WorldWideScience

Sample records for boron implanted laser

  1. The effect of excimer laser pretreatment on diffusion and activation of boron implanted in silicon

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-01-01

    We have investigated the effect of excimer laser annealing (ELA) on transient enhanced diffusion (TED) and activation of boron implanted in Si during subsequent rapid thermal annealing (RTA). It is observed that ELA with partial melting of the implanted region causes reduction of TED in the region that remains solid during ELA, where the diffusion length of boron is reduced by a factor of ∼4 as compared to the as-implanted sample. This is attributed to several mechanisms such as liquid-state annealing of a fraction of the implantation induced defects, introduction of excess vacancies during ELA, and solid-state annealing of the defects beyond the maximum melting depth by the heat wave propagating into the Si wafer. The ELA pretreatment provides a substantially improved electrical activation of boron during subsequent RTA

  2. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  3. Tribological properties of nitrogen implanted and boron implanted steels

    International Nuclear Information System (INIS)

    Kern, K.T.

    1996-01-01

    Samples of a steel with high chrome content was implanted separately with 75 keV nitrogen ions and with 75 keV boron ions. Implanted doses of each ion species were 2-, 4-, and 8 x 10 17 /cm 2 . Retained doses were measured using resonant non-Rutherford Backscattering Spectrometry. Tribological properties were determined using a pin-on-disk test with a 6-mm diameter ruby pin with a velocity of 0.94 m/min. Testing was done at 10% humidity with a load of 377 g. Wear rate and coefficient of friction were determined from these tests. While reduction in the wear rate for nitrogen implanted materials was observed, greater reduction (more than an order of magnitude) was observed for boron implanted materials. In addition, reduction in the coefficient of friction for high-dose boron implanted materials was observed. Nano-indentation revealed a hardened layer near the surface of the material. Results from grazing incidence x-ray diffraction suggest the formation of Fe 2 N and Fe 3 N in the nitrogen implanted materials and Fe 3 B in the boron implanted materials. Results from transmission electron microscopy will be presented

  4. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  5. Comparison of boron diffusion in silicon during shallow p{sup +}/n junction formation by non-melt excimer and green laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Aid, Siti Rahmah; Matsumoto, Satoru [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Fuse, Genshu [SEN Corporation, SBS Tower 9F, 4-10-1 Yoga, Setagaya-ku, Tokyo 158-0097 (Japan); Sakuragi, Susumu [Sumitomo Heavy Industries Ltd., 19 Natsushima-cho, Yokosuka, Kanagawa 237-8555 (Japan)

    2011-12-15

    The combination of Ge pre-amorphization implantation, low-energy boron implantation, and non-melt laser annealing is a promising method for forming ultrashallow p{sup +}/n junctions in silicon. In this study, shallow p{sup +}/n junctions were formed by non-melt annealing implanted samples using a green laser (visible laser). The dopant diffusion, activation, and recrystallization of an amorphous silicon layer were compared with those obtained in our previous study in which non-melt annealing was performed using a KrF excimer laser (UV laser). The experimental results reveal that only slight diffusion of boron in the tail region occurred in green-laser-annealed samples. In contrast, remarkable boron diffusion occurred in KrF-laser-annealed samples for very short annealing times. Recrystallization of the amorphous silicon layer was slower in green-laser-annealed samples than in KrF-laser-annealed samples. We consider the penetration depth and the pulse duration are important factors that may affect boron diffusion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Microhardness of boron, titanium, and nitrogen implanted steel

    International Nuclear Information System (INIS)

    Sowa, M.; Szyszko, W.; Sielanko, J.; Glusiec, L.

    1989-01-01

    Mechanically polished steel (1H18N9T) and (15GTM) samples are implanted with boron, titanium, and nitrogen ions, with dose ranging from 10 16 to 10 17 ions/cm 2 . The implantation energy varied from 100 to 250 keV. Implanted samples are heat-treated at 400 to 800 0 C in vacuum. The microhardness of implanted samples is measured by using a Hanneman tester with loads ranging from 2 to 40 g. The influence of annealing temperature on microhardness of the implanted layers is determined. The diffusion of boron from the implanted layers is also investigated by using the secondary ion mass spectrometer. The diffusion coefficients of boron in steel are determined. (author)

  7. Effect of laser pulsed radiation on the properties of implanted layers of silicon carbide

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Voron'ko, O.N.; Nojbert, F.; Potapov, E.N.

    1984-01-01

    Results are presented of investigation into pulsed laser radiation effects on the layers of GH polytype silicon carbide converted to amorphous state by implantation of boron and aluminium ions. The implantation doses were selected to be 5x10 16 for boron and 5x10 15 cm -2 for aluminium, with the ion energies being 60 and 80 keV, respectively. The samples annealed under nanosecond regime are stated to posseys neither photoluminescence (PL) nor cathodoluminescence (CL). At the same time the layers annealed in millisecond regime have a weak PL at 100 K and CL at 300 K. The PL and CL are observed in samples, laser-annealed at radiation energy density above 150-160 J/cm 2 in case of boron ion implantation and 100-120 J/cm 2 in case of aluminium ion implantation. Increasing the radiation energy density under the nanosecond regime of laser annealing results in the surface evaporation due to superheating of amorphous layers. Increasing the energy density above 220-240 J/cm 2 results in destruction of the samples

  8. Ion implantation of boron in germanium

    International Nuclear Information System (INIS)

    Jones, K.S.

    1985-05-01

    Ion implantation of 11 B + into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of 11 B + into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10 11 /cm 2 to 1 x 10 14 /cm 2 ) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses ( 12 /cm 2 ). Three damage related hole traps are produced by ion implantation of 11 B + . Two of these hole traps have also been observed in γ-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures ( 0 C). Boron, from room temperature implantation of BF 2 + into Ge, is not substitutionally active prior to a post implant annealing step of 250 0 C for 30 minutes. After annealing additional shallow acceptors are observed in BF 2 + implanted samples which may be due to fluorine or flourine related complexes which are electrically active

  9. Depth resolved investigations of boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  10. Modeling of interstitial diffusion of ion-implanted boron

    International Nuclear Information System (INIS)

    Velichko, O.I.; Knyazheva, N.V.

    2009-01-01

    A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)

  11. Improved tribological behavior of boron implanted Ti-6Al-4V

    International Nuclear Information System (INIS)

    Baker, N.P.; Walter, K.C.; Nastasi, M.

    1998-03-01

    Boron implanted of Ti6Al4V has been conducted at combinations of 32 and 40 keV to supplement that done previously at 75 keV. Shallower boron depth profiles with higher B-concentrations in the Ti64 surface have been obtained by tailoring the combinations of ion energy and dose. This work used three different ion energy and dose combinations of 4 x 10 17 B-at/cm 2 at 40 keV plus 2 x 10 17 B-at/cm 2 at 32 keV, 4 x 10 17 B-at/cm 2 at 40 keV, and 4 x 10 17 B-at/cm 2 at 32 keV plus 2 x 10 17 B-at/cm 2 at 40 keV. Comparisons are made between Ti6Al4V with a shallow implanted boron depth profile, Ti6Al4V with a deeper boron depth profile and nitrogen implanted using a plasma source ion implantation process. It has been previously shown that while boron implanted Ti64 has a ∼ 30% higher surface hardness than nitrogen implanted Ti64, the N-implantation reduced the wear coefficient of Ti64 by 25--120x, while B-implantation reduced the wear coefficient by 6.5x or less. The results show that no significant improvement is made in the wear resistance of boron implanted Ti6Al4V by increasing the concentration of boron at the surface from approximately 10% to 43%. Transmission electron microscopy (TEM) and selected area diffraction (SAD) indicated the formation of crystalline TiB in the implanted surface layer. Shallower depth profiles result in reductions of the Ti6Al4V wear coefficient by 6.5x or less which is the same result obtained earlier with the deeper boron depth profile. Surface hardness of Ti6Al4V with shallower boron depth profiles was improved approximately 10% compared to the results previously acquired with deeper boron depth profiles

  12. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  13. Laser activation of Ultra Shallow Junctions (USJ) doped by Plasma Immersion Ion Implantation (PIII)

    International Nuclear Information System (INIS)

    Vervisch, Vanessa; Larmande, Yannick; Delaporte, Philippe; Sarnet, Thierry; Sentis, Marc; Etienne, Hasnaa; Torregrosa, Frank; Cristiano, Fuccio; Fazzini, Pier Francesco

    2009-01-01

    Today, the main challenges for the realization of the source/drain extensions concern the ultra-low energy implantation and the activation of the maximum amount of dopants with a minimized diffusion. Among the different annealing processes, one solution is the laser thermal annealing. Many studies [F. Torregrosa, C. Laviron, F. Milesi, M. Hernandez, H. Faik, J. Venturini, Proc. 14th International Conference on Ion Implant Technology, 2004; M. Hernandez, J. Venturini, D. Zahorski, J. Boulmer, D. Debarre, G. Kerrien, T. Sarnet, C. Laviron, M.N Semeria, D. Camel, J.L Santailler, Appl. Surf. Sci. 208-209 (2003) 345-351] have shown that the association of Plasma Immersion Ion Implantation (PIII) and Laser Thermal Process (LTP) allows to obtain junctions of a few nanometers with a high electrical activation. All the wafers studied have been implanted by PULSION (PIII implanter developed by Ion Beam Services) with an acceleration voltage of 1 kV and a dose of 6 x 10 15 at./cm 2 . In this paper, we compare the annealing process achieved with three excimer lasers: ArF, KrF and XeCl with a wavelength of respectively 193, 248 and 308 nm. We analyse the results in terms of boron activation and junction depth. To complete this study, we have observed the effect of pre-amorphization implantation (PAI) before PIII process on boron implantation and boron activation. We show that Ge PAI implanted by classical beam line allows a decrease of the junction depth from 20 down to 12 nm in the as-implanted condition. Transmission Electron Microscopy (TEM) analyses were performed in order to study the structure of pre-amorphized silicon and to estimate the thickness of the amorphous layer. In order to determine the sheet resistance (R s ) and the junction depth (X j ), we have used the four-point probe technique (4PP) and secondary ion mass spectrometry (SIMS) analysis. To complete the electrical characterizations some samples have been analyzed by non-contact optical measurements. All the

  14. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs

    Energy Technology Data Exchange (ETDEWEB)

    Atila, Alptug, E-mail: alptugatila@yahoo.com [Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Halici, Zekai; Cadirci, Elif [Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240 (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, School of Veterinary Medicine, Ataturk University, Erzurum 25240 (Turkey); Palabiyik, Saziye Sezin [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Ay, Nuran [Department of Material Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir 26555 (Turkey); Bakan, Feray [Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956 (Turkey); Yilmaz, Sahin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul 34755 (Turkey)

    2016-01-01

    ABSTRACT: Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN–HA composites in rat femurs. All rats were (n = 126) divided into five experimental groups (n = 24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100HA (Group2), femoral defect + %2.5hBN + %97.5HA (Group3), femoral defect + %5hBN + %95HA (Group4), femoral defect + %10hBN + %90 HA (Group5), femoral defect + %100hBN (Group6). The femoral defect was created in the distal femur (3 mm drill-bit). Each implant group was divided into four different groups (n = 24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN–HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN–HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. - Highlights: • Nano-hBN–HA composites are new targets for biomaterial and implant bioengineers. • Serum boron levels were researched after implantation of nano-hBN–HA composites. • Implantation of hBN–HA composite did not result in increased serum boron levels. • The use of boron in composite form with HA did not change the stability of the implant.

  15. Molecular dynamic simulation on boron cluster implantation for shallow junction formation

    International Nuclear Information System (INIS)

    Yuan Li; Yu Min; Li Wei; Ji Huihui; Ren Liming; Zhan Kai; Huang Ru; Zhang Xing; Wang Yangyuan; Zhang Jinyu; Oka, Hideki

    2006-01-01

    Boron cluster ion implantation is a potential technology for shallow junction formation in integrated circuits manufacture. A molecular dynamic method for cluster implantation simulation, aiming at microelectronics application, is presented in this paper. Accurate geometric structures of boron clusters are described by the model, and the H atoms in clusters are included. A potential function taking the form of combining the ZBL and the SW potentials is presented here to model interaction among the atoms in the boron cluster. The impact of these models on cluster implantation simulation is investigated. There are notable impact on dopant distribution and amount of implantation defects with consideration of these models. The simulation on the distributions of B and H are verified by SIMS data

  16. A new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.; Park, C.; Yang, S.; Morris, S.; Do, V.; Tasch, F.

    1992-01-01

    We have developed a new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon. This paper reports that this new model is based on the dual Pearson semi-empirical implant depth profile model and the UT-MARLOWE Monte Carlo boron ion implantation model. This new model can predict with very high computational efficiency two-dimensional as-implanted boron profiles as a function of energy, dose, tilt angle, rotation angle, masking edge orientation, and masking edge thickness

  17. Monte Carlo simulation of boron-ion implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.

    1991-01-01

    A physically based Monte Carlo boron implantation model developed comprehends previously neglected but important implant parameters such as native oxide layers, wafer temperature, beam divergence, tilt angle, rotation (twist) angle, and dose, in addition to energy. This model uses as its foundation the MARLOWE Monte Carlo simulation code developed at Oak Ridge National Laboratory for the analysis of radiation effects in materials. This code was carefully adapted for the simulation of ion implantation, and a number of significant improvements have been made, including the addition of atomic pair specific interatomic potentials, the implementation of a newly developed local electron concentration dependent electronic stopping model, and the implementation of a newly developed cumulative damage model. This improved version of the code, known as UT-MARLOWE, allows boron implantation profiles to be accurately predicted as a function of energy, tilt angle, rotation angle, and dose. This code has also been used in the development and implementation of an accurate and efficient two-dimensional boron implantation model

  18. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  19. Study of the effects of focused high-energy boron ion implantation in diamond

    Science.gov (United States)

    Ynsa, M. D.; Agulló-Rueda, F.; Gordillo, N.; Maira, A.; Moreno-Cerrada, D.; Ramos, M. A.

    2017-08-01

    Boron-doped diamond is a material with a great technological and industrial interest because of its exceptional chemical, physical and structural properties. At modest boron concentrations, insulating diamond becomes a p-type semiconductor and at higher concentrations a superconducting metal at low temperature. The most conventional preparation method used so far, has been the homogeneous incorporation of boron doping during the diamond synthesis carried out either with high-pressure sintering of crystals or by chemical vapour deposition (CVD) of films. With these methods, high boron concentration can be included without distorting significantly the diamond crystalline lattice. However, it is complicated to manufacture boron-doped microstructures. A promising alternative to produce such microstructures could be the implantation of focused high-energy boron ions, although boron fluences are limited by the damage produced in diamond. In this work, the effect of focused high-energy boron ion implantation in single crystals of diamond is studied under different irradiation fluences and conditions. Micro-Raman spectra of the sample were measured before and after annealing at 1000 °C as a function of irradiation fluence, for both superficial and buried boron implantation, to assess the changes in the diamond lattice by the creation of vacancies and defects and their degree of recovery after annealing.

  20. The role of the substrate in the high energy boron implantation damage recovering

    International Nuclear Information System (INIS)

    Mica, I.; Di Piazza, L.; Laurin, L.; Mariani, M.; Mauri, A.G.; Polignano, M.L.; Ricci, E.; Sammiceli, F.; Spoldi, G.

    2009-01-01

    In this work the role of the Si substrate in the high energy boron implantation damage recovering is studied. The boron implants were carried out in Czochralski grown (1 0 0) polished Si substrates as well as in epitaxial Si layers grown on (1 0 0) Si by chemical vapor deposition. The boron implantation dose was 2 x 10 14 cm -2 and the implantation energy was 600 keV. The recovery annealing was a furnace annealing at 1000 deg. C for 40 min. The defects formed by high energy boron implantation have been observed with transmission electron microscopy (TEM). In order to increase the statistics some junctions were formed on the buried p-well and electrically characterized. For the epitaxial wafers it was found that the number and the size of the dislocations change according to the doping of the substrate. For the Czochralski wafers it was found that the morphology and the size of the dislocations change according to the presence of the wafer pre-annealing (whether conventional furnace annealing or Magic Denuded Zone process).

  1. Dopant redistribution and electrical activation in silicon following ultra-low energy boron implantation and excimer laser annealing

    International Nuclear Information System (INIS)

    Whelan, S.; La Magna, A.; Privitera, V.; Mannino, G.; Italia, M.; Bongiorno, C.; Fortunato, G.; Mariucci, L.

    2003-01-01

    Excimer laser annealing (ELA) of ultra-low-energy (ULE) B-ion implanted Si has been performed. High-resolution transmission electron microscopy has been used to assess the as-implanted damage and the crystal recovery following ELA. The electrical activation and redistribution of B in Si during ELA has been investigated as a function of the laser energy density (melted depth), the implant dose, and the number of laser pulses (melt time). The activated and retained dose has been evaluated with spreading resistance profiling and secondary ion mass spectrometry. A significant amount of the implanted dopant was lost from the sample during ELA. However, the dopant that was retained in crystal material was fully activated following rapid resolidification. At an atomic concentration below the thermodynamic limit, the activation efficiency (dose activated/dose implanted into Si material) was a constant for a fixed melt depth, irrespective of the dose implanted and hence the total activated dose was raised as the implant dose was increased. The electrical activation was increased for high laser energy density annealing when the dopant was redistributed over a deeper range

  2. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs.

    Science.gov (United States)

    Atila, Alptug; Halici, Zekai; Cadirci, Elif; Karakus, Emre; Palabiyik, Saziye Sezin; Ay, Nuran; Bakan, Feray; Yilmaz, Sahin

    2016-01-01

    Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN-HA composites in rat femurs. All rats were (n=126) divided into five experimental groups (n=24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100 HA (Group2), femoral defect + %2.5 hBN + %97.5 HA (Group3), femoral defect + %5 hBN + %95 HA (Group4), femoral defect + %10 hBN + %90 HA (Group5), femoral defect + %100 hBN (Group6). The femoral defect was created in the distal femur (3mm drill-bit). Each implant group was divided into four different groups (n=24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN-HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN-HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Sliding behavior of boron ion-implanted 304 stainless steel

    International Nuclear Information System (INIS)

    Shrivastava, S.; Jain, A.; Singh, C.

    1995-01-01

    The authors have studied the influence of boron ion implantation on the friction and wear behavior of 304 stainless steel. The authors find an increase in microhardness following implantation. The authors also observed a reduction in wear and coefficient of friction. They have measured the microhardness, inside the wear tracks and have found a large increase in the values in the unimplanted specimens and only a small increase in the implanted specimens. These observations have thrown light on the change in the wear mechanism between the two cases. The authors have also used Scanning Electron Microscopy and Energy Dispersive Analysis of X-rays, to characterize the differences in the mode of wear. The change in wear behavior is brought about by the ability of boron to prevent the surface from transforming into a hard brittle layer during wear

  4. Reducing the influence of STI on SONOS memory through optimizing added boron implantation technology

    International Nuclear Information System (INIS)

    Xu Yue; Yan Feng; Li Zhiguo; Yang Fan; Wang Yonggang; Chang Jianguang

    2010-01-01

    The influence of shallow trench isolation (STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments. It has been found that the performance of edge memory cells adjacent to STI deteriorates remarkably. The compressive stress and boron segregation induced by STI are thought to be the main causes of this problem. In order to mitigate the STI impact, an added boron implantation in the STI region is developed as a new solution. Four kinds of boron implantation experiments have been implemented to evaluate the impact of STI on edge cells, respectively. The experimental results show that the performance of edge cells can be greatly improved through optimizing added boron implantation technology. (semiconductor devices)

  5. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  6. The fraction of substitutional boron in silicon during ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Caturla, M.J.; Johnson, M.D.; Diaz de la Rubia, T.

    1998-01-01

    We present results from a kinetic Monte Carlo simulation of boron transient enhanced diffusion (TED) in silicon. Our approach avoids the use of phenomenological fits to experimental data by using a complete and self-consistent set of values for defect and dopant energetics derived mostly from ab initio calculations. The results predict that, during annealing of 40 keV B-implanted Si at 800 degree C, there exists a time window during which all the implanted boron atoms are substitutional. At earlier or later times, the interactions between free silicon self-interstitials and boron atoms drive the growth of boron clusters and result in an inactive boron fraction. The results show that the majority of boron TED takes place during the growth period of interstitial clusters and not during their dissolution. copyright 1998 American Institute of Physics

  7. Depth profiling of boron implanted silicon by positron beam

    International Nuclear Information System (INIS)

    Oevuenc, S.

    2004-01-01

    Positron depth profiling analyses of low energy implants of silicon aim to observe tbe structure and density of the vacancies generating by implantation and the effect of annealing. This work present the results to several set of data starting S and W parameters. Boron implanted Silicon samples with different implantation energies,20,22,24,and 26 keV are analyzed by Slow positron beam (0-40 keV and 10 5 e + /s )(Variable Energy Positron) at the Positron Centre Delf-HOLLAND

  8. Comparison of boron and neon damage effects in boron ion-implanted resistors

    International Nuclear Information System (INIS)

    MacIver, B.A.

    1975-01-01

    Boron and neon damage implants were used in fabricating integrated-circuit resistors in silicon. Resistor properties were studied as functions of damaging ion species and dose. Sheet resistances in the 10 000 Ω/square range were obtained with low temperature and voltage sensitivities and d.c. isolation. (author)

  9. Field isolation for GaN MOSFETs on AlGaN/GaN heterostructure with boron ion implantation

    International Nuclear Information System (INIS)

    Jiang, Y; Wang, Q P; Wang, D J; Tamai, K; Li, L A; Ao, J-P; Ohno, Y; Shinkai, S; Miyashita, T; Motoyama, S-I

    2014-01-01

    We report the investigation of boron ion implantation as a device field isolation process for GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure. In the mesa isolation region of a bar-type MOSFET, a parasitic MOS-channel existed and widened the designed channel width, which would result in an overestimated mobility compared with a ring-type MOSFET. After boron ions implantation in the isolation region, the overestimation of field-effect mobility of bar-type MOSFETs was eliminated. The sub-threshold characteristics and on-state drain current of the bar-type MOSFETs coincide with the ring-type devices. Long-channel ring-type MOSFETs, with and without ion implantation, were fabricated on the recess region to evaluate the sub-threshold characteristics. The MOSFETs with boron ions implanted into the recess region showed a low drain current up to the gate bias of 10V. The result indicated that boron ion implantation prevented the formation of parasitic MOS-channel in the isolation region and achieved field isolation. The current–voltage characteristics of MOSFETs with the normal recess condition demonstrated no degradation of device performance after boron ions implanted into the isolation region. Boron ion implantation by further optimization can be a field isolation method for GaN MOSFETs. (paper)

  10. Defect formation in oxygen- and boron- implanted MOS structures after gamma irradiation

    CERN Document Server

    Kaschieva, S; Skorupa, W

    2003-01-01

    The effect of gamma irradiation on the interface states of ion-implanted MOS structures is studied by means of the thermally stimulated charge method. 10-keV oxygen- or boron- (O sup + or B sup +) implanted samples are gamma-irradiated with sup 6 sup 0 Co. Gamma irradiation creates electron levels at the SiSiO sub 2 interface of the samples in a different way depending on the type of the previously implanted atoms (O sup + or B sup +). The results demonstrate that the concentration of the shallower levels (in the silicon band gap) of oxygen-implanted samples increases more effectively after gamma irradiation. The same irradiation conditions increase more intensively the concentration of the deeper levels (in the silicon band gap) of boron-implanted samples. (orig.)

  11. Boron-enhanced diffusion in excimer laser annealed Si

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Privitera, V.; Fortunato, G.; Mariucci, L.

    2004-01-01

    The effect of excimer laser annealing (ELA) and rapid thermal annealing (RTA) on B redistribution in B-implanted Si has been studied by secondary ion mass spectrometry (SIMS) and spreading resistance probe (SRP). B has been implanted with an energy of 1 keV and a dose of 10 16 cm -2 forming a distribution with a width of 20-30 nm and a peak concentration of ∼5 x 10 21 cm -3 . It has been found that ELA with 10 pulses of the energy density of 850 mJ/cm 2 results in a uniform B distribution over the ELA-molten region with an abrupt profile edge. SRP measurements demonstrate good activation of the implanted B after ELA, with the concentration of the activated fraction (∼10 21 cm -3 ) exceeding the solid solubility level. RTA (30 s at 1100 deg. C) of the as-implanted and ELA-treated samples leads to a diffusion of B with diffusivities exceeding the equilibrium one and the enhancement is similar for both of the samples. It is also found that RTA decreases the activated B in the ELA-treated sample to the solid solubility limit (2 x 10 20 cm -3 ). The similarity of the B diffusivity for the as-implanted and ELA-treated samples suggests that the enhancement of the B diffusivity is due to the so-called boron-enhanced diffusion (BED). Possible mechanisms of BED are discussed

  12. Oxidation-enhanced diffusion of boron in very low-energy N2+-implanted silicon

    Science.gov (United States)

    Skarlatos, D.; Tsamis, C.; Perego, M.; Fanciulli, M.

    2005-06-01

    In this article we study the interstitial injection during oxidation of very low-energy nitrogen-implanted silicon. Buried boron δ layers are used to monitor the interstitial supersaturation during the oxidation of nitrogen-implanted silicon. No difference in boron diffusivity enhancement was observed compared to dry oxidation of nonimplanted samples. This result is different from our experience from N2O oxynitridation study, during which a boron diffusivity enhancement of the order of 20% was observed, revealing the influence of interfacial nitrogen on interstitial kinetics. A possible explanation may be that implanted nitrogen acts as an excess interstitial sink in order to diffuse towards the surface via a non-Fickian mechanism. This work completes a wide study of oxidation of very low-energy nitrogen-implanted silicon related phenomena we performed within the last two years [D. Skarlatos, C. Tsamis, and D. Tsoukalas, J. Appl. Phys. 93, 1832 (2003); D. Skarlatos, E. Kapetanakis, P. Normand, C. Tsamis, M. Perego, S. Ferrari, M. Fanciulli, and D. Tsoukalas, J. Appl. Phys. 96, 300 (2004)].

  13. Effect of radiation induced defects and incompatibility elastic stresses on the diffusion of ion implantated boron in silicon at the pulse annealing

    International Nuclear Information System (INIS)

    Stel'makh, V.F.; Suprun-Belevich, Yu.R.; Chelyadinskij, A.R.

    1987-01-01

    For determination of radiation defects effect on diffusion of the implanted boron in silicon at the pulse annealing, silicon crystals, implanted with boron, preliminary irradiated by silicon ions of different flows for checked defects implantation, were investigated. Silicon crystals additionally implanted by Ge + ions were investigated to research the effect of the incompatibility elastic stresses, emerging in implanted structures due to lattice periods noncoincidence in matrix and alloyed layers, on implanted boron diffusion. It is shown, that abnormally high values of boron diffusion coefficients in silicon at the pulse annealing are explained by silicon interstitial atom participation in redistribution of diffusing boron atoms by two diffusion channels - interstitial and vacation - and by incompatibility elastic stresses effect on diffusion

  14. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, So Young; Kim, Jong Do [Korea Maritime and Ocean University, Busan (Korea, Republic of); Kim, Jong Su [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-01-15

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained.

  15. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    International Nuclear Information System (INIS)

    Choi, So Young; Kim, Jong Do; Kim, Jong Su

    2015-01-01

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained

  16. The effect of boron implantation on the corrosion behaviour, microhardness and contact resistance of copper and silver surfaces

    International Nuclear Information System (INIS)

    Henriksen, O.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.

    1986-01-01

    In order to investigate the influence of boron implantation on the corrosion resistance of electrical contacts, a number of pure copper, pure silver and copper edge connector samples have been implanted with boron (40 keV) to fluences of 5.10 20 m -2 and 2.10 21 m -2 . Atmospheric corrosion tests of the implanted species were conducted using the following exposures: H 2 S (12.5 ppm, 4 days), SO 2 (25 ppm, 21 days), saltfog (5% NaCl, 1 day), moist air (93% RH, 56 days), and hot/dry air (70 C, 56 days). The boron implantations lead to a significant reduction in the sulphidation rate of copper and silver. The corrosive film formed during exposure in H 2 S and SO 2 atmospheres is confined to pitted regions on the implanted areas, while a thick and relatively uniform film formation is observed on the unimplanted samples. The corrosion resistance of copper and silver in saltfog atmosphere is somewhat improved by boron implantation, whilst the results from exposures to moist air or hot/dry air are inconclusive. The improved corrosion behaviour is accompanied by an increase in the contact resistance and in the microhardness of the implanted samples. (orig.)

  17. Flash lamp annealing of ion implanted boron profiles

    International Nuclear Information System (INIS)

    Wieser, E.; Syhre, H.; Ruedenauer, F.G.; Steiger, W.

    1983-05-01

    The diffusion behaviour of ion implanted boron profiles (5x10E15 B/cm 2 , 50keV) in silicon at 800 0 C and 900 0 C has been compared for samples with and without foregoing flahs - lamp annealing of the radiation damage. The observed differences are discussed with respect to mechanisms of diffusion inhibition in the high concentration region. (Author) [de

  18. Mechanical and Structural Properties of Fluorine-Ion-Implanted Boron Suboxide

    OpenAIRE

    Machaka, Ronald; Mwakikunga, Bonex W.; Manikandan, Elayaperumal; Derry, Trevor E.; Sigalas, Iakovos; Herrmann, Mathias

    2012-01-01

    Results on a systematic study on the effects of ion implantation on the near-surface mechanical and structural properties of boron suboxide (B 6O) prepared by uniaxial hot pressing are reviewed. 150keV fluorine ions at fluences of up to 5.0 × 10 16ions/cm 2 were implanted into the ultrahard ceramic material at room temperature and characterized using Raman spectroscopy, atomic force microscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Evidence of ion-beam-as...

  19. Highly-focused boron implantation in diamond and imaging using the nuclear reaction {sup 11}B(p, α){sup 8}Be

    Energy Technology Data Exchange (ETDEWEB)

    Ynsa, M.D., E-mail: m.ynsa@uam.es [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física Aplicada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Ramos, M.A. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física de la Materia Condensada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Skukan, N. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia); Torres-Costa, V. [Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Física Aplicada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Jakšić, M. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia)

    2015-04-01

    Diamond is an especially attractive material because of its gemological value as well as its unique mechanical, chemical and physical properties. One of these properties is that boron-doped diamond is an electrically p-type semiconducting material at practically any boron concentration. This property makes it possible to use diamonds for multiple industrial and technological applications. Boron can be incorporated into pure diamond by different techniques including ion implantation. Although typical energies used to dope diamond by ion implantation are about 100 keV, implantations have also been performed with energies above MeV. In this work CMAM microbeam setup has been used to demonstrate capability to implant boron with high energies. An 8 MeV boron beam with a size of about 5 × 3 μm{sup 2} and a beam current higher than 500 pA has been employed while controlling the beam position and fluence at all irradiated areas. The subsequent mapping of the implanted boron in diamond has been obtained using the strong and broad nuclear reaction {sup 11}B(p, α){sup 8}Be at E{sub p} = 660 keV. This reaction has a high Q-value (8.59 MeV for α{sub 0} and 5.68 MeV for α{sub 1}) and thus is almost interference-free. The sensitivity of the technique is studied in this work.

  20. Boron- and iron-bearing molecules in laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Eliezer, N.; Groisman, Y.

    2015-08-01

    Boron combines with alkali-earth elements, such as Ca, Mg, and Sr and with oxygen to form molecules in LIP of boron-bearing minerals with strong and characteristic band emission. It may be supposed that those bands are of CaBO{sub 2}, MgBO{sub 2} and SrBO{sub 2} type. Besides, emission of BO, BO{sub 2} and FeO is also detected. - Highlights: • We studied laser-induced breakdown spectra of B with Ca, Mg and Sr in air. • Emission of polyatomic molecules was found. • Molecules of FeO were found in laser-induced plasma in air.

  1. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  2. Study of shallow junction formation by boron-containing cluster ion implantation of silicon and two-stage annealing

    Science.gov (United States)

    Lu, Xin-Ming

    Shallow junction formation made by low energy ion implantation and rapid thermal annealing is facing a major challenge for ULSI (ultra large scale integration) as the line width decreases down to the sub micrometer region. The issues include low beam current, the channeling effect in low energy ion implantation and TED (transient enhanced diffusion) during annealing after ion implantation. In this work, boron containing small cluster ions, such as GeB, SiB and SiB2, was generated by using the SNICS (source of negative ion by cesium sputtering) ion source to implant into Si substrates to form shallow junctions. The use of boron containing cluster ions effectively reduces the boron energy while keeping the energy of the cluster ion beam at a high level. At the same time, it reduces the channeling effect due to amorphization by co-implanted heavy atoms like Ge and Si. Cluster ions have been used to produce 0.65--2keV boron for low energy ion implantation. Two stage annealing, which is a combination of low temperature (550°C) preannealing and high temperature annealing (1000°C), was carried out to anneal the Si sample implanted by GeB, SiBn clusters. The key concept of two-step annealing, that is, the separation of crystal regrowth, point defects removal with dopant activation from dopant diffusion, is discussed in detail. The advantages of the two stage annealing include better lattice structure, better dopant activation and retarded boron diffusion. The junction depth of the two stage annealed GeB sample was only half that of the one-step annealed sample, indicating that TED was suppressed by two stage annealing. Junction depths as small as 30 nm have been achieved by two stage annealing of sample implanted with 5 x 10-4/cm2 of 5 keV GeB at 1000°C for 1 second. The samples were evaluated by SIMS (secondary ion mass spectrometry) profiling, TEM (transmission electron microscopy) and RBS (Rutherford Backscattering Spectrometry)/channeling. Cluster ion implantation

  3. Suppression of boron diffusion using carbon co-implantation in DRAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Suk Hun [School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si 440-746 (Korea, Republic of); Park, Se Geun; Kim, Shin Deuk; Jung, Hyuck-Chai; Kim, Il Gweon [Memory Division, Samsung Electronics Co. Ltd., Hwasung-si 445-330 (Korea, Republic of); Kang, Dong-Ho [School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si 440-746 (Korea, Republic of); Kim, Dae Jung; Lee, Kyu Pil; Choi, Joo Sun [Memory Division, Samsung Electronics Co. Ltd., Hwasung-si 445-330 (Korea, Republic of); Baek, Jung-Woo [Industrial Engineering Department, Chosun University, Gwangju-si 501-759 (Korea, Republic of); Choi, Moonsuk [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, South Korea (Korea, Republic of); Park, Yongkook [School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si 440-746 (Korea, Republic of); Choi, Changhwan, E-mail: cchoi@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, South Korea (Korea, Republic of); Park, Jin-Hong, E-mail: jhpark9@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si 440-746 (Korea, Republic of)

    2016-10-15

    Highlights: • The impact of Ge + C co-implantation on dopant diffusion was investigated. • DIBL and V{sub TH} variation was improved by Ge + C co-implantation. • The V{sub TH} mismatch and the write characteristics were improved in the DRAM device. - Abstract: In this paper, germanium pre-amorphization implantation (PAI) and carbon co-implantation (Ge + C co-IIP) were applied to suppress boron diffusion. The corresponding characteristics were investigated in terms of the dopant diffusion, device performance, and its application to dynamic random access memory (DRAM). A shallow dopant profile was indicated and the threshold voltage (V{sub TH}) was reduced by approximately 45 mV by Ge + C co-IIP. In the DRAM device, the V{sub TH} mismatch of the sense amplifier NMOS pairs was reduced by approximately 15% and the write characteristics were improved two-fold.

  4. Diffusion modelling of low-energy ion-implanted BF{sub 2} in crystalline silicon: Study of fluorine vacancy effect on boron diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, J. [Laboratoire Electronique Microtechnologie et Instrumentation (LEMI), University of Rouen, 76821 Mont Saint Aignan (France)], E-mail: Jerome.Marcon@univ-rouen.fr; Merabet, A. [Laboratoire de Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, 19000 Setif (Algeria)

    2008-12-05

    We have investigated and modelled the diffusion of boron implanted into crystalline silicon in the form of boron difluoride BF{sub 2}{sup +}. We have used published data for BF{sub 2}{sup +} implanted with an energy of 2.2 keV in crystalline silicon. Fluorine effects are considered by using vacancy-fluorine pairs which are responsible for the suppression of boron diffusion in crystalline silicon. Following Uematsu's works, the simulations satisfactory reproduce the SIMS experimental profiles in the 800-1000 deg. C temperature range. The boron diffusion model in silicon of Uematsu has been improved taking into account the last experimental data.

  5. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao; Shen Ji

    2011-01-01

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  6. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China); Shen Ji, E-mail: shenji@ustc.edu.c [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2011-02-15

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  7. Laser-time resolved fluorimetric determination of trace of boron in U3O8

    International Nuclear Information System (INIS)

    Xu Yongyuan; Wang Yulong; Wang Qin

    1988-01-01

    In this work, a laser-time resolved fluorimetric determinatin of trace of boron in U 3 O 8 had been developed. The boron complex with dibenzoyl methane (DBM) in a suitable medium is excited by a small nitrogen laser and emits the delay fluorescence with lifetime of 2 ms which is much longer than that of the fluorescence of uranium. Since the fluorescence of uranium doesn't interfere with determination of boron in the time resolved fluorimetric method boron need not be separated from uranium in advance. Thus the determination is very rapid and simple. The limit of determination is 0.02 ngB/ml. When 10 mgU is taken, 0.01 ppm of boron in uranium can be determined. Several samples of U 3 O 8 with boron content from 0.04 to 0.5 ppm have been determined by using this method. The results of determination have been accordant with other methods

  8. Recoil implantation of boron into silicon by high energy silicon ions

    Science.gov (United States)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  9. Defect and dopant depth profiles in boron-implanted silicon studied with channeling and nuclear reaction analysis

    NARCIS (Netherlands)

    Vos, M.; Boerma, D.O.; Smulders, P.J.M.; Oosterhoff, S.

    1986-01-01

    Single crystals of silicon were implanted at RT with 1 MeV boron ions to a dose of 1 × 1015 ions/cm2. The depth profile of the boron was measured using the 2060-keV resonance of the 11B(α, n)14N nuclear reaction. The distribution of the lattice disorder as a function of depth was determined from

  10. Boron Profile Sharpening in Ultra-Shallow p+-n Junction Produced by Plasma Immersion Ion Implantation from BF3 Plasma

    International Nuclear Information System (INIS)

    Lukichev, V.; Rudenko, K.; Orlikovsky, A.; Pustovit, A.; Vyatkin, A.

    2008-01-01

    We have investigated plasma immersion ion implantation (PI 3 ) of boron with energies of 500 eV (doses up to 2x10 15 cm -2 ) from BF 3 plasma with He pre-amorphizing implantation (PAI)(energy 3 keV, dose 5x10 16 cm -2 ). Implanted samples were subjected to RTA (T = 900 to 1050 deg. C, t = 2 to 24 sec and spike anneal). SIMS analysis of boron profiles revealed its anomalous behavior. For short RTA times the profile tail (below 5x10 19 cm -3 ) moves toward the surface and then, as in the usual diffusion, toward the bulk at longer annealing times.

  11. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    International Nuclear Information System (INIS)

    Schrof, Julian; Müller, Ralph; Benick, Jan; Hermle, Martin; Reedy, Robert C.

    2015-01-01

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr 3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr 3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr 3

  12. Low energy implantation of boron with decaborane ions

    Science.gov (United States)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  13. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    Directory of Open Access Journals (Sweden)

    Derbouz K.

    2013-09-01

    Full Text Available In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  14. Laser annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    White, C.W.; Narayan, J.; Young, R.T.

    1978-11-01

    The physical and electrical properties of ion implanted silicon annealed with high powered ruby laser radiation are summarized. Results show that pulsed laser annealing can lead to a complete removal of extended defects in the implanted region accompanied by incorporation of dopants into lattice sites even when their concentration far exceeds the solid solubility limit

  15. Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel

    Science.gov (United States)

    Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon

    2018-05-01

    The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.

  16. Implanted He retention and release from boronized layers

    International Nuclear Information System (INIS)

    Doyle, B.L.; Walsh, D.S.; Wampler, W.R.

    1992-01-01

    3 He has been implanted at an energy of 3 keV into amorphous hydrogenated boron-carbon (a-BC) films deposited by rf sputtering onto single crystal Si substrates. The initial composition of the films was analyzed by nuclear-enhanced backscattering spectrometry to be B 2 C with ∝20% H and ∝10% O. The areal density of the implanted and retained 3 He was measured in situ by a new ion beam analysis technique using the 3 He( 3 He, pp) three-body nuclear reaction. The He trapping or pumping efficiency at room temperature is only 3.4% for low fluence implants and the a-BC layer saturates with He at a fluence of 5x10 17 He/cm 2 . At this saturation fluence, only 3.1x10 15 He/cm 2 is retained in the film. Isochronal annealing of the implanted samples reveals a distributed release of implanted He at ∝200deg C, which corresponds to a trap activation energy of 1.65±0.25 eV. 3 He was trapped less efficiently at 250deg C than at room temperature and exhibited a saturated retention of 8.6x10 14 He/cm 2 . These results indicate that wall pumping should play only a minor role in the interpretation of the Textor He-pump experiment carried out earlier this year. The results also show that the unintentional deposition of a-Bc, onto He pumping plates could adversely affect the operation of such devices, and should therefore be avoided. (orig.)

  17. Detection of boron in simulated corrosion products by using a laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Song, K.; Yeon, J-W.; Jung, S-H.; Hwang, J.; Jung, E-C.

    2010-01-01

    In nuclear power plants, many methods for detection of coolant leakage have been developed and employed for the safe operation. However, these methods have many limitations for analyzing and dealing with the corrosion products due to the high radioactivity. LIBS (Laser-induced breakdown spectroscopy) offer a remote and on-site elemental analysis including the boron in the corrosion products with no sample preparation. In this study, we investigated the feasibility of detecting boron and analyzing an elemental composition of boron-containing iron oxides with the LIBS, in order to develop a coolant leakage detection system. First, we prepared five different boron-containing iron oxides and the element ratios were determined by using ICP-AES (inductive coupled plasma-atomic emission spectrometer). After this, the laser induced emission spectra of these iron oxides were obtained by using a 266 nm Nd:YAG laser. The B/Fe ratios of the oxides were determined by comparing the intensities of the B emission peak at 249.844 nm with those of the Fe peak at 250.217 nm as an internal reference. It was confirmed that the B contents in the oxides could be analyzed over 0.1 wt% by the laser induced breakdown spectroscopic technique. (author)

  18. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    OpenAIRE

    Pasquale Russo Spena

    2017-01-01

    This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests wer...

  19. X-ray analysis of temperature induced defect structures in boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  20. Investigation of optimized experimental parameters including laser wavelength for boron measurement in photovoltaic grade silicon using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Darwiche, S.; Benmansour, M.; Eliezer, N.; Morvan, D.

    2010-01-01

    The quantification of boron and other impurities in photovoltaic grade silicon was investigated using the LIBS technique with attention to the laser wavelength employed, temporal parameters, and the nature of the ambient gas. The laser wavelength was found to have a moderate effect on the performance of the process, while the type of purge gas and temporal parameters had a strong effect on the signal-to-background ratio (SBR) of the boron spectral emission, which was used to determine the boron concentration in silicon. The three parameters are not independent, meaning that for each different purge gas, different optimal temporal parameters are observed. Electron density was also calculated from Stark broadening of the 390.5 nm silicon emission line in order to better understand the different performances observed when using different gases and gating parameters. Calibration curves were made for boron measurement in silicon using certified standards with different purge gases while using the temporal parameters which had been optimized for that gas. By comparing the calibration curves, it was determined that argon is superior to helium or air for use as the analysis chamber purge gas with an UV laser.

  1. X-ray diffuse scattering study of the kinetics of stacking fault growth and annihilation in boron-implanted silicon

    Science.gov (United States)

    Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.

    2002-10-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.

  2. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Lee, Dong-Hyoung; Han, Sol-Chan; Kim, Tae-Hyeong; Yun, Jong-Il

    2011-12-15

    We have applied a dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) to sensitively detect concentrations of boron and lithium in aqueous solution. Sequential laser pulses from two separate Q-switched Nd:YAG lasers at 532 nm wavelength have been employed to generate laser-induced plasma on a water jet. For achieving sensitive elemental detection, the optimal timing between two laser pulses was investigated. The optimum time delay between two laser pulses for the B atomic emission lines was found to be less than 3 μs and approximately 10 μs for the Li atomic emission line. Under these optimized conditions, the detection limit was attained in the range of 0.8 ppm for boron and 0.8 ppb for lithium. In particular, the sensitivity for detecting boron by excitation of laminar liquid jet was found to be excellent by nearly 2 orders of magnitude compared with 80 ppm reported in the literature. These sensitivities of laser-induced breakdown spectroscopy are very practical for the online elemental analysis of boric acid and lithium hydroxide serving as neutron absorber and pH controller in the primary coolant water of pressurized water reactors, respectively.

  3. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    International Nuclear Information System (INIS)

    Barbara, D.; Prawer, S.; Jamieson, D.N.

    1996-01-01

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, β-C 3 N 4 , is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs

  4. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, D.; Prawer, S.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, {beta}-C{sub 3}N{sub 4}, is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs.

  5. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, D; Prawer, S; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, {beta}-C{sub 3}N{sub 4}, is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs.

  6. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  7. In Vitro Laser Treatment Platform Construction with Dental Implant Thread Surface on Bacterial Adhesion for Peri-Implantitis

    Directory of Open Access Journals (Sweden)

    Hsien-Nan Kuo

    2017-01-01

    Full Text Available This study constructs a standard in vitro laser treatment platform with dental implant thread surface on bacterial adhesion for peri-implantitis at different tooth positions. The standard clinical adult tooth jaw model was scanned to construct the digital model with 6 mm bone loss depth on behalf of serious peri-implantitis at the incisor, first premolar, and first molar. A cylindrical suite connected to the implant and each tooth root in the jaw model was designed as one experimental unit set to allow the suite to be replaced for individual bacterial adhesion. The digital peri-implantitis and suite models were exported to fulfill the physical model using ABS material in a 3D printer. A 3 mm diameter specimen implant on bacterial adhesion against Escherichia coli was performed for gram-negative bacteria. An Er:YAG laser, working with a chisel type glass tip, was moved from the buccal across the implant thread to the lingual for about 30 seconds per sample to verify the in vitro laser treatment platform. The result showed that the sterilization rate can reach 99.3% and the jaw model was not damaged after laser irradiation testing. This study concluded that using integrated image processing, reverse engineering, CAD system, and a 3D printer to construct a peri-implantitis model replacing the implant on bacterial adhesion and acceptable sterilization rate proved the feasibility of the proposed laser treatment platform.

  8. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  9. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  10. Separation of boron isotopes by infrared laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya

    1995-01-01

    Vibrationally excited chemical reaction of boron tribromide (BBr 3 ) with oxygen (O 2 ) is utilized to separate 10 B and 11 B. Infrared absorption of 10 BBr 3 is at 11.68μ and that of 11 BBr 3 is at 12.18μ. The wavelengths of ammonia laser made in the laboratory were mainly 11.71μ, 12.08μ and 12.26μ. Irradiation was done by focussing the laser with ZnSe lens on the sample gas (mixture of 1.5 torr of natural BBr 3 and 4.5 torr of O 2 ) in the reaction cell. Depletions of 10 BBr 3 and 11 BBr 3 due to chemical reaction of BBr 3 with O 2 was measured with infrared spectrometer. The maximum separation factor β( 10 B/ 11 B) obtained was about 4.5 (author)

  11. Boron diffusion in Ge+ premorphized and BF2 implanted Si(001)

    International Nuclear Information System (INIS)

    Zou, L.F.; Acosta-Ortiz, S.E.; Zou, L.X.; Regalado, L.E.; Sun, D.Z.; Wang, Z.G.

    1998-01-01

    The annealing behavior of Si implanted with Ge and then BF 2 has been characterized by double crystal X-ray diffraction (DCXRD) and secondary ion mass spectroscopy (SIMS). The results show that annealing at 600 Centigrade for 60 minutes can only remove a little damage induced by implantation and nearly no redistribution of Ge and B atoms has occurred during the annealing. The initial crystallinity of Si is fully recovered after annealing at 950 Centigrade for 60 minutes and accompanied by Ge diffusion. Very shallow boron junction depth has been formed. When annealing temperature rises to 1050 Centigrade, B diffusion enhances, which leads to a deep diffusion and good distribution of B atoms into the Si substrate. The X-ray diffraction (004) rocking curves from the samples annealed at 1050 Centigrade for 60 minutes display two Si Ge peaks, which may be related to the B concentration profiles. (Author)

  12. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-10-01

    Full Text Available This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests were based on a L9(34 orthogonal array design, with the effects of the process parameters on the quality responses being determined by means of a statistical analysis of variance (ANOVA. Quadratic mathematical models were developed to determine the relationships between the cutting parameters and the quality responses. Finally, a routine based on an optimization criterion was employed to predict the optimal setting of cutting factors and its effect on the quality responses. A confirmation experiment was conducted to verify the appropriateness of the optimization routine. The results show that all of the examined process parameters have a key role in determining the cut quality of hot stamping boron steel sheets, with cutting speed and their interactions having the most influencing effects. Particularly, interactions can have an opposite behavior for different levels of the process parameters.

  13. Laser surface modification of Ti implants to improve osseointegration

    International Nuclear Information System (INIS)

    Marticorena, M; Corti, G; Olmedo, D; Guglielmotti, M B; Duhalde, S

    2007-01-01

    Commercially Pure Titanium foils, were irradiated using a pulsed Nd:YAG laser under ambient air, in order to produce and characterize a well controlled surface texture (roughness and waviness) that enhances osseointegration. To study the 'peri-implant' reparative process response, the laser treated Ti foils were implanted in the tibia of 10 male Wistar rats. At 14 days post-implantation, the histological analysis showed a tendency to more bone formation compared to the untreated control implants. The formation of a layer of TiN on the surface and the obtained roughness, have been demonstrated to improve bone response

  14. Modelling of capillary Z-pinch recombination pumping of boron extreme ultraviolet laser

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Bobrova, N. A.; Sasorov, P. V.; Vrbová, M.; Hübner, Jakub

    2009-01-01

    Roč. 16, č. 7 (2009), 073105 1-073105 11 ISSN 1070-664X R&D Projects: GA ČR GA102/07/0275 Institutional research plan: CEZ:AV0Z20430508 Keywords : Boron * capillary * discharges (electric * laser ablation * optical pumping * plasma heating by laser * plasma kinetic theory * plasma magnetohydrodynamics * Z pinch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009 http://link.aip.org/link/? PHP /16/073105

  15. Evaluation of plasma disruption simulating short pulse laser irradiation experiments on boronated graphites and CFCs [carbon fibre composites

    International Nuclear Information System (INIS)

    Stad, R.C.L. van der; Klippel, H.T.; Kraaij, G.J.

