WorldWideScience

Sample records for boron enrichment plant

  1. Boron Enrichment in Martian Clay

    OpenAIRE

    James D Stephenson; Lydia J Hallis; Kazuhide Nagashima; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest minera...

  2. Boron enrichment in martian clay.

    Science.gov (United States)

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  3. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  4. Investigating the Boron Requirement of Plants.

    Science.gov (United States)

    Bohnsack, Charles W.

    1991-01-01

    This article describes a simple and rapid method for using summer squash to investigate born deficiency in plants. Author asserts that students are likely to feel challenged by laboratory exercises and projects that focus on the role boron plays in plant growth because it is an unresolved problem in biology. (PR)

  5. DOE enrichment plant hums ahead

    International Nuclear Information System (INIS)

    The Department of Energy's $10-billion gas centrifuge uranium enrichment plant, after three years of construction, is rising on schedule near Piketon, Ohio. A detailed conceptual design, smart management, liberal design fees, hungry contractors and cooperative unions are combining to get the job done. One reason for completing the task is that this will be a far more efficient process - 135 MW will be required to operate the centrifuge plant vs more than 2100 MW to produce the same amount of fuel at the mile-square diffusion plant near Portsmouth, Ohio

  6. Enrichment planting without soil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hagner, Mats

    1998-12-31

    Where enrichment planting had been carried out with either of the two species Picea abies and Pinus contorta, the survival of the planted seedlings was at least as good as after planting in a normal clear cut area treated with soil scarification. This was in spite of the fact that the seedlings were placed shallow in the humus layer without any soil treatment. However, they were sheltered from insects by treatment before planting. Where enrichment planting was carried out with Pinus sylvestris the survival in dense forest was poor, but in open forest the survival was good. The growth of planted seedlings was enhanced by traditional clearing and soil treatment. However, this was for Pinus sylvestris not enough to compensate for the loss of time, 1-2 years, caused by arrangement of soil scarification. The growth of seedlings planted under crown cover was directly related to basal area of retained trees. However, the variation in height growth among individual seedlings was very big, which meant that some seedlings grow well also under a fairly dense forest cover. The pioneer species Pinus sylvestris reacted more strongly to basal area of retained trees than did the shade tolerant species Picea abies. Enrichment planting seems to be a necessary tool for preserving volume productivity, at places where fairly intensive harvest of mature trees has been carried out in stands of ordinary forest type in central Sweden. If double seedlings, with one Picea abies and one Pinus sylvestris, are used, the probability for long term establishment is enhanced 13 refs, 20 figs, 4 tabs

  7. Uranium enrichment plant risk analysis

    International Nuclear Information System (INIS)

    A method for risk analysis of enrichment facilities is presented and applied to a small scale ultracentrifuge plant. Internal events are identified and the consequences of accidental releases of U F6 are quantified in terms of its toxicological and radiological impact. It is shown that releases in the feed and the cascade areas offers no hazards to the public . Releases of liquefied U F6 in the withdrawal areas, associated with failures in the building isolation systems, may cause undesirable consequences. (author). 11 refs, 4 figs, 3 tabs

  8. Boron in Plants: Deficiency and Toxicity

    Institute of Scientific and Technical Information of China (English)

    Juan J. Camacho-Crist6bal; Jesus Rexach; Agustin González-Fontess

    2008-01-01

    Boron (B) is an essential nutrient for normal growth of higher plants, and B availability in soil and irrigation water is an important determinant of agricultural production. To date, a primordial function of B is undoubtedly its structural role in the cell wall; however, there is increasing evidence for a possible role of B in other processes such as the maintenance of plasma membrane function and several metabolic pathways. In recent years, the knowledge of the molecular basis of B deficiency and toxicity responses in plants has advanced greatly. The aim of this review is to provide an update on recent findings related to these topics, which can contribute to a better understanding of the role of B in plants.

  9. Enrichment and desalting of tryptic protein digests and the protein depletion using boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Fischnaller, Martin; Köck, Rainer; Bakry, Rania, E-mail: rania.bakry@uibk.ac.at; Bonn, Günther K.

    2014-05-01

    Highlights: • Protein tryptic digests were desalted and enriched utilizing hexagonal boron nitride. • Phosphopeptides were desalted with high recovery rates. • Boron nitride exhibits high wettability allowing fast sample preparation. • Boron nitride shows protein depletion capability applied for peptide purification. - Abstract: Sample preparation still remains a great challenge in modern bioanalysis and the interest in new efficient solid phase extraction (SPE) materials still remains high. In this work, hexagonal boron nitride (h-BN) is introduced as a new SPE material for the isolation and enrichment of peptides. The h-BN is isoelectronic and structurally similar to graphite. It has remarkable properties including good thermal conductivity, excellent thermal and chemical stability and a better oxidation resistance than graphite. BN attracts increasing interest because of its wide range of applicability. In the present work, the great potential of h-BN, as a new SPE-material, on the enrichment, preconcentration and desalting of tryptic digest of model proteins is demonstrated. A special attention was dedicated to the efficient enrichment of hydrophilic phosphopeptides. Two elution protocols were developed for the enrichment of peptides compatible for subsequent MALDI-MS and ESI-MS analysis. In addition, the recoveries of 5 peptides and 3 phosphopeptides with wide range of pI values utilizing h-BN materials with different surface areas were investigated. 84–106% recovery rate could be achieved using h-BN materials. The results were compared with those obtained using graphite and silica C18 under the same elution conditions, and lower recoveries were obtained. In addition, h-BN was found to have a capability of protein depletion, which is requisite for the peptide profiling.

  10. NRC licensing of uranium enrichment plants

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission (NRC) is preparing a rule making that establishes the licensing requirements for low-enriched uranium enrichment plants. Although implementation of this rule making is timed to correspond with receipt of a license application for the Louisiana Energy Services centrifuge enrichment plant, the rule making is applicable to all uranium enrichment technologies. If ownership of the US gaseous diffusion plants and/or atomic vapor laser isotope separation is transferred to a private or government corporation, these plants also would be licensable under the new rule making. The Safeguards Studies Department was tasked by the NRC to provide technical assistance in support of the rule making and guidance preparation process. The initial and primary effort of this task involved the characterization of the potential safeguards concerns associated with a commercial enrichment plant, and the licensing issues associated with these concerns. The primary safeguards considerations were identified as detection of the loss of special nuclear material, detection of unauthorized production of material of low strategic significance, and detection of production of uranium enriched to >10% 235U. The primary safeguards concerns identified were (1) large absolute limit of error associated with the material balance closing, (2) the inability to shutdown some technologies to perform a cleanout inventory of the process system, and (3) the flexibility of some technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could prevent conventional material control and accounting programs from detecting the production and removal of 5 kg 235U as highly enriched uranium. Safeguards techniques were identified to mitigate these concerns

  11. Relationship Between Soil Boron Adsorption Kinetics and Rape Plant Boron Response

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; PIMEIMEI; 等

    1997-01-01

    The boron adsorption kinetic experiment in soil by means a flow displacement technique showed that the kinetic data could be described with some mathematic equations.The average values of the coorealtion coefficeint for zero-order,first-order,parabolic diffusion ,Elovich,power function and eponential equations were 0.957,0.982,0.981,0.984,0.981 and 0.902 ,respectively,The correlation between adsorbed boron or its other expression form and time were the highest for first-order ,parabloic diffusion Elovich,and pwer function equations,the second for the zeroorder equation,and the tlowest for the exponential equation.The parabloic diffusion equation fitted well the expermiental results,with the least standard error among the six kinetic equation,showing that the monvemetn of boron from soil solution to soil colloid surface may be controlled by boron diffusion speed.The boron content of rape seedling obtained from soil cultvation was correlated with the rate constants of the kinetic equations.The constants of first-order ,parabloic diffusion,and exponential equaitions were significanlty correlated with the boron content of the crop of NPK treatment at a 95% probaility level ,with correation coeffecients being 0.686,0.691 and 0.64 and 0.641,respectively.In the case of zero-order equation,it Was significant at 99% probability level(r=0.736),These results showed that the adsorption kinetic constants of soil boron were closely related with the rape plant response to boron.

  12. A Methodology for Simultaneous Fluorogenic Derivatization and Boronate Affinity Enrichment of 3-Nitrotyrosine Containing Peptides

    Science.gov (United States)

    Dremina, Elena S.; Li, Xiaobao; Galeva, Nadezhda A.; Sharov, Victor S.; Stobaugh, John F.; Schöneich, Christian

    2011-01-01

    We synthesized and characterized a new tagging reagent, (3R,4S)-1-(4-(aminomethyl)phenylsulfonyl)pyrrolidine-3,4-diol (APPD), for the selective fluorogenic derivatization of 3-nitrotyrosine (3-NT) residues in peptides (after reduction to 3-aminotyrosine) and affinity enrichment. The synthetic 3-NT-containing peptide, FSAY(3-NO2)LER, was employed as a model for method validation. Further, this derivatization protocol was successfully tested for analysis of 3-NT-containing proteins exposed to peroxynitrite in the total protein lysate of cultured C2C12 cells. The quantitation of 3-NT content in samples was achieved through either fluorescence spectrometry or boronate affinity chromatography with detection by specific fluorescence (excitation and emission wavelengths of 360 and 510 nm, respectively); the respective limits of detection were 95 and 68 nM (19 and 13 pmol total amount) of 3-NT. Importantly, the derivatized peptides show a strong retention on a synthetic boronate affinity column, containing sulfonamide-phenylboronic acid, under mild chromatographic conditions, affording a route to separate the derivatized peptides from large amounts (milligrams) of non-derivatized peptides, and to enrich them for fluorescent detection and MS identification. Tandem MS analysis identified chemical structures of peptide 3-NT fluorescent derivatives and revealed that the fluorescent derivatives undergo efficient backbone fragmentations, permitting sequence-specific identification of protein nitration at low concentrations of 3-NT in complex protein mixtures. PMID:21855526

  13. A methodology for simultaneous fluorogenic derivatization and boronate affinity enrichment of 3-nitrotyrosine-containing peptides.

    Science.gov (United States)

    Dremina, Elena S; Li, Xiaobao; Galeva, Nadezhda A; Sharov, Victor S; Stobaugh, John F; Schöneich, Christian

    2011-11-15

    We synthesized and characterized a new tagging reagent, (3R,4S)-1-(4-(aminomethyl)phenylsulfonyl)pyrrolidine-3,4-diol (APPD), for the selective fluorogenic derivatization of 3-nitrotyrosine (3-NT) residues in peptides (after reduction to 3-aminotyrosine) and affinity enrichment. The synthetic 3-NT-containing peptide, FSAY(3-NO(2))LER, was employed as a model for method validation. Furthermore, this derivatization protocol was successfully tested for analysis of 3-NT-containing proteins exposed to peroxynitrite in the total protein lysate of cultured C2C12 cells. The quantitation of 3-NT content in samples was achieved through either fluorescence spectrometry or boronate affinity chromatography with detection by specific fluorescence (excitation and emission wavelengths of 360 and 510 nm, respectively); the respective limits of detection were 95 and 68 nM (19 and 13 pmol total amount) of 3-NT. Importantly, the derivatized peptides show a strong retention on a synthetic boronate affinity column, containing sulfonamide-phenylboronic acid, under mild chromatographic conditions, affording a route to separate the derivatized peptides from large amounts (milligrams) of nonderivatized peptides and to enrich them for fluorescent detection and mass spectrometry (MS) identification. Tandem MS analysis identified chemical structures of peptide 3-NT fluorescent derivatives and revealed that the fluorescent derivatives undergo efficient backbone fragmentations, permitting sequence-specific identification of protein nitration at low concentrations of 3-NT in complex protein mixtures. PMID:21855526

  14. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Qingcai Xu

    2015-01-01

    Full Text Available Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰ with a mean value of 2.61±11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  15. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  16. Alleviation of Boron Stress through Plant Derived Smoke Extracts in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Pirzada Khan

    2014-08-01

    Full Text Available Boron is an essential micronutrient necessary for plant growth at optimum concentration. However, at high concentrations boron affects plant growth and is toxic to cells. Aqueous extract of plant-derived smoke has been used as a growth regulator for the last two decades to improve seed germination and seedling vigor. It has been established that plant-derived smoke possesses some compounds that act like plant growth hormones. The present research was the first comprehensive attempt to investigate the alleviation of boron stress with plant-derived smoke aqueous extract on Sorghum (Sorghum bicolor seed. Smoke extracts of five plants, i.e. Cymbopogon jwarancusa, Eucalyptus camaldulensis, Peganum harmala, Datura alba and Melia azedarach each with six dilutions (Concentrated, 1:100, 1:200, 1:300, 1:400 and 1:500 were used. While boron solutions at concentrations of 5, 10, 15, 20 and 25 ppm were used for stress. Among the dilutions of smoke, 1:500 of E. camaldulensis significantly increased germination percentage, root and shoot length, number of secondary roots and fresh weight of root and shoot while, boron stress reduced growth of Sorghum. It was observed that combined effect of boron solution and E. camaldulensis smoke extract overcome inhibition and significantly improved plant growth. Present research work investigated that the smoke solution has the potential to alleviate boron toxicity by reducing the uptake of boron by maintaining integrity of plant cell wall. The present investigation suggested that plant derived smoke has the potential to alleviate boron stress and can be used to overcome yield losses caused by boron stress to plants.

  17. Boron deficiency in woody plants: various responses and tolerance mechanisms.

    Science.gov (United States)

    Wang, Nannan; Yang, Chengquan; Pan, Zhiyong; Liu, Yongzhong; Peng, Shu'ang

    2015-01-01

    Boron (B) is an essential microelement for higher plants, and its deficiency is widespread around the world and constrains the productivity of both agriculture and forestry. In the last two decades, numerous studies on model or herbaceous plants have contributed greatly to our understanding of the complex network of B-deficiency responses and mechanisms for tolerance. In woody plants, however, fewer studies have been conducted and they have not well been recently synthesized or related to the findings on model species on B transporters. Trees have a larger body size, longer lifespan and more B reserves than do herbaceous plants, indicating that woody species might undergo long-term or mild B deficiency more commonly and that regulation of B reserves helps trees cope with B deficiency. In addition, the highly heterozygous genetic background of tree species suggests that they may have more complex mechanisms of response and tolerance to B deficiency than do model plants. Boron-deficient trees usually exhibit two key visible symptoms: depression of growing points (root tip, bud, flower, and young leaf) and deformity of organs (root, shoot, leaf, and fruit). These symptoms may be ascribed to B functioning in the cell wall and membrane, and particularly to damage to vascular tissues and the suppression of both B and water transport. Boron deficiency also affects metabolic processes such as decreased leaf photosynthesis, and increased lignin and phenol content in trees. These negative effects will influence the quality and quantity of wood, fruit and other agricultural products. Boron efficiency probably originates from a combined effect of three processes: B uptake, B translocation and retranslocation, and B utilization. Root morphology and mycorrhiza can affect the B uptake efficiency of trees. During B translocation from the root to shoot, differences in B concentration between root cell sap and xylem exudate, as well as water use efficiency, may play key roles in

  18. Extractability, plant yield and toxicity thresholds for boron in compost

    Energy Technology Data Exchange (ETDEWEB)

    Brinton, W.F.; Evans, E.; Blewett, C. [Woods End Labs Inc., Mt. Vernon, ME (United States)

    2008-04-01

    Boron (B) is a trace element essential to crop growth in small soil concentrations (0.2-1.5ppm), yet may produce plant toxicity symptoms readily as the amount in the soil solution increases over 2ppm. Our study examined commercial compost made with coal fly-ash used to prepare growing media for cultivars of varying sensitivity (corn, beans, cucumber, peas). We examined total vs. extractable boron content and relate final visual symptoms of B-toxicity to yields and tissue concentrations. Visual toxicity effects included tip burn (corn), leaf mottling and necrosis (beans and peas) and leaf mottling and cupping (cucumbers). Fly ash added to compost increased hot-water soluble (HWS) B in proportion to rate and in dependence on pH, with 30% and 10% of total-B expressed as HWS-B at a media pH of 6 and 7.5, respectively. Biomass for bean and cucumber was significantly reduced by 45 to 55%, respectively, by addition of 33% fly-ash compost to growing media (28ppm total-B) while plant tissue-B increased by 6- to 4-fold, respectively. Economic yield depressions in compost media are evident for all crops and appeared at levels of HWS-B in compost media exceeding 5 ppm. The study underscores the need for careful management of exogenous factors that may be present in composts and suggests detailed understanding of media-pH and cultivar preferences may be required in preparation of growing media in order to reduce potential negative growth effects.

  19. Boron Plays an Important Role in the Regulation of Plant Cell Growth

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Boron is an essential nutrition for higher plants.However, the primary function of boron remains a matter of discussion.Boron may function by forming complexes with compounds having cis-hydroxyl groups(diols), e.g., pectic materials in cell walls, glycoproteins or glycolipids in membranes and o-diphenols.The well-defined functions of boron are its involvement in maintaining cell wall structure and both the structural and the functional integrity of plasma membrane.Lack of boron causes an increase in the leakage of ions and compounds which reflects the impairment of plasma membrane.Boron is functionally important in forming a pectic network in cell wall which is responsible for the extensibility of cell wall and consequently regulates cell growth.

  20. Genetic engineering of syringyl-enriched lignin in plants

    Science.gov (United States)

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  1. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    Science.gov (United States)

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  2. Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants

    Directory of Open Access Journals (Sweden)

    Luis M. Cervilla

    2012-01-01

    Full Text Available The incidence of boron (B toxicity has risen in areas of intensive agriculture close to the Mediterranean sea. The objective of this research was to study the how B toxicity (0.5 and 2 mM B affects the time course of different indicators of abiotic stress in leaves of two tomato genotypes having different sensitivity to B toxicity (cv. Kosaco and cv. Josefina. Under the treatments of 0.5 and 2 mM B, the tomato plants showed a loss of biomass and foliar area. At the same time, in the leaves of both cultivars, the B concentration increased rapidly from the first day of the experiment. These results were more pronounced in the cv. Josefina, indicating greater sensitivity than in cv. Kosaco with respect to excessive B in the environment. The levels of O2 •− and anthocyanins presented a higher correlation coefficient (r>0.9 than did the levels of B in the leaf, followed by other indicators of stress, such as GPX, chlorophyll b and proline (r>0.8. Our results indicate that these parameters could be used to evaluate the stress level as well as to develop models that could help prevent the damage inflicted by B toxicity in tomato plants.

  3. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  4. Boron-Mediated Plant Somatic Embryogenesis: A Provocative Model

    Directory of Open Access Journals (Sweden)

    Dhananjay K. Pandey

    2012-01-01

    Full Text Available A central question in plant regeneration biology concerns the primary driving forces invoking the acquisition of somatic embryogenesis. Recently, the role of micronutrient boron (B in the initiation and perpetuation of embryogenesis has drawn considerable attention within the scientific community. This interest may be due in part to the bewildering observation that the system-wide induction of embryogenic potential significantly varied in response to a minimal to optimal supply of B (minimal ≤ 0.1 mM, optimal = 0.1 mM. At the cellular level, certain channel proteins and cell wall-related proteins important for the induction of embryogenesis have been shown to be transcriptionally upregulated in response to minimal B supply suggesting the vital role of B in the induction of embryogenesis. At the molecular level, minimal to no B supply increased the endogenous level of auxin, which subsequently influenced the auxin-inducible somatic embryogenesis receptor kinases, suggesting the role of B in the induction of embryogenesis. Also, minimal B concentration may “turn on” other genetic and/or cellular transfactors reported earlier to be essential for cell-restructuring and induction of embryogenesis. In this paper, both the direct and indirect roles of B in the induction of somatic embryogenesis are highlighted and suggested for future validation.

  5. Minor isotope measurements for safeguarding a uranium enrichment plant

    Energy Technology Data Exchange (ETDEWEB)

    Blumkin, S.; Levin, S.A.; Von Halle, E.

    1979-03-26

    A study of the behavior of the minor uranium isotopes in enrichment cascades indicates that the measurement of their concetrations in cascade feed and withdrawal streams can be used to confirm or deny material accountability results in safeguarding an enrichment plant. In further support of safeguard measures, an indirect non-intrusive method to measure cascade uranium inventory has been devised and tested satisfactorily in a gaseous diffusion cascade.

  6. Measurement of the enrichment of uranium in the pipework of a gas centrifuge enrichment plant

    International Nuclear Information System (INIS)

    The US and UK have been separately working on the development of a NDA instrument to determine the enrichment of gaseous UF6 at low pressures in cascade header pipework in line with the conclusions of the Hexapartite Safeguards Project viz. the instrument is capable of making a ''go/no go'' decision of whether the enrichment is less than/greater than 20%. Recently, there has been a series of very useful technical exchanges of ideas and information between the two countries. This has led to a technical formulation for such an instrumentation based on γ-ray spectrometry which, although plant-specific in certain features, nevertheless is based on the same physical principles. Experimental results from commercially operating enrichment plants are very encouraging and indicate that a complete measurement including set up time on the pipe should be attainable in about 30 minutes when measuring pipes of diameter around 110 mm. 5 refs., 4 figs

  7. Enrichment of pasta with different plant proteins.

    Science.gov (United States)

    Kaur, Gurpreet; Sharma, Savita; Nagi, H P S; Ranote, P S

    2013-10-01

    Effects of supplementation of plant proteins from mushroom powder, Bengal gram flour and defatted soy flour at different levels were assessed on the nutritional quality of pasta. Supplementation of wheat semolina was done with mushroom powder (0-12%), Bengal gram flour (0-20%) and defatted soy flour (0-15%). Mushroom powder and defatted soy flour increased the cooking time of pasta whereas non significant variation was observed in cooking time of Bengal gram supplemented pasta. Significant correlation (r = 0.97, p ≤ 0.05) was observed between water absorption and volume expansion of pasta. Instantization of pasta by steaming improved the cooking quality. Steamed pasta absorbed less water and leached fewer solids during cooking. On the basis of cooking and sensory quality, pasta in combination with 8% mushroom powder, 15% Bengal gram flour and 9% defatted soy flour resulted in a better quality and nutritious pasta.

