma enhanced chemical vapor deposition (PECVD) techniques to increase the fuel cycle length and to improve the physical properties. From the cross-sectional view of BN and B layers taken from scanning electron microscope (SEM), the excellent adherence of BN onto fuel and B onto BN layer was observed in both cases. The behavior of fuel burnup, depletion of BN and B, the effect of coating thickness and also Gd2O3 content on the burnup performances of the fuels were identified by using the code WIMS-D/4 for Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) cores. The optimum thickness ratio of B to BN was found as 4 and their thicknesses were chosen as 40 mm and 10 mm respectively in both reactor types to get extended cycle length. The assemblies consisting of fuels with 5% Gd2O3 and also coated with 10 mm BN and 40 mm B layers were determined as candidates for getting higher burnup in both types of reactors

  19. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  20. Boron enrichment in martian clay.

    Science.gov (United States)

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  1. 10 CFR 35.392 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training for the oral administration of sodium iodide I... sodium iodide I-131 requiring a written directive in quantities less than or equal to 1.22 gigabecquerels... oral administration of sodium iodide I-131 requiring a written directive in quantities less than...

  2. 10 CFR 35.394 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training for the oral administration of sodium iodide I... Byproduct Material-Written Directive Required § 35.394 Training for the oral administration of sodium iodide... of sodium iodide I-131 requiring a written directive in quantities greater than 1.22...

  3. 76 FR 16770 - Petition To Suspend and Cancel All Registrations for the Soil Fumigant Iodomethane (Methyl Iodide...

    Science.gov (United States)

    2011-03-25

    ... AGENCY Petition To Suspend and Cancel All Registrations for the Soil Fumigant Iodomethane (Methyl Iodide... iodide) be suspended and cancelled. The Agency is posting this petition for public comment. Following the... Earthjustice requesting that all uses of iodomethane (methyl iodide) be suspended and cancelled. The Agency...

  4. Experimental boron neutron capture therapy for melanoma: Systemic delivery of boron to melanotic and amelanotic melanoma

    International Nuclear Information System (INIS)

    The boron-containing melanin precursor analogue p-boronophenylalanine (BPA) has previously been shown to selectively deliver boron to pigmented murine melanomas when administered in a single intragastric dose. If boron neutron capture therapy is to become a clinically useful method of radiation therapy for human malignant melanoma, the boron carrier must be capable of delivering useful amounts of boron to remote tumor sites (metastases) and to poorly pigmented melanomas. The authors have now determined the ability of BPA to accumulate in several nonpigmented melanoma models including human melanoma xenografts in nude mice. The absolute amount of boron in the nonpigmented melanomas was about 50% of the observed in the pigmented counterparts but was still selectively concentrated in the tumor relative to normal tissues in amounts sufficient for effective neutron capture therapy. Single intragastric doses of BPA resulted in selective localization of boron in the amelanotic Greene melanoma carried in the anterior chamber of the rabbit eye and in a pigmented murine melanoma growing in the lungs. The ratio of the boron concentration in these tumors to the boron concentration in the immediately adjacent normal tissue was in the range of 3:1 to 4:1. These distribution studies support the proposal that boron neutron capture therapy may be useful as a regional therapy for malignant melanoma

  5. Strawberry growers wavered over methyl iodide, feared public backlash

    Directory of Open Access Journals (Sweden)

    Julie Guthman

    2016-08-01

    Full Text Available Methyl iodide, once promoted as a suitable alternative to methyl bromide for soil fumigation in strawberry systems, was withdrawn from the market in 2012 after a contentious regulatory battle that revolved around its high toxicity. At the time of its withdrawal, Arysta LifeScience, the maker of the chemical, claimed that it was no longer economically viable. In this study, I investigated what made the chemical nonviable, with a specific focus on growers' nonadoption of it. Interviews with strawberry growers in the four top California strawberry-growing counties revealed that growers' decisions not to use it were primarily related to public disapproval, although the continued availability of methyl bromide and other fumigants played a contributing role by making adoption less urgent. The study results suggest that policies in place during the methyl bromide phaseout did not strongly encourage the development and extension of less toxic alternatives, which undermined the strawberry industry's position.

  6. Betaine potassium iodide dihydrate: a new compound of betaine

    International Nuclear Information System (INIS)

    Betaine potassium iodide dihydrate, [(CH3)3N+CH2COO-]2.KI.2H2O, BKI for short, is a new compound of the aminoacid betaine with a triclinic symmetry and the space group P1-bar at room temperature. The study of dielectric properties provided evidence for the existence of a structural phase transition occurring around 100 K. The spontaneous electric polarization is zero in both phases. A study of dielectric dispersion disclosed two relaxational modes with different relevance in the high and in the low temperature phases. The main features observed in BKI are consistently described by the Landau theory, by assuming a quadratic coupling between the primary order parameter and the electric polarization. (author). Letter-to-the-editor

  7. Incorporation of defects during processing of mercuric iodide detectors

    Science.gov (United States)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Stulen, R. H.; Ortale, C.; Cheng, A. Y.

    1990-07-01

    The effects of chemical etching in KI solution, heating, and vacuum exposures of HgI2 were individually studied by low-temperature photoluminescence (PL) spectroscopy. Each of these processing steps is important in the manufacturing of mercuric iodide detectors and may be responsible for the incorporation of carrier traps both in the near-surface region and in the bulk. The results of etching experiments showed that the near-surface region has a different defect structure than the bulk, which appears to result from iodine deficiency. Bulk heating at 100 °C also modifies the defect structure of the crystal. Vacuum exposure has an effect similar to chemical etching, but it does not cause significant degradation of the stoichiometry for recently KI-etched specimens. These studies suggest that some features in the PL spectra of HgI2 are associated with stoichiometry of the specimens.

  8. Electronic characterization of mercuric iodide gamma ray spectrometers

    International Nuclear Information System (INIS)

    During the past four years the yield of high resolution mercuric iodide (HgI2) gamma ray spectrometers produced at EG ampersand G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI2 synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI2 spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI2 surface, probably due to surface states formed prior to contact deposition

  9. Incorporation of defects during processing of mercuric iodide detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.J.; Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (USA)); James, R.B.; Stulen, R.H. (Theoretical Division, Sandia National Laboratories, Livermore, California 94450 (USA)); Ortale, C.; Cheng, A.Y. (EG G Energy Measurements, Inc., Goleta, California 93116 (USA))

    1990-07-01

    The effects of chemical etching in KI solution, heating, and vacuum exposures of HgI{sub 2} were individually studied by low-temperature photoluminescence (PL) spectroscopy. Each of these processing steps is important in the manufacturing of mercuric iodide detectors and may be responsible for the incorporation of carrier traps both in the near-surface region and in the bulk. The results of etching experiments showed that the near-surface region has a different defect structure than the bulk, which appears to result from iodine deficiency. Bulk heating at 100 {degree}C also modifies the defect structure of the crystal. Vacuum exposure has an effect similar to chemical etching, but it does not cause significant degradation of the stoichiometry for recently KI-etched specimens. These studies suggest that some features in the PL spectra of HgI{sub 2} are associated with stoichiometry of the specimens.

  10. Modified purification of mercuric iodide for crystal growth

    Science.gov (United States)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; Van Den Berg, L.

    1988-06-01

    The standard procedure used in our laboratory to purify commercially available mercuric iodide (HgI 2) consists of a sequence of steps: (1) repeated sublimation under continuous evacuation, followed by (2) melting and recrystallization, and (3) a sublimation process in a closed tube. This paper describes a modification of the standard purification sequence by adding recrystallization of the HgI 2 in hydrochloric acid. Leaching cation impurities out of HgI 2 powder with hydrochloric acid has been practised before by Zaletin et al. Our objective for the hydrochloric acid treatment was to remove nitrates and hydrocarbons which were interfering with the vapor transport during crystal growth. Results of the procedure are presented in terms of total carbon and selected ion content of the treated and untreated material.

  11. Investigation of copper electrodes for mercuric iodide detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.J.; Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA (USA)); James, R.B.; Stulen, R.H. (Advanced Materials Division, Sandia National Laboratories, Livermore, CA (USA)); Ortale, C.; van den Berg, L. (EG G Energy Measurements, Inc., Goleta, CA (USA))

    1990-06-15

    Copper diffusion in mercuric iodide was studied by low-temperature photoluminescence (PL) spectroscopy and Auger electron spectroscopy. A broad radiative emission band at a wavelength of about 6720 A in the PL spectra was found to be related to Cu incorporation in the crystal. PL spectra obtained from surface doping experiments indicate that Cu is a rapid diffuser in HgI{sub 2} bulk material. Auger electron spectroscopy performed as a function of depth from the crystal surface confirms the rapid bulk diffusion process of Cu in HgI{sub 2}. Fabrication of HgI{sub 2} nuclear detectors with Cu electrodes indicates that Cu is not acceptable as an electrode material, which is consistent with the fact that it diffuses easily into the bulk crystal and introduces new radiative recombination centers.

  12. Investigation of copper electrodes for mercuric iodide detector applications

    Science.gov (United States)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Stulen, R. H.; Ortale, C.; van den Berg, L.

    1990-06-01

    Copper diffusion in mercuric iodide was studied by low-temperature photoluminescence (PL) spectroscopy and Auger electron spectroscopy. A broad radiative emission band at a wavelength of about 6720 Å in the PL spectra was found to be related to Cu incorporation in the crystal. PL spectra obtained from surface doping experiments indicate that Cu is a rapid diffuser in HgI2 bulk material. Auger electron spectroscopy performed as a function of depth from the crystal surface confirms the rapid bulk diffusion process of Cu in HgI2. Fabrication of HgI2 nuclear detectors with Cu electrodes indicates that Cu is not acceptable as an electrode material, which is consistent with the fact that it diffuses easily into the bulk crystal and introduces new radiative recombination centers.

  13. Photon recycling in lead iodide perovskite solar cells

    Science.gov (United States)

    Pazos-Outón, Luis M.; Szumilo, Monika; Lamboll, Robin; Richter, Johannes M.; Crespo-Quesada, Micaela; Abdi-Jalebi, Mojtaba; Beeson, Harry J.; Vrućinić, Milan; Alsari, Mejd; Snaith, Henry J.; Ehrler, Bruno; Friend, Richard H.; Deschler, Felix

    2016-03-01

    Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.

  14. Development of mercuric iodide detectors for XAS and XRD measurements

    International Nuclear Information System (INIS)

    A prototype element for an energy dispersive detector (EDD) array was constructed using a Mercuric Iodide detector. Both detector and front end FET could be thermoelectrically cooled. Tested at SSRL, the detector had 250 eV electronic noise and 315 eV resolution at 5.9 keV. K line fluorescence spectra were collected for selected elements between Cl (2622 eV) and Zn (8638 eV). Count rate capability to 60,000 cps was demonstrated. Several detector parameters were measured, including energy linearity, resolution vs. shaping time, and detector dead time. An EXAFS (extended x-ray absorption fine structure) spectrum was recorded and compared to simultaneously collected transmission data

  15. Polarographic determination of indium and thallium iodides in phosphor tablets

    International Nuclear Information System (INIS)

    The technique of polarographic determination of indium and thallium iodides in phosphor tablets without preliminary separation of elements was developed. Mercury-dropping electrode was used as an indicator, and saturated calomel electrode was used as an auxiliary electrode. A recording of reduction currents was performed in the potential interval from -0.25 up to 1.15 V at potential sweep speed of 200 mV/min. Optimum conditions of sample acidic decomposition and polarography were presented. A solution of ethylene diamine (0.5 M), of ammonia (0.25 M) and of potassium chloride (0.05 M) served as a background electrolyte. The suggested technique allows one to determine component contents in tablets with a satisfactory accuracy. A period of one tablet analysis constitutes 1.5 h

  16. Investigation of sodium iodide hydration and dehydration in moist atmosphere

    International Nuclear Information System (INIS)

    Effect of different factors on NaI hydration and dehydration kinetics under nonequilibrium conditions is studied. NaIx2H2O solid or homogeneous solution is established to be formed at sodium iodide interaction with water vapour depending on air humidity. At low humidity water absorption is not observed. Effect of water vapour pressure, the NaI particle size, the air flux rate over a salt on the absorption rate is studied. The latter points to process rate limitation by diffusion in a gaseous phase. The NaI solution decomposition at light with iodine formation is marked. The character of NaIx2H2O dehydration depends on water vapour removing from the over-salt space. Total water removing before and after crystal hydrate thermal degradation when aqueous solution evaporation occurs, is possible. At 143 deg C the water vapour pressure over solution equals the atmospheric one

  17. Mercuric iodide crystals obtained by solvent evaporation using ethanol

    International Nuclear Information System (INIS)

    Millimeter-sized mercuric iodide crystals were fabricated by the solvent evaporation technique using pure ethanol as a solvent. Three different conditions for solution evaporation were tested: (i) in the dark at room temperature; (ii) in the presence of light at room temperature and (iii) in an oven at 40 deg. C. Morphology, structure, optical and electrical properties were investigated using several techniques. Crystals fabricated in the dark show better properties and stability than others, possibly because the larger the energy of the system, the larger the number of induced growth defects. The crystals fabricated in the dark have adequate structure for higher resistivity and activation energy close to half the optical band-gap, as desired. With proper encapsulation these crystals might be good candidates for the development of ionizing radiation sensors.

  18. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    OpenAIRE

    Yuya Egawa; Ryotaro Miki; Toshinobu Seki

    2014-01-01

    In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conj...

  19. Synthesis and characterization of ammonium phosphate fertilizers with boron

    OpenAIRE

    ANGELA MAGDA; RODICA PODE; CORNELIA MUNTEAN; MIHAI MEDELEANU; ALEXANDRU POPA

    2010-01-01

    The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the ...

  20. Rapid sonochemical preparation of shape-selective lead iodide

    International Nuclear Information System (INIS)

    Graphical abstract: SEM morphologies of various PbI2 products obtained with the iodine concentration of 6.7 g/L and irradiation time of 1 minute at the reaction temperatures of 35 °C (a), 25 °C (b), and 15 °C (c). Highlights: ► PbI2 with various morphologies were rapidly formed at room temperature. ► We could well control the morphologies of PbI2 by changing reaction conditions. ► The PbI2 films could better resist rolling in a liquid media. -- Abstract: Lead iodide (PbI2) films/crystals with various nano/micro morphologies (e.g., Nanoflake, block and microrod) were rapidly synthesized by taking advantage of a simple sonochemical method. The PbI2 crystals with uniform nanoflake structures could be fabricated directly on lead foils with the irradiation time as short as 36 s via interfacial reaction between lead foils and elemental iodine in ethanol at ambient temperature. It was found experimentally that the morphologies of the resulting thin films/crystals could be well controlled by the adjustment of several parameters including irradiation time, reaction solvents, iodine concentration, ultrasonic power, and reaction temperature. Most importantly, the resultant PbI2 films are stable enough to resist rolling under the drastic ultrasound irradiation in a liquid media. This method is believed to be the fastest way for in situ fabrication of morphology-controlled semiconductor films on various metal substrates for subsequent applications related to the other metal iodide or metal sulfide semiconductor films.

  1. Ambient synthesis and optoelectronic properties of copper iodide semiconductor nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: A simple chemical route to prepare crystalline γ-phase copper iodide semiconductor. Highlights: ► A new facile technique is developed to synthesize CuI semiconductor nanoparticles. ► As prepared material is highly crystalline γ-phase and visible fluorescent. ► It exhibits good electrical conductivity ∼10−4 (Ω cm)−1. ► Strong quantum confinement is observed, 22 nm size shows band gap shift of 1.7 eV. ► The γ-phase is thermodynamically more stable. -- Abstract: Electrically conducting copper iodide (CuI) nanoparticles have been synthesized at room temperature via a simple single step chemical route, using ethyl alcohol as a solvent. The resulting material was characterized by X-ray diffraction, differential scanning calorimetry, optical absorption, photoluminescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy and high resolution transmission electron microscopy to assess the quality of these semiconductor nanoparticles. Thin film was deposited on copper substrate that was used to investigate temperature dependent electrical conductivity. These investigations confirm that the material is semiconductor having a negative temperature coefficient of resistivity. Thermal analysis and X-ray diffraction studies reveal that it is of low temperature γ phase. Energy-dispersive X-ray spectroscopy measurements confirm the stoichiometry of as prepared material. The shift in optical absorption edge towards lower wavelength region (Eg ∼ 4.77 eV) as compared to its bulk absorption indicates that a decrease in particle size has a significant effect. Photoluminescence peak observed at 2.90 eV is unique to its material property. These optoelectronic properties of CuI will be helpful in the development of future electronic devices

  2. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 3000C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 10500C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  3. Proceedings of workshop on 'Boron Chemistry and Boron Neutron Capture Therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 3rd Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 12, in 1991. In this workshop, our attention was focused on the chemical nature of boron compounds and the boron neutron capture therapy (BNCT). First, clinical experiences of BNCT in KURRI in 1990 and 1991 were reported (Chap. 3). The feasibility of the gadolinium neutron capture therapy for brain tumors was discussed (Chap. 4). In the chemical field, a rapid spectrophotometric determination of trace amounts of borons in biological samples is described (Chap. 5). The chemical behaviours of p-boronophenylalanine and its analogs in aqueous solutions were investigated by a paper electrophoresis and infrared spectroscopy (Chap. 6). On the molecular design and synthesis of new boron carriers for BNCT, several new synthetic methods for B-10 containing nucleoside derivatives were shown (Chap. 7). (author)

  4. Quantitative boron detection by neutron transmission method

    International Nuclear Information System (INIS)

    //Quantitative boron detection is mainly performed by chemical methods like colorimetric titration. High neutron absorption cross section of natural boron makes attractive its detection by absorption measurements. This work is an extension of earlier investigations where neutron radiography technique was used for boron detection. In the present investigation, the neutron absorption rate of boron containing solutions is the way to measure quantitatively the boron content of the solutions. The investigation was carried out in Istanbul TRIGA Mark-II reactor. In the end of the experiments, it was observed that even |ppw| grade boron in aqueous solution can be easily detected. The use of this method is certainly very useful for boron utilizing industries like glass and steel industries.The major disadvantage of the method is the obligation to use always aqueous solutions to be able to detect homogeneously the boron content. Then, steel or glass samples have to be put first in an appropriate solution form. The irradiation of steel samples can give the distribution of boron by the help of a imaging and this suggested method will give its quantitative measurement. The superiority of this method are its quick response time and its accuracy. To test this accuracy, a supposed unknown , solution of boric acid is irradiated and then calculated by the help of the calibration curve. The measured value of boric acid was 0.89 mg and the calculated value was found to be 0.98 mg which gives an accuracy of 10 %. It was also seen that the method is more accurate for low concentration. (authors)

  5. Evaluation of quaternary ammonium halides for removal of methyl iodide from flowing air streams

    International Nuclear Information System (INIS)

    The quaternary ammonium halides of several tertiary amines were used as impregnants on activated carbon and were tested for methyl iodide penetration in accordance with test Method A, ASTM D3803, 1979, ''Standard Test Methods for Radio-iodine Testing of Nuclear Grade Gas Phase Adsorbents''. The results suggest that the primary removal mechanism for methyl iodide-131 is isotopic exchange with the quaternary ammonium halide. For example, a 5 wt% impregnation of each of the tetramethyl, tetraethyl, tetrapropyl and tetrabutyl ammonium iodides on activated carbon yielded percent penetrations of 0.47, 0.53, 0.78, and 0.08 respectively when tested according to Method A of ASTM D3803. A sample impregnated with 5% tetramethyl ammonium hydroxide gave a methyl iodide penetration of 64.87%, thus supporting the isotopic exchange mechanism for removal. It has been a generally held belief that the success of tertiary amines as impregnants for radioiodine removal is a result of their ability to complex with the methyl iodide. The results of the work indicates that the superiority of the tertiary amines similar to triethylene diamine and quinuclidine, when compared to their straight chain analogs, is a result of their ease in reacting with methyl iodide-127 to form the quaternary ammonium iodide followed by isotopic exchange