    1992-12-01

    New experimental and numerical results from disruption heat flux simulations in the millisecond range with laser beams are discussed. For a number of graphites, boronated graphites and carbon fibre composites, the effective enthalpy of ablation is determined as 30 ± 3 MJ/kg, using laser pulses of about -.3 ms. The numerical results predict the experimental results rather well. No effect of boron doping on the ablation enthalpy is found. (author). 9 refs., 4 figs., 1 tab

  16. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  17. Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

    Directory of Open Access Journals (Sweden)

    A. Picciotto

    2014-08-01

    Full Text Available We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10^{9} per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3×10^{16}  W cm^{−2}. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.

  18. Defects in boron ion implanted silicon

    International Nuclear Information System (INIS)

    Wu, W.K.

    1975-05-01

    The crystal defects formed after post-implantation annealing of B-ion-implanted Si irradiated at 100 keV to a moderate dose (2 x 10 14 /cm 2 ) were studied by transmission electron microscopy. Contrast analysis and annealing kinetics show at least two different kinds of linear rod-like defects along broken bracket 110 broken bracket directions. One kind either shrinks steadily remaining on broken bracket 110 broken bracket at high temperatures (greater than 850 0 C), or transforms into a perfect dislocation loop which rotates toward broken bracket 112 broken bracket perpendicular to its Burgers vector. The other kind shrinks steadily at moderate temperatures (approximately 800 0 C). The activation energy for shrinkage of the latter (3.5 +- 0.1 eV) is the same as that for B diffusion in Si, suggesting that this linear defect is a boron precipitate. There also exist a large number of perfect dislocation loops with Burgers vector a/2broken bracket 110 broken bracket. The depth distribution of all these defects was determined by stereomicroscopy. The B precipitates lying parallel to the foil surfaces are shown to be at a depth of about 3500 +- 600 A. The loops are also at the same depth, but with a broader spread, +-1100 A. Si samples containing B and samples containing no B (P-doped) were irradiated in the 650-kV electron microscope. Irradiation at 620 0 C resulted in the growth of very long linear defects in the B-doped samples but not in the others, suggesting that at 620 0 C Si interstitials produced by the electron beam replace substitutional B some of which precipitates in the form of long rods along broken bracket 110 broken bracket. (DLC)

  19. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    Science.gov (United States)

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  20. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R., E-mail: ricardo.serra@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Oliveira, V. [ICEMS-Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Oliveira, J.C. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Kubart, T. [The Ångström Laboratory, Solid State Electronics, P.O. Box 534, SE-751 21 Uppsala (Sweden); Vilar, R. [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-03-15

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm{sup 2}. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under

  1. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    International Nuclear Information System (INIS)

    Serra, R.; Oliveira, V.; Oliveira, J.C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-01-01

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm 2 . Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different

  2. Custom-made laser-welded titanium implant prosthetic abutment.

    Science.gov (United States)

    Iglesia-Puig, Miguel A

    2005-10-01

    A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.

  3. Low-level laser therapy with 940 nm diode laser on stability of dental implants: a randomized controlled clinical trial.

    Science.gov (United States)

    Torkzaban, Parviz; Kasraei, Shahin; Torabi, Sara; Farhadian, Maryam

    2018-02-01

    Low-level laser therapy (LLLT) is a non-invasive modality to promote osteoblastic activity and tissue healing. The aim of this study was to evaluate the efficacy of LLLT for improvement of dental implant stability. This randomized controlled clinical trial was performed on 80 dental implants placed in 19 patients. Implants were randomly divided into two groups (n = 40). Seven sessions of LLLT (940 nm diode laser) were scheduled for the test group implants during 2 weeks. Laser was irradiated to the buccal and palatal sides. The same procedure was performed for the control group implants with laser hand piece in "off" mode. Implant stability was measured by Osstell Mentor device in implant stability quotient (ISQ) value immediately after surgery and 10 days and 3, 6, and 12 weeks later. Repeated measures ANOVA was used to compare the mean ISQ values (implant stability) in the test and control groups. Statistical test revealed no significant difference in the mean values of implant stability between the test and control groups over time (P = 0.557). Although the mean values of implant stability changed significantly in both groups over time (P laser group in the first weeks and increased from the 6th to 12th week, LLLT had no significant effect on dental implant stability.

  4. Modeling of long-range migration of boron interstitials

    International Nuclear Information System (INIS)

    Velichko, O.I.; Burunova, O.N.

    2009-01-01

    A model of the interstitial migration of ion-implanted dopant in silicon during low-temperature thermal treatment has been formulated. It is supposed that the boron interstitials are created during ion implantation or at the initial stage of annealing. During thermal treatment a migration of these impurity interstitials to the surface and in the bulk of a semiconductor occurs. On this basis, a simulation of boron redistribution during thermal annealing for 35 minutes at a temperature of 800 0 C has been carried out. The calculated boron profile agrees well with the experimental data. A number of the parameters describing the interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 0.092 μm at a temperature of 800 0 C. To carry out modeling of ion-implanted boron redistribution, the analytical solutions of nonstationary diffusion equation for impurity interstitials have been obtained. The case of Dirichlet boundary conditions and the case of reflecting boundary on the surface of a semiconductor have been considered. (authors)

  5. Forming controlled inset regions by ion implantation and laser bombardment

    International Nuclear Information System (INIS)

    Gibbons, J.F.

    1981-01-01

    A semiconductor integrated circuit structure in which the inset regions are ion implanted and laser annealed to maintain substantially the dimensions of the implantation and the method of forming inset implanted regions having controlled dimensions

  6. Deep level transient spectroscopic analysis of p/n junction implanted with boron in n-type silicon substrate

    Science.gov (United States)

    Wakimoto, Hiroki; Nakazawa, Haruo; Matsumoto, Takashi; Nabetani, Yoichi

    2018-04-01

    For P-i-N diodes implanted and activated with boron ions into a highly-resistive n-type Si substrate, it is found that there is a large difference in the leakage current between relatively low temperature furnace annealing (FA) and high temperature laser annealing (LA) for activation of the p-layer. Since electron trap levels in the n-type Si substrate is supposed to be affected, we report on Deep Level Transient Spectroscopy (DLTS) measurement results investigating what kinds of trap levels are formed. As a result, three kinds of electron trap levels are confirmed in the region of 1-4 μm from the p-n junction. Each DLTS peak intensity of the LA sample is smaller than that of the FA sample. In particular, with respect to the trap level which is the closest to the silicon band gap center most affecting the reverse leakage current, it was not detected in LA. It is considered that the electron trap levels are decreased due to the thermal energy of LA. On the other hand, four kinds of trap levels are confirmed in the region of 38-44 μm from the p-n junction and the DLTS peak intensities of FA and LA are almost the same, considering that the thermal energy of LA has not reached this area. The large difference between the reverse leakage current of FA and LA is considered to be affected by the deep trap level estimated to be the interstitial boron.

  7. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    Science.gov (United States)

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  8. Molecular dynamics simulation of boron implanted into diamond (0 0 1) 2 x 1 reconstruction surface

    International Nuclear Information System (INIS)

    Li Rongbin; Dai Yongbin; Hu Xiaojun; Sheng Heshen; He Xianchang

    2003-01-01

    Molecular dynamic simulations, utilizing the Tersoff many-body potential, are used to investigate the microscopic processes of a single boron atom with energy of 500 eV implanted into the diamond (0 0 1) 2 x 1 reconstruction surface. The lifetime of thermal spike created by B bombardment is about 0.18 ps by calculating the variation of the mean coordination numbers with time. The formation of the split-interstitial composed of projectile and lattice atom (B-C) is observed. The total potential energy of the system decreases about 0.56 eV with a stable B split-interstitial in diamond. The lattice relaxations in the diamond (0 0 1) 2 x 1 reconstruction surface or near surface of simulated have been discussed. The outermost layer atoms tend to move inward, and the other atoms move outward. The interplanar distance between the outermost layer and the second layer has been shortened by 15% compared with its starting interplanar distance. Stress distribution in the calculated diamond configuration is inhomogeneous. After boron implanted into diamond with the energy of 500 eV, there is an excess of compressively stressed atoms in the lattice, which induces the total stress being compressive

  9. Activation behavior of boron implanted poly-Si on glass substrate

    International Nuclear Information System (INIS)

    Furuta, M.; Shimamura, K.; Tsubokawa, H.; Tokushige, K.; Furuta, H.; Hirao, T.

    2010-01-01

    The activation behavior of boron (B) implanted poly-Si films on glass substrates has been investigated. The effect of B dose and annealing temperature on crystal defects and electrical properties of the films were evaluated by Raman spectroscopy and Hall measurement. It was found that the maximum activation ratio of the film with B dose of 1 x 10 15 cm -2 was obtained when Raman peak associated with disordered amorphous silicon disappeared. However, reverse anneal was observed in the film when the annealing temperature further increased. The results from secondary ion mass spectrometry and Hall measurement revealed that B segregation at the top and bottom interface and deactivation of B substitutional occurred simultaneously in the high-dose specimens when the annealing temperature increased from 600 to 750 o C.

  10. Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses

    Czech Academy of Sciences Publication Activity Database

    Hora, H.; Korn, Georg; Giuffrida, Lorenzo; Margarone, Daniele; Picciotto, A.; Krása, Josef; Jungwirth, Karel; Ullschmied, Jiří; Lalousis, P.; Eliezer, S.; Miley, G. H.; Moustaizis, S.; Mourou, G.

    2015-01-01

    Roč. 33, č. 4 (2015), s. 607-619 ISSN 0263-0346 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : fusion energy without radiation problem * boron fusion by lasers * non-linear force-driven block ignition Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 1.649, year: 2015

  11. [Influence of implants prepared by selective laser melting on early bone healing].

    Science.gov (United States)

    Liu, J Y; Chen, F; Ge, Y J; Wei, L; Pan, S X; Feng, H L

    2018-02-18

    To evaluate the influence of the rough surface of dental implants prepared by selective laser melting (SLM) on early bone healing around titanium implants. A total of sixteen titanium implants were involved in our research, of which eight implants were prepared by SLM (TIXOS Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex) and the other eight were sandblasted, large-grit and acid-etched (SLA) implants (IMPLUS Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex). All of the dental implants were inserted into the healed extraction sockets of the mandible of two adult male Beagle dogs. Half of the dental implants were designed to be healed beneath the mucosa and the other half were intended to be healed transgingivally and were immediately loaded by acrylic resin bridge restoration. Three types of tetracycline fluorescent labels, namely calcein blue, alizarin complexone and calcein, were administered into the veins of the Beagle dogs 2, 4, and 8 weeks after implant placement respectively for fluorescent evaluation of newly formed bone peri-implant. Both Beagle dogs were euthanized 12 weeks after implant insertion and the mandible block specimens containing the titanium implants and surrounding bone and soft tissue of each dog were carefully sectioned and dissected. A total of 16 hard tissue slices were obtained and stained with toluidine blue for microscopic examination and histomorphometric measurements. Histological observation was made for each slice under light microscope and laser scanning confocal microscope (LSCM). Comparison on new bone formation around titanium implants of each group was made and mineral apposition rate (MAR) was calculated for each group. Dental implants prepared by selective laser melting had achieved satisfying osseointegration to surrounding bone tissue after the healing period of 12 weeks. Newly formed bone tissue was observed creeping on the highly porous surface of the SLM implant and growing

  12. Efficacy and safety of a diode laser in second-stage implant surgery: a comparative study.

    Science.gov (United States)

    El-Kholey, K E

    2014-05-01

    For more than a decade, peri-implant tissues have been treated with soft tissue lasers to create a bloodless flap for implant placement and to uncover implants with minimal bleeding, trauma, and anaesthesia. This study was designed to assess if dental implant uncovering is possible with a diode laser without anaesthesia, and to compare its performance with traditional cold scalpel surgery. Thirty patients with a total of 45 completely osseointegrated implants participated in this study. Patients were divided into two groups. For the study group, second-stage implant surgery was done with a 970nm diode laser. For the control group, the implants were exposed with a surgical blade. Certain parameters were used for evaluation of the two techniques. The use of the diode laser obviated the need for local anaesthesia; there was a significant difference between the two groups regarding the need for anaesthesia (Pdiode laser can be used effectively for second-stage implant surgery, providing both the dentist and the patient with additional advantages over the conventional methods used for implant exposure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  14. Segregation of boron implanted into silicon on angular configurations of silicon/silicon dioxide oxidation interface

    CERN Document Server

    Tarnavskij, G A; Obrekht, M S

    2001-01-01

    One studies segregation of boron implanted into silicon when a wave (interface) of oxidation moves within it. There are four types of angular configurations of SiO sub 2 /Si oxidation interface, that is: direct and reverse shoulders, trench type cavities and a square. By means of computer-aided simulation one obtained and analyzed complex patterns of B concentration distribution within Si, SiO sub 2 domains and at SiO sub 2 /Si interface for all types of angular configurations of the oxidation interface

  15. Nano-structure and tribological properties of B+ and Ti+ co-implanted silicon nitride

    International Nuclear Information System (INIS)

    Nakamura, Naoki; Noda, Katsutoshi; Yamauchi, Yukihiko

    2005-01-01

    Silicon nitride ceramics have been co-implanted with boron and titanium ions at a fluence of 2 x 10 17 ions/cm 2 and an energy of 200 keV. TEM results indicated that the boron and titanium-implanted layers were amorphized separately and titanium nitride nano-crystallites were formed in the titanium-implanted layer. XPS results indicated that the implantation profile varied a little depending on the ion implantation sequence of boron and titanium ions, with the boron implantation peak shifting to a shallower position when implanted after Ti + -implantation. Wear tests of these ion-implanted materials were carried out using a block-on-ring wear tester under non-lubricated conditions against commercially available silicon nitride materials. The specific wear rate was reduced by ion implantation and showed that the specific wear rate of Ti + -implanted sample was the lowest, followed by B + , Ti + co-implanted and B + -implanted samples

  16. Laser-excited photoemission spectroscopy study of superconducting boron-doped diamond

    Directory of Open Access Journals (Sweden)

    K. Ishizaka, R. Eguchi, S. Tsuda, T. Kiss, T. Shimojima, T. Yokoya, S. Shin, T. Togashi, S. Watanabe, C.-T. Chen, C.Q. Zhang, Y. Takano, M. Nagao, I. Sakaguchi, T. Takenouchi and H. Kawarada

    2006-01-01

    Full Text Available We have investigated the low-energy electronic state of boron-doped diamond thin film by the laser-excited photoemission spectroscopy. A clear Fermi-edge is observed for samples doped above the semiconductor–metal boundary, together with the characteristic structures at 150×n meV possibly due to the strong electron–lattice coupling effect. In addition, for the superconducting sample, we observed a shift of the leading edge below Tc indicative of a superconducting gap opening. We discuss the electron–lattice coupling and the superconductivity in doped diamond.

  17. Ion implantation artifacts observed in depth profiling boron in silicon by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Chi, P.; Simons, D.S.

    1987-01-01

    A comparison study of depth profiling by secondary ion mass spectrometry (SIMS) and neutron depth profiling (NDP) was recently conducted. The specimens were portions of 5 cm diameter single crystal silicon slices in which B-10 had been implanted at various fluences and energies. NDP measurements were made on a 13 mm diameter area at the center of the wafers. SIMS measurements were taken from a 60 μm diameter area approximately 16 mm from the center of the wafer. One observation that emerged from this work was an apparent discrepancy between the profiles of B-10 measured by DNP and SIMS. The peaks of the SIMS profiles were typically deeper than those of NDP by as much as 30 nm, which is 10% of the projected range for a 70 keV implant. Moreover, the profiles could not be made to coincide by either a constant shift or a proportional change of one depth scale with respect to the other. The lateral inhomogeneity of boron that these experiments have demonstrated arises from the variable contribution of ion channeling during implantation

  18. Thermal expansion measurements on boron carbide and europium sesquioxide by laser interferometry

    International Nuclear Information System (INIS)

    Preston, S.D.

    1980-01-01

    A laser interferometer technique for measuring the absolute linear thermal expansion of small annular specimens is described. Results are presented for unirradiated boron carbide (B 4 C) and europia (Eu 2 O 3 ) up to 1000 0 C. Both compounds are neutron-absorbing materials of potential use in fast-reactor control rods and data on their thermophysical properties, in particular linear thermal expansion, are essential to the control rod designers. (author)

  19. Femtosecond laser-assisted cataract surgery and implantable miniature telescope

    Directory of Open Access Journals (Sweden)

    Randal Pham

    2017-09-01

    Conclusions and importance: To our knowledge and confirmed by the manufacturer of the implantable miniature telescope this is the first case ever reported of a patient who has undergone femtosecond laser cataract surgery with corneal astigmatism correction and implantation of the implantable miniature telescope. This is also the first case report of the preoperative use of microperimetry and visual electrophysiology to evaluate a patient's postoperative potential visual acuity. The success of the procedure illustrated the importance of meticulous preoperative planning, the combined use of state-of-the-art technologies and the seamless teamwork in order to achieve the best clinical outcome for patients who undergo implantation of the implantable miniature telescope.

  20. TEM studies of P+ implanted and subsequently laser annealed Si

    International Nuclear Information System (INIS)

    Sadana, D.K.; Wilson, M.C.; Booker, G.R.; Washburn, J.

    1979-05-01

    The present investigation is concerned with laser annealing of P + implanted Si. The aim of the work was to study the crystallization behavior of damage structure occurring due to high dose rate implantation using transmission electron microscopy (TEM) as the method of examination

  1. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2017-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO 2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.

  2. In vivo response of laser processed porous titanium implants for load-bearing implants

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2016-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 volume% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control. PMID:27307009

  3. Influence of laser power on atom probe tomographic analysis of boron distribution in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Y., E-mail: ytu@imr.tohoku.ac.jp [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takamizawa, H.; Han, B.; Shimizu, Y.; Inoue, K.; Toyama, T. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yano, F. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Tokyo City University, Setagaya, Tokyo 158-8557 (Japan); Nishida, A. [Renesas Electronics Corporation, Hitachinaka, Ibaraki 312-8504 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2017-02-15

    The relationship between the laser power and the three-dimensional distribution of boron (B) in silicon (Si) measured by laser-assisted atom probe tomography (APT) is investigated. The ultraviolet laser employed in this study has a fixed wavelength of 355 nm. The measured distributions are almost uniform and homogeneous when using low laser power, while clear B accumulation at the low-index pole of single-crystalline Si and segregation along the grain boundaries in polycrystalline Si are observed when using high laser power (100 pJ). These effects are thought to be caused by the surface migration of atoms, which is promoted by high laser power. Therefore, for ensuring a high-fidelity APT measurement of the B distribution in Si, high laser power is not recommended. - Highlights: • Influence of laser power on atom probe tomographic analysis of B distribution in Si is investigated. • When using high laser power, inhomogeneous distributions of B in single-crystalline and polycrystalline Si are observed. • Laser promoted migration of B atoms over the specimen is proposed to explain these effects.

  4. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    Science.gov (United States)

    Chan, Chi-Wai; Carson, Louise; Smith, Graham C.; Morelli, Alessio; Lee, Seunghwan

    2017-05-01

    Implant failure caused by bacterial infection is extremely difficult to treat and usually requires the removal of the infected components. Despite the severe consequence of bacterial infection, research into bacterial infection of orthopaedic implants is still at an early stage compared to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live/dead staining. Surface chemistry was analysed by XPS and surface wettability was measured using the sessile drop method. The findings of this study indicated that the laser-treated CP Ti and Ti6Al4V surfaces exhibited a noticeable reduction in bacterial adhesion and possessed a bactericidal effect. Such properties were attributable to the combined effects of reduced hydrophobicity, thicker and stable oxide films and presence of laser-induced nano-features. No similar antibacterial effect was observed in the laser-treated CoCrMo.

  5. Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide

    International Nuclear Information System (INIS)

    Lee Youngchul; Lee, E.H.; Mansur, L.K.

    1992-01-01

    The effects of boron beam irradiation on the hardness, friction, and wear of polymer surfaces were investigated. Typical high-performance thermoplastics, poly(ether-ether-ketone) (PEEK) and a poly-ether-imide (Ultem) were studied after 200 keV boron ion beam treatment at ambient temperature to doses of 2.3x10 14 , 6.8x10 14 , and 2.2x10 15 ions cm -2 . The hardnesses of pristine and boron-implanted materials were characterized by a conventional Knoop method and a load-depth sensing nanoindentation technique. Both measurements showed a significant increase in hardness with increasing dose. The increase in hardness was also found to depend on the penetration depth of the diamond indenter. Wear and friction properties were characterized by a reciprocating sliding friction tester with an SAE 52100 high-carbon, chrome steel ball at 0.5 and 1 N normal loads. Wear and frictional properties varied in a complex fashion with polymer type and dose, but not much with normal load. A substantial reduction in friction coefficient was observed for PEEK at the highest dose but no reduction was observed for Ultem. The wear damage was substantially reduced at the highest dose for both Ultem and PEEK. For the system studied, the highest dose, 2.2x10 15 ions cm -2 , appears to be optimum in improving wear resistance for both PEEK and Ultem. (orig.)

  6. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    DEFF Research Database (Denmark)

    Chan, Chi-Wai; Carson, Louise; Smith, Graham C.

    2017-01-01

    to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared...... for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial...... properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live...

  7. Activation of boron and phosphorus atoms implanted in polycrystalline silicon films at low temperatures

    International Nuclear Information System (INIS)

    Andoh, Nobuyuki; Sameshima, Toshiyuki; Andoh, Yasunori

    2005-01-01

    Phosphorus atoms implanted in laser crystallized polycrystalline silicon films were activated by a heat treatment in air at 260 deg. C for 1, 3 and 24 h. Analysis of ultraviolet reflectivity of phosphorus-doped silicon films implanted by ion doping method at 4 keV revealed that the thickness of the top disordered layer formed by ion bombardment was 6 nm. It is reduced to 4 nm by a 3 h heat treatment at 260 deg. C by recrystallization of disordered region. The electrical conductance of silicon films implanted increased to 1.7x10 5 S/sq after 3 h heat treatment

  8. Boron distribution in silicon after multiple pulse excimer laser annealing

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-01-01

    We have studied B redistribution in Si after excimer laser annealing (ELA) with multiple laser pulses. B was implanted with energies of 1 and 10 keV and doses of 1x10 14 and 1x10 15 cm -2 . ELA with the number of pulses from 1 to 100 was performed at room temperature and 450 deg. C in vacuum. Irrespective of the implantation parameters and the ELA conditions used, a pile-up in the B concentration is observed near the maximum melting depth after ten pulses of ELA. Moreover, a detailed study has revealed that B accumulates at the maximum melt depth gradually with the number of ELA pulses. Besides, an increase in the carrier concentration is observed at the maximum melt depth, suggesting electrical activity of the accumulated B. Formation of Si-B complexes and vacancy accumulation during multiple ELA are discussed as possible mechanisms for the B build-up

  9. Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants

    International Nuclear Information System (INIS)

    Samuel, Sonia; Nag, Soumya; Scharf, Thomas W.; Banerjee, Rajarshi

    2008-01-01

    The inherently poor wear resistance of titanium alloys limits their application as femoral heads in femoral (hip) implants. Reinforcing the soft matrix of titanium alloys (including new generation β-Ti alloys) with hard ceramic precipitates such as borides offers the possibility of substantially enhancing the wear resistance of these composites. The present study discusses the microstructure and wear resistance of laser-deposited boride reinforced composites based on Ti-Nb-Zr-Ta alloys. These composites have been deposited using the LENS TM process from a blend of elemental Ti, Nb, Zr, Ta, and boron powders and consist of complex borides dispersed in a matrix of β-Ti. The wear resistance of these composites has been compared with that of Ti-6Al-4V ELI, the current material of choice for orthopedic femoral implants, against two types of counterfaces, hard Si 3 N 4 and softer SS440C stainless steel. Results suggest a substantial improvement in the wear resistance of the boride reinforced Ti-Nb-Zr-Ta alloys as compared with Ti-6Al-4V ELI against the softer counterface of SS440. The presence of an oxide layer on the surface of these alloys and composites also appears to have a substantial effect in terms of enhanced wear resistance

  10. A preliminary randomized clinical trial comparing diode laser and scalpel periosteal incision during implant surgery: impact on postoperative morbidity and implant survival.

    Science.gov (United States)

    Shahnaz, Aysan; Jamali, Raika; Mohammadi, Farnush; Khorsand, Afshin; Moslemi, Neda; Fekrazad, Reza

    2018-01-01

    The aim of this preliminary randomized clinical trial was to compare: (1) post-operative morbidity after application of laser or scalpel incision for flap advancement during implant surgery and bone grafting and (2) implant survival rate following flap advancement with laser or scalpel incision after 6 months of loading. Eighteen patients who were scheduled for dental implant placement and simultaneous bone grafting were randomly assigned to test or control groups. Diode laser (810 nm, 2 W, pulse interval 200 μs; pulse length 100 μs, 400-μm initiated fiber tip), or scalpel (control) was used to sever the periosteum to create a tension-free flap. Visual analogue scale (VAS) pain score, rate of nonsteroid anti-inflammatory drug (NSAID) consumption, intensity of swelling, and ecchymosis were measured for the six postsurgical days. Six months after loading, implant survival was assessed. VAS pain score (during the first four postoperative days), rate of NSAID consumption (during the first three postoperative days), and intensity of swelling (during the first five postoperative days) were significantly lower in the test group compared to the control group (All P values laser for performing periosteal releasing incision reduced the incidence and severity of postoperative morbidity of the patients undergone implant surgery in conjunction with bone augmentation procedure. We did not find any detrimental effect of laser incision on the implant survival within 6 months of loading.

  11. Laser shock processing on microstructure and hardness of polycrystalline cubic boron nitride tools with and without nanodiamond powders

    International Nuclear Information System (INIS)

    Melookaran, Roslyn; Melaibari, Ammar; Deng, Cheng; Molian, Pal

    2012-01-01

    Highlights: ► Laser shock waves hardened polycrystalline cubic boron nitride tools by up to 15%. ► Laser shock waves can build layer-by-layer of nanodiamond to form micro-diamond tools. ► Multiple laser shocks induce significant phase transitions in cBN and nanodiamond. -- Abstract: High amplitude, short duration shock waves created by a 1064 nm, 10 ns Q-switched Nd:YAG laser were used to increase the hardness as well as build successive layers of nanodiamond on sintered polycrystalline cubic boron nitride (PcBN) tools. Multiple scans of laser shocking were applied. Scanning electron microscopy, Raman spectroscopy, Tukon microhardness tester, and optical surface profilometer were used to evaluate the microstructure, phase change, Vicker’s microhardness and surface roughness. Results indicated that laser shock processing of plain PcBN changed the binder concentration, caused phase transition from cubic to hexagonal form, increased the hardness, and almost unaffected surface roughness. Laser shock wave sintering of nanodiamond powders on PcBN resulted in deagglomeration and layer-by-layer build-up of nanoparticles for a thickness of 30 μm inferring that a novel solid freeform technique designated as “shock wave induced freeform technique (SWIFT)” is being discovered for making micro-tools. Depending on the number of multiple laser shocks, the hardness of nanodiamond compact was lower or higher than that of PcBN. It is hypothesized that nanodiamond particles could serve as crack deflectors, increasing the fracture toughness of PcBN.

  12. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  13. Erosion of CFC, pyrolytic and boronated graphite under short pulsed laser irradiation

    International Nuclear Information System (INIS)

    Kraaij, G.J.; Bakker, J.; Stad, R.C.L. van der

    1992-07-01

    The effect of short pulsed laser irradiation of '0/3' ms and up to 10 MJ/m 2 on different types of carbon base materials is described. These materials are investigated as candidate protection materials for the Plasma Facing Components of NET/ITER. These materials are: carbon fibre composite graphite, pyrolytic graphite and boronated graphite. The volume of the laser induced craters was measured with an optical topographic scanner, and these data are evaluated with a simple model for the erosion. As a results, the enthalpy of ablation is estimated as 30±3 MJ/kg. A comparison is made with finite element numerical calculations, and the effect of lateral heat transfer is estimated using an analytical model. (author). 8 refs., 23 figs., 4 tabs

  14. Towards laser spectroscopy of the proton-halo candidate boron-8

    Energy Technology Data Exchange (ETDEWEB)

    Maaß, Bernhard, E-mail: bmaass@ikp.tu-darmstadt.de [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Müller, Peter [Argonne National Laboratory, Physics Division (United States); Nörtershäuser, Wilfried [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Clark, Jason [Argonne National Laboratory, Physics Division (United States); Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg [Technische Universität Darmstadt, Institut für Kernphysik (Germany); Levand, Anthony; Orford, Rodney [Argonne National Laboratory, Physics Division (United States); Sánchez, Rodolfo [GSI Helmholtzzentrum für Schwerionenforschung (Germany); Savard, Guy [Argonne National Laboratory, Physics Division (United States); Sommer, Felix [Technische Universität Darmstadt, Institut für Kernphysik (Germany)

    2017-11-15

    We propose to determine the nuclear charge radius of {sup 8}B by high-resolution laser spectroscopy. {sup 8}B (t {sub 1/2} = 770 ms) is perhaps the best candidate of a nucleus exhibiting an extended proton wave-function or “one-proton-halo” in a more descriptive picture. Laser spectroscopic measurements of the isotope shift will be used to probe the change in nuclear charge radius along the three boron isotopes {sup 8}B, {sup 10}B and {sup 11}B. The change in nuclear charge radius directly correlates with the extent of the proton wave function. In-flight production and preparation of sufficient yields of {sup 8}B ions at low energies is provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory (ANL) in Chicago, IL, USA. Subsequently, the ions will be guided through a charge exchange cell for neutralization and the fluorescence signal of the atoms which interact with the resonant laser light will be detected. The charge radius can then be extracted from the measured isotope shift by employing highly accurate atomic theory calculations of this five-electron system which are carried out presently.

  15. Surface modification of Ti dental implants by Nd:YVO4 laser irradiation

    International Nuclear Information System (INIS)

    Braga, Francisco J.C.; Marques, Rodrigo F.C.; Filho, Edson de A.; Guastaldi, Antonio C.

    2007-01-01

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO 2 or TiO 2 , and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO 4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti 6 O, Ti 3 O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process

  16. Effects of low intensity laser radiation on osteointegration mechanism of implants: study 'in vivo'

    International Nuclear Information System (INIS)

    Blay, Alberto

    2001-01-01

    The purpose of this study is to determine whether the process of bone integration of implants placed in rabbit tibia is changed in any way if the region is radiated with laser, as compared to the time required for the bone integration process without radiation. Thirty adult male white New Zealand rabbits were submitted to implant surgery, for subsequent evaluation of the removal torque and resonance frequency. Each animal received two implants of pure titanium, one in each proximal metaphysics of the tibia, which were inserted with a 40 Ncm torque, and their initial stability was also monitored by means of a resonance frequency analyzer. The rabbits were then divided into 3 groups: one control group and two laser groups. The groups were evaluated in regard to removal torque and resonance frequency of the implants, after 3 and 6 weeks. One of the laser groups was radiated with a laser beam of a wavelength in the infrared range (830 nm) and the other group was radiated with a laser beam emitted in the visible range (680 nm). Ten radiation sessions were performed, 48 hours apart, the first of them during the immediate post-operation period. Radiation energy density was 4 J/cm 2 per point, and there were two points at each side of the tibia. Results of the statistical analysis of the resonance frequency indicated that for both laser groups there was a significant difference between frequency values at the time of implant and the values obtained after 3 and 6 weeks. Furthermore, the results obtained for the removal torque of the three groups showed a statistically significant difference after a period of 6 weeks; removal torque values for the laser groups were, in the average, much greater than those of the control group. From these results it is possible to conclude that implants in rabbit tibia, that were exposed to laser radiation with wavelengths of 680 nm and 830 nm, had a better degree of bone integration than the control group.(author)

  17. Dependence of boron cluster dissolution on the annealing ambient

    International Nuclear Information System (INIS)

    Radic, Ljubo; Lilak, Aaron D.; Law, Mark E.

    2002-01-01

    Boron is introduced into silicon via implantation to form p-type layers. This process creates damage in the crystal that upon annealing causes enhanced diffusion and clustering of the boron layer. Reactivation of the boron is not a well-understood process. In this letter we experimentally investigate the effect of the annealing ambient on boron reactivation kinetics. An oxidizing ambient which injects silicon interstitials is compared to an inert ambient. Contrary to published theory, an excess of interstitials does not accelerate the reactivation process

  18. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    Science.gov (United States)

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding

  19. Formation of cBN nanocrystals by He+ implantations of hBN

    OpenAIRE

    Machaka, Ronald; Erasmus, Rudolph M; Derry, Trevor E

    2010-01-01

    The structural modifications of polycrystalline hexagonal boron nitride implanted with He+ ion beams at energies between 200 keV and 1.2 MeV to fluences of 1.0 \\times 1017 ions \\cdot cm-2 were investigated using micro-Raman spectroscopy. The measured Raman spectra show evidence of implantation-induced structural transformations from the hexagonal phase to nanocrystalline cubic boron nitride, rhombohedral boron nitride and amorphous boron nitride phases. The first-order Longitudinal-Optical cB...

  20. Boron distribution in silicon after excimer laser annealing with multiple pulses

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-01-01

    We have studied B re-distribution in Si after excimer laser annealing (ELA) with multiple laser pulses. B was implanted using both B and BF 2 ions with energies from 1 to 20 keV and doses of 1 x 10 14 and 1 x 10 15 cm -2 . ELA with the number of pulses from 1 to 100 was performed in vacuum with the sample kept at room temperature and 450 deg. C. Independently of the implantation parameters and the ELA conditions used, a peak in the B concentration is observed near the maximum melting depth after 10 pulses of ELA. A detailed study has revealed that B accumulates at the maximum melt depth gradually with the number of ELA pulses. An increase in the carrier concentration at the maximum melt depth is observed after ELA with 100 pulses. No structural defects have been detected by transmission electron microscopy in the region of the B accumulation

  1. Effects of low intensity laser radiation on osteointegration mechanism of implants: study 'in vivo'; Efeitos da radiacao laser em baixa intensidade no mecanismo de osseointegracao de implantes: estudo 'in vivo'

    Energy Technology Data Exchange (ETDEWEB)

    Blay, Alberto

    2001-07-01

    The purpose of this study is to determine whether the process of bone integration of implants placed in rabbit tibia is changed in any way if the region is radiated with laser, as compared to the time required for the bone integration process without radiation. Thirty adult male white New Zealand rabbits were submitted to implant surgery, for subsequent evaluation of the removal torque and resonance frequency. Each animal received two implants of pure titanium, one in each proximal metaphysics of the tibia, which were inserted with a 40 Ncm torque, and their initial stability was also monitored by means of a resonance frequency analyzer. The rabbits were then divided into 3 groups: one control group and two laser groups. The groups were evaluated in regard to removal torque and resonance frequency of the implants, after 3 and 6 weeks. One of the laser groups was radiated with a laser beam of a wavelength in the infrared range (830 nm) and the other group was radiated with a laser beam emitted in the visible range (680 nm). Ten radiation sessions were performed, 48 hours apart, the first of them during the immediate post-operation period. Radiation energy density was 4 J/cm{sup 2} per point, and there were two points at each side of the tibia. Results of the statistical analysis of the resonance frequency indicated that for both laser groups there was a significant difference between frequency values at the time of implant and the values obtained after 3 and 6 weeks. Furthermore, the results obtained for the removal torque of the three groups showed a statistically significant difference after a period of 6 weeks; removal torque values for the laser groups were, in the average, much greater than those of the control group. From these results it is possible to conclude that implants in rabbit tibia, that were exposed to laser radiation with wavelengths of 680 nm and 830 nm, had a better degree of bone integration than the control group.(author)

  2. Preparation of 1-pyrenebutyric acid and pyrene submicron dots by laser-induced molecular micro-jet implantation

    International Nuclear Information System (INIS)

    Pihosh, Y.; Goto, M.; Kasahara, A.; Tosa, M.

    2009-01-01

    Pyrene and 1-pyrenebuturic acid molecules were deposited on glass and copper substrates with the formation of submicron dots by laser-induced molecular micro-jet implantation through polar and non-polar liquid layers. The size of the smallest 1-pyrenebuturic acid molecules dots prepared on a glass substrate by implantation through water and diiodomethane was estimated to be about 400 nm and 300 nm at laser fluences of 235 J/cm 2 and 326 J/cm 2 , respectively. The fluorescence and the Raman spectra showed that the implanted 1-pyrenebutyric acid molecules did not decompose during the implantation process. The smallest size of a pyrene dot was 700 nm at the laser fluence of 378 J/cm 2 . However, the pyrene dots could be formed only by implantation through a water layer.

  3. Laser annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    White, C.W.; Appleton, B.R.; Wilson, S.R.

    1980-01-01

    Pulsed laser annealing of ion implanted silicon leads to the formation of supersaturated alloys by nonequilibrium crystal growth processes at the interface occurring during liquid phase epitaxial regrowth. The interfacial distribution coefficients from the melt (k') and the maximum substitutional solubilities (C/sub s//sup max/) are far greater than equilibrium values. Both K' and C/sub s//sup max/ are functions of growth velocity. Mechanisms limiting substitutional solubilities are discussed. 5 figures, 2 tables

  4. Diode laser and periodontal regeneration-assisted management of implant complications in anterior maxilla

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Salaria

    2018-01-01

    Full Text Available Dental implant is being considered successful if the patient is pleased with both of its functional and esthetic outcome. As implant complications (such as peri-implantitis, inappropriate implant position, wrong angulation, and implant location too close to anatomical structures have been frequently encountered in dental practice, therefore, thorough knowledge to manage such complications is the key prerequisite to prevent the failure of implant. The present case report discussed the etiology, diagnosis of early peri-implantitis, and periodontal abscess with their successful management through periodontal regeneration and diode laser-assisted therapy.

  5. Diode Laser and Periodontal Regeneration-Assisted Management of Implant Complications in Anterior Maxilla.

    Science.gov (United States)

    Salaria, Sanjeev Kumar; Sharma, Isha; Brar, Navjot Kaur; Kaur, Satwant

    2018-01-01

    Dental implant is being considered successful if the patient is pleased with both of its functional and esthetic outcome. As implant complications (such as peri-implantitis, inappropriate implant position, wrong angulation, and implant location too close to anatomical structures) have been frequently encountered in dental practice, therefore, thorough knowledge to manage such complications is the key prerequisite to prevent the failure of implant. The present case report discussed the etiology, diagnosis of early peri-implantitis, and periodontal abscess with their successful management through periodontal regeneration and diode laser-assisted therapy.

  6. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    Science.gov (United States)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  7. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.

    Science.gov (United States)

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu

    2014-11-01

    Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and

  8. Laser-treated stainless steel mini-screw implants: 3D surface roughness, bone-implant contact, and fracture resistance analysis.

    Science.gov (United States)

    Kang, He-Kyong; Chu, Tien-Min; Dechow, Paul; Stewart, Kelton; Kyung, Hee-Moon; Liu, Sean Shih-Yao

    2016-04-01

    This study investigated the biomechanical properties and bone-implant intersurface response of machined and laser surface-treated stainless steel (SS) mini-screw implants (MSIs). Forty-eight 1.3mm in diameter and 6mm long SS MSIs were divided into two groups. The control (machined surface) group received no surface treatment; the laser-treated group received Nd-YAG laser surface treatment. Half in each group was used for examining surface roughness (Sa and Sq), surface texture, and facture resistance. The remaining MSIs were placed in the maxilla of six skeletally mature male beagle dogs in a randomized split-mouth design. A pair with the same surface treatment was placed on the same side and immediately loaded with 200 g nickel-titanium coil springs for 8 weeks. After killing, the bone-implant contact (BIC) for each MSI was calculated using micro computed tomography. Analysis of variance model and two-sample t test were used for statistical analysis with a significance level of P titanium alloy MSIs. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Boron-doped nanodiamonds as possible agents for local hyperthermia

    Science.gov (United States)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2-5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1-5 W cm-2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  10. Axial channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Setola, R.; Rimini, E.; Carnera, A.; Gasparotto, A.

    1992-01-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x10 11 and 1x10 15 atoms/cm 2 . The axial channeling concentration profiles of implanted B + were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, S c , was extracted from the experimental maximum ranges for the [100] and [110] axis. The energy dependence of the electronic stopping power is given by S e = KE p with p [100] = 0.469±0.010 and p [110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.)

  11. Laser bioengineering of glass-titanium implants surface

    Science.gov (United States)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  12. Separation process for boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S D

    1975-06-12

    The method according to the invention is characterized by the steps of preparing a gaseous mixture of BCl/sub 3/ containing the isotopes of boron and oxygen as the extractor, irradiating that mixture in the tube of the separator device by means of P- or R-lines of a CO/sub 2/ laser for exciting the molecules containing a given isotope of boron, simultaneously irradiating the mixture with UV for photodissociating the excited BCl/sub 3/ molecules and separating BCl/sub 3/ from the reaction products of photodissociation and from oxygen. Such method is suitable for preparing boron used in nuclear reactors.

  13. Custom-made, root-analogue direct laser metal forming implant: a case report.

    Science.gov (United States)

    Mangano, Francesco Guido; Cirotti, Bruno; Sammons, Rachel Lilian; Mangano, Carlo

    2012-11-01

    In the last few years, the application of digital technology in dentistry has become widespread with the introduction of cone beam computed tomography (CBCT) scan technology, and considerable progress has been made in the development of computer-aided design/ computer-aided manufacturing (CAD/CAM) techniques, including direct laser metal forming (DLMF). DLMF is a technology which allows solids with complex geometry to be produced by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model. For dental implants, the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer by layer, the desired object. At present, the combined use of CBCT 3D data and CAD/CAM technology makes it possible to manufacture custom-made, root-analogue implants (RAI) with sufficient precision. This report demonstrates the successful clinical use of a custom-made, root-analogue DLMF implant. CBCT images of a non-restorable right maxillary first premolar were acquired and transformed into a 3D model. From this model, a custom-made, root-analogue DLMF implant was fabricated. Immediately after tooth extraction, the RAI with a pre-operatively designed abutment was placed in the extraction socket and restored with a single crown. At the 1-year follow-up examination, the RAI showed a good functional and aesthetic integration. The introduction of DLMF technology signals the start of a new revolutionary era for implant dentistry as its immense potential for producing highly complex macro- and microstructures is receiving vast interest in different medical fields.

  14. Quasi-static strength and fractography analysis of two dental implants manufactured by direct metal laser sintering.

    Science.gov (United States)

    Gehrke, Sergio Alexandre; Pérez-Díaz, Leticia; Dedavid, Berenice Anina

    2018-01-30

    New manufacturing methods was developed to improve the tissues integration with the titanium alloy pieces. The present in vitro study was to assess the resistance and fracture mode after applied a quasi-static compressive force on the two dental implants manufactured by direct metal laser sintering. Twenty dental implants manufactured by direct metal laser sintering, using titanium alloy (Ti-6Al-4V) granules in two designs (n = 10 per group): Conventional dental implant (group Imp1) two-piece implant design, where the surgical implant and prosthetic abutment are two separate components and, the one-piece implant (group Imp2), where the surgical implant and prosthetic abutment are one integral piece. All samples were subjected to quasi-static loading at a 30° angle to the implant axis in a universal testing machine. The mean fracture strengths were 1269.2 ± 128.8 N for the group Imp1 and, 1259.5 ± 115.1 N for the group Imp2, without statistical differences (P = .8722). In both groups, the fracture surface does not present crack between the compact core and the superficial (less dense and porous) part of the implants. Based on the measured resistance data for the two implant models manufactured by direct metal laser sintering tested in the present study, we can suggest that they have adequate capacity to withstand the masticatory loads. © 2018 Wiley Periodicals, Inc.

  15. Surface morphologies of excimer-laser annealed BF2+ implanted Si diodes

    International Nuclear Information System (INIS)

    Burtsev, A.; Schut, H.; Nanver, L.K.; Veen, A. van; Slabbekoorn, J.; Scholtes, T.L.M.

    2004-01-01

    Laser-induced surface roughness and damage formation in ultra-shallow n + -p and p + -n junctions, formed by low energy (5 keV) As + and BF 2 + implantations in Si, respectively, with a dose of 1 x 10 15 cm -2 have been investigated by atomic force microscopy (AFM) and Positron Annihilation Doppler Broadening (PADB) technique. The Si surface roughness is found to increase with laser energy density, and reaches a value of 3.5 nm after excimer-laser annealing (ELA) at 1100 mJ/cm 2 . However, anomalous behavior is witnessed for BF 2 + -implanted Si sample at 800 mJ/cm 2 , at which energy very high surface protrusions up to 9 nm high are observed. By PADB this behavior is correlated to extensive deep microcavity formation in the Si whereby the volatile F 2 fraction can accumulate and evaporate/out-diffuse, leading to Si surface roughening. The consequences for the diode characteristics and contact resistivity are examined

  16. High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Cutroneo, M., E-mail: cutroneo@ujf.cas.cz [Nuclear Physics Institute, AS CR, 25068 Rez (Czech Republic); Mackova, A.; Malinsky, P. [Nuclear Physics Institute, AS CR, 25068 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Matousek, J. [Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Torrisi, L. [Department of Physics and Earth Sciences, Messina University, V.le F.S. d’Alcontres 31, 98166 S. Agata, Messina (Italy); Ullschmied, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic)

    2015-07-01

    High-intensity lasers generating non-equilibrium plasma, can be employed to accelerate ions in the keV–MeV region, useful for many applications. In the present work, we performed study of ion implantation into different substrates by using a high-intensity laser at the PALS laboratory in Prague. Multi-energy ions generated by plasma from Ta and Ag targets were implanted into polyethylene and metallic substrates (Al, Ti) at energies of tens of keV per charge state. The ion emission was monitored online using time-of-flight detectors and electromagnetic deflection systems. Rutherford Backscattering Spectrometry (RBS) was used to characterise the elemental composition in the implanted substrates by ion plasma emission and to provide the implanted ion depth profiling. These last measurements enable offline plasma characterisation and provide information on the useful potentiality of multi-ion species and multi-energy ion implantation into different substrates. XPS analysis gives information on the chemical bonds and their modifications in the first superficial implanted layers. The depth distributions of implanted Ta and Ag ions were compared with the theoretical ones achieved by using the SRIM-2012 simulation code.

  17. A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology.

    Science.gov (United States)

    Figliuzzi, M; Mangano, F; Mangano, C

    2012-07-01

    Direct laser metal forming (DLMF) is a new technique which allows solids with complex geometry to be produced by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model. For dental implants, the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer by layer, the desired object. Modern computed tomography (CT) acquisition and 3D image conversion, combined with the DLMF process, allows the fabrication of custom-made, root-analogue implants (RAI), perfect copies of the radicular units that need replacing. This report demonstrates the successful clinical use of a custom-made, root-analogue DLMF implant. CT images of the residual non-restorable root of a right maxillary premolar were acquired and modified with specific software into a 3D model. From this model, a custom-made, root-analogue, DLMF implant was fabricated. Immediately after tooth extraction, the root-analogue implant was placed in the extraction socket and restored with a single crown. At the 1-year follow-up examination, the custom-made implant showed almost perfect functional and aesthetic integration. The possibility of fabricating custom-made, root-analogue DLMF implants opens new interesting perspectives for immediate placement of dental implants. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. The role of silicon interstitials in the deactivation and reactivation of high concentration boron profiles

    Energy Technology Data Exchange (ETDEWEB)

    Aboy, Maria [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain)]. E-mail: marabo@tel.uva.es; Pelaz, Lourdes [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Marques, Luis A. [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Lopez, Pedro [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Barbolla, Juan [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Venezia, V.C. [Philips Research Leuven, Leuven (Belgium); Duffy, R. [Philips Research Leuven, Leuven (Belgium); Griffin, Peter B. [Stanford University, Stanford, CA (United States)

    2004-12-15

    Boron cluster formation and dissolution in high concentration B profiles and the role of Si interstitials in these processes are analyzed by kinetic non-lattice Monte Carlo atomistic simulations. For this purpose, we use theoretical structures as simplifications of boron implants into preamorphized Si, followed by low-temperature solid phase epitaxial (SPE) regrowth or laser thermal annealing process. We observe that in the presence of high B concentrations (above 10{sup 20} cm{sup -3}), significant deactivation occurs during high temperature anneal, even in the presence of only equilibrium Si interstitials. The presence of additional Si interstitials from an end of range (EOR) damage region accelerates the deactivation process and makes B deactivation slightly higher. We show that B deactivation and reactivation processes can be clearly correlated to the evolution of Si interstitial defects at the EOR. The minimum level of activation occurs when the Si interstitial defects at EOR dissolve or form very stable defects.

  19. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy

    International Nuclear Information System (INIS)

    Hébert, Clément; Cottance, Myline; Degardin, Julie; Scorsone, Emmanuel; Rousseau, Lionel; Lissorgues, Gaelle; Bergonzo, Philippe; Picaud, Serge

    2016-01-01

    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4 months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. - Highlights: • Microfabrication of porous diamond electrode on flexible retinal implant • Electrochemical characterization of microelectrode for neural interfacing • In vivo impedance spectroscopy of retinal tissue

  20. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: clement.hebert@icn2.cat [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Cottance, Myline [Université Paris-Est, ESYCOM-ESIEE Paris, Noisy le Grand (France); Degardin, Julie [INSERM, U968, Institut de la Vision, Paris (France); Scorsone, Emmanuel [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Rousseau, Lionel; Lissorgues, Gaelle [Université Paris-Est, ESYCOM-ESIEE Paris, Noisy le Grand (France); Bergonzo, Philippe [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Picaud, Serge [INSERM, U968, Institut de la Vision, Paris (France)

    2016-12-01

    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4 months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. - Highlights: • Microfabrication of porous diamond electrode on flexible retinal implant • Electrochemical characterization of microelectrode for neural interfacing • In vivo impedance spectroscopy of retinal tissue.

  1. Continued biological investigations of boron-rich oligomeric phosphate diesters (OPDs). Tumor-selective boron agents for BNCT

    International Nuclear Information System (INIS)

    Lee, Mark W.; Shelly, Kenneth; Kane, Robert R.; Hawthorne, M. Frederick

    2006-01-01

    Clinical success of Boron Neutron Capture Therapy will rely on the selective intracellular delivery of high concentrations of boron-10 to tumor tissue. In order for a boron agent to facilitate clinical success, the simultaneous needs of obtaining a high tumor dose, high tumor selectivity, and low systemic toxicity must be realized. Boron-rich oligomeric phosphate diesters (OPDs) are a class of highly water-soluble compounds containing up to 40% boron by weight. Previous work in our groups demonstrated that once placed in the cytoplasm of tumor cells, OPDs quickly accumulate within the cell nucleus. The objective of the current study was to determine the biodistribution of seven different free OPDs in BALB/c mice bearing EMT6 tumors. Fructose solutions containing between 1.4 and 6.4 micrograms of boron per gram of tissue were interveinously injected in mice seven to ten days after tumor implantation. At intervals during the study, animals were euthanized and samples of tumor, blood, liver, kidney, brain and skin were collected and analyzed for boron content using ICP-AES. Tumor boron concentrations of between 5 and 29 ppm were achieved and maintained over the 72-hour time course of each experiment. Several OPDs demonstrated high tumor selectivity with one oligomer exhibiting a tumor to blood ratio of 35:1. The apparent toxicity of each oligomer was assessed through animal behavior during the experiment and necropsy of each animal upon sacrifice. (author)

  2. Electrical properties and annealing kinetics study of laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wang, K.L.; Liu, Y.S.; Kirkpatrick, C.G.; Possin, G.E.