  8. Determination of Boron in soils and plants samples using spectrophotometric method

    International Nuclear Information System (INIS)

    In this work, the concentration of boron in soil and plant samples was determined with UV-vis spectrophotometer by using azomethine-H as a complex reagent. The calibration curve for boron determination in the range of (0μ3 g.mL-1) was constructed by plotting the measured absorption of the yellow azomethine-H-B complex at λmax = 412.6 nm against boron concentration in the aqueous phase. The detection limit, repeatability limit, intermediate precision, accuracy, and recovery coefficient of this method were calculated and found to be 0.021 μg.mL-1, 0.335% , 0.81%, 2.93%, (98.4-101.5)% respectively. The influence of some foreign ions on the determination of boron were also investigated in detail, most of the studied ions, like iron, iodide, and calcium can be tolerated within the ranges of (20-35μg.mL-1), (3000-5000μg.mL-1) , (15000-30000μg.mL-1) respectively. This is due to the fact, that ascorbic acid and EDTA in the buffer masking reagent reaction system can be very effective in masking these ions. This method was found to be economic and suitable for boron determination in standard and local samples (soil, plant) and requires small amount of sample (1g). This method can also be applied for boron determination in water samples (drinking and industrial waste water).(author)

  9. LISSAT Analysis of a Generic Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, H; Elayat, H A; O?Connell, W J; Szytel, L; Dreicer, M

    2007-05-31

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for use in designing and evaluating safeguards systems for current and future plants in the nuclear power fuel cycle. The DOE is engaging several DOE National Laboratories in efforts applied to safeguards for chemical conversion plants and gaseous centrifuge enrichment plants. As part of the development, Lawrence Livermore National Laboratory has developed an integrated safeguards system analysis tool (LISSAT). This tool provides modeling and analysis of facility and safeguards operations, generation of diversion paths, and evaluation of safeguards system effectiveness. The constituent elements of diversion scenarios, including material extraction and concealment measures, are structured using directed graphs (digraphs) and fault trees. Statistical analysis evaluates the effectiveness of measurement verification plans and randomly timed inspections. Time domain simulations analyze significant scenarios, especially those involving alternate time ordering of events or issues of timeliness. Such simulations can provide additional information to the fault tree analysis and can help identify the range of normal operations and, by extension, identify additional plant operational signatures of diversions. LISSAT analyses can be used to compare the diversion-detection probabilities for individual safeguards technologies and to inform overall strategy implementations for present and future plants. Additionally, LISSAT can be the basis for a rigorous cost-effectiveness analysis of safeguards and design options. This paper will describe the results of a LISSAT analysis of a generic centrifuge enrichment plant. The paper will describe the diversion scenarios analyzed and the effectiveness of various safeguards systems alternatives.

  10. Defining the needs for gas centrifuge enrichment plants advanced safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

    2010-04-05

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

  11. Solar enriched methane production: Assessment of plant potentialities and applications

    Directory of Open Access Journals (Sweden)

    Vincenzo Piemonte

    2010-04-01

    Full Text Available The crucial environmental issue due to fossil fuel use in our society and industries and more and more perceived by the communities is stimulating the development of innovative technologies with the scope of reducing GHGs and pollutants emissions, improving plants efficiency and exploiting renewable energy sources. The idea proposed in the present work links this context: a novel hybrid plant for the production of a mixture of methane and hydrogen (20%vol, called enriched-methane, from a steam reforming reactor whose heat duty is supplied by a concentrating solar power (CSP plant by means of a molten salt stream is here conceived, modelled and assessed. The enriched-methane mixture can be applied in methane internal combustion engines (ICE reducing CO, CO2, unburned emissions and improving engine efficiency. Moreover, the residual sensible heat of solar-heated molten salt stream can be used to generate medium-pressure steam and to produce electricity by a steam-turbine. Therefore, the plant proposed is co-generative, producing both hydrogen and electricity from a solar source. The behaviour of methane steam reforming reactor is simulated by means of a 2D mathematical model and the design of a cogenerative solar plant is proposed, evaluating its potentialities in terms of MWh of electricity produced and number of vehicles fed by enriched-methane. A single CSP module (surface requirement = 1.5 hectares coupled with a 4-tubes-and-shell shaped reactor is able to produce 686 tons/year of hydrogen, equivalent to 3.430 tons/year of 20%vol H2-CH4 mixture and 3.097 MWh/year of clean electricity.

  12. Qualitative analysis for reactivity accidents due to the boron dilution of the Korea Standard Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. K.; Park, J. H.; Lim, H. K.; Han, S. J.; Kim, T. W

    2003-03-01

    Researches for reactivity accidents due to local or rapid boron dilution in the reactor core have been recently performed in France, United States of America and Germany. As the result, core damage probability due to boron dilution is relatively high when nuclear power plants are in the low power or shutdown conditions. Nevertheless, few research activities to reveal reactivity accidents originated from local or rapid boron dilution have been performed in Korea. Thus, in order to identify possible boron dilution scenarios that can result in reactivity accidents and to suggest alternatives or remedies that can enhance the safety of a nuclear power plant, this study is carried out. As the results, it was revealed that YGN 5 and 6 have been designed and maintained so as to minimize the possibility of boron dilution accident. However, in the case of boron dilution scenarios that result from human error, not only various types of human error should be considered but also detailed human error probabilities are insufficient. Thus, in-depth researches for the human-induced boron dilution accidents could be performed to get more meaningful results. Nevertheless, characteristics of each boron dilution scenarios that are addressed from this report will be helpful for the safety enhancement of nuclear power plants, if they are supplementally added to plant operating procedures including normal, abnormal and emergency operating procedures.

  13. A Methodology for Simultaneous Fluorogenic Derivatization and Boronate Affinity Enrichment of 3-Nitrotyrosine Containing Peptides

    OpenAIRE

    Dremina, Elena S.; Li, Xiaobao; Galeva, Nadezhda A.; Sharov, Victor S.; Stobaugh, John F.; Schöneich, Christian

    2011-01-01

    We synthesized and characterized a new tagging reagent, (3R,4S)-1-(4-(aminomethyl)phenylsulfonyl)pyrrolidine-3,4-diol (APPD), for the selective fluorogenic derivatization of 3-nitrotyrosine (3-NT) residues in peptides (after reduction to 3-aminotyrosine) and affinity enrichment. The synthetic 3-NT-containing peptide, FSAY(3-NO2)LER, was employed as a model for method validation. Further, this derivatization protocol was successfully tested for analysis of 3-NT-containing proteins exposed to p...

  14. Inspection support system at the Rokkasho Enrichment Plant (REP)

    International Nuclear Information System (INIS)

    At Rokkasho Enrichment Plant (REP), location map, itemized list and inspection seals information had been prepared for inventory and inventory change verification by paper basis. Therefore lots of documents were needed at the job site, and time was required for information retrieval. In order to provide efficient inspection, REP has developed and implemented inspection support system based on mobile computer and Microsoft Access, which can provide all necessary information retrieval for the inspection in timely. This paper describes outline of inspection support system. (author)

  15. Dominant plant taxa predict plant productivity responses to CO2 enrichment across precipitation and soil gradients

    Science.gov (United States)

    Fay, Philip A.; Newingham, Beth A.; Polley, H. Wayne; Morgan, Jack A.; LeCain, Daniel R.; Nowak, Robert S.; Smith, Stanley D.

    2015-01-01

    The Earth's atmosphere will continue to be enriched with carbon dioxide (CO2) over the coming century. Carbon dioxide enrichment often reduces leaf transpiration, which in water-limited ecosystems may increase soil water content, change species abundances and increase the productivity of plant communities. The effect of increased soil water on community productivity and community change may be greater in ecosystems with lower precipitation, or on coarser-textured soils, but responses are likely absent in deserts. We tested correlations among yearly increases in soil water content, community change and community plant productivity responses to CO2 enrichment in experiments in a mesic grassland with fine- to coarse-textured soils, a semi-arid grassland and a xeric shrubland. We found no correlation between CO2-caused changes in soil water content and changes in biomass of dominant plant taxa or total community aboveground biomass in either grassland type or on any soil in the mesic grassland (P > 0.60). Instead, increases in dominant taxa biomass explained up to 85 % of the increases in total community biomass under CO2 enrichment. The effect of community change on community productivity was stronger in the semi-arid grassland than in the mesic grassland, where community biomass change on one soil was not correlated with the change in either the soil water content or the dominant taxa. No sustained increases in soil water content or community productivity and no change in dominant plant taxa occurred in the xeric shrubland. Thus, community change was a crucial driver of community productivity responses to CO2 enrichment in the grasslands, but effects of soil water change on productivity were not evident in yearly responses to CO2 enrichment. Future research is necessary to isolate and clarify the mechanisms controlling the temporal and spatial variations in the linkages among soil water, community change and plant productivity responses to CO2 enrichment. PMID

  16. Systems approach used in the Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT

  17. Extraction of Soil Boron for Predicting Its Availability to Plants

    Institute of Scientific and Technical Information of China (English)

    LIREN-AN; U.C.GUPTA

    1991-01-01

    Field and greenhouse studies were conducted in Prince Edward Island (P.E.I.) on soybean (Glycine max(L.) Merr.), red clover (Trifolium pratense L.),alfalfa (Medicago sativa L.), and rutabaga (Brassica napobrassica,Mill).Plant B concentrations were compared to soil B extracted by hot-water,0.05 M HC1,1.5 M CH3COOH and 0.01 M CaCl2.The r values for extractable soil B vs.plant B were:hot water (0.67),0.05 M HCl(0.82),1.5M CH3COOH(0.78) and hot 0.01 M CaCl2(0.61).Results of soil B from the 0.05 M HCl extracts were generally found to give the best correlation and linear regression among the four extractants tested for predicting the availability of B to the plants.Overall,the 0.05 M HCl proved to be superior to hot water extraction and is recommended for predicting the available B status of the acid soils of P.E.I.The probability of error with 0.05 M HCL is less since it is shaken for a fixed period of time as opposed to subjective error which could be caused in monitoring the boiling time using hot water.

  18. New targets in plant boron deficiency response: Nglycosylation and regulation of root developement

    OpenAIRE

    Abreu Sánchez, Isidro

    2016-01-01

    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología   Since Warington described in 1923 for first time boron (B) essentiality in plants, many authors have tried to understand what the micronutrient is doing, how the micronutrient is acquired, and what happens when the micronutrient is absent. First studies on B nutrition focused on physiological processes and biochemical pathways which appeared altered as a consequence of B d...

  19. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  20. Implementation of Low Boron Core for APR1400 Initial Cycle

    International Nuclear Information System (INIS)

    Low boron capability of a nuclear power plant is rather a qualitative specification requiring the nuclear power plant to be shut down by control rods alone at any time of a plant cycle according to EUR. The reduction of soluble boron is beneficial since it gives the reduction of the corrosive effects in the plant system and improves plant safety giving more negative MTC. Thus, it is necessary to reduce the amount of soluble boron for the criticality to achieve the low boron capability. However, the reduction of soluble boron has its own set of specific challenges that must be overcome. There are two methods to enable the reduction of soluble boron without modifying plant system significantly. The goal of this study is to investigate the loading pattern to achieve the soluble boron reduction for Shin-Kori Unit 5 APR1400 initial core using the low and high content gadolinia burnable absorbers with standard fuel rod enrichment and to verify the feasibility of low boron core with conventional gadolinia burnable absorbers only. For this study, KARMA has been employed to solve 2-D Transport equation, and ASTRA is used for full core analysis. It was possible to achieve the low boron core for APR1400 Cycle 1 using extended usage of two types of gadolinia burnable absorbers sacrificing fuel cycle economy a little bit while enhancing plant safety significantly. Gd rod patterns within an assembly were optimized through geometrical weighting and loading pattern was developed based on these patterns. The amount of soluble boron reduction achieved is 45.4%. The improvement in plant safety is significant resulting in the reduction of least negative best-estimate MTC by about 4 pcm. Also shutdown margin is increased slightly for low boron core. However, the behavior of axial power shape turns out to be undesirable showing a relatively large fluctuation caused by the more negative MTC. It was found that the low boron core might impose kind of operational difficulty. It is usually

  1. 78 FR 65389 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant

    Science.gov (United States)

    2013-10-31

    ... for a 5-year period with an expiration date of December 31, 2018. On May 22, 2013 (78 FR 30342), the... COMMISSION United States Enrichment Corporation, Paducah Gaseous Diffusion Plant AGENCY: Nuclear Regulatory... review. SUMMARY: On April 2, 2013, the United States Enrichment Corporation (USEC) filed an...

  2. Review: mechanisms for boron deficiency-mediated changes in plant water relations.

    Science.gov (United States)

    Wimmer, Monika A; Eichert, Thomas

    2013-04-01

    Boron (B) is an essential microelement for plants and is constantly needed throughout the plant life due to its function as a structural element of the plant cell wall. B deficiency is a wide-spread problem in agricultural areas world-wide, and management of B nutrition is challenged by sudden occurrences of B deficiency or inconsistent effects of foliar B application. The effects of insufficient B supply on different structures relevant for the plant water status have been heavily researched, but the resulting conclusions are contradictory and no clear picture has so far emerged that fully explains the inconsistencies. B deficiency can affect water uptake by inhibition of root and shoot growth and by upregulation of water channels. Structural damage to xylem vessels can limit water transport to arial plant parts, while water loss can be altered by impaired barrier functions of leaf surfaces and reduced photosynthesis. In consequence of all these effects, transpiration is reduced in B-deficient plants under well-watered conditions. Under drought conditions, the responsiveness of stomata is impaired. Possible consequences of damaged vasculature for plant B nutrition include the reduced effectiveness of foliar B fertilization, especially in species with high B phloem mobility. Changes in leaf surface properties can further reduce B uptake after foliar application. In species with low B phloem mobility, weakened xylem vessels may not be able to supply sufficient B to arial parts under conditions of increased B demand, such as during bud development of trees. Since structural damage to vessels is hardly reversible, these effects could be permanent, even if B deficiency was only transient. Another consequence of reduced water status is the higher susceptibility of B-deficient plants to other abiotic stresses, which also impair water relations, especially drought. Since damage to vasculature can occur before visible symptoms of B deficiency appear in shoots, the

  3. Gypsophila sphaerocephala Fenzl ex Tchihat.: A Boron Hyperaccumulator Plant Species That May Phytoremediate Soils with Toxic B Levels

    OpenAIRE

    BABAOĞLU, Mehmet

    2004-01-01

    Analyses were carried out to identify boron (B) hyperaccumulating plant species in an actively B- mined area of Kırka, Eskişehir, Turkey. Only 4 plant species, Gypsophila sphaerocephala Fenzl ex Tchihat. var. sphaerocephala (Caryophyllaceae), Gypsophila perfoliata L. (Caryophyllaceae), Puccinellia distans (Jacq.) Parl. subsp. distans (Gramineae) and Elymus elongatus (Host) Runemark subsp. turcicus (McGuire) Melderis (Gramineae), were identified in the highest B- containing sections of the min...

  4. High enriched lead-206 for small nuclear power plants

    International Nuclear Information System (INIS)

    In modern projects of perspective NPP the preference is returned to fast reactors (FR) with heavy liquid metal coolants. Internal self-hardening, absence of poisoning effects, compensation of uranium fuel burn-out by produced plutonium fuel and other positive features of FR will allow in the long term to lengthen operating campaign of the reactor till 10-12 of years, and service life of FR - till 30-60 of years. As is known, the coolant, circulating through the core of FR, is activated and accumulates long-lived radionuclides. Taking in account the masses of coolant materials in considered FR (20-200 tons) and the scales of an introduction of small NPP in the future, it can be problems with handling a completed coolant after FR removal from exploitation and at realization of repair and emergency activities. There, it is desirable to have a low-activation coolant with low contents of long-lived radionuclides - products of nuclear reactions. In paper, presented at the ICONE-8 conference, it is offered to use lead enriched with isotope Pb-206 as a low-activation coolant for FR. Its contents in a natural mix of lead isotopes make 24 %, and the demanded enrichment of isotope does not exceed 95-98 %. However, usage of a coolant from enriched lead can result in advancing the price of power, owing to what NPP can become noncompetitive in relation to other power sources. The purpose of the present paper - to point that interval of the prices of the product lead-206, at which one it can be demanded for nuclear engineering in large quantities. In the paper possible ways to ease the costs of obtaining the product lead-206 for the need of small nuclear engineering are also considered. (author)

  5. Responses of plant rhizosphere to atmospheric CO2 enrichment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Plant root growth is generally stimulated under elevated CO2. This will bring more carbon to the below-ground through root death and exudate. This potential increase in below-ground carbon sink may lead to changes in long-term soil sequestration and relationship between host plants and symbions. On the other hand, changes in litter components due to the changes in plant chemical composition may also affect soil processes, such as litter decomposition, soil organic matter sequestration and hetero-nutritional bacteria activities. These issues are discussed.

  6. FACE: Free-Air CO{sub 2} Enrichment for plant research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. [ed.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO){sub 2} on cotton plants are described. Biological responses studied include foliage response to CO{sub 2} fluctuations; yield of cotton exposed to CO{sub 2} enrichment; responses of photosynthesis and stomatal conductance to elevated CO{sub 2} in field-grown cotton; cotton leaf and boll temperatures; root response to CO{sub 2} enrichment; and evaluations of cotton response to CO{sub 2} enrichment with canopy reflectance observations.

  7. FACE: Free-Air CO[sub 2] Enrichment for plant research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. (ed.)

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO)[sub 2] on cotton plants are described. Biological responses studied include foliage response to CO[sub 2] fluctuations; yield of cotton exposed to CO[sub 2] enrichment; responses of photosynthesis and stomatal conductance to elevated CO[sub 2] in field-grown cotton; cotton leaf and boll temperatures; root response to CO[sub 2] enrichment; and evaluations of cotton response to CO[sub 2] enrichment with canopy reflectance observations.

  8. Genotypic Difference of Plants in K—Enrichment Capability and the Distribution of K in Plant Rhizosphere

    Institute of Scientific and Technical Information of China (English)

    YANWEIDONG; SHIWEIMNG; 等

    1997-01-01

    Plant genotypic difference of potassium-enrichment capalbility and potassium(K) distribution at root-soil interace of different plant genotypes were studied by using seven plant species and eight varieties of tobacco(Nicotiana tabacum L.) The results indicated that K enrichment capability was: Ethiopian guizotia(Guizotia abyssinica Cass.)>feather cockscomb(Celosia argentea L.)>alligator alternanthera(Alternathera philoxeroides (Mart.) Griseb.)>tobacco>sesbania(Sesbania cannabina(Retz.)Pers.)>wheat(Triticum aestivum L.)>broadbean(Vicia faba L.).Ethiopian guizotia showed very high K-enrichment capability at different soil K levles,and the K content in its dry matter was over 110 mg kg-1 when soil K was fully supplied ,and about 60 mg kg-1 when no K fertilizer was applied.For alligator alternanthera,the capabiltiy to accumulate K was closely related with its growth medium,When it was grown on soils ,both the K content and K uptake rate of the plant were similar to whose of tobacco.Evident K depletion was observed in the rhizospere of all plant species,and the depletion rate was related to the capability of enrichment of plant .

  9. Enrichment and Analysis of Nonenzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron-Transfer Dissociation Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John; Smith, Richard D.; Metz, Thomas O.

    2007-06-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. It was observed that ETD fragmentation mode resulted in a significantly higher number of glycated peptide identifications (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing dual glycation enrichment on both the protein and peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS with ETD as the fragmentation mode is an efficient approach for analyses of glycated proteins and can have broad applications in studies of diabetes mellitus.

  10. Socioeconomic effects of the DOE Gas Centrifuge Enrichment Plant. Volume 1: methodology and analysis

    International Nuclear Information System (INIS)

    The socioeconomic effects of the Gas Centrifuge Enrichment Plant being built in Portsmouth, Ohio were studied. Chapters are devoted to labor force, housing, population changes, economic impact, method for analysis of services, analysis of service impacts, schools, and local government finance

  11. 78 FR 30342 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant

    Science.gov (United States)

    2013-05-22

    ... COMMISSION United States Enrichment Corporation, Paducah Gaseous Diffusion Plant AGENCY: Nuclear Regulatory...'s Agencywide Documents Access and Management System (ADAMS): You may access publicly-available... into ADAMS. FOR FURTHER INFORMATION CONTACT: Mr. Osiris Siurano-Perez, Office of Nuclear...

  12. Long-term disposal of enrichment plant tails

    Energy Technology Data Exchange (ETDEWEB)

    Leone, S.M.; Richardson, E.W.; Knight, R.G.; McGinnis, C.P.; Pashley, J.H.

    1978-12-18

    It was assumed that a water insoluble uranium compound essentially free of fluorides would be the desired form for the final storage of cascade tails. UO/sub 2/ produced in a two-step process in which the UF/sub 6/ is reduced to UF/sub 4/ with hydrogen in a tower reactor, followed by pyrohydrolysis to UO/sub 2/ with steam in a screw reactor, has been selected as a suitable compound for storage. The UO/sub 2/ would be stored in 55-gallon steel drums holding approximately 900 kg, and the drums would be warehoused until a permanent storage facility could be developed. Approximately one-third of the fluoride content of the UF/sub 6/ will be recovered as anhydrous HF with potential for industrial sale, while the remaining fluoride content will be reacted with limestone and disposed of in landfills. The magnitude of the conversion process is illustrated by considering a typical electrical generation rate of 50 GW(e) per year. At this level, two plants nominally sized at 10 metric tons of uranium per day will be required.

  13. Determination of plant available boron in agricultural soil by using voltammetric method

    Directory of Open Access Journals (Sweden)

    Ebru Çetinkaya

    2014-08-01

    Full Text Available In this study, a novel voltammetric method has been developed to determine the amount of boron in soil. 50 soil samples were collected from 5 typical sites of agricultural area. After hot water extraction of available boron in the soil samples, all boron is complexed by addition of Alizarin Red S (ARS to the extraction solutions.Differential pulse anodic stripping voltammetry was used to determine the amount of the boron complexes. The electrochemical parameters have been optimized according to the experimental results. The optimum scan rate, stirring rate, deposition potential, deposition time and pH values were determined as 5 mVs-1 , 200 rpm, -0.5 V (vs. Ag/AgCl, sat., 15sec. and 7.5, respectively. An oxidation peak was occurred at the peak potential of -0.45 V for Boron-Alizarin complex. The limit of detection, limit of quantification and linear working range were determined for the voltammetric soil-boron analysis. In addition, the interference effects of coexisting ions were successfully investigated. Comparison of the analytical data for analyzing real samples was carried out between the differential pulse anodic stripping voltammetric method and the Azometine H spectrophotometric method have shown good agreement. A great advantage of voltammetry over the spectrophotometric method is found to be simplicity, selectivity and shortening of the analysis time.