  6. In Vivo Evaluation of Transdermal Iodide Microemulsion for Treating Iodine Deficiency Using Sprague Dawley Rats.

    Science.gov (United States)

    Alayoubi, Alaadin; Sullivan, Ryan D; Lou, Hao; Patel, Hemlata; Mandrell, Timothy; Helms, Richard; Almoazen, Hassan

    2016-06-01

    The objective of this study was to evaluate the transdermal efficiency of iodide microemulsion in treating iodine deficiency using rats as an animal model. Animals were fed either iodine-deficient diet (20 μg/kg iodide) or control diet (200 μg/kg iodide) over a 17-month period. At month 14, iodide microemulsion was applied topically in iodine-deficient group and physiological evaluations of thyroid gland functions were characterized by monitoring the thyroid hormones (T3, T4), thyroid-stimulating hormone (TSH), iodide ion excretion in urine, and the overall rat body weights in both groups. Moreover, morphological evaluations of thyroid gland before and after treatment were performed by ultrasound imaging and through histological assessment. Prior to microemulsion treatment, the levels of T3, T4, and TSH in iodine-deficient group were statistically significant as compared to that in the control group. The levels of T3 and T4 increased while TSH level decreased significantly in iodine-deficient group within the first 4 weeks of treatment. After treatment, iodide concentration in urine increased significantly. There was no statistical difference in weight between the two groups. Ultrasound imaging and histological evaluations showed evidence of hyperplasia in iodine-deficient group. Topical iodide microemulsion has shown a promising potential as a novel delivery system to treat iodine deficiency. PMID:26288943

  7. An Investigation of Diffusion of Iodide Ion in Compacted Bentonite Containing Ag2O

    International Nuclear Information System (INIS)

    In the compacted bentonite containing Ag2O, the transport of iodide ion was investigated by Through-diffusion method. It is confirmed that Iodide ion is transported by diffusion process in the compacted bentonite containing Ag2O as well as in the compacted bentonite without Ag2O. However, the lag-time of iodide ion in the compacted bentonite containing Ag2O is larger than that in the compacted bentonite without Ag2O. The increase of the lag-time was observed in pure iodide ion solution and also in 0.1M NaCl-iodide ion solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing Ag2O has lower value than that in the compacted bentonite without Ag2O. The effect of Ag2O on the effective diffusion coefficient was not clearly investigated in the compacted bentonite containing Ag2O while the values of effective diffusion coefficient of iodide ion in the compacted bentonite without Ag2O obtained in this study were similar to those in the compacted bentonite reported in the literature

  8. Spectrophotometric determination of trace quantities of iodide after separation from large quantities of bromide, chloride, or sulfate by solvent extraction

    International Nuclear Information System (INIS)

    Iodide solutions were reacted with 2,4,6-triphenylpyrylium bisulfate to yield the triphenylpyrylium iodide which was extracted with chloroform and spectrophotometrically determined. The interference from perchlorate, bromide, chloride, and sulfate ions on the iodide determination was evaluated. An analytical procedure for the determination of iodide present as the iodate was developed using sodium sulfite to reduce the iodate to iodide. The use of this method for the determination of KI in commercial iodized salt gave results comparable to those obtained by the AOAC iodometric method. (U.S.)

  9. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  10. Sintering of boron carbide (B4C)

    International Nuclear Information System (INIS)

    Boron carbide (B4C) is used as a control element in different types of reactors due to the high fast and thermal neutron absorption cross-section of B-10. Requirements of the Advanced Reactor Division of the Bariloche Atomic Center triggered the study of the possibilities of fabricating B4C pellets by cold-pressing and sintering. The results of essays of sinterability of two different commercial boron carbide powders, sintered at temperatures between 1200 and 2200 deg C, are given. Characterizations of the samples were made to determine the evolution of density, porosity, microstructure and boron content as a function of sintering temperature. (Author)

  11. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  12. First boronization in KSTAR: Experiences on carborane

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Suk-Ho, E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Kun-Su; Kim, Kwang-Pyo; Kim, Kyung-Min; Kim, Hong-Tack [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, Jong-Ho; Woo, Hyun-Jong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jae-Min [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Park, Eun-Kyong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Woong-Chae; Kim, Hak-Kun; Park, Kap-Rai; Yang, Hyung-Lyeol; Oh, Yeong-Kook; Na, Hoon-Kyun [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lho, Taehyeop [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, Kyu-Sun [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-08-01

    First boronization was performed in KSTAR tokamak during 2009 campaign in order to reduce oxygen impurities and to lower the power loss due to radiation. We report the results from the experiences on carborane during the first boronization in KSTAR. After the boronization, H{sub 2}O and O{sub 2} level in the vacuum vessel are reduced significantly. The characteristics of the deposited thin films were analyzed by variable angle spectroscopic ellipsometry, XPS, and AES. {approx}1.78 x 10{sup 16} cm{sup -2} s{sup -1} of carbon flux on the wall is estimated by using cavity technique.

  13. Boron site preference in ternary Ta and Nb boron silicides

    International Nuclear Information System (INIS)

    X-ray single crystal (XSC) and neutron powder diffraction data (NPD) were used to elucidate boron site preference for five ternary phases. Ta3Si1−xBx (x=0.112(4)) crystallizes with the Ti3P-type (space group P42/n) with B-atoms sharing the 8g site with Si atoms. Ta5Si3−x (x=0.03(1); Cr5B3- type) crystallizes with space group I4/mcm, exhibiting a small amount of vacancies on the 4a site. Both, Ta5(Si1−xBx)3, x=0.568(3), and Nb5(Si1−xBx)3, x=0.59(2), are part of solid solutions of M5Si3 with Cr5B3-type into the ternary M–Si–B systems (M=Nb or Ta) with B replacing Si on the 8h site. The D88-phase in the Nb–Si–B system crystallizes with the Ti5Ga4-type revealing the formula Nb5Si3B1−x (x=0.292(3)) with B partially filling the voids in the 2b site of the Mn5Si3 parent type. - Graphical abstract: The crystal structures of a series of compounds have been solved from X-ray single crystal diffractometry revealing details on the boron incorporation. Highlights: ► Structure of a series of compounds have been solved by X-ray single crystal diffractometry. ► Ta3(Si1−xBx) (x=0.112) crystallizes with the Ti3P-type, B and Si atoms randomly share the 8g site. ► Structure of Nb5Si3B1−x (x=0.292; Ti5Ga4-type) was solved from NPD.

  14. Synthesis of Boron Nanorods by Smelting Non-Toxic Boron Oxide in Liquid Lithium

    OpenAIRE

    Amartya Chakrabarti; Tao Xu; Laura K. Paulson; Krise, Kate J.; Maguire, John A; Hosmane, Narayan S.

    2010-01-01

    In contrast to the conventional bottom-up syntheses of boron nanostructures, a unique top-down and greener synthetic strategy is presented for boron nanorods involving nontoxic boron oxide powders ultrasonically smelted in liquid lithium under milder conditions. The product was thoroughly characterized by energy dispersive X-ray analysis, atomic emission spectroscopy, thermogravimetric analysis and, UV-Vis spectroscopy, including structural characterization by transmission electron microscop...

  15. Determination of boron isotope ratios in boron carbide by mass spectrometry

    International Nuclear Information System (INIS)

    This paper introduces the direct determination of boron isotope ratios in the boron carbide powder by thermal ionization mass spectrometry. The technique for sample loading, the procedure for heating and the eliminating of effects induced by oxygen are studied. The study indicates that the preparing process for the sample will be shorted, and the time for determination and the exposure dose of the laboratory assistant will be reduced for the reason of directly determination of boron carbide. (authors)

  16. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes

    International Nuclear Information System (INIS)

    Boron-doped carbon nanotubes (B-CNTs) were synthesized using chemical vapour deposition (CVD) floating catalyst method. Toluene was used as the carbon source, triphenylborane as boron as well as the carbon source while ferrocene was used as the catalyst. The amount of triphenylborane used was varied in a solution of toluene and ferrocene. Ferrocene was kept constant at 2.5 wt.%. while a maximum temperature of 900 °C was used for the synthesis of the shaped carbon nanomaterial (SCNMs). SCNMs obtained were characterized by the use of transmission electron microscope (TEM), scanning electron microscope (SEM), high resolution-electron microscope, electron dispersive X-ay spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma-optical emission spectroscopy (ICP-OES), vibrating sample magnetometer (VSM), nitrogen adsorption at 77 K, and inverse gas chromatography. TEM and SEM analysis confirmed SCNMs obtained were a mixture of B-CNTs and carbon nanofibres (B-CNF). EDX and ICP-OES results showed that boron was successively incorporated into the carbon hexagonal network of CNTs and its concentration was dependent on the amount of triphenylborane used. From the VSM results, the boron doping within the CNTs introduced ferromagnetic properties, and as the percentage of boron increased the magnetic coactivity and squareness changed. In addition, boron doping changed the conductivity and the surface energy among other physicochemical properties of B-CNTs. - Highlights: • Boron-doping of carbon nanotubes (CNTs) changes their physiochemical properties. • Amount of boron-doping was dependent on the wt.% of boron precursor used. • Boron-doping changed CNTs surfaces and the distribution of dispersive energy sites. • Boron-doping affected the conductivity and ferromagnetic properties. • Increased boron-doping results in a more favourable interaction with polar probes

  17. Effects of Excess Fluoride and Iodide on Thyroid Function and Morphology.

    Science.gov (United States)

    Jiang, Yaqiu; Guo, Xiujuan; Sun, Qiuyan; Shan, Zhongyan; Teng, Weiping

    2016-04-01

    Exposure to high levels of iodide in Cangzhou, Shandong Province, China has been associated with increased incidence of thyroid disease; however, whether fluoride can affect the thyroid remains controversial. To investigate the effects of excess fluoride, we evaluated thyroid gland structure and function in rats exposed to fluoride and iodide, either alone or in combination. Five-week-old Wistar rats (n = 160 total) were randomly divided into eight groups: three groups that were given excess fluoride (15, 30, or 60 ppm F); one group given excess iodide (1200 μg/L I); three groups given excess iodide plus fluoride (1200 μg/L I plus 15, 30, or 60 ppm F); and one control group. The serum concentrations of the thyroid hormones TT3 and TT4 on day 150 were significantly reduced for certain fluoride groups; however, no significant differences were observed in concentrations for the pituitary hormone TSH among any groups. Hematoxylin and eosin staining revealed that iodide causes an increase in the areas of the colloid lumens and a decrease in the diameters of epithelial cells and nuclei; however, fluoride causes an increase in nuclear diameters. The damage to follicular epithelial cells upon fluoride or iodide treatment was easily observed by transmission electron microscopy, but the effects were most dramatic upon treatment with both fluoride and iodide. These results suggest that iodide causes the most damage but that fluoride can promote specific changes in the function and morphology of the thyroid, either alone or in combination with iodide. PMID:26319807

  18. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  19. Permeability of iodide in multilamellar liposomes modeled by two compartments and a reservoir.

    Science.gov (United States)

    Schullery, S E

    1977-07-14

    A previously published rate law for the diffusion of iodide from multilamellar egg phosphatidylcholine liposomes (Schullery, S.E. (1975) Chem. Phys. Lipids 14, 49-58) is fitted to the relatively simple mathematical model of two compartments in series with a reservoir. All of the inner liposome compartments are assumed to behave as effectively one compartment in series with the liposome's outermost compartment. Based on this model, reasonable values are calculated for the fraction of the total solution trapped by liposomes which is in the outermost liposome compartment, 17%, and the permeability coefficient of iodide against isotonic, mixed iodide-chloride solution, 2-10(-9) cm/s. PMID:884087

  20. Thyroglobulin in smoking mothers and their newborns at delivery suggests autoregulation of placental iodide transport overcoming thiocyanate inhibition

    DEFF Research Database (Denmark)

    Andersen, Stine L; Backman Nøhr, Susanne; Wu, Chun S; Olsen, Jørn; Pedersen, Klaus M; Laurberg, Peter

    2013-01-01

    BACKGROUND: Placental transport of iodide is required for fetal thyroid hormone production. The sodium iodide symporter (NIS) mediates active iodide transport into the thyroid and the lactating mammary gland and is also present in placenta. NIS is competitively inhibited by thiocyanate from...... maternal smoking, but compensatory autoregulation of iodide transport differs between organs. The extent of autoregulation of placental iodide transport remains to be clarified. OBJECTIVE: To compare the impact of maternal smoking on thyroglobulin (Tg) levels in maternal serum at delivery and in cord serum......: Maternal smoking increased the degree of iodine deficiency in parallel in the mother and the fetus, as reflected by increased Tg levels. However, placental iodide transport seemed unaffected despite high thiocyanate levels, suggesting that thiocyanate-insensitive iodide transporters alternative to NIS are...

  1. Boron

    International Nuclear Information System (INIS)

    This paper reports that borate minerals and refined borates are used extensively for the manufacture of vitreous materials such as insulation and textile fiberglasses, borosilicate glass, and porcelain enamels and frits. In North America, these applications are estimated to account for over 54% of the borate consumption. Other substantial uses are in soaps and detergents, metallurgy, fire retardants, industrial biocides, agriculture, and various miscellaneous applications. Reported domestic borate consumption in 1990 was estimated by the U.S. Bureau of Mines to be 320 000 metric tons B2O3 versus 354 000 metric tons B2O3 in 1989. Consumption is projected to remain essentially static in 1991. Imports were estimated by the Bureau to be 50 000 metric tons B2O3 in 1990. Exports of boric acid and refined borates were approximately 650 000 metric tons of product, a 15 000 metric ton increase from the 1989 level. This increase partially offsets the drop in the 1990 consumption level

  2. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11B and 10B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11B relative to the nutrient solution, and the leaves were enriched in 10B and the stem in 11B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  3. Synthesis of Boron-Containing Primary Amines

    Directory of Open Access Journals (Sweden)

    Sheng-Hsuan Chung

    2013-10-01

    Full Text Available In this study, boron-containing primary amines were synthesized for use as building blocks in the study of peptoids. In the first step, Gabriel synthesis conditions were modified to enable the construction of seven different aminomethylphenyl boronate esters in good to excellent yields. These compounds were further utilized to build peptoid analogs via an Ugi four-component reaction (Ugi-4CR under microwave irradiation. The prepared Ugi-4CR boronate esters were then successfully converted to the corresponding boronic acids. Finally, the peptoid structures were successfully modified by cross-coupling to aryl/heteroaryl chlorides via a palladium-mediated Suzuki coupling reaction to yield the corresponding derivatives in moderate to good yields.

  4. Boron toxicity in oil palm (Elaeis guineensis)

    Energy Technology Data Exchange (ETDEWEB)

    Rajaratnam, J.A.

    1973-01-01

    Potted oil palms were treated with fertilizer of borate-46 at several concentrations and the plants were observed for boron toxicity effects. Toxicity symptoms were apparent at high rates but not at rates equivalent to typical Malaysian soils.

  5. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  6. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  7. Boron neutron capture therapy. What is next?

    International Nuclear Information System (INIS)

    BNCT (Boron Neutron Capture Therapy) will have difficulties establishing itself without efficient and conclusive clinical trials of glioma, without the expansion to other tumors, and without efficient programs for compound development and testing. (author)

  8. Ni doping of semiconducting boron carbide

    International Nuclear Information System (INIS)

    The wide band gap, temperature stability, high resistivity, and robustness of semiconducting boron carbide make it an attractive material for device applications. Undoped boron carbide is p type; Ni acts as a n-type dopant. Here we present the results of controlled doping of boron carbide with Ni on thin film samples grown using plasma enhanced chemical vapor deposition. The change in the dopant concentration within the thin film as a function of the dopant flow rate in the precursor gas mixture was confirmed by x-ray photoelectron spectroscopy measurements; with increasing dopant concentration, current-voltage (I-V) curves clearly establish the trend from p-type to n-type boron carbide.

  9. Analysis of boron at Koeberg Power Station

    International Nuclear Information System (INIS)

    Soluble reactivity poisons, also called chemical shim, produce spatially uniform neutron absorption when dissolved in reactor coolant water. The boron-10 isotope having a high neutron absorption coefficient is used in commercial pressurised water reactors (PWR) to limit and control reactivity. This is achieved at Koeberg Nuclear Power Station (KNPS) and the majority of commercial PWR's worldwide by the addition of natural boric acid to the reactor coolant. The boric acid dissolved in the coolant decreases the thermal utilisation factor, causing a decrease in reactivity. By varying the concentration of boric acid (and hence also the B-10 concentration) in the coolant, a process referred to as boration and dilution, the reactivity of the core can be easily managed. An increase in boron concentration (boration) creates negative reactivity and if the boron concentration is reduced (dilution), positive reactivity is added. The changing of boron concentration in a PWR is used primarily to compensate for fuel burn-up or poison build-up. The variation in boron concentration allows control rod use to be minimised, which results in a flatter flux profile over the core than can be produced by control rod manipulation. Accurate laboratory and on-line chemical analysis of boron concentration is important because of its operational implications associated with reactivity control and also for nuclear safety. In a normal fuel cycle, as the nuclear fuel is being consumed, the reactor coolant boric acid (B-10) concentration must be reduced by dilution with purified water to maintain the reactor at constant power. Besides in the reactor coolant water, boric acid concentration is also important in the chemical and volume control system and reactor make-up system for operation. For nuclear safety, boric acid concentrations are technical specification parameters, maintained and monitored in the spent fuel system and safety injection systems. Boron concentration determination is

  10. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  11. Lithium-Beryllium-Boron : Origin and Evolution

    OpenAIRE

    Vangioni-Flam, Elisabeth; Casse, Michel; Audouze, Jean

    1999-01-01

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to...

  12. Innovative boron nitride-doped propellants

    OpenAIRE

    Thelma Manning; Richard Field; Kenneth Klingaman; Michael Fair; John Bolognini; Robin Crownover; Carlton P. Adam; Viral Panchal; Eugene Rozumov; Henry Grau; Paul Matter; Michael Beachy; Christopher Holt; Samuel Sopok

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower ...

  13. A neutron diffraction study of amorphous boron

    Science.gov (United States)

    Delaplane, R. G.; Lundström, T.; Dahlborg, U.; Howells, W. S.

    1991-07-01

    The structure of amorphous boron has been studied with pulsed neutron diffraction techniques using the ISIS facilities at the Rutherford Appleton Laboratory. The experimental static structure factor S(Q) and radial distribution function support a structural model based on units of B12 icosahedra resembling those found in crystalline β-rhombohedral boron, but with a certain degree of disorder occurring in the linking between these subunits.

  14. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 105 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  15. Amorphous boron nitride at high pressure

    Science.gov (United States)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  16. Inheritance of Boron Efficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; WANG Yun-Hua; NIAN Fu-Zhao; LU Jian-Wei; MENG Jin-Ling; XU Fang-Sen

    2009-01-01

    Field experiments were conducted to study the inheritance of boron efficiency in oilseed rape (Brassica napus L.) by evaluating the boron (B) efficiency coefficient (BEC,the ratio of the seed yield at below the critical boron level to that at the boron-sufficient level) with 657 F2:3 fines of a population derived from a cross between a B-efficient cultivar,Qingyou 10,and a B-inefficient cultivar,Bakow.Qingyou i0 had high BEC as well as high seed yield at low available soil B.On the contrary,Bakow produced low seed yield at low B status.Boron deficiency decreased the seed yield of the F2:3 lines to different extents and the distribution of BEC of the population showed a bimodal pattern.When the 657 F2:3 lines were grouped into B-efficient lines and B-inefficient lines according to their BEC,the ratio of B-efficient lines to B-inefficient lines fitted the expected ratio (3:1),indicating that one major gene controlled the B-efficiency trait.127 F2:3 lines selected from the population at random,with distribution of BEC similar to that of the overall population,were used to identify the target region for fine mapping of the boron efficiency gene.