    1979-01-01

    This paper describes measurements of electrical properties and the regrowth behavior of ion-implanted silicon annealed with an 80-ns (FWHM) laser pulse at 1.06 μm. The experimental results include: (1) a determination of threshold energy density required for melting using a transient optical reflectivity technique, (2) measurements of dopant distribution using Rutherford backscattering spectroscopy, (3) characterization of electrical properties by measuring reverse leakage current densities of laser-annealed and thermal-annealed mesa diodes, (4) determination of annealed junction depth using an electron-beam-induced-current technique, and (5) a deep-level-transient spectroscopic study of residual defects. In particular, by measuring these properties of a diode annealed at a condition near the threshold energy density for liquid phase epitaxial regrowth, we have found certain correlations among these various annealing behaviors and electrical properties of laser-annealed ion-implanted silicon diodes

  3. Note: Laser ablation technique for electrically contacting a buried implant layer in single crystal diamond

    International Nuclear Information System (INIS)

    Ray, M. P.; Baldwin, J. W.; Butler, J. E.; Pate, B. B.; Feygelson, T. I.

    2011-01-01

    The creation of thin, buried, and electrically conducting layers within an otherwise insulating diamond by annealed ion implantation damage is well known. Establishing facile electrical contact to the shallow buried layer has been an unmet challenge. We demonstrate a new method, based on laser micro-machining (laser ablation), to make reliable electrical contact to a buried implant layer in diamond. Comparison is made to focused ion beam milling.

  4. Ta-ion implantation induced by a high-intensity laser for plasma diagnostics and target preparation

    Energy Technology Data Exchange (ETDEWEB)

    Cutroneo, M., E-mail: cutroneo@ujf.cas.cz [Nuclear Physics Institute, ASCR, 250 68 Rez (Czech Republic); Malinsky, P.; Mackova, A. [Nuclear Physics Institute, ASCR, 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Matousek, J. [Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Torrisi, L. [Department of Physics and Earth Science, Messina University, V.le F.S. d’Alcontres 31, 981 66 S. Agata, Messina (Italy); Slepicka, P. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Ullschmied, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic)

    2015-12-15

    The present work is focused on the implantation of Ta ions into silicon substrates covered by a silicon dioxide layer 50–300 nm thick. The implantation is achieved using sub-nanosecond pulsed laser ablation (10{sup 15} W/cm{sup 2}) with the objective of accelerating non-equilibrium plasma ions. The accelerated Ta ions are implanted into the exposed silicon substrates at energies of approximately 20 keV per charge state. By changing a few variables in the laser pulse, it is possible to control the kinetic energy, the yield and the angular distribution of the emitted ions. Rutherford Back-Scattering analysis was performed using 2.0 MeV He{sup +} as the probe ions to determine the elemental depth profiles and the chemical composition of the laser-implanted substrates. The depth distributions of the implanted Ta ions were compared to SRIM 2012 simulations. The evaluated results of energy distribution were compared with online techniques, such as Ion Collectors (IC) and an Ion Energy Analyser (IEA), for a detailed identification of the produced ion species and their energy-to-charge ratios (M/z). Moreover, XPS (X-ray Photon Spectroscopy) and AFM (Atomic Force Microscopy) analyses were carried out to obtain information on the surface morphology and the chemical composition of the modified implanted layers, as these features are important for further application of such structures.

  5. Laser induced recrystallisation and defects in ion implanted hexagonal SiC

    International Nuclear Information System (INIS)

    Makarov, V.V.; Tuomi, T.; Naukkarinen, K.; Luomajaervi, M.; Riihonen, M.

    1979-10-01

    SiC(6H) crystals amorphized with 14 N + -ion implantation were annealed with CO 2 laser pulses at intensities of 20 to 100 MW/cm 2 . Laser produced crystallisation due to residual ray absorption was studied by means of optical spectroscopy, 4 He + -ion backscattering spectrometry and channeling as well as Cu Kα 1 and synchrotron x-ray diffraction topography. At low laser intensities topographs revealed linear and planar defects which contributed to increased dechanneling independent of analyzing beam energy. Minimum of lattice disorder, which was in some regions of the laser impact area smaller than that obtained in thermal annealing, was attained at the peak laser intensities of about 50 MW/cm 2 . (orig.)

  6. Laser annealing of ion implanted silicon by the aid of a Q-switched neodymium glass laser

    International Nuclear Information System (INIS)

    Exner, H.; Laemmel, B.; Zscherpe, G.

    1984-01-01

    Experimental results of laser annealing of arsenic implanted silicon are presented. Different depths of melting are obtained by varying the energy flux density of the Q-switched neodymium glass laser. The annealed samples are studied by the aid of optical microscopy, scanning electron microscopy, Rutherford backscattering spectrometry (RBS) combined with ion channeling, and of resistance measurements. Not any defect could be found by RBS and no surface structure could be determined by microscopy

  7. A direct plasma injection system into an RFQ for clean and safe ion implantation

    International Nuclear Information System (INIS)

    Takeuchi, T.; Katayama, T.; Okamura, M.; Yano, K.; Sakumi, A.; Hattori, T.; Hayashizaki, N.; Jameson, R.A.

    2002-01-01

    A new injection system, direct plasma injection system, was tested and its principle was proved successfully. We found that one of advantages of this injection system was efficient consumption of source materials. Large portions of induced ions can be injected into a first stage accelerator. This feature is quite useful for ion implantation applications, because toxic exhaust gas can be eliminated. In order to utilize this system for industrial application, the feasibility of a boron injection scheme using a Nd:YAG laser system was investigated

  8. Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces

    International Nuclear Information System (INIS)

    Çelen, Serap; Özden, Hüseyin

    2012-01-01

    Highlights: ► It is time for that paradigm shift and for an exploration of novel surfaces. ► We developed novel 3D smart surfaces as strain actuators by nanosecond laser pulse energies. ► We analyzed these smart surface morphologies using FEM. ► We estimated their internal stiffness values which play a great role on stress shielding effect. ► We gave the optimum operation parameters. - Abstract: Surface morphologies of titanium implants are of crucial importance for long-term mechanical adaptation for following implantation. One major problem is the stress shielding effect which originates from the mismatch of the bone and the implant elasticity. It is time for a paradigm shift and for an exploration of novel smart surfaces to prevent this problem. Several surface treatment methods have traditionally been used to modify the surface morphology of titanium dental implants. The laser micro-machining can be considered as a unique and promising, non-contact, no media, contamination free, and flexible treatment method for modifying surface properties of materials in the biomedical industry. The aim of the present study is two folds; to develop novel 3D smart surfaces which can be acted as strain actuators by nanosecond laser pulse energies and irradiation strategies. And analyze these smart surface morphologies using finite element methods in order to estimate their internal stiffness values which play a great role on stress shielding effect. Novel 3D smart strain actuators were prepared using an ytterbium fiber laser (λ = 1060 nm) with 200–250 ns pulse durations on commercial pure titanium dental implant material specimen surfaces and optimum operation parameters were suggested.

  9. Tuning of Schottky Barrier Height at NiSi/Si Contact by Combining Dual Implantation of Boron and Aluminum and Microwave Annealing

    Directory of Open Access Journals (Sweden)

    Feng Sun

    2018-03-01

    Full Text Available Dopant-segregated source/drain contacts in a p-channel Schottky-barrier metal-oxide semiconductor field-effect transistor (SB-MOSFET require further hole Schottky barrier height (SBH regulation toward sub-0.1 eV levels to improve their competitiveness with conventional field-effect transistors. Because of the solubility limits of dopants in silicon, the requirements for effective hole SBH reduction with dopant segregation cannot be satisfied using mono-implantation. In this study, we demonstrate a potential solution for further SBH tuning by implementing the dual implantation of boron (B and aluminum (Al in combination with microwave annealing (MWA. By using such a method, not only has the lowest hole SBH ever with 0.07 eV in NiSi/n-Si contacts been realized, but also the annealing duration of MWA was sharply reduced to 60 s. Moreover, we investigated the SBH tuning mechanisms of the dual-implanted diodes with microwave annealing, including the dopant segregation, activation effect, and dual-barrier tuning effect of Al. With the selection of appropriate implantation conditions, the dual implantation of B and Al combined with the MWA technique shows promise for the fabrication of future p-channel SB-MOSFETs with a lower thermal budget.

  10. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  11. Interaction of power pulses of laser radiation with glasses containing implanted metal nanoparticles

    CERN Document Server

    Stepanov, A L; Hole, D E; Bukharaev, A A

    2001-01-01

    The sodium-calcium silicate glasses, implanted by the Ag sup + ions with the energy of 60 keV and the dose of 7 x 10 sup 1 sup 6 cm sup - sup 2 by the ion current flux density of 10 mu A/cm sup 2 , are studied. The ion implantation makes it possible to synthesize in the near-the-surface glass area the composite layer, including the silver nanoparticles. The effect of the powerful pulse excimer laser on the obtained composite layer is investigated. It is established that the laser radiation leads to decrease in the silver nanoparticles size in the implanted layer. However nonuniform distribution of particles by size remains though not so wide as before the irradiation. The experimental results are explained by the effect of glass and metallic particles melting in the nanosecond period of time

  12. Does the Laser-Microtextured Short Implant Collar Design Reduce Marginal Bone Loss in Comparison with a Machined Collar?

    Directory of Open Access Journals (Sweden)

    B. Alper Gultekin

    2016-01-01

    Full Text Available Purpose. To compare marginal bone loss between subgingivally placed short-collar implants with machined collars and those with machined and laser-microtextured collars. Materials and Methods. The investigators used a retrospective study design and included patients who needed missing posterior teeth replaced with implants. Short-collar implants with identical geometries were divided into two groups: an M group, machined collar; and an L group, machined and laser-microtextured collar. Implants were evaluated according to marginal bone loss, implant success, and probing depth (PD at 3 years of follow-up. Results. Sixty-two patients received 103 implants (56 in the M group and 47 in the L group. The cumulative survival rate was 100%. All implants showed clinically acceptable marginal bone loss, although bone resorption was lower in the L group (0.49 mm than in the M group (1.38 mm at 3 years (p<0.01. A significantly shallower PD was found for the implants in the L group during follow-up (p<0.01. Conclusions. Our results suggest predictable outcomes with regard to bone loss for both groups; however, bone resorption was less in the L group than in the M group before and after loading. The laser-microtextured collar implant may provide a shallower PD than the machined collar implant.

  13. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    International Nuclear Information System (INIS)

    Gontad, F.; Conde, J.C.; Filonovich, S.; Cerqueira, M.F.; Alpuim, P.; Chiussi, S.

    2013-01-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p + -nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm 2 is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm 2 promote partial crystallization of the amorphous structures

  14. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, F., E-mail: fran_gontad@yahoo.es [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Conde, J.C. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Filonovich, S.; Cerqueira, M.F.; Alpuim, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Chiussi, S. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain)

    2013-06-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p{sup +}-nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm{sup 2} is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm{sup 2} promote partial crystallization of the amorphous structures.

  15. Safety of holmium laser prostatectomy in patients with cardiac pacemaker implant

    Directory of Open Access Journals (Sweden)

    Narmada P Gupta

    2006-01-01

    Full Text Available Objectives: The use of the standard monopolar electrocautery is associated with significant risks of implant malfunction in patients on a cardiac pacemaker. It is also associated with a risk of adverse cardiac events due to blood loss and fluid absorption. The properties of the holmium laser prevent the occurrence of these adverse events. We report the successful use of this technology in resecting the gland in patients on a permanent cardiac pacemaker implant. MATERIALS AND Methods: Six patients with permanent cardiac pacemaker implant were treated with holmium laser resection of prostate over a period of two years. Treated patients had bothersome prostatic symptoms and failed to respond to medical therapy. All patients were operated under spinal anesthesia using a high power VersaPulse ® PowerSuiteTM Holmium laser source. Normal saline was used as irrigant. Intravesical tissue morcellator was also used to remove the larger fragments in two of the patients. Results : Median patient age was 60 years (range 56-73 and median prostate volume was 40cc (range 20-48cc. None of the patient required blood transfusion or had significant hyponatremia or Transurethral resection syndrome. No patients had any pacemaker malfunction or hemodynamic instability during the procedure or in immediate postoperative period. Improvement in maximum urine flow rate was observed from an average of 7 ml/sec in preoperative period to 22 ml/sec postoperatively at 3 month followup. Conclusions: Holmium laser prostatectomy offers the ideal modality of surgery in patients on a cardiac pacemaker. It helps to avoid additional preparation and minimizes the risk of device malfunction and adverse post operative events.

  16. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    Energy Technology Data Exchange (ETDEWEB)

    Framil Carpeño, David, E-mail: david.framil-carpeno@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Ohmura, Takahito; Zhang, Ling [Strength Design Group, Structural Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Leveneur, Jérôme [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Dickinson, Michelle [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Seal, Christopher [International Centre for Advanced Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Kennedy, John [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Hyland, Margaret [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand)

    2015-07-15

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation.

  17. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    International Nuclear Information System (INIS)

    Framil Carpeño, David; Ohmura, Takahito; Zhang, Ling; Leveneur, Jérôme; Dickinson, Michelle; Seal, Christopher; Kennedy, John; Hyland, Margaret

    2015-01-01

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation

  18. Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Glavin, Nicholas R. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Jespersen, Michael L. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 (United States); Check, Michael H. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); Hu, Jianjun [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 (United States); Hilton, Al M. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); Wyle Laboratories, Dayton, OH 45433 (United States); Fisher, Timothy S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, Andrey A. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States)

    2014-12-01

    Pulsed laser deposition (PLD) has been investigated as a technique for synthesis of ultra-thin, few-layer hexagonal boron nitride (h-BN) thin films on crystalline highly ordered pyrolytic graphite (HOPG) and sapphire (0001) substrates. The plasma-based processing technique allows for increased excitations of deposited atoms due to background nitrogen gas collisional ionizations and extended resonance time of the energetic species presence at the condensation surface. These processes permit growth of thin, polycrystalline h-BN at 700 °C, a much lower temperature than that required by traditional growth methods. Analysis of the as-deposited films reveals epitaxial-like growth on the nearly lattice matched HOPG substrate, resulting in a polycrystalline h-BN film, and amorphous BN (a-BN) on the sapphire substrates, both with thicknesses of 1.5–2 nm. Stoichiometric films with boron-to-nitrogen ratios of unity were achieved by adjusting the background pressure within the deposition chamber and distance between the target and substrate. The reduction in deposition temperature and formation of stoichiometric, large-area h-BN films by PLD provide a process that is easily scaled-up for two-dimensional dielectric material synthesis and also present a possibility to produce very thin and uniform a-BN. - Highlights: • PLD was used to synthesize boron nitride thin films on HOPG and sapphire substrates. • Lattice matched substrate allowed for formation of polycrystalline h-BN. • Nitrogen gas pressure directly controlled film chemistry and structure. • Technique allows for ultrathin, uniform films at reduced processing temperatures.

  19. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting.

    Science.gov (United States)

    Shaoki, Algabri; Xu, Jia-Yun; Sun, Haipeng; Chen, Xian-Shuai; Ouyang, Jianglin; Zhuang, Xiu-Mei; Deng, Fei-Long

    2016-10-27

    The selective laser melting (SLM) technique is a recent additive manufacturing (AM) technique. Several studies have reported success in the SLM-based production of biocompatible orthopaedic implants and three-dimensional bone defect constructs. In this study, we evaluated the surface properties and biocompatibility of an SLM titanium implant in vitro and compared them with those of a machined (MA) titanium control surface. In addition, we evaluated the osseointegration capability of the SLM implants in vivo and compared it with those of MA and Nobel-speedy (Nobel-S) implants. SLM microtopographical surface analysis revealed porous and high roughness with varied geometry compared with a smooth surface in MA Ti samples but with similar favourable wettability. Osteoblast proliferation and alkaline phosphatase activity were significantly enhanced on the SLM surface. Histological analysis of the bone-implant contact ratio revealed no significant difference among SLM, MA, and Nobel-S implants. Micro-CT assessment indicated that there was no significant difference in bone volume fraction around the implant among SLM implants and other types of surface modification implants. The removal torque value measurement of SLM implants was significantly lower that of than Nobel-S implants P manufacturing technique.

  20. Influence of laser-welding and electroerosion on passive fit of implant-supported prosthesis.

    Science.gov (United States)

    Silva, Tatiana Bernardon; De Arruda Nobilo, Mauro Antonio; Pessanha Henriques, Guilherme Elias; Mesquita, Marcelo Ferraz; Guimaraes, Magali Beck

    2008-01-01

    This study investigated the influence of laser welding and electroerosion procedure on the passive fit of interim fixed implant-supported titanium frameworks. Twenty frameworks were made from a master model, with five parallel placed implants in the inter foramen region, and cast in commercially pure titanium. The frameworks were divided into 4 groups: 10 samples were tested before (G1) and after (G2) electroerosion application; and another 10 were sectioned into five pieces and laser welded before (G3) and after (G4) electroerosion application. The passive fit between the UCLA abutment of the framework and the implant was evaluated using an optical microscope Olympus STM (Olympus Optical Co., Tokyo, Japan) with 0.0005mm of accuracy. Statistical analyses showed significant differences between G1 and G2, G1 and G3, G1 and G4, G2 and G4. However, no statistical difference was observed when comparing G2 and G3. These results indicate that frameworks may show a more precise adaptation if they are sectioned and laser welded. In the same way, electroerosion improves the precision in the framework adaptation.

  1. Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Celen, Serap, E-mail: serap.celen@ege.edu.tr [Ege University, Faculty of Engineering, Mechanical Engineering Department, Izmir, 35100 (Turkey); Oezden, Hueseyin [Ege University, Faculty of Engineering, Mechanical Engineering Department, Izmir, 35100 (Turkey)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer It is time for that paradigm shift and for an exploration of novel surfaces. Black-Right-Pointing-Pointer We developed novel 3D smart surfaces as strain actuators by nanosecond laser pulse energies. Black-Right-Pointing-Pointer We analyzed these smart surface morphologies using FEM. Black-Right-Pointing-Pointer We estimated their internal stiffness values which play a great role on stress shielding effect. Black-Right-Pointing-Pointer We gave the optimum operation parameters. - Abstract: Surface morphologies of titanium implants are of crucial importance for long-term mechanical adaptation for following implantation. One major problem is the stress shielding effect which originates from the mismatch of the bone and the implant elasticity. It is time for a paradigm shift and for an exploration of novel smart surfaces to prevent this problem. Several surface treatment methods have traditionally been used to modify the surface morphology of titanium dental implants. The laser micro-machining can be considered as a unique and promising, non-contact, no media, contamination free, and flexible treatment method for modifying surface properties of materials in the biomedical industry. The aim of the present study is two folds; to develop novel 3D smart surfaces which can be acted as strain actuators by nanosecond laser pulse energies and irradiation strategies. And analyze these smart surface morphologies using finite element methods in order to estimate their internal stiffness values which play a great role on stress shielding effect. Novel 3D smart strain actuators were prepared using an ytterbium fiber laser ({lambda} = 1060 nm) with 200-250 ns pulse durations on commercial pure titanium dental implant material specimen surfaces and optimum operation parameters were suggested.

  2. Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres - Comparative study

    International Nuclear Information System (INIS)

    Ciganovic, J.; Stasic, J.; Gakovic, B.; Momcilovic, M.; Milovanovic, D.; Bokorov, M.; Trtica, M.

    2012-01-01

    Interaction of a TEA CO 2 laser, operating at 10.6 μm wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm 2 in the surrounding of air, N 2 , O 2 or He. The energy absorbed from the TEA CO 2 laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N 2 and O 2 , and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.

  3. Tribological properties of ion-implanted steels

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    The tribological properties such as surface hardness, friction and wear have been studied for low carbon steels and tool steels implanted with many types of ion including metallic elements. The hardness measured by Vickers or Knoop hardness testers as a function of normal load is dependent on the implanted species, fluence and substrate. The friction coefficients measured by Bowden-Leben type of friction tests or detected during wear tests also depend on the implantation conditions. The improvement in the wear resistance, which is most important for industrial use of implanted materials, has been investigated for AISI H13 prehardened and tool steels implanted with nitrogen and boron ions. The relationship between hardness, friction and wear is discussed in comparison with the microcharacteristics such as composition and chemical bonding states measured by means of secondary ion mass spectrometry and X-ray photoelectron spectroscopy. It is concluded that the increase in hardness and/or the decrease in friction coefficient play(s) an important role in improving the wear resistance, and the relationship between relative wear volume and relative hardness is correlated for boron and nitrogen implantation. (orig.)

  4. A Monte Carlo simulation study of boron profiles as-implanted into LPCVD NiDoS polycrystalline thin films

    Science.gov (United States)

    Boukezzata, M.; Ait-Kaki, A.; Temple-Boyer, P.; Scheid, E.

    2003-03-01

    This work presents a Monte Carlo simulation study of boron profiles obtained from as-implanted ions into thin films nitrogen doped silicon (NiDoS) thin films. These films are performed by LPCVD technique from Si2H6 and NH3 gas sources, four values deliberately chosen, of the ratio NH3/Si2H6 to obtain samples, differently in situ nitrogen-doped. Taking into account the effect of the codoping case, and the structure specificity of these films, an accurate Monte Carlo model based on binary collisions in a multi-atomic target was performed. Nitrogen atoms present in the target is shown to affect the boron profiles and confirms clearly a reduction penetration effect which becomes more significant at high nitrogen concentrations. Whereas, the fine-grained polysilicon structure, and thus the presence of grains (G) and grain boundaries (GB), is known to enhance the opposite phenomenon by assuming an effective role played by GB's in the scattering calculation process of the incident ions. This role is represented by the change in direction of the incident ion after interaction with GB without corresponding loss in its energy. The results obtained show an enhancement of the stopping parameter when nitrogen concentration increases, while the GB interaction remains very important. This behavior is due to a great number of GB's interactions with boron atoms which gave low deflection angles. So that, the average positions described by the sequences of trajectories took place farther than what expected with channeling effect in crystal silicon materials.

  5. The utilization of a diode laser in the surgical treatment of peri-implantitis. A randomized clinical trial.

    Science.gov (United States)

    Papadopoulos, Christos A; Vouros, Ioannis; Menexes, Georgios; Konstantinidis, Antonis

    2015-11-01

    A comparison of different treatment modalities of peri-implantitis can lead to the development and application of more effective and efficient methods of therapy in clinical practice. This study compares the effectiveness of open flap debridement used alone, with an approach employing the additional use of a diode laser for the treatment of peri-implantitis. Nineteen patients were divided into two groups and treated for peri-implantitis. In the control group (C group), the therapy utilized access flaps, plastic curettes, and sterilized gauzes soaked in saline. The test group (L group) was treated similarly but with additional irradiation using a diode laser. The parameters studied were pocket depth (PD) as the primary outcome variable, clinical attachment level (CAL), bleeding on probing (BOP), and plaque index (PI) as secondary variables. Measurements were performed at three different time points, baseline (BSL), 3 months, and 6 months after treatment. Three months after treatment, a mean PD reduction of 1.19 mm for the control group and 1.38 mm for the laser group was recorded. The corresponding BOP changes were 72.9 and 66.7%, respectively. These changes were significant and remained at the same levels at the 6-month examination (p Surgical treatment of peri-implantitis by access flaps leads to improvement of all clinical parameters studied while the additional use of diode laser does not seem to have an extra beneficiary effect. The additional use of a diode laser in the surgical treatment of peri-implantitis offers a limited clinical benefit.

  6. Differences in Nanosecond Laser Ablation and Deposition of Tungsten, Boron, and WB2/B Composite due to Optical Properties

    Directory of Open Access Journals (Sweden)

    Tomasz Moscicki

    2016-01-01

    Full Text Available The first attempt to the deposition of WB3 films using nanosecond Nd:YAG laser demonstrated that deposited coatings are superhard. However, they have very high roughness. The deposited films consisted mainly of droplets. Therefore, in the present work, the explanation of this phenomenon is conducted. The interaction of Nd:YAG nanosecond laser pulse with tungsten, boron, and WB2/B target during ablation is investigated. The studies show the fundamental differences in ablation of those materials. The ablation of tungsten is thermal and occurs due to only evaporation. In the same conditions, during ablation of boron, the phase explosion and/or fragmentation due to recoil pressure is observed. The deposited films have a significant contribution of big debris with irregular shape. In the case of WB2/B composite, ablation is significantly different. The ablation seems to be the detonation in the liquid phase. The deposition mechanism is related mainly to the mechanical transport of the target material in the form of droplets, while the gaseous phase plays marginal role. The main origin of differences is optical properties of studied materials. A method estimating phase explosion occurrence based on material data such as critical temperature, thermal diffusivity, and optical properties is shown. Moreover, the effect of laser wavelength on the ablation process and the quality of the deposited films is discussed.

  7. Neutralization study of boron and some metallic impurities (gold, titanium, manganese, chromium) by hydrogen implantation in monocrystal silicon

    International Nuclear Information System (INIS)

    Zundel, T.

    1987-02-01

    Boron doped silicon implanted with hydrogen at low energy in the temperature range 80-140 0 C shows a large decrease of the electrically active dopant concentration up to a depth which increases with the temperature, the implantation duration and the starting material resistivity. This effect is assigned to the formation of an electrically inactive BH complex. The hydrogen incorporation process shows a weakly temperature dependent enhanced diffusion step followed by a normal diffusion phase which may be described by a thermally activated diffusion coefficient. Heating at 80 0 C produces a complete dissociation of the BH complexes in the space charge region of reverse biased Schottky diodes. Consequently the released hydrogen drifts under the electric field and the neutralization becomes more pronounced in the bulk. Hydrogen neutralizes the gold, chromium, manganese related deep levels but has no effect on titanium related defect levels. Thermal annealing at 495 0 C of hydrogenated chromium or manganese doped samples produces four majority carriers levels which disappear at 700 0 C [fr

  8. Formation of shallow junctions for VLSI by ion implantation and rapid thermal annealing

    International Nuclear Information System (INIS)

    Oeztuerk, M.C.

    1988-01-01

    In this work, several techniques were studied to form shallow junctions in silicon by ion implantation. These include ion implantation through thin layers of silicon dioxide and ion implantation through a thick polycrystalline silicon layer. These techniques can be used to reduce the junction depth. Their main disadvantage is dopant loss in the surface layer. As an alternative, preamorphization of the Si substrate prior to boron implantation to reduce boron channeling was investigated. The disadvantage of preamorphization is the radiation damage introduced into the Si substrate using the implant. Preamorphization by silicon self-implantation has been studied before. The goal of this study was to test Ge as an alternative amorphizing agent. It was found that good-quality p + -n junctions can be formed by both boron and BF 2 ion implantation into Ge-preamorphized Si provided that the preamorphization conditions are optimized. If the amorphous crystalline interface is sufficiently close to the surface, it is possible to completely remove the end-of-range damage. If these defects are not removed and are left in the depletion region, they can result in poor-quality, leaky junctions

  9. B-Cure Laser Dental Pro technology for prevention and treatment of peri-implant mucositis

    Science.gov (United States)

    Gileva, O. S.; Libik, T. V.; Chuprakov, M. A.; Yakov, A. Y.; Mirsaeva, F. Z.

    2017-09-01

    Oral mucositis (OM) is the severe inflammation, lesioning and ulceration of the epithelia, accompanied by bleeding and intensive pain. OM is a common complication of dental implantation. Low-level laser therapy (LLLT) has been found to enhance the repair and healing of epithelia. The aim of this study was to evaluate the effectiveness of preventive and treatment use of LLLT (B-Cure Laser Dental Pro technology in original author's techniques) in the patients who have undergone dental implantation. Simple blind randomized prospective one-center comparative placebo-controlled clinical trial is carried out on the group of 30 partially edentulous patients. It is proved that the use of LLLT before and after installation of dental implants provides: 1) reliable reduction (by 3.5 times) of the frequency of implication and intensity of pain in the first days after operation; 2) reduction (by 3.3-3.7 times) of frequency, duration and intensity of local edematous and inflammatory processes in peri-implant zone and facial soft tissue edema; 3) effective prophylaxis of postoperative sensory, paresthesia and neurologic disturbances in maxillofacial area.

  10. Improved dental implant drill durability and performance using heat and wear resistant protective coatings.

    Science.gov (United States)

    Er, Nilay; Alkan, Alper; İlday, Serim; Bengu, Erman

    2018-03-02

    Dental implant drilling procedure is an essential step for implant surgery and frictional heat appeared in bone during drilling is a key factor affecting the success of an implant. The aim of this study is to increase the dental implant drill lifetime and performance using heat- and wear-resistant protective coatings hence to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling procedure was performed on a bovine femoral cortical bone under the conditions mimicking clinical practice, where the tests were performed both under water-assisted cooling and under the conditions without any cooling was applied. Coated drill performances and durabilities were compared to that of three commonly used commercial drills which surfaces are made from namely; zirconia, black diamond and stainless steel. Protective coatings with boron nitride, titanium boron nitride and diamond-like carbon have significantly improved drill performance and durability. Especially boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even without any cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat and wear resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can reflect positively on surgical procedure and healing period afterwards. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  11. Thermal desorption spectroscopy of boron/carbon films after keV deuterium irradiation

    International Nuclear Information System (INIS)

    Yamaki, T.; Gotoh, Y.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.

    1994-01-01

    Thermal desorption spectroscopy (TDS) of D 2 and CD 4 was done on boron/carbon films (B/(B+C)=0-74%), after 3 keV D 3 + irradiation to 4.5x10 17 D/cm 2 at 473 K. The D 2 desorption peaks were observed at 1050, 850 and 650 K. For a sputter B/C film (0%), only the 1050 K peak was observed. With increasing boron concentration to 3%, a sharp peak appeared at 850 K, the intensity of which was found to increase with increasing boron concentration to 23%, and then to decrease at 74%. The 650 K shoulder, which was observed for high boron concentration specimens, was speculated to be deuterium trapped by boron atoms in the boron clusters. The relative amount of CD 4 desorption was found to decrease with increasing boron concentration, which was attributed to the decrease in the trapped deuterium concentration in the implantation layer at temperatures at which CD 4 desorption proceeds. ((orig.))

  12. Contribution to implanted silicon layers and their annealing

    International Nuclear Information System (INIS)

    Combasson, J.-L.

    1976-01-01

    Defects created by boron implantation in silicon have been characterized by measuring the diffusion coefficient during annealing. Implanted impurity distributions were calculated after analyzing the hypotheses relating to charged particle slowing down through matter. Profiles are predicted with a good accuracy, by replacing occasionally the electronic stopping law by an empirical law. The asymmetries predicted are generally observed but deviations may occur for crystalline targets, or when the ion is heavy with regard to the substrate (in the event the Thomas-Fermi potential is not yet valid due to the high impact parameters). When deviations are neglected, the displacement cascade from implantation is represented by a damage profile proportional to the distribution of the Frenkel pairs. The annealing of the implanted layers is characterized by three annealing stages. The first one (400 deg C-600 deg C) is imputed to divacancy annealing associated to the formation and migration of boron-vacancy complexes. The second one (500 deg C-650 deg C) is characterized by the Watkins replacement mechanism. At high temperatures, when the annealing duration is longer than that of precipitation, interstitial loops are dissolved, and the thermal diffusion of boron atoms involves the vacancy mechanism of thermal diffusion [fr

  13. Laser ion implantation of Ge in SiO2 using a post-ion acceleration system

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Macková, Anna; Torrisi, L.; Lavrentiev, Vasyl

    2017-01-01

    Roč. 35, č. 1 (2017), s. 72-80 ISSN 0263-0346 R&D Projects: GA MŠk LM2015056; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : laser ion implantation * post-acceleration Subject RIV: BH - Optics, Masers, Laser s OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.420, year: 2016

  14. Multi-energy ion implantation from high-intensity laser

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Torrisi, L.; Ullschmied, Jiří; Dudžák, Roman

    2016-01-01

    Roč. 61, č. 2 (2016), s. 109-113 ISSN 0029-5922. [PLASMA 2015 : International Conference on Research and Applications of Plasmas. Warsaw, 07.09.2015-11.09.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : high-intensity laser * implantation * material modification Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (UFP-V) Impact factor: 0.760, year: 2016

  15. Osseointegration of KrF laser hydroxylapatite films on Ti6A14V alloy by mini-pigs: loaded osseointegration of dental implants

    Science.gov (United States)

    Dostalova, Tatjana; Jelinek, Miroslav; Himmlova, Lucia; Grivas, Christos

    1999-05-01

    Aim of study was to evaluate osseointegration of the KrF laser hydroxyapatite coated titanium alloy Ti6Al4V dental implants. For deposition KrF excimer laser in stainless- steel deposition chamber was used. Thickness of HA films were round 1 μm . Mini-pigs were used in this investigation. Implants were placed vertically into the lower jaw. After 14 weeks unloaded osseointegration the metal ceramic crowns were inserted. the experimental animals were sacrificed (1 year post insertion). The vertical position of implants was controlled with a radiograph. Microscopical sections were cut and ground. Sections were viewed using microscope with CCD camera. 1 year osseointegration in lower jaw confirmed by all implants presence of newly formed bone around the all implants. Laser-deposited coating the layer of fibrous connective tissue was seen only seldom. In the control group (titamium implant without cover) the fibrous connective tissue was seen between implant and newly formed bone.

  16. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Science.gov (United States)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh

    2016-08-01

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  17. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca [Silicon Hall: Laser Micro/Nano Fabrication Laboratory, Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2016-08-28

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  18. Characterization of junctions produced by medium-energy ion implantation in silicon

    International Nuclear Information System (INIS)

    Monfret, A.

    1970-01-01

    Characteristics of diodes made by implanting 20 keV boron and phosphorus ions into silicon are reviewed. Special features of theses diodes are presented, and correlation with technology is studied. This paper includes three parts: - in the first part, the theory of range distribution is considered for both amorphous and single-crystal targets, - In the second part, a brief description of the experimental conditions is given. - In the third part, the experimental results are presented. The results lead to a schematic model of the component. They also show the influence of cleaning and annealing treatments from which optimized process of fabrication can be determined. In this study, the influence of a two stage annealing process is shown. For phosphorus and boron implants, the first stage is performed at 150 deg. C while the second stage is 450 deg. C for phosphorus and 550 deg. C for boron implants. The implanted diodes are found to exhibit good electrical characteristics. Comparisons with standard diffused diodes are quite favourable. (author) [fr

  19. Histological Evidence of the Osseointegration of Fractured Direct Metal Laser Sintering Implants Retrieved after 5 Years of Function

    Directory of Open Access Journals (Sweden)

    Francesco Mangano

    2017-01-01

    Full Text Available Background. Direct metal laser sintering (DMLS is an additive manufacturing technique that allows the fabrication of dental implants layer by layer through the laser fusion of titanium microparticles. The surface of DMLS implants is characterized by a high open porosity with interconnected pores of different sizes; therefore, it has the potential to enhance and accelerate bone healing. To date, however, there are no histologic/histomorphometric studies in the literature evaluating the interface between bone and DMLS implants in the long-term. Purpose. To evaluate the interface between bone and DMLS implants retrieved after 5 years of functional loading. Methods. Two fractured DMLS implants were retrieved from the human jaws, using a 5 mm trephine bur. Both the implants were clinically stable and functioned regularly before fracture. The specimens were processed for histologic/histomorphometric evaluation; the bone-to-implant contact (BIC% was calculated. Results. Compact, mature lamellar bone was found over most of the DMLS implants in close contact with the implant surface; the histomorphometric evaluation showed a mean BIC% of 66.1% (±4.5%. Conclusions. The present histologic/histomorphometric study showed that DMLS implants were well integrated in bone, after 5 years of loading, with the peri-implant bone undergoing continuous remodeling at the interface.

  20. Histological Evidence of the Osseointegration of Fractured Direct Metal Laser Sintering Implants Retrieved after 5 Years of Function

    Science.gov (United States)

    Piattelli, Adriano

    2017-01-01

    Background Direct metal laser sintering (DMLS) is an additive manufacturing technique that allows the fabrication of dental implants layer by layer through the laser fusion of titanium microparticles. The surface of DMLS implants is characterized by a high open porosity with interconnected pores of different sizes; therefore, it has the potential to enhance and accelerate bone healing. To date, however, there are no histologic/histomorphometric studies in the literature evaluating the interface between bone and DMLS implants in the long-term. Purpose To evaluate the interface between bone and DMLS implants retrieved after 5 years of functional loading. Methods Two fractured DMLS implants were retrieved from the human jaws, using a 5 mm trephine bur. Both the implants were clinically stable and functioned regularly before fracture. The specimens were processed for histologic/histomorphometric evaluation; the bone-to-implant contact (BIC%) was calculated. Results Compact, mature lamellar bone was found over most of the DMLS implants in close contact with the implant surface; the histomorphometric evaluation showed a mean BIC% of 66.1% (±4.5%). Conclusions The present histologic/histomorphometric study showed that DMLS implants were well integrated in bone, after 5 years of loading, with the peri-implant bone undergoing continuous remodeling at the interface. PMID:28929117

  1. Histological Evidence of the Osseointegration of Fractured Direct Metal Laser Sintering Implants Retrieved after 5 Years of Function.

    Science.gov (United States)

    Mangano, Francesco; Mangano, Carlo; Piattelli, Adriano; Iezzi, Giovanna

    2017-01-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique that allows the fabrication of dental implants layer by layer through the laser fusion of titanium microparticles. The surface of DMLS implants is characterized by a high open porosity with interconnected pores of different sizes; therefore, it has the potential to enhance and accelerate bone healing. To date, however, there are no histologic/histomorphometric studies in the literature evaluating the interface between bone and DMLS implants in the long-term. To evaluate the interface between bone and DMLS implants retrieved after 5 years of functional loading. Two fractured DMLS implants were retrieved from the human jaws, using a 5 mm trephine bur. Both the implants were clinically stable and functioned regularly before fracture. The specimens were processed for histologic/histomorphometric evaluation; the bone-to-implant contact (BIC%) was calculated. Compact, mature lamellar bone was found over most of the DMLS implants in close contact with the implant surface; the histomorphometric evaluation showed a mean BIC% of 66.1% (±4.5%). The present histologic/histomorphometric study showed that DMLS implants were well integrated in bone, after 5 years of loading, with the peri-implant bone undergoing continuous remodeling at the interface.

  2. Experimental studies of thorium ion implantation from pulse laser plasma into thin silicon oxide layers

    Science.gov (United States)

    Borisyuk, P. V.; Chubunova, E. V.; Lebedinskii, Yu Yu; Tkalya, E. V.; Vasilyev, O. S.; Yakovlev, V. P.; Strugovshchikov, E.; Mamedov, D.; Pishtshev, A.; Karazhanov, S. Zh

    2018-05-01

    We report the results of experimental studies related to implantation of thorium ions into thin silicon dioxide by pulsed plasma flux expansion. Thorium ions were generated by laser ablation from a metal target, and the ionic component of the laser plasma was accelerated in an electric field created by the potential difference (5, 10 and 15 kV) between the ablated target and a SiO2/Si (0 0 1) sample. The laser ablation system installed inside the vacuum chamber of the electron spectrometer was equipped with a YAG:Nd3  +  laser having a pulse energy of 100 mJ and time duration of 15 ns in the Q-switched regime. The depth profile of thorium atoms implanted into the 10 nm thick subsurface areas together with their chemical state as well as the band gap of the modified silicon oxide at different conditions of implantation processes were studied by means of x-ray photoelectron spectroscopy and reflected electron energy loss spectroscopy methods. Analysis of the chemical composition showed that the modified silicon oxide film contains complex thorium silicates. Depending on the local concentration of thorium atoms, the experimentally established band gaps were located in the range 6.0–9.0 eV. Theoretical studies of the optical properties of the SiO2 and ThO2 crystalline systems were performed by ab initio calculations within hybrid functional. The optical properties of the SiO2/ThO2 composite were interpreted on the basis of the Bruggeman effective medium approximation. A quantitative assessment of the yield of isomeric nuclei in ‘hot’ laser plasma at the early stages of expansion was performed. The estimates made with experimental results demonstrated that the laser implantation of thorium ions into the SiO2 matrix can be useful for further research of low-lying isomeric transitions in a 229Th isotope with energy of 7.8 +/- 0.5 eV.

  3. Tailoring Selective Laser Melting Process Parameters for NiTi Implants

    Science.gov (United States)

    Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, Michael

    2012-12-01

    Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.

  4. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    Science.gov (United States)

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  5. Peri-implant osseointegration after low-level laser therapy: micro-computed tomography and resonance frequency analysis in an animal model.

    Science.gov (United States)

    Mayer, Luciano; Gomes, Fernando Vacilotto; de Oliveira, Marília Gerhardt; de Moraes, João Feliz Duarte; Carlsson, Lennart

    2016-12-01

    The purpose of the present study is to evaluate the effects of low-level laser therapy on the osseointegration process by comparing resonance frequency analysis measurements performed at implant placement and after 30 days and micro-computed tomography images in irradiated vs nonirradiated rabbits. Fourteen male New Zealand rabbits were randomly divided into two groups of seven animals each, one control group (nonirradiated animals) and one experimental group that received low-level laser therapy (Thera Lase®, aluminum-gallium-arsenide laser diode, 10 J per spot, two spots per session, seven sessions, 830 nm, 50 mW, CW, Ø 0.0028 cm 2 ). The mandibular left incisor was surgically extracted in all animals, and one osseointegrated implant was placed immediately afterward (3.25ø × 11.5 mm; NanoTite, BIOMET 3i). Resonance frequency analysis was performed with the Osstell® device at implant placement and at 30 days (immediately before euthanasia). Micro-computed tomography analyses were then conducted using a high-resolution scanner (SkyScan 1172 X-ray Micro-CT) to evaluate the amount of newly formed bone around the implants. Irradiated animals showed significantly higher implant stability quotients at 30 days (64.286 ± 1.596; 95 % confidence interval (CI) 60.808-67.764) than controls (56.357 ± 1.596; 95 %CI 52.879-59.835) (P = .000). The percentage of newly formed bone around the implants was also significantly higher in irradiated animals (75.523 ± 8.510; 95 %CI 61.893-89.155) than in controls (55.012 ± 19.840; 95 %CI 41.380-68.643) (P = .027). Laser therapy, based on the irradiation protocol used in this study, was able to provide greater implant stability and increase the volume of peri-implant newly formed bone, indicating that laser irradiation effected an improvement in the osseointegration process.

  6. In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J., E-mail: jianboc@gmail.com [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Bly, R.A. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Saad, M.M.; AlKhodary, M.A.; El-Backly, R.M. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Cohen, D.J.; Kattamis, N. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Fatta, M.M.; Moore, W.A. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Arnold, C.B. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Marei, M.K. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Soboyejo, W.O. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2011-07-20

    Titanium surfaces were designed, produced, and evaluated for levels of osseointegration into the femurs of rabbits. A total of 36 Ti-6Al-4V pins (15 mm length, 1.64 mm diameter) were prepared into three experimental groups. These were designed to test the effects of osseointegration on laser grooved, RGD coated, and polished control surfaces, as well as combined effects. Circumferential laser grooves were introduced onto pin surfaces (40 {mu}m spacing) using a UV laser ({lambda} = 355 nm). The tripeptide sequence, Arginine-Glycine-Aspartic acid (RGD), was functionalized onto laser grooved surfaces. Of the prepared samples, surface morphology and chemistry were analyzed using scanning electron microscopy (SEM) and Immunoflourescence (IF) spectroscopy, respectively. The experimental pin surfaces were surgically implanted into rabbit femurs. The samples were then harvested and evaluated histologically. Sections of the sample were preserved in a methylmethacralate mold, sliced via a hard microtome, and polished systematically. In the case of the RGD coated and laser grooved surfaces, histological results showed accelerated bone growth into the implant, pull-out tests were also used to compare the adhesion between bone and the titanium pins with/without laser textures and/or RGD coatings. - Research highlights: {yields} Circumferential laser grooves were introduced onto pin surfaces using a UV laser. {yields} The tripeptide sequence, RGD, was functionalized onto laser grooved surfaces. {yields} The experimental pin surfaces were surgically implanted into rabbit femurs. {yields} RGD coated laser groove surfaces accelerated bone growth into the implant. {yields} RGD coated laser grooved surfaces enhanced the adhesion between the bone and implant.

  7. In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs

    International Nuclear Information System (INIS)

    Chen, J.; Bly, R.A.; Saad, M.M.; AlKhodary, M.A.; El-Backly, R.M.; Cohen, D.J.; Kattamis, N.; Fatta, M.M.; Moore, W.A.; Arnold, C.B.; Marei, M.K.; Soboyejo, W.O.

    2011-01-01

    Titanium surfaces were designed, produced, and evaluated for levels of osseointegration into the femurs of rabbits. A total of 36 Ti-6Al-4V pins (15 mm length, 1.64 mm diameter) were prepared into three experimental groups. These were designed to test the effects of osseointegration on laser grooved, RGD coated, and polished control surfaces, as well as combined effects. Circumferential laser grooves were introduced onto pin surfaces (40 μm spacing) using a UV laser (λ = 355 nm). The tripeptide sequence, Arginine-Glycine-Aspartic acid (RGD), was functionalized onto laser grooved surfaces. Of the prepared samples, surface morphology and chemistry were analyzed using scanning electron microscopy (SEM) and Immunoflourescence (IF) spectroscopy, respectively. The experimental pin surfaces were surgically implanted into rabbit femurs. The samples were then harvested and evaluated histologically. Sections of the sample were preserved in a methylmethacralate mold, sliced via a hard microtome, and polished systematically. In the case of the RGD coated and laser grooved surfaces, histological results showed accelerated bone growth into the implant, pull-out tests were also used to compare the adhesion between bone and the titanium pins with/without laser textures and/or RGD coatings. - Research highlights: → Circumferential laser grooves were introduced onto pin surfaces using a UV laser. → The tripeptide sequence, RGD, was functionalized onto laser grooved surfaces. → The experimental pin surfaces were surgically implanted into rabbit femurs. → RGD coated laser groove surfaces accelerated bone growth into the implant. → RGD coated laser grooved surfaces enhanced the adhesion between the bone and implant.

  8. Amorphous clusters in Co implanted ZnO induced by boron pre-implantation

    Energy Technology Data Exchange (ETDEWEB)

    Potzger, K.; Shalimov, A.; Zhou, S.; Schmidt, H.; Mucklich, A.; Helm, M.; Fassbender, J.; Liberati, M.; Arenholz, E.

    2009-02-09

    We demonstrate the formation of superparamagnetic/ferromagnetic regions within ZnO(0001) single crystals sequently implanted with B and Co. While the pre-implantation with B plays a minor role for the electrical transport properties, its presence leads to the formation of amorphous phases. Moreover, B acts strongly reducing on the implanted Co. Thus, the origin of the ferromagnetic ordering in local clusters with large Co concentration is itinerant d-electrons as in the case of metallic Co. The metallic amorphous phases are non-detectable by common X-ray diffraction.

  9. Surface modification of the titanium implant using TEA CO{sub 2} laser pulses in controllable gas atmospheres - Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ciganovic, J.; Stasic, J.; Gakovic, B.; Momcilovic, M.; Milovanovic, D. [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. BOX 522, 11001 Belgrade (Serbia); Bokorov, M. [Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad (Serbia); Trtica, M., E-mail: etrtica@vinca.rs [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. BOX 522, 11001 Belgrade (Serbia)

    2012-01-15

    Interaction of a TEA CO{sub 2} laser, operating at 10.6 {mu}m wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm{sup 2} in the surrounding of air, N{sub 2}, O{sub 2} or He. The energy absorbed from the TEA CO{sub 2} laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N{sub 2} and O{sub 2}, and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.

  10. Diode characteristics and residual deep-level defects of p+n abrupt junctions fabricated by rapid thermal annealing of boron implanted silicon

    International Nuclear Information System (INIS)

    Usami, A.; Katayama, M.; Wada, T.; Tokuda, Y.

    1987-01-01

    p + n diodes were fabricated by rapid thermal annealing (RTA) of boron implanted silicon in the annealing temperature range 700-1100 0 C for around 7 s, and the RTA temperature dependence of electrical characteristics of these diodes was studied. Deep-level transient spectroscopy (DLTS) measurements were made to evaluate residual deep-level defects in the n-type bulk. Three electron traps were observed in p + n diodes fabricated by RTA at 700 0 C. It was considered that these three traps were residual point defects near the tail of the implantation damage after RTA. Residual defect concentrations increased in the range 700-900 0 C and decreased in the range 1000-1100 0 C. The growth of defects in the bulk was ascribed to the diffusion of defects from the implanted layer during RTA. Concentrations of electron traps observed in p + n diodes fabricated by RTA at 1100 0 C were approx. 10 12 cm -3 . It was found that these residual deep-level defects observed by DLTS were inefficient generation-recombination centres since the reverse current was independent of the RTA temperatures. (author)

  11. Immediate implant-supported oral rehabilitation using a photocurable plastic skull model and laser welding. A technical note on the screw-retained type: Part 1.

    Science.gov (United States)

    Tomotake, Yoritoki; Ishida, Osamu; Kanitani, Hideo; Ichikawa, Tetsuo

    2002-01-01

    This article describes a new procedure for immediate implant-supported oral rehabilitation using a photocurable resin skull model and a laser-welding apparatus. Preoperatively, the framework was fabricated on a photocurable resin skull model produced from a CT scan and individually designed guide template. The implants were immediately placed using the guide template; laser welding connected the components of framework. Despite the custom-made prosthesis, the total treatment from implant placement to superstructure placement can be completed within only 1 day. This procedure for immediate implant-supported oral rehabilitation using a photocurable resin skull model and a laser-welding apparatus may be useful for any implant system and patient.

  12. Immediate, non-submerged, root-analogue direct laser metal sintering (DLMS) implants: a 1-year prospective study on 15 patients.