  14. 硼酸功能化介孔纳米材料的制备及其对糖肽的富集研究%Preparation of Boronic Acid-Functionalized Mesoporous Nanomaterial and Its Application in Enrichment of Glycopeptides

    Institute of Scientific and Technical Information of China (English)

    刘丽婷; 张莹; 焦竞; 杨芃原; 陆豪杰

    2013-01-01

    A boronic acid-functionalized mesoporous nanomaterial was prepared by using a two-step post-grafting method. Firstly, the 3-glycidyloxypropyltrimethoxysilane (GLYMO) and 3-aminophenylboronic acid monohydrate (APB) were reacted in oxyhydrogen sodium solution (pH 9.18) to prepare boronic-acid bonded GLYMO (denoted as GLYMO-APB). Secondly, the MCM-41 was added into the prepared GLYMO-APB solution to prepare the final product of boronic acid func-tionalized MCM-41 (denoted as MCM-41-GLYMO-APB). This as-prepared material was characterized by FT-IR and the results showed that the boronic acid groups were successfully grafted to MCM-41. Glycopeptides can be enriched with high selectivity and high efficiency based on the formation of a cyclic diester between boronic hydroxyl and cis-diol on the glycan chain. The conditions of enriching glycopeptides in mixed digests of standard proteins by MCM-41-GLYMO-APB were compared and optimized. The incubation time, incubation solutions, washing ways and eluents used in the enrichment of glycopeptides were investigated. When using the ammonium bicarbonate buffer (100 mmol/L, pH 8.0) as the incubation solution and incubated for 1 h, the maximum number of enriched glycopeptides from horseradish peroxidase (HRP) digests could be obtained. After enrichment, washing the prepared material with the incubation solution twice for 5 min, nonglyco-peptides interference can be in a large extent removed. The enriched glycopeptides binding to the surface of MCM-41-GLYMO-APB could be released when using 1% trifluoroacetic acid containing 2,5-dihydroxybenzoic acid as the eluent, the operating steps could be simplified when using this optimized eluent because there was no need of adding the MALDI matrix solution afterwards. Therefore, this optimized protocol provided a reference for the glycopeptide enrichment with boronic acid-functionalized materials, and it also laid the foundation for the research of utilizing boronic acid-based chemical method

  15. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Reimold, Benjamin A [Los Alamos National Laboratory; Ward, Steven L [Los Alamos National Laboratory; Howell, John [GLASGOW UNIV.

    2010-09-13

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  16. Elevated CO2 affects plant responses to variation in boron availability

    Science.gov (United States)

    Effects of elevated CO2 on N relations are well studied, but effects on other nutrients, especially micronutrients, are not. We investigated effects of elevated CO2 on response to variation in boron (B) availability in three unrelated species: geranium (Pelargonium x hortorum), barley (Hordeum vulga...

  17. Development of a computer systems for operational data acquisition of uranium isotopic enrichment pilot plant

    International Nuclear Information System (INIS)

    A pilot plant for uranium enrichment using the jet nozzle process was transfered from Federal Republic of Germany to Brazil, to train Brazilian technicist in its operation and to improve the process. This pilot plant is monitored by a data acquisition system and the possibility of faulty events would cause serious dificulties, as far as maintenance is concerned (for instance, unvailable special components). It is described the development of a new system, which is proposed in order to minimize difficulties with maintenance that utilizes in the assembling integrated circuits of large scale of integration. It is controlled by a microcomputer. (Author)

  18. Air strikes on uranium enrichment plants as potential sources of radioecological danger

    Directory of Open Access Journals (Sweden)

    Živanov Dragan

    2007-01-01

    Full Text Available According to the Non Proliferation Treaty (NPT, the signatory countries are not forbidden to preform uranium enrichment for peaceful purposes. However, if there is a justified doubt that the uranium enrichment is performed with the aim to produce nuclear weapons, this certainly causes great concern. In this case, the international community can apply pressure to a certain country if it determines that the country does not want to cease activities of making its own nuclear weapons. The international community pressure on the country can be intesified until its political leadership is not made to question and cease all activities of producing nuclear weapons. This pressure can be political, economic, and as a last resort-military. As a gesture of goodwill the country can stop the uranium enrichment process. In this way, the country shows that it finally gives up the intention to produce nuclear weapons. However, when military pressure is applied, i.e. military strikes (air strikes for example on nuclear plants used for uranium enrichment, this certainly creates a risk of releasing radioactivity into the environment. That is why the aim of this paper is to signal this very fact. Using military force in these cases leads to additional radioactive contamination of the environment, so this way of solving conflicts should be avoided within the international community.

  19. [Selective enrichment of Pseudomonas spp. in the rhizoplane of different plant species].

    Science.gov (United States)

    Marrero, Mariana A; Agaras, Betina; Wall, Luis G; Valverde, Claudio

    2015-01-01

    In contrast to rhizobia-legume symbiosis, the specificity for root colonization by pseudomonads seems to be less strict. However, several studies about bacterial diversity in the rhizosphere highlight the influence of plant species on the selective enrichment of certain microorganisms from the bulk soil community. In order to evaluate the effect that different crops have on the structure of pseudomonad community on the root surface, we performed plant trap experiments, using surface-disinfected maize, wheat or soybean seeds that were sown in pots containing the same pristine soil as substrate. Rhizoplane suspensions were plated on a selective medium for Pseudomonas, and pooled colonies served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA. PCR-RFLP profiles were grouped by plant species, and were distinguished from those of bulk soil samples. Partial sequencing of 16S rDNA genes of some representative colonies of Pseudomonas confirmed the selective enrichment of distinctive genotypes in the rhizoplane of each plant species. These results support the idea that the root systems of agricultural crops such as soybean, maize and wheat, select differential sets of pseudomonads from the native microbial repertoire inhabiting the bulk soil. PMID:26054776

  20. Stem-Cell-Triggered Immunity Safeguards Cytokinin Enriched Plant Shoot Apexes from Pathogen Infection

    Directory of Open Access Journals (Sweden)

    Thomas eDandekar

    2014-10-01

    Full Text Available Intricate mechanisms discriminate between friends and foes in plants. Plant organs deploy overlapping and distinct protection strategies. Despite vulnerability to a plethora of pathogens, the growing tips of plants grow bacteria free. The shoot apical meristem (SAM is among three stem cells niches, a self-renewable reservoir for the future organogenesis of leaf, stem and flowers. How plants safeguard this high value growth target from infections was not known until now. Recent reports find the stem cell secreted 12-amino acid peptide CLV3p (CLAVATA3 peptide is perceived by FLS2 (FLAGELLIN SENSING 2 receptor and activates the transcription of immunity and defense marker genes. No infection in the SAM of wild type plants and bacterial infection in clv3 and fls2 mutants illustrate this natural protection against infections. Cytokinins are enriched in the SAM and regulate meristem activities by their involvement in stem cell signaling networks. Auxin mediates plant susceptibility to pathogen infections while cytokinins boost plant immunity. Here, in addition to the stem-cell-triggered immunity we also highlight a potential link between cytokinin signaling and CLV3p mediated immune response in the SAM.

  1. Enrichment of By-Product Materials from Steel Pickling Acid Regeneration Plants (TRP 9942)

    Energy Technology Data Exchange (ETDEWEB)

    Lu Swan, Delta Ferrites LLC

    2009-09-30

    A new process for manufacturing an enriched, iron-based product (strontium hexaferrite) in existing steel pickling acid regeneration facilities was evaluated. Process enhancements and equipment additions were made to an existing acid regeneration plant to develop and demonstrate (via pilot scale testing and partial-capacity production trials) the viability of a patented method to produce strontium-based compounds that, when mixed with steel pickling acid and roasted, would result in a strontium hexaferrite powder precursor which could then be subjected to further heat treatment in an atmosphere that promotes rapid, relatively low-temperature formation of discrete strontium hexaferrite magnetic domains yielding an enriched iron-based product, strontium hexaferrite, that can be used in manufacturing hard ferrite magnets.

  2. Subtle Gardeners: Inland Predators Enrich Local Topsoils and Enhance Plant Growth.

    Directory of Open Access Journals (Sweden)

    José M Fedriani

    Full Text Available Inland vertebrate predators could enrich of nutrients the local top soils in the area surrounding their nests and dens by depositing faeces, urine, and prey remains and, thus, alter the dynamics of plant populations. Surprisingly, and in contrast with convincing evidence from coastal habitats, whether and how this phenomenon occurs in inland habitats is largely uncertain even though these habitats represent a major fraction of the earth's surface. We investigated during two consecutive breeding seasons the potential enrichment of the top-soils associated with inland ground-nesting eagle owls Bubo bubo, as well as its possible consequences in the growth of two common annual grasses in southern Spain. Top-soils associated with owl nests differed strongly and significantly from control top-soils in chemical parameters, mainly fertility-related properties. Specifically, levels of available phosphorus, total nitrogen, organic matter, and available potassium were 49.1, 5.6, 3.1, and 2.7 times higher, respectively, in top-soils associated with owl nests as compared to control top-soils. Germination experiments in chambers indicated that nutrient enrichment by nesting owls enhanced seedling growth in both annual grasses (Phalaris canariensis and Avena sativa, with seedling size being 1.4-1.3 times higher in owl nest top-soils than in control top-soils. Our experimental study revealed that pervasive inland, predatory birds can profoundly enrich the topsoil around their nests and, thus, potentially enhance local vegetation growth. Because diverse inland vertebrate predators are widespread in most habitats they have a strong potential to enhance spatial heterogeneity, impinge on plant communities, and exert an overlooked effect on primary productivity worldwide.

  3. Design of an Unattended Environmental Aerosol Sampling and Analysis System for Gaseous Centrifuge Enrichment Plants

    International Nuclear Information System (INIS)

    The resources of the IAEA continue to be challenged by the rapid, worldwide expansion of nuclear energy production. Gaseous centrifuge enrichment plants (GCEPs) represent an especially formidable dilemma to the application of safeguard measures, as the size and enrichment capacity of GCEPs continue to escalate. During the early part of the 1990's, the IAEA began to lay the foundation to strengthen and make cost-effective its future safeguard regime. Measures under Part II of 'Programme 93+2' specifically sanctioned access to nuclear fuel production facilities and environmental sampling by IAEA inspectors. Today, the Additional Protocol grants inspection and environmental sample collection authority to IAEA inspectors at GCEPs during announced and low frequency unannounced (LFUA) inspections. During inspections, IAEA inspectors collect environmental swipe samples that are then shipped offsite to an analytical laboratory for enrichment assay. This approach has proven to be an effective deterrence to GCEP misuse, but this method has never achieved the timeliness of detection goals set forth by IAEA. Furthermore it is questionable whether the IAEA will have the resources to even maintain pace with the expansive production capacity of the modern GCEP, let alone improve the timeliness in reaching current safeguards conclusions. New safeguards propositions, outside of familiar mainstream safeguard measures, may therefore be required that counteract the changing landscape of nuclear energy fuel production. A new concept is proposed that offers rapid, cost effective GCEP misuse detection, without increasing LFUA inspection access or introducing intrusive access demands on GCEP operations. Our approach is based on continuous onsite aerosol collection and laser enrichment analysis. This approach mitigates many of the constraints imposed by the LFUA protocol, reduces the demand for onsite sample collection and offsite analysis, and overcomes current limitations associated with

  4. Assessment of phosphopeptide enrichment/precipitation method for LC-MS/MS based phosphoproteomic analysis of plant tissue

    DEFF Research Database (Denmark)

    Ye, Juanying; Rudashevskaya, Elena; Hansen, Thomas Aarup;

    (MSA) method was used for phosphopeptide fragmentation. The resulting fragment ion spectra were processed with Proteome Discoverer software (Thermo Electron, Bremen, Germany). Results We first investigated the global phosphorylation profile of plant plasma membrane proteins by enriching...... the phosphopeptides with IMAC, TiO2 enrichment methods prior to LTQ-Orbitrap MS analysis. 100 ug plant plasma membrane protein was used for each enrichment experiment. The data was searched against NCBI database on MASCOT server, and the results were validated by in home bioinformatic software using the A...

  5. Postprandial plasma oxyphytosterol concentrations after consumption of plant sterol or stanol enriched mixed meals in healthy subjects.

    Science.gov (United States)

    Baumgartner, Sabine; Mensink, Ronald P; Konings, Maurice; Schött, Hans-F; Friedrichs, Silvia; Husche, Constanze; Lütjohann, Dieter; Plat, Jogchum

    2015-07-01

    Epidemiological studies have reported inconsistent results on the relationship between increased plant sterol concentrations with cardiovascular risk, which might be related to the formation of oxyphytosterols (plant sterol oxidation products) from plant sterols. However, determinants of oxyphytosterol formation and metabolism are largely unknown. It is known, however, that serum plant sterol concentrations increase after daily consumption of plant sterol enriched products, while concentrations decrease after plant stanol consumption. Still, we have earlier reported that fasting oxyphytosterol concentrations did not increase after consuming a plant sterol- or a plant stanol enriched margarine (3.0g/d of plant sterols or stanols) for 4weeks. Since humans are in a non-fasting state for most part of the day, we have now investigated effects on oxyphytosterol concentrations during the postprandial state. For this, subjects consumed a shake (50g of fat, 12g of protein, 67g of carbohydrates), containing no, or 3.0g of plant sterols or plant stanols. Blood samples were taken up to 8h and after 4h subjects received a second shake (without plant sterols or plant stanols). Serum oxyphytosterol concentrations were determined in BHT-enriched EDTA plasma via GC-MS/MS. 7β-OH-campesterol and 7β-OH-sitosterol concentrations were significantly higher after consumption of a mixed meal enriched with plant sterol esters compared to the control and plant stanol ester meal. These increases were seen only after consumption of the second shake, illustrative for a second meal effect. Non-oxidized campesterol and sitosterol concentrations also increased after plant sterol consumption, in parallel with 7β-OH concentrations and again only after the second meal. Apparently, plant sterols and oxyphytosterols follow the same second meal effect as described for dietary cholesterol. However, the question remains whether the increase in oxyphytosterols in the postprandial phase is due to

  6. In situ stomatal responses to long-term CO 2 enrichment in calcareous grassland plants

    Science.gov (United States)

    Lauber, Wolfgang; Körner, Christian

    A calcareous grassland community growing under full season CO 2 enrichment at low altitude in the Swiss Jura mountains was investigated for diurnal and seasonal variations of leaf diffusive conductance. A new CO 2 enrichment method (Screen aided CO 2 control, SACC) permitted in situ leaf porometry under natural climatic conditions without disturbance of plants. At 600 ppm CO 2, leaf conductance in the dominant species, Bromus erectus (a species so far not showing a growth response to elevated CO 2) was reduced to half the values measured in controls. In contrast, leaf conductance in Carex flacca, a species of low cover (the only species so far exhibiting a dramatic growth stimulation by CO 2 fertilization) remained almost unaffected by elevated CO 2. Sanguisorba minor, Plantago media, and Cirsium acaule showed intermediate responses. Trifolium montanum, studied only on a single day, showed a reduction like Bromus. Differences between treatments were largest under humid conditions and disappeared during dry periods. In none of the species studied did stomatal density or stomatal index differ between treatments. A parallel investigation of whole ecosystem evapotranspiration indicated only small (<10%) and non significant CO 2 responses, suggesting that both aerodynamic effects at the canopy level and a great interspecific variation of leaf level responses overshadow the clear CO 2 response of Bromus stomata. The different stomatal responses to CO 2 enrichment are likely to alter species specific water consumption, and may thus affect community structure in the long run.

  7. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    International Nuclear Information System (INIS)

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation

  8. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants

    International Nuclear Information System (INIS)

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11–12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the 238U (238U, 226Ra, 210Pb) and 232Th (232Th, 228Ra) family radionuclides as well as 40K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil

  9. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL; Whitaker, J Michael [ORNL; Howell, John [University of Glasgow

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF{sub 6} feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide

  10. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Laser-Based Enrichment Plant... Appendix F to Part 110—Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export Licensing Authority Note—Present systems for enrichment processes using lasers fall into...

  11. Starch accumulation during hydroponic growth of spinach and basil plants under carbon dioxide enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, G.P.; Hansen, J.; Wallick, K.; Zinnen, T.M. (North Illinois University, de Kalb, IL (USA). Dept. of Biological Sciences)

    1993-04-01

    The effects of CO[sub 2] enrichment, photoperiod duration, and inorganic phosphate levels on growth and starch accumulaton by spinach and basil plants were studied in a commercial hydroponic facility. During a 3-week growth period, both species exhibited increased whole-plant fresh weight as a result of an increase in atmospheric CO[sub 2] concentration from 400 to 1500 mul/1. However, basil leaves exhibited a 1.5- to 2-fold greater increase in specific leaf weight (SLW), and accumulated starch to much greater levels than did leaves of spinach. At 1500 mul CO[sub 2]/1, starch accounted for up to 38% of SLW with basil compared to [lt] 10% of SLW with spinach. The maximum ratio of starch/chlorophyll was 55.0 in basil leaves vs 8.0 in spinach leaves. High ratio values were associated with the appearance of chlorotic symptoms in leaves of basil grown under CO[sub 2] enrichment, whereas spinach did not exhibit chlorosis. Increasing inorganic phosphate concentrations from 0.7 to 1.8 mM in the hydroponic medium did not appreciably affect leaf starch accumulation in either species. Starch accumulation in basil leaves was not consistently related to the duration of the photoperiod. However, photoperiod-induced changes in leaf starch levels were much greater in basil than spinach. The results clearly indicate that different horticultural crops can show diverse responses to CO[sub 2] enrichment, and thus highlight the need to develop individual growth strategies to optimize production quality of each species.

  12. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    JOE,J.

    2007-07-08

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  13. Resolving phylogenetic relationships of the recently radiated carnivorous plant genus Sarracenia using target enrichment.

    Science.gov (United States)

    Stephens, Jessica D; Rogers, Willie L; Heyduk, Karolina; Cruse-Sanders, Jennifer M; Determann, Ron O; Glenn, Travis C; Malmberg, Russell L

    2015-04-01

    The North American carnivorous pitcher plant genus Sarracenia (Sarraceniaceae) is a relatively young clade (carnivorous plants; however, little is known regarding evolutionary relationships within the genus. Previous attempts at resolving the phylogeny have been unsuccessful, most likely due to few parsimony-informative sites compounded by incomplete lineage sorting. Here, we applied a target enrichment approach using multiple accessions to assess the relationships of Sarracenia species. This resulted in 199 nuclear genes from 75 accessions covering the putative 8-11 species and 8 subspecies/varieties. In addition, we recovered 42kb of plastome sequence from each accession to estimate a cpDNA-derived phylogeny. Unsurprisingly, the cpDNA had few parsimony-informative sites (0.5%) and provided little information on species relationships. In contrast, use of the targeted nuclear loci in concatenation and coalescent frameworks elucidated many relationships within Sarracenia even with high heterogeneity among gene trees. Results were largely consistent for both concatenation and coalescent approaches. The only major disagreement was with the placement of the purpurea complex. Moreover, results suggest an Appalachian massif biogeographic origin of the genus. Overall, this study highlights the utility of target enrichment using multiple accessions to resolve relationships in recently radiated taxa. PMID:25689607

  14. Selenium accumulation, distribution and speciation in spineless prickly pear cactus: a salt, boron, and drought tolerant, selenium-enriched nutraceutical fruit crop.

    Science.gov (United States)

    Prickly pear cactus (Opuntia) may be an alternative crop to grow in drainage-impacted regions of the westside of California, where high levels of salinity, selenium (Se), and boron (B) are present. Preliminary trials have demonstrated that Opuntia can tolerate the adverse soil conditions, while accu...

  15. Links between Plant Invasion, Anthropogenic Nitrogen Enrichment, and Wildfires: A Systematic Review

    Science.gov (United States)

    Felker-Quinn, E.; Gooding Lassiter, M.; Maxwell, A.; Housego, R.; Young, B.

    2014-12-01

    Wildfires can become positive feedbacks in climate change scenarios, because wildfires release large amounts of carbon sequestered in plants and soil to the atmosphere, and because their frequency increases with increasing temperatures. Invasive plants represent an important biotic link between anthropogenic activity and wildfire, as many of these species benefit from human disturbance while increasing fire frequency and severity. A robust body of literature addresses the response of invasive species to nitrogen enrichment, and a separate body of research assesses the feedbacks between invasive plant species and wildfire. We have undertaken a systematic review of these fields in order to evaluate the hypothesis that anthropogenic nitrogen loading contributes to increasing wildfires by promoting the growth and spread of fire-adapted invasive plant species. We identified invasive plant species using the Fire Effects Information System (FEIS), a Forest Service database that evaluates fire ecology of species identified as being of concern by land managers. We used information contained in the FEIS as well as more recent studies to characterize species on a continuum from fire-adapted to fire-intolerant based on traits related to interactions of fire with survival, reproduction, and spread. Of the 107 invasive plant species with fire ecology reports in the FEIS, we have initially classified 18 as fire-adapted, possessing traits that intensify fire regimes. Additionally, 33 species are fire-tolerant, benefiting from fire primarily because it creates a high-resource, low-competition environment. In continuing work, we are evaluating the responses of the invasive plant species to increased anthropogenic nitrogen with a focus on traits such as germination, productivity, and survival, as these traits contribute to wildfire frequency and severity. The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U

  16. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    Science.gov (United States)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  17. Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.).

    Science.gov (United States)

    Wang, Guoying; Römheld, Volker; Li, Chunjian; Bangerth, Fritz

    2006-04-01

    It has previously been shown that boron (B) deficiency inhibits growth of the plant apex, which consequently results in a relatively weak apical dominance, and a subsequent sprouting of lateral buds. Auxin and cytokinins (CKs) are the two most important phytohormones involved in the regulation of apical dominance. In this study, the possible involvement of these two hormones in B-deficiency-induced changes in apical dominance was investigated by applying B or the synthetic CK CPPU to the shoot apex of pea plants grown in nutrient solution without B supply. Export of IAA out of the shoot apex, as well as the level of IAA, Z/ZR and isopentenyl-adenine/isopentenyl-adenosine (i-Ade/i-Ado) in the shoot apex were assayed. In addition, polar IAA transport capacity was measured in two internodes of different ages using 3H-IAA. In B-deficient plants, both the level of auxin and CKs were reduced, and the export of auxin from the shoot apex was considerably decreased relative to plants well supplied with B. Application of B to the shoot apex restored the endogenous Z/ZR and IAA level to control levels and increased the export of IAA from the shoot apex, as well as the 3H-IAA transport capacity in the newly developed internodes. Further, B application to the shoot apex inhibited lateral bud growth and stimulated lateral root formation, presumably by stimulated polar IAA transport. Applying CPPU to the shoot apex, a treatment that stimulates IAA export under adequate B supply, considerably reduced the endogenous Z/ZR concentration in the shoot apex, but had no stimulatory effect on IAA concentration and transport in B-deficient plants. A similar situation appeared to exist in lateral buds of B-deficient plants as, in contrast to plants well supplied with B, application of CKs to these plants did not stimulate lateral bud growth. In contrast to the changes of Z/ZR levels in the shoot apex, which occurred after application of B or CPPU, the levels of i-Ade/i-Ado stayed more or

  18. LABORATORY DEMONSTRATION OF A MULTISENSOR UNATTENDED CYLINDER VERIFICATION STATION FOR URANIUM ENRICHMENT PLANT SAFEGUARDS

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, David I [Univ. of Michigan, Ann Arbor, MI (United States); Rowland, Kelly L [Univ. of California, Berkeley, CA (United States); Smith, Sheriden [Colorado State Univ., Fort Collins, CO (United States); Miller, Karen A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flynn, Eric B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-10

    The objective of safeguards is the timely detection of the diversion of a significant quantity of nuclear materials, and safeguarding uranium enrichment plants is especially important in preventing the spread of nuclear weapons. The IAEA’s proposed Unattended Cylinder Verification Station (UCVS) for UF6 cylinder verification would combine the operator’s accountancy scale with a nondestructive assay system such as the Passive Neutron Enrichment Meter (PNEM) and cylinder identification and surveillance systems. In this project, we built a laboratory-scale UCVS and demonstrated its capabilities using mock UF6 cylinders. We developed a signal processing algorithm to automate the data collection and processing from four continuous, unattended sensors. The laboratory demonstration of the system showed that the software could successfully identify cylinders, snip sensor data at the appropriate points in time, determine the relevant characteristics of the cylinder contents, check for consistency among sensors, and output the cylinder data to a file. This paper describes the equipment, algorithm and software development, laboratory demonstration, and recommendations for a full-scale UCVS.