  17. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  18. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  19. Boronization of Russian tokamaks from carborane precursors

    International Nuclear Information System (INIS)

    A new and cheap boronization technique using the nontoxic and nonexplosive solid substance carborane has been developed and successfully applied to the Russian tokamaks T-11M, T-3M, T-10 and TUMAN-3. The glow discharge in a mixture of He and carborane vapor produced the amorphous B/C coating with the B/C ratio varied from 2.0-3.7. The deposition rate was about 150 nm/h. The primary effect of boronization was a significant reduction of the impurity influx and the plasma impurity contamination, a sharp decrease of the plasma radiated power, and a decrease of the effective charge. Boronization strongly suppressed the impurity influx caused by additional plasma heating. ECR- and ICR-heating as well as ECR current drive were more effective in boronized vessels. Boronization resulted in a significant extension of the Ne- and q-region of stable tokamak operation. The density limit rose strongly. In Ohmic H-mode energy confinement time increased significantly (by a factor of 2) after boronization. It rose linearly with plasma current Ip and was 10 times higher than Neo-Alcator time at maximum current. ((orig.))

  20. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    International Nuclear Information System (INIS)

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  1. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, C.M.; Gonzalez, J.F.; Roman, S. [Extremadura Univ., Badajoz (Spain). Dept. de Fisica Aplicada

    2011-02-15

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  2. Production of 131-I iodide capsules in Argentina

    International Nuclear Information System (INIS)

    It is well known that 131I iodide capsules are better suited to be taken by the patient than the corresponding solution. Therefore most Pharmacopeias have monographs for 131I in both pharmaceutical forms: solution or capsules, for diagnosis but principally for therapeutic purposes. In Argentina this radiopharmaceutical has been made commercially available in November 2007. At this time Bacon Laboratories SAIC started its production, authorized by the Health and Nuclear Regulatory Authorities. 131I, in the pharmaceutical form of capsules, have evident advantages in radioprotection for the patients and the personnel involved in its administration. The intake of a 131I provokes frequently that the external part of the mouth (principally if there is a beard and/or a moustache) undergoes an external contamination. This problem is enhanced if the patient has some motor difficulties to take the glass with the solution. In this case he will need assistance from the medical or technical staff, who will receive a much greater radiation dose than in normal cases. In the capsule of 131I iodide, the solution is adsorbed on a sodium phosphate matrix. The capsule is in a plastic tube contained in an appropriate lead shielding. To take the capsule, the patient inclines the open lead shielding containing the capsule in the direction of the mouth. Once the capsule is in the mouth it is swallowed with a little portion of water. After its intake, the radiopharmaceutical is absorbed from the gastrointestinal tract. If a patient is unable to carry out the intake, the assistance by medical or technical staff is easy with practically no radiation harm, since the 131I is shielded by an adequate lead thickness. It is evident that the hands and external face of the patient are also protected since no possibility of contamination exists. The aim of this work is to present the production procedure, the packaging of the capsules and the decrease of the dose received by the involved personnel

  3. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  4. Development of magnetic resonance technology for noninvasive boron quantification

    International Nuclear Information System (INIS)

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa trademark MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs

  5. Recovery of iodide ions from geothermal water with silica with grafted alkylammonium groups

    International Nuclear Information System (INIS)

    Effect of a number of factors (time of contact and mass ratio of phases, acidity and temperature of the medium, concentrations of macro components of geothermal water) on the sorption recovery of iodide ions with 3-(octadecyldimethylammonium)propylsilica and 3-(trimethylammonium)propylsilica from aqueous solutions was studied. Sorption isotherms were discussed. The possibility of using 3-(octadecyldimethylammonium)-propylsilica for recovery of iodide ions from highly mineralized geothermal water was analyzed

  6. Activity coefficients of ferrocenium iodide in aqueous-organic salt solutions

    International Nuclear Information System (INIS)

    Values of electrode potentials were obtained by the method of potentiometric titration at 298.2 K, the standard values of emf and unified activity coefficients of ferrocenium iodide in water-acetone and water-ethanol solvents of different salt composition being calculated. It is shown that interaction of ferrocenium (Fc+) with iodide can occur with formation of two forms of complexes, i.e. [Fc+I-] and [Fc+I2]-

  7. Regioselective conversion of primary alcohols into iodides in unprotected methyl furanosides and pyranosides

    DEFF Research Database (Denmark)

    Skaanderup, Philip Robert; Poulsen, Carina Storm; Hyldtoft, Lene; Jørgensen, Malene R.; Madsen, Robert

    Two methods are described for the regioselective displacement of the primary hydroxy group in methyl glycosides with iodide. The first method is a modification of a literature procedure employing triphenylphosphine and iodine, where purification has been carried out on a reverse phase column in...... and substitution with iodide can be carried out in a one-pot process. Protection of the iodoglycosides is also described either by benzylation with benzyl trichloroacetimidate or silylation with triethylsilyl chloride....

  8. Optimization of mercuric iodide platelets growth by the polymer controlled vapor transport method

    OpenAIRE

    Fornaro L.; Mussio L.; Köncke M.; Luchini L.; Saucedo E.; Rivoir A.; Quagliata E.

    1999-01-01

    Mercuric iodide crystals in their platelet habit were grown by the polymer controlled vapor transport method. Mercuric iodide 99% in purity was sublimated at temperatures about 122 - 126 °C and vacuum conditions (10-5 mmHg), after selecting an appropriate polymer. Temperature profiles and experimental heat transfer models were determined for two growth furnaces using different insulator configurations for the cold extreme (air, ceramic wool, grilon, copper and ceramic wool). Growth conditions...

  9. Extending the C-V method of establishing MIS detector quality to mercuric iodide radiation detectors

    International Nuclear Information System (INIS)

    It has been observed that mercuric iodide capacitance measurements provide good indication about the quality of the crystal and its suitability as a room temperature radiation detector. Such capacitance / voltage measurements show a peak at low frequency. The sharpness of the peak is proportional to the quality of the crystal, and the peak is very similar to metal insulator semiconductor (MIS) capacitance curves. The paper proposes a model for the mercuric iodide capacitance. (author)

  10. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    International Nuclear Information System (INIS)

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of 10B in tumour cells after injection of a boron compound (in our case B12H11SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  11. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  12. The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance

    Science.gov (United States)

    Cross, Eilene S.; Buffleben, George; Soria, Ed; James, Ralph; Schieber, Michael; Natarajan, Raj; Gerrish, Vern

    Mercuric iodide is a room temperature semiconductor material that is used for gamma ray and x-ray radiation detection. Mercuric iodide is synthesized from mercuric chloride and potassium iodide and is then purified by a series of melts and sublimation steps and by zone refining. The mercuric iodide is grown into crystals and platelets and then fabricated into detectors. Elemental contamination may be a determining factor in the performance of these detectors. These contaminates may be present in the starting material or may be introduced during, or be unaffected by, the purification, growth or fabrication steps. Methods have been developed for the analysis of trace levels of elemental contamination. Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS), Inductively Coupled Plasma/Optical Emission Spectroscopy (ICP/OES) and Gas Chromatography/Mass Spectroscopy (GC/MS) are used to determine sub ppm levels of many trace elemental impurities. Trace levels of many elemental impurities in the raw mercuric iodide are significantly reduced during the purification and zone refining processes. Though the levels of impurities are reduced, poor performing mercuric iodide detectors have contamination levels remaining or reintroduced which are higher for Ag, Al, Ca, Cu, Mg, Mn, Na, Pb and Zn than detectors with good gamma ray response. This paper will discuss the analytical methodology, the effects of purification on impurity levels, and the correlation between detector performance and impurity levels.

  13. Critical Evaluation of Acetylthiocholine Iodide and Acetylthiocholine Chloride as Substrates for Amperometric Biosensors Based on Acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Gabriel-Lucian Radu

    2013-01-01

    Full Text Available Numerous amperometric biosensors have been developed for the fast analysis of neurotoxic insecticides based on inhibition of cholinesterase (AChE. The analytical signal is quantified by the oxidation of the thiocholine that is produced enzymatically by the hydrolysis of the acetylthiocholine pseudosubstrate. The pseudosubstrate is a cation and it is associated with chloride or iodide as corresponding anion to form a salt. The iodide salt is cheaper, but it is electrochemically active and consequently more difficult to use in electrochemical analytical devices. We investigate the possibility of using acetylthiocholine iodide as pseudosubstrate for amperometric detection. Our investigation demonstrates that operational conditions for any amperometric biosensor that use acetylthiocholine iodide must be thoroughly optimized to avoid false analytical signals or a reduced sensitivity. The working overpotential determined for different screen-printed electrodes was: carbon-nanotubes (360 mV, platinum (560 mV, gold (370 mV, based on a catalytic effect of iodide or cobalt phthalocyanine (110 mV, but with a significant reduced sensitivity in the presence of iodide anions.

  14. Mechanistic aspects of ingested chlorine dioxide on thyroid function: impact of oxidants on iodide metabolism

    International Nuclear Information System (INIS)

    Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO2) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO2 ingestion, it seems that ClO2 does not cause iodide deficiency of sufficient magnitude to account for the decease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrient, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen

  15. Novel Si-tripodand functionalized ionic liquids as iodide sources for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Novel ionic liquids with iodide anions and functionalized with silicon tripodand centers have been synthesized and tested as iodide sources for dye sensitized solar cells, 1-methyl-3-(3-(trimethoxysilyl)propyl)imidazolium iodide 3a, 1-methyl-3-(3-(tris(2-methoxyethoxy)silyl)propyl)imidazolium iodide 3b, and 1-methyl-3-(3-(tris(2-(2-methoxyethoxy)ethoxy)silyl)propyl)imidazolium iodide 3c. The compounds have been proved to be thermally and electrochemically stable, as evidenced by thermogravimetry and linear sweep voltammetry on platinum. Specific conductivities at 25 °C of pure ionic liquids are of the order of 10−4 S cm−1 and show little dependence on the length of oxaethylene chains. Conductivities rise to nearly 10−2 S cm−1 for the electrolytes prepared on their bases as a result of viscosity decrease. Model dye-sensitized solar cells show appreciable conversion efficiencies, reaching a maximum value of 5.08% for the electrolyte with 3b as iodide source. Electrochemical impedance spectroscopy measurements revealed high resistance associated with electron recombination on the interface of TiO2/dye/electrolyte and important contribution of electrolyte diffusion

  16. The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance

    International Nuclear Information System (INIS)

    Mercuric iodide is a room temperature semiconductor material that is used for gamma ray and x-ray radiation detection. Mercuric iodide is synthesized from mercuric chloride and potassium iodide and is then purified by a series of melts and sublimation steps and by zone refining. The mercuric iodide is grown into crystals and platelets and then fabricated into detectors. Elemental contamination may be a determining factor in the performance of these detectors. These contaminates may be present in the starting material or may be introduced during, or be unaffected by, the purification, growth or fabrication steps. Methods have been developed for the analysis of trace levels of elemental contamination. Inductively coupled plasma/mass spectroscopy (ICP/MS), inductively coupled plasma/optical emission spectroscopy (ICP/OES) and gas chromatography/mass spectroscopy (GC/MS) are used to determine sub ppm levels of many trace elemental impurities. Trace levels of many elemental impurities in the raw mercuric iodide are significantly reduced during the purification and zone refining processes. Though the levels of impurities are reduced, poor performing mercuric iodide detectors have contamination levels remaining or reintroduced which are higher for Ag, Al, Ca, Cu, Mg, Mn, Na, Pb and Zn than detectors with good gamma ray response. This paper discusses the analytical methodology, the effects of purification on impurity levels, and the correlation between detector performance and impurity levels. (orig.)

  17. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  18. Experimental study of retinoic acid on improving iodide uptake in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    FU Hong-Liang; WU Jing-Chuan; DU Xue-Liang; LI Jia-Ning; WU Zhen; ZOU Ren-Jian

    2005-01-01

    The study aims to investigate the effect of retinoic acid on the iodide uptake of MCF-7 cells and its mechanism. The iodide uptake and expression of hNIS(human sodium/iodide symporter)mRNA in the breast cancer MCF-7 cells were compared individually before and after the intervention of all-trans retinoic acid (ATRA) with the iodide uptake assay and RT-PCR. The following results are obtained: (1) when treated with all-trans retinoic acid in the concentration of 1.0 μmol/L, the capacity of iodide uptake of MCF-7 cells reached about 1.5 times of the basal state; (2) 12 h after the intervention of 1.0 μmol/L ATRA, the hNISmRNA expression of the MCF-7 cells reached maximum. The study shows that all-trans retinoic acid has the effect to improve the iodide uptake of the MCF-7 cells and this effect may result from its up-regulation of the hNISmRNA expression.

  19. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  20. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  1. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  2. Boron-11 NMR spectroscopy of excised mouse tissues after infusion of boron compound used in neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is based on selective boron uptake by the tumor and in situ activation by neutron beam. The authors propose the use of B-11 MR spectroscopy to noninvasively study boron uptake in animal tumor models. Sodium mercaptoundeca-hydrododecaborate was infused into female BALB/cJ mice and liver, brain, spleen, kidney, and tumor tissues were excised for MR (27.4MHz) and total boron content measurements. Boron-11 was easily detectable in tumor, liver, spleen, and skin. The results gave a very good correlation (correlation coefficient of .997) between B-11 MR measurements and total boron content of excised mouse tissues

  3. Polarization Effects in Methylammonium Lead Iodide Electronic Devices

    Science.gov (United States)

    Labram, John; Fabini, Douglas; Perry, Erin; Lehner, Anna; Wang, Hengbin; Glaudell, Anne; Wu, Guang; Evans, Hayden; Buck, David; Cotta, Robert; Echegoyen, Luis; Wudl, Fred; Seshadri, Ram; Chabinyc, Michael

    The immense success of group IV and III-V semiconductors has resulted in disruptive new photovoltaic (PV) cell technologies emerging extremely infrequently. For this reason, the recent progress in Methylammonium Lead Iodide (MAPbI3) solar cells can be viewed as a highly significant historic event. Despite the staggering recent progress made in reported power conversion efficiency (PCE), debate remains intense on the nature of the various instabilities synonymous with these devices. Using various electronic device measurements, we here present a body of experimental evidence consistent with the existence of a mobile ionic species within the MAPbI3 perovskite. Temperature-dependent transistor measurements reveal operating FET devices only below approximately 210K. This is attributed to ionic screening of the (otherwise charge-neutral) semiconductor-dielectric interface. Temperature-dependent pulsed-gate and impedance spectroscopy experiments also reveal behavior consistent with this interpretation. MAPbI3 PV cells were found to possess a PCE which decreases significantly below 210K. Combined, these set of measurements provide an interesting and consistent description of the internal processes at play within the MAPbI3 perovskite structure.

  4. Thermopower and activation energy of silver iodide based superionic materials

    International Nuclear Information System (INIS)

    Silver iodide based glasses, 60Agl-20Ag sub 2 O-20B sub 2O sub 3, 6 Agl-20Ag sub 2 O-20 MoO sub 3 and 60Agl-20Ag sub 2O-20WO sub 3, all in the mol % ratio, were prepared by rapidly quenching the melts of the chemicals in a stainless steel container; kept in a liquid nitrogen bath. The glassy nature of the as-quenched materials was confirmed by X-ray diffraction (XRD). The electrical conductivity of the glasses was measured at various temperatures ranging from 30 to 70 degree C using an impedance bridge operating in the frequency range between 40 Hz to 100 kHz. The plot of In σT versus 1000/T for each glassy material obeys Arrhenius law and the activation energy obtained is between 0.2 to 0.3 eV. Thermopower measurement was also carried out in the same temperature range as the conductivity measurement to obtain the heat of transport

  5. Chloride, bromide and iodide scintillators with europium doping

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  6. Preparation and evaluation of mercuric iodide for crystal growth

    Science.gov (United States)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; van den Berg, L.

    1989-11-01

    Large quantities (on the order of several hundred kilograms) of consistent, high-quality mercuric iodide (HgI2) for crystal growth have not been commercially available. The hydrocarbon, anion and cation impurity levels varied considerably, occasionally preventing crystal growth. This occurred even though the starting material was from the same vendor and was subjected to the same purification treatment. This paper will describe an aqueous precipitation process of HgI2 preparation in batches of 3 kg using Hg(NO3)2, or HgCl2 and KI. Since these salts are produced in much larger quantities than HgI2, more consistent quality is available. The impurity content of these batches and single crystals grown from them have been evaluated. These results and those from several commercially available starting materials and their grown single crystals are compared. Some of the single crystals grown using the in-house prepared HgI2 have yielded a large number of spectroscopy-grade nuclear detectors. The influence of the major impurities will be discussed.

  7. Correlation between mercuric iodide detector performance and crystalline perfection

    International Nuclear Information System (INIS)

    X-ray, neutron and gamma ray diffraction rocking curves; X-ray topography; microhardness; and optical microscopic measurements have been performed directly on several mercuric iodide (HgI2) nuclear radiation detectors fabricated from single crystals grown from the vapor phase. Two types of detectors were measured: Spectrometer types (grades A and B), which had resolutions of 5-10% for the 662 keV photopeak of 137Cs, or radiation counters (grades C and D), where the spectral resolution ranged from 11% to no resolution. A good correlation has been found between the detector grade and the full width at half maximum (FWHM) of both the X- and gamma ray rocking curves (i.e., the higher the detector grade (A or B), the narrower the FWHM of the diffraction peak). X-ray topography also correlated with well both the FWHM of the diffraction X-ray rocking curve and the detector grade. The uniformity of the microhardness of the HgI2 detectors was found to be proportional to the nuclear performance of the detector. The better spectrometer-grade detectors were softer and much more uniform in microhardness than the most inferior detectors. The better detectors were also found to have much smoother surfaces than the poorer detectors, as observed by optical microscopy studies. (orig.)

  8. Correlation between mercuric iodide detector performance and crystalline perfection

    Science.gov (United States)

    Schieber, M.; Ortale, C.; van den Berg, L.; Schnepple, W.; Keller, L.; Wagner, C. N. J.; Yelon, W.; Ross, F.; Georgeson, G.; Milstein, F.

    1989-11-01

    X-ray, neutron and gamma ray diffraction rocking curves; X-ray topography; microhardness; and optical microscopic measurements have been performed directly on several mercuric iodide (Hgl2) nuclear radiation detectors fabricated from single crystals grown from the vapor phase. Two types of detectors were measured: spectrometer types (grades A and B), which had resolutions of 5-10% for the 662 keV photopeak of 137Cs, or radiation counters (grades C and D), where the spectral resolution ranged from 11% to no resolution. A good correlation has been found between the detector grade and the full width at half maximum (FWHM) of both the X- and gamma ray rocking curves (i.e., the higher the detector grade (A or B), the narrower the FWHM of the diffraction peak). X-ray topography also correlated with well both the FWHM of the diffraction X-ray rocking curve and the detector grade. The uniformity of the microhardness of the HgI2 detectors was found to be proportional to the nuclear performance of the detector. The better spectrometer-grade detectors were softer and much more uniform in microhardness than the most inferior detectors. The better detectors were also found to have much smoother surfaces than the poorer detectors, as observed by optical microscopy studies.