    Science.gov (United States)

    Mangano, Francesco Guido; De Franco, Michele; Caprioglio, Alberto; Macchi, Aldo; Piattelli, Adriano; Mangano, Carlo

    2014-07-01

    This study evaluated the 1-year survival and success rate of root-analogue direct laser metal sintering (DLMS) implants, placed into the extraction sockets of 15 patients. DLMS is a technology which allows solids with complex geometry to be fabricated by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model; the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer-by-layer, the desired object. Cone-beam computed tomography (CBCT) acquisition and 3D image conversion, combined with the DLMS process, allow the fabrication of custom-made, root-analogue implants (RAIs). CBCT images of 15 non-restorable premolars (eight maxilla; seven mandible) were acquired and transformed into 3D models: from these, custom-made, root-analogue DLMS implants with integral abutment were fabricated. Immediately after tooth extraction, the RAIs were placed in the sockets and restored with a single crown. One year after implant placement, clinical and radiographic parameters were assessed: success criteria included absence of pain, suppuration, and exudation; absence of implant mobility and absence of continuous peri-implant radiolucency; distance between the implant shoulder and the first visible bone-to-implant contact <1.5 mm from initial surgery; and absence of prosthetic complications. At the 1-year follow-up, no implants were lost, for a survival rate of 100 %. All implants were stable, with no signs of infection. The good conditions of the peri-implant tissues were confirmed by the radiographic examination, with a mean DIB of 0.7 mm (±0.2). The possibility of fabricating custom-made, RAI DLMS implants opens new interesting horizons for immediate placement of dental implants.

  13. A study of the effect of low intensity laser therapy on the osseointegration of hydroxyapatite implants

    International Nuclear Information System (INIS)

    Rajab, A.A.

    1999-01-01

    Three significant developments over the last decade in the maxillofacial region have been the predictable use of dental implants, the employment of hydroxyapatite as an implant coating, with a potential for more rapid osseointegration, and the introduction of Low Intensity Laser Therapy (LILT) for the enhancement of healing. Implants, although proving a major advance in prosthetics have the disadvantage that loading has to be delayed for a period, which in the case of the mouth needs to be 3 - 6 months after insertion. Hydroxyapatite offers the possibility of a shortened period of delay. Low Intensity Laser Therapy (LILT) has been shown to accelerate the healing of bony fractures, both experimentally and clinically. This thesis sets out to evaluate whether LILT could enhance the process of osseointegration, particularly when used with ceramic hydroxyapatite implants in an animal model. If so, this could provide a future clinical combination which would allow earlier loading of hydroxyapatite coated dental implants and also their counterparts in femoral head replacement. There has been virtually no research work undertaken on this aspect. An animal research study has been undertaken to investigate the effect of LILT on the osseointegration of endosseous implants. HA ceramic implants were inserted in two different anatomical sites, namely the mandible and femur in 40 rabbits. The animals were divided into three groups, comprising a low energy laser group (25 J/cm 2 per treatment), a high energy group (125 J/cm 2 per treatment ) and a control group. Animals were sacrificed at four and twelve weeks, with equivalent numbers of representatives of the three groups. The evolved method of evaluation involved radiographic methods (plain x-ray, radiovisiography RVG and the innovative technique of x-ray microtomography XMT), mechanical push out testing (Instron machine) and histological examination (qualitative and quantitative histomorphometry). The conclusions of the study

  14. Silver-doped layers of implants prepared by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Kocourek, Tomáš; Jelínek, Miroslav; Mikšovský, Jan; Jurek, Karel; Čejka, Z.; Kopeček, Jaromír

    2013-01-01

    Roč. 1, č. 7 (2013), s. 59-61 ISSN 2327-5219 R&D Projects: GA AV ČR KAN300100801 Institutional support: RVO:68378271 Keywords : thin layer * silver * titanium alloy * steel * pulsed laser deposition * adhesion * implant Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scirp.org/journal/PaperInformation.aspx?paperID=40308#.UvECAfu5dHA

  15. [Laser magnetotherapy after cataract extraction with implantation of intraocular lens].

    Science.gov (United States)

    Maksimov, V Iu; Zakharova, N V; Maksimova, I S; Golushkov, G A; Evseev, S Iu

    2002-01-01

    Effects of low-intensive laser and alternating magnetic field on the course of the postoperative period were studied in patients with exudative reaction after extracapsular cataract extraction with implantation of intraocular lens (IOL). The results are analyzed for 148 eyes with early exudative reaction after IOL implantation (136 patients aged 42-75 years). The patients were observed for up to 6 months. The treatment efficiency was evaluated by the clinical picture of inflammatory reaction, visual acuity, and results of biochemical analysis of the lacrimal fluid (the ratio of lipid peroxidation products to antioxidants in cell membrane). The course of the postoperative period was more benign and recovery sooner in patients of the main group in comparison with the control.

  16. Amorphization of tantalum by boron and phosphorus ion implantation

    International Nuclear Information System (INIS)

    Thome, L.; Benyagoub, A.; Bernas, H.; Pivin, J.C.; Cahn, R.W.

    1984-01-01

    The nature and depth dependence of the disorder produced by B and P implantation in Ta single crystals were studied in situ via channeling experiments and after implantation via grazing incidence electron diffraction experiments. The correlation of experimental results with implanted impurity profiles determined by SIMS shows that amorphous Ta-B and Ta-P alloys are produced for, respectively, 19% and 8% B and P concentrations in the implanted layer [fr

  17. [Hyperopic Laser-in-situ-Keratomileusis after trifocal intraocular lens implantation : Aberration-free femto-Laser-in-situ-Keratomileusis treatment after implantation of a diffractive, multifocal, toric intraocular lens-case analysis].

    Science.gov (United States)

    Hemkeppler, E; Böhm, M; Kohnen, T

    2018-05-29

    A 52-year-old highly myopic female patient was implanted with a multifocal, diffractive, toric intraocular lens because of the wish to be independent of eyeglasses. Despite high-quality, extensive preoperative examinations, a hyperopic refractive error remained postoperatively, which led to the patient's dissatisfaction. This error was treated with Laser-in-situ-Keratomileusis (LASIK). After corneal LASIK treatment and implantation of a diffractive toric multifocal intraocular lens the patient showed a good postoperative visual result without optical phenomena.

  18. High level active n+ doping of strained germanium through co-implantation and nanosecond pulsed laser melting

    Science.gov (United States)

    Pastor, David; Gandhi, Hemi H.; Monmeyran, Corentin P.; Akey, Austin J.; Milazzo, Ruggero; Cai, Yan; Napolitani, Enrico; Gwilliam, Russell M.; Crowe, Iain F.; Michel, Jurgen; Kimerling, L. C.; Agarwal, Anuradha; Mazur, Eric; Aziz, Michael J.

    2018-04-01

    Obtaining high level active n+ carrier concentrations in germanium (Ge) has been a significant challenge for further development of Ge devices. By ion implanting phosphorus (P) and fluorine (F) into Ge and restoring crystallinity using Nd:YAG nanosecond pulsed laser melting (PLM), we demonstrate 1020 cm-3 n+ carrier concentration in tensile-strained epitaxial germanium-on-silicon. Scanning electron microscopy shows that after laser treatment, samples implanted with P have an ablated surface, whereas P + F co-implanted samples have good crystallinity and a smooth surface topography. We characterize P and F concentration depth profiles using secondary ion mass spectrometry and spreading resistance profiling. The peak carrier concentration, 1020 cm-3 at 80 nm below the surface, coincides with the peak F concentration, illustrating the key role of F in increasing donor activation. Cross-sectional transmission electron microscopy of the co-implanted sample shows that the Ge epilayer region damaged during implantation is a single crystal after PLM. High-resolution X-ray diffraction and Raman spectroscopy measurements both indicate that the as-grown epitaxial layer strain is preserved after PLM. These results demonstrate that co-implantation and PLM can achieve the combination of n+ carrier concentration and strain in Ge epilayers necessary for next-generation, high-performance Ge-on-Si devices.

  19. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    Science.gov (United States)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  20. Operation and Applications of the Boron Cathodic Arc Ion Source

    International Nuclear Information System (INIS)

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-01-01

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  1. High energy ion implantation for IC processing

    International Nuclear Information System (INIS)

    Oosterhoff, S.

    1986-01-01

    In this thesis the results of fundamental research on high energy ion implantation in silicon are presented and discussed. The implantations have been carried out with the 500 kV HVEE ion implantation machine, that was acquired in 1981 by the IC technology and Electronics group at Twente University of Technology. The damage and anneal behaviour of 1 MeV boron implantations to a dose of 10 13 /cm 2 have been investigated as a function of anneal temperature by sheet resistance, Hall and noise measurements. (Auth.)

  2. Channeling effect for low energy ion implantation in Si

    International Nuclear Information System (INIS)

    Cho, K.; Allen, W.R.; Finstad, T.G.; Chu, W.K.; Liu, J.; Wortman, J.J.

    1985-01-01

    Ion implantation is one of the most important processes in semiconductor device fabrication. Due to the crystalline nature of Si, channeling of implanted ions occurs during this process. Modern devices become smaller and shallower and therefore require ion implantation at lower energies. The effect of channeling on ion implantation becomes a significant problem for low energy ion implantation. The critical angle for axial and planar channeling increases with decreasing energy. This corresponds to an increased probability for channeling with lowering of ion energy. The industry approach to avoid the channeling problem is to employ a tilt angle of 7 0 between the ion implantation direction and the surface normal. We approach the problem by mapping major crystalline axes and planes near the [100] surface normal. Our analysis indicates that a 7 0 tilt is not an optimum selection in channeling reduction. Tilt angles in the range 5 0 to 6 0 combined with 7 0 +- 0.5 0 rotation from the (100) plane are better selections for the reduction of the channeling effect. The range of suitable angles is a function of the implantation energy. Implantations of boron along well specified crystallographic directions have been carried out by careful alignment and the resulting boron profiles measured by SIMS. (orig.)

  3. Boron-implantation-induced crystalline-to-amorphous transition in nickel: An experimental assessment of the generalized Lindemann melting criterion

    International Nuclear Information System (INIS)

    Liu, P.C.; Okamoto, P.R.; Zaluzec, N.J.; Meshii, M.

    1999-01-01

    The generalized Lindemann melting hypothesis has recently been used to develop a unified thermodynamic criterion for melting applicable to both heat-induced melting and disorder-induced crystalline-to-amorphous (c-a) transformation. The hypothesis stipulates that the sum left-angle μ 2 right-angle Total of the static and dynamic root-mean-square (rms) atomic displacements is a constant fraction of the nearest-neighbor distance along the melting curve of a solid. To test this hypothesis, energy-filtered selected area electron-diffraction intensity measurements were used to determine the generalized Lindemann parameter δ=√ (left-angle μ 2 right-angle Total ) /d nn , in which d nn represents the nearest-neighbor distance, as a function of boron concentration during implantation of 50-keV ampersand hthinsp;B + into polycrystalline Ni at 77 K. The onset of amorphization was found to occur close to 10 at.ampersand hthinsp;% boron, which is in good agreement with the value predicted by T o curve calculated using the generalized Lindemann hypothesis. Moreover, the critical value of the generalized Lindemann parameter for amorphization, δ Critical =0.115±0.01, is within experimental error, identical to that for Ni just below its thermodynamic melting temperature of T=1728 ampersand hthinsp;K, hence providing a direct confirmation for the generalized Lindemann melting hypothesis. copyright 1999 The American Physical Society

  4. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2017-04-01

    Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

  5. Nucleation, growth and dissolution of extended defects in implanted Si: impact on dopant diffusion

    International Nuclear Information System (INIS)

    Claverie, A.; Giles, L.F.; Omri, M.; Mauduit, B. de; Ben Assayag, G.; Mathiot, D.

    1999-01-01

    Transient Enhanced Diffusion (TED) of boron in silicon is driven by the large supersaturations of self-interstitial silicon atoms left after implantation which also often lead to the nucleation and subsequent growth, upon annealing, of extended defects. In this paper we review selected experimental results and concepts concerning boron diffusion and/or defect behavior which have recently emerged with the ion implantation community and briefly indicate how they are, or will be, currently used to improve 'predictive simulations' softwares aimed at predicting TED. In a first part, we focus our attention on TED and on the formation of defects in the case of 'direct' implantation of boron in silicon. In a second part, we review our current knowledge of the defects and of the diffusion behavior of boron when annealing preamorphised Si. In a last part, we try to compare these two cases and to find out what are the reasons for some similarities and many differences in defect types and thermal evolution depending on whether boron is implanted in crystalline or amorphous silicon. While rising many more questions, we propose a 'thermodynamical' vision of the nucleation and growth of clusters and extended defects and stress the interactions between these defects and the free Si self-interstitial atoms which surround them and are the source for TED in all cases. A pragmatic approach to the simulation of TED for various experimental conditions is proposed

  6. Osseointegration of loaded dental implant with KrF laser hydroxylapatite films on Ti6Al4V alloy by minipigs

    Science.gov (United States)

    Dostalova, Tatjana; Himmlova, Lucia; Jelinek, Miroslav; Grivas, Christos

    2001-04-01

    This study was performed with the objective of evaluating osseointegration of titanium alloy Ti6Al4V dental implants coated with hydroxylapatite (HA) deposited by a KrF laser. For this a KrF excimer laser and stainless-steel deposition chamber were used. The thickness of the HA films was approximately 1 micrometers . IN this investigation experimental animals minipigs were used; the implants were placed vertically into the lower jaw. After 14 weeks of unloaded osseointegration, metal-ceramic crowns were inserted and, at the same time, fluorescent solution was injected into the experimental animals. Six months after insertion of crowns the animals were sacrificed. The vertical position of the implants was checked by a radiograph. Microscopic sections were cut and ground, and the sections were examined under polarized and fluorescent light using a microscope with a charge coupled device camera. The six month long osseointegration in the lower jaw has confirmed the presence of newly formed bone around all the implants. In the experimental group, which had a laser-deposited coating, the layer of fibrous connective tissue was seen only randomly. In the control group (titanium implant without a cover) the fibrous connective tissue between the implant and the newly formed bone was observed more frequently, but this difference was not significant.

  7. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    Science.gov (United States)

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia; Avaliacao biomecanica da acao da radiacao laser em baixa intensidade no processo de osseointegracao de implantes de titanio inseridos em tibia de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Castilho Filho, Thyrso

    2003-07-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser ({lambda}=780 nm) during 10 seconds, with an energy density of 7.5 J/cm{sup 2} on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  9. Boron diffusion into nitrogen doped silicon films for P{sup +} polysilicon gate structures

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, Farida; Mahamdi, Ramdane; Jalabert, Laurent; Temple-Boyer, Pierre

    2003-06-23

    This paper deals with the study of the boron diffusion in nitrogen doped silicon (NIDOS) deposited from disilane Si{sub 2}H{sub 6} and ammonia NH{sub 3} for the development of P{sup +} polysilicon gate metal oxide semiconductor (MOS) devices. NIDOS films with varied nitrogen content have been boron implanted, then annealed and finally analysed by secondary ion mass spectroscopy (SIMS). In order to simulate the experimental SIMS of boron concentration profiles in the NIDOS films, a model adapted to the particular conditions of the samples elaboration, i.e. the very high boron concentration and the nitrogen content, has been established. The boron diffusion reduction in NIDOS films with increasing nitrogen rates has been evidenced by the profiles as well as by the obtained diffusion coefficients, which shows that the nitrogen incorporation reduces the boron diffusion. This has been confirmed by capacitance-voltage (C-V) measurements performed on MOS capacitors: the higher the nitrogen content, the lower the flat-band voltage. Finally, these results demonstrate that the improvement of the gate oxide quality occurs with the suppression of the boron penetration.

  10. Non-surgical periodontal treatment of peri-implant diseases with the adjunctive use of diode laser: preliminary clinical study.

    Science.gov (United States)

    Lerario, Francesco; Roncati, Marisa; Gariffo, Annalisa; Attorresi, Enrica; Lucchese, Alessandra; Galanakis, Alexandros; Palaia, Gaspare; Romeo, Umberto

    2016-01-01

    Peri-implant diseases present in two forms: peri-implant mucositis and peri-implantitis. The prevalence of peri-implant complications is significantly rising. The aim of this study was to compare conventional treatment of inflamed peri-implant tissues with conventional treatment together with diode laser application. Twenty-seven patients (age 36 to 67, 15 women and 12 men, 12 smokers and 15 non-smokers) requiring treatment for mucositis or peri-implantitis were taken into account for this preliminary study. Plaque index (PI), pocket depth (PD), and bleeding on probing (BoP) were recorded at baseline evaluation. Patients in control group (CG) received conventional non-surgical periodontal treatment. Patients in test group received conventional non-surgical periodontal treatment together with diode laser application (810 nm, 30 s, 1 W, 50 Hz, t on = 100 ms, t off = 100 ms, energy density = 24.87 J/cm(2)). Paired t test was used to evaluate the difference in repeated measurements of considered indexes at T 0 and T 1 (1 year) in both groups. A total of 606 sites were taken into account in the test group (TG) and 144 in the CG. PD mean variation in the TG was 2.66 mm ± 1.07, while mean PD variation in the CG was 0.94 ± 1.13 mm. Paired t testing of the variation in PD in CG and TG revealed a statistically significant difference between the two groups (p diode laser seems to be an additional valuable tool for peri-implant disease treatment.

  11. Characterization and evaluation of femtosecond laser-induced sub-micron periodic structures generated on titanium to improve osseointegration of implants

    Science.gov (United States)

    Lee, Bryan E. J.; Exir, Hourieh; Weck, Arnaud; Grandfield, Kathryn

    2018-05-01

    Reproducible and controllable methods of modifying titanium surfaces for dental and orthopaedic applications are of interest to prevent poor implant outcomes by improving osseointegration. This study made use of a femtosecond laser to generate laser-induced periodic surface structures with periodicities of 300, 620 and 760 nm on titanium substrates. The reproducible rippled patterns showed consistent submicron scale roughness and relatively hydrophobic surfaces as measured by atomic force microscopy and contact angle, respectively. Transmission electron microscopy and Auger electron spectroscopy identified a thicker oxide layer on ablated surfaces compared to controls. In vitro testing was conducted using osteosarcoma Saos-2 cells. Cell metabolism on the laser-ablated surfaces was comparable to controls and alkaline phosphatase activity was notably increased at late time points for the 620 and 760 nm surfaces compared to controls. Cells showed a more elongated shape on laser-ablated surfaces compared to controls and showed perpendicular alignment to the periodic structures. This work has demonstrated the feasibility of generating submicron features on an implant material with the ability to influence cell response and improve implant outcomes.

  12. Structural investigations of amorphised iron and nickel by high-fluence metalloid ion implantation

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Otto, G.; Hohmuth, K.; Heera, V.

    1987-01-01

    Boron, phosphorus and arsenic ions have been implanted into evaporated iron and nickel thin films at room temperature, and the implantation-induced microstructure has been investigated by high-voltage electron microscopy and transmission high energy electron diffraction. The metal films were implanted with ions to a constant dose of 1 x 10 17 and 5 x 10 17 ions/cm 2 respectively at energy of 50 keV. An amorphous layer was produced by boron and phosphorus ion implantation. Information on the atomic structure of the amorphous layers was obtained from the elastically diffracted electron intensity. On the basis of the correct scattering curves, the total interference function and the pair correlation function were determined. Finally, the atomic arrangement of the implantation-induced amorphous layers is discussed and structure produced by ion irradiation is compared with amorphous structures formed with other techniques. (author)

  13. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    International Nuclear Information System (INIS)

    Labaune, C.; Baccou, C.; Loisel, G.; Yahia, V.; Depierreux, S.; Goyon, C.; Rafelski, J.

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. (authors)

  14. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia

    International Nuclear Information System (INIS)

    Castilho Filho, Thyrso

    2003-01-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser (λ=780 nm) during 10 seconds, with an energy density of 7.5 J/cm 2 on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  15. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  16. Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique.

    Science.gov (United States)

    Lindner, Markus; Hoeges, Simon; Meiners, Wilhelm; Wissenbach, Konrad; Smeets, Ralf; Telle, Rainer; Poprawe, Reinhart; Fischer, Horst

    2011-06-15

    The additive manufacturing technique selective laser melting (SLM) has been successfully proved to be suitable for applications in implant manufacturing. SLM is well known for metal parts and offers direct manufacturing of three-dimensional (3D) parts with high bulk density on the base of individual 3D data, including computer tomography models of anatomical structures. Furthermore, an interconnecting porous structure with defined and reproducible pore size can be integrated during the design of the 3D virtual model of the implant. The objective of this study was to develop the SLM processes for a biodegradable composite material made of β-tricalcium phosphate (β-TCP) and poly(D, L)-lactide (PDLLA). The development of a powder composite material (β-TCP/PDLLA) suitable for the SLM process was successfully performed. The microstructure of the manufactured samples exhibit a homogeneous arrangement of ceramic and polymer. The four-point bending strength was up to 23 MPa. The X-ray diffraction (XRD) analysis of the samples confirmed β-TCP as the only present crystalline phase and the gel permeations chromatography (GPC) analysis documented a degradation of the polymer caused by the laser process less than conventional manufacturing processes. We conclude that SLM presents a new possibility to manufacture individual biodegradable implants made of β-TCP/PDLLA. Copyright © 2011 Wiley Periodicals, Inc.

  17. Comparison of silicon pin diode detector fabrication processes using ion implantation and thermal doping

    International Nuclear Information System (INIS)

    Zhou, C.Z.; Warburton, W.K.

    1996-01-01

    Two processes for the fabrication of silicon p-i-n diode radiation detectors are described and compared. Both processes are compatible with conventional integrated-circuit fabrication techniques and yield very low leakage currents. Devices made from the process using boron thermal doping have about a factor of 2 lower leakage current than those using boron ion implantation. However, the boron thermal doping process requires additional process steps to remove boron skins. (orig.)

  18. Stress distribution in Co-Cr implant frameworks after laser or TIG welding.

    Science.gov (United States)

    de Castro, Gabriela Cassaro; de Araújo, Cleudmar Amaral; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Nóbilo, Mauro Antônio de Arruda

    2013-01-01

    Lack of passivity has been associated with biomechanical problems in implant-supported prosthesis. The aim of this study was to evaluate the passivity of three techniques to fabricate an implant framework from a Co-Cr alloy by photoelasticity. The model was obtained from a steel die simulating an edentulous mandible with 4 external hexagon analog implants with a standard platform. On this model, five frameworks were fabricated for each group: a monoblock framework (control), laser and TIG welding frameworks. The photoelastic model was made from a flexible epoxy resin. On the photoelastic analysis, the frameworks were bolted onto the model for the verification of maximum shear stress at 34 selected points around the implants and 5 points in the middle of the model. The stresses were compared all over the photoelastic model, between the right, left, and center regions and between the cervical and apical regions. The values were subjected to two-way ANOVA, and Tukey's test (α=0.05). There was no significant difference among the groups and studied areas (p>0.05). It was concluded that the stresses generated around the implants were similar for all techniques.

  19. Evaluation of thermal damage in dental implants after irradiation with 980nm diode laser. An in vitro study

    Directory of Open Access Journals (Sweden)

    Carlo Cafiero

    2016-12-01

    Full Text Available Purpose: The aim of this study was to analyze the thermal damage in dental implants after irradiations with a 980nm diode laser, normally used for the decontamination. Material and Methods: Five Titanium Plasma Sprayed dental implants were irradiated with a 980nm diode laser at different parameters. Temperature increase on implant surface was evaluated by a Mid-Wavelength Infrared thermal-camera (Merlin®, FLIR, USA. Temperature increase (ΔT was compared to environmental temperature (27°C and recorded in three points: “A” (laser spot, “B” (3mm apically to the laser spot and “C” (2mm horizontally to the laser spot. Finally, a morphological evaluation at optical stereomicroscopy was performed. Results: When 0.6W power was applied, a moderate increase of temperature in point A (5.5°C-15.0°C, a slight increase in point B (0.1°C-6.2°C and point C (0.1°C-5.7°C, were registered after 30” of irradiation. In the samples treated at 6W, in “point A” an impressive ΔT increase was immediately recorded (over 70°C. In “point B” was recorded a slight ΔT after 2 sec. irradiation (range 2.3°C-6.0°C, a moderate ΔT after 4 sec. irradiation (16.4°C and a consistent ΔT after 8-10 sec. irradiation (range 36.6°C-46.2°C. In “point C” ΔT values were very similar to those collected in “point B”. Optical stereomicroscopy examination at a magnification of 32x did not show any surface alteration or damage after whichever laser irradiation independently from irradiation time and power output . Conclusions: 980nm diode laser, used at controlled parameters, can be used in the decontamination of dental implants, without causing any thermal damage or increase.

  20. New materials properties achievable by ion implantation doping and laser processing

    International Nuclear Information System (INIS)

    Appleton, B.R.; Larson, B.C.; White, C.W.; Narayan, J.; Wilson, S.R.; Pronko, P.P.

    1978-12-01

    It is well established that ion implantation techniques can be used to introduce selected impurities into solids in a controlled, accurate and often unique manner. Recent experiments have shown that pulsed laser processing of materials can lead to surface melting, dopant redistribution and crystal regrowth, all on extremely short time scales (approx. < 1 μ sec.). These two processes can be combined to achieve properties not possible with normal materials preparation techniques, or to alter materials properties in a more efficient manner. Investigations are presented utilizing the combined techniques of positive ion scattering-channeling, x-ray scattering and transmission electron microscopy which show that supersaturated alloys can be formed in the surface regions (approx. 1 μm) of ion implanted, laser annealed silicon single crystals, and that these surfaces undergo a unique one dimensional lattice contraction or expansion depending on the dopant species. The resultant surface has a lattice parameter significantly different from the bulk, is free from any damage defects, has essentially all the dopant atoms in substitutional sites and the impurity concentrations can exceed solid solubility limits by more than an order of magnitude

  1. Laser fabrication of Ag-HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangmei; Man, H.C., E-mail: mfhcman@polyu.edu.hk

    2017-01-01

    For titanium alloy implants, both surface bioactivity and antibacterial infection are the two critical factors in determining the success of clinical implantation of these metallic implants. In the present work, a novel nanocomposite layer of nano-silver-containing hydroxyapatite (Ag-HA) was prepared on the surface of biomedical Ti6Al4V by laser processing. Analysis using SEM, EDS and XRD shows the formation of an Ag-HA layer of about 200 μm fusion bonded to the substrate. Mineralization tests in simulated body fluid (SBF) showed that laser fabricated Ag-HA nanocomposite layer favors the deposition of apatite on the surface of the implants. Antibacterial tests confirmed that all Ag-HA nanocomposite layers can kill bacteria while a higher Ag content would lower the cytocompatibility of these coatings. Cell viability decreases when the Ag content reaches 5% in these coatings, due to the larger amount of Ag leached out, as confirmed by ion release evaluation. Our results reveal that laser fabricated Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability. - Highlights: • Silver-containing hydroxyapatite (Ag-HA) nanocomposite layer was fabricated on Ti6Al4V by laser technique. • Both bioactivity and antibacterial capability were significantly enhanced compared with bare Ti6Al4V. • Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability.

  2. In vitro and in vivo studies in boron neutron capture therapy of malignant melanoma

    International Nuclear Information System (INIS)

    Allen, B.J.

    1982-01-01

    A multidisciplinary research project in boron neutron capture therapy of malignant melanoma is under consideration by the Australian Atomic Energy Commission. This paper reviews the biochemistry of melanoma and the properties of some melanoma-affined radiopharmaceuticals and their boron analogues. Human cell lines are being used for in vitro tests of uptake and incorporation of some of these compounds, and selected lines will then be implanted in nude mice for in vivo distribution studies. The fidelity of human melanoma xenografts in nude mice has been well studied, and results are reviewed in this paper. Boron concentration will be measured directly by plasma arc emission spectroscopy or liquid scintillation counting with 14 C-labelled boron analogues. Track-etch techniques will be used for the microscopic determination of boron in tumor sections. Neutron irradiation and radiobiology experiments are outlined

  3. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Science.gov (United States)

    Mangano, F.; Chambrone, L.; van Noort, R.; Miller, C.; Hatton, P.; Mangano, C.

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed. PMID:25525434

  4. Direct metal laser sintering titanium dental implants: a review of the current literature.

    Science.gov (United States)

    Mangano, F; Chambrone, L; van Noort, R; Miller, C; Hatton, P; Mangano, C

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  5. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Directory of Open Access Journals (Sweden)

    F. Mangano

    2014-01-01

    Full Text Available Statement of Problem. Direct metal laser sintering (DMLS is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs; to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  6. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  7. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  8. Laser generated Ge ions accelerated by additional electrostatic field for implantation technology

    Science.gov (United States)

    Rosinski, M.; Gasior, P.; Fazio, E.; Ando, L.; Giuffrida, L.; Torrisi, L.; Parys, P.; Mezzasalma, A. M.; Wolowski, J.

    2013-05-01

    The paper presents research on the optimization of the laser ion implantation method with electrostatic acceleration/deflection including numerical simulations by the means of the Opera 3D code and experimental tests at the IPPLM, Warsaw. To introduce the ablation process an Nd:YAG laser system with repetition rate of 10 Hz, pulse duration of 3.5 ns and pulse energy of 0.5 J has been applied. Ion time of flight diagnostics has been used in situ to characterize concentration and energy distribution in the obtained ion streams while the postmortem analysis of the implanted samples was conducted by the means of XRD, FTIR and Raman Spectroscopy. In the paper the predictions of the Opera 3D code are compared with the results of the ion diagnostics in the real experiment. To give the whole picture of the method, the postmortem results of the XRD, FTIR and Raman characterization techniques are discussed. Experimental results show that it is possible to achieve the development of a micrometer-sized crystalline Ge phase and/or an amorphous one only after a thermal annealing treatment.

  9. Management of Retrograde Peri-Implantitis Using an Air-Abrasive Device, Er,Cr:YSGG Laser, and Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Nikolaos Soldatos

    2018-01-01

    Full Text Available Background. The placement of an implant in a previously infected site is an important etiologic factor contributing to implant failure. The aim of this case report is to present the management of retrograde peri-implantitis (RPI in a first maxillary molar site, 2 years after the implant placement. The RPI was treated using an air-abrasive device, Er,Cr:YSGG laser, and guided bone regeneration (GBR. Case Description. A 65-year-old Caucasian male presented with a draining fistula associated with an implant at tooth #3. Tooth #3 revealed periapical radiolucency two years before the implant placement. Tooth #3 was extracted, and a ridge preservation procedure was performed followed by implant rehabilitation. A periapical radiograph (PA showed lack of bone density around the implant apex. The site was decontaminated with an air-abrasive device and Er,Cr:YSGG laser, and GBR was performed. The patient was seen every two weeks until suture removal, followed by monthly visits for 12 months. The periapical X-rays, from 6 to 13 months postoperatively, showed increased bone density around the implant apex, with no signs of residual clinical or radiographic pathology and probing depths ≤4 mm. Conclusions. The etiology of RPI in this case was the placement of an implant in a previously infected site. The use of an air-abrasive device, Er,Cr:YSGG, and GBR was utilized to treat this case of RPI. The site was monitored for 13 months, and increased radiographic bone density was noted.

  10. Preparation of calcium-doped boron nitride by pulsed laser deposition

    International Nuclear Information System (INIS)

    Anzai, Atsushi; Fuchigami, Masayo; Yamanaka, Shoji; Inumaru, Kei

    2012-01-01

    Highlights: ► Ca-doped boron nitride was prepared by pulsed laser deposition. ► The films do not have long range order structure in terms of XRD. ► But the films had short-range order structure of h-BN sheets. ► Ca-free films had the same optical band gap as crystalline bulk h-BN (5.8 eV.) ► Ca-doping brought about decreases of the optical band gap by ca. 0.4 eV. -- Abstract: Calcium-doped BN thin films Ca x BN y (x = 0.05–0.1, y = 0.7–0.9) were grown on α-Al 2 O 3 (0 0 1) substrates by pulsed laser deposition (PLD) using h-BN and Ca 3 N 2 disks as the targets under nitrogen radical irradiation. Infrared ATR spectra demonstrated the formation of short range ordered structure of BN hexagonal sheets, while X-ray diffraction gave no peak indicating the absence of long-range order structure in the films. It was notable that Ca-doped film had 5.45–5.55 eV of optical band gap, while the band gap of Ca-free films was 5.80–5.85 eV. This change in the band gap is ascribed to interaction of Ca with the BN sheets; first principle calculations on h-BN structure indicated that variation of inter-plane distance between the BN layers did not affect the band gap. This study highlights that PLD could prepare BN having short-range structure of h-BN sheets and being doped with electropositive cation which varies the optical band gap of the films.

  11. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  12. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia; Avaliacao biomecanica da acao da radiacao laser em baixa intensidade no processo de osseointegracao de implantes de titanio inseridos em tibia de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Castilho Filho, Thyrso

    2003-07-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser ({lambda}=780 nm) during 10 seconds, with an energy density of 7.5 J/cm{sup 2} on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  13. Bone marrow mononuclear cell implantation in myocardial laser channels in the ischemic heart disease surgery. Long-term results

    Science.gov (United States)

    Chernyavskiy, Alexander; Fomichev, Alexey; Minin, Stanislav; Nikitin, Nikita

    2017-10-01

    Background: The problem of incomplete myocardial revascularization for diffuse and distal lesions of the myocardium is still relevant. We assessed the clinical and instrumental long-term results of autologous bone marrow cell (BMC) implantation in laser channels in ischemic heart disease with diffuse and distal coronary disease. 35 coronary heart disease (CHD) patients with diffuse and distal coronary disease during coronary artery bypass grafting (CABG) underwent BMC implantation in laser channels. The control group consisted of 29 patients. All patients in this group underwent only CABG. Clinical and instrumental assessment of the method's effect was carried out at two weeks, six months, and six years after surgery. Indirect revascularization showed more significant decreasing of the functional class (FC) New York Heart Association (NYHA), myocardial perfusion and contractility improvement. Autologous BMC implantation in laser channels is an effective method of CHD surgical treatment if it is impossible to perform direct myocardial revascularization. The indirect revascularization effect is formed in the first six months after surgery and remains at the same level for six years.

  14. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Stoto, T.

    1987-03-01

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 1700 0 C was an important technical part of this work [fr

  15. Emitting recombination of BCl molecules with chlorine atoms, resulting from dissociation of boron trichloride molecules under action of pulse CO2-laser radiation

    International Nuclear Information System (INIS)

    Nikonorov, A.P.; Moskvitina, E.N.; Kuzyakov, Yu.Ya.; Stepanov, P.I.

    1983-01-01

    Luminescence in BCl 3 is investigated. The results of measurements of gas temperature, BCl molecules concentration, and luminescence absolute intensity at boron trichloride presure of 40 mm pH and density of laser pulse energy from 1.7 up to 4.0 J/cm 2 are obtained. Nature of uninterrupted spectrum is considered. It is established that luminescence appearing in the BCl 3 under action of pulse CO 2 -laser is caused by reaction of emitting recombination of BCl molecules with chlorine atoms. Rate constant of this reaction in the range of 2300-3100 K is determined

  16. Surface microhardening by ion implantation

    International Nuclear Information System (INIS)

    Singh, Amarjit

    1986-01-01

    The paper discusses the process and the underlying mechanism of surface microhardening by implanting suitable energetic ions in materials like 4145 steel, 304 stainless steel, aluminium and its 2024-T351 alloy. It has been observed that boron and nitrogen implantation in materials like 4145 steel and 304 stainless steel can produce a significant increase in surface hardness. Moreover the increase can be further enhanced with suitable overlay coatings such as aluminium (Al), Titanium (Ti) and carbon (C). The surface hardening due to implantation is attributed to precipitation hardening or the formation of stable/metastable phase or both. The effect of lithium implantation in aluminium and its alloy on microhardness with increasing ion dose and ion beam energy is also discussed. (author)

  17. Dental implants coated with laser deposited hydroxyapatite films - physical properties and in-vivo study

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Dostálová, T.; Himmlová, L.; Grivas, Ch.; Fotakis, C.

    2002-01-01

    Roč. 374, - (2002), s. 599-604 ISSN 1058-725X Institutional research plan: CEZ:AV0Z1010914 Keywords : laser deposition * thin films * implants * hydroxyapatite * in-vivo tests Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.457, year: 2002

  18. RBS analysis of ions implanted in light substrates exposed to hot plasmas laser-generated at PALS

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Gammino, S.; Picciotto, A.; Wolowski, J.; Krása, Josef; Láska, Leoš; Calcagnile, L.; Quarta, G.

    2005-01-01

    Roč. 160, 10-12 (2005), s. 685-695 ISSN 1042-0150. [Workshop PIBHI 2005 /2./. Giardini Naxos, 08.06.06-11.06.06] R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : RBS analysis * ion implantation * plasma-generated by lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.353, year: 2005

  19. Implantation annealing by scanning electron beam

    International Nuclear Information System (INIS)

    Jaussaud, C.; Biasse, B.; Cartier, A.M.; Bontemps, A.

    1983-11-01

    Samples of ion implanted silicon (BF 2 , 30keV, 10 15 ions x cm -2 ) have been annealed with a multiple scan electron beam, at temperatures ranging from 1000 to 1200 0 C. The curves of sheet resistance versus time show a minimum. Nuclear reaction measurements of the amount of boron remaining after annealing show that the increase in sheet resistance is due to a loss of boron. The increase in junction depths, measured by spreading resistance on bevels is between a few hundred A and 1000 A [fr

  20. Two-year clinical outcomes following non-surgical mechanical therapy of peri-implantitis with adjunctive diode laser application.

    Science.gov (United States)

    Mettraux, Gérald R; Sculean, Anton; Bürgin, Walter B; Salvi, Giovanni E

    2016-07-01

    Non-surgical mechanical therapy of peri-implantitis (PI) with/without adjunctive measures yields limited clinical improvements. To evaluate the clinical outcomes following non-surgical mechanical therapy of PI with adjunctive application of a diode laser after an observation period ≥2 years. At baseline (BL), 15 patients with 23 implants with a sandblasted and acid-etched (SLA) surface diagnosed with PI were enrolled and treated. PI was defined as presence of probing pocket depths (PPD) ≥5 mm with bleeding on probing (BoP) and/or suppuration and ≥2 threads with bone loss after delivery of the restoration. Implant sites were treated with carbon fiber and metal curettes followed by repeated application of a diode laser 3x for 30 s (settings: 810 nm, 2.5 W, 50 Hz, 10 ms). This procedure was performed at Day 0 (i.e., baseline), 7 and 14. Adjunctive antiseptics or adjunctive systemic antibiotics were not prescribed. All implants were in function after 2 years. The deepest PPD decreased from 7.5 ± 2.6 mm to 3.6 ± 0.7 mm at buccal (P surgical mechanical therapy of PI with adjunctive repeated application of a diode laser yielded significant clinical improvements after an observation period of at least 2 years. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Comparative evaluation of efficacy and soft tissue wound healing using diode laser (810 nm versus conventional scalpel technique for second-stage implant surgery

    Directory of Open Access Journals (Sweden)

    Manvir Kaur

    2018-01-01

    Full Text Available Background: This study was aimed to compare the efficacy and soft tissue wound healing using diode lasers (810 nm versus conventional scalpel approach as uncovering technique during the second-stage surgery in implants. This was a prospective, randomized study which was conducted on 20 subjects in which the implants were already placed using a two-stage technique. Implant sites were examined and the patients were randomly divided into two groups. Materials and Methods: Patients were randomly divided into two groups, i.e., Group A and Group B. In Group A, implants were uncovered as a part of Stage II surgery with conventional scalpel technique, and in Group B, implants were uncovered using 810 nm diode laser. Clinical parameters such as need and amount of local anesthesia, duration of surgery, intraoperative bleeding, pain index, wound healing index (HI, and time for impression taking were recorded at various intervals. Results: Statistical differences for clinical parameters were seen between Group A and Group B showing uncovery of implant with laser more effective, and for time of impression taking, difference was statistically significant showing that impressions were taken early in case of Group A because of better healing which was recorded with help of HI, but the difference in time of healing between Group A and Group B was not statistically significant. Conclusion: The use of a diode laser (810 nm in the second-stage implant surgery can minimize surgical trauma, reduce the amount of anesthesia, improve visibility during surgery due to the absence of bleeding, and eliminate postoperative discomfort.

  2. Intraoral Laser Welding (ILW in Implant Prosthetic Dentistry: Case Report

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini

    2012-01-01

    Full Text Available The aim of this clinical study was to describe the possibility of using the Nd:YAG laser device utilized in the dental offices to weld metals intraorally. The authors, before applying this technique “in vivo” on human subjects, tested the “in vitro” metal welding efficacy of dental Nd:YAG device firstly by interferometry, SEM, and EDS and subsequently by thermal camera and thermocouples in order to record temperature changes during the welding process on bovine jaws. Four implants were inserted in the edentulous maxillary arch of a 67 years old male patient. Immediately after that, a bar previously made by the dental technician was intraorally welded to the abutments by Nd:YAG laser (Fidelis Plus III, Fotona, Slovenia with these parameters: 9.90 mJ, 1 Hz, 15 msec, 0.6 mm spot. Then the prosthesis was connected to the bar with four OT Caps. This clinical study, even if preliminary, suggests that laser welding technique may be intraorally used without side effects.

  3. Effect of the Die Temperature and Blank Thickness on the Formability of a Laser-Welded Blank of a Boron Steel Sheet with Removing Al-Si Coating Layer

    Directory of Open Access Journals (Sweden)

    M. S. Lee

    2014-05-01

    Full Text Available Reducing carbon emissions has been a major focus in the automobile industry to address various environmental issues. In particular, studies on parts comprised of high strength sheets and light car bodies are ongoing. Accordingly, this study examined the use of boron steel, which is commonly used in high strength sheets. Boron steel is a type of sheet used for hot stamping parts. Although it has high strength, the elongation is inferior, which reduces its crash energy absorption capacity. To solve this problem, two sheets of different thickness were welded so the thin sheet would absorb crash energy and the thick sheet would work as a support. Boron steel, however, may show weakening at the welding spot due to the Al-Si coating layer used to prevent oxidation from occurring during the welding process. Therefore, a certain part of the coating layer of a double-thickness boron steel sheet that is welded in the hot stamping process is removed through laser ablation, and the formability of the hot-work was examined.

  4. Application of the 2-piece orthodontic C-implant for provisional restoration with laser welded customized coping: a case report.

    Science.gov (United States)

    Paek, Janghyun; Ahn, Hyo-Won; Jeong, Do-Min; Shim, Jeong-Seok; Kim, Seong-Hun; Chung, Kyu-Rhim

    2015-03-25

    This article presents the application of laser welding technique to fabricate an orthodontic mini-implant provisional restoration in missing area after limited orthodontic treatment. A 15-year-old boy case is presented. Two-piece orthodontic C-implant was placed after regaining space for missing right mandibular central incisor. Due to angular deviation of implant, customized abutment was required. Ready-made head part was milled and lingual part of customized abutment was made with non-precious metal. Two parts then were laser welded (Master 1000, Elettrolaser Italy, Verona, Italy) and indirect lab composite (3 M ESPE Sinfony, St. Paul, MN, USA) was built up. The patient had successful result, confirmed by clinical and radiographic examinations. Before the patient is ready to get a permanent restoration later on, this provisional restoration will be used. This case shows that a two-piece orthodontic C-implant system can be used to maintain small edentulous space after orthodontic treatment.

  5. Assessment of the effects of laser photobiomodulation on peri-implant bone repair through energy dispersive x-ray fluorescence: A study of dogs

    Science.gov (United States)

    Menezes, R. F.; Araújo, N. C.; Carneiro, V. S. M.; Moreno, L. M.; Guerra, L. A. P.; Santos Neto, A. P.; Gerbi, M. E. M.

    2016-03-01

    Bone neoformation is essential in the osteointegration of implants and has been correlated with the repair capacity of tissues, the blood supply and the function of the cells involved. Laser therapy accelerates the mechanical imbrication of peri-implant tissue by increasing osteoblastic activity and inducing ATP, osteopontin and the expression of sialoproteins. Objective: The aim of the present study was to assess peri-implant bone repair using the tibia of dogs that received dental implants and laser irradiation (AsGaAl 830nm - 40mW, CW, f~0.3mm) through Energy Dispersive X-ray Fluorescence (EDXRF). Methodology: Two groups were established: G1 (Control, n=20; two dental implants were made in the tibia of each animal; 10 animals); G2 (Experimental, n=20, two dental implants were made in the tibia each animal + Laser therapy; 10 animals). G2 was irradiated every 48 hours for two weeks, with a total of seven sessions. The first irradiation was conducted during the surgery, at which time a point in the surgical alveolus was irradiated prior to the placement of the implant and four new spatial positions were created to the North, South, East and West (NSEW) of the implant. The subsequent sessions involved irradiation at these four points and at one infra-implant point (in the direction of the implant apex). Each point received 4J/cm2 and a total dose of 20J/cm2 per session (treatment dose=140J/cm2). The specimens were removed 15 and 30 days after the operation for the EDXRF test. The Mann- Whitney statistical test was used to assess the results. Results: The increase in the calcium concentration in the periimplant region of the irradiated specimens (G2) was statistically significant (p repair in the peri-implant region.

  6. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Doğan, Ayşegül; Demirci, Selami [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey); Bayir, Yasin [Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Halici, Zekai [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum (Turkey); Aydin, Ali [Department of Orthopedics and Traumatology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Cadirci, Elif [Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Albayrak, Abdulmecit [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Demirci, Elif [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karaman, Adem [Department of Radiology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Ayan, Arif Kursat [Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Gundogdu, Cemal [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Şahin, Fikrettin, E-mail: fsahin@yeditepe.edu.tr [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey)

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing.

  7. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Şahin, Fikrettin

    2014-01-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing

  8. Enhanced Wear Properties of Steel : A Combination of Ion Implantation Metallurgy and Laser Metallurgy

    NARCIS (Netherlands)

    Beurs, H. de; Hosson, J.Th.M. De

    1988-01-01

    Laser surface melting of a chromium steel results in tensile stresses, which have deleterious effects on its wear behaviour. Implantations at 360 K with neon and nitrogen have been carried out in order to convert these stresses into compressive ones. Herewith an additional increase in hardness has

  9. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    Energy Technology Data Exchange (ETDEWEB)

    Györgyey, Ágnes; Ungvári, Krisztina [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Kecskeméti, Gabriella; Kopniczky, Judit [Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Hopp, Béla [Research Group on Laser Physics, Hungarian Academy of Sciences and University of Szeged, H-6720 Szeged (Hungary); Oszkó, Albert [Department of Physical Chemistry and Materials Science, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Pelsöczi, István; Rakonczay, Zoltán [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Nagy, Katalin [Department of Oral Surgery, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Turzó, Kinga, E-mail: kturzo@yahoo.com [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary)

    2013-10-15

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm{sup 2}, FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm{sup 2}, 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly.

  10. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    International Nuclear Information System (INIS)

    Györgyey, Ágnes; Ungvári, Krisztina; Kecskeméti, Gabriella; Kopniczky, Judit; Hopp, Béla; Oszkó, Albert; Pelsöczi, István; Rakonczay, Zoltán; Nagy, Katalin; Turzó, Kinga

    2013-01-01

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm 2 , FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm 2 , 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO 2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti 3+ ) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO 2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti 3+ ) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly

  11. Effects of ion implantation on charges in the silicon--silicon dioxide system

    International Nuclear Information System (INIS)

    Learn, A.J.; Hess, D.W.

    1977-01-01

    Structures consisting of thermally grown oxide on silicon were implanted with boron, arsenic, or argon ions. For argon implantation through oxides, an increased fixed oxide charge (Q/sub ss/) was observed with the increase being greater for than for silicon. This effect is attributed to oxygen recoil which produces additional excess ionized silicon in the oxide of a type similar to that arising in thermal oxidation. Fast surface state (N/sub st/) generation was also noted which in most cases obscured the Q/sub ss/ increase. Of various heat treatments tested, only a 900 degreeC anneal in hydrogen annihilated N/sub st/ and allowed Q/sub ss/ measurement. Such N/sub st/ apparently arises as a consequence of implantation damage at the silicon--silicon dioxide interface. With the exception of boron implantations into thick oxides or through aluminum electrodes, reduction of the mobile ionic charge (Q/sub o/) was achieved by implantation. The reduction again is presumably damage related and is not negated by high-temperature annealing but may be counterbalanced by aluminum incorporation in the oxide

  12. Impact of multiple sub-melt laser scans on the activation and diffusion of shallow Boron junctions

    DEFF Research Database (Denmark)

    Rosseel, E.; Vandervorst, W.; Clarysse, T.

    2008-01-01

    , careful process optimization is required. While macroscopic variations can easily be addressed using the proper spatial power compensation it is more difficult to completely eliminate the micro scale non-uniformity which is intimately linked to the laser beam profile, the amount of overlaps and the scan...... pitch. In this work, we will present micro scale sheet resistance uniformity measurements for shallow 0.5 keV B junctions and zoom in on the underlying effect of multiple subsequent laser scans. A variety of characterization techniques are used to extract the relevant junction parameters and the role...... of different implantation and anneal parameters will be explored. It turns out that the observed sheet resistance decrease with increasing number of laser scans is caused on one hand by a temperature dependent increase of the activation level, and on the other hand, by a non-negligible temperature...

  13. Stopping characteristics of boron and indium ions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, D. S., E-mail: DSVeselov@mephi.ru; Voronov, Yu. A. [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    The mean range and its standard deviation are calculated for boron ions implanted into silicon with energies below 10 keV. Similar characteristics are calculated for indium ions with energies below 200 keV. The obtained results are presented in tabular and graphical forms. These results may help in the assessment of conditions of production of integrated circuits with nanometer-sized elements.

  14. Synthesis of borides in molybdenum implanted by B+ ions under thermal and electron annealing

    International Nuclear Information System (INIS)

    Kazdaev, Kh.R.; Akchulakov, M.T.; Bayadilov, E.M.; Ehngel'ko, V.I.; Lazarenko, A.V.; Chebukov, E.S.

    1989-01-01

    The possibility of formation of borides in the near surface layers of monocrystalline molybdenum implanted by boron ions at 35 keV energy under thermal and pulsed electron annealing by an electon beam at 140 keV energy is investigated. It is found that implantation of boron ions into molybdenum with subsequent thermal annealing permits to produce both molybdenum monoboride (α-MoB) and boride (γ-Mo 2 B) with rather different formation mechanisms. Formation of the α-MoB phase occurs with the temperature elevation from the centers appeared during implantation, while the γ-Mo 2 B phase appears only on heating the implanted layers up to definite temperature as a result of the phase transformation of the solid solution into a chemical compound. Pulsed electron annealing instead of thermal annealing results mainly in formation of molybdenum boride (γ-Mo 2 B), the state of structure is determined by the degree of heating of implanted layers and their durable stay at temperatures exceeding the threshold values

  15. Selective laser sintering of calcium phosphate materials for orthopedic implants

    Science.gov (United States)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  16. Comparison of two analytical methods for the local quantitative determination of lithium and boron contents in cladding materials

    International Nuclear Information System (INIS)

    Gavillet, D.; Guenther-Leopold, I.; Martin, M.; Guillong, M.; Hellwig, Ch.; Sell, H.J.