  19. Issues and recommendations related to replacement of CFC-114 at the uranium enrichment gaseous diffusion plant

    International Nuclear Information System (INIS)

    The operating uranium enrichment gaseous diffusion plants (GDPs) in Portsmouth, Ohio and Paducah, Kentucky, which are operated for the United States Department for Energy by Martin Marietta Energy Systems (MMES), currently use a chlorofluorocarbon (CFC-114) as the primary process stream coolant. Due to recent legislation embodied in the Clean Air Act, the production of this and other related chlorofluorocarbons (CFCS) are to be phased out with no production occurring after 1995. Since the plants lose approximately 500,000 pounds per year of this process stream coolant through various leaks, the GDPs are faced with the challenge of identifying a replacement coolant that will allow continued operation of the plants. MMES formed the CFC Task Team to identify and solve the various problems associated with identifying and implementing a replacement coolant. This report includes a review of the work performed by the CFC Task Team, and recommendations that were formulated based on this review and upon original work. The topics covered include; identifying a replacement coolant, coolant leak detection and repair efforts, coolant safety concerns, coolant level sensors, regulatory issues, and an analytical decision analysis

  20. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought

    Science.gov (United States)

    Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; de Luca, Enrica; Griffin, John N.; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Palmborg, Cecilia; Polley, H. Wayne; Reich, Peter B.; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P.; Tilman, David; Vogel, Anja; Eisenhauer, Nico

    2016-01-01

    Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function. PMID:27114579

  1. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  2. Characterization of Oxidative Stability of Fish Oil- and Plant Oil-Enriched Skimmed Milk

    DEFF Research Database (Denmark)

    Saga, Linda C.; Kristinova, Vera; Kirkhus, Bente;

    2013-01-01

    The objective of this research was to determine the oxidative stability of fish oil blended with crude plant oils rich in naturally occurring antioxidants, camelina oil and oat oil, respectively, in bulk and after supplementation of 1 wt% of oil blends to skimmed milk emulsions. Ability of crude...... oat oil and camelina oil to protect fish oil in bulk and as fish oil-enriched skimmed milk emulsions was evaluated. Results of oxidative stability of bulk oils and blends assessed by the Schaal oven weight gain test and by the rancimat method showed significant increase in oxidative stability when oat...... oil was added to fish oil in only 5 and 10 %, whereas no protective effect of camelina oil was observed when evaluated by these methods. Moreover, fish oil blended with oat oil conferred the lowest PV and lower amounts of volatile compounds during the storage period of 14 days at 4 °C. Surprisingly...

  3. SNM monitor applications: diversion safeguards for emergency exits and detection of undeclared feed in enrichment plants

    International Nuclear Information System (INIS)

    A new monitor for special nuclear material (SNM) uses wide plastic scintillators and digital logic to achieve a higher sensitivity for detecting uranium than is found in conventional personnel SNM monitors. With its detectors spaced 2 m apart, the new monitor meets the DOE requirement to detect a 10-g metal 235U sphere of 93% 235U whose total mass is 10.8 g. This capability suits the monitor to scan people who may have to pass quickly through emergency exits. In yet another application, the monitor meets detection goals for detecting freshly separated, natural UF6 that is brought into enrichment plants through personnel portals. To determine the performance of the new monitor for these applications, laboratory source scans and measurements of the growth of uranium daughter activity in freshly separated UF6 were used

  4. Synthesis and characterization of ammonium phosphate fertilizers with boron

    OpenAIRE

    ANGELA MAGDA; RODICA PODE; CORNELIA MUNTEAN; MIHAI MEDELEANU; ALEXANDRU POPA

    2010-01-01

    The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the ...

  5. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; He, Maofang; Wang, Chaozhan; Wei, Yinmao, E-mail: ymwei@nwu.edu.cn

    2015-07-30

    Boronate affinity materials have been widely used for specific separation and preconcentration of cis-diol molecules, but most do not have sufficient capacity due to limited binding sites on the material surface. In this work, we prepared a phenylboronic acid-functionalized adsorbent with a high binding capacity via the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and chain-end functionalization. With this method, the terminal chlorides of the polymer chains were used fully, and the proposed adsorbent contains dense boronic acid polymers chain with boronic acid on the chain end. Consequently, the proposed adsorbent possesses excellent selectivity and a high binding capacity of 513.6 μmol g{sup −1} for catechol and 736.8 μmol g{sup −1} for fructose, which are much higher than those of other reported adsorbents. The dispersed solid-phase extraction (dSPE) based on the prepared adsorbent was used for extraction of three cis-diol drugs (i.e., epinephrine, isoprenaline and caffeic acid isopropyl ester) from plasma; the eluates were analyzed by HPLC-UV. The reduced amount of adsorbent (i.e., 2.0 mg) could still eliminate interferences efficiently and yielded a recovery range of 85.6–101.1% with relative standard deviations ranging from 2.5 to 9.7% (n = 5). The results indicated that the proposed strategy could serve as a promising alternative to increase the density of surface functional groups on the adsorbent; thus, the prepared adsorbent has the potential to effectively enrich cis-diol substances in real samples. - Highlights: • Boronate adsorbent is prepared via ATRP and chain-end functionalization. • The adsorbent has quite high binding capacity for cis-diols. • Binding capacity is easily manipulated by ATRP condition. • Chain-end functionalization can improve binding capacity significantly. • Reduced adsorbent is consumed in dispersed solid-phase extraction of cis-diols.

  6. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution.

    Science.gov (United States)

    Gür, Nurcan; Türker, Onur Can; Böcük, Harun

    2016-08-01

    As many of the metalloid-based pollutants, the boron (B) toxicity issues have aroused more and more global attentions, especially concerning drinking water sources which flow through boron-rich areas. Therefore, feasible and innovative approaches are required in order to assess B toxicity in aquatic ecosystems. In this study, the toxic effects of B on Lemna minor L. and Lemna gibba L. were investigated using various endpoints including number of fronds, growth rates, dry biomass and antioxidants enzymatic activities. Lemna species were exposed to B concentrations of 2 (control), 4, 8, 16, 32, 64 and 128 mg L(-1) for a test period of 7 days. The results demonstrated that plant growth was significantly reduced when the B concentration reached 16 mg L(-1). Furthermore, our results also concluded that among the antioxidative enzymes, SOD, APX and GPX can serve as important biomarkers for B-rich environment. The present results suggested that L. minor and L. gibba are very useful model plants for phytoremediation of low-B contaminated wastewater and they are also suitable options for B biomonitoring due to high phototoxic sensitivity against B. In this respect, the scientific insight of the present study is to fill the gaps in the research about the use of L. minor and L. gibba in ecotoxicological research associated with B toxicity. PMID:27192627

  7. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    Science.gov (United States)

    Zhang, J.; Gu, L.; Bao, F.; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; Wu, R.; Yao, B.; Zhao, Y.; Lin, G.; Wu, B.; Lu, Q.; Meng, P.

    2015-01-01

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, hypothesized to be the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs, while processes such as fractionating foliar metabolism and preferentially loading into phloem of 13C-enriched sugars may contribute to the overall autotrophic-heterotrophic difference in carbon isotope compositions.

  8. Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, C.R.; Alderson, J.H.; Blue, S.C.; Boelens, R.A.; Conkel, M.E.; Dorning, R.E.; Ecklund, C.D.; Halicks, W.G.; Henson, H.M.; Newman, V.S.; Philpot, H.E.; Taylor, M.S.; Vournazos, J.P. [Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.; Russell, J.R. [USDOE Oak Ridge Field Office, TN (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States); Ziehlke, K.T. [MJB Technical Associates (United States)

    1992-07-01

    Isotopically depleted UF{sub 6} (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF{sub 6}. Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wall pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life.

  9. Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants

    International Nuclear Information System (INIS)

    Isotopically depleted UF6 (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF6. Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wall pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life

  10. Cholesterol lowering effect of a soy drink enriched with plant sterols in a French population with moderate hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Bard Jean-Marie

    2008-10-01

    Full Text Available Abstract Background Plant sterols are an established non-pharmacological means to reduce total and LDL blood cholesterol concentrations and are therefore recommended for cholesterol management by worldwide-renown health care institutions. Their efficacy has been proven in many types of foods with the majority of trials conducted in spreads or dairy products. As an alternative to dairy products, soy based foods are common throughout the world. Yet, there is little evidence supporting the efficacy of plant sterols in soy-based foods. The objective of this study was to investigate the effect of a soy drink enriched with plant sterols on blood lipid profiles in moderately hypercholesterolemic subjects. Methods In a randomized, placebo-controlled double-blind mono-centric study, 50 subjects were assigned to 200 ml of soy drink either enriched with 2.6 g plant sterol esters (1.6 g/d free plant sterol equivalents or without plant sterols (control for 8 weeks. Subjects were instructed to maintain stable diet pattern and physical activity. Plasma concentrations of lipids were measured at initial visit, after 4 weeks and after 8 weeks. The primary measurement was the change in LDL cholesterol (LDL-C. Secondary measurements were changes in total cholesterol (TC, non-HDL cholesterol (non-HDL-C, HDL cholesterol (HDL-C and triglycerides. Results Regular consumption of the soy drink enriched with plant sterols for 8 weeks significantly reduced LDL- C by 0.29 mmol/l or 7% compared to baseline (p 96%, and products were well tolerated. Conclusion Daily consumption of a plant sterol-enriched soy drink significantly decreased total, non-HDL and LDL cholesterol and is therefore an interesting and convenient aid in managing mild to moderate hypercholesterolemia.

  11. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Science.gov (United States)

    2010-01-01

    ... Equipment and Components Under NRC Export Licensing Authority G Appendix G to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. G Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and...

  12. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics

    Science.gov (United States)

    Li, Yuyang; Ding, Kun; Wen, Xianghua; Zhang, Bing; Shen, Bo; Yang, Yunfeng

    2016-03-01

    Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with “Ca. Nitrosotenuis chungbukensis”), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C–33 °C) and neutrophilic (pH 5.0–7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name “Candidatus Nitrosotenuis cloacae” for the strain SAT1.

  13. Verification of nuclear material balances: General theory and application to a highly enriched uranium fabrication plant

    International Nuclear Information System (INIS)

    In the theoretical part it is shown that under the assumption, that in case of diversion the operator falsifies all data by a class specific amount, it is optimal in the sense of the probability of detection to use the difference MUF-D as the test statistics. However, as there are arguments for keeping the two tests separately, and furthermore, as it is not clear that the combined test statistics is optimal for any diversion strategy, the overall guaranteed probability of detection for the bivariate test is determined. A numerical example is given applying the theoretical part. Using the material balance data of a Highly Enriched Uranium fabrication plant the variances of MUF, D (no diversion) and MUF-D are calculated with the help of the standard deviations of operator and inspector measurements. The two inventories of the material balance are stratified. The samples sizes of the strata and the total inspection effort for data verification are determined by game theoretical methods (attribute sampling). On the basis of these results the overall detection probability of the combined system (data verification and material accountancy) is determined both for the MUF-D test and the bivariate (D,MUF) test as a function of the goal quantity. The results of both tests are evaluated for different diversion strategies. (orig./HP)

  14. Russian ElectroKhimPribor integrated plant - producer and supplier of enriched stable isotopes

    International Nuclear Information System (INIS)

    Russian ElectroKhimPribor Integrated Plant, as well as ORNL, is a leading production which manufactures and supplied to the world market such specific products as stable isotopes. More than 200 isotopes of 44 elements can be obtained at its electromagnetic separator. Changes being underway for a few last years in Russia affected production and distribution of stable isotopes. There arose a necessity in a new approach to handling work in this field so as to create favourable conditions for both producers and customers. As a result, positive changes in calutron operation at ElectroKhimPribor has been reached; quality management system covering all stages of production has been set up; large and attractive stock of isotopes has been created; prospective scientific isotope-based developments are taken into account when planning separation F campaigns; executing the contracts is guaranteed; business philosophy has been changed to meet maximum of customer needs. For more than forty years ElectroKhimPribor have had no claim from customers as to quality of products or implementing contracts. Supplying enriched stable isotopes virtually to all the world's leading customers, ElectroKhimPribor cooperates successfully with Canadian company Trace Science since 1996

  15. Safeguards Guidance for Designers of Commercial Nuclear Facilities - International Safeguards Requirements for Uranium Enrichment Plants

    International Nuclear Information System (INIS)

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  16. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  17. In-Born Radio Frequency Identification Devices for Safeguards Use at Gas-Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ward,R.; Rosenthal,M.

    2009-07-12

    Global expansion of nuclear power has made the need for improved safeguards measures at Gas Centrifuge Enrichment Plants (GCEPs) imperative. One technology under consideration for safeguards applications is Radio Frequency Identification Devices (RFIDs). RFIDs have the potential to increase IAEA inspector"s efficiency and effectiveness either by reducing the number of inspection visits necessary or by reducing inspection effort at those visits. This study assesses the use of RFIDs as an integral component of the "Option 4" safeguards approach developed by Bruce Moran, U.S. Nuclear Regulatory Commission (NRC), for a model GCEP [1]. A previous analysis of RFIDs was conducted by Jae Jo, Brookhaven National Laboratory (BNL), which evaluated the effectiveness of an RFID tag applied by the facility operator [2]. This paper presents a similar evaluation carried out in the framework of Jo’s paper, but it is predicated on the assumption that the RFID tag is applied by the manufacturer at the birth of the cylinder, rather than by the operator. Relevant diversion scenarios are examined to determine if RFIDs increase the effectiveness and/ or efficiency of safeguards in these scenarios. Conclusions on the benefits offered to inspectors by using in-born RFID tagging are presented.

  18. Enriching Production: Perspectives on Volvo's Uddevalla plant as an alternative to lean production

    OpenAIRE

    Sandberg, Åke

    1995-01-01

    Enriching Production was first published by Avebury in 1995. The book was quickly sold out and is now made available again. Enriching Production was edited by professor Åke Sandberg, Arbetslivsinstitutet/ National Institute for Working Life and KTH The Royal Institute of Technology, Stockholm. Enriching Production was followed up by a symposium on the general theme of ‘Good work and productivity’. The papers were collected in a special issue of Economic and Industrial Democracy, Vol. 19, ...

  19. The boron trifluoride nitromethane adduct

    Science.gov (United States)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  20. Implementation trial of high performance trace analysis/environmental sampling (HPTA/ES) in uranium centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Field trials have demonstrated that the analysis of particles upon swipes obtained from inside nuclear installations provides clear signatures of past operations in that installation. This can offer a valuable tool for gaining assurance regarding the compliance with declared activities and the absence of undeclared activities (e.g. enrichment, reprocessing, and reactor operation) at such sites. This method, known as 'Environmental Sampling' (ES) or 'High Performance Trace Analysis' (HPTA) in EURATOM terminology, is at present being evaluated by the EURATOM Safeguards Directorate (ESD) in order to assess its possible use in nuclear installations within the European Union. It is expected that incorporation of HPTA/ES of sample collection and analysis into routine inspection activities will allow EURATOM to improve the effectiveness of safeguards in these installations and hopefully save inspection resources as well. The EURATOM Safeguards Directorate has therefore performed implementation trials involving the collection of particles by the so-called swipe sampling method in uranium centrifuge enrichment plants and hot cells in the European Union. These samples were subsequently analysed by the Joint Research Centre, Institute for Transuranium Elements (ITU) in Karlsruhe. Sampling points were chosen on the basis of the activities performed in the vicinity and by considering the possible ways through which particles are released, diffused and transported. The aim was to test the efficiency of the method as regards: the collection of enough representative material; the identification of a large enough number of uranium particles; the accurate measurement of the enrichment of the uranium particles found on the swipe; the representativity of the results in respect of past activities in the plant; the capability of detecting whether highly enriched uranium has been produced, used or occasionally transported in a location where low enriched uranium is routinely produced in

  1. PAPE (Prefractionation-Assisted Phosphoprotein Enrichment: A Novel Approach for Phosphoproteomic Analysis of Green Tissues from Plants

    Directory of Open Access Journals (Sweden)

    Ines Lassowskat

    2013-12-01

    Full Text Available Phosphorylation is an important post-translational protein modification with regulatory roles in diverse cellular signaling pathways. Despite recent advances in mass spectrometry, the detection of phosphoproteins involved in signaling is still challenging, as protein phosphorylation is typically transient and/or occurs at low levels. In green plant tissues, the presence of highly abundant proteins, such as the subunits of the RuBisCO complex, further complicates phosphoprotein analysis. Here, we describe a simple, but powerful, method, which we named prefractionation-assisted phosphoprotein enrichment (PAPE, to increase the yield of phosphoproteins from Arabidopsis thaliana leaf material. The first step, a prefractionation via ammonium sulfate precipitation, not only depleted RuBisCO almost completely, but, serendipitously, also served as an efficient phosphoprotein enrichment step. When coupled with a subsequent metal oxide affinity chromatography (MOAC step, the phosphoprotein content was highly enriched. The reproducibility and efficiency of phosphoprotein enrichment was verified by phospho-specific staining and, further, by mass spectrometry, where it could be shown that the final PAPE fraction contained a significant number of known and additionally novel (potential phosphoproteins. Hence, this facile two-step procedure is a good prerequisite to probe the phosphoproteome and gain deeper insight into plant phosphorylation-based signaling events.

  2. Opportunities to more fully utilize safeguards information reported to the IAEA at Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Garner, James R [ORNL; Whitaker, J Michael [ORNL

    2015-01-01

    In an effort to increase transparency and to strengthen IAEA safeguards, more countries are adopting practices that provide the IAEA with more timely, safeguards-relevant information to confirm nuclear operations are as declared. At Gas Centrifuge Enrichment Plants (GCEPs) potential examples include installing unattended IAEA instruments that transmit selected information back to Vienna, instruments that collect and store measurement information on-site, and daily facility operator submissions of material receipts, shipments, or utilization of key operational systems (e.g., UF6 feed stations) to on-site mail boxes. Recently the IAEA has implemented the use of on-site mailbox systems supplemented with short notice or unannounced inspections to maintain effectiveness without significantly increasing the number of inspection days. While these measures significantly improves the IAEA’s effectiveness, we have identified several opportunities for how the use of this information could be improved and how some additional information would further improve safeguards. This paper presents concepts for how the safeguards information currently collected at GCEPs could be more effectively utilized through enhancing the way that raw data is displayed visually so that it is more intuitive to the inspector and provides for more effective inspection planning and execution, comparing information with previous IAEA inspection activities (lists of previous verified inventory), through comparing data with operator supplied data when inspectors arrive (notional inventory change reports), and through evaluating the data over time to provide even greater confidence in the data and operations as declared in between inspections. This paper will also discuss several potential improvements to the submissions themselves, such as including occupancy information about product and tails stations and including weight information for each station.

  3. A Laser-Based Method for On-Site Analysis of UF6 at Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Cannon, Bret D.; Martinez, Alonzo; Barrett, Christopher A.; Taubman, Matthew S.; Anderson, Kevin K.; Smith, Leon E.

    2014-11-23

    The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for more cost-effective and efficient safeguard methods to detect and deter misuse of gaseous centrifuge enrichment plants (GCEPs). The IAEA’s current safeguards approaches at GCEPs are based on a combination of routine and random inspections that include environmental sampling and destructive assay (DA) sample collection from UF6 in-process material and selected cylinders. Samples are then shipped offsite for subsequent laboratory analysis. In this paper, a new DA sample collection and onsite analysis approach that could help to meet challenges in transportation and chain of custody for UF6 DA samples is introduced. This approach uses a handheld sampler concept and a Laser Ablation, Laser Absorbance Spectrometry (LAARS) analysis instrument, both currently under development at the Pacific Northwest National Laboratory. A LAARS analysis instrument could be temporarily or permanently deployed in the IAEA control room of the facility, in the IAEA data acquisition cabinet, for example. The handheld PNNL DA sampler design collects and stabilizes a much smaller DA sample mass compared to current sampling methods. The significantly lower uranium mass reduces the sample radioactivity and the stabilization approach diminishes the risk of uranium and hydrogen fluoride release. These attributes enable safe sample handling needed during onsite LAARS assay and may help ease shipping challenges for samples to be processed at the IAEA’s offsite laboratory. The LAARS and DA sampler implementation concepts will be described and preliminary technical viability results presented.