  9. Correlation between mercuric iodide detector performance and crystalline perfection

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M.; Ortale, C.; Van den Berg, L.; Schnepple, W. (EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations); Keller, L.; Wagner, C.N.J. (California Univ., Los Angeles (USA). Dept. of Materials Science and Engineering); Yelon, W.; Ross, F. (Missouri Univ., Columbia (USA). Research Reactor Facility); Georgeson, G.; Milstein, F. (California Univ., Santa Barbara (USA). Dept. of Mechanical and Environmental Engineering)

    1989-11-01

    X-ray, neutron and gamma ray diffraction rocking curves; X-ray topography; microhardness; and optical microscopic measurements have been performed directly on several mercuric iodide (HgI{sub 2}) nuclear radiation detectors fabricated from single crystals grown from the vapor phase. Two types of detectors were measured: Spectrometer types (grades A and B), which had resolutions of 5-10% for the 662 keV photopeak of {sup 137}Cs, or radiation counters (grades C and D), where the spectral resolution ranged from 11% to no resolution. A good correlation has been found between the detector grade and the full width at half maximum (FWHM) of both the X- and gamma ray rocking curves (i.e., the higher the detector grade (A or B), the narrower the FWHM of the diffraction peak). X-ray topography also correlated with well both the FWHM of the diffraction X-ray rocking curve and the detector grade. The uniformity of the microhardness of the HgI{sub 2} detectors was found to be proportional to the nuclear performance of the detector. The better spectrometer-grade detectors were softer and much more uniform in microhardness than the most inferior detectors. The better detectors were also found to have much smoother surfaces than the poorer detectors, as observed by optical microscopy studies. (orig.).

  10. Lead iodide perovskite light-emitting field-effect transistor

    Science.gov (United States)

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-06-01

    Despite the widespread use of solution-processable hybrid organic-inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature.

  11. Digermylene Oxide Stabilized Group 11 Metal Iodide Complexes.

    Science.gov (United States)

    Yadav, Dhirendra; Siwatch, Rahul Kumar; Sinhababu, Soumen; Karwasara, Surendar; Singh, Dharmendra; Rajaraman, Gopalan; Nagendran, Selvarajan

    2015-12-01

    Use of a substituted digermylene oxide as a ligand has been demonstrated through the isolation of a series of group 11 metal(I) iodide complexes. Accordingly, the reactions of digermylene oxide [{(i-Bu)2ATIGe}2O] (ATI = aminotroponiminate) (1) with CuI under different conditions afforded [({(i-Bu)2ATIGe}2O)2(Cu4I4)] (2) with a Cu4I4 octahedral core, [({(i-Bu)2ATIGe}2O)2(Cu3I3)] (3) with a Cu3I3 core, and [{(i-Bu)2ATIGe}2O(Cu2I2)(C5H5N)2] (4) with a butterfly-type Cu2I2 core. The reactions of compound 1 with AgI and AuI produced [({(i-Bu)2ATIGe}2O)2(Ag4I4)] (5) with a Ag4I4 octahedral core and [{(i-Bu)2ATIGe}2O(Au2I2)] (6) with a Au2I2 core, respectively. The presence of metallophilic interactions in these compounds is shown through the single-crystal X-ray diffraction and atom-in-molecule (AIM) studies. Preliminary photophysical studies on compound 6 are also carried out. PMID:26558406

  12. Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    Directory of Open Access Journals (Sweden)

    A. Baumann

    2014-08-01

    Full Text Available We herein perform open circuit voltage decay (OCVD measurements on methylammonium lead iodide (CH3NH3PbI3 perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CH3NH3PbI3 solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PC60BM and PTB7:PC70BM blends. We observe two very different time domains of the voltage transient in the perovskite solar cell with a first drop on a short time scale that is similar to the decay in the studied organic solar cells. However, 65%–70% of the maximum photovoltage persists on much longer timescales in the perovskite solar cell than in the organic devices. In addition, we find that the recombination dynamics in all time regimes are dependent on the starting illumination intensity, which is also not observed in the organic devices. We then discuss the potential origins of these unique behaviors.

  13. Simultaneous determination of boron-10 and boron-11 under proton bombardment

    International Nuclear Information System (INIS)

    The isotopic analysis of boron gained importance with increased use of boron-10 in nuclear technology. Former techniques for determining the stable boron isotope either were limited to the determination of a single isotope or required tedious experimental prodecure. The use of proton induced reactions was therefore investigated as an alternative method for the simultaneous analysis of both stable isotopes of boron through a relatively simple experimental procedure. Aqueous solutions of natural boric acid (19,78 at. % 10B) and enriched boric acid (92,41 at. % 10B) were mixed and evaporated to dryness in order to obtain samples in which the isotopic concentration of boron was known. Thin targets were produced by evaporating boron oxide, converted by heat from the boric acid mixture, onto tantalum backing material. Standard samples with known contents of boron oxide were prepared by dry mixing standard reference boron-containing glass powers in a ball mill. Thick targets containing boron of different isotopic compositions were prepared in matrices of potassium bromide and of ion-exchange resins by mixing the matrix with aqueous solutions of boric acid and of sodium carbonate by fusion with boric oxide. The most intense prompt gamma-rays emitted from boron isotopes under irradiation with protons up to 4,5 MeV were the 428-KeV 10B α(1,0), 718-KeV 10B p(1,0) and the 2124-KeV 11B p(1,0) gamma-rays. Excitation functions for the production of each of these were measured using both thick and thin targets

  14. Boron: out of the sky and onto the ground

    International Nuclear Information System (INIS)

    Now an accepted, engineered material for aerospace applications, boron is taking its place on the ground. Both current production applications, prototype (development) applications, and speculative applications abound. In the leisure product market, boron epoxy or boron aluminum has been used or tried in golf clubs (in combination with graphite epoxy or to reinforce aluminum or steel), in tennis racquets, in bicycles, racing shells, skis and skipoles, bows and arrows, and others. In the industrial area, boron has been used to reduce fatigue, increase stiffness, or for its abrasive properties. Textile machinery, honing tools, and cut off wheels or saws are among the applications. In the medical field, prosthetics and orthotic braces, wheel chairs, canes, and crutches are all good applications for boron. Applications for boron in transportation, construction, and heavy industry are also possible. The volume of boron used in these applications could have a major impact on prices, making boron composite parts cost competitive with conventional materials. (U.S.)

  15. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121. ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  16. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  17. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    Science.gov (United States)

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. PMID:22541949

  18. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  19. Boron isotope fractionation during brucite deposition from artificial seawater

    OpenAIRE

    J. Xiao; Xiao, Y. K.; Liu, C. Q.; Z. D. Jin

    2011-01-01

    Experiments involving boron incorporation into brucite (Mg(OH)2) from magnesium-free artificial seawater with pH values ranging from 9.5 to 13.0 were carried out to better understand the incorporation behavior of boron into brucite. The results show that both concentration of boron in deposited brucite ([B]d) and its boron partition coefficient (Kd) between deposited brucite and final seawater are controll...

  20. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  1. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P2O5) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  2. Glass manufacturing process having boron and fluorine pollution abating features

    Energy Technology Data Exchange (ETDEWEB)

    Froberg, M.L.; Schroeder, C.F.

    1981-11-03

    Boron and/or fluorine values are reclaimed from a boron and/or fluorine laden gas stream emanating from a glass melter by means of a preheating bed of glass-forming batch agglomerates. The boron and/or fluorine values in such gases are first reacted with a boron and/or fluorine reactive material and the gases then conveyed into such a preheating bed to separate at least a portion of the reaction products.

  3. Glass manufacturing process having boron and fluorine pollution abating features

    International Nuclear Information System (INIS)

    Boron and/or fluorine values are reclaimed from a boron and/or fluorine laden gas stream emanating from a glass melter by means of a preheating bed of glass-forming batch agglomerates. The boron and/or fluorine values in such gases are first reacted with a boron and/or fluorine reactive material and the gases then conveyed into such a preheating bed to separate at least a portion of the reaction products

  4. Selective sorption of iodide onto organo-MnO2 film and its electrochemical desorption and detection

    International Nuclear Information System (INIS)

    Highlights: • HDPy/MnO2 film can selectively sorb iodide with expansion of interlayer spaces. • The sorbed iodide ions are oxidized anodically and expelled as I2 molecules. • The iodide concentration can be determined by anodic current during desorption. - Abstract: This paper reports an electrochemically grown film consisting of layered MnO2 intercalated with hexadecylpyridinium cations (HDPy+), which can selectively sorb and detect iodide anions in aqueous solution amperometrically. Sorption of iodide by the HDPy/MnO2 film did not occur via ion exchange, but through hydrophobic interactions between the interlayer organic phase of the film and iodide ions in solution. The sorption rate increased with the deposited amount of MnO2. During the sorption process, the interlayer spaces expanded, and new diffraction peaks appeared that were attributed to the incorporated species. Anodic polarization of the iodide-sorbed HDPy/MnO2 film led to electron transfer from the incorporated iodide to the underlying substrate through the MnO2 sheets. The oxidized iodide was expelled from the film as molecular I2, while the expanded interlayer spaces were restored to their original state. Thus, the MnO2 layers and the incorporated HDPy can synergistically sorb/desorb iodide anions, resulting in a unique “self-cleaning” function that can operate electrochemically. This property allowed amperometric detection of iodide at a concentration as low as 0.0186 μM, which was below the detection limits reported for previous iodide sensors

  5. Selective sorption of iodide onto organo-MnO{sub 2} film and its electrochemical desorption and detection

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Masaharu, E-mail: nkymm@yamaguchi-u.ac.jp; Sato, Ayu; Nakagawa, Kimiko

    2015-06-02

    Highlights: • HDPy/MnO{sub 2} film can selectively sorb iodide with expansion of interlayer spaces. • The sorbed iodide ions are oxidized anodically and expelled as I{sub 2} molecules. • The iodide concentration can be determined by anodic current during desorption. - Abstract: This paper reports an electrochemically grown film consisting of layered MnO{sub 2} intercalated with hexadecylpyridinium cations (HDPy{sup +}), which can selectively sorb and detect iodide anions in aqueous solution amperometrically. Sorption of iodide by the HDPy/MnO{sub 2} film did not occur via ion exchange, but through hydrophobic interactions between the interlayer organic phase of the film and iodide ions in solution. The sorption rate increased with the deposited amount of MnO{sub 2}. During the sorption process, the interlayer spaces expanded, and new diffraction peaks appeared that were attributed to the incorporated species. Anodic polarization of the iodide-sorbed HDPy/MnO{sub 2} film led to electron transfer from the incorporated iodide to the underlying substrate through the MnO{sub 2} sheets. The oxidized iodide was expelled from the film as molecular I{sub 2}, while the expanded interlayer spaces were restored to their original state. Thus, the MnO{sub 2} layers and the incorporated HDPy can synergistically sorb/desorb iodide anions, resulting in a unique “self-cleaning” function that can operate electrochemically. This property allowed amperometric detection of iodide at a concentration as low as 0.0186 μM, which was below the detection limits reported for previous iodide sensors.

  6. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  7. Synthesis of multiwall boron nitride nanotubes dependent on crystallographic structure of boron

    International Nuclear Information System (INIS)

    Synthesis and growth of multiwall boron nitride nanotubes (BNNTs) under the B and ZrO2 seed system in the milling–annealing process were investigated. BNNTs were synthesized by annealing a mechanically activated boron powder under nitrogen environment. We explored the aspects of the mechanical activation energy transferred to milled crystalline boron powder producing structural disorder and borothermal reaction of the ZrO2 seed particles on the synthesis of BNNTs during annealing. Under these circumstances, the chemical reaction of amorphous boron coated on the seed nanoparticles with nitrogen synthesizing amorphous BN could be enhanced. It was found that amorphous BN was crystallized to the layer structure and then grown to multiwall BNNTs during annealing. Especially, bamboo-type multiwall BNNTs were mostly produced and grown to the tail-side of the nanotube not to the round head-side. Open gaps with ∼0.3 nm of the bamboo side walls of BNNTs were also observed. Based on these understandings, it might be possible to produce bamboo-type multiwall BNNTs by optimization of the structure and shape of boron coat on the seed nanoparticles. -- Highlights: ► Structure of B is a key factor for BNNT synthesis for milling–annealing method. ► Amorphous boron is coated on the seed during milling of crystalline boron. ► Amorphous BN nanoclusters are crystallized during annealing. ► Growing of bamboo BNNTs is not to the round head-side but to the tail-side.

  8. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2016-02-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  9. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  10. Boron-containing amino carboxylic acid compounds and uses thereof

    International Nuclear Information System (INIS)

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed

  11. Characterization of strontium iodide scintillators with silicon photomultipliers

    Science.gov (United States)

    Mitchell, Lee J.; Phlips, Bernard

    2016-06-01

    This work characterizes a commercially available europium-doped strontium iodide detector recently developed by Radiation Monitoring Devices (RMD). The detector has been chosen for a space-based mission scheduled to launch in early 2017. The primary goal of this work was to characterize the detector's response over the expected operational range of -10 °C to 30 °C as well as the expected operational voltage range of +26.5-+28.5 V and identify background interferences that may develop due to neutron activation produced by cosmic-ray interactions. The 8 mm×8 mm×20 mm detectors use KETEK silicon photomultipliers (SiPM), with an active area of 6 mmx6 mm (KETEK PM6660). Our results show substantial integral nonlinearity due to the SiPM ranging from 0% to 25% at room temperature over the energy range of 80-2614 keV. The nonlinearity, a function of temperature and overvoltage, leads to an underestimate of the full width at half max (FWHM), which is 2.6% uncorrected at 662 keV and 3.8% corrected at 662 keV. The temperature dependence of the detector results in a noise threshold that increases substantially above 30 °C due to the SiPM dark rate. In an effort to simulate the harsh environment of space, neutron activation of the detector was also explored. Gamma-ray lines at 127 keV and 164 keV were observed in the detector along with Kα x-rays associated with europium. Beta decay from europium- and iodine-activation products were also observed within the detector.

  12. THERAPY OF GRAVES’ DISEASE WITH SODIUM IODIDE-131

    Directory of Open Access Journals (Sweden)

    I Wayan Hartadi Noor

    2013-11-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Graves’ disease is the most common form of thyrotoxicosis, with a peak incidence in the 20-40 year of age group. Females are involved about five times more commonly than male. The easiest sign to recognize patients with Graves’ disease is the present of Graves’ ophthalmopathy. The diagnosis of Graves’ disease may sometimes base only on a physical examination and a medical history. Diffuse thyroid enlargement and sign of thyrotoxicosis, mainly ophthalmopathy and to lesser extent dermopathy, usually adequate for diagnosis. TSH test combined with FT4 test is usually the first laboratory test performs in these patients. The patients suffered Graves’ disease can be treated with antithyroid drug therapy or undergo subtotal Thyroidectomy. Another therapy is by using sodium iodide-131, where this therapy has advantages including easy administration, effectiveness, low expense, and absence of pain. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  13. Rutherford Backsattering and Auger spectroscopy of mercuric iodide detectors

    International Nuclear Information System (INIS)

    The electrical properties of metallic contacts on solid state x-ray detectors can play an important role in determining the overall response and sensitivity of these devices. Rutherford Backscattering (RBS) and Auger electron spectroscopies have been utilized to characterize thin palladium contacts on mercuric iodide (HgI2) detectors. The RBS measurements were performed at room temperature with the metal contact preventing evaporate loss of the HgI2 and reducing contamination to the vacuum chamber. Computer simulations of the RBS results indicate that the interface region of a sample with a palladium contact had approximately the ideal stoichiometry but that the palladium film thickness (350 /angstrom/) was less than expected from the deposition conditions. Auger sputter profiling which removes the metal contact ''cap'' was performed with a rapid transfer system equipped with liquid nitrogen cooling to avoid evaporative loss of the sample and reduce vacuum system contamination. This technique indicated significant penetration of Hg and I into the Pd contact for a variety of samples. In many cases, the penetration extended all the way to the surface. For a 600 /angstrom/ contact, approximately two thirds or 400 /angstrom/ of the contact is part of a ''reaction zone'' in which there is strong intermixing of the palladium, mercury, and iodine. In one case, where copper was tried as an electrode, the ''reaction zone'' extended all the way to the surface, and the device failed as a detector. The relationship of the contact stoichiometry to the deposition process and device performance will be discussed. 5 refs., 4 figs

  14. Rutherford Backsattering and Auger spectroscopy of mercuric iodide detectors

    Energy Technology Data Exchange (ETDEWEB)

    Felter, T. E.; Stulen, R. H.; Schnepple, W. F.; Ortale, C.; van den Berg, L.

    1987-01-01

    The electrical properties of metallic contacts on solid state x-ray detectors can play an important role in determining the overall response and sensitivity of these devices. Rutherford Backscattering (RBS) and Auger electron spectroscopies have been utilized to characterize thin palladium contacts on mercuric iodide (HgI/sub 2/) detectors. The RBS measurements were performed at room temperature with the metal contact preventing evaporate loss of the HgI/sub 2/ and reducing contamination to the vacuum chamber. Computer simulations of the RBS results indicate that the interface region of a sample with a palladium contact had approximately the ideal stoichiometry but that the palladium film thickness (350 /angstrom/) was less than expected from the deposition conditions. Auger sputter profiling which removes the metal contact ''cap'' was performed with a rapid transfer system equipped with liquid nitrogen cooling to avoid evaporative loss of the sample and reduce vacuum system contamination. This technique indicated significant penetration of Hg and I into the Pd contact for a variety of samples. In many cases, the penetration extended all the way to the surface. For a 600 /angstrom/ contact, approximately two thirds or 400 /angstrom/ of the contact is part of a ''reaction zone'' in which there is strong intermixing of the palladium, mercury, and iodine. In one case, where copper was tried as an electrode, the ''reaction zone'' extended all the way to the surface, and the device failed as a detector. The relationship of the contact stoichiometry to the deposition process and device performance will be discussed. 5 refs., 4 figs.

  15. Structure and scintillation of Eu2+-activated calcium bromide iodide

    International Nuclear Information System (INIS)

    We report the structure and scintillation properties of Eu2+-activated calcium bromide iodide. CaBr0.7I1.3 was the only composition that could be synthesized in the CaBr2–CaI2 system. The compound has an effective atomic number of 47 and crystallizes in a trigonal crystal system with the R-3 space group and a density of 3.93 g/cc. The structure is layered and contains Ca in an octahedral environment with the Br/I anions jointly occupying a single site. Eu2+-activated samples show an intense narrow emission, characteristic of the 5d–4f transition of Eu2+, when excited with UV or X-rays. The sample with 0.5% Eu shows a light output of 63,000 ph/MeV at 662 keV with 96% of the light emitted with a monoexponential decay time of 1332 ns. An energy resolution of 10.4% full width at half maximum (FWHM) has been achieved for 662 keV gamma rays at room temperature. - Highlights: • CaBr0.7I1.3 is the only composition that formed in the CaBr2–CaI2 system. • Crystallizes in a trigonal crystal system with the R-3 space group. • Eu2+-activation yields scintillator with bright blue emission centered at 465 nm. • Light output is 63,000 ph/MeV with 10.4% energy resolution at 662 keV. • Monoexponential decay time of 1332 ns

  16. Endothelium modulates anion channel-dependent aortic contractions to iodide.

    Science.gov (United States)

    Lamb, F S; Barna, T J

    2000-05-01

    Anion currents contribute to vascular smooth muscle (VSM) membrane potential. The substitution of extracellular chloride (Cl) with iodide (I) or bromide (Br) initially inhibited and then potentiated isometric contractile responses of rat aortic rings to norepinephrine. Anion substitution alone produced a small relaxation, which occurred despite a lack of active tone and minimal subsequent contraction of endothelium-intact rings (4.2 +/- 1.2% of the response to 90 mM KCl). Endothelium-denuded rings underwent a similar initial relaxation but then contracted vigorously (I > Br). Responses to 130 mM I (93.7 +/- 1.9% of 90 mM KCl) were inhibited by nifedipine (10(-6) M), niflumic acid (10(-5) M), tamoxifen (10(-5) M), DIDS (10(-4) M), and HCO(-)(3)-free buffer (HEPES 10 mM) but not by bumetanide (10(-5) M). Intact rings treated with N(omega)-nitro-L-arginine (10(-4) M) responded weakly to I (15.5 +/- 2.1% of 90 mM KCl), whereas hemoglobin (10(-5) M), indomethacin (10(-6) M), 17-octadecynoic acid (10(-5) M), and 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one (10(-6) M) all failed to augment the response of intact rings to I. We hypothesize that VSM takes up I primarily via an anion exchanger. Subsequent I efflux through anion channels having a selectivity of I > Br > Cl produces depolarization. In endothelium-denuded or agonist-stimulated vessels, this current is sufficient to activate voltage-dependent calcium channels and cause contraction. Neither nitric oxide nor prostaglandins are the primary endothelial modulator of these anion channels. If they are regulated by an endothelium-dependent hyperpolarizing factor it is not a cytochrome P-450 metabolite. PMID:10775130

  17. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line

    OpenAIRE

    Kogai, Takahiko; Schultz, James J.; Johnson, Laura S.; Huang, Min; Brent, Gregory A.