    2008-01-01

    Pressurized water reactors contain boric acid for reactivity control. As the acidic coolant conditions result in an increased attack of the circuit materials, LiOH is added to render the coolant slightly alkaline. However, LiOH can affect corrosion of the Zr alloy cladding. Thus the Li content in the oxide layers of irradiated fuel rods is of high interest, especially for new alloys (pathfinder rods). At the 'Paul Scherrer Institut' the lithium as well as the boron content in the oxide layers of claddings are determined by Secondary Ion Mass Spectrometry (SIMS). Quantification is performed by direct comparison with a Zircaloy-oxide layer implanted with B and Li. A new and independent method using Laser Ablation Inductively Coupled Plasma Mass Spectrometry was applied to cross-check the SIMS data. (authors)

  17. Impurity effects of hydrogen isotope retention on boronized wall in LHD

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Nishimura, Kiyohiko; Sagara, Akio

    2010-11-01

    The impurity effect on hydrogen isotopes retention in the boron film deposited in LHD was evaluated by means of XPS and TDS. It was found that the impurity concentrations in boron film were increased after H-H main plasma exposure in LHD. The ratio of hydrogen retention trapped by impurity to total hydrogen retention during H-H main plasma exposure was reached to 70%, although that of deuterium retention by impurity in D 2 + implanted LHD-boron film was about 35%. In addition, the dynamic chemical sputtering of hydrogen isotopes with impurity as the form of water and / or hydrocarbons was occurred by energetic hydrogen isotopes irradiation. It was expected that the enhancement of impurity concentration during plasma exposure in LHD would induce the dynamic formation of volatile molecules and their re-emission to plasma. These facts would prevent stable plasma operation in LHD, concluding that the dynamic impurity behavior in boron film during plasma exposure is one of key issues for the steady-state plasma operation in LHD. (author)

  18. Low dose monitoring by double implant technique in IC fabrication

    International Nuclear Information System (INIS)

    Ahmad, I.B.; Weidemann, J.

    1995-01-01

    The utilisation of low dose implant monitoring (using Boron) in a manufacturing line has been discussed. The utilisation of phosphorus ions as the second implant dose were also studied as comparison. The technique relies on the fact that the sheet resistant of doped layer will increase significantly when damaged by relatively low implant dose. The technique is very sensitive and applicable for adjusting the channel dose so that an accurate threshold voltage in MOS device could be achieved

  19. Maxillary Overdentures Supported by Four Splinted Direct Metal Laser Sintering Implants: A 3-Year Prospective Clinical Study

    Directory of Open Access Journals (Sweden)

    Francesco Mangano

    2014-01-01

    Full Text Available Purpose. Nowadays, the advancements in direct metal laser sintering (DMLS technology allow the fabrication of titanium dental implants. The aim of this study was to evaluate implant survival, complications, and peri-implant marginal bone loss of DMLS implants used to support bar-retained maxillary overdentures. Materials and Methods. Over a 2-year period, 120 implants were placed in the maxilla of 30 patients (18 males, 12 females to support bar-retained maxillary overdentures (ODs. Each OD was supported by 4 implants splinted by a rigid cobalt-chrome bar. At each annual follow-up session, clinical and radiographic parameters were assessed. The outcome measures were implant failure, biological and prosthetic complications, and peri-implant marginal bone loss (distance between the implant shoulder and the first visible bone-to-implant contact, DIB. Results. The 3-year implant survival rate was 97.4% (implant-based and 92.9% (patient-based. Three implants failed. The incidence of biological complication was 3.5% (implant-based and 7.1% (patient-based. The incidence of prosthetic complication was 17.8% (patient-based. No detrimental effects on marginal bone level were evidenced. Conclusions. The use of 4 DMLS titanium implants to support bar-retained maxillary ODs seems to represent a safe and successful procedure. Long-term clinical studies on a larger sample of patients are needed to confirm these results.

  20. Maxillary overdentures supported by four splinted direct metal laser sintering implants: a 3-year prospective clinical study.

    Science.gov (United States)

    Mangano, Francesco; Luongo, Fabrizia; Shibli, Jamil Awad; Anil, Sukumaran; Mangano, Carlo

    2014-01-01

    Purpose. Nowadays, the advancements in direct metal laser sintering (DMLS) technology allow the fabrication of titanium dental implants. The aim of this study was to evaluate implant survival, complications, and peri-implant marginal bone loss of DMLS implants used to support bar-retained maxillary overdentures. Materials and Methods. Over a 2-year period, 120 implants were placed in the maxilla of 30 patients (18 males, 12 females) to support bar-retained maxillary overdentures (ODs). Each OD was supported by 4 implants splinted by a rigid cobalt-chrome bar. At each annual follow-up session, clinical and radiographic parameters were assessed. The outcome measures were implant failure, biological and prosthetic complications, and peri-implant marginal bone loss (distance between the implant shoulder and the first visible bone-to-implant contact, DIB). Results. The 3-year implant survival rate was 97.4% (implant-based) and 92.9% (patient-based). Three implants failed. The incidence of biological complication was 3.5% (implant-based) and 7.1% (patient-based). The incidence of prosthetic complication was 17.8% (patient-based). No detrimental effects on marginal bone level were evidenced. Conclusions. The use of 4 DMLS titanium implants to support bar-retained maxillary ODs seems to represent a safe and successful procedure. Long-term clinical studies on a larger sample of patients are needed to confirm these results.

  1. Effect of High-Temperature Annealing on Ion-Implanted Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyunpil Boo

    2012-01-01

    Full Text Available P-type and n-type wafers were implanted with phosphorus and boron, respectively, for emitter formation and were annealed subsequently at 950∼1050∘C for 30∼90 min for activation. Boron emitters were activated at 1000∘C or higher, while phosphorus emitters were activated at 950∘C. QSSPC measurements show that the implied Voc of boron emitters increases about 15 mV and the J01 decreases by deep junction annealing even after the activation due to the reduced recombination in the emitter. However, for phosphorus emitters the implied Voc decreases from 622 mV to 560 mV and the J01 increases with deep junction annealing. This is due to the abrupt decrease in the bulk lifetime of the p-type wafer itself from 178 μs to 14 μs. PC1D simulation based on these results shows that, for p-type implanted solar cells, increasing the annealing temperature and time abruptly decreases the efficiency (Δηabs=−1.3%, while, for n-type implanted solar cells, deep junction annealing increases the efficiency and Voc, especially (Δηabs=+0.4% for backside emitter solar cells.

  2. Solutions to defect-related problems in implanted silicon by controlled injection of vacancies by high-energy ion irradiation

    International Nuclear Information System (INIS)

    Roth, E.G.; Holland, O.W.; Duggan, J.L.

    1999-01-01

    Amorphization and a dual implant technique have been used to manipulate residual defects that persist following implantation and post-implant thermal treatments. Residual defects can often be attributed to ion-induced defect excesses. A defect is considered to be excess when it occurs in a localized region at a concentration greater than its complement. Sources of excess defects include spatially separated Frenkel pairs, excess interstitials resulting from the implanted atoms, and sputtering. Preamorphizing prior to dopant implantation has been proposed to eliminate dopant broadening due to ion channeling as well as dopant diffusion during subsequent annealing. However, transient-enhanced diffusion (TED) of implanted boron has been observed in pre-amorphized Si. The defects driving this enhanced boron diffusion are thought to be the extended interstitial-type defects that form below the amorphous-crystalline interface during implantation. A dual implantation process was applied in an attempt to reduce or eliminate this interfacial defect band. High-energy, ion implantation is known to inject a vacancy excess in this region. Vacancies were implanted at a concentration coincident with the excess interstitials below the a-c interface to promote recombination between the two defect species. Preliminary results indicate that a critical fluence, i.e., a sufficient vacancy concentration, will eliminate the interstitial defects. The effect of the reduction or elimination of these interfacial defects upon TED of boron will be discussed. Rutherford backscattering/channeling and cross section transmission electron microscopy analyses were used to characterize the defect structure within the implanted layer. Secondary ion mass spectrometry was used to profile the dopant distributions. copyright 1999 American Institute of Physics

  3. Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents.

    Science.gov (United States)

    Castillo-de-Oyagüe, Raquel; Sánchez-Turrión, Andrés; López-Lozano, José-Francisco; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria-Jesús

    2012-07-01

    This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range.

  4. The effect of different surgical drilling procedures on full laser-etched microgrooves surface-treated implants: an experimental study in sheep.

    Science.gov (United States)

    Jimbo, Ryo; Tovar, Nick; Yoo, Daniel Y; Janal, Malvin N; Anchieta, Rodolfo B; Coelho, Paulo G

    2014-09-01

    To evaluate the influence of instrumentation technique on the early osseointegration histomorphometrics and biomechanical fixation of fully laser-etched microgrooves implant surfaces in a sheep model. Six sheep were subjected to bilateral hip surgeries 3 and 6 weeks before euthanasia. A total of 48 implants (∅4.5 mm, 8 mm in length) were distributed among four sites (8 per animal) and placed in bone sites drilled to 4.6 mm (reamer), 4.1 mm (loose), 3.7 mm (medium) and 3.2 mm (tight) in diameter. After healing, the animals were euthanized and half of the implants were biomechanically tested, while the remainder was subjected to non-decalcified histologic processing. The histomorphometric parameters assessed were bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Statistical analysis was performed using a mixed-model analysis of variance with significance level set at P bone seemed to be in contact to the implant surface, at 3 weeks, whereas the implants placed in press-fit situations were mainly supported by cortical bone. The laser-etched microgrooved implant presented osteoconductive and biocompatible properties for all surgical procedures tested. However, procedures providing increasingly higher press-fit scenarios presented the strongest histomorphometric and biomechanical responses at 3 and 6 weeks. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  6. Recrystallization of implanted amorphous silicon layers. I. Electrical properties of silicon implanted with BF+2 or Si++B+

    International Nuclear Information System (INIS)

    Tsai, M.Y.; Streetman, B.G.

    1979-01-01

    Electrical properties of recrystallized amorphous silicon layers, formed by BF + 2 implants or Si + +B + implants, have been studied by differential resistivity and Hall-effect measurements. Electrical carrier distribution profiles show that boron atoms inside the amorphized Si layers can be fully activated during recrystallization at 550 0 C. The mobility is also recovered. However, the tail of the B distribution, located inside a damaged region near the original amorphous-crystalline interface, remains inactive. This inactive tail has been observed for all samples implanted with BF + 2 . Only in a thicker amorphous layer, formed for example by Si + predamage implants, can the entire B profile be activated. The etch rate of amorphous silicon in HF and the effect of fluorine on the recrystallization rate are also reported

  7. Dilute ferromagnetic semiconductors prepared by the combination of ion implantation with pulse laser melting

    International Nuclear Information System (INIS)

    Zhou, Shengqiang

    2015-01-01

    Combining semiconducting and ferromagnetic properties, dilute ferromagnetic semiconductors (DFS) have been under intensive investigation for more than two decades. Mn doped III–V compound semiconductors have been regarded as the prototype of DFS from both experimental and theoretic investigations. The magnetic properties of III–V:Mn can be controlled by manipulating free carriers via electrical gating, as for controlling the electrical properties in conventional semiconductors. However, the preparation of DFS presents a big challenge due to the low solubility of Mn in semiconductors. Ion implantation followed by pulsed laser melting (II-PLM) provides an alternative to the widely used low-temperature molecular beam epitaxy (LT-MBE) approach. Both ion implantation and pulsed-laser melting occur far enough from thermodynamic equilibrium conditions. Ion implantation introduces enough dopants and the subsequent laser pulse deposit energy in the near-surface region to drive a rapid liquid-phase epitaxial growth. Here, we review the experimental study on preparation of III–V:Mn using II-PLM. We start with a brief description about the development of DFS and the physics behind II-PLM. Then we show that ferromagnetic GaMnAs and InMnAs films can be prepared by II-PLM and they show the same characteristics of LT-MBE grown samples. Going beyond LT-MBE, II-PLM is successful to bring two new members, GaMnP and InMnP, into the family of III–V:Mn DFS. Both GaMnP and InMnP films show the signature of DFS and an insulating behavior. At the end, we summarize the work done for Ge:Mn and Si:Mn using II-PLM and present suggestions for future investigations. The remarkable advantage of II-PLM approach is its versatility. In general, II-PLM can be utilized to prepare supersaturated alloys with mismatched components. (topical review)

  8. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study.

    Science.gov (United States)

    Giannelli, Marco; Landini, Giulia; Materassi, Fabrizio; Chellini, Flaminia; Antonelli, Alberto; Tani, Alessia; Zecchi-Orlandini, Sandra; Rossolini, Gian Maria; Bani, Daniele

    2016-11-01

    Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This in vitro study aims at providing the experimental basis for possible use of diode laser (λ 808 nm) in the treatment of peri-implantitis. Staphylococcus aureus biofilm was grown for 48 h on titanium discs with porous surface corresponding to the bone-implant interface and then irradiated with a diode laser (λ 808 nm) in noncontact mode with airflow cooling for 1 min using a Ø 600-μm fiber. Setting parameters were 2 W (400 J/cm 2 ) for continuous wave mode; 22 μJ, 20 kHz, 7 μs (88 J/cm 2 ) for pulsed wave mode. Bactericidal effect was evaluated using fluorescence microscopy and counting the residual colony-forming units. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, the titanium discs were coated with Escherichia coli lipopolysaccharide (LPS), laser-irradiated and seeded with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Diode laser irradiation in both continuous and pulsed modes induced a statistically significant reduction of viable bacteria and nitrite levels. These results indicate that in addition to its bactericidal effect laser irradiation can also inhibit LPS-induced macrophage activation and thus blunt the inflammatory response. The λ 808-nm diode laser emerges as a valuable tool for decontamination/detoxification of the titanium implant surface and may be used in the treatment of peri-implantitis.

  9. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  10. Clinical application of femtosecond laser assisted cataract surgery combined with triple-focus intraocular lens implantation in the treatment of cataract

    Directory of Open Access Journals (Sweden)

    Qing-Song Gao

    2018-02-01

    Full Text Available AIM:To evaluate the effect of femtosecond laser assisted cataract surgery combined with triple-focus intraocular lens implantation in the treatment of cataract. METHODS: Totally 86 cases(106 eyesof patients with double cataract in our hospital from January 2016 to January 2017 were selected, including 49 cases(59 eyeswere set as the observation group(treated with femtosecond laser assisted phacoemulsification combined with triple-focus intraocular lens implantation, and 37 cases(47 eyeswere set as the control group(received traditional phacoemulsification combined with triple-focus intraocular lens implantation. Corneal endothelial cell density, cumulative dissipated energy(CDE, distant and near visual accommodation before and after operation were compared between the two groups, postoperative complications were observed. RESULTS: The preoperative corneal endothelial cell density of two groups had no significant difference(P>0.05. The corneal endothelial cell density of two groups significantly decreased at postoperative 1wk, with statistic significance within groups(PPPPPP>0.05. The incidence of glare and halo in the observation group was 10.2% and 8.5% in the control group, and are in the patients whose age was above 60 years old, there was no significant difference between the two groups(P>0.05. CONCLUSION: Femtosecond laser assisted cataract surgery combined with triple-focus intraocular lens implantation in the treatment of cataract can not only improve curative effect, but also provide high safety, while the adverse events including glare, halo and other adverse visual circumstances should be considered after triple-focus intraocular lens implantation.

  11. Influence of different tightening forces before laser welding to the implant/framework fit.

    Science.gov (United States)

    da Silveira-Júnior, Clebio Domingues; Neves, Flávio Domingues; Fernandes-Neto, Alfredo Júlio; Prado, Célio Jesus; Simamoto-Júnior, Paulo César

    2009-06-01

    The aim of the present study was to evaluate the influence of abutment screw tightening force before laser welding procedures on the vertical fit of metal frameworks over four implants. To construct the frameworks, prefabricated titanium abutments and cylindrical titanium bars were joined by laser welding to compose three groups: group of manual torque (GMT), GT10 and GT20. Before welding, manual torque simulating routine laboratory procedure was applied to GTM. In GT10 and GT20, the abutment screws received 10 and 20 Ncm torque, respectively. After welding, the implant/framework interfaces were assessed by optical comparator microscope using two methods. First, the single screw test (SST) was used, in which the interfaces of the screwed and non-screwed abutments were assessed, considering only the abutments at the framework extremities. Second, the interfaces of all the abutments were evaluated when they were screwed. In the SST, intergroup analysis (Kruskal Wallis) showed no significant difference among the three conditions of tightening force; that is, the different tightening force before welding did not guarantee smaller distortions. Intragroup analysis (Wilcoxon) showed that for all groups, the interfaces of the non-screwed abutments were statistically greater than the interfaces of the screwed abutments, evidencing distortions in all the frameworks. ANOVA was applied for the comparison of interfaces when all the abutments were screwed and showed no significant difference among the groups. Under the conditions of this study, pre-welding tightness on abutment screws did not influence the vertical fit of implant-supported metal frameworks.

  12. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis.

    Science.gov (United States)

    Liu, Hong-Ting; Zhou, Zhou; Luo, Wu-Qiang; He, Wen-Jing; Agbedia, Owhofasa; Wang, Jiang-Xia; Huang, Jian-Zhong; Gao, Xin; Kong, Min; Li, Min; Li, Li

    2018-01-01

    To compare the optical quality after implantation of implantable collamer lens (ICL) and wavefront-guided laser in situ keratomileusis (WG-LASIK). The study included 40 eyes of 22 patients with myopia who accepted ICL implantation and 40 eyes of 20 patients with myopia who received WG-LASIK. Before surgery and three months after surgery, the objective scattering index (OSI), the values of modulation transfer function (MTF) cutoff frequency, Strehl ratio, and the Optical Quality Analysis System (OQAS) values (OVs) were accessed. The higher order aberrations (HOAs) data including coma, trefoil, spherical, 2 nd astigmatism and tetrafoil were also obtained. For patients with pupil size LASIK group, significant improvements in visual acuities were found postoperatively, with a significant reduction in spherical equivalent ( P LASIK group, the OSI significantly increased from 0.68±0.43 preoperatively to 0.91±0.53 postoperatively (Wilcoxon signed ranks test, P =0.000). None of the mean MTF cutoff frequency, Strehl ratio, OVs showed statistically significant changes in both ICL and WG-LASIK groups. In the ICL group, there were no statistical differences in the total HOAs for either 4 mm-pupil or 6 mm-pupil. In the WG-LASIK group, the HOA parameters increased significantly at 4 mm-pupil. The total ocular HOAs, coma, spherical and 2 nd astigmatism were 0.12±0.06, 0.06±0.03, 0.00±0.03, 0.02±0.01, respectively. After the operation, these values were increased into 0.16±0.07, 0.08±0.05, -0.04±0.04, 0.03±0.01 respectively (Wilcoxon signed ranks test, all P LASIK group. ICL implantation has a less disturbance to optical quality than WG-LASIK. The OQAS is a valuable complementary measurement to the wavefront aberrometers in evaluating the optical quality.

  13. Chromium-doped DLC for implants prepared by laser-magnetron deposition.

    Science.gov (United States)

    Jelinek, Miroslav; Kocourek, Tomáš; Zemek, Josef; Mikšovský, Jan; Kubinová, Šárka; Remsa, Jan; Kopeček, Jaromir; Jurek, Karel

    2015-01-01

    Diamond-like carbon (DLC) thin films are frequently used for coating of implants. The problem of DLC layers lies in bad layer adhesion to metal implants. Chromium is used as a dopant for improvement of adhesion of DLC films. DLC and Cr-DLC layers were deposited on silicon, Ti6Al4V and CoCrMo substrates by a hybrid technology using combination of pulsed laser deposition (PLD) and magnetron sputtering. The topology of layers was studied using SEM, AFM and mechanical profilometer. Carbon and chromium content and concentration of trivalent and toxic hexavalent chromium bonds were determined by XPS and WDS. It follows from the scratch tests that Cr doping improved adhesion of DLC layers. Ethylene glycol, diiodomethane and deionized water were used to measure the contact angles. The surface free energy (SFE) was calculated. The antibacterial properties were studied using Pseudomonas aeruginosa and Staphylococcus aureus bacteria. The influence of SFE, hydrophobicity and surface roughness on antibacterial ability of doped layers is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Clinical, Radiographic and Microbiological Evaluation of High Level Laser Therapy, a New Photodynamic Therapy Protocol, in Peri-Implantitis Treatment; a Pilot Experience

    Directory of Open Access Journals (Sweden)

    Gianluigi Caccianiga

    2016-01-01

    Full Text Available Aim. Endosseous implants are widely used to replace missing teeth but mucositis and peri-implantitis are the most frequent long-term complications related with dental implants. Removing all bacterial deposits on contaminated implant surface is very difficult due to implant surface morphology. The aim of this study was to evaluate the bactericidal potential of photodynamic therapy by using a new high level laser irradiation protocol associated with hydrogen peroxide in peri-implantitis. Materials and Methods. 10 patients affected by peri-implantitis were selected for this study. Medical history, photographic documentation, periodontal examination, and periapical radiographs were collected at baseline and 6 months after surgery. Microbiological analysis was performed with PCR Real Time. Each patient underwent nonsurgical periodontal therapy and surgery combined with photodynamic therapy according to High Level Laser Therapy protocol. Results. All peri-implant pockets were treated successfully, without having any complication and not showing significant differences in results. All clinical parameters showed an improvement, with a decrease of Plaque Index (average decrease of 65%, range 23–86%, bleeding on probing (average decrease of 66%, range 26–80%, and probing depth (average decrease of 1,6 mm, range 0,46–2,6 mm. Periapical radiographs at 6 months after surgery showed a complete radiographic filling of peri-implant defect around implants treated. Results showed a decrease of total bacterial count and of all bacterial species, except for Eikenella corrodens, 6 months after surgery. Conclusion. Photodynamic therapy using HLLT appears to be a good adjunct to surgical treatment of peri-implantitis.

  15. Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon.

    Science.gov (United States)

    Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A

    2012-09-01

    Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.

  16. A Preliminary Study to Enhance the Tribological Performance of CoCrMo Alloy by Fibre Laser Remelting for Articular Joint Implant Applications

    Directory of Open Access Journals (Sweden)

    Chi-Wai Chan

    2018-03-01

    Full Text Available CoCrMo alloy has long been used as a pairing femoral head material for articular joint implant applications because of its biocompatibility and reliable tribological performance. However, friction and wear issues are still present for CoCrMo (metal/CoCrMo (metal or CoCrMo (metal/ultrahigh molecular weight polyethylene (UHMWPE (plastic pairs in clinical observations. The particulate wear debris generated from the worn surfaces of CoCrMo or UHMWPE can pose a severe threat to human tissues, eventually resulting in the failure of implants and the need for revision surgeries. As a result, a further improvement in tribological properties of this alloy is still needed, and it is of great interest to both the implant manufacturers and clinical surgeons. In this study, the surface of CoCrMo alloy was laser-treated by a fibre laser system in an open-air condition (i.e., no gas chamber required. The CoCrMo surfaces before and after laser remelting were analysed and characterised by a range of mechanical tests (i.e., surface roughness measurement and Vickers micro-hardness test and microstructural analysis (i.e., XRD phase detection. The tribological properties were assessed by pin-on-disk tribometry and dynamic light scattering (DLS. Our results indicate that the laser-treated surfaces demonstrated a friction-reducing effect for all the tribopairs (i.e., CoCrMo against CoCrMo and CoCrMo against UHHMWPE and enhanced wear resistance for the CoCrMo/CoCrMo pair. Such beneficial effects are chiefly attributable to the presence of the laser-formed hard coating on the surface. Laser remelting possesses several competitive advantages of being a clean, non-contact, fast, highly accurate and automated process compared to other surface coating methods. The promising results of this study point to the possibility that laser remelting can be a practical and effective surface modification technique to further improve the tribological performance of Co

  17. A simplified method to reduce prosthetic misfit for a screw-retained, implant-supported complete denture using a luting technique and laser welding.

    Science.gov (United States)

    Longoni, Salvatore; Sartori, Matteo; Davide, Roberto

    2004-06-01

    An important aim of implant-supported prostheses is to achieve a passive fit of the framework with the abutments to limit the amount of stress transfer to the bone-implant interface. An efficient and standardized technique is proposed. A definitive screw-retained, implant-supported complete denture was fabricated for an immediately loaded provisional screw-retained implant-supported complete denture. Precise fit was achieved by the use of industrial titanium components and the passivity, by an intraoral luting sequence and laser welding.

  18. Accuracy of a digital impression system based on parallel confocal laser technology for implants with consideration of operator experience and implant angulation and depth.

    Science.gov (United States)

    Giménez, Beatriz; Özcan, Mutlu; Martínez-Rus, Francisco; Pradíes, Guillermo

    2014-01-01

    To evaluate the accuracy of a digital impression system based on parallel confocal red laser technology, taking into consideration clinical parameters such as operator experience and angulation and depth of implants. A maxillary master model with six implants (located bilaterally in the second molar, second premolar, and lateral incisor positions) was fitted with six polyether ether ketone scan bodies. One second premolar implant was placed with 30 degrees of mesial angulation; the opposite implant was positioned with 30 degrees of distal angulation. The lateral incisor implants were placed 2 or 4 mm subgingivally. Two experienced and two inexperienced operators performed intraoral scanning. Five different interimplant distances were then measured. The files obtained from the scans were imported with reverse-engineering software. Measurements were then made with a coordinate measurement machine, with values from the master model used as reference values. The deviations from the actual values were then calculated. The differences between experienced and inexperienced operators and the effects of different implant angulations and depths were compared statistically. Overall, operator 3 obtained significantly less accurate results. The angulated implants did not significantly influence accuracy compared to the parallel implants. Differences were found in the amount of error in the different quadrants. The second scanned quadrant had significantly worse results than the first scanned quadrant. Impressions of the implants placed at the tissue level were less accurate than implants placed 2 and 4 mm subgingivally. The operator affected the accuracy of measurements, but the performance of the operator was not necessarily dependent on experience. Angulated implants did not decrease the accuracy of the digital impression system tested. The scanned distance affected the predictability of the accuracy of the scanner, and the error increased with the increased length of the

  19. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  20. A study of the boron profiles caused by BF2 implantation in crystalline silicon

    International Nuclear Information System (INIS)

    Jung, Won-Chae

    2005-01-01

    For integrated CMOS circuits, the one-, two-, and three-dimensional impurity distributions are very important for analyzing the devices. The one-dimensional boron profiles were measured by using secondary ion mass spectroscopy (SIMS), and simulation data were obtained by using the TSUPREM4 and the UT-Marlowe programs. The simulated data of UT-Marlowe in 1D agreed very well with the SIMS data. From the SIMS and the simulated 1D data, the four moments were calculated, these 1D data were used in the TSUPREM4 simulator to calculate of 2D profiles. For the TSUPREM4 simulations, several different models were used for the characterization of the 1D and the 2D boron profiles. A Taurus simulation tool was used to obtain the 3D boron profiles for the case of arbitrary tilting and rotation. The measured two-dimensional cross-sectional transmission electron microscope (XTEM) data obtained by using the chemical etching method matched very well with the results of the Gauss model. The vertical depths from the Gauss model and from the XTEM data were 125.8 nm and 125 nm, respectively. The channel lengths from the Gauss model and from the XTEM data were 205 nm and 233 nm, respectively. From the XTEM data and the Gauss model, the deviations of the vertical and the lateral doping distributions were 0.6 % and 12 %, respectively. The detection limit of boron measured by using the chemical-etching method was shown to be a concentration of about 1.0 X 10 16 cm -3 for a PMOS device.

  1. Characterization of junctions produced by medium-energy ion implantation in silicon; Caracterisation de jonctions obtenues par implantation d'ions de moyenne energie dans le silicium

    Energy Technology Data Exchange (ETDEWEB)

    Monfret, A [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    Characteristics of diodes made by implanting 20 keV boron and phosphorus ions into silicon are reviewed. Special features of theses diodes are presented, and correlation with technology is studied. This paper includes three parts: - in the first part, the theory of range distribution is considered for both amorphous and single-crystal targets, - In the second part, a brief description of the experimental conditions is given. - In the third part, the experimental results are presented. The results lead to a schematic model of the component. They also show the influence of cleaning and annealing treatments from which optimized process of fabrication can be determined. In this study, the influence of a two stage annealing process is shown. For phosphorus and boron implants, the first stage is performed at 150 deg. C while the second stage is 450 deg. C for phosphorus and 550 deg. C for boron implants. The implanted diodes are found to exhibit good electrical characteristics. Comparisons with standard diffused diodes are quite favourable. (author) [French] On examine les caracteristiques de diodes obtenues par implantation d'ions bore et phosphore de 20 keV dans le silicium. On met en evidence le comportement particulier de ces diodes et on presente certaines correlations avec la technologie. L'expose comprend trois parties: - la premiere partie est consacree au calcul du profil de dopage en mode canalise ou non. - Dans la deuxieme partie, on decrit l'appareillage et les conditions experimentales d'implantation. - Dans la troisieme partie, on presente les resultats experimentaux. On propose un modele schematique pour expliquer le comportement des tenues en tension des diodes. L'etude des courants de fuite en fonction de la preparation des echantillons et des traitements thermiques permet de determiner des conditions optimales d'elaboration. Au cours de cette etude on met en evidence l'influence de deux stades de recuit: le premier a 150 deg. C pour les implantations de

  2. Clinical experiences with laser-welded titanium frameworks supported by implants in the edentulous mandible: a 5-year follow-up study.

    Science.gov (United States)

    Ortorp, A; Linden, B; Jemt, T

    1999-01-01

    The purpose of this study was to report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks and to compare their performance with that of prostheses provided with conventional cast frameworks. On a routine basis, a consecutive group of 824 edentulous patients were provided with fixed prostheses supported by implants in the edentulous mandible. In addition to conventional gold-alloy castings, patients were at random provided with 2 kinds of laser-welded titanium frameworks. In all, 155 patients were included in the 2 titanium framework groups. A control group of 53 randomly selected patients with conventional gold-alloy castings was used for comparison. Clinical and radiographic 5-year data was collected for the 3 groups. All followed patients still had fixed prostheses in the mandible after 5 years. The overall cumulative success rates were 95.9% and 99.7% for titanium-framework prostheses and implants, respectively. The corresponding success rates for the control group were 100% and 99.6%, respectively. Bone loss was 0.5 mm on average during the 5-year follow-up period. The most common complications for titanium frameworks were resin or tooth fractures, gingival inflammation, and fractures of the metal frames (10%). One of the cast frameworks fractured and was resoldered. Loose and fractured implant screw components were few (laser-welded titanium frameworks seem to be a viable alternative to conventional castings in the edentulous mandible.

  3. Influence of postoperative low-level laser therapy on the osseointegration of self-tapping implants in the posterior maxilla: a 6-week split-mouth clinical study.

    Science.gov (United States)

    Mandić, Borka; Lazić, Zoran; Marković, Aleksa; Mandić, Bojan; Mandić, Miška; Djinić, Ana; Miličić, Biljana

    2015-03-01

    Low-level laser therapy (LLLT) has been proven to stimulate bone repair, affecting cellular proliferation, differentiation and adhesion, and has shown a potential to reduce the healing time following implant placement. The aim of this clinical study was to investigate the influence of postoperative LLLT osseointegration and early success of self-tapping implants placed into low-density bone. Following the split-mouth design, self-tapping implants n = 44) were inserted in the posterior maxilla of 12 patients. One jaw side randomly received LLLT (test group), while the other side was placebo (control group). For LLLT, a 637 nm gallium-aluminum-arsenide (GaAlAs) laser (Medicolaser 637, Technoline, Belgrade, Serbia) with an output power of 40 mW and continuous wave was used. Low-level laser treatment was performed immediately after the surgery and then repeated every day in the following 7 days. The total irradiation dose per treatment was 6.26 J/cm2 per implant. The study outcomes were: implant stability, alkaline-phosphatase (ALP) activity and early implant success rate. The follow-up took 6 weeks. Irradiated implants achieved a higher stability compared with controls during the entire follow-up and the difference reached significance in the 5th postoperative week (paired t-test, p = 0.030). The difference in ALP activity between the groups was insignificant in any observation point (paired t-test, p > 0.05). The early implant success rate was 100%, regardless of LLLT usage. LLLT applied daily during the first postoperative week expressed no significant influence on the osseointegration of self-tapping implants placed into low density bone of the posterior maxilla. Placement of self-tapping macro-designed implants into low density bone could be a predictable therapeutic procedure with a high early success rate regardless of LLLT usage.

  4. Influence of postoperative low-level laser therapy on the osseointegration of self-tapping implants in the posterior maxilla: A 6-week split-mouth clinical study

    Directory of Open Access Journals (Sweden)

    Mandić Borka

    2015-01-01

    Full Text Available Background/Aim. Low-level laser therapy (LLLT has been proven to stimulate bone repair, affecting cellular proliferation, differentiation and adhesion, and has shown a potential to reduce the healing time following implant placement. The aim of this clinical study was to investigate the influence of postoperative LLLT osseointegration and early success of self-tapping implants placed into low-density bone. Methods. Following the split-mouth design, self-tapping implants (n = 44 were inserted in the posterior maxilla of 12 patients. One jaw side randomly received LLLT (test group, while the other side was placebo (control group. For LLLT, a 637 nm gallium-aluminum-arsenide (GaAlAs laser (Medicolaser 637, Technoline, Belgrade, Serbia with an output power of 40 mW and continuous wave was used. Low-level laser treatment was performed immediately after the surgery and then repeated every day in the following 7 days. The total irradiation dose per treatment was 6.26 J/cm² per implant. The study outcomes were: implant stability, alkaline-phosphatase (ALP activity and early implant success rate. The follow-up took 6 weeks. Results. Irradiated implants achieved a higher stability compared with controls during the entire follow-up and the difference reached significance in the 5th postoperative week (paired t-test, p = 0.030. The difference in ALP activity between the groups was insignificant in any observation point (paired t-test, p > 0.05. The early implant success rate was 100%, regardless of LLLT usage. Conclusion. LLLT applied daily during the first postoperative week expressed no significant influence on the osseointegration of selftapping implants placed into low density bone of the posterior maxilla. Placement of self-tapping macro-designed implants into low density bone could be a predictable therapeutic procedure with a high early success rate regardless of LLLT usage.

  5. Raman spectra of hot-pressed boron suboxide

    CSIR Research Space (South Africa)

    Machaka, R

    2011-01-01

    Full Text Available on in- situ/online measurements (such as GIXRD, Raman Spectroscopy, FIB- Electron Microscopy) during (i) ion implantation, (ii) PLD growth of nanoparticles SW/MW-CNTs, oxide semiconductor multi-layer, metal/Si and metal/metal systems. Moreover, He...], aluminium magnesium boride ? AlMgB14 [8], and the newly synthesized boron subnitride ? B13N2 [9, 10]. With hardness values reported between 24 GPa and 45 GPa [7, 11, 12], B6O is sometimes considered to be the third hardest material only after diamond...

  6. Matrix effects in laser ablation molecular isotopic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Staci, E-mail: staci.brown@cepast.famu.edu [Department of Physics, Florida A and M University, 2077 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); Ford, Alan, E-mail: alan.ford@alakaidefense.com [Alakai Defense Systems, 197 Replacement Ave, Suite 102, Fort Leonard Wood, MO 65473 (United States); Akpovo, Charlemagne C., E-mail: charlemagne.akpovo@cepast.famu.edu [Department of Physics, Florida A and M University, 2077 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); Martinez, Jorge, E-mail: jmartinez@cepast.famu.edu [Department of Physics, Florida A and M University, 2077 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); Johnson, Lewis, E-mail: lewis@cepast.famu.edu [Department of Physics, Florida A and M University, 2077 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States)

    2014-11-01

    Recently, it has been shown that laser-induced breakdown spectroscopy (LIBS) can be used for the detection of isotopes of elements via isotopic shifts in diatomic species in a technique known as laser ablation molecular isotopic spectrometry (LAMIS). While LAMIS works quite well for isotopic analysis of pure compounds under optimal conditions, it is desirable for it to be applicable for a variety of compounds and matrices. However, the LIBS plasma emission associated with LAMIS depends on several parameters, including the applied electric field of the laser pulse, the physical properties of the material being investigated, and the presence of additional elements other than the element of interest. In this paper, we address some of the pitfalls arising from these dependencies when using LAMIS for the determination of the relative isotopic abundance of boron-containing materials with varying chemical matrices. - Highlights: • LAMIS usually determines isotopic composition of boron compounds within 3 percent. • LaBO{sub 3} and some boron-containing mixtures yield inaccurate LAMIS results. • Higher laser energy reduces variability but does not remedy poor LAMIS outcomes.

  7. Clinical experiences of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw: a 5-year follow-up study.

    Science.gov (United States)

    Ortorp, A; Jemt, T

    1999-01-01

    Titanium frameworks have been used in the endentulous implant patient for the last 10 years. However, knowledge of titanium frameworks for the partially dentate patient is limited. To report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw. A consecutive group of 383 partially edentulous patients were, on a routine basis, provided with fixed partial prostheses supported by Brånemark implants in the mandible or maxilla. Besides conventional frameworks in cast gold alloy, 58 patients were provided with titanium frameworks with three different veneering techniques, and clinical and radiographic 5-year data were collected for this group. The overall cumulative survival rate was 95.6% for titanium-framework prostheses and 93.6% for implants. Average bone loss during the follow-up period was 0.4 mm. The most common complications were minor veneering fractures. Loose and fractured implant screw components were fewer than 2%. An observation was that patients on medications for cardiovascular problems may lose more implants than others (p laser-welded titanium frameworks was similar to that reported for conventional cast frames in partially edentulous jaws. Low-fusing porcelain veneers also showed clinical performance comparable to that reported for conventional porcelain-fused-to-metal techniques.

  8. An accurate mobility model for the I-V characteristics of n-channel enhancement-mode MOSFETs with single-channel boron implantation

    International Nuclear Information System (INIS)

    Chingyuan Wu; Yeongwen Daih

    1985-01-01

    In this paper an analytical mobility model is developed for the I-V characteristics of n-channel enhancement-mode MOSFETs, in which the effects of the two-dimensional electric fields in the surface inversion channel and the parasitic resistances due to contact and interconnection are included. Most importantly, the developed mobility model easily takes the device structure and process into consideration. In order to demonstrate the capabilities of the developed model, the structure- and process-oriented parameters in the present mobility model are calculated explicitly for an n-channel enhancement-mode MOSFET with single-channel boron implantation. Moreover, n-channel MOSFETs with different channel lengths fabricated in a production line by using a set of test keys have been characterized and the measured mobilities have been compared to the model. Excellent agreement has been obtained for all ranges of the fabricated channel lengths, which strongly support the accuracy of the model. (author)

  9. High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Macková, Anna; Malinský, Petr; Matoušek, J.; Torrisi, L.; Ullschmied, Jiří

    2015-01-01

    Roč. 354, JUL (2015), s. 56-59 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : multi-energy implantation * laser-produced plasma * RBS analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 1.389, year: 2015

  10. Evolution of surfaces properties for 100Cr6 steel by implantation and ionic mixing; Evolution des proprietes de surface de l`acier 100Cr6 par implantation et melange ioniques

    Energy Technology Data Exchange (ETDEWEB)

    Faussemagne, A

    1996-07-09

    Physico-chemical characterizations performed on samples of 100Cr6 steel implanted both with boron and nitrogen revealed the formation of boron nitride along with the following new phases: Fe{sub 1-x}(B, N), Fe{sub 2-x}(B, N) and Fe{sub 3-x}(B, N). A thorough analysis of boron NITRIDE (5BN) indicates that a low ion current density (3 {mu}A.cm{sup -2}) in the case of the boron plus nitrogen sequence favours the formation of sp{sup 2} bonds (hexagonal-BN) while a higher ion current density (6{mu}A.cm{sup -2}) promotes sp{sup 3} bonds (cubic-BN) in the opposite sequence. Tribological tests carried out on these samples revealed that nitrogen and boron implantations do not lead to any significant improvement of friction and wear at variance with the results obtained by others authors. However, on a set samples accidentally contaminated with carbon during implantation, we noticed a considerable improvement of these tribological parameters. As this pollution is commonly encountered in surface treatment by ion beams, one can invoke this phenomenon to explain the origin of the discrepancy reported by the literature. Extensive investigations allowed us to conclude that surface carbon, whatever its origin (contamination, ion implantation or ion beam mixed coating), provided that its amount is sufficiently high ({>=}2 x 10{sup 16} C.cm{sup -2}), decreases the coefficient of friction by a factor 5 and reduces drastically ({approx} 100) the wear. A careful examination of the whole results led us to propose a theoretical model, based on the role of the asperities of the two bodies in contact, to explain the evolution of the coefficient of friction and wear with the amount of surface carbon. This analysis revealed that in order to improve friction and wear of 100Cr6 steel, one needs to coat this material with a well adherent carbon layer having a thickness higher than the asperity heights of the two bodies in contact. Finally, this study allowed us to develop a simple lower

  11. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    Science.gov (United States)

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Electronic response of a photodiode coupled to a boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Priscila; Costa, Fabio E.; Raele, Marcus P.; Zahn, Guilherme S.; Geraldo, Bianca; Vieira Junior, Nilson D.; Samad, Ricardo E.; Genezini, Frederico A., E-mail: priscila3.costa@usp.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    A portable thermal neutron detector is proposed in this work using a silicon photodiode coupled to a boron thin film. The aim of this work was to verify the effect in the electronic response of this specific photodiode due to boron deposition, since the direct deposition of boron in the semiconductor surface could affect its electrical properties specifically the p-type layer that affects directly the depletion region of the semiconductor reducing the neutron detector efficiency count. Three boron depositions with different thickness were performed in the photodiode (S3590-09) surface by pulsed laser deposition and the photodiode was characterized, before and after the deposition process, using a radioactive americium source. Energy spectra were used to verify the electronic response of the photodiode, due to the fact that it is possible to relate it to the photopeak pulse height and resolution. Spectra from the photodiode without and with boron film deposition were compared and a standard photodiode (S3590-04) that had the electronic signal conserved was used as reference to the pulse height for electronics adjustments. The photopeak energy resolution for the photodiode without boron layer was 10.26%. For the photodiode with boron deposition at different thicknesses, the resolution was: 7.64 % (0.14 μm), 7.30 % (0.44 μm) and 6.80 % (0.63 μm). From these results it is possible to evaluate that there was not any degradation in the silicon photodiode. (author)

  13. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Individual titanium zygomatic implant

    Science.gov (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  15. Pulsed Q-switched ruby laser annealing of Bi implanted Si crystals investigated by channeling

    International Nuclear Information System (INIS)

    Deutch, B.I.; Shih-Chang, T.; Shang-Hwai, L.; Zu-Yao, Z.; Jia-Zeng, H.; Ren-Zhi, D.; Te-Chang, C.; De-Xin, C.

    1979-01-01

    Channeling was used to investigate pulsed, Q switched ruby-laser annealed and thermally annealed Si single crystals implanted with 40-keV Bi ions to a dose of 10 15 atoms/cm 2 . After thermal annealing, residual damage decreased with increasing annealing temperature to a minimum value of 30% at 900 0 C. The Bi atoms in substitutional sites reached a maximum value (50%) after annealing at 750 0 C but decreased with increasing annealing temperature. Out diffusion of Bi atoms occurred at temperatures higher than 625 0 C. For comparison, the residual damage disappeared almost completely after pulsed-laser annealing (30 ns pulse width, Energy, E = 3J/cm 2 ). The concentration of Bi in Si exceeded its solid solubility by an order of magnitude; 95% of Bi atoms were annealed to substitutional sites. Laser pulses of different energies were used to investigate the efficiency of annealing. (author)

  16. Peculiarities of neutron interaction with boron containing semiconductors

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; ); Hofman, A.; Institute of Atomic Energy, Otwock/Swierk; Vlasukova, L.A.

    2009-01-01

    The results of point defect creation calculation in B 4 C, BN and BP semiconductor single crystals irradiated in the fast neutron reactor IBR-2 are presented. It has been shown that during the thermal neutron interaction with light isotope boron atoms ( 10 B) the damage creation by means of fission nuclear reaction fragments (alpha particles and 7 Li recoil nuclei) exceeds the damage created by fast neutrons (E n > 0.1 MeV) by more than two orders of value. It has been concluded that such irradiation can create a well developed radiation defect structure in boron-containing crystals with nearly homogeneous vacancy depth distribution. This may be used in technological applications for more effective diffusion of impurities implanted at low energies or deposited onto the semiconductor surface. The developed homogeneous vacancy structure is very suitable for the radiation enhanced diffusion of electrically charged or neutral impurities from the surface into the technological depth of semiconductor devices under post irradiation treatment. (authors)

  17. In vitro biocompatibility of titanium after plasma surface alloying with boron

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Mariusz, E-mail: markacz@ump.edu.pl [Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Mieczysława U. [Division Mother' s and Child' s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Miklaszewski, Andrzej [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia [Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan (Poland); Żurawski, Jakub [Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan (Poland); Urbaniak, Paulina [Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Karolina [Department of Conservative Dentistry and Periodontology, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan (Poland)

    2016-12-01

    Recently, the effect of different sizes of precursor powders during surface plasma alloying modification on the properties of titanium surface was studied. In this work we show in vitro test results of the titanium (α-Ti) after plasma surface alloying with boron (B). Ti-B nanopowders with 2 and 10 wt% B were deposited onto microcrystalline Ti substrate. The in vitro cytocompatibility of these biomaterials was evaluated and compared with a conventional microcrystalline Ti. During the studies, established cell line of human gingival fibroblasts and osteoblasts were cultured in the presence of tested materials, and its survival rate and proliferation activity were examined. For this purpose, MTT assay, flow cytometric and fluorescent microscopic evaluation were made. Biocompatibility tests carried out indicate that the Ti after plasma surface alloying with B could be a possible candidate for dental implants and other medicinal applications. Plasma alloying is a promising method for improving the properties of titanium, thus increasing the field of its applications. - Highlights: • this is first article carried out on the titanium after plasma surface alloying with different contents of boron; • microcrystalline titanium modified with boron changes the physicochemical features of conventional material; • Ti modified by boron is proper in terms of effects on survival and proliferative activity of cells of dental alveoli; • precursors with different content of boron in different ways influence the intensity and stability of cell growth;.

  18. Non-surgical treatment of peri-implantitis with the adjunctive use of an 810-nm diode laser

    Directory of Open Access Journals (Sweden)

    Marisa Roncati

    2013-01-01

    Full Text Available An 810-nm diode laser was used to non-surgically treat a 7-mm pocket around an implant that had five threads of bone loss, BoP+, and exudate, and the patient was followed up for 5 years. Non-surgical treatment, home care reinforcement, clinical indices records, and radiographic examination were completed in two consecutive 1-h appointments within 24 h. The patient was monitored frequently for the first 3 months. Subsequently, maintenance debridement visits were scheduled at 3-month intervals. The patient had a decreased probing pocket depth and a negative BoP index compared to initial clinical data, and the results were stable after 1 year. After 5 years of follow-up visits, there appeared to be rebound of the bone level radiographically. Within the limits of this case report, conventional non-surgical periodontal therapy with the adjunctive use of an 810-nm diode laser may be a feasible alternative approach for the management of peri-implantitis. The 5-year clinical and radiographic outcomes indicated maintenance of the clinical improvement.

  19. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  20. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs

    Directory of Open Access Journals (Sweden)

    Tan NW

    2017-07-01

    Full Text Available Naiwen Tan,1–3,* Xiangwei Liu,1,2,* Yanhui Cai,4 Sijia Zhang,1,2 Bo Jian,1,2 Yuchao Zhou,1,2 Xiaoru Xu,1,2 Shuai Ren,1,2 Hongbo Wei,1,2 Yingliang Song1,2 1State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi’an, Shaanxi, China; 2Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China; 3Department of Stomatology, Hospital 463 of PLA, Xi’an, Shaanxi, China; 4Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China *These authors contributed equally to this work Background: High failure rates of oral implants have been reported in diabetic patients due to the disruption of osseointegration. The aim of this study was to investigate whether direct laser metal sintering (DLMS could improve osseointegration in diabetic animal models. Methods: Surface characterizations were carried out on two types of implants. Cell morphology and the osteogenic-related gene expression of MG63 cells were observed under conditions of DLMS and microarc oxidation (MAO. A diabetes model in mini-pigs was established by intravenous injection of streptozotocin (150 mg/kg, and a total of 36 implants were inserted into the mandibular region. Micro-computed tomography (micro-CT and histologic evaluations were performed 3 and 6 months after implantation. Results: The Ra (the average of the absolute height of all points of MAO surface was 2.3±0.3 µm while the DLMS surface showed the Ra of 27.4±1.1 µm. The cells on DLMS implants spread out more podia than those on MAO implants through cell morphology analysis. Osteogenic-related gene expression was also dramatically increased in the DLMS group. Obvious improvement was observed in the micro-CT and Van Gieson staining analyses of DLMS implants compared with MAO at 3 months

  1. Charge accumulation in the buried oxide of SOI structures with the bonded Si/SiO2 interface under γ-irradiation: effect of preliminary ion implantation

    International Nuclear Information System (INIS)

    Naumova, O V; Fomin, B I; Ilnitsky, M A; Popov, V P

    2012-01-01

    In this study, we examined the effect of preliminary boron or phosphorous implantation on charge accumulation in the buried oxide of SOI-MOSFETs irradiated with γ-rays in the total dose range (D) of 10 5 –5 × 10 7 rad. The buried oxide was obtained by high-temperature thermal oxidation of Si, and it was not subjected to any implantation during the fabrication process of SOI structures. It was found that implantation with boron or phosphorous ions, used in fabrication technologies of SOI-MOSFETs, increases the concentration of precursor traps in the buried oxide of SOI structures. Unlike in the case of boron implantation, phosphorous implantation leads to an increased density of states at the Si/buried SiO 2 interface during subsequent γ-irradiation. In the γ-irradiated SOI-MOSFETs, the accumulated charge density and the density of surface states in the Si/buried oxide layer systems both vary in proportion to k i ln D. The coefficients k i for as-fabricated and ion-implanted Si/buried SiO 2 systems were evaluated. From the data obtained, it was concluded that a low density of precursor hole traps was a factor limiting the positive charge accumulation in the buried oxide of as-fabricated (non-implanted) SOI structures with the bonded Si/buried SiO 2 interface. (paper)

  2. Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes

    Science.gov (United States)

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Kopiec, Daniel; Moczała, Magdalena; Orłowska, Karolina; Sawczak, Mirosław; Gotszalk, Teodor

    2016-04-01

    Fabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. B-NCD films were deposited using microwave plasma assisted chemical vapour deposition method. The variation in B-NCD morphology, structure and optical parameters was particularly investigated. The use of truncated cone-shaped substrate holder enabled to grow thin fully encapsulated nanocrystalline diamond film with a thickness of approx. 60 nm and RMS roughness of 17 nm. Raman spectra present the typical boron-doped nanocrystalline diamond line recorded at 1148 cm-1. Moreover, the change in mechanical parameters of silicon cantilevers over-coated with boron-doped diamond films was investigated with laser vibrometer. The increase of resonance to frequency of over-coated cantilever is attributed to the change in spring constant caused by B-NCD coating. Topography and electrical parameters of boron-doped diamond films were investigated by tapping mode AFM and electrical mode of AFM-Kelvin probe force microscopy (KPFM). The crystallite-grain size was recorded at 153 and 238 nm for boron-doped film and undoped, respectively. Based on the contact potential difference data from the KPFM measurements, the work function of diamond layers was estimated. For the undoped diamond films, average CPD of 650 mV and for boron-doped layer 155 mV were achieved. Based on CPD values, the values of work functions were calculated as 4.65 and 5.15 eV for doped and undoped diamond film, respectively. Boron doping increases the carrier density and the conductivity of the material and, consequently, the Fermi level.