  4. Effects of a Plant Sterol or Stanol Enriched Mixed Meal on Postprandial Lipid Metabolism in Healthy Subjects

    Science.gov (United States)

    Baumgartner, Sabine; Mensink, Ronald P.; Plat, Jogchum

    2016-01-01

    Background Evidence is increasing that plant sterols and stanols not only lower fasting serum low-density lipoprotein concentrations, but also those of triglycerides (TG). Insight into effects of these components on postprandial TG metabolism, an emerging risk factor for cardiovascular disease, is missing. Objective Our objective was to examine the 8-hour postprandial response after consuming plant sterol or stanol enriched margarine as part of a mixed meal. Methods This postprandial study was part of a randomized crossover study in which 42 subjects consumed plant sterol enriched (3 g/d plant sterols), plant stanol enriched (3 g/d plant stanols), and control margarines for 4 weeks. After each period, subjects consumed a shake enriched with 3g plant sterols (sterol period), 3g plant stanols (stanol period) or no addition (control period). Subjects received a second shake with no addition after 4 hours. Results TG and apoB48 incremental areas under the curves (iAUC) of the total (0-8h) and 1st meal response (0-4h) were comparable between the meals and in all age categories (I:18-35y, II:36-52y, III:53-69y). In subjects aged 53-69y, TG iAUC after the 2nd meal (4-8h) was higher in the stanol period as compared with the sterol (63.1±53.0 mmol/L/min; P sterol period (67.1±77.0 mg/L/min; P < 0.05) and tended to be higher than after the control period (43.1±64.5 mg/L/min; P = 0.08) in subjects aged 53-69y. These increased postprandial responses may be due to reduced lipoprotein lipase activity, since postprandial apoCIII/II ratios were increased after stanol consumption compared with the control meal. Conclusion Postprandial TG and apoB48 responses are age-dependently increased after plant stanol consumption, which might be related to a changed clearance of triglyceride-rich lipoproteins. Trial Registration ClinicalTrials.gov NCT01559428 PMID:27611192

  5. Enrichment Planting in Secondary Forests: a Promising Clean Development Mechanism to Increase Terrestrial Carbon Sinks

    Directory of Open Access Journals (Sweden)

    Catherine Potvin

    2009-06-01

    Full Text Available With the increasing need to reduce greenhouse gas concentrations, afforestation and reforestation (A/R projects are being implemented under the Kyoto Clean Development Mechanism (CDM and under the voluntary carbon (C market. The specific objective of A/R C projects is to enhance terrestrial sinks. They could also provide low-income communities in developing countries with a source of revenue, as well as a number of ecological and social services. However, feasibility issues have hindered implementation of A/R CDMs. We propose enrichment planting (EP in old fallow using high-value native timber species as a land-use alternative and a small-scale C projects opportunity. We present EP in the context of ongoing work in a poor indigenous community in eastern Panama. We consider economic risks and advantages and concordance with existing modalities under the compliance market. The potential storage capacity for EP at the site of our study was ~113 Mg C ha-1, which is comparable to other land uses with high C storage, such as industrial teak plantations and primary forest. Because secondary forests show high aboveground biomass production, C projects using EP could harness large amounts of atmospheric C while improving diversity. Carbon projects using EP can also provide high levels of social, cultural, and ecological services by planting native tree species of traditional importance to local communities and preserving most of the secondary forest’s ecological attributes. Therefore, EP planting could be considered as a way to promote synergies between two UN Conventions: climate change and biodiversity. SÍNTESIS Con la necesidad apremiante de reducción de los gases de efecto invernadero, proyectos de aforestación y reforestación (A/R pueden implementarse bajo el Mecanismo de Desarrollo Limpio del Protocolo de Kyoto (MDL o en el contexto del mercado voluntario. El objetivo especifico de los mercados de carbono, voluntario o de compromiso, es de

  6. Plant and arthropod community sensitivity to rainfall manipulation but not nitrogen enrichment in a successional grassland ecosystem.

    Science.gov (United States)

    Lee, Mark A; Manning, Pete; Walker, Catherine S; Power, Sally A

    2014-12-01

    Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands. PMID:25224801

  7. Efficient and Selective Enrichment of Ultratrace Cytokinins in Plant Samples by Magnetic Perhydroxy-Cucurbit[8]uril Microspheres.

    Science.gov (United States)

    Zhang, Qianchun; Li, Gongke; Xiao, Xiaohua; Zhan, Song; Cao, Yujuan

    2016-04-01

    Cytokinins play a critical role in controlling plant growth and development, but it is difficult to be determined in plant samples due to the extremely low concentration level of picomole/gram. So it is important for efficient sample preparation with selective enrichment and rapid separation for accurate analysis of cytokinins. Herein, a supramolecular perhydroxy-cucurbit[8]uril (PCB[8]) was fabricated into the Fe3O4 magnetic particles via chemical bonding assembly and magnetic perhydroxy-cucurbit[8]uril (MPC) materials were obtained. The MPC had good enrichment capability to cytokinins and the enrichment factors were more than 208. The interaction of MPC and cytokinins was investigated by adsorption test and density functional theory (DFT) calculation, the results showed that the main drive forces were the host-guest interaction and hydrogen-bonding interaction between the perhydroxy-cucurbit[8]uril with analytes. Combined with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the MPC was used as a sorbent of magnetic solid-phase extraction for the analysis of cytokinins in plant samples. A sensitive and selective UPLC-MS/MS method was developed with low detection limits of 0.14-0.32 ng/L for cytokinins analysis. Five cytokinins including zeatin riboside, meta-topolin, kinetin, kinetin riboside, and zip with 6.12-87.3 ng/kg were determined in the soybean sprout and Arabidopsis thaliana. The recoveries were in the range of 76.2-110% with relative standard deviations (n = 5) of 2.3-9.7%. On the basis of these results, magnetic perhydroxy-cucurbit[8]uril materials with selective enrichment capability have good potential on the analysis of ultratrace targets from complicated sample matrixes. PMID:26977773

  8. Tailor-Made Boronic Acid Functionalized Magnetic Nanoparticles with a Tunable Polymer Shell-Assisted for the Selective Enrichment of Glycoproteins/Glycopeptides.

    Science.gov (United States)

    Zhang, Xihao; Wang, Jiewen; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2015-11-11

    Biomedical sciences, and in particular biomarker research, demand efficient glycoproteins enrichment platforms. In this work, we present a facile and time-saving method to synthesize phenylboronic acid and copolymer multifunctionalized magnetic nanoparticles (NPs) using a distillation-precipitation polymerization (DPP) technique. The polymer shell is obtained through copolymerization of two monomers-affinity ligand 3-acrylaminophenylboronic acid (AAPBA) and a hydrophilic functional monomer. The resulting hydrophilic Fe3O4@P(AAPBA-co-monomer) NPs exhibit an enhanced binding capacity toward glycoproteins by an additional functional monomer complementary to the surface presentation of the target protein. The effects of monomer ratio of AAPBA to hydrophilic comonomers on the binding of glycoproteins are systematically investigated. The morphology, structure, and composition of all the synthesized microspheres are characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The hydrophilic Fe3O4@P(AAPBA-co-monomer) microspheres show an excellent performance in the separation of glycoproteins with high binding capacity; And strong magnetic response allows them to be easily separated from solution in the presence of an external magnetic field. Moreover, both synthetic Fe3O4@P(AAPBA) and copolymeric NPs show good adsorption to glycoproteins in physiological conditions (pH 7.4). The Fe3O4@P(AAPBA-co-monomer) NPs are successfully utilized to selectively capture and identify the low-abundance glycopeptides from the tryptic digest of horseradish peroxidase (HRP). In addition, the selective isolation and enrichment of glycoproteins from the egg white samples at physiological condition is obtained by Fe3O4@P(AAPBA-co-monomer) NPs as adsorbents.

  9. Use of 15N enriched plant material for labelling of soil nitrogen in legume dinitrogen fixation experiments

    International Nuclear Information System (INIS)

    The soil nitrogen in a field plot was labelled with nitrogen-15 (15N) by incorporating labelled plant material derived from previous experiments. The plot was used the following 3 years for determination of the amount of N2 fixed by different leguminous plants. The atom % 15N excess in grains of cereals grown as reference crops was 0.20, 0.05 and 0.03 in the 3 years, respectively. In the first year the level of enrichment was adequate for estimating symbiotic nitrogen fixation. In the second and third year lack of precision in determination of the 15N/14N ratios of legume N, may have caused an error in estimates of nitrogen fixation. About 23% of the labelled N was taken up by plants during the 3 years of cropping; after 4 years about 44% of the labelled N was found still to be present in the top soil. The labelling of the soil nitrogen with organic bound 15N, compared to adding mineral 15N at sowing, is advantageous because the labelled N is released by mineralization so that the enrichment of the plant available soil N pool become more uniform during the growth season; and high levels of mineral N, which may depress the fixation process, is avoided. (author) 7 tabs., 1 ill., 30 refs

  10. Communication dated 19 May 2011 received from the Resident Representative of the United Kingdom of Great Britain and Northern Ireland to the Agency regarding Assurance of Supply of Enrichment Services and Low Enriched Uranium for Use in Nuclear Power Plants

    International Nuclear Information System (INIS)

    The Secretariat has received a letter dated 19 May 2011 from the Resident Representative of the United Kingdom of Great Britain and Northern Ireland to the Agency, attaching the Proposal for the Assurance of Supply of Enrichment Services and Low Enriched Uranium for Use in Nuclear Power Plants, as described in document GOV/2011/10. As requested by the Resident Representative, the letter and its attachment are circulated herewith for information of all Member States

  11. The elimination of chlorinated, chlorofluorocarbon, and other RCRA hazardous solvents from the Y-12 Plant's enriched uranium operations

    International Nuclear Information System (INIS)

    A major driving force in waste minimization within the plant is the reduction of mixed radioactive wastes associated with operations on highly enriched uranium. High enriched uranium has a high concentration of the uranium-235 isotope (up to 97.5% enrichment) and is radioactive, giving off alpha and low level gamma radiation. The material is fissionable with as little as two pounds dissolved in water being capable of producing a spontaneous chain reaction. For these reasons the material is processed in small batches or small geometries. Additionally, the material is completely recycled because of its strategic and monetary value. Since the early eighties, the plant has had an active waste minimization program which has concentrated on substitution of less hazardous solvents wherever possible. The following paper summarizes efforts in two areas - development of a water-based machining coolant to replace perchloroethylene and substitution of an aliphatic solvent to replace solvents producing hazardous wastes as defined by the Resource, Conservation, and Recovery Act (RCRA)

  12. Uranium enrichment

    International Nuclear Information System (INIS)

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  13. The Cascade Design For The Uranium Enrichment Plant Using Centrifuge Technique

    International Nuclear Information System (INIS)

    A cascade containing few number of stages is simply outlined by development of cascade theory. This technique is applied to determine the feed streams and isotopic mass balances calculations for each stage at a cascade using stage cut 1/2. The enriched streams is contacted with the depleted streams is a simple countercurrent mode. An example of the enriched and depleted streams determination and isotopic mass balances calculation at each stage is given to obtained 3% of U-235 as the product. The results show that the optimal number of stages is 13 where 2 stages at the stripping section and 11 stages at the enriching section. The large the number of stages at the stripping section the smaller the U-235 content in the tails, whilst the smaller the separation factor the large the number of stages required. This cascade design can also be used separate a gas mixture other than UF6 gas where its separation factor is large

  14. Economical benefits for the use of slightly enriched fuel elements at the Atucha-I nuclear power plant

    International Nuclear Information System (INIS)

    The fuel represents a very important factor in the operative cost of the Atucha I nuclear power plant. This cost is drastically reduced with the use of fuel elements of slightly enriched uranium. The annual saving is analyzed with actual values for fuel elements with an enrichment of 0.85% by weight of U-235. With the reactor core in equilibrium state the annual saving achieved is approximately 7.5-10 u$s. According to the present irradiation plan, the benefit for the transition period is studied. An analysis of the sensitivity to differential increments in factors determining the cost of fuel elements or to changes in manufacturing losses is also performed, calculating its effect on the waste, the storage of irradiated elements and the amount of UO2 required. (Author)

  15. Modulation of plant growth and metabolism in cadmium-enriched environments.

    Science.gov (United States)

    Qadir, Shaista; Jamshieed, Sumiya; Rasool, Saiema; Ashraf, Muhammad; Akram, Nudrat Aisha; Ahmad, Parvaiz

    2014-01-01

    Cadmium (Cd) is a water soluble metal pollutant that is not essential to plant growth.It has attracted attention from soil scientists and plant nutritionists in recent years because of its toxicity and mobility in the soil-plant continuum. Even low levels of Cd (0.1-1 J.!M) cause adverse effects on plant growth and metabolism. Cadmium is known to trigger the synthesis of reactive oxygen species, hinder utilization, uptake and transport of essential nutrients and water, and modify photosynthetic machinery,thereby resulting in plant tissue death. Although the effects of Cd are dose- as well as plant species-dependent, some plants show Cd tolerance through a wide range of cellular responses. Such tolerance results from synthesis of osmolytes,generation of enzymatic and non-enzymatic antioxidants and metal-detoxifying peptides, changes in gene expression, and metal ion homeostasis and compartmentalization of ligand-metal complexes. Cd toxicity in plants produces effects on chlorophyllbio synthesis, reduces photosynthesis, and upsets plant water relations and hormonal and/or nutritional balances. All of these effects on plants and on plant metabolism ultimately reduce growth and productivity.In this review, we describe the extent to which Cd affects underlying metabolic processes in plants and how such altered processes affect plant growth. We review the sources of Cd contamination, its uptake, transportation and bioavailability and accumulation in plants, and its antagonistic and synergistic effects with other metals and compounds. We further address the effects of Cd on plant genetics and metabolism,and how plants respond to mitigate the adverse effects of Cd exposure, as well as strategies(e.g., plant breeding) that can reduce the impact of Cd contamination on plants.

  16. Application of Cycloaddition Reactions to the Syntheses of Novel Boron Compounds

    Directory of Open Access Journals (Sweden)

    John A. Maguire

    2010-12-01

    Full Text Available This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-coupling reactions. In addition, the use of boron cage compounds in a number of cycloaddition reactions to synthesize unique aromatic species will be reviewed briefly.

  17. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations.

    Science.gov (United States)

    Liakopoulos, Georgios; Stavrianakou, Sotiria; Filippou, Manolis; Fasseas, Costas; Tsadilas, Christos; Drossopoulos, Ioannis; Karabourniotis, George

    2005-02-01

    For plant species in which a considerable portion of the photoassimilates are translocated in the phloem as sugar alcohols, boron is freely translocated from mature organs to growing tissues. However, the effects of decreased plant boron status on boron remobilization are poorly understood. We conducted a growth chamber experiment (CE) and a field experiment (FE) to study the effects of low boron supply on boron remobilization in olive (Olea europaea L.), a species that transports considerable amounts of mannitol in the phloem. For the CE, several physiological parameters were compared between control (B+) and boron-deficient olive plants (B-) during the expansion of new leaves. Boron remobilization was assessed by measuring boron content of selected leaves at the beginning and at the end of the CE. As expected, boron was remobilized from mature leaves to young leaves of B+ plants; however, considerable boron remobilization was also observed in B- plants, suggesting a mechanism whereby olive can sustain a minimum boron supply for growth of new tissues despite an insufficient external boron supply. Boron deficiency caused inhibition of new growth but had no effect on photosynthetic capacity per unit leaf surface area of young and mature leaves, thereby altering the carbon utilization pattern and resulting in carbon allocation to structures within the source leaves and accumulation of soluble carbohydrates. Specifically, in mature B- leaves in the CE and in B- leaves in the FE, mannitol concentration on a leaf water content basis increased by 48 and 27% respectively, compared with controls. Carbon export ability (assessed by both phloem anatomy and phloem exudate composition of FE leaves) was enhanced at low boron supply. We conclude that, at low boron supply, increased mannitol concentrations maintain boron remobilization from source leaves to boron-demanding sink leaves. PMID:15574397

  18. Phosphorus availability for plant uptake in a phosphorus-enriched noncalcareous sandy soil

    NARCIS (Netherlands)

    Koopmans, G.F.; Chardon, W.J.; Ehlert, P.A.I.; Dolfing, J.; Suurs, R.A.A.; Oenema, O.; Riemsdijk, van W.H.

    2004-01-01

    Mining soil phosphorus (i.e., harvesting P taken up from the soil by a crop grown without external P addition) has been proposed as a possible management strategy for P-enriched soils to decrease the risk of P leaching. We performed a pot experiment in a greenhouse where grass was cropped on a P-enr

  19. Uranium enrichment

    International Nuclear Information System (INIS)

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  20. PGPR BACILLUS SPECIES ISOLATED FROM TOMATO PLANT –A COMPARATIVE STUDY ON COCONUT WATER ENRICHMENT

    OpenAIRE

    OS Aysha, P Vinothkumar*, S Vasuki, S Valli, P Nirmala, A Reena

    2012-01-01

    Plant growth promoting rhizobacteria (PGPR) are bacteria that colonize plant roots, they promote plant growth and reduce disease or insect damage. PGPR have been identified within many different bacterial taxa, most commercially developed PGPR for agricultural crops are species of Bacillus which form endospores that confer population stability during formulation and storage of products. Here the rhizobacteria Bacillus sp has been isolated from tomato plant and characterized with routine bioch...

  1. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  2. Influence of sediment organic enrichment and water alkalinity on growth of aquatic isoetid and elodeid plants

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl; Borum, Jens; Jensen, Kaj Sand

    2010-01-01

    lakes, the vegetation has rarely regained its former composition and coverage. Patterns of recovery may depend on local alkalinity because HCO3- stimulates photosynthesis of elodeids and not of isoetids. In laboratory growth experiments with two isoetids (Lobelia dortmanna and Littorella uniflora......) increasing alkalinity (from 0.17 to 3.20 meq. L-1) enhances growth and reduces inhibition of organic sediment enrichment for elodeids but not for isoetids. 2. In low organic sediments, higher oxygen release from roots of isoetids than elodeids generated oxic conditions to greater sediment depth for Lobelia......3- addition in accordance with its use of sediment CO2. Biomass of elodeids increased severalfold by rising alkalinity from 0.17 to 3.20 meq. L-1 in accordance with their use of HCO3- for photosynthesis, while the negative impact of organically enriched sediments remained. 5. Overall, root...

  3. Migration and Enrichment of Arsenic in the Rock-Soil-Crop Plant System in Areas Covered with Black Shale, Korea

    Directory of Open Access Journals (Sweden)

    Ji-Min Yi

    2003-01-01

    Full Text Available The Okchon black shale, which is part of the Guryongsan Formation or the Changri Formation of Cambro-Ordovician age in Korea provides a typical example of natural geological materials enriched with potentially toxic elements such as U, V, Mo, As, Se, Cd, and Zn. In this study, the Dukpyung and the Chubu areas were selected to investigate the migration and enrichment of As and other toxic elements in soils and crop plants in areas covered with black shale. Rock and soil samples digested in 4-acid solution (HCl+HNO3+HF+HClO4 were analyzed for As and other heavy metals by ICP-AES and ICP-MS, and plant samples by INAA. Mean concentration of As in Okchon black shale is higher than those of both world average values of shale and black shale. Especially high concentration of 23.2 mg As kg-1 is found in black shale from the Dukpyung area. Mean concentration of As is highly elevated in agricultural soils from the Dukpyung (28.2 mg kg-1 and the Chubu areas (32.6 mg kg-1. As is highly elevated in rice leaves from the Dukpyung (1.14 mg kg-1 and the Chubu areas (1.35 mg kg-1. The biological absorption coefficient (BAC of As in plant species decreases in the order of rice leaves > corn leaves > red pepper = soybean leaves = sesame leaves > corn stalks > corn grains. This indicates that leafy plants tend to accumulate As from soil to a greater degree than cereal products such as grains.

  4. Detection of Free-Living Amoebae Using Amoebal Enrichment in a Wastewater Treatment Plant of Gauteng Province, South Africa

    Directory of Open Access Journals (Sweden)

    P. Muchesa

    2014-01-01

    Full Text Available Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2% of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8% using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3% samples were positive for FLA from influent, 20 (11.6% from bioreactor feed, 16 (9.3% from anaerobic zone, 16 (9.3% from anoxic zone, 32 (18.6% from aerators, 16 (9.3% from bioreactor effluent, 11 (6.4% from bioreactor final effluent, and 45 (26.2% from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria.

  5. Detection of free-living amoebae using amoebal enrichment in a wastewater treatment plant of Gauteng Province, South Africa.

    Science.gov (United States)

    Muchesa, P; Mwamba, O; Barnard, T G; Bartie, C

    2014-01-01

    Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2%) of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8%) using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3%) samples were positive for FLA from influent, 20 (11.6%) from bioreactor feed, 16 (9.3%) from anaerobic zone, 16 (9.3%) from anoxic zone, 32 (18.6%) from aerators, 16 (9.3%) from bioreactor effluent, 11 (6.4%) from bioreactor final effluent, and 45 (26.2%) from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria.

  6. STUDY OF THE INFLUENCE OF ECOSSE ENRICHED BIOHUMATES ON THE WORK OF A PHOTOSYNTHETIC COMPLEX OF RADISH PLANTS

    Directory of Open Access Journals (Sweden)

    Borisenko V. V.

    2015-03-01

    Full Text Available In the article we show the results of studying the influence of Ecoss enriched biogumat on the photosynthetic complex of radish plants. Seed treatment with humate allows plants to form more powerful root system and develop resistance to various diseases, they are less affected root and basal rot. Plants form a large leaf surface. In leaves we have increased chlorophyll content, they remain longer green, more intense and will accumulate in vegetation greater number of assimilant (carbohydrates, and ultimately increase the yield. More intensive work of the leaves apparatus also contributes to the reduction of nitrates in the production, which is especially important when growing vegetables, melons and potatoes. Humates have a positive impact on yields on soils of different fertility and the different value of the yield. This not only increases the yield of 3 - 5 kg/ha, but also increases the gluten content in grain of winter wheat by 3 - 4%. The application of humates has a high adaptability. Their use can be combined with seed treatment pesticides, spraying crops with pesticides, mineral fertilizers. Therefore, humates are widely spread not only in Russia but all over the world. We have studied the content of chlorophylls and carotenoids at leaf apparatus of radish plants, depending on the methods and doses of the processing with humic preparation

  7. A review of the Y-12 Plant discharge of enriched uranium to the sanitary sewer (DEUSS)

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The Oak Ridge Y-12 Plant is situated adjacent to the Oak Ridge city limits and is operated by the United States Department of Energy (DOE). The Y-12 Plant is located on 4,860 acres, which is collectively referred to as the Y-12 Plant site. Among the missions for which the facility is in existence are producing nuclear weapons components, supporting weapon design laboratories, and processing special nuclear materials (SNM). The Y-12 Plant is under the regulatory guidance of DOE Order 5400.5 and has complied with the technical requirements governing SNM since its issue. However, an in-depth review with appropriate documentation had not been performed, prior to the effect presented herein, to substantiate this claim. As a result of the solid waste issue, it was determined that other types of waste should be formally reviewed for content with respect to SNM. Therefore, a project was formed to investigate the conveyance of SNM through the sanitary sewer system. It is emphasized that this project addresses only effluent from the sanitary sewer system and not the storm sewer system. The project reviewed sanitary sewer data both for the Y-12 Plant and the Y-12 Plant site.

  8. Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice–wheat cropping sequence

    OpenAIRE

    Anuj Rana; Soumya Ranjan Kabi; Shikha Verma; Anurup Adak; Madan Pal; Yashbir Singh Shivay; Radha Prasanna; Lata Nain

    2015-01-01

    The influence of plant growth promoting bacteria (PGPB) and cyanobacteria, alone and in combination, was investigated on micronutrient enrichment and yield in rice–wheat sequence, over a period of two years. Analysis of variance (ANOVA) in both crops indicated significant differences in soil dehydrogenase activity and micronutrient enrichment in grains (Fe, Zn in rice, and Cu, Mn in wheat). The combined inoculation of Anabaena oscillarioides CR3, Brevundimonas diminuta PR7, and Ochrobactrum a...

  9. Mercury enrichment and its effects on atmospheric emissions in cement plants of China

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2014-08-01

    The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.