    2000-01-01

    The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the inductio...

  18. Enhanced Plasma Performance by ICRF Boronization

    Institute of Scientific and Technical Information of China (English)

    万宝年; 赵燕平; 李建刚; 宋梅; 吴振伟; 罗家融; 李成富; 王小明

    2002-01-01

    Boronization with carborane (C2B10H12) by ICRF has been applied routinely to the walls of HT-7 super-conducting tokamak for the reduction of impurity influx, especially carbon and oxygen. Significant suppression of metallic impurities and radiating power fraction are achieved. The improved confinement for both particle and energy is observed in full range of operation parameters. Energy balance analysis shows that electron heat diffusion coefficient is strongly reduced. Measurements by Langmuir probes at the edge plasma show that the poloidal velocity shear after boronization is changed to a profile favoring to good confinement. The main emphasis of this paper is to describe effects of boronization on aspects of the enhanced plasma performance.

  19. Anomalous electronic transport in boron carbides

    Science.gov (United States)

    Emin, D.; Samara, G. A.; Wood, C.

    The boron carbides are composed of icosahedral units, B12 and B11C1, linked together by strong intericosahedral bonds. With such distributions of icosahedral and intericosahedral compositions, boron carbides, B/sub 1-x/C/sub x/, are single phase over 0.1 less than or equal to x less than or equal to 0.2. The electronic transport properties of the boron carbides were examined within this single-phase region. Results are inconsistent with conventional analyses of both itinerant and hopping transport. Most striking are Seebeck coefficients which are both large and rapidly increasing functions of temperature despite thermally activated dc conductivities. These results manifest the hopping of small bipolaronic holes between carbon-containing icosahedral that are inequivalent in energy and electron-lattice coupling strength. Under hydrostatic pressures up to approx. 25 kbar, the dc conductivities increase with pressure. This anomalous behavior for hopping conduction reflects the distinctive structure and bonding of these materials.

  20. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT)

  1. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    Science.gov (United States)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  2. boron and boron nitride coated nuclear fuel production in plasma atmosphere

    International Nuclear Information System (INIS)

    In these study uranium dioxide (UO2) and 5, 10 % gadolinium oxide (Gd2O3) containing UO2 nuclear fuel pellets were coated with first boron nitride (BN) then boron (B) layers as the results of the reactions between boron trichloride (BCl3) with ammonia (NH3) and BCl3 with hydrogen (H2) in the medium of argon (Ar) plasma created at 650 W and 500 W and 27.12 MHz to increase the fuel burnup efficiency and reactor core life by the method of plasma enhanced chemical vapor deposition (PECVD). Grainy BN and B structures were observed on the photographs taken from scanning electron microscope (SEM)

  3. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  4. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  5. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  6. Can Two-Dimensional Boron Superconduct?

    Science.gov (United States)

    Penev, Evgeni S; Kutana, Alex; Yakobson, Boris I

    2016-04-13

    Two-dimensional boron is expected to exhibit various structural polymorphs, all being metallic. Additionally, its small atomic mass suggests strong electron-phonon coupling, which in turn can enable superconducting behavior. Here we perform first-principles analysis of electronic structure, phonon spectra, and electron-phonon coupling of selected 2D boron polymorphs and show that the most stable structures predicted to feasibly form on a metal substrate should also exhibit intrinsic phonon-mediated superconductivity, with estimated critical temperature in the range of Tc ≈ 10-20 K. PMID:27003635

  7. Thermal conductivity behavior of boron carbides

    Science.gov (United States)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  8. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Boron by Titrimetry 7 to 13 Separation of Boron for Mass Spectrometry 14 to 19 Isotopic Composition by Mass Spectrometry 20 to 23 Separation of Halides by Pyrohydrolysis 24 to 27 Fluoride by Ion-Selective Electrode 28 to 30 Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 31 to 33 Trace Elements by Emission Spectroscopy 34 to 46 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (F...

  9. Processes of adsorption/desorption of iodides and cadmium cations onto/from Ag(111

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIĆ

    2011-02-01

    Full Text Available In this work, the adsorption/desorption processes of iodides and cadmium cations in the presence of iodides onto/from Ag(111 were investigated. It was shown that both processes were complex, characterized by several peaks on the cyclic voltammograms (CVs. By PeakFit analysis of the recorded CVs and subsequent fitting of the obtained peaks by the Frumkin adsorption isotherm, the interaction parameter (f and the Gibbs energy of adsorption (DGads for each adsorbed phase were determined. In the case of iodide adsorption, four peaks were characterized by negative values of f, indicating attractive lateral interaction between the adsorbed anions, while two of them possessed value of f < –4, indicating phase transition processes. The adsorption/desorption processes of cadmium cations (underpotential deposition – UPD of cadmium in the presence of iodide anions was characterized by two main peaks, each of them being composed of two or three peaks with negative values of f. By the analysis of charge vs. potential dependences obtained either from the CVs or current transients on potentiostatic pulses, it was concluded that adsorbed iodides did not undergo desorption during the process of Cd UPD, but became replaced by Cd ad-atoms and remained adsorbed on top of a Cd layer and/or in between Cd the ad-atoms.

  10. Evaluation of the reversibility of iodide uptake by argillaceous rocks by the radial diffusion method

    International Nuclear Information System (INIS)

    Laboratory radial in- and out-diffusion experiments were performed to investigate the reversibility of the iodide (I-) uptake by argillaceous rocks from the Tournemire site (France). At first, the suitability of the method was demonstrated by means of deuterium depleted water (DDW) diffusion experiments. The values for the DDW effective diffusion coefficient (1.7 to 2.7 x 10-11 m2 s-1) are indeed very close to those obtained from previous through-diffusion experiments carried out on Tournemire samples with tritiated water. The diffusion of chloride and bromide led to the determination of halide-accessible porosities, which are necessary to calculate the retardation factor (R) and the distribution ratio (RD). The calculated values for the halide-accessible porosity (2 to 5%) clearly indicated the effect of anionic exclusion and are consistent with previous data. On the contrary, the in-diffusion experiments performed with iodide clearly showed its uptake by argillite, with rock capacity factor values ranging from 14% to 25%. The corresponding values of RD (0.035 to 0.08 L kg-1) are one order of magnitude lower than those previously derived from batch methods. At last, the experiments of iodide out-diffusion revealed that only iodide located in the halide-accessible porosity diffused out of the rock samples, suggesting that the uptake of iodide by argillite would not be reversible or that the kinetics of desorption would be low (> 70 days). (orig.)

  11. Functional activity of human sodium/iodide symporter in tumor cell lines

    International Nuclear Information System (INIS)

    Aim: The sodium/iodide symporter (NIS) actively transports iodide into thyrocytes. Thus, NIS represents a key protein for diagnosis and radioiodine therapy of differentiated thyroid cancer. Additionally, in the future the NIS gene may be used for cancer gene therapy of non-thyroid-derived malignancies. In this study we evaluated the functionality of NIS with respect to iodide uptake in a panel of tumor cell lines and compared this to gene transfer efficiency. Methods: A human NIS-containing expression vector and reporter-gene vectors encoding and beta;-Galactosidase- or EGFP were used for transient transfection of 13 tumor cell lines. Following transfection measurements of NIS-mediated radioiodide uptake using Na125I and of transfection efficiency were performed. The latter included β;-Galactosidase activity measurements using a commercial kit and observation by fluorescence microscopy for EGFP expression. Results: In contrast to respective parental cells, most NIS-transfected cell lines displayed high, perchlorate-sensitive radioiodide uptake. Differences in radioiodide uptake between cell lines apparently corresponded to transfection efficiencies, as judged from reporter-gene assays. Conclusion: With respect to iodide uptake we provide evidence that NIS is functional in different cellular context. As iodide uptake capacity appears to be well correlated to gene transfer efficiency, cell type-specific actions on NIS (e. g. post-translational modification such as glycosylation) are not inhibitory to NIS function. Our data support the promising role of NIS in cancer gene therapy strategies. (orig.)

  12. Estradiol decreases iodide uptake by rat thyroid follicular FRTL-5 cells

    Directory of Open Access Journals (Sweden)

    Furlanetto T.W.

    2001-01-01

    Full Text Available Estradiol has well-known indirect effects on the thyroid. A direct effect of estradiol on thyroid follicular cells, increasing cell growth and reducing the expression of the sodium-iodide symporter gene, has been recently reported. The aim of the present investigation was to study the effect of estradiol on iodide uptake by thyroid follicular cells, using FRTL-5 cells as a model. Estradiol decreased basal iodide uptake by FRTL-5 cells from control levels of 2.490 ± 0.370 to 2.085 ± 0.364 pmol I-/µg DNA at 1 ng/ml (P<0.02, to 1.970 ± 0.302 pmol I-/µg DNA at 10 ng/ml (P<0.003, and to 2.038 ± 0.389 pmol I-/µg DNA at 100 ng/ml (P<0.02. In addition, 4 ng/ml estradiol decreased iodide uptake induced by 0.02 mIU/ml thyrotropin from 8.678 ± 0.408 to 7.312 ± 0.506 pmol I-/µg DNA (P<0.02. A decrease in iodide uptake by thyroid cells caused by estradiol has not been described previously and may have a role in goiter pathogenesis.

  13. An investigation of sodium iodide solubility in sodium-stainless steel systems

    International Nuclear Information System (INIS)

    Sodium iodide and major constituents of stainless steel in sodium are determined by using the steel capsules to obtain a better understanding on contribution of the constituents to the apparent iodide solubility in sodium. The capsule loaded with 20 g sodium and 0.1 - 0.3 g powder of sodium iodide is heated at its upper part in a furnace and cooled at its bottom on brass plates to establish a large temperature gradient along the capsule tube. After a given period of equilibration, the iodide and constituents are fixed in solidified sodium by quick quenching of the capsules. Sodium samples are taken from the sectioned capsule tube and submitted to sodium dissolution by vaporized water for determination of the iodine and to vacuum distillation for determination of the metal elements. Iron and nickel concentrations are observed to be lower in the samples at higher iodine concentrations. Chromium and manganese concentrations are seen to be insensitive to the iodine concentrations. The observations can be interpreted by a model that sodium oxide combines with metal iodide in sodium to form a complex compound and with consideration that the compound will fall and deposit onto the bottom of the capsule by thermal diffusion. (author)

  14. Alpha-lipoic acid induces sodium iodide symporter expression in TPC-1 thyroid cancer cell line

    International Nuclear Information System (INIS)

    Introduction: Patients with metastatic thyroid cancers that do not uptake iodine need effective therapeutic option. Differentiation-inducing agents have been tried to restore functional expression of sodium iodide symporter (NIS) without success. Our objective was to assess the effect of alpha-lipoic acid (ALA), known as potential antioxidant, on expression of sodium iodide symporter in thyroid cancer cells. Methods: Human thyroid cancer-derived cell lines, TPC-1, were treated with ALA, and changes in NIS mRNA and protein expression were measured. ALA's effect on NIS gene promoter was evaluated, and functional NIS expression was assessed by iodide uptake assay. Results: Treatment with ALA increased NIS mRNA expression up to ten folds of control dose-dependently after 24 h of exposure. ALA increased NIS promoter activity, and increased iodide uptake by 1.6 fold. ALA induced expression of NIS protein, but had no significant effect on the plasma membrane trafficking. ALA increased phosphorylation of CREB and nuclear translocation of pCREB, and co-treatment of ALA and trichostatin A increased iodide uptake by three folds in TPC-1 cells. Conclusions: ALA is a potential agent to increase NIS transcription in TPC-1. It could be used as an adjunctive agent to increase efficacy of radioiodine therapy if combined with a strategy to increase NIS protein trafficking to cell membrane.

  15. Functional activity of human sodium/iodide symporter in tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Petrich, T.; Knapp, W.H.; Poetter, E. [Dept. of Nuclear Medicine, Medizinische Hochschule Hannover, Hannover (Germany)

    2003-02-01

    Aim: The sodium/iodide symporter (NIS) actively transports iodide into thyrocytes. Thus, NIS represents a key protein for diagnosis and radioiodine therapy of differentiated thyroid cancer. Additionally, in the future the NIS gene may be used for cancer gene therapy of non-thyroid-derived malignancies. In this study we evaluated the functionality of NIS with respect to iodide uptake in a panel of tumor cell lines and compared this to gene transfer efficiency. Methods: A human NIS-containing expression vector and reporter-gene vectors encoding β-Galactosidase- or EGFP were used for transient transfection of 13 tumor cell lines. Following transfection measurements of NIS-mediated radioiodide uptake using Na{sup 125}I and of transfection efficiency were performed. The latter included β-Galactosidase activity measurements using a commercial kit and observation by fluorescence microscopy for EGFP expression. Results: In contrast to respective parental cells, most NIS-transfected cell lines displayed high, perchlorate-sensitive radioiodide uptake. Differences in radioiodide uptake between cell lines apparently corresponded to transfection efficiencies, as judged from reporter-gene assays. Conclusion: With respect to iodide uptake we provide evidence that NIS is functional in different cellular context. As iodide uptake capacity appears to be well correlated to gene transfer efficiency, cell type-specific actions on NIS (e. g. post-translational modification such as glycosylation) are not inhibitory to NIS function. Our data support the promising role of NIS in cancer gene therapy strategies. (orig.)

  16. Trapping radiodine, in the form of methyl iodide, on nuclear carbon

    Energy Technology Data Exchange (ETDEWEB)

    Nacapricha, D. [Mahidol Univ., Bangkok (Thailand); Taylor, C. [John Moores Univ., Liverpool (United Kingdom)

    1996-12-31

    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and pore measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.

  17. Boron carbide-based ceramics via polymer route synthesis

    International Nuclear Information System (INIS)

    Boron carbide is a ceramic material with excellent high temperature physical properties. As compared to conventional techniques, the preparation of boron carbide from polymeric precursors is attractive as this technique offers a number of unique advantages. In this paper, the screening of polymeric precursors to boron carbide will be discussed. Two promising boron carbide, carborane containing polymeric precursors have resulted in 60-70 wt.% ceramic yields. The chemistry of polymer synthesis and the transformations from the polymer to amorphous and crystalline boron carbide were investigated with infrared spectroscopy, NMR spectroscopy, thermal analysis, and x-ray diffraction

  18. Determination of carbon and sulphur in boron carbide

    International Nuclear Information System (INIS)

    Boron carbide is used in control rods of nuclear power reactors. The chemical specification for carbon in boron carbide ranges between 15 - 24 wt.% depending upon the grade of boron carbide. Hence carbon in boron carbide is to be determined accurately to find out the stoichiometry. Sulphur, which is present in trace quantities, is also to be determined to find out the purity of boron carbide. Carbon is determined by combustion followed by (i) thermal conductivity detection and (ii) infrared detection. Sulphur is determined by (i) combustion followed by infrared detection and (ii) vacuum combustion extraction - quadrupole mass spectrometry. The results are compared. (author)

  19. Direct evidence of metallic bands in a monolayer boron sheet

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Liu, Ro-Ya; Iimori, Takushi; Lian, Chao; Li, Hui; Chen, Lan; Wu, Kehui; Meng, Sheng; Komori, Fumio; Matsuda, Iwao

    2016-07-01

    The search for metallic boron allotropes has attracted great attention in the past decades and recent theoretical works predict the existence of metallicity in monolayer boron. Here, we synthesize the β12-sheet monolayer boron on a Ag(111) surface and confirm the presence of metallic boron-derived bands using angle-resolved photoemission spectroscopy. The Fermi surface is composed of one electron pocket at the S ¯ point and a pair of hole pockets near the X ¯ point, which is supported by the first-principles calculations. The metallic boron allotrope in β12 sheet opens the way to novel physics and chemistry in material science.