  3. Evolution of surfaces properties for 100Cr6 steel by implantation and ionic mixing

    International Nuclear Information System (INIS)

    Faussemagne, A.

    1996-01-01

    Physico-chemical characterizations performed on samples of 100Cr6 steel implanted both with boron and nitrogen revealed the formation of boron nitride along with the following new phases: Fe 1-x (B, N), Fe 2-x (B, N) and Fe 3-x (B, N). A thorough analysis of boron NITRIDE 5BN) indicates that a low ion current density (3 μA.cm -2 ) in the case of the boron plus nitrogen sequence favours the formation of sp 2 bonds (hexagonal-BN) while a higher ion current density (6μA.cm -2 ) promotes sp 3 bonds cubic-BN) in the opposite sequence. Tribological tests carried out on these samples revealed that nitrogen and boron implantations do not lead to any significant improvement of friction and wear at variance with the results obtained by others authors. However, on a set samples accidentally contaminated with carbon during implantation, we noticed a considerable improvement of these tribological parameters. As this pollution is commonly encountered in surface treatment by ion beams, one can invoke this phenomenon to explain the origin of the discrepancy reported by the literature. Extensive investigations allowed us to conclude that surface carbon, whatever its origin (contamination, ion implantation or ion beam mixed coating), provided that its amount is sufficiently high (≥2 x 10 16 C.cm -2 ), decreases the coefficient of friction by a factor 5 and reduces drastically (∼ 100) the wear. A careful examination of the whole results led us to propose a theoretical model, based on the role of the asperities of the two bodies in contact, to explain the evolution of the coefficient of friction and wear with the amount of surface carbon. This analysis revealed that in order to improve friction and wear of 100Cr6 steel, one needs to coat this material with a well adherent carbon layer having a thickness higher than the asperity heights of the two bodies in contact. Finally, this study allowed us to develop a simple lower-cost process for the improvement of the tribological

  4. Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants

    Directory of Open Access Journals (Sweden)

    Bartłomiej Wysocki

    2017-06-01

    Full Text Available Additive Manufacturing (AM methods are generally used to produce an early sample or near net-shape elements based on three-dimensional geometrical modules. To date, publications on AM of metal implants have mainly focused on knee and hip replacements or bone scaffolds for tissue engineering. The direct fabrication of metallic implants can be achieved by methods, such as Selective Laser Melting (SLM or Electron Beam Melting (EBM. This work compares the SLM and EBM methods used in the fabrication of titanium bone implants by analyzing the microstructure, mechanical properties and cytotoxicity. The SLM process was conducted in an environmental chamber using 0.4–0.6 vol % of oxygen to enhance the mechanical properties of a Ti-6Al-4V alloy. SLM processed material had high anisotropy of mechanical properties and superior UTS (1246–1421 MPa when compared to the EBM (972–976 MPa and the wrought material (933–942 MPa. The microstructure and phase composition depended on the used fabrication method. The AM methods caused the formation of long epitaxial grains of the prior β phase. The equilibrium phases (α + β and non-equilibrium α’ martensite was obtained after EBM and SLM, respectively. Although it was found that the heat transfer that occurs during the layer by layer generation of the component caused aluminum content deviations, neither methods generated any cytotoxic effects. Furthermore, in contrast to SLM, the EBM fabricated material met the ASTMF136 standard for surgical implant applications.

  5. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  6. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis

    Directory of Open Access Journals (Sweden)

    Hong-Ting Liu

    2018-04-01

    Full Text Available AIM: To compare the optical quality after implantation of implantable collamer lens (ICL and wavefront-guided laser in situ keratomileusis (WG-LASIK. METHODS: The study included 40 eyes of 22 patients with myopia who accepted ICL implantation and 40 eyes of 20 patients with myopia who received WG-LASIK. Before surgery and three months after surgery, the objective scattering index (OSI, the values of modulation transfer function (MTF cutoff frequency, Strehl ratio, and the Optical Quality Analysis System (OQAS values (OVs were accessed. The higher order aberrations (HOAs data including coma, trefoil, spherical, 2nd astigmatism and tetrafoil were also obtained. For patients with pupil size <6 mm, HOAs data were analyzed for 4 mm-pupil diameter. For patients with pupil size ≥6 mm, HOAs data were calculated for 6 mm-pupil diameter. Visual acuity, refraction, pupil size and intraocular pressures were also recorded. RESULTS: In both ICL and WG-LASIK group, significant improvements in visual acuities were found postoperatively, with a significant reduction in spherical equivalent (P< 0.001. After the ICL implantation, the OSI decreased slightly from 2.34±1.92 to 2.24±1.18 with no statistical significance (P=0.62. While in WG-LASIK group, the OSI significantly increased from 0.68±0.43 preoperatively to 0.91±0.53 postoperatively (Wilcoxon signed ranks test, P=0.000. None of the mean MTF cutoff frequency, Strehl ratio, OVs showed statistically significant changes in both ICL and WG-LASIK groups. In the ICL group, there were no statistical differences in the total HOAs for either 4 mm-pupil or 6 mm-pupil. In the WG-LASIK group, the HOA parameters increased significantly at 4 mm-pupil. The total ocular HOAs, coma, spherical and 2nd astigmatism were 0.12±0.06, 0.06±0.03, 0.00±0.03, 0.02±0.01, respectively. After the operation, these values were increased into 0.16±0.07, 0.08±0.05, -0.04±0.04, 0.03±0.01 respectively (Wilcoxon signed ranks test

  7. Raman Microscopic Analysis of Internal Stress in Boron-Doped Diamond

    Directory of Open Access Journals (Sweden)

    Kevin E. Bennet

    2015-05-01

    Full Text Available Analysis of the induced stress on undoped and boron-doped diamond (BDD thin films by confocal Raman microscopy is performed in this study to investigate its correlation with sample chemical composition and the substrate used during fabrication. Knowledge of this nature is very important to the issue of long-term stability of BDD coated neurosurgical electrodes that will be used in fast-scan cyclic voltammetry, as potential occurrence of film delaminations and dislocations during their surgical implantation can have unwanted consequences for the reliability of BDD-based biosensing electrodes. To achieve a more uniform deposition of the films on cylindrically-shaped tungsten rods, substrate rotation was employed in a custom-built chemical vapor deposition reactor. In addition to visibly preferential boron incorporation into the diamond lattice and columnar growth, the results also reveal a direct correlation between regions of pure diamond and enhanced stress. Definite stress release throughout entire film thicknesses was found in the current Raman mapping images for higher amounts of boron addition. There is also a possible contribution to the high values of compressive stress from sp2 type carbon impurities, besides that of the expected lattice mismatch between film and substrate.

  8. A comparison of laser-welded titanium and conventional cast frameworks supported by implants in the partially edentulous jaw: a 3-year prospective multicenter study.

    Science.gov (United States)

    Jemt, T; Henry, P; Lindén, B; Naert, I; Weber, H; Bergström, C

    2000-01-01

    The purpose of this prospective multicenter study was to evaluate and compare the clinical performance of laser-welded titanium fixed partial implant-supported prostheses with conventional cast frameworks. Forty-two partially edentulous patients were provided with Brånemark system implants and arranged into 2 groups. Group A was provided with a conventional cast framework with porcelain veneers in one side of the jaw and a laser-welded titanium framework with low-fusing porcelain on the other side. The patients in group B had an old implant prosthesis replaced by a titanium framework prosthesis. The patients were followed for 3 years after prosthesis placement. Clinical and radiographic data were collected and analyzed. Only one implant was lost, and all prostheses were still in function after 3 years. The 2 framework designs showed similar clinical performance with few clinical complications. Only one abutment screw (1%) and 9 porcelain tooth units (5%) fractured. Four prostheses experienced loose gold screws (6%). In group A, marginal bone loss was similar for both designs of prostheses, with a mean of 1.0 mm and 0.3 mm in the maxilla and mandible, respectively. No bone loss was observed on average in group B. No significant relationship (P > 0.05) was observed between marginal bone loss and placement of prosthesis margin or prosthesis design. The use of laser-welded titanium frameworks seems to present similar clinical performance to conventional cast frameworks in partial implant situations after 3 years.

  9. Er:YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: primary stability analysis-an animal study.

    Science.gov (United States)

    Matys, Jacek; Flieger, Rafał; Tenore, Gianluca; Grzech-Leśniak, Kinga; Romeo, Umberto; Dominiak, Marzena

    2018-04-01

    It is important to identify factors that affect primary stability of orthodontic mini-implants because it determines the success of treatment. We assessed mini-implant primary stability (initial mechanical engagement with the bone) placed in pig jaws. We also assessed mini-implant insertion failure rate (mini-implant fracture, mini-implants to root contact). A total of 80 taper-shaped mini-implants (Absoanchor® Model SH1312-6; Dentos Inc., Daegu, Korea) 6 mm long with a diameter of 1.1 mm were used. Bone decortication was made before mini-implant insertion by means of three different methods: Group G1: Er:YAG laser (LiteTouch®, Light Instruments, Yokneam, Israel) at energy of 300 mJ, frequency 25 Hz, fluence 38.2 J/cm2, cooling 14 ml/min, tip 1.0 × 17 mm, distance 1 mm, time of irradiation 6 s; Group G2: drill (Hager & Meisinger GmbH, Hansemannstr, Germany); Group G3: piezosurgery (Piezotom Solo, Acteon, NJ, USA). In G4 group (control), mini-implants were driven by a self-drilling method. The primary stability of mini-implants was assessed by measuring damping characteristics between the implant and the tapping head of Periotest device (Gulden-Medizinteknik, Eschenweg, Modautal, Germany). The results in range between - 8 to + 9 allowed immediate loading. Significantly lower Periotest value was found in the control group (mean 0.59 ± 1.57, 95% CI 0.7, 2.4) as compared with Er:YAG laser (mean 4.44 ± 1.64, 95% CI 3.6, 5.3), piezosurgery (mean 17.92 ± 2.73, 95% CI 16.5, 19.3), and a drill (mean 5.91 ± 1.52, 95% CI 5.2, 6.6) (p piezosurgery. Decortication of the cortical bone before mini-implant insertion resulted in reduced risk of implant fracture or injury of adjacent teeth. The high initial stability with a smaller diameter of the mini-implant resulted in increased risk of fracture, especially for a self-drilling method.

  10. Spectroscopy of bound multi exciton complexes and deep centers in implanted and annealed silicon

    International Nuclear Information System (INIS)

    Babich, V.M.; Valakh, M.Ya.; Kovalchuk, V.B.; Rudko, G.Yu.; Shakhrajchuk, N.I.

    1989-01-01

    The change of silicon properties relevant to device physics caused by ion implantation and thermal annealing is studied. It is shown that in boron-doped p-Si the increase of P + ions implantation doses from 10 12 to 10 14 ions/cm 2 lead to a decrease of the broadening of boron bound exciton bands. This behaviour is caused by implantation-induced disordering of the lattice. The subsequent thermal annealing restores the intensity and the halfwidth of the above-mentioned bands and initiates the increase of the bands which correspond to excitons bond on the implanted phosphorus ions. Measurements of phosphorus bound exciton band intensities are applicable to the characterization of the process of phosphorus activation. Analysis of low energy region of luminescence spectra of heat treated samples shows that there is a correlation between the process of implanted phosphorus activation and the one of radiation defects transformation. The influence of germanium doping on the generation of thermal donors by means of spectroscopy of deep centres luminescence has been investigated. It is shown that the introduction of germanium in concentrations of 10 19 -10 20 cm -3 effectively suppresses the generation of thermal donors and deep centres under investigation. (author)

  11. Time-resolved and doppler-reduced laser spectroscopy on atoms

    International Nuclear Information System (INIS)

    Bergstroem, H.

    1991-10-01

    Radiative lifetimes have been studied in neutral boron, carbon, silicon and strontium, in singly ionized gadolinium and tantalum and in molecular carbon monoxide and C 2 . The time-resolved techniques were based either on pulsed lasers or pulse-modulated CW lasers. Several techniques have been utilized for the production of free atoms and ions such as evaporation into an atomic beam, sputtering in hollow cathodes and laser-produced plasmas. Hyperfine interactions in boron, copper and strontium have been examined using quantum beat spectroscopy, saturation spectroscopy and collimated atomic beam spectroscopy. Measurement techniques based on effusive hollow cathodes as well as laser produced plasmas in atomic physics have been developed. Investigations on laser produced plasmas using two colour beam deflection tomography for determination of electron densities have been performed. Finally, new possibilities for view-time-expansion in light-in-flight holography using mode-locked CW lasers have been demonstrated. (au)

  12. Cranioplasty with individual titanium implants

    Science.gov (United States)

    Mishinov, S.; Stupak, V.; Sadovoy, M.; Mamonova, E.; Koporushko, N.; Larkin, V.; Novokshonov, A.; Dolzhenko, D.; Panchenko, A.; Desyatykh, I.; Krasovsky, I.

    2017-09-01

    Cranioplasty is the second procedure in the history of neurosurgery after trepanation, and it is still relevant despite the development of civilization and progress in medicine. Each cranioplasty operation is unique because there are no two patients with identical defects of the skull bones. The development of Direct Metal Laser Sintering (DMLS) technique opened up the possibility of direct implant printing of titanium, a biocompatible metal used in medicine. This eliminates the need for producing any intermediate products to create the desired implant. We have produced 8 patient-specific titanium implants using this technique for patients who underwent different decompressive cranioectomies associated with bone tumors. Follow-up duration ranged from 6 to 12 months. We observed no implant-related reactions or complications. In all cases of reconstructive neurosurgery we achieved good clinical and aesthetic results. The analysis of the literature and our own experience in three-dimensional modeling, prototyping, and printing suggests that direct laser sintering of titanium is the optimal method to produce biocompatible surgical implants.

  13. Structure-phase composition and nano hardness of chrome-fullerite-chrome films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2015-01-01

    By methods of atomic force microscopy, X-ray diffraction and nano indentation the research of change of structure phase composition and nano hardness of the chrome - fullerite - chrome films, subjected to implantation by B + ions (E = 80 keV, F = 5*10 17 ions/cm 2 ) are submitted. It is established, that as a result of Boron ion implantation of the chrome - fullerite - chrome films, chrome and fullerite inter fusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with increased nano hardness. (authors)

  14. Study the gas sensing properties of boron nitride nanosheets

    International Nuclear Information System (INIS)

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH 4 gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO 2 laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor

  15. Isothermal annealing of silicon implanted with 50 keV 10B ions

    International Nuclear Information System (INIS)

    Weidner, B.; Zaschke, G.

    1974-01-01

    Isothermal annealing characteristics of silicon implanted with boron were measured and compared with calculated results. Implantation was performed with 50 keV 10 B ions in the dose range of 7.5 x 10 12 cm -2 to 2.0 x 10 15 cm -2 . Annealing temperatures ranged from 700 to 900 0 C. Maximum annealing time was 10 4 minutes. Annealing time strongly increases with increasing dose and decreasing temperature. Assuming that there is only one activation energy the isothermal annealing curves of constant dose and different temperatures were combined to a reduced annealing curve and the reduced isothermal annealing curve calculated. Starting from first order kinetics, considering the doping profile of boron in silicon and assuming a depth-dependent decay constant the experimentally determined annealing curves could be easily described over the total dose and time range

  16. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Yilmaz, M. Tolga; Kocakerim, M. Muhtar

    2005-01-01

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions

  17. Synthesis of titanium sapphire by ion implantation

    International Nuclear Information System (INIS)

    Morpeth, L.D.; McCallum, J.C.; Nugent, K.W.

    1998-01-01

    Since laser action was first demonstrated in titanium sapphire (Ti:Al 2 O 3 ) in 1982, it has become the most widely used tunable solid state laser source. The development of a titanium sapphire laser in a waveguide geometry would yield an elegant, compact, versatile and highly tunable light source useful for applications in many areas including optical telecommunications. We are investigating whether ion implantation techniques can be utilised to produce suitable crystal quality and waveguide geometry for fabrication of a Ti:Al 2 O 3 waveguide laser. The implantation of Ti and O ions into c-axis oriented α-Al 2 O 3 followed by subsequent thermal annealing under various conditions has been investigated as a means of forming the waveguide and optimising the fraction of Ti ions that have the correct oxidation state required for laser operation. A Raman Microprobe is being used to investigate the photo-luminescence associated with Ti 3+ ion. Initial photoluminescence measurements of ion implanted samples are encouraging and reveal a broad luminescence profile over a range of ∼ .6 to .9 μm, similar to that expected from Ti 3+ . Rutherford Backscattering and Ion Channelling analysis have been used to study the crystal structure of the samples following implantation and annealing. This enables optimisation of the implantation parameters and annealing conditions to minimise defect levels which would otherwise limit the ability of light to propagate in the Ti:Al 2O 3 waveguide. (authors)

  18. Immediate versus Delayed Treatment in the Anterior Maxilla Using Single Implants with a Laser-Microtextured Collar: 3-Year Results of a Case Series on Hard- and Soft-Tissue Response and Esthetics.

    Science.gov (United States)

    Guarnieri, Renzo; Belleggia, Fabrizio; Grande, Maurizio

    2016-02-01

    To compare peri-implant marginal bone loss, soft tissue response, and esthetics following single immediate implant treatment (IIT) and delayed implant treatment (DIT) in the esthetic zone of the maxilla in well-selected patients. Adequate bone volume and ideal soft tissue level/contour were considered requirements for implant therapy, with additional prerequisites for IIT of residual alveolar bone wall integrity and a thick gingival biotype. IIT included immediate placement and provisionalization, while DIT included extraction socket preservation followed by implant placement and provisionalization 4 months later. Cortical bone levels and peri-implant mucosal conditions were evaluated at regular intervals. The esthetic outcome was objectively rated after 3 years using the pink esthetic score (PES) and white esthetic score (WES). Twelve patients received an immediate Laser-Lok® implant, and 13 patients received a delayed Laser-Lok® implant. No significant differences were found between the study groups regarding survival rate (100%). The mean bone level from the implant/abutment interface was 0.35 ± 0.18 mm for IIT and 0.42 ± 0.21 mm for DIT after 3 years (p > 0.05). Mesial and distal papillae remained stable over time in DIT. A tendency for regrowth of mesial and distal papillae was found following IIT (p esthetics, DIT and IIT with single Laser-Lok® implants in the anterior maxilla are comparable and predictable options for well-selected patients. © 2015 by the American College of Prosthodontists.

  19. Noncrucial role of the defects in the splitting for hydrogen implanted silicon with high boron concentration

    International Nuclear Information System (INIS)

    Popov, V.P.; Stas, V.F.; Antonova, I.V.

    1999-01-01

    The present work deals with the investigation of the electrical and structural properties of heavily boron-doped silicon irradiated by hydrogen. Blistering and splitting processes are enhanced with an increase in boron concentration in the crystal. The measured values of perpendicular strain are over 0.7% which corresponds to a gas overpressure of 0.5 GPa. Processes which lead to blistering and splitting is better described in the frame of a gas pressure model than a model of local stress caused by the defects

  20. Copper-base alloys processed by rapid solidification and ion implantation

    International Nuclear Information System (INIS)

    Wood, J.V.; Elvidge, C.J.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Henriksen, O.

    1985-01-01

    Alloys of Cu-Sn and Cu-B have been processed by both melt spinning and ion implantation. In some instances (e.g. Cu-Sn alloys) rapidly solidified ribbons have been subjected to further implantation. This paper describes the similarities and differences in structure of materials subjected to a dynamic and contained process. For example in Cu-B alloys (up to 2wt% Boron) extended solubility is found in implanted alloys which is not present to the same degree in rapidly solidified alloys of the same composition. Likewise the range and nature of the reversible martensitic transformation is different in both cases as examined by electron microscopy and differential scanning calorimetry. (orig.)

  1. Clinical experiences with laser-welded titanium frameworks supported by implants in the edentulous mandible: a 10-year follow-up study.

    Science.gov (United States)

    Ortorp, Anders; Jemt, Torsten

    2006-01-01

    Long-term follow-up studies for more than 5 years are not available on laser-welded titanium frameworks. To report and compare 10-year data on implant-supported prostheses in the edentulous mandible provided with laser-welded titanium frameworks and conventional gold alloy frameworks. Altogether, 155 patients were consecutively treated with prostheses at abutment level with two generations of fixed laser-welded titanium frameworks (test groups). A control group of 53 randomly selected patients with conventional gold alloy castings was used for comparison. Clinical and radiographic 10-year data were collected for the three groups. All patients followed-up for 10 years (n=112) still had fixed prostheses in the mandible (cumulative success rate [CSR] 100%). The overall 10-year cumulative success rate (CSR) was 92.8 and 100.0% for titanium and gold alloy frameworks, respectively. Ten-year implant cumulative survival rate (CSR) was 99.4 and 99.6% for the test and control groups, respectively. Average 10-year bone loss was 0.56 (SD 0.45) mm for the titanium group and 0.77 (SD 0.36) mm for the control group (p screw components were below 3%. Excellent overall long-term results with 100% CSR could be achieved with the present treatment modality. Fractures of the metal frames and remade prostheses were more common for the laser-welded titanium frameworks, and the first generation of titanium frameworks worked poorly when compared with gold alloy frameworks during 10 years (p < 0.05). However, on average more bone loss was observed for implants supporting gold alloy frameworks during 10 years. The reasons for this difference are not clear.

  2. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    van Hengel, Ingmar A J; Riool, Martijn; Fratila-Apachitei, Lidy E; Witte-Bouma, Janneke; Farrell, Eric; Zadpoor, Amir A; Zaat, Sebastian A J; Apachitei, Iulian

    2017-09-01

    Implant-associated infection and limited longevity are two major challenges that orthopedic devices need to simultaneously address. Additively manufactured porous implants have recently shown tremendous promise in improving bone regeneration and osseointegration, but, as any conventional implant, are threatened by infection. In this study, we therefore used rational design and additive manufacturing in the form of selective laser melting (SLM) to fabricate porous titanium implants with interconnected pores, resulting in a 3.75 times larger surface area than corresponding solid implants. The SLM implants were biofunctionalized by embedding silver nanoparticles in an oxide surface layer grown using plasma electrolytic oxidation (PEO) in Ca/P-based electrolytes. The PEO layer of the SLM implants released silver ions for at least 28 days. X-ray diffraction analysis detected hydroxyapatite on the SLM PEO implants but not on the corresponding solid implants. In vitro and ex vivo assays showed strong antimicrobial activity of these novel SLM PEO silver-releasing implants, without any signs of cytotoxicity. The rationally designed SLM porous implants outperformed solid implants with similar dimensions undergoing the same biofunctionalization treatment. This included four times larger amount of released silver ions, two times larger zone of inhibition, and one additional order of magnitude of reduction in numbers of CFU in an ex vivo mouse infection model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Modification of structure and properties of tin – fullerite films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2013-01-01

    By methods of raster electronic, atomic force and electronic force microscopy and X-ray diffraction the research of change of structure, phase composition and local electronic properties of the tin - fullerite films, subjected to implantation by B + ions (E = 80 keV, F = 5×10 17 ions/cm 2 ) are submitted. It is established, that as a result of boron ion implantation of two-layered tin - fullerite films, tin and fullerite interfusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with heterogeneous local electric properties. (authors)

  4. Laser Hazards Bibliography

    Science.gov (United States)

    1989-10-31

    light on mandibular fracture healing, Stomatologiia, 57(5): 5-9 (1978). 42 Laser Hazards Bibliography 177. Van Gemert, M.J.C., Schets, G.A.C.M., Bishop...U., Laser-coagulation of ruptured fixation suture after lens implantation, J Am Intraocul Implant Soc, 4(2): 54 (1978). 49. Federman, J. L., Ando, F...laser in pediatric surgery, J Ped Surg, 3: 263-270 (April 1968). 82. Hennessy, R. T., and Leibowitz, H., Subjective measurement of accommodation with

  5. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  6. Real-time boronization in PBX-M using erosion of solid boronized targets

    International Nuclear Information System (INIS)

    Kugel, H.W.; Timberlake, J.; Bell, R.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Tighe, W.; Hirooka, Y.

    1994-11-01

    Thirty one real-time boronizations were applied to PBX-M using the plasma erosion of solid target probes. More than 17 g of boron were deposited in PBX-M using this technique. The probes were positioned at the edge plasma to optimize vaporization and minimize spallation. Auger depth profile analysis of poloidal and toroidal deposition sample coupon arrays indicate that boron was transported by the plasma around the torus and deep into the divertors. During discharges with continuous real-time boronization, low-Z and high-Z impurities decreased rapidly as plasma surfaces were covered during the first 20-30 discharges. After boronization, a short-term improvement in plasma conditions persisted prior to significant boron erosion from plasma surfaces, and a longer term, but less significant improvement persisted as boron farther from the edge continued gettering. Real-time solid target boronization has been found to be very effective for accelerating conditioning to new regimes and maintaining high performance plasma conditions

  7. An alternative section method for casting and posterior laser welding of metallic frameworks for an implant-supported prosthesis.

    Science.gov (United States)

    de Aguiar, Fábio Afrânio; Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; Mattos, Maria de Gloria Chiarello; Ribeiro, Ricardo Faria

    2009-04-01

    The aim of this study was to compare the accuracy of fit of three types of implant-supported frameworks cast in Ni-Cr alloy: specifically, a framework cast as one piece compared to frameworks cast separately in sections to the transverse or the diagonal axis, and later laser welded. Three sets of similar implant-supported frameworks were constructed. The first group of six 3-unit implant-supported frameworks were cast as one piece, the second group of six were sectioned in the transverse axis of the pontic region prior to casting, and the last group of six were sectioned in the diagonal axis of the pontic region prior to casting. The sectioned frameworks were positioned in the matrix (10 N.cm torque) and laser welded. To evaluate passive fit, readings were made with an optical microscope with both screws tightened and with only one-screw tightened. Data were submitted to ANOVA and Tukey-Kramer's test (p screws were tightened, no differences were found between the three groups (p > 0.05). In the single-screw-tightened test, with readings made opposite to the tightened side, the group cast as one piece (57.02 +/- 33.48 mum) was significantly different (p 0.05) from the group transversally sectioned (31.42 +/- 20.68 microm). On the tightened side, no significant differences were found between the groups (p > 0.05). Results of this study showed that casting diagonally sectioned frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves the levels of passivity to the same frameworks when compared to structures cast as one piece.

  8. Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yizhu He

    2017-01-01

    Full Text Available High-entropy alloys (HEAs are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6 HEA coatings. The results show that laser rapid solidification effectively prevents brittle boride precipitation in the designed coatings. The main phase is a simple face-centered cubic (FCC matrix when the Al content is equal to 0.3. On the other hand, the matrix transforms to single bcc solid solution when x increases to 2.3. Increasing boron content improves the microhardness of the coatings, but leads to a high degree of segregation of Cr and Fe in the interdendritic microstructure. Furthermore, it is worth noting that CoCrFeNiAl0.3Cu0.7Si0.1B0.6 coatings with an FCC matrix and a modulated structure on the nanometer scale exhibit an ultrahigh hardness of 502 HV0.5.

  9. BN-based nano-composites obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Major, B.; Kosydar, R.; Major, L; Mroz, W.; Burdynska, S.; Jelinek, M.; Kot, M.; Kustosz, R.

    2006-01-01

    Boron nitride thin layers were produced by means of the pulsed laser deposition technique from hexagonal boron nitride target. Two types of laser i.e. Nd: YAG with Q-switch as well as KrF coupled with RF generator were used. Influence of deposition parameters on surface morphology, phase composition as well as mechanical properties is discussed. Results obtained using Fourier Transformed Infrared Spectroscopy, Transmission and Scanning Electron Microscopy, Atomic Force Microscopy are presented. Micromechanical properties measured during micro indentation, scratch and wear tests are also shown. (authors)

  10. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  11. THE INFLUENCE OF SCREW TYPE, ALLOY AND CYLINDER POSITION ON THE MARGINAL FIT OF IMPLANT FRAMEWORKS BEFORE AND AFTER LASER WELDING

    OpenAIRE

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-01-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. OBJECTIVES: To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. METHODS: After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected p...

  12. Study of high energy ion implantation of boron and oxygen in silicon

    International Nuclear Information System (INIS)

    Thevenin, P.

    1991-06-01

    Three aspects of high energy (0.5-3 MeV) light ions ( 11 B + and 16 O + ) implantation in silicon are examined: (1)Spatial repartition; (2) Target damage and (3) Synthesis by oxygen implantation of a buried silicon oxide layer

  13. Basic features of boron isotope separation by SILARC method in the two-step iterative static model

    Science.gov (United States)

    Lyakhov, K. A.; Lee, H. J.

    2013-05-01

    In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.

  14. Optical and electronic properties of sub-surface conducting layers in diamond created by MeV B-implantation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Willems van Beveren, L. H., E-mail: laurensw@unimelb.edu.au; Bowers, H.; Ganesan, K.; Johnson, B. C.; McCallum, J. C.; Prawer, S. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Liu, R. [SIMS Facility, Office of the Deputy-Vice Chancellor (Research and Development) Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751 (Australia)

    2016-06-14

    Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here, we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at. %. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to map out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.

  15. Mechanical and structural properties of fluorine-ion-implanted boron suboxide

    CSIR Research Space (South Africa)

    Machaka, R

    2011-09-01

    Full Text Available such as diffusion, solubility, deposi- tion, and alloy formation by providing high kinetic energy through ion impact and utilizing ballistic effects during ion- solid interaction [1?4]. Moreover, ion implantation allows the precise control of the ion energy, ion... annealing, and diffusion processes taking place during ion implantation. Advances in Materials Science and Engineering 3 Acc. V Det WD 5 ?m 512 kV 5000x CL 11.9 B6O Spot Magn (a) 0 1 2 3 4 5 6 7 8 0 0.3 0.6 0.9 1.3 1.6 KC n t Energy (keV) B...

  16. Implantation of organic matter through water onto solid substrates by a laser induced molecular jet

    International Nuclear Information System (INIS)

    Pihosh, Y.; Goto, M.; Kasahara, A.; Tosa, M.

    2008-01-01

    Organic molecular dots were successfully produced by means of a nano second pulsed dye laser on glass and indium tin oxide (ITO) substrates, with sizes of several hundred nanometres. The method involves the transfer of organic molecules from the source Coumarin 6 (C6) and poly [2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene-venylene] (MEH-PPV) films onto a target material through a water filled space-gap using a laser induced molecular jet (LIMJ). In this way, the organic dots of Coumarin 6 and MEH-PPV molecules were successfully implanted onto the glass and ITO targets. The present results demonstrate the possibility to significantly improve photo electronic or photoelectric devices such as novel photonic crystal and molecular device sensors, and so on

  17. Aspects of the chemistry of boron

    International Nuclear Information System (INIS)

    Moellinger, H.

    1976-01-01

    Crystal phases of elementary boron are reviewed as well as boron-sulphur, boron-selenum, boron-tellurium, and boron-nitrogen compounds, carboranes, and boron-carbohydrate complexes. A boron cadastre of rivers and lakes serves to illustrate the role of boron in environmental protection. Technically relevant boron compounds and their uses are mentioned. (orig.) 891 HK/orig. 892 MB [de

  18. The detection of He in tungsten following ion implantation by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Shaw, G.; Bannister, M.; Biewer, T. M.; Martin, M. Z.; Meyer, F.; Wirth, B. D.

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) results are presented that provide depth-resolved identification of He implanted in polycrystalline tungsten (PC-W) targets by a 200 keV He+ ion beam, with a surface temperature of approximately 900 °C and a peak fluence of 1023 m-2. He retention, and the influence of He on deuterium and tritium recycling, permeation, and retention in PC-W plasma facing components are important questions for the divertor and plasma facing components in a fusion reactor, yet are difficult to quantify. The purpose of this work is to demonstrate the ability of LIBS to identify helium in tungsten; to investigate the sensitivity of laser parameters including, laser energy and gate delay, that directly influence the sensitivity and depth resolution of LIBS; and to perform a proof-of-principle experiment using LIBS to measure relative He intensities as a function of depth. The results presented demonstrate the potential not only to identify helium but also to develop a methodology to quantify gaseous impurity concentration in PC-W as a function of depth.

  19. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants.

    Science.gov (United States)

    Traini, T; Mangano, C; Sammons, R L; Mangano, F; Macchi, A; Piattelli, A

    2008-11-01

    This work focuses on a titanium alloy implants incorporating a gradient of porosity, from the inner core to the outer surface, obtained by laser sintering of metal powder. Surface appearance, microstructure, composition, mechanical properties and fractography were evaluated. All the specimens were prepared by a selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 1-10 microm. The morphological and chemical analyses were performed by SEM and energy dispersive X-ray spectroscopy. The flexure strength was determined by a three-point bend test using a universal testing machine. The surface roughness was investigated using a confocal scanning laser microscope. The surface roughness variation was statistically evaluated by use of a Chi square test. A p value of metal core consisted of columnar beta grains with alpha and beta laths within the grains. The alloy was composed of 90.08% Ti, 5.67% Al and 4.25% V. The Young's modulus of the inner core material was 104+/-7.7 GPa; while that of the outer porous material was 77+/-3.5 GPa. The fracture face showed a dimpled appearance typical of ductile fracture. In conclusion, laser metal sintering proved to be an efficient means of construction of dental implants with a functionally graded material which is better adapted to the elastic properties of the bone. Such implants should minimize stress shielding effects and improve long-term performance.

  20. Long-wavelength germanium photodetectors by ion implantation

    International Nuclear Information System (INIS)

    Wu, I.C.; Beeman, J.W.; Luke, P.N.; Hansen, W.L.; Haller, E.E.

    1990-11-01

    Extrinsic far-infrared photoconductivity in thin high-purity germanium wafers implanted with multiple-energy boron ions has been investigated. Initial results from Fourier transform spectrometer(FTS) measurements have demonstrated that photodetectors fabricated from this material have an extended long-wavelength threshold near 192μm. Due to the high-purity substrate, the ability to block the hopping conduction in the implanted IR-active layer yields dark currents of less than 100 electrons/sec at temperatures below 1.3 K under an operating bias of up to 70 mV. Optimum peak responsivity and noise equivalent power (NEP) for these sensitive detectors are 0.9 A/W and 5 x 10 -16 W/Hz 1/2 at 99 μm, respectively. The dependence of the performance of devices on the residual donor concentration in the implanted layer will be discussed. 12 refs., 4 figs

  1. Annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    Chivers, D.; Smith, B.J.; Stephen, J.; Fisher, M.

    1980-09-01

    The newer uses of ion implantation require a higher dose rate. This has led to the introduction of high beam current implanters; the wafers move in front of a stationary beam to give a scanning effect. This can lead to non-uniform heating of the wafer. Variations in the sheet resistance of the layers can be very non-uniform following thermal annealing. Non-uniformity in the effective doping both over a single wafer and from one wafer to another, can affect the usefulness of ion implantation in high dose rate applications. Experiments to determine the extent of non-uniformity in sheet resistance, and to see if it is correlated to the annealing scheme have been carried out. Details of the implantation parameters are given. It was found that best results were obtained when layers were annealed at the maximum possible temperature. For arsenic, phosphorus and antimony layers, improvements were observed up to 1200 0 C and boron up to 950 0 C. Usually, it is best to heat the layer directly to the maximum temperature to produce the most uniform layer; with phosphorus layers however it is better to pre-heat to 1050 0 C. (U.K.)

  2. Application of the laser scanning confocal microscope in fluorescent film sensor research

    Science.gov (United States)

    Zhang, Hongyan; Liu, Wei-Min; Zhao, Wen-Wen; Dai, Qing; Wang, Peng-Fei

    2010-10-01

    Confocal microscopy offers several advantages over conventional optical microscopy; we show an experimental investigation laser scanning confocal microscope as a tool to be used in cubic boron nitride (cBN) film-based fluorescent sensor research. Cubic boron nitride cBN film sensors are modified with dansyl chloride and rhodamine B isothiocyanate respectively. Fluorescent modification quality on the cubic boron nitride film is clearly express and the sensor ability to Hg2+ cations and pH are investigated in detail. We evidence the rhodamine B isothiocyanate modified quality on cBN surface is much better than that of dansyl chloride. And laser scanning confocal microscope has potential application lighttight fundus film fluorescent sensor research.

  3. Laser damage study of material of the first wall of target chamber of the future laser Megajoule

    International Nuclear Information System (INIS)

    Dubern, Christelle

    1999-01-01

    Study on damage of carbon-like, boron carbide, and stainless steel materials by ultraviolet laser light, has been carried out at CEA/CESTA in France. This work was performed to help designing and dimensioning the target chamber of the future Laser MegaJoule (LMJ) facility to be used for Inertial Confinement Fusion research. The study revealed that depending the laser fluence, the considered materials were ablated in different manners. lt was demonstrated that at low fluence, damage of carbon-like and boron carbide occurs through a thermal-mechanical mechanism resulting in sputtering of material. At higher fluence, damage was driven by a thermal mechanism, dissipating heat inside material until phase change developed. For stainless steel material, failures were the result of heat absorption associated to physical changes only. To explain and validate the proposed mechanisms, theoretical and experimental works were performed and satisfactory results came out. (author) [fr

  4. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  5. Segregation and Clustering Effects on Complex Boron Redistribution in Strongly Doped Polycrystalline-Silicon Layers

    International Nuclear Information System (INIS)

    Abadli, S.; Mansour, F.

    2011-01-01

    This work deals with the investigation of the complex phenomenon of boron (B) transient enhanced diffusion (TED) in strongly implanted silicon (Si) layers. It concerns the instantaneous influences of the strong B concentrations, the Si layers crystallization, the clustering and the B trapping/segregation during thermal post-implantation annealing. We have used Si thin layers obtained from disilane (Si2H6) by low pressure chemical vapor deposition (LPCVD) and then B implanted with a dose of 4 x 1015 atoms/cm2 at an energy of 15 keV. To avoid long redistributions, thermal annealing was carried out at relatively low-temperatures (700, 750 and 800 'deg'C) for various short-times ranging between 1 and 30 minutes. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of Si-LPCVD layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the TED process in strongly doped Si-LPCVD layers. It was found that boron TED is strongly affected by the simultaneous complex kinetics of clustering, crystallization, trapping and segregation during annealing. The fast formation of small Si-B clusters enhances the B diffusivity whereas the evolution of the clusters and segregation reduce this enhancement. (author)

  6. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  7. Measurement of mobility profile in ion-implanted silicon layers using electroreflection spectroscopy

    International Nuclear Information System (INIS)

    Galiev, G.B.; Kapaev, V.V.; Mokerov, V.G.

    1986-01-01

    The possibility is shown of the application of the low field linearized electroreflection spectroscopy for the measurement of profiles of carriers mobilities μ(x) simultaneously with the concentration profiles N(x) in thin ion-implanted silicon layers. The μ(χ) value is determined from the calibration curve of the dependence of the phenomenological broadening parameter γ on the mobility for uniformly doped samples. The results are presented for the measurements of the profiles μ(x) for boron- and arsenic-implanted silicon

  8. A technique to prepare boronated B72.3 monoclonal antibody for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Ranadive, G.N.; Rosenzweig, H.S.; Epperly, M.W.

    1993-01-01

    B72.3 monoclonal antibody has been successfully boronated using mercaptoundecahydro-closo-dodecaborate (boron cage compound). The reagent was incorporated by first reacting the lysine residues of the antibody with m-maleimidobenzoyl succinimide ester (MBS), followed by Michael addition to the maleimido group by the mercapto boron cage compound to form a physiologically stable thioether linkage. Boron content of the antibody was determined by atomic absorption spectroscopy. For biodistribution studies, boronated antibody was radioiodinated with iodogen. 125 I-labeled and boronated B72.3 monoclonal antibody demonstrated clear tumor localization when administered via tail vein injections to athymic nude mice bearing LS174-T tumor xenografts. Boronated antibody was calculated to deliver 10 6 boron atoms per tumor cell. Although this falls short of the specific boron content originally proposed as necessary for boron neutron capture therapy (BNCT), recent calculations suggest that far fewer atoms of 10 B per tumor cell would be necessary to effect successful BNCT when the boron is targeted to the tumor cell membrane. (author)

  9. Reduction of transient diffusion from 1 endash 5 keV Si+ ion implantation due to surface annihilation of interstitials

    International Nuclear Information System (INIS)

    Agarwal, A.; Gossmann, H.-.; Eaglesham, D.J.; Pelaz, L.; Jacobson, D.C.; Haynes, T.E.; Erokhin, Y.E.

    1997-01-01

    The reduction of transient enhanced diffusion (TED) with reduced implantation energy has been investigated and quantified. A fixed dose of 1x10 14 cm -2 Si + was implanted at energies ranging from 0.5 to 20 keV into boron doping superlattices and enhanced diffusion of the buried boron marker layers was measured for anneals at 810, 950, and 1050 degree C. A linearly decreasing dependence of diffusivity enhancement on decreasing Si + ion range is observed at all temperatures, extrapolating to ∼1 for 0 keV. This is consistent with our expectation that at zero implantation energy there would be no excess interstitials from the implantation and hence no TED. Monte Carlo modeling and continuum simulations are used to fit the experimental data. The results are consistent with a surface recombination length for interstitials of <10 nm. The data presented here demonstrate that in the range of annealing temperatures of interest for p-n junction formation, TED is reduced at smaller ion implantation energies and that this is due to increased interstitial annihilation at the surface. copyright 1997 American Institute of Physics

  10. Estudo da topografia e da osseointegração de implante de titânio sob ação do LASER, com ou sem deposição de hidroxiapatita, em coelhos

    OpenAIRE

    Sisti, Karin Ellen

    2011-01-01

    Objetivo: Estudar a topografia a osseointegração de implantes de titânio sob ação do LASER de alta intensidade com e sem deposição química de hidroxiapatita, em coelhos. Método: Foram utilizados 30 coelhos albinos que receberam em suas tíbias 3 tipos de superfície de implantes: grupo controle(GI) implantes usinados, grupo(GII) irradiado LASER(Yb), e grupo irradiado e depositado hidroxiapatita pelo método biomimético(GIII). Após os períodos de avaliações (30 e 60 dias) os implantes foram subme...

  11. Applied biomechanics to evaluate the properties of laser beam treated orthopedic implants

    International Nuclear Information System (INIS)

    Pieretti, Eurico Felix

    2016-01-01

    Laser beam marking is used to ensure biomaterials’ identification and traceability. The texturing imparts greater adhesion to the surfaces of implantable medical devices. The aim of this work was to evaluate the surface behaviour of the austenitic stainless steel ABNT NBR ISO 5832-1 marked and textured by optical fiber laser beam using selected parameters, changing the pulse frequency; in face of its biomechanical behaviour, through tests of tensile strength, fatigue and wear; verify the localized corrosion susceptibility by electrochemical tests in a solution that simulates the body fluids; and analyze microstructural changes. The treatments performed altered the biomaterials roughness and their micro hardness as a function of the increase of the pulse frequency. The microstructure and chemical composition of the surfaces underwent changes that directly affected the passive layer of the stainless steels, triggering the corrosion process. This effect was evidenced by SVET, XPS and characterization of electronic properties of the passive film by the Mott-Schottky technique. These two types of laser treatments increased the surfaces' magnetic susceptibility. The parameters used for the marking and texturing did not induce a decrease in the cellular viability of the samples, as no cytotoxicity was showed even after prolonged incubation. This biomaterial was adequate on the biomechanical tests, since the laser treatments, under the conditions used, did not induce the formation of surface tensions of magnitude capable of leading the fatigue fracture, indicating infinite fatigue life; the region of fracture by tension could not be related to the laser marking. The wear volume decreased as a function of the increase in micro hardness produced by the increase of the pulse frequency in the texturing. The visual character of the markings and texturing was assured after the majority of the tests performed. (author)

  12. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  13. Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication.

    Science.gov (United States)

    Mangano, Carlo; Raspanti, Mario; Traini, Tonino; Piattelli, Adriano; Sammons, Rachel

    2009-03-01

    Direct laser fabrication (DLF) allows solids with complex geometry to be produced by sintering metal powder particles in a focused laser beam. In this study, 10 Ti6Al4V alloy model dental root implants were obtained by DLF, and surface characterization was carried out using stereo scanning electron microscopy to produce 3D reconstructions. The surfaces were extremely irregular, with approximately 100 microm deep, narrow intercommunicating crevices, shallow depressions and deep, rounded pits of widely variable shape and size, showing ample scope for interlocking with the host bone. Roughness parameters were as follows: R(t), 360.8 microm; R(z), 358.4 microm; R(a), 67.4 microm; and R(q), 78.0 microm. Disc specimens produced by DLF with an identically prepared surface were used for biocompatibility studies with rat calvarial osteoblasts: After 9 days, cells had attached and spread on the DLF surface, spanning across the crevices, and voids. Cell density was similar to that on a commercial rough microtextured surface but lower than on commercial smooth machined and smooth-textured grit-blasted, acid-etched surfaces. Human fibrin clot extension on the DLF surface was slightly improved by inorganic acid etching to increase the microroughness. With further refinements, DLF could be an economical means of manufacturing implants from titanium alloys. (c) 2008 Wiley Periodicals, Inc.

  14. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; Margalith, T.; Lee, S.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-01-01

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  15. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.

    2015-07-06

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  16. Double Ion Implantation and Pulsed Laser Melting Processes for Third Generation Solar Cells

    Directory of Open Access Journals (Sweden)

    Eric García-Hemme

    2013-01-01

    Full Text Available In the framework of the third generation of photovoltaic devices, the intermediate band solar cell is one of the possible candidates to reach higher efficiencies with a lower processing cost. In this work, we introduce a novel processing method based on a double ion implantation and, subsequently, a pulsed laser melting (PLM process to obtain thicker layers of Ti supersaturated Si. We perform ab initio theoretical calculations of Si impurified with Ti showing that Ti in Si is a good candidate to theoretically form an intermediate band material in the Ti supersaturated Si. From time-of-flight secondary ion mass spectroscopy measurements, we confirm that we have obtained a Ti implanted and PLM thicker layer of 135 nm. Transmission electron microscopy reveals a single crystalline structure whilst the electrical characterization confirms the transport properties of an intermediate band material/Si substrate junction. High subbandgap absorption has been measured, obtaining an approximate value of 104 cm−1 in the photons energy range from 1.1 to 0.6 eV.

  17. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs.

    Science.gov (United States)

    Tan, Naiwen; Liu, Xiangwei; Cai, Yanhui; Zhang, Sijia; Jian, Bo; Zhou, Yuchao; Xu, Xiaoru; Ren, Shuai; Wei, Hongbo; Song, Yingliang

    2017-01-01

    High failure rates of oral implants have been reported in diabetic patients due to the disruption of osseointegration. The aim of this study was to investigate whether direct laser metal sintering (DLMS) could improve osseointegration in diabetic animal models. Surface characterizations were carried out on two types of implants. Cell morphology and the osteogenic-related gene expression of MG63 cells were observed under conditions of DLMS and microarc oxidation (MAO). A diabetes model in mini-pigs was established by intravenous injection of streptozotocin (150 mg/kg), and a total of 36 implants were inserted into the mandibular region. Micro-computed tomography (micro-CT) and histologic evaluations were performed 3 and 6 months after implantation. The Ra (the average of the absolute height of all points) of MAO surface was 2.3±0.3 µm while the DLMS surface showed the Ra of 27.4±1.1 µm. The cells on DLMS implants spread out more podia than those on MAO implants through cell morphology analysis. Osteogenic-related gene expression was also dramatically increased in the DLMS group. Obvious improvement was observed in the micro-CT and Van Gieson staining analyses of DLMS implants compared with MAO at 3 months, although this difference disappeared by 6 months. DLMS implants showed a higher bone-implant contact percentage (33.2%±11.2%) at 3 months compared with MAO group (18.9%±7.3%) while similar results were showed at 6 months between DLMS group (42.8%±10.1%) and MAO group (38.3%±10.8%). The three-dimensional environment of implant surfaces with highly porous and fully interconnected channel and pore architectures can improve cell spreading and accelerate the progress of osseointegration in diabetic mini-pigs.

  18. Mechanical and Structural Properties of Fluorine-Ion-Implanted Boron Suboxide

    Directory of Open Access Journals (Sweden)

    Ronald Machaka

    2012-01-01

    degradation of near-surface mechanical properties with increasing fluorine fluence. Implications of these observations in the creation of amorphous near-surface layers by high-dose ion implantation are discussed in this paper.

  19. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Charles A Maitz

    2017-08-01

    Full Text Available Boron neutron capture therapy (BNCT was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH215–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.

  20. The study of high-boron steel and high-boron cast iron used for shield

    International Nuclear Information System (INIS)

    Pan Xuerong; Lu Jixin; Wen Yaozeng; Wang Zhaishu; Cheng Jiantin; Cheng Wen; Shun Danqi; Yu Jinmu

    1996-12-01

    The smelting, forging, heat-treatment technology and the mechanical properties of three kinds of high-boron steels (type 1: 0.5% boron; type 2: 0.5% boron and 4% or 2% nickel; type 3: 0.5% boron, 0.5% nickel and 0.5% molybdenum) were studied. The test results show that the technology for smelting, forging and heat-treatment (1050 degree C/0.5 h water cooled + 810 degree C/1 h oil cooled) in laboratory is feasible. Being sensitive to notch, the impact toughness of high-boron steel type 1 is not steady and can not meet the technology requirements on mechanical properties. The mechanical properties of both high-boron steel type 2 and type 3 can meet the technological requirements. The smelting technology of high-boron casting iron containing 0.5% boron was researched. The tests show that this casting iron can be smelted in laboratory and its properties can basically satisfy the technology requirements. (10 refs., 6 figs., 11 tab.)