  10. Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils

    Science.gov (United States)

    Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...

  11. Safety of long-term consumption of plant sterol esters-enriched spread

    NARCIS (Netherlands)

    Hendriks, H.F.J.; Brink, E.J.; Meijer, G.W.; Princen, H.M.G.; Ntanios, F.Y.

    2003-01-01

    Objective: To evaluate both efficacy and safety in humans of long-term consumption of spreads containing plant sterol esters. Design: Randomized double-blind placebo-controlled parallel trial. Subjects: Hundred and eighty-five healthy volunteers (35-64y). Intervention: Volunteers daily consumed 20g

  12. Internal safeguards for centrifuge enrichment plants. Concepts and procedures for safeguards and the international Hexapartite Safeguards Project (HSP)

    International Nuclear Information System (INIS)

    These papers were elaborated partly as annexes to the HSP and partly within a BMFT research programme. Chapter 2 shows how the HSP is to be proceeded with and describes the inspection activities agreed upon. Chapters 3 and 4 deal with the nuclear materials accountancy in a uranium enrichment plant; the conception of a computer-aided safeguards system (chapter 4) can only be given in condensed form owing to its size. Chapter 5 is a general evaluation of now available NDA and C/S systems whereas chapters 6 and 7 indicate fields of application for specialized technologies. Even though the inspection model agreed upon as a result of the HSP discussions is to include limited frequency unannounced access to separating rooms for inspectors, theoretical and experimental studies have been carried out in the meantime assuming the non-access model. (orig./HP)

  13. Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1

    KAUST Repository

    Wakuta, Shinji

    2015-01-24

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  14. Boron affects the growth and ultrastructure of castor bean plants Boro afeta o crescimento e a ultra-estrutura da mamoneira

    Directory of Open Access Journals (Sweden)

    Denis Herisson da Silva

    2008-12-01

    Full Text Available The cultivation of oleaginous plants like the castor bean guarantees employment for agricultural families and can contribute in energy and chemical sectors, especially in the northeastern semi-arid regions of Brazil. Boron (B deficiency is a widespread nutritional disorder despite the fact that various anthropogenic sources with high B content may increase soil B to toxic levels for plants. The present study was designed to investigate the ultrastructural effects of boron deficiency and toxicity on castor bean plants which were grown under greenhouse condition using plastic containers with 10 L of nutrient solution. Boron treatments comprised: control (no B; 0.27 mg L-1, 5.40 mg L-1 B pots (one plant per pot, tested in a completely randomized design with three replicates. The dry matter of all plant parts and B concentration were determined. Cellular ultrastructure was evaluated by transmission and scanning electron microscopy on samples of leaves and petioles. Dry matter yield was affected by the B absence treatment but there was no difference for the 5.4 mg L-1 B (toxic conditions treatment. A marginal leaf burn at edge and tips of oldest leaves and absence of starch granules in chloroplasts were noted for the B toxicity treatment. The deformation of the youngest leaves, the death of the apical meristem as well as the swelling of the middle lamella, absence of starch granules in chloroplasts and petiole vessels untidily were observed in the B absent treatment. It is concluded that the production and development of castor bean plants is affected by boron deficiency, but not for boron toxicity conditions.A mamoneira é uma oleaginosa com grande potencial para a geração de renda na agricultura familiar e para produção de matéria prima para a indústria química e setor energético brasileiro, especialmente em regiões do semi-árido nordestino. A deficiência de boro (B ocorre de forma generalizada no Brasil e a aplicação excessiva deste

  15. Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition.

    Science.gov (United States)

    Bouis, H

    1995-01-01

    The 4 strategies for reducing micronutrient malnutrition are supplementation, fortification, dietary diversification, and disease reduction. Arguments are adduced for investing in a 5th strategy, plant breeding. This long-term strategy has already been taken by the Consultative Group on International Agricultural Research (CGIAR), a group of 17 agricultural research centers seeking to raise farm productivity in developing countries. A coordinated plan has been developed involving collaborative research on 5 major staple food crops (rice, wheat, maize, beans, and cassava) between 5 core research institutes. The feasibility of a plant breeding strategy hinges on 5 core questions: 1) the scientific feasibility and the time needed to breed staple food varieties whose seeds are micronutrient-dense, 2) the effect of breeding micronutrient-dense seeds on plant yields, 3) whether breeding for micronutrient-dense seeds will change processing or consumer characteristics of staple foods, 4) whether micronutrient bioavailability will be increased to a significant degree in staples, and 5) the existence of other inexpensive, sustainable strategies for reducing micronutrient malnutrition. Zinc-dense wheat varieties, developed at the Waite Agricultural Research Institute of the University of Adelaide, are already being grown in Australia. 10 years may be required before nutritionally-improved varieties could be available for commercial production by farmers in developing countries. Such small amounts will not alter the appearance, taste, texture, or cooking quality of foods. If the presently low iron content of food staples could be increased by a factor of 3.5 this would double bioavailable iron. This strategy does hold promise for significantly reducing recurrent expenditures required for these higher-cost, short-run programs by significantly reducing the numbers of people requiring treatment. It would seem prudent to invest now in a plant breeding strategy to maintain momentum

  16. Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment.

    Science.gov (United States)

    Siefert, Andrew; Ritchie, Mark E

    2016-05-01

    Environmental changes are expected to shift the distribution of functional trait values in plant communities through a combination of species turnover and intraspecific variation. The strength of these shifts may depend on the availability of individuals with trait values adapted to new environmental conditions, represented by the functional diversity (FD) of existing community residents or dispersal from the regional species pool. We conducted a 3-year nutrient- and seed-addition experiment in old-field plant communities to examine the contributions of species turnover and intraspecific variation to community trait shifts, focusing on four key plant functional traits: vegetative height, leaf area, specific leaf area (SLA), and leaf dry matter content (LDMC). We further examined the influence of initial FD and seed availability on the strength of these shifts. Community mean height, leaf area, and SLA increased in response to fertilization, and these shifts were driven almost entirely by intraspecific variation. The strength of intraspecific shifts in height and leaf area was positively related to initial intraspecific FD in these traits. Intraspecific trait responses to fertilization varied among species, with species of short stature displaying stronger shifts in SLA and LDMC but weaker shifts in leaf area. Trait shifts due to species turnover were generally weak and opposed intraspecific responses. Seed addition altered community taxonomic composition but had little effect on community trait shifts. These results highlight the importance of intraspecific variation for short-term community functional responses and demonstrate that the strength of these responses may be mediated by community FD. PMID:26826004

  17. Microbial enrichment of a novel growing substrate and its effect on plant growth.

    Science.gov (United States)

    Trifonova, R; Postma, J; Schilder, M T; van Elsas, J D

    2009-10-01

    The quality of torrefied grass fibers (TGF) as a new potting soil ingredient was tested in a greenhouse experiment. TGF was colonized with previously selected microorganisms. Four colonization treatments were compared: (1) no inoculants, (2) the fungus Coniochaeta ligniaria F/TGF15 alone, (3) the fungus followed by inoculation with two selected bacteria, and (4) the fungus with seven selected bacteria. Cultivation-based and DNA-based methods, i.e., PCR-DGGE and BOX-PCR, were applied to assess the bacterial and fungal communities established in the TGF. Although colonization was not performed under sterile conditions, all inoculated strains were recovered from TGF up to 26 days incubation. Stable fungal and bacterial populations of 10(8) and 10(9) CFU/g TGF, respectively, were reached. As a side effect of the torrefaction process that aimed at the chemical stabilization of grass fibers, potentially phytotoxic compounds were generated. These phytotoxic compounds were cold-extracted from the fibers and analyzed by gas chromatography mass spectrometry. Four of 15 target compounds that had previously been found in the extract of TGF were encountered, namely phenol, 2-methoxyphenol, benzopyran-2-one, and tetrahydro-5,6,7,7a-benzofuranone. The concentration of these compounds decreased significantly during incubation. The colonized TGF was mixed with peat (P) in a range of 100%:0%, 50%:50%, 20%:80%, and 0%:100% TGF/P (w/w), respectively, to assess suitability for plant growth. Germination of tomato seeds was assessed three times, i.e., with inoculated TGF that had been incubated for 12, 21, and 26 days. In these tests, 90-100% of the seeds germinated in 50%:50% and 20%:80% TGF/P, whereas on average only 50% of the seeds germinated in pure TGF. Germination was not improved by the microbial inoculants. However, plant fresh weight as well as leaf area of 28-day-old tomato plants were significantly increased in all treatments where C. ligniaria F/TGF15 was inoculated compared

  18. Effect of the enriched filter pie with natural phosphate and microorganisms on soil and plant in a Vermelho-Distrófico Latossolo

    Directory of Open Access Journals (Sweden)

    Leónides Castellanos González

    2016-03-01

    Full Text Available The objective of the research was to evaluate the use of filter pie and phosphate rock enriched with biofertilizer microorganisms on the population of microorganisms and phosphorus tenor in the soil and on plants. The experiment was conducted in a vegetation house with corn plants with Latossolo Red-Distrófico, containing seven treatments disposed in an entirely randomized design, where the treatments were: soil samples and filter pie with additions of phosphate of Araxá rock enriched with microorganisms coming from Biopack (1, Embrafos (2 and Azotofos (3, and without enrichment with microorganisms (4, and three controls, soil just with filter pie (5, soil just with phosphate rock (6 and only soil (7, with three repetitions. Height, stem diameter and number of leaves for plants were evaluated at 14, 28 and 42 days. At the 45 days the dry matters of leafs and roots were evaluated, as the same as populations of the microorganisms and phosphorus tenor in the soil and in the aerial part of the plant. The tenor of soluble phosphorus in the soil and accumulated phosphorous in the aerial part of corn plan were increased by the treatments with filter pie but not higher with filter pie enriched with biofertilizers, so its use isn’t justified. The pie treatments increase the fungus, total and solubilizers bacterial populations in the soil, provoking an increase of the height, diameter, number of leaves and dry matter of corn plants in a Red-Distrófico Latossolo.

  19. Evolutionary Divergence of Plant Borate Exporters and Critical Amino Acid Residues for the Polar Localization and Boron-Dependent Vacuolar Sorting of AtBOR1.

    Science.gov (United States)

    Wakuta, Shinji; Mineta, Katsuhiko; Amano, Taro; Toyoda, Atsushi; Fujiwara, Toru; Naito, Satoshi; Takano, Junpei

    2015-05-01

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments. PMID:25619824

  20. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  1. A holdup measurement system for enriched uranium at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    There are increasing requirements in today's nuclear industry to conduct extensive radiation surveys on a repeated basis. There is also a growing need to analyze, trend, and document the results of these surveys in such a way that ensures any anomalies will be identified and corrected. A fundamental key to the success of these surveys is the type of portable instrumentation that is used to make the measurements. There are many excellent types of radiation meters available, but few have the ability to store the results internally. Without data storage capabilities, it is necessary to use lengthy, hand written log sheets for each survey and then requires manual input of the data later into a database to be analyzed. At the Oak Ridge Y-12 Plant, a system has been developed to overcome these shortcomings and meet the current radiation monitoring demands. The basic hardware of the system is a portable bar code reader and a portable radiation monitor that work together as a unit. The hardware, along with a specially designed database management package, allows for the automated collection of monitoring point identification numbers and the corresponding radiation levels. Besides radiation surveys, there are other possible uses of this bar code reader and a radiation meter combination. The basic radiation meter can be used with a number of different types of detector probes. With this equipment combination, Heath Physics monitoring surveys could be automated. In the realm of Nuclear Materials Control and Accountability, the equipment combination has the potential of automating semi-quantitative analysis of uranium holdup in all process equipment. The Safeguard and Security organization could use this new combination of equipment to record radiation monitoring data at the Plant's material transfer stations. The basic bar code reader is almost a micro-mini computer

  2. Response of vegetation to carbon dioxide. Growth, yield and plant water relationships in sweet potatoes in response to carbon dioxide enrichment 1986

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    In the summer of 1985, under the joint program of US Department of Energy, Carbon Dioxide Division, and Tuskegee University, experiments were conducted to study growth, yield, photosynthesis and plant water relationships in sweet potato plants growth in an enriched CO{sub 2} environment. The main experiment utilized open top chambers to study the effects of CO{sub 2} and soil moisture on growth, yield and photosynthesis of field-grown plants. In addition, potted plants in open top chambers were utilized in a study of the effects of different CO{sub 2} concentrations on growth pattern, relative growth rate, net assimilation rate and biomass increment at different stages of development. The interaction effects of enriched CO{sub 2} and water stress on biomass production, yield, xylem potential, and stomatal conductance were also investigated. The overall results of the various studies are described.

  3. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    OpenAIRE

    Zhang, J.; Gu, L; F. Bao; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; Wu, R; B. Yao; Zhao, Y.; Lin, G.; Wu, B

    2014-01-01

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific dis...

  4. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    OpenAIRE

    Zhang, J.; Gu, L; F. Bao; Cao, Y.; Hao, Y.; He, J.; Li, J.; Li, Y.; Ren, Y.; Wang, F.; Wu, R; B. Yao; Zhao, Y.; Lin, G.; Wu, B

    2015-01-01

    A longstanding puzzle in isotope studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific dis...

  5. Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation

  6. Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation.

  7. Impact of Long-Term Forest Enrichment Planting on the Biological Status of Soil in a Deforested Dipterocarp Forest in Perak, Malaysia

    Directory of Open Access Journals (Sweden)

    D. S. Karam

    2012-01-01

    Full Text Available Deforestation leads to the deterioration of soil fertility which occurs rapidly under tropical climates. Forest rehabilitation is one of the approaches to restore soil fertility and increase the productivity of degraded areas. The objective of this study was to evaluate and compare soil biological properties under enrichment planting and secondary forests at Tapah Hill Forest Reserve, Perak after 42 years of planting. Both areas were excessively logged in the 1950s and left idle without any appropriate forest management until 1968 when rehabilitation program was initiated. Six subplots (20 m × 20 m were established within each enrichment planting (F1 and secondary forest (F2 plots, after which soil was sampled at depths of 0–15 cm (topsoil and 15–30 cm (subsoil. Results showed that total mean microbial enzymatic activity, as well as biomass C and N content, was significantly higher in F1 compared to F2. The results, despite sample variability, suggest that the rehabilitation program improves the soil biological activities where high rate of soil organic matter, organic C, N, suitable soil acidity range, and abundance of forest litter is believed to be the predisposing factor promoting higher population of microbial in F1 as compared to F2. In conclusion total microbial enzymatic activity, biomass C and biomass N evaluation were higher in enrichment planting plot compared to secondary forest. After 42 years of planting, rehabilitation or enrichment planting helps to restore the productivity of planted forest in terms of biological parameters.

  8. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.)

    Science.gov (United States)

    Soil pH is known to influence many important biochemical processes in plants and soils, however its role in salinity - boron interactions affecting plant growth and ion relations has not been examined. The purpose of this research was to evaluate the interactive effects of salinity, boron and soil ...

  9. Soil-Derived Microbial Consortia Enriched with Different Plant Biomass Reveal Distinct Players Acting in Lignocellulose Degradation.

    Science.gov (United States)

    de Lima Brossi, Maria Julia; Jiménez, Diego Javier; Cortes-Tolalpa, Larisa; van Elsas, Jan Dirk

    2016-04-01

    Here, we investigated how different plant biomass, and-for one substrate-pH, drive the composition of degrader microbial consortia. We bred such consortia from forest soil, incubated along nine aerobic sequential - batch enrichments with wheat straw (WS1, pH 7.2; WS2, pH 9.0), switchgrass (SG, pH 7.2), and corn stover (CS, pH 7.2) as carbon sources. Lignocellulosic compounds (lignin, cellulose and xylan) were best degraded in treatment SG, followed by CS, WS1 and WS2. In terms of composition, the consortia became relatively stable after transfers 4 to 6, as evidenced by PCR-DGGE profiles obtained from each consortium DNA. The final consortia differed by ~40 % (bacteria) and ~60 % (fungi) across treatments. A 'core' community represented by 5/16 (bacteria) and 3/14 (fungi) bands was discerned, next to a variable part. The composition of the final microbial consortia was strongly driven by the substrate, as taxonomically-diverse consortia appeared in the different substrate treatments, but not in the (WS) different pH one. Biodegradative strains affiliated to Sphingobacterium kitahiroshimense, Raoultella terrigena, Pseudomonas putida, Stenotrophomonas rhizophila (bacteria), Coniochaeta ligniaria and Acremonium sp. (fungi) were recovered in at least three treatments, whereas strains affiliated to Delftia tsuruhatensis, Paenibacillus xylanexedens, Sanguibacter inulus and Comamonas jiangduensis were treatment-specific. PMID:26487437

  10. Dynamic simulation and verification of a compression-liquefaction system for material withdrawal from a uranium-enrichment plant

    International Nuclear Information System (INIS)

    Dynamic simulation was used to evaluate the design of the Tails (depleted 235U assay) Withdrawal System for an uranium enrichment plant. Desirability of a simulation to check the design was indicated by requirements for a very high system reliability (99.95% availability) over a wide range of system throughput (85:1). Objective of the simulation included: evaluate alternate compressor anti-surge schemes, identify control system sensitivities, examine start-up and shut-down procedures, identify system limitations and testing of proposed design changes, and provide an understanding of system behavior. Three levels of process complexity were modeled: (1) compressions system, (2) combined compressor and liquefaction system, and (3) parallel operation of two compression/liquefaction trains. Two compressor train configurations were evaluated with the simulation mode. A FORTRAN based simulation methodology was used to implement and solve the mathematical models and plot the time history behavior for each test run. Results included discovery that that initial process steady state design would not operate stably. A new steady state was formulated which required some modifications to equipment sizing and control system philosophy. This new design was tested and proven with the simulation. Simulation objectives were achieved. Based on the simulation results, recommendations were made regarding: best compressor configuration, most effective anti-surge control scheme, changes to enhance system reliability and operability, control system sensitivities, control system design to achieve load sharing for parallel trains, and overall system operability with existing design

  11. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  12. 南美硫酸镁型硼锂盐湖综合利用技术评述%Comprehensive Utilization Review of Magnesium Sulfate Type Salt Lake which Enrich in Boron and Lithium in South America

    Institute of Scientific and Technical Information of China (English)

    刘海明; 李宏灿; 杨建元; 李陇岗

    2011-01-01

    Development of sulfate type saline resource is mainly potassium-based resources in the world, the other resources is supplemented by the comprehensive development such as boron,bromine, lithium. South America Salt Lake to develop the most representative. The distribution of magnesium sulfate type salt lake of boron and lithium resources was described in south America in this paper, especially boron and lithium resource was elaborated in detail. The current status of comprehensive development and utilization of magnesium sulfate type saline resource were reviewed.At last, several suggestions on rational resource allocation and sustainable utilization Magnesium sulfate subtype saline resource were put forward.%世界硫酸镁型盐湖资源的开发是以钾资源利用为主,硼、溴、锂等其它资源综合开采为辅,以南美盐湖开发最具代表性.概述了南美硫酸镁型硼锂盐湖资源的分布特征,对其含硼锂盐湖资源进行了详细的阐述,并对目前综合开发利用技术做了评述,最后为硫酸镁型盐湖资源的合理配置、综合开发利用等问题提出了一些建议.

  13. Carbon assimilation characteristics of plants in oasis-desert ecotone and their response to CO2 enrichment

    Institute of Scientific and Technical Information of China (English)

    SU Peixi; CHEN Huaishun; AN Lizhe; LIU Xinmin

    2004-01-01

    Six species of more than 20-year-old desert woody plants in the oasis-desert ecotone were selected for study. The results showed that: (1) in different growing seasons δ13 C values of assimilating organ varied between -14‰ and -16‰ for Haloxylon ammodendron (HA),-14‰ - -15‰ for Calligonum mongolicum (CM) and -25‰ - -28‰ for Caragana korshinskii (CK), Nitraria sphaerocarpa (NS) and Hedysarum scoparium (HS). (2) The net photosynthetic rate (Pn) of HA and CM was significantly higher than those of the other species. With the decrease in Pn for the six species, their intercellular CO2 concentration increased, but stomatal limitation value decreased under the intensive light. At the same time, the photochemical efficiency of PS Ⅱ dropped to different degrees. (3) The CO2 enrichment experiment demonstrated that, Pn of HA and CM increased to different extent under 450 μmol/mol, but their Pn reduced or approximated to the current condition under 650 μmol/mol. Under 450 μmol/mol the efficiency for solar energy utilization of CK and HS significantly reduced and under 650 μmol/mol their respiration rate exceeded photosynthesis rate. It can be concluded that HA and CM have some function of pathway for C4, but the other three species have the function for C3. The decline in their Pn is mainly caused by non-stomatal factors. HA, CM, CK and HS exhibited photoinhibition, which disappeared in a short time. This is a kind of positive readjustment to adapting to the desert environment. HA and CM can adapt to the high CO2 environment, but CKand HS cannot. With the rise in atmospheric CO2 concentration and climate warming, the latter two species in the oasis-desert ecotone may be gradually degraded or even disappear.

  14. Boron Poisoning of Plutonium Solutions

    International Nuclear Information System (INIS)

    The results of a theoretical investigation into the possible relaxation of criticality concentration limits in wet chemical reprocessing plants, due to the introduction of boron poisoning, are reported. The following systems were considered: 1. 1 in. stainless steel tubes filled with boron carbide at various pitches in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 2. 1 in. and 2 in borosilicate glass Raschig rings in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 3. The concentration of natural boron required for k∞ = 1 in homogeneous mixtures of 239Pu-B-H2O. The method of calculation was Monte Carlo using the GEM code with Nuclear Data File cross-sections. The Raschig rings used are those commercially available. The core model consisted of a cubic arrangement of unit cubes of solution within each of which a Raschig ring was centrally placed. The arrangement was such that the rings were regularly stacked with axes parallel, but the side of the unit cube was fixed to preserve the random packing density. Comparison is made with other reported results on boron poisoning. (author)

  15. Development of On-line Uranium Enrichment Monitor of Gaseous UF6 for Uranium Enrichment Plant%铀浓缩厂铀丰度在线监测装置研制

    Institute of Scientific and Technical Information of China (English)

    吕学升; 刘国荣; 金惠民; 赵永刚; 郝学元; 李井怀; 应斌; 俞兆飞

    2013-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF6 flowing through the processing pipes in uranium enrichment plant.A NaI(Tl) detector was used to measure the count rates of the 185.7 keV γ-ray emitted from 235U,and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride.The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber.Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade can be monitored continuously by using the device.It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant.%研制了铀浓缩厂产品端UF6气体235U丰度在线实时监测装置.该装置由NaI(Tl)探测器、脉冲处理器、压力和温度传感器、管道阀门系统等组成,利用NaI(Tl)探测器对测量容器内气态UF6中235U发射的特征γ射线进行测量来得到235U的量,利用传感器对气体温度、压力进行测量,根据理想气体状态方程得到UF6气体中U的总量,从而得到235U丰度.该装置现场应用实验表明:铀丰度在线监测结果相对标准偏差小于1%,与气体质谱计测量结果相对偏差小于1%.