  20. Medical chemistry of boron neutron capture agents having pharmacological activity

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a cancer treatment that selectively destroys cancer cells following administering a cancer-selective drug containing stable isotope boron-10 and neutron irradiation. In clinical trial of BNCT, disodium mercaptoundecahydro-closo-dodecaborate (BSH) and p-boronophenylalanine (BPA) have been used, however, development of a new drugs with high cancer selectivity and therapeutic efficiency is expected. Therefore, we review boron-containing drugs as a boron neutron capture agents having pharmacological activity, BNCT research on boron-modified porphyrin derivatives which have photosensitivity and neutron capture activity and our proposed neutron sensitizing agent. (author)

  1. Inefficiency of high boron concentrations for cell killing in boron neutron capture therapy

    International Nuclear Information System (INIS)

    This study is to investigate the relationship between the cell-killing effect of the 10B(n, α)7Li capture reaction, intracellular boron concentration, and thermal neutron fluence in boron neutron capture therapy using in vitro cell survival based on a clonogenic assay, and biophysical analysis. Our results showed that the cell-killing yield of the 10B(n, α)7Li capture reaction per unit thermal neutron fluence declined with an increase in the intracellular boron concentration above 45 μg/ml 10B. The cell-killing effect was well described using an empirical power function of the intracellular boron concentration, with exponent 0.443. Knowledge of this effect will help in the optimization of BNCT. (author)

  2. Effect of metal hydrides on the burning characteristics of boron

    International Nuclear Information System (INIS)

    Highlights: • The effect of some metal hydrides on the burning characteristics of boron is studied for the first time. • We are the first to conduct a TG experiment on boron samples at high temperatures (a maximum of 1750 °C). • The thermal reaction process of boron is firstly divided into five stages according to the weight gain rate of the sample. • Specific values of metal hydrides on ignition delay time and combustion intensity of boron are obtained. - Abstract: In this study, the effect of four metal hydrides on the burning characteristics of boron was investigated. Thermogravimetric experiment results show that the thermal reaction process of boron samples can be divided into five stages. The thermal reactions of boron can be significantly promoted with LiH, which can reduce the initial temperature of the first violent reaction stage by ∼140 °C. The starting temperature of the post-reaction stage also decreases by ∼260 °C. The results of the laser ignition experiment suggest that all four metal hydrides can promote boron burning. Nonetheless, different metal hydrides display varied promotional effects. Among the studied hydrides, LiH is the most effective additive and shortens the ignition delay time of boron by ∼34.1%. Moreover, it enhances the combustion intensity of boron by ∼117.6%. The other three metal hydrides (CaH2, TiH2, and ZrH2) can also contribute to boron burning

  3. Removal properties of dissolved boron by glucomannan gel.

    Science.gov (United States)

    Oishi, Kyoko; Maehata, Yugo

    2013-04-01

    Boron ions have long been known to form complexes with the cis-diol group of a polysaccharide. Konjac glucomannan (KGM) which is one of polysaccharides was used to remove dissolved boron in this study. KGM forms a complex with boron, but does not remove boron from contaminated waters as well as other polysaccharides because of its high water solubility. Therefore, the removal efficiencies of dissolved boron were examined using both an insoluble KGM gel and KGM semi-gel. The former did not remove dissolved boron, but the latter did. The difference in the ability of boron removal was due to the presence of diol group inside. KGM loses free diol group during the process of gelation. On the other hand, the semi-gel gelated only surface layer in water has diol group inside. The boron removal capacity of the semi-gel was highest at pHs⩾11, when the boron species is present as B(OH)4(-). The capacity was slightly increased by the addition of Al, Ca and Mg under high pH conditions. This was due to co-precipitation of boron with Ca dissolved from the semi-gel. The boron adsorbed to the semi-gel easily was desorbed under low pH conditions and the hysteresis was not found. PMID:23260255

  4. Relationship Between Soil Boron Adsorption Kinetics and Rape Plant Boron Response

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; PIMEIMEI; 等

    1997-01-01

    The boron adsorption kinetic experiment in soil by means a flow displacement technique showed that the kinetic data could be described with some mathematic equations.The average values of the coorealtion coefficeint for zero-order,first-order,parabolic diffusion ,Elovich,power function and eponential equations were 0.957,0.982,0.981,0.984,0.981 and 0.902 ,respectively,The correlation between adsorbed boron or its other expression form and time were the highest for first-order ,parabloic diffusion Elovich,and pwer function equations,the second for the zeroorder equation,and the tlowest for the exponential equation.The parabloic diffusion equation fitted well the expermiental results,with the least standard error among the six kinetic equation,showing that the monvemetn of boron from soil solution to soil colloid surface may be controlled by boron diffusion speed.The boron content of rape seedling obtained from soil cultvation was correlated with the rate constants of the kinetic equations.The constants of first-order ,parabloic diffusion,and exponential equaitions were significanlty correlated with the boron content of the crop of NPK treatment at a 95% probaility level ,with correation coeffecients being 0.686,0.691 and 0.64 and 0.641,respectively.In the case of zero-order equation,it Was significant at 99% probability level(r=0.736),These results showed that the adsorption kinetic constants of soil boron were closely related with the rape plant response to boron.

  5. The structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron-nitride

    OpenAIRE

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H. G.; Liu, Zheng; Suenaga, Kazutomo

    2014-01-01

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra (EELS) of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sampl...

  6. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na210B12H11SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author)

  7. X-ray imaging performance of structured cesium iodide scintillators.

    Science.gov (United States)

    Zhao, Wei; Ristic, Goran; Rowlands, J A

    2004-09-01

    Columnar structured cesium iodide (CsI) scintillators doped with Thallium (Tl) have been used extensively for indirect x-ray imaging detectors. The purpose of this paper is to develop a methodology for systematic investigation of the inherent imaging performance of CsI as a function of thickness and design type. The results will facilitate the optimization of CsI layer design for different x-ray imaging applications, and allow validation of physical models developed for the light channeling process in columnar CsI layers. CsI samples of different types and thicknesses were obtained from the same manufacturer. They were optimized either for light output (HL) or image resolution (HR), and the thickness ranged between 150 and 600 microns. During experimental measurements, the CsI samples were placed in direct contact with a high resolution CMOS optical sensor with a pixel pitch of 48 microns. The modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) of the detector with different CsI configurations were measured experimentally. The aperture function of the CMOS sensor was determined separately in order to estimate the MTF of CsI alone. We also measured the pulse height distribution of the light output from both the HL and HR CsI at different x-ray energies, from which the x-ray quantum efficiency, Swank factor and x-ray conversion gain were determined. Our results showed that the MTF at 5 cycles/mm for the HR type was 50% higher than for the HL. However, the HR layer produces approximately 36% less light output. The Swank factor below K-edge was 0.91 and 0.93 for the HR and HL types, respectively, thus their DQE(0) were essentially identical. The presampling MTF decreased as a function of thickness L. The universal MTF, i.e., MTF plotted as a function of the product of spatial frequency f and CsI thickness L, increased as a function of L. This indicates that the light channeling process in CsI improved the MTF of

  8. Bromide and iodide removal from waters under dynamic conditions by Ag-doped aerogels.

    Science.gov (United States)

    Sánchez-Polo, M; Rivera-Utrilla, J; von Gunten, U

    2007-02-01

    The objective of this study was to analyze the efficiency of Ag-doped aerogels in the removal of bromide and iodide from water. To test the applicability of these aerogels in water treatment, adsorption of bromide and iodide was studied under dynamic conditions using waters from Lake Zurich and a mineral water. The results obtained by using these waters showed a high breakthrough volume (V(0.02)=0.4 L) of the columns, while the height of the mass transfer zone (H(MTZ)=6.8 cm) was low, regardless of the anion under study. Bromide- and iodide-saturated columns were regenerated with NH4OH. No change in the column characteristics was observed after two regeneration treatments, regardless of the type of water considered. PMID:17109877

  9. Doping in mercuric iodide crystals and its influence on electronic properties and material structure

    International Nuclear Information System (INIS)

    Doping of mercuric iodide single crystals with SbI3 was studied. Three major aspects of the influence of doping were investigated: the α to β solid phase transition, the crystal structure and the semiconducting properties. A controlled doping method and a new growth technique from the melt were developed. A quantitative correlation between the antimony concentration and the charge carrier transport properties as well as the nuclear detector characteristics of HgI2 were established for the first time. In the present work the influence of various impurities (Sb, Cu, Ag, Bi) on the solid state phase transformation of mercuric iodide has been investigated. In the second part of the work a new growth method for mercuric iodide single crystals containing a controlled amount of SbI3, has been developed. In the last part of this work the influence of the presence of impurities in the crystal on the charge carrier transport properties has been investigated. (author)

  10. Study on methyl iodide prepared without acute toxicant and its trial application in iodine adsorber test

    International Nuclear Information System (INIS)

    This paper studied a method of substitution, which substituted the non-toxic chlorotrimethylsilane (Me3SiCl) /sodium iodide (NaI) for the acutely toxic dimethyl sulphate (DMS) as a dealkylating agent for the first time to react with phosphate methylesters in preparing the gaseous radioactive methyl iodide. Comparative tests were carried out between substitution method and DMS method to measure respective cleaning efficiencies of iodine absorber both in lab and in the ventilation system of nuclear power plant. The impact of the substitutes on the organic material components of methyl iodide generator was also evaluated. The results showed that the substitution method was comparable to the former DMS method, and the substitutes was also compatible with the generator. Therefore, the substitution method can be preliminary judged applicable to both workshop and in-place tests of iodine adsorber in nuclear power plants. (authors)

  11. Quantification of propidium iodide delivery with millisecond electric pulses: A model study

    CERN Document Server

    Yu, Miao

    2014-01-01

    A model study of propidium iodide delivery with millisecond electric pulses is presented; this work is a companion of the experimental efforts by Sadik et al. [1]. Both membrane permeabilization and delivery are examined with respect to six extra-cellular conductivities. The transmembrane potential of the permeabilized regions exhibits a consistent value, which corresponds to a bifurcation point in the pore-radius-potential relation. Both the pore area density and membrane conductance increase with an increasing extra-cellular conductivity. On the other hand, the inverse correlation between propidium iodide delivery and extra-cellular conductivity as observed in the experiments is quantitatively captured by the model. This agreement confirms that this behavior is primarily mediated by electrophoretic transport during the pulse. The results suggest that electrophoresis is important even for the delivery of small molecules such as propidium iodide. The direct comparison between model prediction and experimental...

  12. Optimization of mercuric iodide platelets growth by the polymer controlled vapor transport method

    Directory of Open Access Journals (Sweden)

    Fornaro L.

    1999-01-01

    Full Text Available Mercuric iodide crystals in their platelet habit were grown by the polymer controlled vapor transport method. Mercuric iodide 99% in purity was sublimated at temperatures about 122 - 126 °C and vacuum conditions (10-5 mmHg, after selecting an appropriate polymer. Temperature profiles and experimental heat transfer models were determined for two growth furnaces using different insulator configurations for the cold extreme (air, ceramic wool, grilon, copper and ceramic wool. Growth conditions for few and separate nucleation points and large crystals were determined. Representative samples were characterized by optical microscopy and by measuring the current density and apparent resistivity of the material. Future optimization and comparisons with others mercuric iodide crystal growth methods are included.

  13. Iodide retention by cinnabar (HgS) and chalcocite (Cu{sub 2}S)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Balsley, S.D.; Brady, P.V.

    1995-07-01

    Sorption of iodide (I{sup {minus}}) on cinnabar (HgS) and chalcocite (Cu{sub 2}S) was examined as a function of pH at 25{degrees}C in a series of batch experiments. Calculated distribution ratios (K{sub d}) far exceed those reported for other minerals; maximal K{sub d}`s of 1375 cc/g (Cu{sub 2}S) and 3080 c/g (HgS) were observed between pH 4-5, but wre substantial at all pH`s measured (4 < pH < 10). Iodide sorption apparently occurs by the formation of an insoluble surface solid solution with exposed Hg and Cu sites. Surface solid solution formation is favored at low pH due to the lessened electrostatic repulsion of the iodide ion by the sulfide surfaces.

  14. Effects of boron number per unit volume on the shielding properties of composites made with boron ores form China

    International Nuclear Information System (INIS)

    The total macroscopic removal cross sections, deposited energies and the absorbed doses of three new shielding composites loaded with specific boron-rich slag, boron concentrate ore and boron mud of China for 252Cf neutron source were investigated by experimental and Monte Carlo calculation. The results were evaluated by boron mole numbers per unit volume in composites. The half value layers of the composites were calculated and compared with that of Portland concrete, indicating that ascending boron mole numbers per unit volume in the composites can enhance the shielding properties of the composites for 252Cf neutron source. (authors)

  15. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  16. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst. PMID:18961131

  17. Coadsorption of lanthanum with boron and gadolinium with boron on Mo(1 1 0)

    Science.gov (United States)

    Magkoev, Tamerlan T.; Vladimirov, Georgij G.; Rump, Gennadij A.

    2008-05-01

    Submonolayer to multilayer coadsorption of lanthanum (La) with boron (B) and gadolinium (Gd) with boron on the surface of Mo(1 1 0) has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and work function ( ϕ) measurements. The equilibrium state of double adsorbate systems achieved either by adsorption of rare-earth metal (REM) on boron precovered Mo(1 1 0) surface held at room temperature or after moderate annealing of the system with opposite order of adsorption (B on REM films) is the layer which is the inhomogeneous mixture of boron and REM atoms with preferential concentration of boron in the surface area of the mixed film. The work function of such films even at REM to boron concentration ratio much higher than 1/6 are very close to the values of corresponding bulk LaB 6 and GdB 6, favoring assumption of surface rearrangement as the dominant reason of high electron emission efficiency of hexaborides. Almost total similarity of the results for La-B and Gd-B systems can be viewed as the consequence of weak participation of Gd f-electrons in determining the thermionic properties of corresponding double layers.

  18. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    International Nuclear Information System (INIS)

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis

  19. PWR core response to boron dilution transient

    International Nuclear Information System (INIS)

    This paper illustrates the steps followed in order to set up a tool (composed of a plant model and of a procedure) that allows accounting for boron reactivity feedbacks during plant transients. The procedure that has been developed allows to find out the values of the boron feedback coefficients, given the differential boron worth, and to properly initialize the Thermal Hydraulic and the Neutronic (TH/NEU) system. Once the tool has been developed, it has been used to analyze different scenarios, resulting from deborated water injection from the reactor make-up system. The most important parameter, during this Reactivity Insertion Accidents (RIAs), is the Energy Released to the Fuel (ERF) and it has been monitored, in order to identify the situations when the fuel might be damaged (ERF > 250 kJ/kg, for high burnup fuel). The analyses have been performed using the RELAP5-3D computer code. The conclusion of the study is that the limited capability of modeling mixing phenomena provided by most common plant codes (such as RELAP5-3D) is not suitable to perform BE analyses of RIAs, since those accidents are so sensitive to boron concentration changes that the effect of uncertainties cannot be neglected. The use of Computational Fluid Dynamics (CFD) codes could reduce uncertainties enough to perform BE analyses and thus it should be recommended. (author)

  20. Pechmann Reaction Promoted by Boron Trifluoride Dihydrate

    Directory of Open Access Journals (Sweden)

    J. Mezger

    2005-08-01

    Full Text Available The Pechmann reaction of substituted phenols 1a-e with methyl acetoacetate (2 can be activated by boron trifluoride dihydrate (3 to give the corresponding 4-methyl- coumarin derivatives 4a-e in excellent yield (98-99 %.

  1. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  2. Channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    Channeled and random distributions of boron ions implanted over the energy range 50 keV--1.8 MeV into silicon have been measured using the differential capacitance technique. When implantations are performed along the or axis, profiles exhibit a strong orientation dependance. The best channeled profiles shows that more than 70% of the implanted dose is in the channeled peak

  3. Influence of pollution of boron chlorinity ratio

    Digital Repository Service at National Institute of Oceanography (India)

    Narvekar, P.V.; Zingde, M.D.

    Presence of boron in domestic wastewater has resulted in high B/CI ratio at some locations in the coastal water around Bombay. A widest range (0.215-0.281) of B/CI was observed at a location with high influence of wastewater release. The mean B...

  4. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  5. Boron carbide synthesis at plasma spray process

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, Vlastimil; Hofman, R.

    Bari : Department of Chemistry, University of Bari, 2003 - (d'Agostino, R.; Favia, P.; Fracassi, F.; Palumbo, F.). s. 631 [International Symposium on Plasma Chemistry/16th./. 22.06.2003-27.06.2003, Taormina] Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide , plasma spray process Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300degC a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250degC. The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  7. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32. ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.163, year: 2014

  8. The manufacturing method of boron carbide

    International Nuclear Information System (INIS)

    The new method for manufacturing of boron carbide as powder with controlled purity and surface development has been described. The suspension of boric acid aqueous solution and carbon black in alcohol has been homogenized mechanically. Water and alcohol are then evaporated during mixing. After drying homogenous mixture is heated in temperature range of 1270-1870 C during one hour

  9. Novel Boron Based Multilayer Thermal Neutron Detector

    CERN Document Server

    SCHIEBER, M

    2010-01-01

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accor...

  10. Multicompartmental model for iodide, thyroxine, and triiodothyronine metabolism in normal and spontaneously hyperthyroid cats

    International Nuclear Information System (INIS)

    A comprehensive multicompartmental kinetic model was developed to account for the distribution and metabolism of simultaneously injected radioactive iodide (iodide*), T3 (T3*), and T4 (T4*) in six normal and seven spontaneously hyperthyroid cats. Data from plasma samples (analyzed by HPLC), urine, feces, and thyroid accumulation were incorporated into the model. The submodels for iodide*, T3*, and T4* all included both a fast and a slow exchange compartment connecting with the plasma compartment. The best-fit iodide* model also included a delay compartment, presumed to be pooling of gastrosalivary secretions. This delay was 62% longer in the hyperthyroid cats than in the euthyroid cats. Unexpectedly, all of the exchange parameters for both T4 and T3 were significantly slowed in hyperthyroidism, possibly because the hyperthyroid cats were older. None of the plasma equivalent volumes of the exchange compartments of iodide*, T3*, or T4* was significantly different in the hyperthyroid cats, although the plasma equivalent volume of the fast T4 exchange compartments were reduced. Secretion of recycled T4* from the thyroid into the plasma T4* compartment was essential to model fit, but its quantity could not be uniquely identified in the absence of multiple thyroid data points. Thyroid secretion of T3* was not detectable. Comparing the fast and slow compartments, there was a shift of T4* deiodination into the fast exchange compartment in hyperthyroidism. Total body mean residence times (MRTs) of iodide* and T3* were not affected by hyperthyroidism, but mean T4* MRT was decreased 23%. Total fractional T4 to T3 conversion was unchanged in hyperthyroidism, although the amount of T3 produced by this route was increased nearly 5-fold because of higher concentrations of donor stable T4

  11. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  12. Boron carbide nanowires: Synthesis and characterization

    Science.gov (United States)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  13. Tris(1,2-dimethoxyethane-κ2O,O′iodidocalcium iodide

    Directory of Open Access Journals (Sweden)

    Siou-Wei Ou

    2012-02-01

    Full Text Available In the title complex, [CaI(C4H10O23]I, the CaII atom is seven-coordinated by six O atoms from three 1,2-dimethoxyethane (DME ligands and one iodide anion in a distorted pentagonal–bipyramidal geometry. The I atom and one of the O atoms from a DME ligand lie in the axial positions while the other O atoms lie in the basal plane. The other iodide anion is outside the complex cation.

  14. Thyroid hormones and iodide in the near-term pregnant rat.

    OpenAIRE

    Versloot, P.M.

    1998-01-01

    Thyroid hormones, thyroxine (T4) and 3,5,3'-triiodothyronine (T3), are produced by the thyroid gland. To synthesize thyroid hormones the thyroid needs iodide. The uptake of iodide as well as the production and secretion of T4 and T3 by the thyroid gland is regulated by thyrotropin (TSH), which is produced by the pituitary. However, most of the biologically active form, T3, is produced from T4 via monodeiodination in peripheral tissues.This reaction is catalyzed by the deiodinases, type I (ID-...

  15. Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene

    International Nuclear Information System (INIS)

    Human thyroperoxidase (hTPO) is critical for the accumulation of iodide in thyroid tissues. Poorly differentiated and anaplastic thyroid tumours which lack thyroid-specific gene expression fail to accumulate iodide and, therefore, do not respond to iodine-131 therapy. We consequently investigated whether transfer of the hTPO gene is sufficient to restore the iodide-trapping capacity in undifferentiated thyroid and non-thyroid tumour cells. The human anaplastic thyroid carcinoma cell lines C643 and SW1736, the rat Morris hepatoma cell line MH3924A and the rat papillary thyroid carcinoma cell line L2 were used as in vitro model systems. Employing a bicistronic retroviral vector based on the myeloproliferative sarcoma virus for the transfer of the hTPO and the neomycin resistance gene, the C643 cells and SW1736 cells were transfected while the L2 cells and MH3924A cells were infected with retroviral particles. Seven recombinant C643 and seven SW1736 cell lines as well as four recombinant L2 and four MH3924A cell lines were established by neomycin selection. They were studied for hTPO expression using an antibody-based luminescence kit, followed by determination of the enzyme activity in the guaiacol assay and of the iodide uptake capacity in the presence of Na125I. Genetically modified cell lines expressed up to 1,800 times more hTPO as compared to wild type tumour cells. The level of hTPO expression varied significantly between individual neomycin-resistant cell lines, suggesting that the recombinant retroviral DNA was integrated at different sites of the cellular genome. The accumulation of iodide, however, was not significantly enhanced in individual recombinant cell lines, irrespective of low or high hTPO expression. Moreover, there was no correlation between hTPO expression and enzyme activity in individual cell lines. The transduction of the hTPO gene per se is not sufficient to restore iodide trapping in non-iodide-concentrating tumour cells. Future studies

  16. Study of semitransparent palladium contacts on mercuric iodide by photoluminescence spectroscopy and thermally stimulated current measurements

    Science.gov (United States)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Gentry, G. L.; Cheng, A. Y.; Ortale, C.