  1. Investigation of germanium implanted with aluminum by multi-laser micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanson, A., E-mail: andrea.sanson@unipd.it [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Napolitani, E. [MATIS IMM-CNR at Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Impellizzeri, G. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Giarola, M. [Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy); De Salvador, D. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Privitera, V.; Priolo, F. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Mariotto, G. [Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy); Carnera, A. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2013-08-31

    Germanium samples, implanted with aluminum and annealed, have been investigated by micro-Raman spectroscopy using different excitation lines with the aim of gaining insights about the Al distribution at different depths beneath the sample surface and to correlate the Raman spectra with the electrical and chemical profiles, obtained by Spreading Resistance Profiling (SRP) and Secondary Ions Mass Spectrometry (SIMS) measurements, respectively. The intensity of the Al–Ge Raman peak at about 370 cm{sup −1}, due to the local vibrational mode of the substitutional Al atoms in the Ge matrix, has been directly related to the SRP behavior, while no correlation has been observed with SIMS profiles. These findings show that the electrically active content is entirely due to the substitutional Al atoms. Finally, a clear down shift is observed for the Ge–Ge Raman peak at ∼ 300 cm{sup −1}, which also seems to be directly related to the active content of Al dopant atoms. This work shows that micro-Raman spectroscopy can be a suitable tool for the study of doping profiles in Ge. - Highlights: ► Al-implanted Ge and annealed were studied by micro-Raman spectroscopy. ► Using different laser lines we have investigated the implants at different depths. ► The Al–Ge Raman peak at about 370 cm{sup −1} is directly related to the SRP behavior. ► The electrically active content is entirely due to the substitutional Al atoms. ► Carrier effects are observed on the Ge–Ge peak at ∼ 300 cm{sup −1}.

  2. Investigation of germanium implanted with aluminum by multi-laser micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Sanson, A.; Napolitani, E.; Impellizzeri, G.; Giarola, M.; De Salvador, D.; Privitera, V.; Priolo, F.; Mariotto, G.; Carnera, A.

    2013-01-01

    Germanium samples, implanted with aluminum and annealed, have been investigated by micro-Raman spectroscopy using different excitation lines with the aim of gaining insights about the Al distribution at different depths beneath the sample surface and to correlate the Raman spectra with the electrical and chemical profiles, obtained by Spreading Resistance Profiling (SRP) and Secondary Ions Mass Spectrometry (SIMS) measurements, respectively. The intensity of the Al–Ge Raman peak at about 370 cm −1 , due to the local vibrational mode of the substitutional Al atoms in the Ge matrix, has been directly related to the SRP behavior, while no correlation has been observed with SIMS profiles. These findings show that the electrically active content is entirely due to the substitutional Al atoms. Finally, a clear down shift is observed for the Ge–Ge Raman peak at ∼ 300 cm −1 , which also seems to be directly related to the active content of Al dopant atoms. This work shows that micro-Raman spectroscopy can be a suitable tool for the study of doping profiles in Ge. - Highlights: ► Al-implanted Ge and annealed were studied by micro-Raman spectroscopy. ► Using different laser lines we have investigated the implants at different depths. ► The Al–Ge Raman peak at about 370 cm −1 is directly related to the SRP behavior. ► The electrically active content is entirely due to the substitutional Al atoms. ► Carrier effects are observed on the Ge–Ge peak at ∼ 300 cm −1

  3. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  4. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating

    NARCIS (Netherlands)

    Biemond, J.E.; Hannink, G.; Verdonschot, Nicolaas Jacobus Joseph; Buma, P.

    2013-01-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and

  5. Implantable collamer lens and femtosecond laser for myopia: comparison using an adaptive optics visual simulator

    Directory of Open Access Journals (Sweden)

    Cari Pérez-Vives

    2014-04-01

    Full Text Available Purpose: To compare optical and visual quality of implantable collamer lens (ICL implantation and femtosecond laser in situ keratomileusis (F-LASIK for myopia. Methods: The CRX1 adaptive optics visual simulator (Imagine Eyes, Orsay, France was used to simulate the wavefront aberration pattern after the two surgical procedures for -3-diopter (D and -6-D myopia. Visual acuity at different contrasts and contrast sensitivities at 10, 20, and 25 cycles/degree (cpd were measured for 3-mm and 5-mm pupils. The modulation transfer function (MTF and point spread function (PSF were calculated for 5-mm pupils. Results: F-LASIK MTF was worse than ICL MTF, which was close to diffraction-limited MTF. ICL cases showed less spread out of PSF than F-LASIK cases. ICL cases showed better visual acuity values than F-LASIK cases for all pupils, contrasts, and myopic treatments (p0.05. For -6-D myopia, however, statistically significant differences in contrast sensitivities were found for both pupils for all evaluated spatial frequencies (p<0.05. Contrast sensitivities were better after ICL implantation than after F-LASIK. Conclusions: ICL implantation and F-LASIK provide good optical and visual quality, although the former provides better outcomes of MTF, PSF, visual acuity, and contrast sensitivity, especially for cases with large refractive errors and pupil sizes. These outcomes are related to the F-LASIK producing larger high-order aberrations.

  6. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  7. Research of boron conversion coating in neutron detector with boron deposited GEM

    International Nuclear Information System (INIS)

    Ye Di; Sun Zhijia; Zhou Jianrong; Wang Yanfeng; Yang Guian; Xu Hong; Chen Yuanbai; Xiao Yu; Diao Xungang

    2014-01-01

    GEM is a flourishing new gas detector and nowadays its technology become more mature. It has outstanding properties, such as excellent position resolution, high counting rate, radiation resistance, simple and flexible signal readout, can be large-area detector, wide application range. Detector with boron deposited GEM uses multilayer GEM with deposited boron film as neutron conversion carrier which reads out the information of neutron shot from the readout electrode with gas amplification from every GEM layer. The detector is high performance which can meet the demands of neutron detector of a new generation. Boron deposited neutron conversion electrode with boron deposited cathode and GEM included is the core part of the detector. As boron is a high-melting-point metalloid (> 2 000 ℃), electroplating and thermal evaporation are inappropriate ways. So finding a way to deposit boron on electrode which can meet the demands become a key technology in the development of neutron detector with boron deposited GEM. Compared with evaporation, sputtering has features such as low deposition temperature, high film purity, nice adhesive, thus is appropriate for our research. Magnetron sputtering is a improved way of sputtering which can get lower sputtering air pressure and higher target voltage, so that we can get better films. Through deposit process, the research uses magnetron sputtering to deposit pure boron film on copper electrode and GEM film. This method can get high quality, nice adhere, high purity, controllable uniformity, low cost film with high speed film formation. (authors)

  8. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model.

    Science.gov (United States)

    Peng, Wei; Xu, Liangwei; You, Jia; Fang, Lihua; Zhang, Qing

    2016-07-21

    Osseointegration refers to the direct connection between living bone and the surface of a load-bearing artificial implant. Porous implants with well-controlled porosity and pore size can enhance osseointegration. However, until recently implants were produced by machining solid core titanium rods. The aim of this study was to develop a multi-rooted dental implant (MRI) with a connected porous surface structure to facilitate osseointegration. MRIs manufactured by selective laser melting (SLM) and commercial implants with resorbable blasting media (RBM)-treated surfaces were inserted into the hind limbs of New Zealand white rabbits. Osseointegration was evaluated periodically over 12 weeks by micro-computerized tomography (CT) scanning, histological analysis, mechanical push-out tests, and torque tests. Bone volume densities were consistently higher in the MRI group than in the RBM group throughout the study period, ultimately resulting in a peak value of 48.41 % for the MRI group. Histological analysis revealed denser surrounding bone growth in the MRIs; after 4 and 8 weeks, bone tissue had grown into the pore structures and root bifurcation areas, respectively. Biomechanics tests indicated binding of the porous MRIs to the neobone tissues, as push-out forces strengthened from 294.7 to 446.5 N and maximum mean torque forces improved from 81.15 to 289.57 N (MRI), versus 34.79 to 87.8 N in the RBM group. MRIs manufactured by SLM possess a connected porous surface structure that improves the osteogenic characteristics of the implant surface.

  9. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs.

    Science.gov (United States)

    Matys, Jacek; Flieger, Rafał; Dominiak, Marzena

    2017-07-01

    Many surgical procedures in soft tissue are performed using diode lasers. Recently, a novel diode laser operating at 445 nm wavelength was introduced in dentistry. The aim of our study was to evaluate the time of surgery and an increase in temperature of titanium implants during its uncovering using 445 and 980 nm wavelengths. The research included 45 pig mandibles (n = 45). The specimens were randomly divided into 3 groups (n = 15) according to the laser irradiation mode and wavelength; G1 - 445 nm laser, power: 3 W, continuous wave (CW), distance: 2 mm, power density: 7460 W/cm2, fiber: 320 μm, noncontact mode; G2 - 445 nm laser (power: 2 W, CW, power density: 4970 W/cm2, fiber: 320 μm, contact mode; G3 (control) - 980 nm laser, power: 2.5 W, CW, power density: 15920 W/cm2, fiber: 200 μm, contact mode. The temperature was measured with a 2 K-type thermocouples (a P1 at collar and a P2 at mid height of the implant). The mean temperature rises measured by the P1 thermocouple were 16.9°C, 36.1°C and 21.6°C in the G1, G2 and G3 group, respectively. Significant differences in temperature rise were found between the G1 and G2 group (p = 0.0007) and the G2 and G3 group (p = 0.01). The mean temperature rises measured by the P2 thermocouple were 1.8°C, 1.4°C and 5.6°C in the G1, G2 and G3 group, respectively. Significant differences in temperature rise were found between the G1 and the G2 or G3 group (p = 0.0001). The significant differences among the study groups in average time necessary for uncovering the implants amounted to 69.7, 54.4 and 83.6 s, respectively (p diode laser in non-contact mode reduced the temperature rise of the implants. The additional pulse intervals during laser irradiation with wavelength of 445 nm when operating in contact mode are needed.

  10. Planar transistors and impatt diodes with ion implantation

    International Nuclear Information System (INIS)

    Dorendorf, H.; Glawischnig, H.; Grasser, L.; Hammerschmitt, J.

    1975-03-01

    Low frequency planar npn and pnp transistors have been developed in which the base and emitter have been fabricated using ion implantation of boron and phosphorus by a drive-in diffusion. Electrical parameters of the transistors are comparable with conventionally produced transistors; the noise figure was improved and production tolerances were significantly reduced. Silicon-impatt diodes for the microwave range were also fabricated with implanted pn junctions and tested for their high frequency characteristics. These diodes, made in an improved upside down technology, delivered output power up to 40 mW (burn out power) at 30 GHz. Reverse leakage current and current carrying capability of these diodes were comparable to diffused structures. (orig.) 891 ORU 892 MB [de

  11. Optical bleaching of bismuth implanted silica glass: A threshold effect

    International Nuclear Information System (INIS)

    Park, S.Y.; Magruder, R.H. III; Weeks, R.A.

    1992-01-01

    The near surface regions of high purity silica glass discs, Spectrosil A, were modified by implantation with bismuth ions at 160 key and room temperature. The glasses implanted with a nominal dose of 6x10 16 Bi/cm 2 at ∼5 μA/cm 2 were subsequently bleached with a 5.0 eV KrF pulsed excimer laser. The laser had an average pulse duration of ∼20 ns and repetition rate of 10 Hz. It was found that the bleaching was dependent upon the power density of the laser for a constant total integrated energy. Ion backscattering and optical absorption measurements were made before and after laser irradiation. Large changes in optical density and depth distribution of the implanted ions were observed at power densities of ≥45 mJ/cm 2 -pulse. Onset of threshold for bleaching of silica glass implanted with 6x10 16 Bi/cm 2 at 160 key and at room temperature is between 30 and 45 mJ/cm 2 -pulse

  12. Negative charge induced degradation of PMOSFETs with BF2-implanted p+-poly gate

    International Nuclear Information System (INIS)

    Lu, C.Y.; Sung, J.M.

    1989-01-01

    A new degradation phenomenon on thin gate oxide PMOS-FETs with BF 2 implanted p + -poly gate has been demonstrated and investigated. The cause of this type of degradation is a combination of the boron penetration through the gate oxide and charge trap generation due to the presence of fluorine in the gate oxide and some other processing-induced effects. The negative charge-induced degradation other than enhanced boron diffusion has been studied in detail here. The impact of this process-sensitive p + -poly gate structure on deep submicron CMOS process integration has been discussed. (author)

  13. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    Science.gov (United States)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  14. The gettering of boron by an ion-implanted antimony layer in silicon

    International Nuclear Information System (INIS)

    Fair, R.B.; Pappas, P.N.

    1975-01-01

    Secondary ion mass spectrometry has been employed to reveal the gettering of implanted B by an annealed, implanted Sb layer. It is shown that the gettering of B is significant, and may be caused by electric-field-enhanced diffusion of the B as well as by solubility enhancement of the electrically-active Sb. These results emphasize the first-order importance of cooperative effects between donors and acceptors in diffusion profile calculations. (author)

  15. Note on boron toxicity in oats

    Energy Technology Data Exchange (ETDEWEB)

    Langille, W M; Mahoney, J F

    1959-01-01

    Boron was applied at the rate of 35 pounds per acre of borax to a field of oats. With the first noticeable growth there appeared a definite chlorotic condition of the oat seedlings on plots receiving boron treatments. Analysis of chlorotic tissue at 3 weeks after seeding indicated 110 ppm boron, while apparently healthy tissue contained 6.1 ppm boron at the same stage of growth. There was a rapid decline in the boron content of the oat tissue as the crop grew older. At maturity the oat tissue from the boron-treated plots contained an average of 14.15 ppm boron as compared with 4.10 boron from untreated areas. Boron toxicity had no harmful effect so far as yields were concerned, under the conditions of this experiment. 3 references.

  16. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  17. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The fitness of copings constructed over UCLA abutments and the implant, constructed by different techniques: casting and casting with laser welding Adaptação de copings de ritânio ao implante, construídos sobre pilares UCLA por duas técnicas: fundição e fundição com soldagem de bordo laser

    Directory of Open Access Journals (Sweden)

    Elza Maria Valadares da Costa

    2004-12-01

    Full Text Available The alternative for the reposition of a missing tooth is the osteointegrated implant being the passive adaptation between the prosthodontic structure and the implant a significant factor for the success of this experiment, a comparative study was done between the two methods for confectioning a single prosthodontic supported by an implant. To do so a screwed implant with a diameter of 3.75mm and a length of 10.0mm (3i Implant innovations, Brasil was positioned in the middle of a resin block and over it we screwed 15 UCLA abutments shaped and anti-rotationable (137CNB, Conexão Sistemas de Próteses, Brasil with a torque of 20N.cm without any laboratorial procedure (control group - CTRLG. From a silicon model 15 UCLA-type calcinatable compounds (56CNB, Conexão Sistemas de Próteses, Brasil were screwed (20 N.cm, received a standard waxing (plain buccal surface and were cast in titanium (casting group - CG and other 15 compounds, UCLA - type shaped in titanium (137 CNB, Conexão Sistemas de Próteses, Brasil received the same standard waxing. These last copings were cast in titanium separated from each other and were laser-welded to the respective abutments on their border (Laser-welding group - LWG. The border adaptation was observed in the implant/compound interface, under measurement microscope, on the y axis, in 4 vestibular, lingual, mesial and distal referential points previously marked on the block. The arithmetical means were obtained and an exploratory data analysis was performed to determine the most appropriate statistical test. Descriptive statistics data (µm for Control (mean±standard deviation: 13.50 ± 21.80; median 0.00, for Casting (36.20±12.60; 37.00, for Laser (10.50 ±12.90; 3.00 were submitted to Kruskal-Wallis ANOVA, alpha = 5%. Results test showed that distorsion median values differ statistically (kw = 17.40; df =2; p = 0.001A reposição de um elemento dentário pode ser feita por um implante osseointegrado sendo que a

  19. Deep ion implantation for bipolar silicon devices; investigations into the use of the third dimension

    International Nuclear Information System (INIS)

    Mouthaan, A.J.

    1986-01-01

    This thesis covers various aspects of the use of deep ion implantations in digital bipolar circuits. It starts with the implications of the use of deep ion implantations for numerical process, device and circuit simulation. It shows the use of 1MeV boron and phosphorus implantations in the realization of a fully vertical IIL, here named Buried Injector Logic, which can also be used as static and dynamic memory device in several different configurations. The author presents a combined MOS-bipolar device, called the Charge Injection Device as a dynamic memory cell. Finally, deep ion implantations are used to realize a stack of photovoltaic cells that produces a multiple of the open circuit voltage of one photodiode. (Auth.)

  20. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  1. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  2. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    Achatz, Philipp

    2009-01-01

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n c for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm -1 ) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g c . The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  3. Time resolved measurement of laser-ablated particles by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy)

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Murakami, Kouichi

    1999-01-01

    The time- and spatially-resolved properties of laser ablated carbon, boron and silicon particles were measured by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy). The maximum speed of positively charged ions is higher than those of neutral atoms and negatively charged ions. The spatial distributions of the laser-ablated particles in the localized rare gas environment were measured. In helium gas environment, by the helium cloud generated on the top of ablation plume depressed the ablation plume. There is no formation of silicon clusters till 15 μs after laser ablation in the argon gas environment. (author)

  4. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    Energy Technology Data Exchange (ETDEWEB)

    Ogitsu, Tadashi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galli, Giulia [Univ. of California, Davis, CA (United States)

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been known for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.

  5. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  6. Immediate loading of mandibular overdentures supported by one-piece, direct metal laser sintering mini-implants: a short-term prospective clinical study.

    Science.gov (United States)

    Mangano, Francesco G; Caprioglio, Alberto; Levrini, Luca; Farronato, Davide; Zecca, Piero A; Mangano, Carlo

    2015-02-01

    Only a few studies have dealt with immediately loaded, unsplinted mini-implants supporting ball attachment-retained mandibular overdentures (ODs). The aim of this study is to evaluate treatment outcomes of ball attachment-retained mandibular ODs supported by one-piece, unsplinted, immediately loaded, direct metal laser sintering (DMLS) mini-implants. Over a 4-year period (2009 to 2012), all patients referred to the Dental Clinic, University of Varese, and to a private practice for treatment with mandibular ODs were considered for inclusion in this study. Each patient received three or four DMLS mini-implants. Immediately after implant placement, a mandibular OD was connected to the implants. At each annual follow-up session, clinical and radiographic parameters were assessed, including the following outcome measures: 1) implant failures; 2) peri-implant marginal bone loss; and 3) complications. Statistical analysis was conducted using a life-table analysis. A total of 231 one-piece DMLS mini-implants were inserted in 62 patients. After 4 years of loading, six implants failed, giving an overall cumulative survival rate of 96.9%. The mean distance between the implant shoulder and the first visible bone-to-implant contact was 0.38 ± 0.25 and 0.62 ± 0.20 mm at the 1- and 4-year follow-up examinations, respectively. An incidence of 6.0% of biologic complications was reported; prosthetic complications were more frequent (12.9%). Within the limits of this study, it can be concluded that the immediate loading of one-piece, unsplinted, DMLS titanium mini-implants by means of ball attachment-supported mandibular ODs is a successful treatment procedure. Long-term follow-up studies are needed to confirm these results.

  7. Effects of energy variations of ions influencing a target on implantation

    International Nuclear Information System (INIS)

    Astakhov, V.P.; Rubtsov, V.A.; Aranovich, R.M.; Pavlov, P.V.

    1981-01-01

    In cases of phosphorus and boron ion implantation into silicon the dependence of electrophysical properties of ion-doped layers and target material near the layer boundaries on energy variation conditions of influencing ions is observed. A physical model explaining the dependence is proposed. It is found that for the target, being at room temperature, after successive annealing the qualitative characteristics of conditions (i.e. energy increase and decrease) on implantation of phosphorus ions into p-silicon and boron ions into n-silicon, as well as the value of energy stages, define rhosub(l) ion-doped layer resistivity and tausub(mc) nonequilibrium minority carrier lifetime in the base of p-n transitions. The essence of the effects observed is that for equal sets of Esub(i) ion energy values and PHIsub(i) corresponding phases at maximum energy used exceeding 30 keV, successive energy increase during implantation, when E 1 2 1 mode), leads to smaller rhosub(e) values and greater tausub(mc) than in case of successive energy decrease, when E 1 >E 2 >...E(E 2 mode) for any fixed annealing temperature. In cases when the maximum energy does not exceed 30 KeV, the E 1 and E 2 modes lead to analogous rhosub(e) and tausub(mc) values. The E 2 mode leads to enrichment of the ion-implanted layer with associations and complexes on the basis of interstitial atoms in comparison with the E 1 mode. The associations and complexes on thermal treatment are reformed into the higher-temperature interstitial complexes increasing rhosub(e) and decreasing tausub(mc). Supposition about the effect of these complexes and processes of structural transformations on annealing, hampering-improvement of structural properties of the ion-implanted layer and a crystal region bordered on it [ru

  8. Influence of postoperative low-level laser therapy on the osseointegration of self-tapping implants in the posterior maxilla: A 6-week split-mouth clinical study

    OpenAIRE

    Mandić Borka; Lazić Zoran; Marković Aleksa; Mandić Bojan; Mandić Miška; Đinić Ana; Miličić Biljana

    2015-01-01

    Background/Aim. Low-level laser therapy (LLLT) has been proven to stimulate bone repair, affecting cellular proliferation, differentiation and adhesion, and has shown a potential to reduce the healing time following implant placement. The aim of this clinical study was to investigate the influence of postoperative LLLT osseointegration and early success of self-tapping implants placed into low-density bone. Methods. Following the split-mouth design, self-ta...

  9. Synthesis and biological evaluation of boronated polyglycerol dendrimers as potential agent for neutron capture therapy

    International Nuclear Information System (INIS)

    Silva, Gerald S.; Camillo, Maria A.P.; Higa, Olga Z.; Pugliesi, Reynaldo; Fermamdes, Edson G.R.; Queiroz, Alvaro A.A. de

    2005-01-01

    In this work, the polyglycerol dendrimer (PGLD) generation 5 was used to obtain a boronated macromolecule for boron neutron capture therapy. The PGLD dendrimer was synthesized by the ring opening polymerization of deprotonated glycidol using polyglycerol as core functionality in a step-growth processes denominated divergent synthesis. The PGLD dendritic structure was confirmed by gel permeation chromatography, nuclear magnetic resonance ( 1 H-NMR, 13 C-NMR) and matrix assisted laser desorption/ionization techniques. The synthesized dendrimer presented low dispersion in molecular weights (M w /M n = 1.05) and a degree of branching of 0.82, which characterize the polymer dendritic structure. Quantitative neutron capture radiography was used to investigate the boron-10 enrichment of the polyglycerol dendrimer. The in vitro cytotoxicity to Chinese hamster ovary cells of 10 B-PGLD dendrimer indicate lower cytotoxicity, suggesting that the macromolecule is a biocompatible material. (author)

  10. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  11. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  12. Implantable photonic devices for improved medical treatments

    Science.gov (United States)

    Sheinman, Victor; Rudnitsky, Arkady; Toichuev, Rakhmanbek; Eshiev, Abdyrakhman; Abdullaeva, Svetlana; Egemkulov, Talantbek; Zalevsky, Zeev

    2014-10-01

    An evolving area of biomedical research is related to the creation of implantable units that provide various possibilities for imaging, measurement, and the monitoring of a wide range of diseases and intrabody phototherapy. The units can be autonomic or built-in in some kind of clinically applicable implants. Because of specific working conditions in the live body, such implants must have a number of features requiring further development. This topic can cause wide interest among developers of optical, mechanical, and electronic solutions in biomedicine. We introduce preliminary clinical trials obtained with an implantable pill and devices that we have developed. The pill and devices are capable of applying in-body phototherapy, low-level laser therapy, blue light (450 nm) for sterilization, and controlled injection of chemicals. The pill is also capable of communicating with an external control box, including the transmission of images from inside the patient's body. In this work, our pill was utilized for illumination of the sinus-carotid zone in dog and red light influence on arterial pressure and heart rate was demonstrated. Intrabody liver tissue laser ablation and nanoparticle-assisted laser ablation was investigated. Sterilization effect of intrabody blue light illumination was applied during a maxillofacial phlegmon treatment.

  13. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation multicollector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha

    2018-01-15

    Boron isotope ratios (δ 11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10 13 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10 13 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA 10 B + ion beam is reduced to ohm amplifier technology is demonstrated to offer advantages for the determination of δ 11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10 13 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. Copyright © 2017 John Wiley & Sons, Ltd.

  14. 二极管激光在种植二期手术中的应用%The application of diode laser in the secondary-stage implant surgery

    Institute of Scientific and Technical Information of China (English)

    徐可卿

    2014-01-01

    目的:评价二极管激光在种植二期手术中的临床效果。方法对84例(207颗)种植体植入后3~6个月,牙龈完全覆盖或部分覆盖种植体的患者在表面麻醉下用二极管激光进行龈盖切除术,暴露并取出覆盖螺丝,安装愈合基台,两周后进行金属烤瓷全冠修复,评价修复后1个月的临床效果。结果术中不出血、创面清晰、手术时间短、术后无疼痛及肿胀、切口愈合快。修复效果良好194颗(93.72%),效果一般9颗(4.35%),效果差4颗(1.93%),成功率为98.07%,所有患者无并发症。结论二极管激光在种植二期手术中具有无痛、精确、舒适、高效、安全和微创的优势。%Objective To evaluate the clinical effects of diode laser in the secondary-stage implant surgery.Methods The 207 im-plants of 84 patients whose gum covered the surface of implant were treated with diode laser irradiation under the superficial anesthesia three to six months after implantation.The cover screws were taken.The healing abutments were placed on the implants.The ceramomet-al crown restoration was performed two weeks later.The outcomes were evaluated one month after restoration.Resuits There was no hemorrhage during operation;the operation time was short;there was no pain or swelling after operation and the cut healed quickly.A-mong the 207 implants,194 implants (93.72%) were at good stage,9 implants (4.35%) were at general stage,and 4 implants (1 .93%)were at poor stage.The implant survival ratio was 98.07%.There were no complications.Conclusions Diode Laser is pain-less,accurate,comfortable,effective,safe and of small harm in the secondary-stage implant surgery.

  15. Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design

    Directory of Open Access Journals (Sweden)

    Mengke Wang

    2016-12-01

    Full Text Available Selective laser melting (SLM is a promising technique capable of rapidly fabricating customized implants having desired macro- and micro-structures by using computer-aided design models. However, the SLM-based products often have non-equilibrium microstructures and partial surface defects because of the steep thermal gradients and high solidification rates that occur during the laser melting. To meet clinical requirements, a heat treatment was used to tailor the physiochemical properties, homogenize the metallic microstructures, and eliminate surface defects, expecting to improve the cytocompatibility in vitro. Compared with the as-printed Ti–6Al–4V substrate, the heat-treated substrate had a more hydrophilic, rougher and more homogeneous surface, which should promote the early cell attachment, proliferation and osseointegration. More importantly, a crystalline rutile TiO2 layer formed during the heat treatment, which should greatly promote the biocompatibility and corrosion resistance of the implant. Compared to the untreated surfaces, the adhesion and proliferation of human bone mesenchymal stem cells (hBMSCs on heat-treated substrates were significantly enhanced, implying an excellent cytocompatibility after annealing. Therefore, these findings provide an alternative to biofunctionalized SLM-based Ti–6Al–4V implants with optimized physiochemical properties and biocompatibility for orthopedic and dental applications.

  16. Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility analysis and photoelastic study

    Science.gov (United States)

    Yang, Fei; Chen, Chen; Zhou, Qianrong; Gong, Yiming; Li, Ruixue; Li, Chichi; Klämpfl, Florian; Freund, Sebastian; Wu, Xingwen; Sun, Yang; Li, Xiang; Schmidt, Michael; Ma, Duan; Yu, Youcheng

    2017-03-01

    Fabricating Ti alloy based dental implants with defined porous scaffold structure is a promising strategy for improving the osteoinduction of implants. In this study, we use Laser Beam Melting (LBM) 3D printing technique to fabricate porous Ti6Al4V dental implant prototypes with three controlled pore sizes (200, 350 and 500 μm). The mechanical stress distribution in the surrounding bone tissue is characterized by photoelastography and associated finite element simulation. For in-vitro studies, experiments on implants’ biocompatibility and osteogenic capability are conducted to evaluate the cellular response correlated to the porous structure. As the preliminary results, porous structured implants show a lower stress-shielding to the surrounding bone at the implant neck and a more densed distribution at the bottom site compared to the reference implant. From the cell proliferation tests and the immunofluorescence images, 350 and 500 μm pore sized implants demonstrate a better biocompatibility in terms of cell growth, migration and adhesion. Osteogenic genes expression of the 350 μm group is significantly increased alone with the ALP activity test. All these suggest that a pore size of 350 μm provides an optimal provides an optimal potential for improving the mechanical shielding to the surrounding bones and osteoinduction of the implant itself.

  17. Histological and biomechanical analysis of porous additive manufactured implants made by direct metal laser sintering: a pilot study in sheep.

    Science.gov (United States)

    Stübinger, Stefan; Mosch, Isabel; Robotti, Pierfrancesco; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J; von Rechenberg, Brigitte

    2013-10-01

    It was the aim of this study to analyze osseointegrative properties of porous additive manufactured titanium implants made by direct metal laser sintering in a sheep model after an implantation period of 2 and 8 weeks. Three different types of implants were placed in the pelvis of six sheep. In each sheep were placed three standard machined (M), three sandblasted and etched (SE), and three porous additive manufactured (AM) implants. Of these three implants (one per type) were examined histologically and six implants were tested biomechanically. Additionally a semiquantitative histomorphometrical and qualitative fluorescent microscopic analysis were performed. After 2 and 8 weeks bone-to-implant-contact (BIC) values of the AM surface (2w: 20.49% ± 5.18%; 8w: 43.91% ± 9.69%) revealed no statistical significant differences in comparison to the M (2w: 20.33% ± 11.50%; 8w: 25.33% ± 4.61%) and SE (2w: 43.67 ± 12.22%; 8w: 53.33 ± 8.96%) surfaces. AM surface showed the highest increase of the BIC between the two observation time points. Considering the same implantation period histomorphometry and fluorescent labelling disclosed no significant differences in the bone surrounding the three implants groups. In contrast Removal-torque-test showed a significant improve in fixation strength (P ≤ 0.001) for the AM (1891.82 ± 308, 44 Nmm) surface after eight weeks in comparison to the M (198.93±88,04 Nmm) and SE (730.08 ± 151,89 Nmm) surfaces. All three surfaces (M, SE, and AM) showed sound osseointegration. AM implants may offer a possible treatment option in clinics for patients with compromised bone situations. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  18. Biodistribution, toxicity and efficacy of a boronated porphyrin for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Miura, Michiko; Micca, P.; Fairchild, R.; Slatkin, D.; Gabel, D.

    1992-01-01

    Boron-containing porphyrins may be useful for boron neutron capture therapy (BNCT) in the treatment of brain tumors. Porphyrins have been shown to accumulate in tumor tissue and to be essentially excluded from normal brain. However, problems of toxicity may prevent some boron-containing porphyrins from being considered for BNCT. The authors have synthesized the boronated porphyrin 2,4-bis-vinyl-o-nidocarboranyl-deuteroporphyrin IX (VCDP). Preliminary studies in tumor-bearing mice showed considerable uptake of boron at a total dose of 150 μg/gbw with low mortality. They now report that a total dose to mice of ∼ 275 μg VCDP/gbw administered in multiple intraperitoneal (ip) injections can provide 40-50μg B per gram of tumor with acceptable toxicity. Toxicity experiments and a preliminary trial of BNCT in mice given such doses are also reported

  19. A New Boron Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Weitman, J; Daaverhoeg, N; Farvolden, S

    1970-07-01

    In connection with fast neutron (n, {alpha}) cross section measurements a novel boron analysis method has been developed. The boron concentration is inferred from the mass spectrometrically determined number of helium atoms produced in the thermal and epithermal B-10 (n, {alpha}) reaction. The relation between helium amount and boron concentration is given, including corrections for self shielding effects and background levels. Direct and diffusion losses of helium are calculated and losses due to gettering, adsorption and HF-ionization in the release stage are discussed. A series of boron determinations is described and the results are compared with those obtained by other methods, showing excellent agreement. The lower limit of boron concentration which can be measured varies with type of sample. In e.g. steel, concentrations below 10-5 % boron in samples of 0.1-1 gram may be determined.

  20. Two-channel neutron boron meter

    International Nuclear Information System (INIS)

    Chen Yongqing; Yin Guowei; Chai Songshan; Deng Zhaoping; Zhou Bin

    1993-09-01

    The two-channel neutron boron meter is a continuous on-line measuring device to measure boron concentration of primary cooling liquid of reactors. The neutron-leakage-compensation method is taken in the measuring mechanism. In the primary measuring configuration, the mini-boron-water annulus and two-channel and central calibration loop are adopted. The calibration ring and constant-temperature of boron-water can be remotely controlled by secondary instruments. With the microcomputer data processing system the boron concentration is automatically measured and calibrated in on-line mode. The meter has many advantages such as high accuracy, fast response, multi-applications, high reliability and convenience

  1. Biological evaluation of dopamine analogues containing phenylboronic acid group as new boron carriers

    International Nuclear Information System (INIS)

    Ito, Y.; Mizuno, T.; Yoshino, K.; Ban, H.S.; Nakamura, H.; Hiratsuka, J.; Ishikawa, A.; Ohki, H.

    2011-01-01

    As new BNCT reagents, we designed and synthesized dopamine analogues containing phenylboronic acid group, N-3,4-dihydroxyphenethyl-4-dihydroxyborylbenzamide (dopamine–PCBA) and N-[2-(3,4-dihydroxyphenetyl)ethyl]-3-(4-dihydroxyborylphenyl)promionamide (dopamine–CEBA). The efficacies of these compounds have not been investigated for biological samples. Therefore we have carried out experiments with cultured tumor cells and tumor-bearing mice, and evaluated possibility of these compounds as boron carriers. Dopamine–PCBA and dopamine–CEBA were synthesized by coupling between p-carboxyphenylboronic acid (PCBA) or 4-(2-carboxyethyl)benzeneboronic acid (CEBA) and 3,4-(dibenzyloxy)phenethylamine hydrochloride (DBPA-HCl) followed by catalytic hydrogenation using Pd catalyst. The effect of compounds on cell vitality was determined by MTT assay in various cells. In vivo biodistribution of compounds was determined in Balb/c and DDY mice in bearing implanted CT26 cells. These results have demonstrated that dopamine–CEBA was less toxic. - Highlights: ► Dopamine analogues containing phenylboronic acid are synthesized as BNCT reagents. ► Their cytotoxicity is almost lower than that of BSH. ► Boron uptake with dopamine–PCBA is larger than that of BSH. ► Dopamine analogs showed lesser boron accumulation property into spleen than BPA.

  2. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  3. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  4. Boron-containing thioureas for neutron capture therapy

    International Nuclear Information System (INIS)

    Ketz, H.

    1993-01-01

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of 10 B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the 10 B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.) [de

  5. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement

    Directory of Open Access Journals (Sweden)

    Khandaker M

    2016-02-01

    Full Text Available Morshed Khandaker,1,4 Shahram Riahinezhad,1 Fariha Sultana,1 Melville B Vaughan,2,4 Joshua Knight,2 Tracy L Morris3,4 1Department of Engineering & Physics, 2Department of Biology, 3Department of Mathematics and Statistics, 4Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, USA Abstract: Implant failure due to poor integration of the implant with the surrounding biomaterial is a common problem in various orthopedic and orthodontic surgeries. Implant fixation mostly depends upon the implant surface topography. Micron to nanosize circular-shaped groove architecture with adequate surface roughness can enhance the mechanical interlock and osseointegration of an implant with the host tissue and solve its poor fixation problem. Such groove architecture can be created on a titanium (Ti alloy implant by laser peening treatment. Laser peening produces deep, residual compressive stresses in the surfaces of metal parts, delivering increased fatigue life and damage tolerance. The scientific novelty of this study is the controlled deposition of circular-shaped rough spot groove using laser peening technique and understanding the effect of the treatment techniques for improving the implant surface properties. The hypothesis of this study was that implant surface grooves created by controlled laser peen treatment can improve the mechanical and biological responses of the implant with the adjoining biomaterial. The objective of this study was to measure how the controlled laser-peened groove architecture on Ti influences its osteoblast cell functions and bonding strength with bone cement. This study determined the surface roughness and morphology of the peen-treated Ti. In addition, this study compared the osteoblast cell functions (adhesion, proliferation, and differentiation between control and peen-treated Ti samples. Finally, this study measured the fracture strength between each kind of Ti samples

  6. Nanocrystalline diamond in carbon implanted SiO{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Tsoi, K.A.; Prawer, S.; Nugent, K.W.; Walker, R. J.; Weiser, P.S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently, it was reported that nanocrystalline diamond can be produced via laser annealing of a high dose C implanted fused quartz (SiO{sub 2}) substrate. The aim of this investigation is to reproduce this result on higher C{sup +} dose samples and the non-implanted silicon sample, as well as optimise the power range and annealing time for the production of these nanocrystals of diamond. In order to provide a wide range of laser powers the samples were annealed using an Ar ion Raman laser. The resulting annealed spots were analysed using scanning electron microscopy (SEM) and Raman analysis. These techniques are employed to determine the type of bonding produced after laser annealing has occurred. 4 refs., 5 figs.

  7. Nanocrystalline diamond in carbon implanted SiO{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Tsoi, K A; Prawer, S; Nugent, K W; Walker, R J; Weiser, P S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Recently, it was reported that nanocrystalline diamond can be produced via laser annealing of a high dose C implanted fused quartz (SiO{sub 2}) substrate. The aim of this investigation is to reproduce this result on higher C{sup +} dose samples and the non-implanted silicon sample, as well as optimise the power range and annealing time for the production of these nanocrystals of diamond. In order to provide a wide range of laser powers the samples were annealed using an Ar ion Raman laser. The resulting annealed spots were analysed using scanning electron microscopy (SEM) and Raman analysis. These techniques are employed to determine the type of bonding produced after laser annealing has occurred. 4 refs., 5 figs.

  8. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.

    Science.gov (United States)

    Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean

    2013-01-01

    This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.

  9. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.

    Science.gov (United States)

    Xiao, Dongming; Yang, Yongqiang; Su, Xubin; Wang, Di; Sun, Jianfeng

    2013-01-01

    The load-bearing bone implants materials should have sufficient stiffness and large porosity, which are interacted since larger porosity causes lower mechanical properties. This paper is to seek the maximum stiffness architecture with the constraint of specific volume fraction by topology optimization approach, that is, maximum porosity can be achieved with predefine stiffness properties. The effective elastic modulus of conventional cubic and topology optimized scaffolds were calculated using finite element analysis (FEA) method; also, some specimens with different porosities of 41.1%, 50.3%, 60.2% and 70.7% respectively were fabricated by Selective Laser Melting (SLM) process and were tested by compression test. Results showed that the computational effective elastic modulus of optimized scaffolds was approximately 13% higher than cubic scaffolds, the experimental stiffness values were reduced by 76% than the computational ones. The combination of topology optimization approach and SLM process would be available for development of titanium implants materials in consideration of both porosity and mechanical stiffness.

  10. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.

    Science.gov (United States)

    Samuel, Sonia; Nag, Soumya; Nasrazadani, Seifollah; Ukirde, Vaishali; El Bouanani, Mohamed; Mohandas, Arunesh; Nguyen, Kytai; Banerjee, Rajarshi

    2010-09-15

    While direct metal deposition of metallic powders, via laser deposition, to form near-net shape orthopedic implants is an upcoming and highly promising technology, the corrosion resistance and biocompatibility of such novel metallic biomaterials is relatively unknown and warrants careful investigation. This article presents the results of some initial studies on the corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys. These new generation beta titanium alloys are promising due to their low elastic modulus as well as due the fact that they comprise of completely biocompatible alloying elements. The results indicate that the corrosion resistance of these laser-deposited alloys is comparable and in some cases even better than the currently used commercially-pure (CP) titanium (Grade 2) and Ti-6Al-4V ELI alloys. The in vitro studies indicate that the Ti-Nb-Zr-Ta alloys exhibit comparable cell proliferation but enhanced cell differentiation properties as compared with Ti-6Al-4V ELI. (c) 2010 Wiley Periodicals, Inc.

  11. Properties of ion implanted epitaxial CoSi2/Si(1 0 0) after rapid thermal oxidation

    International Nuclear Information System (INIS)

    Zhao, Q.T.; Kluth, P.; Xu, J.; Kappius, L.; Zastrow, U.; Wang, Z.L.; Mantl, S.

    2000-01-01

    Epitaxial CoSi 2 layers were grown on Si(1 0 0) using molecular beam allotaxy. Boron ion implantations and rapid thermal oxidation (RTO) were performed. During oxidation, SiO 2 formed on the surface of the CoSi 2 layers, and the silicides was pushed into the substrate. The diffusion of boron was slightly retarded during oxidation for the specimen with a 20 nm epitaxial CoSi 2 capping layer as compared to the specimen without CoSi 2 capping layer. The electrical measurements showed that the silicide has good Schottky contacts with the boron doped silicon layer after RTO. A nanometer silicide patterning process, based on local oxidation of silicide (LOCOSI) layer, was also investigated. It shows two back-to-back Schottky diodes between the two separated parts of the silicide

  12. Boron supplementation in broiler diets

    Directory of Open Access Journals (Sweden)

    EJ Fassani

    2004-12-01

    Full Text Available Boron supplementation in broiler feed is not a routine practice. However, some reports suggest a positive effect of boron on performance. This study assessed the effects of boron supplementation on broiler performance. Diets were based on maize and soybean meal, using boric acid P.A. as boron source. Six supplementation levels (0, 30, 60, 90, 120 and 150 ppm were evaluated using 1,440 one-day old males housed at a density of 30 chickens in each of 48 experimental plots of 3m². A completely randomized block design was used with 8 replicates. Feed intake, weight gain and feed conversion were assessed in the periods from 1 to 7 days, 1 to 21 days and 1 to 42 days of age, and viability was evaluated for the total 42-day rearing period. No performance variable was affected by boron supplementation (p>0.05 in the period from 1 to 7 days. The regression analysis indicated an ideal level of 37.4 ppm of boron for weight gain from 1 to 21 days (p0.05, although feed intake was reduced linearly with increased boron levels (p0.05. Ash and calcium percentages in the tibias of broilers and viability in the total rearing period were not affected by boron supplementation (p>0.05.

  13. Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation

    Science.gov (United States)

    Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.

    1998-12-01

    In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.

  14. Destruction of C60 films by boron ion bombardment

    International Nuclear Information System (INIS)

    Ren Zhongmin; Du Yuancheng; Ying Zhifeng; Xiong Xiaxing; Li Fuming

    1995-01-01

    C 60 films are bombarded by 100 keV boron ion beams at doses ranging from 3x10 14 to 1x10 16 /cm 2 . The bombarded films are analyzed using Fourier transform infrared spectroscopy (FTIR), Raman spectra and X-ray diffraction (XRD) measurements. Most C 60 soccer-balls in the implanted region in the films are found to be broken at a dose over 1x10 15 /cm 2 , while at a dose less than 6x10 14 /cm 2 a few C 60 molecules remain undestroyed and maintain some crystal structure. The results of the analyses suggest a complete disintegration of a C 60 molecule under B + bombardment. ((orig.))

  15. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  16. Nuclear magnetic resonance spectroscopy of boron compounds containing two-, three- and four-coordinate boron

    International Nuclear Information System (INIS)

    Wrackmeyer, B.

    1988-01-01

    The influence of boron chemistry on various areas of research in inorganic, organic and theoretical chemistry is well documented. In fact, many models presently employed to describe chemical bonding in general can be traced to attempts to understand bonding in boranes. The confirmation of many theoretical predictions in boron chemistry relies on direct and indirect structural information provided by various physical methods that - fortunately - became available almost at the same rate as that with which the interest in boron compounds was growing. Clearly, there has always been a strong link between the interest in synthesis and the application of physical methods. As in many other areas of chemistry, developments in boron chemistry have been greatly accelerated by NMR. 11 B NMR has been at the center of interest from the beginning, accompanied by routine 1 H NMR measurements, and occasional 14 N, 19 F and 31 P NMR work. In the last 12 years, we have seen an increasing number of 13 C NMR studies of boron compounds. The availability of multinuclear facilities for PFT NMR spectrometers stimulates the measurement of the NMR spectra of other nuclei, like 29 Si, 119 Sn or other metals, in order to obtain additional information. This paper is intended to serve several purposes: to update previous reviews on 11 B NMR of boron compounds, to demonstrate some applications of multinuclear NMR to boron chemistry; to attempt to incorporate new NMR parameters into the known data set; and to summarize the experimental facts required for obtaining the maximum information from NMR studies on boron compounds

  17. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    Science.gov (United States)

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  18. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  19. Cell cycle dependence of boron uptake in various boron compounds used for neutron capture therapy

    International Nuclear Information System (INIS)

    Yoshida, F.; Matsumura, A.; Shibata, Y.; Yamamoto, T.; Nose, T.; Okumura, M.

    2000-01-01

    In neutron capture therapy, it is important that the tumor take boron in selectively. Furthermore, it is ideal when the uptake is equal in each tumor cell. Some indirect proof of differences in boron uptake among neoplastic cell cycles has been documented. However, no investigation has yet measured boron uptake directly. Using flow cytometry, in the present study cells were sorted by G0/G1 phase and G2/M phase, and the boron concentration of each fraction was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results were that BSH (sodiumborocaptate) and BPA (p-boronophenylalanine) had higher rates of boron uptake in the G2/M group than in the G0/G1 group. However, in BPA the difference was more prominent, which revealed a 2.2-3.3 times higher uptake of boron in the G2/M group than in the G0/G1 group. (author)

  20. Effects of processing and dopant on radiation damage removal in silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Brandhorst, H. W., Jr.; Swartz, C. K.; Mehta, S.

    1982-01-01

    Gallium and boron doped silicon solar cells, processed by ion-implantation followed by either laser or furnace anneal were irradiated by 1 MeV electrons and their post-irradiation recovery by thermal annealing determined. During the post-irradiation anneal, gallium-doped cells prepared by both processes recovered more rapidly and exhibited none of the severe reverse annealing observed for similarly processed 2 ohm-cm boron doped cells. Ion-implanted furnace annealed 0.1 ohm-cm boron doped cells exhibited the lowest post-irradiation annealing temperatures (200 C) after irradiation to 5 x 10 to the 13th e(-)/sq cm. The drastically lowered recovery temperature is attributed to the reduced oxygen and carbon content of the 0.1 ohm-cm cells. Analysis based on defect properties and annealing kinetics indicates that further reduction in annealing temperature should be attainable with further reduction in the silicon's carbon and/or divacancy content after irradiation.

  1. Corrosion behaviour of layers obtained by nitrogen implantation into boron films deposited onto iron substrates

    International Nuclear Information System (INIS)

    Marchetti, F.; Fedrizzi, L.; Giacomozzi, F.; Guzman, L.; Borgese, A.

    1985-01-01

    The electrochemical behaviour and corrosion resistance of boron films deposited onto Armco iron after bombardment with 100 keV N + ions were determined in various test solutions. The changes in the electrochemical parameters give evidence of lower anodic dissolution rates for the treated samples. Scanning electron microscopy and Auger analysis of the corroded surfaces confirm the presence of protective layers. (Auth.)

  2. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  3. The development and preliminary testing of new boronated agents for BNCT based on PET derived data

    International Nuclear Information System (INIS)

    Nichols, T.; Kabalka, G.; Kahn, M.; Das, B.; Das, S.; Bao, W.; Miller, L.

    2000-01-01

    Positron emission tomography (PET) has been utilized at the University of Tennessee for evaluating a variety of tumors including glioblastoma multiforme (GBM) and metastatic malignant melanoma (MM). Studies have been carried out utilizing fluorine-18 labeled p-boronophenylalanine ( 18 F-BPA) and other unnatural amino acids. A comparison of PET studies obtained using 18 F-BPA and a carbon-11 labeled cyclobutane-based amino acid ( 11 C-ACBC) revealed that 11 C-ACBC localized effectively in GBM tumors. Based on these results, we have prepared a series of boronated, aminocyclobutanecarboxylic acids. Preliminary uptake and cell toxicity studies have been carried out and show that many of the agents are not toxic. In one instance, a biodistribution study carried out using nude mice implanted with a human glioblastoma tumor, the tumor to normal tissue uptake of boron exceeds that observed for BPA. (author)

  4. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Peterson, P.L.; Winters, J.

    1992-01-01

    A system has been added to the DIII-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose f the boron film is to reduce the levels of impurity atoms in the DIII-D plasmas. Experiments following the application of the boron film in DIII-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime

  5. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  6. Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation.

    Science.gov (United States)

    Tang, Wei; Tian, Jingjing; Zheng, Qiang; Yan, Lin; Wang, Jiangxue; Li, Zhou; Wang, Zhong Lin

    2015-08-25

    Bone remodeling or orthodontic treatment is usually a long-term process. It is highly desirable to speed up the process for effective medical treatment. In this work, a self-powered low-level laser cure system for osteogenesis is developed using the power generated by the triboelectric nanogenerator. It is found that the system significantly accelerated the mouse embryonic osteoblasts' proliferation and differentiation, which is essential for bone and tooth healing. The system is further demonstrated to be driven by a living creature's motions, such as human walking or a mouse's breathing, suggesting its practical use as a portable or implantable clinical cure for bone remodeling or orthodontic treatment.