  16. Toward a better δDalkanes paleoclimate proxy; Partitioning of seasonal water sources and xylem-leaf deuterium enrichment according to plant growth form and phenology

    Science.gov (United States)

    Wispelaere, Lien; Bodé, Samuel; Herve-Fernández, Pedro; Hemp, Andreas; Verschuren, Dirk; Boeckx, Pascal

    2016-04-01

    The DeepCHALLA consortium is preparing an ICDP (International Continental Drilling Program) deep-drilling project on Lake Challa, a crater lake near Mt. Kilimanjaro in equatorial East Africa, where the climate is tropical semi-arid climate and characterized by two distinct rainy seasons. The main objective of this project is to acquire high-resolution and accurately dated proxy data of continental climate and ecosystem change near the Equator over 250,000 years. One of the paleoclimate proxies to be used is the hydrogen-isotopic composition of sedimentary n-alkanes (δDalkanes) derived from fossil plant leaf wax. However, this requires a better understanding of seasonal variability in the isotopic composition of precipitation, and of the fractionation of its hydrogen during incorporation in the plant waxes. In addition, recent studies have described the existence of "two water worlds", resulting in an additional deviation of the isotopic composition of the water taken up by plants. In this study, we measured the δD and δ18O of local precipitation, lake water, and xylem and leaf water from different plant species, seasons and sites with varying distances to Lake Challa. We use these data to set up a local meteoric water line (LMWL), and to assess spatial and temporal patterns of water utilization by local plants. Our data show a seasonal change in water-isotope partitioning with plants tapping water from isotopically lighter water sources during the dry seasons, as indicated by more negative xylem δD values and higher offsets from precipitation (i.e. greater distances from the LMWL), therefore supporting the "two water worlds" hypothesis. Surprisingly, trees appear to preferentially exploit isotopically more enriched sources of soil water, suggesting shallower water sources, than shrubs. Plants located at the lake shore use a mixture of precipitation and lake water, reflected in enriched xylem δD values and in the intersection of 2H and 18O with the LMWL. Leaf

  17. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  18. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  19. Does boron affect hormone levels of barley cultivars?

    Directory of Open Access Journals (Sweden)

    Muavviz Ayvaz

    2012-11-01

    Full Text Available Background: When mineral nutrients are present in excess or in inadequate amounts, their effects can be severe in plants and can be considered as abiotic stress. In this study, we report how hormonal levels in barley cultivars respond to the toxic effect of boron, an essential plant micronutrient. Material and methods: Two different barley (Hordeum vulgare cultivars (Vamik Hoca and Efes 98 were used as a study material. Boron was applied in three different concentrations (0, 10, 20 ppm to plants that had grown from seeds for four weeks. Plants were harvested, stem-root length and stem-root dry-fresh weight content were determined. For further analysis, chlorophyll, total protein, endogenic IAA and ABA content analyses were carried out. Results: According to the data obtained, plant growth and development decreased with increasing boron concentrations. With increasing boron concentrations, soluble total protein increased in both cultivars. Boron application led to increased endogenic IAA content in both cultivars. 10 and 20 ppm boron application led to increased endogenic ABA content in Vamik Hoca cultivar whereas endogenic ABA content decreased in Efes 98. Absence of boron application led to increased endogenic IAA and ABA content in both cultivars. Conclusion: As a result, the response to boron is different in the two cultivars and Efes 98 may be more resistant to the toxicity than Vamik Hoca cultivar.

  20. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  1. Centrifugal enrichment of zinc isotopes, their application in medicine and in increasing radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    This paper contains the results of our research on the complete cycle of centrifuge enrichment of all zinc isotopes. The centrifuge cascade that was used to obtain the world's first zinc isotope, 7Zn, with an enrichment of more than 99.3% in gram quantities, is described. As a result of this work, gram quantities of all highly enriched zinc isotopes and hundreds of grams of depleted zinc (in the form of ZnO) with concentrations of less than 0.5% 64Zn were obtained

  2. Influence of boron on the morphological and physiological growth parameters of bean

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.A. de (Brasilia Univ. (Brazil). Dept. de Engenharia Agronomica); Blanco, S.A.; Engleman, E.M. (Colegio de Post-graduados, Chapingo (Mexico))

    1982-05-01

    Effect of boron on Phaseolus vulgaris L. var. Cacahuate was studied in nutrient solutions containing 0.000; 0.005; 0.050 and 0.500 ppm of the element. The deficiency of boron affected root growth, leaf development and plant growth. Lower values of net assimilation rate (NAR) indicated reduced photosynthetic activity in the case of boron deficiency.

  3. CO{sub 2} enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth differentiation balance models?

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, W.J. [Forestry Sciences Lab., Rhinelander, WI (United States); Julkunen-Tiitto, R. [Univ. of Joensuu, Biology Dept., Joensuu (Finland); Herms, D.A. [Ohio State Univ., Dept. of Entmology, Wooster, OH (United States)

    2005-11-01

    Rising levels of atmospheric CO{sub 2} can alter plant growth and partitioning to secondary metabolites. The protein competition model (PCM) and the extended growth/differentiation balance model (GDB{sub e}) are similar but alternative models that address ontogenetic and environmental effects on whole-plant carbon partitioning to the phenylpropanoid biosynthetic pathway, making many divergentpredictins. To test the validity of the models, we compare plant responses to one key prediction: if CO{sub 2} enrichment simultaneously stimulates both photosynthesis and growth, then PCM predicts that partitioning to phenolic compounds will decline, whereas GDB{sub e} generally predicts the opposite. Elevated CO{sub 2} (at 548 ppm) increased the biomass growth (ca 23%) as well as the net photosynthesis (ca 13%) of 1-year-old potted paper birch, Betula papyrifera Marsch., in a free air carbon dioxide enrichment study (FACE) in northern Wisconsin. Concomitantly, elevated CO{sub 2} increased carbon partitioning to all measured classes of phenolics (Folin-Denis phenolics, HPLC low molecular weight phenolics (i.e. cinnamic acid derivatives, flavonol flycosides, and flavon-3-ols), condensed tannins, and acid-detergent lignin) in leaves. In stem tissues, tannins and lignin increased, but F-D phenolics did not. In root tissues, F-D phenolics, and tannins increased, but lignin did not. The data suggest that CO{sub 2} enrichment stimulated pathway-wide increase in carbon partitioning to phenylpropanoids. High CO{sub 2} plants had 11.8% more F-D phenolics, 19.3% more tannin, and 10% more lignin than ambient plants after adjusting for plant mass via analysis of covariance. In general, the results unequivocally support the predictions of the GDB{sub e} model. By way of contrast, results from many parallel studies on FACE trembling aspen, Populus tremuloides Michx., suggest that although 2 enrichment has consistently stimulated both photosynthesis and growth, it apparently did not

  4. Efeitos do boro em algodoeiro cultivado em condições de casa de vegetação Effects of boron application to cotton plant in a greenhouse study

    Directory of Open Access Journals (Sweden)

    Nelson M. da Silva

    1979-01-01

    Full Text Available Visando obter subsídios para a instalação de futuros ensaios de campo com adubação boratada do algodoeiro, foi conduzido estudo em casa de vegetação, utilizando-se solo comprovadamente carente em boro para essa cultura. Foram usadas doses de 0, 133, 266 e 532mg de bórax por vaso contendo 5,0kg de terra. Em vasos extras, estudaram-se níveis mais elevados do produto. O efeito de boro sobre a altura média das plantas, peso de capulho, peso de sementes e comprimento de fibra foi significativo estatisticamente e de natureza quadrática. A concentração de B na matéria seca da parte aérea da planta ou da folha cresceu em proporção à dose utilizada. No caso da análise de folhas de plantas carentes, a concentração variou de 10 a 39ppm, com média de 19pmm de B, enquanto em plantas com grave sintoma de toxicidade foi obtido índice superior a 590ppm de B. Em plantas com carência de boro foi observado um ou vários dos seguintes sintomas: paralisação de crescimento, superbrotamento, intumescimento de nós com escurecimento de tecido, deformações do limbo e do pecíolo de cotilédones e de folhas verdadeiras, anéis concêntricos com necroses correspondentes da medula de pecíolos foliares e deformações das flores. Como sintoma de toxicidade, observou-se clorose marginal e internerval do cotilédone e/ou da folha verdadeira, que evoluiu ou não para necrose do tecido, permanecendo as nervuras com coloração verde normal.A greenhouse experiment of borax application to cotton cultivated on a boron deficient soil, was conducted in order to obtain data for development of future field trials. Borax was applied to pot containing 5,0kg of soil in amounts of 0, 133, 266 e 532mg. Additional treatments with higher levels of boron was applied to extra pots. The influence of boron on plant height, weight of bolls and seeds and on fiber lenght was statistically significant and of quadratic nature. The content of boron, determined either in

  5. Has the Impact of Rising CO2 on Plants been Exaggerated by Meta-Analysis of Free Air CO2 Enrichment Studies?

    Science.gov (United States)

    Haworth, Matthew; Hoshika, Yasutomo; Killi, Dilek

    2016-01-01

    Meta-analysis is extensively used to synthesize the results of free air CO2 enrichment (FACE) studies to produce an average effect size, which is then used to model likely plant response to rising [CO2]. The efficacy of meta-analysis is reliant upon the use of data that characterizes the range of responses to a given factor. Previous meta-analyses of the effect of FACE on plants have not incorporated the potential impact of reporting bias in skewing data. By replicating the methodology of these meta-analytic studies, we demonstrate that meta-analysis of FACE has likely exaggerated the effect size of elevated [CO2] on plants by 20 to 40%; having significant implications for predictions of food security and vegetation response to climate change. Incorporation of the impact of reporting bias did not affect the significance or the direction of the [CO2] effect. PMID:27536310

  6. Has the impact of rising CO2 on plants been exaggerated by meta-analysis of free air CO2 enrichment studies?

    Directory of Open Access Journals (Sweden)

    Matthew Haworth

    2016-08-01

    Full Text Available Meta-analysis is extensively used to synthesise the results of free air CO2 enrichment (FACE studies to produce an average effect size, which is then used to model likely plant response to rising [CO2]. The efficacy of meta-analysis is reliant upon the use of data that characterises the range of responses to a given factor. Previous meta-analyses of the effect of FACE on plants have not incorporated the potential impact of reporting bias in skewing data. By replicating the methodology of these meta-analytic studies, we demonstrate that meta-analysis of FACE has likely exaggerated the effect size of elevated [CO2] on plants by 20 to 40%; having significant implications for predictions of food security and vegetation response to climate change. Incorporation of the impact of reporting bias did not affect the significance or the direction of the [CO2] effect.

  7. Has the Impact of Rising CO2 on Plants been Exaggerated by Meta-Analysis of Free Air CO2 Enrichment Studies?

    Science.gov (United States)

    Haworth, Matthew; Hoshika, Yasutomo; Killi, Dilek

    2016-01-01

    Meta-analysis is extensively used to synthesize the results of free air CO2 enrichment (FACE) studies to produce an average effect size, which is then used to model likely plant response to rising [CO2]. The efficacy of meta-analysis is reliant upon the use of data that characterizes the range of responses to a given factor. Previous meta-analyses of the effect of FACE on plants have not incorporated the potential impact of reporting bias in skewing data. By replicating the methodology of these meta-analytic studies, we demonstrate that meta-analysis of FACE has likely exaggerated the effect size of elevated [CO2] on plants by 20 to 40%; having significant implications for predictions of food security and vegetation response to climate change. Incorporation of the impact of reporting bias did not affect the significance or the direction of the [CO2] effect.

  8. Study on the application of enriched boric acid in PWR primary water chemistry

    International Nuclear Information System (INIS)

    Natural boric acid is used in PWRs as chemical shim to control excess reactivity. After the implement of long-cycle fuel management, boron concentration will be increased, and water chemistry controlling will become more difficult. The paper analyzes the feasibility of enriched boric acid (EBA) used in the primary system of the nuclear power plants (NPPs) and the influence to correlative water chemical treatment systems. The study shows the EBA can reduce the corrosion rate of the primary system materials and radiation field, improve the economy of the in-service NPPs. It will be important to improve the technology of NPP primary water treatment. (authors)

  9. 10 CFR Appendix D to Part 110 - Illustrative List of Aerodynamic Enrichment Plant Equipment and Components Under NRC Export...

    Science.gov (United States)

    2010-01-01

    ... Equipment and Components Under NRC Export Licensing Authority D Appendix D to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. D... Export Licensing Authority Note—In aerodynamic enrichment processes, a mixture of gaseous UF6 and...

  10. Resposta de brócolis, couve-flor e repolho à adubação com boro em solo arenoso Response of boron fertilization on broccoli, cauliflower and cabbage planted in sandy soil

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Pizetta

    2005-03-01

    Full Text Available Foram avaliados em condições de campo, em solo arenoso, com baixo teor de boro, os efeitos da adubação com cinco doses de boro (0; 2; 4; 6 e 8 kg ha-1 de B na forma de bórax na produção de brócolis, couve-flor e repolho. O experimento obedeceu a um esquema fatorial com delineamento experimental de blocos ao acaso com três repetições. As adubações orgânica e química, inclusive o bórax, foram feitas no sulco antes do transplantio das mudas e a colheita foi feita entre 63 e 93 dias após o transplantio. A produtividade de brócolis variou de 16,9 a 20,5 t ha-1; a de couve-flor de 21,6 a 29,6 t ha-1 e a de repolho de 40,5 a 46,4 t ha-1. O aumento observado na produtividade de brócolis e de repolho foi linear e o efeito das doses de boro na produtividade de couve-flor foi quadrático, sendo necessários 5,1 kg ha-1 de B para atingir a produtividade máxima de 30 t ha-1. Brócolis e repolho mostraram-se menos sensíveis do que a couve-flor tanto à deficiência quanto ao excesso de boro. No caso da couve-flor, com a aplicação de 2 kg ha-1 ou de 6 kg ha-1 de B houve significativa perda de qualidade do produto.The effects of boron fertilization on yield of broccoli, cauliflower and cabbage were evaluated through a field experiment carried out on a sandy soil low in available boron. Five boron levels (0; 2; 4; 6; and 8 kg ha-1 B as borax were applied in broccoli, cauliflower and cabbage using a factorial scheme and a randomized block design with three replicates. Organic manure and chemical fertilizers, including borax, were applied in the planting furrow before seedlings transplant and plants were harvested 63 to 93 days after planting date. The yield intervals obtained with broccoli, cauliflower and cabbage varied according to the following intervals: 16.9 to 20.5 t ha-1, 21.6 to 29.6 t ha-1 and 40.5 to 46.3 t ha-1, respectively. The increase in production observed in broccoli and cabbage yield was linear with boron levels and the

  11. Combined effects of CO2 enrichment, diurnal light levels and water stress on foliar metabolites of potato plants grown in naturally sunlit controlled environment chambers.

    Science.gov (United States)

    Barnaby, Jinyoung Y; Fleisher, David; Reddy, Vangimalla; Sicher, Richard

    2015-02-01

    Experiments were conducted in outdoor, naturally sunlit, soil-plant-atmosphere research (SPAR) chambers using plants grown in pots. Drought treatments were imposed on potato plants (Solanum tuberosum cv. Kennebec) beginning 10 days after tuber initiation. A total of 23 out of 37 foliar metabolites were affected by drought when measured 11 days after initiating water stress treatments. Compounds that accumulated in response to drought were hexoses, polyols, branched chain amino acids (BCAAs) and aromatic amino acids, such as proline. Conversely, leaf starch, alanine, aspartate and several organic acids involved in respiratory metabolism decreased with drought. Depending upon harvest date, a maximum of 12 and 17 foliar metabolites also responded to either CO2 enrichment or diurnal treatments, respectively. In addition, about 20% of the measured metabolites in potato leaflets were simultaneously affected by drought, CO2 enrichment and diurnal factors combined. This group contained BCAAs, hexoses, leaf starch and malate. Polyols and proline accumulated in response to water stress but did not vary diurnally. Water stress also amplified diurnal variations of hexoses and starch in comparison to control samples. Consequently, specific drought responsive metabolites in potato leaflets were dramatically affected by daily changes of photosynthetic carbon metabolism. PMID:24888746

  12. Enrichment of {sup 210}Po and {sup 210}Pb in ash samples from oil shale-fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, B. [University of Tartu, Institute of Physics/Ege University, Institute of Nuclear Sciences (Estonia); Vaasma, T.; Kiisk, M.; Suursoo, S.; Tkaczyk, A.H. [University of Tartu,Institute of Physics (Estonia)

    2014-07-01

    Energy production in Estonia is largely dependent on the oil shale industry. Oil shale is a fossil fuel typically characterized by relatively high mineral composition, modest organic fraction (varying between 10 and 65%), high ash content (usually 45% to 50%), and average lower heating value of 8.4 MJ/kg{sup -1}. Oil shale-fired power plants account for 85% of Estonian electricity production and produce up to 6 million tons of oil shale ash annually. This ash contains elevated amounts of natural radionuclides (from the {sup 238}U and {sup 232}Th series and {sup 40}K), which were bound to oil shale during its formation. These radionuclides become enriched in ash fractions during the combustion process and are partially emitted to the atmosphere via fly ash and flue gases. Oil shale-fired electricity production is foreseen to remain a dominant trend in Estonia, suggesting that the radionuclide emissions to the atmosphere will continue in the future. The natural radionuclides {sup 210}Po and {sup 210}Pb, with half-lives of 138 days and 22.3 years respectively, originate from the radioactive decay of radionuclides of {sup 238}U series present in the earth's crust. These radionuclides are also built up artificially in the environment due to waste discharge from phosphate, oil, and gas industries, combustion of fossil fuels and other energy production as technically enhanced natural radionuclides. There are few studies on oil shale power plants influence on the levels of natural radioactivity in the surrounding areas. Realo, et al. reported that the annual doses from fly ash depositions over a 30 year period are in the range 90 - 200 μSv a{sup -1}. A study previously initiated by the University of Tartu, Institute of Physics (IPh) evaluated enrichment in the activity concentrations of {sup 238}U, {sup 226}Ra, {sup 210}Pb, {sup 232}Th, {sup 228}Ra and {sup 40}K in ash samples collected from Eesti Power Plant's circulating fluidized bed (CFB) boiler. According

  13. Effect of boron fertilization of apple trees (Malus domestica Borth. on yield and fruit quality

    Directory of Open Access Journals (Sweden)

    Paweł Wójcik

    2013-12-01

    Full Text Available Aim of this work was to examine effect of boron fertilization on yield of apple trees and fruit quality. The experiment was carried out during 1994-1996 in Dąbrowice Experimental Orchard belonging to Research Institute of Pomology and Floriculture in Skiemiewice, on Š a m p i o n cultivar, grafted on M26 rootstock. Trees were planted in the autumn of 1991 at the distance 4 x 2,5 m, on sandy-loam soil. Before starting and during carrying out the study there were not visual symptoms of boron deficiency. In the experiment applied boron fertilization to the soil at the dose 2 g B per tree or three times boron sprays before or after bloom at the dose 0,67 g B per tree. Apple trees without any boron fertilization were served as a control. Results of experiment showed that only boron sprays after bloom increased fruit set and yield. There were no significant differences between treatments in fruit maturity at harvest, fruit weight losses dunng storage, apple number infected by Penicillium, Monilina and Botrytis cinerea. Boron sprays after bloom increased firmness of apples after storage and decreased sensibility to bitter pit, internal breakdown and Gloeosporium-rot. All boron treatments increased boron concentration in apples in comparison with control ones. However, the highest increase of boron concentration in apples was observed when boron sprays were done after bloom and soil boron application. Only boron sprays applied after bloom increased calcium concentration in apples.

  14. Poison Effects of Synergistic Stress of Calcium, Manganese, Aluminum and Boron on Tea Plant%钙、锰、铝及与硼的协同胁迫对茶树的毒害效应

    Institute of Scientific and Technical Information of China (English)

    姚元涛; 陶吉寒; 宋鲁彬; 田丽丽; 刘腾飞; 贾厚振

    2015-01-01

    The synergistic effects of calcium, manganese, aluminum, boron, calcium, manganese, aluminum and boron on the growth and the elements of tea tree were studied by sand culture method. The results showed that the toxicity stress of calcium, manganese, aluminum and boron signiifcantly decreased the activity of tea root, affected the tea root growth and development, decreased signiifcantly the tea photosynthetic rate and sto-matal conductance, increased intercellular CO2 concentration;inhibited the growth of new shoots, number of shoot leaves decreased, and the internode length became shorter. Each treatment promoted the absorption of el-ements in tea plant and had a signiifcant synergistic effect. The effects of different treatments on the other ele-ments were:Al could promote the uptake of phosphorus in tea tree root;boron and manganese had a certain in-hibition effect on the absorption of phosphorus;manganese and aluminum could promote the absorption of sulfur in roots and leaves of tea;boron, manganese and aluminum could promote the absorption of potassium in roots;boron could signiifcantly promote the absorption of magnesium in roots and leaves;and the other treat-ments signiifcantly inhibited the absorption of magnesium in roots, but promoted it in leaves;all treatments sig-niifcantly inhibited the absorption of iron and zinc in roots and leaves of tea plant.%采用砂培法研究了钙、锰、铝、硼及钙、锰、铝与硼的协同毒害胁迫对茶树生长与元素吸收的影响。结果表明,钙、锰、铝、硼毒害胁迫显著降低茶树根系活力,影响茶树根系的生长发育;显著降低茶树光合速率和气孔导度,增加了胞间二氧化碳浓度;抑制新梢生长,使新梢展叶数减小、节间距变短。各处理促进了茶树对处理元素的吸收,且具有明显的协同作用。各处理对其他元素的影响为:铝能促进茶树根系对磷的吸收,硼和锰对磷的吸收却有一定的抑制作

  15. Does boron affect hormone levels of barley cultivars?

    OpenAIRE

    Muavviz Ayvaz; Mesut Koyuncu; Avni Guven; FAGERSTEDT, KURT V.

    2012-01-01

    Background: When mineral nutrients are present in excess or in inadequate amounts, their effects can be severe in plants and can be considered as abiotic stress. In this study, we report how hormonal levels in barley cultivars respond to the toxic effect of boron, an essential plant micronutrient. Material and methods: Two different barley (Hordeum vulgare) cultivars (Vamik Hoca and Efes 98) were used as a study material. Boron was applied in three different concentrations (0, 10, 20 ppm) ...

  16. Effects of plant stanol or sterol-enriched diets on lipid profiles in patients treated with statins: systematic review and meta-analysis.