    1991-04-01

    Semitransparent palladium contacts on mercuric iodide were studied by low temperature photoluminescence spectroscopy and thermally stimulated conductivity. These contacts were deposited either by thermal evaporation or by plasma sputtering. Changes due to palladium deposition were found in the photoluminescence spectra and were attributed to modifications in the stoichiometry within the palladium/mercuric iodide interfacial region. Thermally stimulated conductivity measurements revealed two dominant traps with activation energies of 0.010 and 0.54 eV. The importance of these traps in the application of nuclear detection is discussed.

  17. Study of semitransparent palladium contacts on mercuric iodide by photoluminescence spectroscopy and thermally stimulated current measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.J.; Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (US)); James, R.B.; Gentry, G.L. (Advanced Materials Research Division, Sandia National Laboratories, Livermore, California 94550 (US)); Cheng, A.Y.; Ortale, C. (EG G Energy Measurements, Inc., Goleta, California 93116 (US))

    1991-04-15

    Semitransparent palladium contacts on mercuric iodide were studied by low temperature photoluminescence spectroscopy and thermally stimulated conductivity. These contacts were deposited either by thermal evaporation or by plasma sputtering. Changes due to palladium deposition were found in the photoluminescence spectra and were attributed to modifications in the stoichiometry within the palladium/mercuric iodide interfacial region. Thermally stimulated conductivity measurements revealed two dominant traps with activation energies of 0.010 and 0.54 eV. The importance of these traps in the application of nuclear detection is discussed.

  18. Photoemission and optical constant measurements of a Cesium Iodide thin film photocathode

    International Nuclear Information System (INIS)

    The performance of cesium iodide as a reflective photocathode is presented. The absolute quantum efficiency of a 500 nm thick film of cesium iodide has been measured in the wavelength range 150 nm–200 nm. The optical absorbance has been analyzed in the wavelength range 190 nm–900 nm and the optical band gap energy has been calculated. The dispersion properties were determined from the refractive index using an envelope plot of the transmittance data. The morphological and elemental film composition have been investigated by atomic force microscopy and X-ray photo-electron spectroscopy techniques

  19. Hydrogen atom position in hydrated iodide anion from x-ray absorption near edge structure

    International Nuclear Information System (INIS)

    Hydrogen atom position in the hydrated iodide anion complex is determined from X-ray Absorption Near Edge Structure (XANES) of an aqueous iodide solution at both the K- and L-edges. The spectra are compared with the theoretical ones calculated by using the FEFF method for several model geometries having hydrogen atoms at different positions. Satisfactory agreements are obtained from models with an almost linear alignment of iodine-hydrogen-oxygen atoms, indicating the capability of the XANES analysis when it is combined with the multiple scattering calculations as a method to detect the positions of hydrogen atoms in the first coordination sphere. (author)

  20. Quick analytical method for the determination of iodide and iodate ions in aqueous solutions

    International Nuclear Information System (INIS)

    An analytical quick-test method was developed to determine iodide and iodate ions in aqueous solutions using solid phase extraction cartridges for sample preparation. Work was focussed on finding simple, but efficient conditions for quantitative separation of iodate and iodide. Iodine amounts were then determined by standard methods. Ion-exchange absorbers in cartridge form were used. Selectivity and yield of the species separation were studied at pH value of 5-10 and various solution compositions using 131I radioactive tracer. The electrolytes used were diluted alkaline, nitrate and boric acid-borate solutions. Application to nuclear reactor cooling water analysis or environmental investigations and monitoring is proposed. (author)

  1. Nitrosyl iodide, INO: A combined ab initio and high-resolution spectroscopic study

    Science.gov (United States)

    Bailleux, S.; Duflot, D.; Aiba, S.; Nakahama, S.; Ozeki, H.

    2016-04-01

    In the nitrosyl halides series (XNO, where X = F, Cl, Br, I), INO is the only chemical species whose rotational spectrum has not been reported. Nitrosyl iodide, together with the nitryl (INO2), nitrite (IONO) and nitrate (IONO2) iodides, is believed to impact tropospheric ozone levels. Guided by our quantum chemical calculations, we report the detection of INO in the gas phase by high-resolution spectroscopy for the first time. INO was generated by mixing continuously I2 and NO. The measurement and least-squares analysis of 173 a-type rotational transitions resulted in the accurate determination of molecular parameters.

  2. Studying the iodine leaching from the compositions based on epoxide resin and lead iodide

    International Nuclear Information System (INIS)

    When studying iodine leaching, the possibility to use solid compositions, produced by incorporation of dry powdered lead iodide and its aqueous suspension into epoxide resin for long-term immobilization of iodine-129 under conditions of monitored storage, is evaluated. Analysis of the results obtained has shown that leaching rate in the first 4 days has the maximum value and constitutes (4.2 - 2700.0) x 10-6 cm/day. Then the process of leaching is determined by diffusion mechanism. For samples, prepared by wet lead iodide incorporation the rate of leaching is higher than that of the corresponding samples prepared by dry compound incorporation

  3. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    Science.gov (United States)

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  4. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid.

    Science.gov (United States)

    Sase, Shohei; Kakimoto, Ryo; Kimura, Ryutaro; Goto, Kei

    2015-01-01

    A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100 °C for 3 h in [D₈]toluene. The selenenyl iodide was reduced to the corresponding selenol by treatment with dithiothreitol. Hydrolysis of the selenenyl iodide under alkaline conditions afforded the corresponding selenenic acid almost quantitatively, corroborating the chemical validity of the recent proposal that hydrolysis of a selenenyl iodide to a selenenic acid is potentially involved in the catalytic mechanism of an iodothyronine deiodinase. PMID:26633336

  5. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid

    Directory of Open Access Journals (Sweden)

    Shohei Sase

    2015-12-01

    Full Text Available A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100 °C for 3 h in [D8]toluene. The selenenyl iodide was reduced to the corresponding selenol by treatment with dithiothreitol. Hydrolysis of the selenenyl iodide under alkaline conditions afforded the corresponding selenenic acid almost quantitatively, corroborating the chemical validity of the recent proposal that hydrolysis of a selenenyl iodide to a selenenic acid is potentially involved in the catalytic mechanism of an iodothyronine deiodinase.

  6. Analysis of iodide and iodate in Lake Mead, Nevada using a headspace derivatization gas chromatography-mass spectrometry.

    Science.gov (United States)

    Dorman, James W; Steinberg, Spencer M

    2010-02-01

    We report here a derivatization headspace method for the analysis of inorganic iodine in water. Samples from Lake Mead, the Las Vegas Wash, and from Las Vegas tap water were examined. Lake Mead and the Las Vegas Wash contained a mixture of both iodide and iodate. The average concentration of total inorganic iodine (TII) for Lake Mead was approximately 90 nM with an iodide-to-iodate ratio of approximately 1. The TII concentration (approximately 160 nM) and the ratio of iodide to iodate were higher for the Las Vegas Wash (approximately 2). The TII concentration for tap water was close to that of Lake Mead (approximately 90 nM); however, tap water contained no detectable iodide as a result of ozonation and chlorine treatment which converts all of the iodide to iodate. PMID:19184627

  7. The sodium iodide symporter: its implications for imaging and therapy; Der Natrium-Iodid-Symporter (NIS): Bedeutung fuer die Bildgebung und therapeutische Optionen

    Energy Technology Data Exchange (ETDEWEB)

    Spitzweg, C. [Medizinische Klinik und Poliklinik fuer Nuklearmedizin der Ludwig-Maximilians-Univ. Muenchen, Klinikum Grosshadern, Muenchen (Germany)

    2007-03-15

    The sodium iodide symporter (NIS) is an intrinsic plasma membrane glycoprotein that mediates the active transport of iodide in the thyroid gland and a number of extrathyroidal tissues, in particular lactating mammary gland. In addition to its key function in thyroid physiology, NIS-mediated iodide accumulation allows diagnostic thyroid scintigraphy as well as therapeutic radioiodine application in benign and malignant thyroid disease. NIS therefore represents one of the oldest targets for molecular imaging and therapy. Based on the effective administration of radioiodine that has been used for over 60 years in the management of follicular cell-derived thyroid cancer, cloning and characterization of the NIS gene has paved the way for the development of a novel cytoreductive gene therapy strategy based on targeted NIS expression in thyroidal and nonthyroidal cancer cells followed by therapeutic application of {sup 131}I or alternative radionuclides, including {sup 188}Re and {sup 211}At. In addition, the possibility of direct and non-invasive imaging of functional NIS expression by {sup 123}I- and {sup 99m}Tc-scintigraphy or {sup 124}I-PET-imaging allows the application of NIS as a novel reporter gene. In conclusion, the dual role of NIS as diagnostic and therapeutic gene and the detection of extra-thyroidal endogenous NIS expression in breast cancer open promising perspectives in nuclear medicine and molecular oncology for diagnostic and therapeutic application of NIS outside the thyroid gland. (orig.)

  8. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  9. Boron removal from aqueous solution by direct contact membrane distillation

    International Nuclear Information System (INIS)

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 μg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution.

  10. ISOBORDAT: An Online Data Base on Boron Isotopes

    International Nuclear Information System (INIS)

    From 1986, boron isotope data in natural substances increased sharply in scientific publications. Analytical difficulties derived from complex geochemical matrices have been faced and interlaboratory calibrations reported in the boron literature. Boron isotopes are nowdays applied to investigate boron origin and migration in natural waters, sources of boron contamination, water-rock interactions and also contribute to water resource management. This is especially important in those areas where boron content exceeds the local regulations for drinking water supply and boron sources need to be identified. ISOBORDAT, an interactive database on boron isotope composition and content in natural waters is presented to the wider community of boron isotope users. The database's structure, scope and applications are reported, along with a discussion on δ11B values obtained in Italian waters. In the database boron data are structured in the following categories: rainwater, rivers, lakes, groundwater and potential contaminants. New categories (medium and high enthalpy fluids from volcanic and geothermal areas) are anticipated. ISOBORDAT aims to be as interactive as possible and will be developed taking into account information and suggestions received. The database is continually undergoing revision to keep pace with continuous data publication. Indications of data that are missing at present are greatly appreciated. (author)

  11. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  12. Structure and single-phase regime of boron carbides

    Science.gov (United States)

    Emin, David

    1988-09-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B4C (the boron carbide with nominally 20% carbon) has B11C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B4C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C-->C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B13C2, subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B11C-->B12. Maxima of the free energy occur at the most ordered compositions: B4C,B13C2,B14C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides. The significant entropies associated with compositional disorder within the boron carbides, the high temperatures at which boron carbides are formed (>2000 K), and the relatively modest energies associated with replacing carbon atoms with boron atoms enable the material's entropy to be usually important in determining its composition. As a result, boron carbides are able to exist in a wide range of compositions.

  13. Relaxation of the Silver/Silver Iodide Electrode in Aqueous Solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI particles during encounter.In chapter 1 a ge

  14. Effect of hot-pressing conditions on the properties of iodide sodalite

    International Nuclear Information System (INIS)

    Higher hot-pressing temperatures and pressures increase density and reduce porosity and leachability of the iodide sodalite products. The effect of temperature is more significant than pressure with a significantly superior waste form being produced at 10600C compared to 8200C. Products prepared at 10600C and 5000 to 7000 psi pressure have apparent densities of 2.60 g/cm3 (99.5% of theoretical), porosities -6 g/cm2/d. Iodine concentration in the products is 15 to 20 wt %. These tests further substantiate the viability of using hot-pressed iodide sodalites as long-term waste forms for isolating long-lived 129I from the environment. The products produced at high temperatures are extremely hard, mechanically stable, capable of incorporating large amounts of iodine in a small volume, and have excellent leaching characteristics. In this study, sodalite formed at high temperatures containing 20 wt % iodine, had cumulative fraction leach values of approx. 2.6 x 10-6 cm for 96 h, and incremental leach rates of approx. 3.2 x 10-7 cm/d. Even though initial results look promising, work should continue in the following areas: (1) long-term leaching of products; (2) determine optimum conditions and effect of process variables on hydrothermal reaction; (3) characterize structural, crystal, and mechanical properties of iodide sodalite product; and (4) develop better methods of measuring iodide losses during the process

  15. Solution enthalpy of potassium iodide in furfural and its mixtures with dimethylsulfoxide

    International Nuclear Information System (INIS)

    Solution enthalpy of potassium iodide in furfural-dimethylsulfoxide mixtures at 298.15 K and furfural concentration 17.3-100% are determined experimentally. K+ and I- ion solvate shell composition, which in the general case doesn't correspond to the mixed solvent composition, is calculated

  16. The sodium iodide symporter (NIS) and potential regulators in normal, benign and malignant human breast tissue.

    LENUS (Irish Health Repository)

    Ryan, James

    2011-01-01

    The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro.

  17. Investigations related to the chemical behaviour of methyl iodide at severe PWR-accidents

    International Nuclear Information System (INIS)

    The decomposition velocity of methyl iodide in aqueous solutions of boric acid has been measured at temperatures up to 423 K and at chemical conditions which are expected to exist in the sumpwater pool during a severe reactor accident. The decomposition was due only to hydrolysis which increased by the expected amount at high temperature. No influence of the cooling water additives was observed. Treatment of the available kinetic data indicated that the influence of polluting material expectedly present in the sump is likely to be negligible too. A possible exception may be the enhancement of the decomposition rate by particulate and dissolved silver. The resistance of methyl iodide to gas phase decomposition by steam and oxygen at 423 K was investigated and only slow decomposition in the order of 10-7/s observed which is explained by reaction with steel surfaces. Neither gas phase oxidation nor hydrolysis occur at this temperature. The resistance to oxidation is of kinetic nature. Gas phase hydrolysis is not possible due to thermodynamics. This was confirmed by the observed gas phase formation of methyl iodide from hydrogen iodide and methanol at 423 K. The kinetics of this reaction are best explained by two parallel reactions, one of second order with a kinetic constant of 1.25 x 10-5/kPa s, and one of third order under action of steam with a constant of 2 x 10-6/kPa2 s. (orig./HP)

  18. Monochloramine determination using NN diethyl-p-phenylene-diamine. Influence of iodide traces

    International Nuclear Information System (INIS)

    When determining ''D.P.D.'' free oxidizers, the monochloramine interfers in particular for iodide levels analogous to those likely to be found in sea water. This is not so for iodate. The zero time extrapolation of the change in colour curve is one method that enables the method to be made more selective

  19. Photodissociation of sodium iodide and resonant ionization of sodium atom produced

    Institute of Scientific and Technical Information of China (English)

    HUO Bing-hai; Z.T.Salim; A.H.Bakery

    2004-01-01

    Resonant ionization spectroscopy (RIS) and resonant ionization mass spectroscopy (RIMS) are employed to detect the photodissociation product of sodium iodide molecules in a molecular beam in an intense laser field in the absence of the buffer gases. Time of flight mass spectra is recorded. In particular, the appearances of multiphoton ionization are discussed.

  20. Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm

    OpenAIRE

    Park, Hyunwoong; vecitis, Chad D.; Cheng, Jie; Dalleska, Nathan F; Mader, Brian T.; Hoffmann, Michael R.

    2011-01-01

    The perfluoroalkyl compounds (PFCs), perfluoroalkyl sulfonates (PFXS) and perfluoroalkyl carboxylates (PFXA) are environmentally persistent and recalcitrant towards most conventional water treatment technologies. Here, we complete an in depth examination of the UV-254 nm production of aquated electrons during iodide photolysis for the reductive defluorination of six aquated perfluoroalkyl compounds (PFCs) of various headgroup and perfluorocarbon tail length. Cyclic voltammograms (CV) show tha...

  1. Leaching of iodide (I(-)) and iodate (IO3(-)) anions from synthetic layered double hydroxide materials.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2016-09-15

    Several studies have previously demonstrated that layered double hydroxides (LDHs) show considerable potential for the adsorption of radioiodine from aqueous solution; however, few studies have demonstrated that these materials are able to store radioactive (131)I for an acceptable period. The leaching of iodide (I(-)) and iodate (IO3(-)) form Mg/Al LDHs has been carried out. Contact time appeared to be a more significant variable for the leaching of iodate (IO3(-)) compared to that of iodide (I(-)). Experimental results are fitted to the pseudo second order model, suggesting that diffusion is likely to be the rate-limiting step. The presence of carbonate in the leaching solution appeared to significantly increase the leaching of iodide (I(-)) as did the presence of chloride to a lesser extent. The maximum amount of iodate (IO3(-)) leached using ultrapure water as the leaching solution was 21% of the iodate (IO3(-)) originally present. The corresponding result for iodide (I(-)) was even lower at 3%. PMID:27309951

  2. Electron stimulated reactions of methyl iodide coadsorbed with amorphous solid water

    International Nuclear Information System (INIS)

    The electron stimulated reactions of methyl iodide (MeI) adsorbed on and suspended within amorphous solid water (ice) were studied using a combination of postirradiation temperature programmed desorption and reflection absorption infrared spectroscopy. For MeI adsorbed on top of amorphous solid water (ice), electron beam irradiation is responsible for both structural and chemical transformations within the overlayer. Electron stimulated reactions of MeI result principally in the formation of methyl radicals and solvated iodide anions. The cross section for electron stimulated decomposition of MeI is comparable to the gas phase value and is only weakly dependent upon the local environment. For both adsorbed MeI and suspended MeI, reactions of methyl radicals within MeI clusters lead to the formation of ethane, ethyl iodide, and diiodomethane. In contrast, reactions between the products of methyl iodide and water dissociation are responsible for the formation of methanol and carbon dioxide. Methane, formed as a result of reactions between methyl radicals and either parent MeI molecules or hydrogen atoms, is also observed. The product distribution is found to depend on the film's initial chemical composition as well as the electron fluence. Results from this study highlight the similarities in the carbon-containing products formed when monohalomethanes coadsorbed with amorphous solid water are irradiated by either electrons or photons

  3. LIQUID-CRYSTALLINE AND THERMOCHROMIC BEHAVIOR OF 4-SUBSTITUTED 1-METHYLPYRIDINIUM IODIDE SURFACTANTS

    NARCIS (Netherlands)

    NUSSELDER, JJH; ENGBERTS, JBFN; VANDOREN, HA

    1993-01-01

    The mesogenic behaviour of a series of thirty-one 1-alkyl-4-(or 2-)alkyl-pyridinium salts and of a homologous series of four 1-methyl-4-n-alkoxycarbonylpyridinium iodides is described. The occurrence and stability range of the thermotropic phases depend dramatically on the structure of the surfactan

  4. Phase partitioning, retention kinetics, and leaching of fumigant methyl iodide in agricultural soils

    Science.gov (United States)

    Although it is not currently being sold in the USA, the recent US registration of the fumigant methyl iodide has led to an increased interest in its environmental fate and transport. Although some work has now considered its volatile emissions from soil, there remains a lack of experimental data reg...

  5. Mitigating 1,3-dichloropropene, chloropicrin, and methyl iodide emissions from fumigated soil with reactive film

    Science.gov (United States)

    Implicated as a stratospheric ozone-depleting compound, methyl bromide (MeBr) is being phased out despite being considered to be the most effective soil fumigant. Its alternatives, i.e., 1,3-dichloropropene (1,3-D, which includes cis- and trans- isomers), chloropicrin (CP) and methyl iodide (MeI), h...