  7. Applied biomechanics to evaluate the properties of laser beam treated orthopedic implants; Biomêcanica aplicada na avaliação de propriedades de implantes ortopédicos metálicos tratados por feixe laser

    Energy Technology Data Exchange (ETDEWEB)

    Pieretti, Eurico Felix

    2016-07-01

    Laser beam marking is used to ensure biomaterials’ identification and traceability. The texturing imparts greater adhesion to the surfaces of implantable medical devices. The aim of this work was to evaluate the surface behaviour of the austenitic stainless steel ABNT NBR ISO 5832-1 marked and textured by optical fiber laser beam using selected parameters, changing the pulse frequency; in face of its biomechanical behaviour, through tests of tensile strength, fatigue and wear; verify the localized corrosion susceptibility by electrochemical tests in a solution that simulates the body fluids; and analyze microstructural changes. The treatments performed altered the biomaterials roughness and their micro hardness as a function of the increase of the pulse frequency. The microstructure and chemical composition of the surfaces underwent changes that directly affected the passive layer of the stainless steels, triggering the corrosion process. This effect was evidenced by SVET, XPS and characterization of electronic properties of the passive film by the Mott-Schottky technique. These two types of laser treatments increased the surfaces' magnetic susceptibility. The parameters used for the marking and texturing did not induce a decrease in the cellular viability of the samples, as no cytotoxicity was showed even after prolonged incubation. This biomaterial was adequate on the biomechanical tests, since the laser treatments, under the conditions used, did not induce the formation of surface tensions of magnitude capable of leading the fatigue fracture, indicating infinite fatigue life; the region of fracture by tension could not be related to the laser marking. The wear volume decreased as a function of the increase in micro hardness produced by the increase of the pulse frequency in the texturing. The visual character of the markings and texturing was assured after the majority of the tests performed. (author)

  8. Surface engineering by ion implantation

    International Nuclear Information System (INIS)

    Nielsen, Bjarne Roger

    1995-01-01

    Awidespread commercial applica tion iof particle accelerators is for ion implantation. Accelerator beams are used for ion implantation into metals, alloying a thin surface layer with foreign atoms to concentrations impossible to achieve by thermal processes, making for dramatic improvements in hardness and in resistance to wear and corrosion. Traditional hardening processes require high temperatures causing deformation; ion implantation on the other hand is a ''cold process'', treating the finished product. The ionimplanted layer is integrated in the substrate, avoiding the risk of cracking and delamination from normal coating processes. Surface properties may be ''engineered'' independently of those of the bulk material; the process does not use environmentally hazardous materials such as chromium in the surface coating. The typical implantation dose required for the optimum surface properties of metals is around 2 x 10 17 ion/cm 2 , a hundred times the typical doses for semiconductor processing. When surface areas of more than a few square centimetres have to be treated, the implanter must therefore be able to produce high beam currents (5 to 10 mA) to obtain an acceptable treatment time. Ion species used include nitrogen, boron, carbon, titanium, chromium and tantalum, and beam energies range from 50 to 200 keV. Since most components are three dimensional, it must be possible to rotate and tilt them in the beam, and control beam position over a large area. Examples of industrial applications are: - surface treatment of prostheses (hip and knee joints) to reduce wear of the moving parts, using biocompatible materials; - ion implantation into high speed ball bearings to protect against the aqueous corrosion in jet engines (important for service helicopters on oil rigs); - hardening of metal forming and cutting tools; - reduction of corrosive wear of plastic moulding tools, which are expensive to produce

  9. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  10. The influence of screw type, alloy and cylinder position on the marginal fit of implant frameworks before and after laser welding.

    Science.gov (United States)

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-04-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5mm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (alpha=0.05). Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13 microm) than the hexagonal screws (27.93 microm). Besides, no statistically significant differences were found after laser welding. 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values.

  11. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  12. Pulverization of boron element and proportions of boron carbide in boron; Broyage de bore element et dosage de carbure de bore dans le bore

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 {mu}. Grain sizes smaller than 1{mu} are required for applying thin layers of such boron. (author) [French] Il est possible de pulveriser finement du bore element au moyen de mortier et pilon en carbure de bore fritte, le taux de carbure de bore introduit etant inferieur a 1 pour cent. Le bore element dont nous disposons est constitue de petits grains brun fonce, a aretes vives, de dimension moyenne superieure a 5 {mu}. L'application de ce bore en couches minces demande des grains de dimensions inferieures a 1 {mu}. (aute0008.

  13. Laser microtexturing of implant surfaces for enhanced tissue integration

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, J.L. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics; Alexander, H. [Orthogen Corp., Springfield, NJ (United States)

    2001-07-01

    The success or failure of bone and soft tissue-fixed medical devices, such as dental and orthopaedic implants, depends on a complex combination of biological and mechanical factors. These factors are intimately associated with the interface between the implant surface and the surrounding tissue, and are largely determined by the composition, surface chemistry, and surface microgeometry of the implant. The relative contributions of these factors are difficult to assess. This study addresses the contribution of surface microtexture, on a controlled level, to tissue integration. (orig.)

  14. Boron uptake measurements in a rat model for Boron Neutron Capture Therapy of lung tumours

    Energy Technology Data Exchange (ETDEWEB)

    Bortolussi, S., E-mail: silva.bortolussi@pv.infn.i [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Bakeine, J.G. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Ballarini, F. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Gadan, M.A. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Protti, N.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Clerici, A.; Ferrari, C.; Cansolino, L.; Zonta, C.; Zonta, A. [Department of Surgery, University of Pavia, via Ferrata 27100 Pavia (Italy); Nano, R. [Department of Animal Biology, University of Pavia, via Ferrata 27100 Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy)

    2011-02-15

    Lung carcinoma is the leading cause of cancer mortality in the Western countries. Despite the introduction over the last few years of new therapeutic agents, survival from lung cancer has shown no discernible improvement in the last 20 years. For these reasons any efforts to find and validate new effective therapeutic procedures for lung cancer are very timely. The selective boron uptake in the tumour with respect to healthy tissues makes Boron Neutron Capture Therapy a potentially advantageous option in the treatment of tumours that affect whole vital organs, and that are surgically inoperable. To study the possibility of applying BNCT to the treatment of diffuse pulmonary tumours, an animal model for boron uptake measurements in lung metastases was developed. Both healthy and tumour-bearing rats were infused with Boronophenylalanine (BPA) and sacrificed at different time intervals after drug administration. The lungs were extracted, and prepared for boron analysis by neutron autoradiography and {alpha}-spectroscopy. The boron concentrations in tumour and normal lung were plotted as a function of the time elapsed after BPA administration. The concentration in tumour is almost constant within the error bars for all the time intervals of the experiment (1-8 h), while the curve in normal lung decreases after 4 h from BPA infusion. At 4 h, the ratio of boron concentration in tumour to boron concentration in healthy lung is higher than 3, and it stays above this level up to 8 h. Also the images of boron distribution in the samples, obtained by neutron autoradiography, show a selective absorption in the metastases.

  15. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    Science.gov (United States)

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  16. Effect of boron implantation on the electrical and photoelectrical properties of e-beam deposited Ag-In-Se thin films

    International Nuclear Information System (INIS)

    Colakoglu, T; Parlak, M; Kulakci, M; Turan, R

    2008-01-01

    In this study, e-beam evaporated Ag-In-Se (AIS) thin films were doped by the implantation of boron (B) ions at 75 keV with a dose of 1 x 10 15 ions cm -2 and a subsequent annealing process was applied to the doped AIS films at different temperatures under nitrogen atmosphere. The effects of implantation and annealing on the electrical and photoelectrical properties of AIS thin films were investigated through temperature dependent conductivity, spectral photoresponse and photoconductivity measurements under different illumination intensities. The electrical conductivity measurements showed that the room temperature conductivity values were determined as 2.4 x 10 -7 (Ω cm) -1 , 1.7 x 10 -6 (Ω cm) -1 and 8.9 x 10 -5 (Ω cm) -1 for B-doped films (B0), B-doped and annealed films at 200 deg. C (B2) and at 300 deg. C (B3), respectively. It was observed that the electrical conductivity improved as the annealing temperature increased up to 400 deg. C at which the AIS thin films showed degenerate semiconductor behaviour. The spectral distribution of the photoresponse curves indicated three local maxima located at 1.63, 1.79 and 2.01 eV for B0 type films, 1.65, 1.87 and 2.07 eV for B2 type films and 1.73, 2.02 and 2.32 eV for B3 type films at room temperature. These three different energy values were ascribed to the splitting of the valence band due to spin-orbit interaction and crystalline lattice field effects. The first energy values of each set were determined to be energy band gaps of the AIS thin films. The photoconductivity measurements as a function of temperature and illumination intensity were performed on the B-doped AIS thin films in order to determine the nature of recombination processes in the films. The photoconductivity values were found to be thermally quenched for all types of thin films and the variation of photocurrent as a function of illumination intensity showed that the dependence of photocurrent on the intensity was supralinear. The two

  17. The development of heterogeneous materials based on Ni and B4C powders using a cold spray and stratified selective laser melting technologies

    Science.gov (United States)

    Filippov, A. A.; Fomin, V. M.; Buzyurkin, A. E.; Kosarev, V. F.; Malikov, A. G.; Orishich, A. M.; Ryashin, N. S.

    2018-01-01

    The work is dedicated to the creation of new ceramic-composite materials based on boron carbide, nickel and using a laser welding in order to obtain three dimensional objects henceforth. The perspective way of obtaining which has been suggested by the authors combined two methods: cold spray technology and subsequent laser post-treatment. At this stage, the authors focused on the interaction of the laser with the substance, regardless of the multi-layer object development. The investigated material of this work was the metal-ceramic mixture based on boron carbide, which has high physical and mechanical characteristics, such as hardness, elastic modulus, and chemical resistance. The nickel powder as a binder and different types of boron carbide were used. The ceramic content varied from 30 to 70% by mass. Thin ceramic layers were obtained by the combined method and cross-sections of different seams were studied. It was shown that the most perspective layers for additive manufacturing could be obtained from cold spray coatings with ceramic concentrations more than 50% by weight treated when laser beam was defocused (thermal-conductive laser mode).

  18. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Petersen, P.I.; Winter, J.

    1991-09-01

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  19. Boron neutron capture therapy. Synthesis of boronated amines- and DNA intercalating agents for potential use in cancer therapy

    International Nuclear Information System (INIS)

    Ghaneolhosseini, H.

    1998-01-01

    Boron Neutron Capture Therapy is a binary cancer treatment modality, involving the delivery of a suitable boron compound to tumour cells followed by irradiation of the tumour by thermal neutrons. Boronated agents can selectively be delivered to tumour cells either directly with tumour-specific boron compounds, or by use of targeting strategies. However, the efficacy of this method would increase if the boron agents are localised in the cell nucleus rather than in the cell cytoplasm when neutron irradiation takes place. With these considerations in mind, some boronated DNA intercalating/interacting agents such as phenanthridine- acridine- spermidine- and naphthalimide derivatives were synthesised. Aminoalkyl-o-carboranes were synthesised in order to be used both for coupling to macromolecules and also for halogenation of their corresponding nido-derivatives. The amino groups were introduced using the Gabriel reagent N, N-dibenzyl iminodicarboxylate to provide 1-(aminomethyl)- and 1-(2-aminoethyl)-o-carboranes. The first attempt to achieve the possibility to accumulate a higher concentration of boron atoms in the cell nucleus was to synthesize carboranyl phenanthridinium analogues by reacting a p- or o-carboranyl moiety with phenanthridine, a chromophore with a planar aromatic ring system as DNA intercalator. Boronated acridine-spermidine, boronated diacridine, and boronated dispermidine were obtained in order to increase water solubility to avoid the interaction of these agents with non-DNA sides of the cell, especially membranes; and to enhance the feasibility of a higher DNA-binding constant and also decrease the DNA-drug dissociation rate. Finally, the synthesis of a boronated naphthalimide derivative was carried out by nucleophilic reaction of a primary aminoalkyl-p-carborane with naphthalic anhydride. Biological evaluations on DNA-binding, toxicity, and cellular binding with carboranyl phenanthridinium analogues, boronated acridine- and spermidine are described

  20. Histological and radiographic evaluation of the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a scaffold of inorganic bone and after stimulation with low-power laser light

    Directory of Open Access Journals (Sweden)

    Bengtson Antonio

    2010-01-01

    Full Text Available Objective: The present study histologically and radiologically evaluates the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a natural inorganic bone mineral scaffold from a bull calf femur and irradiation with low-power light laser. Materials and Methods: The right and left hind limbs of 16 rats were shaved and an incision was made in the muscle on the face corresponding to the median portion of the tibia, into which rhBMP-2 in a scaffold of inorganic bone was implanted. Two groups of limbs were formed: control (G1 and laser irradiation (G2. G2 received diode laser light applied in the direction of the implant, at a dose of 8 J/cm2 for three minutes. On the 7th, 21st, 40th and 112th days after implantation, hind limbs of 4 animals were radiographed and their implants removed together with the surrounding tissue for study under the microscope. The histological results were graded as 0=absence, 1=slight presence, 2=representative and 3=very representative, with regard to the following events: formation of osteoid structure, acute inflammation, chronic inflammation, fibrin deposition, neovascularization, foreign-body granuloma and fibrosis. Results: There were no statistically significant differences in these events at each evaluation times, between the two groups (P > 0.05; Mann-Whitney test. Nevertheless, it could be concluded that the natural inorganic bone matrix with rhBMP-2, from the femur of a bull calf, is a biocompatible combination. Conclusions: Under these conditions, the inductive capacity of rhBMP-2 for cell differentiation was inhibited. There was a slight acceleration in tissue healing in the group that received irradiation with low-power laser light.

  1. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  2. Usefulness of laser ablation ICP-MS for analysis of metallic particles released to oral mucosa after insertion of dental implants.

    Science.gov (United States)

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Makuch, Krzysztof; Barałkiewicz, Danuta

    2018-03-01

    Despite the fact that titanium is considered highly biocompatible, its presence in the oral cavity (an environment of frequently changing pH and temperature) may result in the release of titanium from intraosseous implants into the oral mucosa, causing a range of reactions from the human body. Fragments of oral mucosa collected from patients after dental implant insertion were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study revealed an elevated content of elements (Ti, Al, V) which are components of the metal implants and temporary cover screws. Dynamic ablation of the tissue surface was used in order to obtain maps of the content and distribution of analyzed elements. The material consisted of 30 oral mucosa tissue fragments collected 3-5 months after implantation and 10 samples collected before implantation (control group). The application of optical microscope allowed for indication and confirmation of the location of metal particles prior to LA-ICP-MS analysis. The so-obtained map permitted location of regions containing metal particles. LA-ICP-MS analysis revealed groups of samples with similar properties of metal particles, thus confirming that those metal particles were the main source of the elevated content of metals (Ti, Al, V) in the tissue after implantation. A calibration strategy based on matrix matched solid standards with powdered egg white proteins as matrix material was applied with 34 S as an internal standard. The accuracy of the analytical method was verified by ablating pellets of certified reference material ERM-BB422 Fish muscle. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Boron-based nanostructures: Synthesis, functionalization, and characterization

    Science.gov (United States)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  4. Development of a radiochemical procedure for certification of phosphorus implantation dose in silicon

    International Nuclear Information System (INIS)

    Paul, R.L.; Simons, D.S.

    2002-01-01

    The U.S. semiconductor industry relies heavily on secondary ion mass spectrometry (SIMS) for characterization of the depth distribution of dopants such as boron, arsenic, and phosphorus in silicon. To assist the industry in achieving high accuracy measurements, two Standard Reference Materials (SRMs) have been developed by NIST as SIMS calibration standards: SRM 2137 (Boron Implant in Silicon), certified by neutron depth profiling, and SRM 2134 (Arsenic Implant in Silicon), certified by instrumental neutron activation analysis. The industry is still in need of a phosphorus standard. Plans are currently underway to develop a phosphorus implant in silicon SRM, to be certified by radiochemical neutron activation analysis (RNAA). RNAA was chosen because other techniques lack the necessary sensitivity, chemical specificity and matrix independence to measure phosphorus at implantation levels. In order to assess the sensitivity, accuracy, and precision of RNAA for this work, preliminary measurements were carried out on six pieces of a phosphorus-implanted silicon wafer that was previously used in a round-robin study of SIMS measurement repeatability. Standards were prepared by depositing micro litre amounts of a standardized phosphorus solution on aluminum foil. A non-implanted silicon wafer was analysed as a blank. Samples were irradiated at a neutron fluency rate of 1 x 10 14 cm -2 s -1 to convert 31 P to 32 P, then mixed with milligram amounts of phosphorus carrier and dissolved in a mixture of nitric and hydrofluoric acids. Phosphorus was separated from the matrix by precipitation first as ammonium phosphomolybdate then as magnesium ammonium phosphate. The yield (fraction of recovered carrier) was determined gravimetrically as Mg(NH 4 )PO 4 .6H 2 O. 32 P was measured using a beta proportional counter. The measurements yielded a mean and standard deviation of (8.35 ± 0.20) x 10 14 atoms.cm -2 (relative standard deviation = 2.35 %), in agreement with both the nominal

  5. Meeting the challenge of homogenous boron targeting of heterogeneous tumors for effective boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Trivillin, Veronica A.; Itoiz, Maria E.; Rebagliati, J. Raul; Batistoni, Daniel; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.; Gonzalez, Beatriz N.

    2006-01-01

    BNCT is a tumor cell targeted radiation therapy. Inadequately boron targeted tumor populations jeopardize tumor control. Meeting the to date unresolved challenge of homogeneous targeting of heterogeneous tumors with effective boron carriers would contribute to therapeutic efficacy. The aim of the present study was to evaluate the degree of variation in boron content delivered by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of (BPA+GB-10) in different portions of tumor, precancerous tissue around tumor and normal pouch tissue in the hamster cheek pouch oral cancer model. Boron content was evaluated by ICP-AES. The degree of homogeneity in boron targeting was assessed in terms of the coefficient of variation ([S.D./Mean]x100) of boron values. Statistical analysis of the results was performed by one-way ANOVA and the least significant difference test. GB-10 and GB-10 plus BPA achieved respectively a statistically significant 1.8-fold and 3.3-fold increase in targeting homogeneity over BPA. The combined boron compound administration protocol contributes to homogeneous targeting of heterogeneous tumors and would increase therapeutic efficacy of BNCT by exposing all tumor populations to neutron capture reactions in boron. (author)

  6. Microstructures of group III-nitrides after implantation with gallium

    International Nuclear Information System (INIS)

    Kench, P.J.

    2001-05-01

    High doses of gallium have been implanted into layers of aluminium nitride (AIN), indium nitride (InN) and amorphous silicon nitride (a-SiN x ) in an attempt to bond gallium with nitrogen and form binary or ternary alloys. The microstructure of the resultant layers have been characterised using, principally, transmission electron microscopy and X-ray photoelectron spectroscopy. The implantation of a high dose of Ga ions into AIN was successful in synthesising a GaN/GaAlN compound. The resultant layers were largely uniform but contained aluminium precipitates near the surface. These precipitates were pure Al and were most common in the region associated with the maximum Ga concentration. Deconvolution of X-ray photoelectron spectroscopy peaks indicated that Ga existed in a number of chemical states, including the nitride. Electron diffraction patterns from the implanted layers were closely indexed to both AIN and GaN. A further N implant was used to reduce the concentration of the aluminium precipitates and increase the concentration of GaN bonds. The yield of Ga-N bonds dramatically increased and a reduction in the concentration of Al precipitates was observed. Laser and thermal annealing was performed on the implanted AIN substrates. The near surface regions of the implanted specimens appeared to free of precipitates and bubbles. Laser annealing did have a noticeable effect on the electrical and optical properties of the layers. After laser annealing the conductivity of the Ga implanted layer was lower, indicating that the quality of the material had improved. PL measurements showed that a new PL peak at 2.6 eV appeared after laser annealing. It has been found that implanting InN with gallium can yield Ga-N bonds. However, Ga implants into InN were not as successful at synthesising GaN compounds as those by implanting Ga into AIN, due to the low thermal stability of InN. The implanted InN layers were very irregular and contained large indium precipitates and

  7. Determination of boron in graphite, boron carbide and glass by ICP-MS, ICP-OES and conventional wet chemical methods

    International Nuclear Information System (INIS)

    Venkatesh, K.; Kamble, Granthali S.; Venkatesh, Manisha; Kumar, Sanjukta A.; Reddy, A.V.R.

    2014-01-01

    Boron is an important element of interest in nuclear reactor materials due to its high neutron absorption cross section (σ 0 =3837 barns for 10 B). In the present paper, R and D work and routinely used methods have been described for the analysis of case samples (1) Graphite where boron is present at trace levels, (2) Boron Carbide having boron concentration of about 80% and (3) Glass containing 4-6 % boron. (author)

  8. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  9. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Yilmaz, M. Tolga; Paluluoglu, Cihan

    2008-01-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm 2 , but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  10. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  11. Luminescent converter of neodymium laser radiation

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Golab, S.

    1992-01-01

    The new luminescent converter of neodymium laser radiation has been worked out. Activated inorganic compounds of ytterbium and erbium ions has been used as luminescent agent. The multi-component inorganic glass containing tellurium oxide as well as boron, sodium, magnesium and zinc oxides has been applied as a converter matrix

  12. A detailed physical model for ion implant induced damage in silicon

    International Nuclear Information System (INIS)

    Tian, S.; Morris, M.F.; Morris, S.J.; Obradovic, B.; Wang, G.; Tasch, A.F.

    1998-01-01

    A unified physically based ion implantation damage model has been developed which successfully predicts both the impurity profiles and the damage profiles for a wide range of implant conditions for arsenic, phosphorus, BF 2 , and boron implants into single-crystal silicon. In addition, the amorphous layer thicknesses predicted by this new damage model are also in excellent agreement with experimental measurements. This damage model is based on the physics of point defects in silicon, and explicitly simulates the defect production, diffusion, and their interactions which include interstitial-vacancy recombination, clustering of same type of defects, defect-impurity complex formation, emission of mobile defects from clusters, and surface effects for the first time. New computationally efficient algorithms have been developed to overcome the barrier of the excessive computational requirements. In addition, the new model has been incorporated in the UT-MARLOWE ion implantation simulator, and has been developed primarily for use in engineering workstations. This damage model is the most physical model in the literature to date within the framework of the binary collision approximation (BCA), and provides the required, accurate as-implanted impurity profiles and damage profiles for transient enhanced diffusion (TED) simulation

  13. SHB1/HY1 Alleviates Excess Boron Stress by Increasing BOR4 Expression Level and Maintaining Boron Homeostasis in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Qiang Lv

    2017-05-01

    Full Text Available Boron is an essential mineral nutrient for higher plant growth and development. However, excessive amounts of boron can be toxic. Here, we report on the characterization of an Arabidopsis mutant, shb1 (sensitive to high-level of boron 1, which exhibits hypersensitivity to excessive boron in roots. Positional cloning demonstrated that the shb1 mutant bears a point mutation in a gene encoding a heme oxygenase 1 (HO1 corresponding to the HY1 gene involved in photomorphogenesis. The transcription level of the SHB1/HY1 gene in roots is up-regulated under excessive boron stimulation. Either overexpressing SHB1/HY1 or applying the HO1 inducer hematin reduces boron accumulation in roots and confers high boron tolerance. Furthermore, carbon monoxide and bilirubin, catalytic products of HO1, partially rescue the boron toxicity-induced inhibition of primary root growth in shb1. Additionally, the mRNA level of BOR4, a boron efflux transporter, is reduced in shb1 roots with high levels of boron supplementation, and hematin cannot relieve the boron toxicity-induced root inhibition in bor4 mutants. Taken together, our study reveals that HO1 acts via its catalytic by-products to promote tolerance of excessive boron by up-regulating the transcription of the BOR4 gene and therefore promoting the exclusion of excessive boron in root cells.

  14. Investigation of low-resistivity from hydrogenated lightly B-doped diamond by ion implantation

    Directory of Open Access Journals (Sweden)

    Cui Xia Yan et al

    2008-01-01

    Full Text Available We have implanted boron (B ions (dosage: 5×1014 cm-2 into diamond and then hydrogenated the sample by implantating hydrogen ions at room temperature. A p-type diamond material with a low resistivity of 7.37 mΩ cm has been obtained in our experiment, which suggests that the hydrogenation of B-doped diamond results in a low-resistivity p-type material. Interestingly, inverse annealing, in which carrier concentration decreased with increasing annealing temperature, was observed at annealing temperatures above 600 °C. In addition, the formation mechanism of a low-resistivity material has been studied by density functional theory calculation using a plane wave method.

  15. Boron diffusion in strained and strain-relaxed SiGe

    International Nuclear Information System (INIS)

    Wang, C.C.; Sheu, Y.M.; Liu, Sally; Duffy, R.; Heringa, A.; Cowern, N.E.B.; Griffin, P.B.

    2005-01-01

    . Phys. 94 (September (6)) (2003) 3883-3890; S. Eguchi, C.N. Chleirigh, O.O. Olubuyide, J.L. Hoyt, Appl. Phys. Lett. 84 (January (3)) (2004) 368-370] in which the equilibrium state of point defects is achieved. These are not the conditions used in aggressive CMOS technologies. Our experiment has therefore been designed to investigate boron diffusion in both strained and strain-relaxed SiGe including ultra-low energy, high concentration boron implant and spike RTA. Models are proposed and the retardation factors corresponding to Ge concentration and stress effect were successfully extracted through these experiments. This paper describes these experiments, with the calibration and the resulting diffusion constants for an ultra-shallow boron junction in SiGe that is popular in advanced CMOS technology

  16. Neutron capture therapy of an Egf receptor positive glioma using boronated cetuximab alone or in combination with boronophenylalanine

    International Nuclear Information System (INIS)

    Wu, Gong; Yang, Weilian; Barth, Rolf F.

    2006-01-01

    The purpose of the present study was to evaluate the monoclonal antibody cetuximab (IMC-C225), which is directed against EGFR, as a boron delivery agent for NCT of a human EGFR gene transfected rat glioma, designated F98 EGFR . A heavily boronated polyamidoamine (PAMAM) dendrimer (BD) was chemically linked to cetuximab by means of heterobifunctional reagents. In vitro, the bioconjugate (BD-C225) was specifically taken up by F98 EGFR glioma cells (41.8 μg/g) compared to receptor (-) F98 WT cells (9.1 μg/g). Glioma cells were stereotactically implanted into the brains of Fischer rats and biodistribution studies were initiated 14 d later. The amount of boron retained by F98 EGFR gliomas 24 h following either convection enhanced delivery (CED) or intratumoral (i.t.) injection were 77.2 and 50.8 μg/g, respectively, and normal brain and blood values were 180 d) compared to 40 d for i.v. BPA alone and 31 d and 26 d for irradiated and untreated controls, respectively. Our data convincingly demonstrate the therapeutic efficacy of molecular targeting of EGFR using either boronated cetuximab alone or in combination with BPA and should provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors. (author)

  17. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  18. Studies for the application of boron neutron capture therapy to the treatment of differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Dagrosa, A.; Carpano, M.; Perona, M.; Thomasz, L.; Nievas, S.; Cabrini, R.; Juvenal, G.; Pisarev, M.

    2011-01-01

    The aim of these studies was to evaluate the possibility of treating differentiated thyroid cancer by BNCT. These carcinomas are well controlled with surgery followed by therapy with 131 I; however, some patients do not respond to this treatment. BPA uptake was analyzed both in vitro and in nude mice implanted with cell lines of differentiated thyroid carcinoma. The boron intracellular concentration in the different cell lines and the biodistribution studies showed the selectivity of the BPA uptake by this kind of tumor.

  19. Amorphous silicon passivation for 23.3% laser processed back contact solar cells

    Science.gov (United States)

    Carstens, Kai; Dahlinger, Morris; Hoffmann, Erik; Zapf-Gottwick, Renate; Werner, Jürgen H.

    2017-08-01

    This paper presents amorphous silicon deposited at temperatures below 200 °C, leading to an excellent passivation layer for boron doped emitter and phosphorus doped back surface field areas in interdigitated back contact solar cells. A higher deposition temperature degrades the passivation of the boron emitter by an increased hydrogen effusion due to lower silicon hydrogen bond energy, proved by hydrogen effusion measurements. The high boron surface doping in crystalline silicon causes a band bending in the amorphous silicon. Under these conditions, at the interface, the intentionally undoped amorphous silicon becomes p-type conducting, with the consequence of an increased dangling bond defect density. For bulk amorphous silicon this effect is described by the defect pool model. We demonstrate, that the defect pool model is also applicable to the interface between amorphous and crystalline silicon. Our simulation shows the shift of the Fermi energy towards the valence band edge to be more pronounced for high temperature deposited amorphous silicon having a small bandgap. Application of optimized amorphous silicon as passivation layer for the boron doped emitter and phosphorus doped back surface field on the rear side of laser processed back contact solar cells, fabricated using four laser processing steps, yields an efficiency of 23.3%.

  20. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm{sup 2}, initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10{sup 6}x[OH]{sup 0.11}x[CD]{sup 0.62}x[IBC]{sup -0.57}x[DSE]{sup -0.}= {sup 04}x[T]{sup -2.98}x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  1. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm 2 , initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10 6 x[OH] 0.11 x[CD] 0.62 x[IBC] -0.57 x[DSE] -0.04 x[T] -2.98 x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  2. Modified section method for laser-welding of ill-fitting cp Ti and Ni-Cr alloy one-piece cast implant-supported frameworks.

    Science.gov (United States)

    Tiossi, R; Falcão-Filho, H; Aguiar Júnior, F A; Rodrigues, R C; Mattos, M da G; Ribeiro, R F

    2010-05-01

    This study aimed to verify the effect of modified section method and laser-welding on the accuracy of fit of ill-fitting commercially pure titanium (cp Ti) and Ni-Cr alloy one-piece cast frameworks. Two sets of similar implant-supported frameworks were constructed. Both groups of six 3-unit implant-supported fixed partial dentures were cast as one-piece [I: Ni-Cr (control) and II: cp Ti] and evaluated for passive fitting in an optical microscope with both screws tightened and with only one screw tightened. All frameworks were then sectioned in the diagonal axis at the pontic region (III: Ni-Cr and IV: cp Ti). Sectioned frameworks were positioned in the matrix (10-Ncm torque) and laser-welded. Passive fitting was evaluated for the second time. Data were submitted to anova and Tukey-Kramer honestly significant difference tests (P screws tightened, one-piece cp Ti group II showed significantly higher misfit values (27.57 +/- 5.06 microm) than other groups (I: 11.19 +/- 2.54 microm, III: 12.88 +/- 2.93 microm, IV: 13.77 +/- 1.51 microm) (P screw-tightened test, with readings on the opposite side to the tightened side, Ni-Cr cast as one-piece (I: 58.66 +/- 14.30 microm) was significantly different from cp Ti group after diagonal section (IV: 27.51 +/- 8.28 microm) (P 0.05). Results showed that diagonally sectioning ill-fitting cp Ti frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves passivity levels of the same frameworks when compared to one-piece cast structures.

  3. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  4. Diode Laser in Minor Oral Surgery: A Case Series of Laser Removal of Different Benign Exophytic Lesions

    OpenAIRE

    Sotoode, Somaye Mazarei; Azimi, Somayyeh; Taheri, Sayed Alinaghi; Asnaashari, Mohammad; Khalighi, Hamidreza; Rahmani, Somayeh; Jafari, Soudeh; Elmi Rankohi, Zahra

    2015-01-01

    Introduction: The role of laser in conservative management of oral disease is well established. Laser procedures are common in the fields of oral surgery, implant dentistry, endodontic, and periodontic therapy.

  5. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  6. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  7. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  8. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  9. Defect generation/passivation by low energy hydrogen implant for silicon solar cells

    International Nuclear Information System (INIS)

    Sopori, B.L.; Zhou, T.Q.; Rozgonyi, G.A.

    1990-01-01

    Low energy ion implant is shown to produce defects in silicon. These defects include surface damage, hydrogen agglomeration, formation of platelets with (111) habit plane and decoration of dislocations. Hydrogen also produces an inversion type of surface on boron doped silicon. These effects indicate that a preferred approach for passivation is to incorporate hydrogen from the back side of the cell. A backside H + implant technique is described. The results show that degree of passivation differs for various devices. A comparison of the defect structures of hydrogenated devices indicates that the structure and the distribution of defects in the bulk of the material plays a significant role in determining the degree of passivation

  10. Effect of joining the sectioned implant-supported prosthesis on the peri-implant strain generated in simulated mandibular model.

    Science.gov (United States)

    Singh, Ipsha; Nair, K Chandrasekharan; Shetty, Jayakar

    2017-01-01

    The aim of this study is to evaluate the strain developed in simulated mandibular model before and after the joining of an implant-supported screw-retained prosthesis by different joining techniques, namely, arc welding, laser welding, and soldering. A specimen simulating a mandibular edentulous ridge was fabricated in heat-cured acrylic resin. 4-mm holes were drilled in the following tooth positions; 36, 33, 43, 46. Implant analogs were placed in the holes. University of California, Los Angeles, abutment was attached to the implant fixture. Eight strain gauges were attached to the acrylic resin model. Six similar models were made. Implant-supported screw-retained fixed prosthesis was fabricated in nickel-chromium alloy. A load of 400 N was applied on the prosthesis using universal testing machine. Resultant strain was measured in each strain gauge. All the prostheses were sectioned at the area between 36 and 33, 33 and 43, and 43 and 46 using 35 micrometer carborundum disc, and strain was measured in each strain gauge after applying a load of 400 N on the prosthesis. Specimens were joined by arc welding, soldering, and laser welding. After joining, a load of 400 N was applied on each prosthesis and the resultant strain was measured in each strain gauge. Highest mean strain values were recorded before sectioning of the prostheses (889.9 microstrains). Lowest mean strain values were recorded after sectioning the prosthesis and before reuniting it (225.0 microstrains). Sectioning and reuniting the long-span implant prosthesis was found to be a significant factor in influencing the peri-implant strain.

  11. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  12. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  13. In vivo behavior of surface modified Ti6Al7Nb alloys used in selective laser melting for custom-made implants. A preliminary study.

    Science.gov (United States)

    Rotaru, H; Armencea, G; Spîrchez, Diana; Berce, C; Marcu, Teodora; Leordean, D; Kim, Seong Gon; Lee, Sang Woon; Dinu, C; Băciuţ, G; Băciuţ, Mihaela

    2013-01-01

    The objectives of this study were to test the biocompatibility and to evaluate the osseointegration of Titanium-Aluminum-Niobium (Ti6Al7Nb) alloy used in the manufacturing of personalized implants with selective laser melting (SLM) technology and to compare the growth viability of osteoblastic-like cells on different Ti6Al7Nb alloy samples (plain, coated with hydroxyapatite or SiO2-TiO2) implanted into the cranial bone of Wistar rats. In terms of biocompatibility, the cone-beam computer-tomography head scans taken at the moment of sacrifice of each group (one, two and three months) showed no implant displacement, no osteolysis and no liquid collection around the implants. At one month, around all types of implants new bone formation was noticed, although around the plain Ti6Al7Nb implant a large amount of powder debris was present. Still, no inflammatory reaction was seen. At two months, the distance between the implants and the calvarial bone margins diminished. A thin layer of fibrous tissue was noticed around the Ti6Al7Nb implant coated with hydroxyapatite but no bone contact was achieved. In the group sacrificed at three months there was still no bone contact, but noticeable were the SiO2-TiO2. In the group sacrificed at three months SiO2-TiO2 particles detached from the implant and completely integrated in the tissue were noticeable. All results suggested that the Ti6Al7Nb alloy with or without infiltration is well biologically tolerated.

  14. Regrowth zones in laser annealed radiation damaged diamond

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Prawer, S.; Dooley, S.P.; Kalish, R.; Technion-Israel Inst. of Tech., Haifa

    1993-01-01

    Focused laser annealing of ion implanted diamond with a 15 μm diameter laser spot produces as variety of effects that depend on the power density of the laser. Channeling Contrast Microscopy (CCM) provides a relatively straight forward, rapid, method to analyse the annealed regions of the diamond to characterize the effects. In order of increasing laser power density, effects that are observed include: regrowth of the end of range damage of the ion implantation, formation of a buried graphitic layer and complete graphitization of the surface of the diamond down to the bottom of the original damage layer. Information provided by CCM leads to an understanding the causes of these effects and provides insight into the carbon phase diagram in the neighbourhood of the graphite to diamond phase transition. Analysis of the effects of laser annealing by CCM are complicated by the swelling of the diamond lattice caused by the original ion implantation, compaction following regrowth and the effect of the analysis beam irradiation itself. 12 refs., 5 figs

  15. Theoretical predictions of the lateral spreading of implanted ions

    International Nuclear Information System (INIS)

    Ashworth, D.G.; Oven, R.

    1986-01-01

    The theoretical model and computer program (AAMPITS-3D) of Ashworth and co-workers for the calculation of three-dimensional distributions of implanted ions in multi-element amorphous targets are extended to show that the lateral rest distribution is gaussian in a form with a lateral standard deviation (lateral-spread function) which is a function of depth beneath the target surface. A method is given whereby this function may be accurately determined from a knowledge of the projected range and chord range rest distribution functions. Examples of the lateral-spread function are given for boron, phosphorus and arsenic ions implanted into silicon and a detailed description is given of how the lateral-spread function may be used in conjunction with the projected range rest distribution function to provide a fully three-dimensional rest distribution of ions implanted into amorphous targets. Examples of normalised single ion isodensity contours computed from AMPITS-3D are compared with those obtained using the previous assumption of a lateral standard deviation which was independent of distance beneath the target surface. (author)

  16. Boronization on NSTX using Deuterated Trimethylboron

    International Nuclear Information System (INIS)

    Blanchard, W.R.; Gernhardt, R.C.; Kugel, H.W.; LaMarche, P.H.

    2002-01-01

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in the execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described

  17. Deuterated-decaborane using boronization on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Jun-ichi; Arai, Takashi; Kaminaga, Atsushi; Miyata, Katsuyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Arai, Masaru [Kaihatsu Denki Co., Ltd., Tokyo (Japan)

    2001-03-01

    In JT-60U, boronization using hydride-decaborane (B{sub 10}H{sub 14}) vaporization has been conducted for the first wall conditioning. Compared to other discharge cleaning (DC), boronization is claimed to be efficient in reduction of oxygen impurities and hydrogen recycling in plasma. However, there are some problems in reduction of hydrogen included in boron film and stabilization of DC glow discharge during the boronization. To solve these problems, a new boronization method using deuterated-decaborane (B{sub 10}D{sub 14}) was adopted instead of the conventional hydride-decaborane. As a result, hydrogen content in the boron film decreased clearly and discharge conditioning shots, for decreasing hydrogen content in plasmas, after the boronization were reduced to 1/10 in comparison to the conventional process. Furthermore, DC glow discharge became stable, with only helium carrier gas, and it was possible to save 30 hours in maximum of the time necessary to boronization. It is shown that the boronization using deuterated-decaborane is very efficient and effective method for the first wall conditioning. (author)

  18. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    Aldabergenov, M.K.; Balakaeva, T.G.

    1995-01-01

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P 2 O 5 ) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  19. ISOBORDAT: An Online Data Base on Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, M.; Adorni-Braccesi, A.; Andreani, D.; Gori, L.; Gonfiantini, R. [Istituto di Geoscienze e Georisorse, CNR, Pisa (Italy); Sciuto, P. F. [Servizio Geologico, Sismico e dei Suoli, D.G. Ambiente e Difesa del Suolo e della Costa, Regione Emilia Romagna, Bologna (Italy)

    2013-07-15

    From 1986, boron isotope data in natural substances increased sharply in scientific publications. Analytical difficulties derived from complex geochemical matrices have been faced and interlaboratory calibrations reported in the boron literature. Boron isotopes are nowdays applied to investigate boron origin and migration in natural waters, sources of boron contamination, water-rock interactions and also contribute to water resource management. This is especially important in those areas where boron content exceeds the local regulations for drinking water supply and boron sources need to be identified. ISOBORDAT, an interactive database on boron isotope composition and content in natural waters is presented to the wider community of boron isotope users. The database's structure, scope and applications are reported, along with a discussion on {delta}{sup 11}B values obtained in Italian waters. In the database boron data are structured in the following categories: rainwater, rivers, lakes, groundwater and potential contaminants. New categories (medium and high enthalpy fluids from volcanic and geothermal areas) are anticipated. ISOBORDAT aims to be as interactive as possible and will be developed taking into account information and suggestions received. The database is continually undergoing revision to keep pace with continuous data publication. Indications of data that are missing at present are greatly appreciated. (author)

  20. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis

    Directory of Open Access Journals (Sweden)

    Gattinger Johannes

    2016-09-01

    Full Text Available Aim of this study was to prove the possibility of manufacturing patient specific root analogue two-part (implant and abutment implants by direct metal laser sintering. The two-part implant design enables covered healing of the implant. Therefore, CT-scans of three patients are used for reverse engineering of the implants, abutments and crowns. Patient specific implants are manufactured and measured concerning dimensional accuracy and surface roughness. Impacts of occlusal forces are simulated via FEA and compared to those of standard implants.

  1. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  2. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  3. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  4. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  5. Fine-tuning the nucleophilic reactivities of boron ate complexes derived from aryl and heteroaryl boronic esters.

    Science.gov (United States)

    Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert

    2015-02-23

    Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Boron Neutron Capture Therapy activity of diffused tumors at TRIGA Mark II in Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Bortolussi, S.; Stella, S.; De Bari, A.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy)]|[National Institute of Nuclear Physics (INFN), Pavia (Italy); Bruschi, P.; Bakeine, J.G. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Clerici, A.; Ferrari, C.; Zonta, C.; Zonta, A. [Department of Surgery, University of Pavia, Pavia (Italy); Nano, R. [Department of Animal Biology, University of Pavia, Pavia (Italy)

    2008-10-29

    The Boron neutron Capture Therapy research in Pavia has a long tradition: it begun more than 20 years ago at the TRIGA Mark II reactor of the University. A technique for the treatment of the hepatic metastases was developed, consisting in explanting the liver treated with {sup 10}B, irradiating it in the thermal column of the reactor, and re-implanting the organ in the patient. In the last years, the possibility of applying BNCT to the lung tumours using epithermal collimated neutron beams and without explanting the organ, is being explored. The principal obtained results of the BNCT research will be presented, with particular emphasis on the following aspects: a) the project of a new thermal column configuration to make the thermal neutron flux more uniform inside the explanted liver, b) the Monte Carlo study by means of the MCNP code of the thermal neutron flux distribution inside a patient's thorax irradiated with epithermal neutrons, and c) the measurement of the boron concentration in tissues by (n,{alpha}) spectroscopy and neutron autoradiography. (authors)

  7. Boron Neutron Capture Therapy activity of diffused tumors at TRIGA Mark II in Pavia

    International Nuclear Information System (INIS)

    Bortolussi, S.; Stella, S.; De Bari, A.; Altieri, S.; Bruschi, P.; Bakeine, J.G.; Clerici, A.; Ferrari, C.; Zonta, C.; Zonta, A.; Nano, R.

    2008-01-01

    The Boron neutron Capture Therapy research in Pavia has a long tradition: it begun more than 20 years ago at the TRIGA Mark II reactor of the University. A technique for the treatment of the hepatic metastases was developed, consisting in explanting the liver treated with 10 B, irradiating it in the thermal column of the reactor, and re-implanting the organ in the patient. In the last years, the possibility of applying BNCT to the lung tumours using epithermal collimated neutron beams and without explanting the organ, is being explored. The principal obtained results of the BNCT research will be presented, with particular emphasis on the following aspects: a) the project of a new thermal column configuration to make the thermal neutron flux more uniform inside the explanted liver, b) the Monte Carlo study by means of the MCNP code of the thermal neutron flux distribution inside a patient's thorax irradiated with epithermal neutrons, and c) the measurement of the boron concentration in tissues by (n,α) spectroscopy and neutron autoradiography. (authors)

  8. Boron neutron capture therapy of intracerebral rat gliosarcomas

    International Nuclear Information System (INIS)

    Joel, D.D.; Fairchild, R.G.; Laissue, J.A.; Saraf, S.K.; Kalef-Ezra, J.A.; Slatkin, D.N.

    1990-01-01

    The efficacy of boron neutron capture therapy (BNCT) for the treatment of intracerebrally implanted rat gliosarcomas was tested. Preferential accumulation of 10B in tumors was achieved by continuous infusion of the sulfhydryl borane dimer, Na4(10)B24H22S2, at a rate of 45-50 micrograms of 10B per g of body weight per day from day 11 to day 14 after tumor initiation (day 0). This infusion schedule resulted in average blood 10B concentrations of 35 micrograms/ml in a group of 12 gliosarcoma-bearing rats and 45 micrograms/ml in a group of 10 similar gliosarcoma-bearing rats treated by BNCT. Estimated tumor 10B levels in these two groups were 26 and 34 micrograms/g, respectively. On day 14, boron-treated and non-boron-treated rats were exposed to 5.0 or 7.5 MW.min of radiation from the Brookhaven Medical Research Reactor that yielded thermal neutron fluences of approximately 2.0 x 10(12) or approximately 3.0 x 10(12) n/cm2, respectively, in the tumors. Untreated rats had a median postinitiation survival time of 21 days. Reactor radiation alone increased median postinitiation survival time to 26 (5.0 MW.min) or 28 (7.5 MW.min) days. The 12 rats that received 5 MW.min of BNCT had a median postinitiation survival time of 60 days. Two of these animals survived greater than 15 months. In the 7.5 MW.min group, the median survival time is not calculable since 6 of the 10 animals remain alive greater than 10 months after BNCT. The estimated radiation doses to tumors in the two BNCT groups were 14.2 and 25.6 Gy equivalents, respectively. Similar gliosarcoma-bearing rats treated with 15.0 or 22.5 Gy of 250-kilovolt peak x-rays had median survival times of only 26 or 31 days, respectively, after tumor initiation

  9. How does the surface treatment change the cytocompatibility of implants made by selective laser melting?

    Science.gov (United States)

    Matouskova, Lucie; Ackermann, Michal; Horakova, Jana; Capek, Lukas; Henys, Petr; Safka, Jiri

    2018-04-01

    The study investigates the potential for producing medical components via Selective Laser Melting technology (SLM). The material tested consisted of the biocompatible titanium alloy Ti6Al4V. The research involved the testing of laboratory specimens produced using SLM technology both in vitro and for surface roughness. The aim of the research was to clarify whether SLM technology affects the cytocompatibility of implants and, thus, whether SLM implants provide suitable candidates for medical use following zero or minimum post-fabrication treatment. Areas covered: The specimens were tested with an osteoblast cell line and, subsequently, two post-treatment processes were compared: non-treated (as-fabricated) and glass-blasted. Interactions with MG-63 cells were evaluated by means of metabolic MTT assay and microscope techniques (scanning electron microscopy, fluorescence microscopy). Surface roughness was observed on both the non-treated and glass-blasted SLM specimens. Expert Commentary: The research concluded that the glass-blasting of SLM Ti6Al4V significantly reduces surface roughness. The arithmetic mean roughness Ra was calculated at 3.4 µm for the glass-blasted and 13.3 µm for the non-treated surfaces. However, the results of in vitro testing revealed that the non-treated surface was better suited to cell growth.

  10. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  11. Early human bone response to laser metal sintering surface topography: a histologic report.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  12. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  13. Homojunction silicon solar cells doping by ion implantation

    Science.gov (United States)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  14. Lasers in periodontics.

    Science.gov (United States)

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-08-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20(th) century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics.

  15. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  16. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  17. Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques.

    Science.gov (United States)

    Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Montero, Javier; Albaladejo, Alberto; Suárez-García, María Jesús

    2012-07-01

    This study evaluated the vertical discrepancy of implant-fixed 3-unit structures. Frameworks were constructed with laser-sintered Co-Cr, and vacuum-cast Co-Cr, Ni-Cr-Ti, and Pd-Au. Samples of each alloy group were randomly luted in standard fashion using resin-modified glass-ionomer, self-adhesive, and acrylic/urethane-based cements (n = 12 each). Discrepancies were SEM analyzed. Three-way ANOVA and Student-Newman-Keuls tests were run (P Laser-sintered structures achieved the best fit per cement tested. Within each alloy group, resin-modified glass-ionomer and acrylic/urethane-based cements produced comparably lower discrepancies than the self-adhesive agent. The abutment position did not yield significant differences. All misfit values could be considered clinically acceptable.

  18. A critical assessment of boron target compounds for boron neutron capture therapy.

    Science.gov (United States)

    Hawthorne, M Frederick; Lee, Mark W

    2003-01-01

    Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study

  19. Effect of joining the sectioned implant-supported prosthesis on the peri-implant strain generated in simulated mandibular model

    Directory of Open Access Journals (Sweden)

    Ipsha Singh

    2017-01-01

    Full Text Available Aim: The aim of this study is to evaluate the strain developed in simulated mandibular model before and after the joining of an implant-supported screw-retained prosthesis by different joining techniques, namely, arc welding, laser welding, and soldering. Materials and Methods: A specimen simulating a mandibular edentulous ridge was fabricated in heat-cured acrylic resin. 4-mm holes were drilled in the following tooth positions; 36, 33, 43, 46. Implant analogs were placed in the holes. University of California, Los Angeles, abutment was attached to the implant fixture. Eight strain gauges were attached to the acrylic resin model. Six similar models were made. Implant-supported screw-retained fixed prosthesis was fabricated in nickel-chromium alloy. A load of 400 N was applied on the prosthesis using universal testing machine. Resultant strain was measured in each strain gauge. All the prostheses were sectioned at the area between 36 and 33, 33 and 43, and 43 and 46 using 35 micrometer carborundum disc, and strain was measured in each strain gauge after applying a load of 400 N on the prosthesis. Specimens were joined by arc welding, soldering, and laser welding. After joining, a load of 400 N was applied on each prosthesis and the resultant strain was measured in each strain gauge. Results: Highest mean strain values were recorded before sectioning of the prostheses (889.9 microstrains. Lowest mean strain values were recorded after sectioning the prosthesis and before reuniting it (225.0 microstrains. Conclusions: Sectioning and reuniting the long-span implant prosthesis was found to be a significant factor in influencing the peri-implant strain.

  20. Studies for the application of Boron neutron capture therapy (BNCT) to the treatment of differentiated thyroid cancer (CDT)

    International Nuclear Information System (INIS)

    Carpano, Marina; Thomasz, Lisa; Perona, Marina; Juvenal, Guillermo J.; Pisarev, Mario; Dagrosa, Maria A.; Nievas, Susana I.; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    Boron neutron capture therapy (BNCT) is a high linear energy transfer (LET) radiotherapy for cancer, which it is based on the nuclear reaction that occurs when boron-10 that it is a non radioactive isotope of the natural elemental boron, is irradiated with low energy thermal neutrons to produce an alpha particle and a nucleus of lithium-7. Both particles have a range smaller than the diameter of a cell causing cell tumor death without significant damage to the surrounding normal tissues. In previous studies we have shown that BNCT can be a possibility for the treatment of undifferentiated thyroid cancer (UTC). However, more than 80 % of patients with thyroid neoplasm present differentiated carcinoma (CDT). These carcinomas are treated by surgery followed by therapy with 131 I and mostly these forms are well controlled. But in some patients recurrence of the tumor is observed. BNCT can be an alternative for these patients in who the tumor lost the capacity to concentrate iodide. The aim of these studies was to evaluate the possibility of treating differentiated thyroid cancer by BNCT. Materials and Methods: The human cell lines of follicular (WRO) and papillary carcinomas (TPC-1) were grown in RPMI and modified DMEM medium respectively. Both supplemented with 10 % of SFB. The cell line of thyroid rat, FRTL-5, used as control normal, was cultured in DMEM/F12. The uptakes of 125 I and p-borophenylalanine BPA (6.93mM) were studied. The intracellular boron concentration was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) at 2 hr post incubation. The NIH strain of male nude mice, aged 6 to 8 weeks and weighing 20 to 25 g were implanted (s.c) in the back right flank with different concentrations of tumor cells. The size of the tumors was measured with a caliper twice or three times a week and the volume was calculated according the following formulae: A 2 x B/2 (were A is the width and B is the length). To evaluate the BPA uptake, animals