  6. Expedient Method for Samarium(II) Iodide Preparation Utilizing a Flow Approach

    Czech Academy of Sciences Publication Activity Database

    Voltrová, Svatava; Šrogl, Jiří

    2013-01-01

    Roč. 24, č. 3 (2013), s. 394-396. ISSN 0936-5214 R&D Projects: GA MŠk LH12013 Institutional support: RVO:61388963 Keywords : flow * samarium * iodide * reduction Subject RIV: CC - Organic Chemistry Impact factor: 2.463, year: 2013

  7. Surface treatments of silver rods with enhanced iodide adsorption for I-125 brachytherapy seeds

    International Nuclear Information System (INIS)

    This study described an effective method to load 125I on silver rods for the preparation of a brachytherapy source. We tested various ligands on the silver rod surface to screen the one with the highest adsorption and specific radioactivity. In addition, we investigated the effect of surface etching to increase the adsorption capability followed by the extended surface area. We also found that the use of an oxidant during iodide adsorption can increase the loading significantly. The maximum activity of 137.90 MBq/rod (3.7269 mCi/rod) was achieved on the etched silver rods with phosphate ligand and hydrogen peroxide as an oxidant. In addition, this is 4.5-fold higher than that of the conventional chloride treatment method. - Highlights: • Surface treatment of silver rods with several ligands was investigated to find optimum ligand for production of I-125 seeds. • Activity of adsorbed iodide was increased up to 499% on HNO3-etched rods compared to H2O-washed rods. • When H2O2 was used as an oxidant for surface-modification, the amount of adsorbed iodide was increased up to 589%. • Activity of adsorbed iodide exhibited the highest value (137.90 MBq/rod) on rods etched and treated with PO43− and H2O2

  8. The Reaction between Iron(II) Iodide and Potassium Dichromate(VI) in Acidified Aqueous Solution

    Science.gov (United States)

    Talbot, Christopher

    2013-01-01

    This "Science note" teaching lesson explores the possible reaction between the ions in a reaction mixture consisting of iron(II) iodide and potassium dichromate(VI) in acidified aqueous solution. The electrode potentials will be used to deduce any spontaneous reactions under standard thermodynamic conditions (298 K, 1 bar (approximately…

  9. Diffusion coefficient determination of sodium iodide vapor in rare gases with use of ionization sensor

    International Nuclear Information System (INIS)

    The diffusion coefficients of sodium iodide vapor in the rare gases, argon, krypton and xenon, are determined by a method combining the analysis of measured diffusing mass with continuous monitoring of the sodium iodide vapor concentration in a flowing stream of sodium iodide-rare gas mixture. The flowing sodium iodide vapor is ionized upon its passage over a heated filament, and the generated ions are collected by a negatively-charged arched plate saddling the filament. The resulting ion current, measured by digital current meter, is integrated in time to obtain cumulative values from outset of run. The curve of the integrated values plotted against time approaches linearity with progress of run. The asymptote of the curve intersects the time axis at a point whose position serves to determine the diffusion coefficient, by applying an equation derived from the formula given by Carslaw and Jaeger. The coefficients thus determined for the three rare gases in runs at temperatures between 660degC and 710degC have proved to agree well with the values estimated using the semi-empirical correlation presented by Wilke and Lee. (author)

  10. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    Science.gov (United States)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  11. Heat and Radiation Effects on Iodide Sorption by Surfactant Modified Bentonite (SMB)

    International Nuclear Information System (INIS)

    Radioactive waste repository is designed using multiple barriers to prevent the release of radionuclides to environments. Bentonite has been used as engineering barrier in many countries. Although the bentonite is an effective sorbent for cationic radionuclides, it is not good for anions such as 129-I and 99-Tc because of negative surface charges over the pH. Radioactive iodine exists usually as anions such as iodate (IO3-) and iodide (I-) as stable iodine species in groundwater environments. Therefore, the iodine is one of the most difficult elements for its transport through engineering barrier (i. e., bentonite) to be controlled by sorption processes in the geological repository. We modified the bentonite using a cationic surfactant to enhance iodine sorption capability. The goal of this study is addressed to evaluate the effects of sorption of high heat and radiation on iodide sorption to surfactant modified bentonite (SMB) which can be used as engineering barrier in the repository. The iodide sorption on the SMBs was significantly affected by temperature conditions rather than radiation. As temperature increases, the iodide sorption decreases. Considering the similar sorption abilities between 100 and 200% SMBs, the 100% SMB is economical sorbent to apply for engineering barrier in a geological repository

  12. Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours

    International Nuclear Information System (INIS)

    This report considers a model of aerosol nucleation from the vapour phase which has been developed by Buckle. The applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. (U.K.)

  13. Electrical properties of silver iodide nanoparticles system embedded into opal porous matrix

    International Nuclear Information System (INIS)

    Opal-based composite with silver iodide nanoparticles (AgI/opal) has been prepared by host-guest technology. Temperature and frequency dependences of electrical conductivity and those of dielectric permittivity of AgI/opal samples were measured. Size effects in this opal-based nanocomposite have been discussed

  14. Solvation thermodynamics of ammonium iodide ions in 2-propanol and its mixtures with water

    International Nuclear Information System (INIS)

    The electrometric method using chains without transfer has been applied to determine total thermodynamic characteristics of ammonium iodide ions salvation in 2-propanol and its mixtures with water at 278.15-308.15 K.Regularities of their changes with temperature and composition of a mixed solvent are considered

  15. Reversible stimulus-responsive Cu(I) iodide pyridine coordination polymer.

    Science.gov (United States)

    Amo-Ochoa, P; Hassanein, K; Gómez-García, C J; Benmansour, S; Perles, J; Castillo, O; Martínez, J I; Ocón, P; Zamora, F

    2015-10-01

    We present a structurally flexible copper-iodide-pyridine-based coordination polymer showing drastic variations in its electrical conductivity driven by temperature and sorption of acetic acid molecules. The dramatic effect on the electrical conductivity enables the fabrication of a simple and robust device for gas detection. X-ray diffraction studies and DFT calculations allow the rationalisation of these observations. PMID:26264525

  16. Preparation and Luminescence Thermochromism of Tetranuclear Copper(I)-Pyridine-Iodide Clusters

    Science.gov (United States)

    Parmeggiani, Fabio; Sacchetti, Alessandro

    2012-01-01

    A simple and straightforward synthesis of a tetranuclear copper(I)-pyridine-iodide cluster is described as a laboratory experiment for advanced inorganic chemistry undergraduate students. The product is used to demonstrate the fascinating and visually impressive phenomenon of luminescence thermochromism: exposed to long-wave UV light, the…

  17. Kinetic modeling of the purging of activated carbon after short term methyl iodide loading

    International Nuclear Information System (INIS)

    A bimolecular reaction model containing the physico-chemical parameters of the adsorption and desorption was developed earlier to describe the kinetics of methyl iodide retention by activated carbon adsorber. Both theoretical model and experimental investigations postulated constant upstream methyl iodide concentration till the maximum break-through. The work reported here includes the extension of the theoretical model to the general case when the concentration of the challenging gas may change in time. The effect of short term loading followed by purging with air, and an impulse-like increase in upstream gas concentration has been simulated. The case of short term loading and subsequent purging has been experimentally studied to validate the model. The investigations were carried out on non-impregnated activated carbon. A 4 cm deep carbon bed had been challenged by methyl iodide for 30, 90, 120 and 180 min and then purged with air, downstream methyl iodide concentration had been measured continuously. The main characteristics of the observed downstream concentration curves (time and slope of break-through, time and amplitude of maximum values) showed acceptable agreement with those predicted by the model

  18. The preparation and structural properties of trivalent lanthanide and actinide oxide iodides

    International Nuclear Information System (INIS)

    A report is presented on the preparation of NpOI, LaOI and ErOI by reacting the appropriate tri-iodide and antimony sesquioxide at moderate temperatures. Positional parameters for the atoms in NpOI, derived from X-ray powder diffraction intensity data, are also reported. (U.K.)

  19. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

    Science.gov (United States)

    Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H.; Meyer-Klaucke, Wolfram; Feiters, Martin C.

    2008-01-01

    Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells. PMID:18458346

  20. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Ekberg, C. (Chalmers Univ. of Technology, Goeteborg (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT, Espoo (Finland)); Glaenneskog, H. (Vattenfall Power Consultant, Goeteborg (Sweden))

    2011-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment, was started. During year 2008 (NROI-1) the radiolytic oxidation of elemental iodine was investigated and during 2009 (NROI-2), the radiolytic oxidation of organic iodine was studied. This project (NROI-3) is a continuation of the investigation of the oxidation of organic iodine. The project has been divided into two parts. 1. The aims of the first part were to investigate the effect of ozone and UV-radiation, in dry and humid conditions, on methyl iodide. 2. The second project was about gamma radiation (approx20 kGy/h) and methyl iodide in dry and humid conditions. 1. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UV-radiation intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. The particle formation was instant and extensive when methyl iodide was exposed to ozone and/or radiation at all temperatures. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-200 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine oxides (I{sub xO{sub y}). However, the correct speciation of the formed particles was difficult to obtain because the particles melted and fused together under the electron beam. 2. The results from this sub-project are more inconsistent and hard to interpret. The particle formation was significant lesser than corresponding experiments when ozone/UV-radiation was used instead of gamma radiation. The transport of gaseous methyl iodide through the facility was

  1. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg 10B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague–Dawley (SD) rats were studied by administrating 25 mg 10B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4–6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  2. Diffusion Boronizing of H11 Hot Work Tool Steel

    Science.gov (United States)

    Jurči, Peter; Hudáková, Mária

    2011-10-01

    The H11 hot work tool steel was boronized at various processing parameters, austenitized, quenched, and tempered to a core hardness of 47-48 HRC. Microstructure, phase constitution, and microhardness of boronized layers were investigated. Effect of boronized region on the bulk properties was determined by the Charpy impact test. Structure of boronized regions is formed by the compound layers and diffusion inter-layer. The compound layers consisted of only (Fe,Cr)2B phase, but in the case of longer processing time, they contained also of the (Fe,Cr)B-phase. The inter-layer contained enhanced portion of carbides, formed due to carbon diffusion from the boride compounds toward the substrate. Microhardness of boronized layers exceeded considerably 2000 HV 0.1. However, boronizing led to a substantial lowering of the Charpy impact toughness of the material.

  3. Boron Rich Solids Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  4. Boron carbide whisker and platelet reinforced ceramic matrix composites

    International Nuclear Information System (INIS)

    Boron carbide whisker and platelet-reinforced alumina and boron-carbide-whisker-reinforced silicon carbide composites were prepared by hot-pressing. The mechanical properties of hot-pressed boron carbide platelet and whisker-reinforced composites are better than the inherent ceramic matrix. A maximum fracture toughness, K(lc), of 9.5 MPa sq rt m is achieved for alumina/boron carbide whisker composites, 8.6 MPa sq rt m is achieved for alumina/boron carbide platelet composites, and 3.8 MPa sq rt m is achieved for silicon carbide/boron carbide whisker composites. The fracture toughness is dependent on the volume fraction of the platelets and whiskers. 12 refs

  5. Van Hove singularities of some icosahedral boron-rich solids by differential reflectivity spectra

    Science.gov (United States)

    Werheit, Helmut

    2015-09-01

    Differential reflectivity spectra of some icosahedral boron rich solids, β-rhombohedral boron, boron carbide and YB66-type crystals, were measured. The derivatives yield the van Hove singularities, which are compared with results obtained by other experimental methods.

  6. Conversion of Iodide to Hypoiodous Acid and Molecular Iodine at the Air-Water Interface

    Science.gov (United States)

    Pillar, E. A.; Guzman, M. I.

    2013-12-01

    Sea spray aerosols continuously transfer a significant amount of halides to the marine boundary layer, where they play a major role in the depletion of tropospheric ozone. The reactivity of iodide is of special interest in sea spray aerosols, where this species is enriched relative to chloride and bromide in surface seawater. This work presents laboratory experiments that provide mechanistic information to understand the reactivity of halides in atmospheric aerosols. Pneumatically assisted electrospray is used to aerosolize solutions of sodium iodide (0.01-100 μM), which are rapidly (~3 μs) oxidized by ozone at 25 °C. Reaction products include HIO, IO2-, IO3-, I2, HI2O-, and I3-, all identified by mass spectrometry. The distribution of products varies along two different reaction pathways, one favoring the production of I2 and HIO for typical tropospheric ozone levels (~50 ppbv), and another one directed to the production of IO3- at higher oxidizer concentrations. The formation of products increases exponentially with rising concentrations of initial sodium iodide, [NaI]0. The process is determined to be pH independent for the pH range 6-8 representative of surface waters. The substitution of aqueous solutions by organic solvents, such as methanol or acetonitrile, causes a decrease in the surface tension and lifetime of the droplets, leading to larger I2 production. The presence of surface active organic compounds, which alter the structure of the interfacial region, promote the pathway of I2 formation over IO3-. In conclusion, this presentation will show how the oxidation of iodide in aqueous microdroplets can release reactive gas-phase species, such as I2 and HIO, capable to affect tropospheric ozone globally. Normalized intensity of products observed during the ozonolysis of iodide solutions at 130 ppbv ozone. Cone voltage = 70 V, needle voltage = 2.5 kV.

  7. The use of mercuric iodide in instruments for safeguards and non-proliferation applications

    International Nuclear Information System (INIS)

    Mercuric Iodide is a material exceptionally suited for solid state detectors operating at room temperature. The high density and the high atomic numbers of the constituent elements provide a large absorption factor and a high full-energy-peak efficiency at gamma ray energies. The large electronic bandgap results in a very high resistivity and therefore a low leakage current at temperatures within and outside the personal comfort range. Constellation Technology has developed the technology to grow large, high quality crystals from mercuric iodide. Spectrometry grade detectors with dimensions of 25 mm x 25 mm x 3 mm and with an energy resolution of approximately 3% FWHM at 662 keV can be fabricated from these mercuric iodide crystals. The spectral resolution is primarily determined by the transport properties of the holes that at present still have relatively low values. When radiation of lower energy needs to be measured, it is possible to reduce the thickness of the detector and still maintain an acceptable detection efficiency. The spectrum of a 1.5 mm thick detector is shown. The resolution of this detector approximately 1.8% FWHM and the peak-to-valley ratio is larger than twelve. Standard semi-Gaussian processing and no pulse-shape discrimination was used. These detectors can be conveniently incorporated into hand-held instruments to detect weak sources or heavily shielded sources. Previous measurements have shown that the Minimum Detectable Activity (MDA) of a 3 mm thick mercuric iodide detector with dimensions as given above is about 10% less than the MDA of a 50 mm x 50 mm sodium iodide detector, due to the superior energy resolution. Software methods are being developed to improve the identification of weak sources against a large background. Results of these measurements will be presented

  8. Multidimensional boron transport modeling in subchannel approach

    International Nuclear Information System (INIS)

    The main objective of this study is to implement a solute tracking model into the subchannel code CTF for simulations of boric acid transients. Previously, three different boron tracking models have been implemented into CTF and based on the applied analytical and nodal sensitivity studies the Modified Godunov Scheme approach with a physical diffusion term has been selected as the most accurate and best estimate solution. This paper will present the implementation of a multidimensional boron transport modeling with Modified Godunov Scheme within a thermal-hydraulic code based on a subchannel approach. Based on the cross flow mechanism in a multiple-subchannel rod bundle geometry, heat transfer and lateral pressure drop effects will be discussed in deboration and boration case studies. (author)

  9. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  10. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  11. The spectrophotometric determination of boron in tourmalines

    Directory of Open Access Journals (Sweden)

    LJILJANA JAKSIC

    2005-02-01

    Full Text Available A procedure for the spectrophotometric determination of macro amounts of boron in tourmaline with azomethine H is described. The used tourmaline concentrate was obtained by magnetic separation and heavy-liquids purification of the schorl zone of pegmatite or granite aplite. The samples of tourmaline were decomposed by fusion with anhydrous sodium carbonate and taken up in dilute hydrochloric acid. The interfering effects of iron and aluminium were eliminated by masking with an EDTA – NTA solution. After pH adjustment, the boron was reacted with azomethine H and the absorbance of the obtained coloured complex was measured at 415 nm. The results are compared with those obtained by other procedures. The relative error of the determination was less than 3 %.

  12. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  13. Boron-10 ABUNCL Models of Fuel Testing

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, Edward R.; Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.

    2013-10-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNP simulations of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) active configuration model with fuel pins previously measured at Los Alamos National Laboratory. A comparison of the GE-ABUNCL simulations and simulations of 3He based UNCL-II active counter (the system for which the GE-ABUNCL was targeted to replace) with the same fuel pin assemblies is also provided.

  14. Behavior of Disordered Boron Carbide under Stress

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W.; Chhowalla, Manish

    2006-07-01

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6GPa≈P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2 3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  15. Investigation of boron segregation in low carbon steel

    OpenAIRE

    J. Lis; Lis, A; Kolan, C.

    2011-01-01

    Traces of born in the range 0,002-0,009 % are usually added to many grades of steel. The effect of boron on phase transformations and hardenability of low carbon low alloy steels depends on the form of its behavior in solid solution either in segregations or in precipitations. Temperature and cooling rate determine the existence of boron segregations on grain boundaries. In present paper simulations of boron concentrations were calculated with computer programme DICTRA for low carbon 0,08 %C ...

  16. Boron/aluminum shelf for shuttle orbiter

    International Nuclear Information System (INIS)

    Boron/aluminum skins and channels were used in the fabrication of a prototype honeycomb sandwich avionics shelf. The avionic shelves are stiffness-critical and must be vibration tolerant. In conjunction with the shelf mounting system, they must isolate the avionics equipment from the severe vibration of the primary and secondary structure nearby. Design rationale, fabrication procedures, vibration test criteria and test results are presented. (9 fig) (U.S.)

  17. Boron Nitride Nanosheets for Metal Protection

    OpenAIRE

    Li, Lu Hua; Xing, Tan; Chen, Ying; Jones, Rob

    2015-01-01

    Although the high impermeability of graphene makes it an excellent barrier to inhibit metal oxidation and corrosion, graphene can form a galvanic cell with the underlying metal that promotes corrosion of the metal in the long term. Boron nitride (BN) nanosheets which have a similar impermeability could be a better choice as protective barrier, because they are more thermally and chemically stable than graphene and, more importantly, do not cause galvanic corrosion due to their electrical insu...

  18. Anomalous thermal conductivity of monolayer boron nitride

    Science.gov (United States)

    Tabarraei, Alireza; Wang, Xiaonan

    2016-05-01

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate the mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.

  19. Formation and Structure of Boron Nitride Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG; Zongquan LI; Jin XU

    2005-01-01

    Boron nitride (BN) nanotubes were simply synthesized by heating well-mixed boric acid, urea and iron nitrate powders at 1000℃. A small amount of BN nanowires was also obtained in the resultants. The morphological and structural characters of the BN nanostructures were studied using transmission electron microscopy. Other novel BN nanostructures, such as Y-junction nanotubes and bamboo-like nanotubes, were simultaneously observed. The growth mechanism of the BN nanotubes was discussed briefly.

  20. Thermal conductivity of nanostructured boron nitride materials.

    Science.gov (United States)

    Tang, Chengchun; Bando, Yoshio; Liu, Changhong; Fan, Shoushan; Zhang, Jun; Ding, Xiaoxia; Golberg, Dmitri

    2006-06-01

    We have measured the thermal conductivity of bulky pellets made of various boron nitride (BN)-based nanomaterials, including spherical nanoparticles, perfectly structured, bamboo-like nanotubes, and collapsed nanotubes. The thermal conductivity strongly depends on the morphology of the BN nanomaterials, especially on the surface structure. Spherical BN particles have the lowest thermal conductivity while the collapsed BN nanotubes possess the best thermoconductive properties. A model was proposed to explain the experimental observations based on the heat percolation passage considerations. PMID:16722739