    Science.gov (United States)

    Han, Shufen; Jiao, Jun; Xu, Jiaying; Zimmermann, Diane; Actis-Goretta, Lucas; Guan, Lei; Zhao, Youyou; Qin, Liqiang

    2016-01-01

    Efficacy and safety data from trials with suitable endpoints have shown that non-statin medication in combination with a statin is a potential strategy to further reduce cardiovascular events. We aimed to evaluate the overall effect of stanol- or sterol-enriched diets on serum lipid profiles in patients treated with statins by conducting a meta-analysis of randomized controlled trials (RCTs). We used the PubMed, Cochrane library and ClinicalTrials.gov databases to search for literature published up to December 2015. Trials were included in the analysis if they were RCTs evaluating the effect of plant stanols or sterols in patients under statin therapy that reported corresponding data on serum lipid profiles. We included 15 RCTs involving a total of 500 participants. Stanol- or sterol-enriched diets in combination with statins, compared with statins alone, produced significant reductions in total cholesterol of 0.30 mmol/L (95% CI -0.36 to -0.25) and low-density lipoprotein (LDL) cholesterol of 0.30 mmol/L (95% CI -0.35 to -0.25), but not in high-density lipoprotein cholesterol or triglycerides. These results persisted in the subgroup analysis. Our meta-analysis provides further evidence that stanol- or sterol-enriched diets additionally lower total cholesterol and LDL-cholesterol levels in patients treated with statins beyond that achieved by statins alone. PMID:27539156

  17. Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice–wheat cropping sequence

    Directory of Open Access Journals (Sweden)

    Anuj Rana

    2015-12-01

    Full Text Available The influence of plant growth promoting bacteria (PGPB and cyanobacteria, alone and in combination, was investigated on micronutrient enrichment and yield in rice–wheat sequence, over a period of two years. Analysis of variance (ANOVA in both crops indicated significant differences in soil dehydrogenase activity and micronutrient enrichment in grains (Fe, Zn in rice, and Cu, Mn in wheat. The combined inoculation of Anabaena oscillarioides CR3, Brevundimonas diminuta PR7, and Ochrobactrum anthropi PR10 (T6 significantly increased nitrogen, phosphorus, and potassium (NPK content and improved rice yield by 21.2%, as compared to the application of recommended dose of NPK fertilizers (T2. The treatment T5 (Providencia sp. PR3 + B. diminuta PR7 + O. anthropi PR10 recorded an enhancement of 13–16% in Fe, Zn, Cu, and Mn concentrations, respectively, in rice grains. In wheat, Providencia sp. PW5 (T6 recorded the highest yield (5.23 Mg ha−1 and significantly higher enrichment of Fe and Cu (44–45% in the grains. This study highlighted the promise of combinations of cyanobacteria/bacteria and their synergistic action in biofortification and providing savings of 40–60 kg N ha−1. Future focus needs to be towards integrating such promising environment-friendly and environmentally sustainable options in nutrient management strategies for this cropping sequence.

  18. Colorimetric determination of Boron-10 in macromolecular delivery agents

    International Nuclear Information System (INIS)

    A polyglycerol with dendritic structure (PGLD) was synthesized by the ring opening polymerization of deprotonated glycidol using a polyglycerol as core functionality in a step-growth process denominated divergent synthesis. After PGLD reaction with 10B-enriched boric acid there was a marked increase in the bulk viscosity of the PGLD dendrimer evidencing the polyester formation. Gel permeation chromatography (GPC) analysis was used to characterize the molecular weight and the polydispersivity of the synthesized PGLD dendrimer. A dendritic polyglycerol structure with Mn value of 16.7 kDa and a narrow polydispersivity (Mw/Mn = 1.05) was obtained in this work. 1H-NMR and 13C-NMR measurements were employed to assess the degree of branching (DB) in PGLD. The DB of 0.85 indicates the tendency of a dentritic structure for the PGLD synthesized in this work. The boron-10 concentration was dependent of the PGLD generation. A selective reagent, curcumine, was studied for spectrophotometric determination of boron in polyglycerol dendrimers. Boron reacts with curcumine to form a complex, which has a maximum absorption peak at 552 nm. Under the optimal conditions, Beer's law was obeyed over the range 0∼20 μg of boron in 25 mL of solution. The biological assays indicate the PGLD-B with boron-10 concentration of 25 mg10B/gPGLD as the most promising macromolecule enriched with boron-10 for the BNCT therapy. (author)

  19. Temperature effect on leaf water deuterium enrichment and isotopic fractionation during leaf lipid biosynthesis: results from controlled growth of C3 and C4 land plants.

    Science.gov (United States)

    Zhou, Youping; Grice, Kliti; Chikaraishi, Yoshito; Stuart-Williams, Hilary; Farquhar, Graham D; Ohkouchi, Naohiko

    2011-02-01

    The hydrogen isotopic ratios ((2)H/(1)H) of land plant leaf water and the carbon-bound hydrogen of leaf wax lipids are valuable indicators for climatic, physiological, metabolic and geochemical studies. Temperature will exert a profound effect on the stable isotopic composition of leaf water and leaf lipids as it directly influences the isotopic equilibrium (IE) during leaf water evaporation and cellular water dissociation. It is also expected to affect the kinetics of enzymes involved in lipid biosynthesis, and therefore the balance of hydrogen inputs along different biochemical routes. We conducted a controlled growth experiment to examine the effect of temperature on the stable hydrogen isotopic composition of leaf water and the biological and biochemical isotopic fractionations during lipid biosynthesis. We find that leaf water (2)H enrichment at 20°C is lower than that at 30°C. This is contrary to the expectation that at lower temperatures leaf water should be more enriched in (2)H due to a larger equilibrium isotope effect associated with evapotranspiration from the leaf if all other variables are held constant. A hypothesis is presented to explain the apparent discrepancy whereby lower temperature-induced down-regulation of available aquaporin water channels and/or partial closure of transmembrane water channel forces water flow to "detour" to a more convoluted apoplastic pathway, effectively increasing the length over which diffusion acts against advection as described by the Péclet effect (Farquhar and Lloyd, 1993) and decreasing the average leaf water enrichment. The impact of temperature on leaf water enrichment is not reflected in the biological isotopic fractionation or the biochemical isotopic fractionation during lipid biosynthesis. Neither the biological nor biochemical fractionations at 20°C are significantly different from that at 30°C, implying that temperature has a negligible effect on the isotopic fractionation during lipid biosynthesis.

  20. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    Science.gov (United States)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  1. Is Job Enrichment Really Enriching?

    OpenAIRE

    Robert D. Mohr; Cindy Zoghi

    2006-01-01

    This study uses a survey of Canadian workers with rich, matched data on job characteristics to examine whether “enriched” job design, with features like quality circles, feedback, suggestion programs, and task teams, affects job satisfaction. We identify two competing hypotheses on the relationship between enriched jobs and job satisfaction. The “motivation hypothesis,” implies that enrichment will generally increase satisfaction and the “intensification hypothesis,” implies that enrichment m...

  2. Uranium enrichment

    International Nuclear Information System (INIS)

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  3. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed

    OpenAIRE

    Smalla, K.; Wieland, G.; Buchner, A.; A. Zock; Parzy, J.; Kaiser, S; Roskot, N.; Heuer, H.; Berg, G

    2001-01-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods....

  4. First boronization in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H., E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, K.S.; Kim, K.M.; Kim, H.T.; Kim, G.P. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, J.H.; Woo, H.J. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Park, J.M.; Kim, W.C.; Kim, H.K.; Park, K.R.; Yang, H.L.; Na, H.K. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Chung, K.S. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    First boronization in KSTAR is reported. KSTAR boronization system is based on a carborane (C{sub 2}B{sub 10}H{sub 12}) injection system. The design, construction, and test of the system are accomplished and it is tested by using a small vacuum vessel before it is mounted to a KSTAR port. After the boronization in KSTAR, impurity levels are significantly reduced by factor of 3 (oxygen) and by 10 (carbon). Characteristics of a-C/B:H thin films deposited by carborane vapor are investigated. Re-condensation of carborane vapor during the test phase has been reported.

  5. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    Science.gov (United States)

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level 22.2 in order to avoid boron accumulation in the anolyte effluent. PMID:27387806

  6. Removal of boron species by layered double hydroxides: a review.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants. PMID:23635479

  7. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-01

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite. PMID:17830955

  8. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  9. Efeitos da aplicação de bórax em cultura de batatinha, em várzea irrigada, no Vale do Paraíba Effects of addition of boron on potato plant production

    Directory of Open Access Journals (Sweden)

    Norberto Leite

    1970-01-01

    Full Text Available São relatados os efeitos produzidos pela aplicação de bórax na cultura da batatinha (Solatium tuberosum L., em solos de várzea irrigada do Vale do Paraíba. Quatro doses de bórax - 10, 20, 30 e 40 kg/ha - foram aplicadas de três maneiras distintas: no sulco de plantio, em cobertura (vinte dias após a germinação e parceladamente em 4 pulverizações foliares semanais. As melhores doses de bórax foram as de 10 e 20 kg/ha, aplicadas no sulco de plantio, em mistura com os demais adubos. As aplicações em pulverização provocaram sintomas de toxidez nas folhas, notadamente as de maiores doses.The production of potato plants (Solatium tuberosum L. grown in alluvial soils of the Rio Paraíba Valey in the State of São Paulo, is not always correlated with high N-P-K fertilization. This has been reported to be due to boron deficiency in these soils. The effect of addition of boron at different rates (10, 20, 30 and 40 kg of borax / ha applied in mixture with common NPK formulation in the furrow at planting time, as side dressing or by spraying, was studied in an area where symptoms of deficiency was observed in Aquila potato variety, in the previous year. An increase in the production of about 20 % was obtained with the addition of 10 or 20 kg of borax / ha in mixtures with NPK fertilizing formulation but not with the two higher doses. The same amount of borax applied by spraying also increased yield but at a lesser extent and the side dressing technique was less effective than the other two methods of application of borax.

  10. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  11. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant

    International Nuclear Information System (INIS)

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. Then a statistical inference can be made from verification results for items verified during SNRIs to the entire populations, i.e. the entire strata, even if inspectors were not present when many items were received or produced. A six-month field test of the feasibility of such SNRIs took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division during 1993. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. They arrived unannounced at the plant, in most cases immediately after travel from Canada, where the IAEA maintains a regional office. Items from both strata were verified during the SNRIs by meant of nondestructive assay equipment

  12. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; Purvine, Samuel O.; Smith, Richard D.; Lipton, Mary S.; Burnum-Johnson, Kristin E.; Currie, Cameron R.

    2015-08-28

    Leaf-cutter ants are prolific and conspicuous Neotropical herbivores that derive energy from specialized fungus gardens they cultivate using foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain lignocellulases that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as it is foraged by the ants. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous lignocellulases likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three-quarters of all lignocellulases identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 23 lignocellulases enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.

  13. Uranium enrichment. 1980 annual report

    International Nuclear Information System (INIS)

    This report contains data and related information on the production of enriched uranium at the gaseous diffusion plants and an update on the construction and project control center for the gas centrifuge plant. Power usage at the gaseous diffusion plants is illustrated. The report contains several glossy color pictures of the plants and processes described. In addition to gaseous diffusion and the centrifuge process, three advanced isotope separation process are now being developed. The business operation of the enrichment plants is described; charts on revenue, balance sheets, and income statements are included

  14. Responses of fungal and plant communities to partial humus removal in mid-boreal N-enriched forests.

    Science.gov (United States)

    Tarvainen, Oili; Hamberg, Leena; Ohenoja, Esteri; Strömmer, Rauni; Markkola, Annamari

    2012-10-15

    Partial removal of the forest humus layer was performed in nitrogen-enriched urban Scots pine forest stands in the northern Finland in order to improve soil conditions for ectomycorrhizal (ECM) fungi, important symbionts of trees. Aboveground part of understory vegetation and the uppermost half of the humus layer were removed (REMOVAL treatment) from sample plots in six urban and eight rural reference forest sites at the beginning of the 2001 growing season. During the seasons 2001-2005, we inventoried sporocarp production of ECM and saprophytic fungi, and in 2003 the recovery of understory vegetation. The REMOVAL treatment resulted in a higher number of fruiting ECM species and sporocarps than controls at the rural, but not at urban sites. The sporocarp number of saprophytic fungi declined in the REMOVAL subplots at the urban sites. The recovery of bryophytes and lichens in the REMOVAL treatment was slow at both the urban and rural sites, whereas Vaccinium dwarf shrub cover, and herb and grass cover returned rapidly at the urban sites. We conclude that the partial vegetation and humus layer removal as a tool to promote the reproduction of ECM fungal species is limited in the boreal urban forests.

  15. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed.

    Science.gov (United States)

    Smalla, K; Wieland, G; Buchner, A; Zock, A; Parzy, J; Kaiser, S; Roskot, N; Heuer, H; Berg, G

    2001-10-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180

  16. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution.

    Science.gov (United States)

    Melo, E E C; Costa, E T S; Guilherme, L R G; Faquin, V; Nascimento, C W A

    2009-08-30

    Phytoextraction is a remediation technique that consists in using plants to remove contaminants from soils and water. This study evaluated arsenic (As) accumulation in Castor bean (Ricinus communis cv. Guarany) grown in nutrient solution in order to assess its phytoextraction ability. Castor bean plants were grown under greenhouse conditions in pots containing a nutrient solution amended with increasing doses of As (0, 10, 50, 100, 250, 500 and 5000 microg L(-1)) in a completely randomized design with four replications. Shoot and roots dry matter production as well as arsenic and nutrient tissue concentrations were measured at the end of the experiment. The results showed that increasing As concentration in nutrient solution caused a decrease in shoot and root biomass but did not result in severe toxicity symptoms in castor bean growing under a range of As concentration from 0 to 5000 microg L(-1). The As doses tested did not affect the accumulation of nutrients by castor bean. Although castor bean did not pose characteristics of a plant suitable for commercial phytoextraction, it could be useful for revegetation of As-contaminated areas while providing an additional income by oil production.

  17. Selenium and its species distribution in above-ground plant parts of selenium enriched buckwheat (Fagopyrum esculentum Moench).

    Science.gov (United States)

    Vogrincic, Maja; Cuderman, Petra; Kreft, Ivan; Stibilj, Vekoslava

    2009-11-01

    Common buckwheat (Fagopyrum esculentum Moench) was foliarly sprayed with a water solution containing 10 mg Se(VI) L(-1) at the beginning of flowering. The total Se content in plant parts in the untreated group was low, whereas in the Se-sprayed group it was approximately 50- to 500-fold higher, depending on the plant part (708-4231 ng Se g(-1) DM(-1) (DM: dry matter)). We observed a similar distribution of Se in plant parts in both control and treated groups, with the highest difference in Se content being in ripe seeds. Water-soluble Se compounds were extracted by enzymatic hydrolysis with protease XIV, resulting in above 63% of soluble Se from seeds, approximately 14% from stems, leaves and inflorescences and less than 1% from husks. Se-species were determined in enzymatic extracts using HPLC-UV-HG-AFS (HPLC-hydride generation-atomic fluorescence spectrometry with UV treatment). The main Se species found in seeds was SeMet ( approximately 60% according to total Se content), while in stems, leaves and inflorescences the only form of soluble Se present was Se(VI) (up to 10% of total Se). In husks no Se-species were detected. We observed an instability of Se(IV) in seed extracts as a possible consequence of binding to the matrix components. Therefore, special care concerning sample extraction and the storage time of the extracts should be taken.

  18. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  19. Boron transport in Eucalyptus. 2. Identification in silico of a putative boron transporter for xylem loading in eucalypt

    Directory of Open Access Journals (Sweden)

    Douglas Silva Domingues

    2005-01-01

    Full Text Available Boron (B is a low mobility plant micronutrient whose molecular mechanisms of absorption and translocation are still controversial. Many factors are involved in tolerance to Boron excess or deficiency. Recently, the first protein linked to boron transport in biological systems, BOR1, was characterized in Arabidopsis thaliana. This protein is involved in boron xylem loading and is similar to bicarbonate transporters found in animals. There are indications that BOR1 is a member of a conserved protein family in plants. In this work, FORESTS database was used to identify sequences similar to this protein family, looking for a probable BOR1 homolog in eucalypt. We found five consensus sequences similar to BOR1; three of them were then used in multiple alignment analysis. Based on amino acid similarity and in silico expression patterns, a consensus sequence was identified as a candidate BOR1 homolog, helping deeper experimental assays that could identify the function of this protein family in Eucalyptus.

  20. Optical phonon modes in rhombohedral boron monosulfide under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Cherednichenko, Kirill A. [Synchrotron SOLEIL, 91192 Gif-sur-Yvette (France); IMPMC, UPMC Sorbonne Universités, CNRS UMR 7590, 75005 Paris (France); LSPM–CNRS, Université Paris Nord, 93430 Villetaneuse (France); Sokolov, Petr S.; Solozhenko, Vladimir L., E-mail: vladimir.solozhenko@univ-paris13.fr [LSPM–CNRS, Université Paris Nord, 93430 Villetaneuse (France); Kalinko, Aleksandr [Synchrotron SOLEIL, 91192 Gif-sur-Yvette (France); Institute of Solid State Physics, University of Latvia, LV-1063 Riga (Latvia); Le Godec, Yann; Polian, Alain [IMPMC, UPMC Sorbonne Universités, CNRS UMR 7590, 75005 Paris (France); Itié, Jean-Paul [Synchrotron SOLEIL, 91192 Gif-sur-Yvette (France)

    2015-05-14

    Raman spectra of rhombohedral boron monosulfide (r-BS) were measured under pressures up to 34 GPa at room temperature. No pressure-induced structural phase transition was observed, while strong pressure shift of Raman bands towards higher wavenumbers has been revealed. IR spectroscopy as a complementary technique has been used in order to completely describe the phonon modes of r-BS. All experimentally observed bands have been compared with theoretically calculated ones and modes assignment has been performed. r-BS enriched by {sup 10}B isotope was synthesized, and the effect of boron isotopic substitution on Raman spectra was observed and analyzed.

  1. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  2. Enrichment of AOB and NOB Population by Applying a BABE Reactor in an Activated Sludge Pilot Plant.

    Science.gov (United States)

    Gatti, Marcela N; Giménez, Juan B; Carretero, Laura; Ruano, María V; Borrás, Luis; Serralta, Joaquín; Seco, Aurora

    2015-04-01

    This paper deals with the effect of a bioaugmentation batch enhanced (BABE) reactor implementation in a biological nutrient removal pilot plant on the populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). The results of fluorescence in situ hybridization (FISH) technique showed that AOB and NOB populations were significantly enhanced, from 4 to 8% and from 2 to 9%, respectively, as a result of the BABE reactor implementation. Regarding AOB, the percentage of Nitrosomonas oligotropha was mainly increased (3 to 6%). Regarding NOB, Nitrospirae spp was greatly enhanced (1 to 7%). Both species are considered K-strategist (high affinity to the substrate, low maximum growth rates) and they usually predominate in reactors with low ammonium and nitrite concentrations, respectively. PMID:26462081

  3. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  4. Soil and water warming accelerates phenology and down-regulation of leaf photosynthesis of rice plants grown under free-air CO2 enrichment (FACE).

    Science.gov (United States)

    Adachi, Minaco; Hasegawa, Toshihiro; Fukayama, Hiroshi; Tokida, Takeshi; Sakai, Hidemitsu; Matsunami, Toshinori; Nakamura, Hirofumi; Sameshima, Ryoji; Okada, Masumi

    2014-02-01

    To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2]. PMID:24406632

  5. Job Enrichment

    Science.gov (United States)

    Sanders, Rick

    1970-01-01

    Job enrichment means giving people more decision-making power, more responsibility, more grasp of the totality of the job, and a sense of their own importance in the company. This article presents evidence of the successful working of this approach (Donnelly Mirrors), and the lack of success with an opposing approach (General Motors). (NL)

  6. Enrichment: Dealing with overcapacity

    International Nuclear Information System (INIS)

    Today's surplus of enrichment capacity will continue until at least the end of this century. This will challenge the ingenuity of the separative work unit (SWU) suppliers as they attempt to keep market share and remain profitable in a very competitive marketplace. The utilities will be faced with attractive choices, but making the best choice will require careful analysis and increased attention to market factors. Current demand projections will probably prove too high to the extent that more reactors are canceled or delayed. The DOE has the vast majority of the unused capacity, so it will feel the most immediate impact of this large surplus in productive capacity. The DOE has responded to these market challenges by planning another reorganization of its enriching operations. Without a major agreement among the governments affected by the current surplus in enrichment capacity, the future will see lower prices, more competitive terms, and the gradual substitution of centrifuge or laser enrichment for the gaseous diffusion plants. The competition that is forcing the gaseous diffusion prices down to marginal cost will provide the long-term price basis for the enrichment industry

  7. Nonindigenous Plant Advantage in Native and Exotic Australian Grasses under Experimental Drought, Warming, and Atmospheric CO2 Enrichment

    Directory of Open Access Journals (Sweden)

    Brendan J. Lepschi

    2013-03-01

    Full Text Available A general prediction of ecological theory is that climate change will favor invasive nonindigenous plant species (NIPS over native species. However, the relative fitness advantage enjoyed by NIPS is often affected by resource limitation and potentially by extreme climatic events such as drought. Genetic constraints may also limit the ability of NIPS to adapt to changing climatic conditions. In this study, we investigated evidence for potential NIPS advantage under climate change in two sympatric perennial stipoid grasses from southeast Australia, the NIPS Nassella neesiana and the native Austrostipa bigeniculata. We compared the growth and reproduction of both species under current and year 2050 drought, temperature and CO2 regimes in a multifactor outdoor climate simulation experiment, hypothesizing that NIPS advantage would be higher under more favorable growing conditions. We also compared the quantitative variation and heritability of growth traits in populations of both species collected along a 200 km climatic transect. In contrast to our hypothesis we found that the NIPS N. neesiana was less responsive than A. bigeniculata to winter warming but maintained higher reproductive output during spring drought. However, overall tussock expansion was far more rapid in N. neesiana, and so it maintained an overall fitness advantage over A. bigeniculata in all climate regimes. N. neesiana also exhibited similar or lower quantitative variation and growth trait heritability than A. bigeniculata within populations but greater variability among populations, probably reflecting a complex past introduction history. We found some evidence that additional spring warmth increases the impact of drought on reproduction but not that elevated atmospheric CO2 ameliorates drought severity. Overall, we conclude that NIPS advantage under climate change may be limited by a lack of responsiveness to key climatic drivers, reduced genetic variability in range

  8. Neutron beam monitor based on a boron-coated GEM

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian-Rong; LI Yi; SUN Zhi-Jia; LIU Ben; WANG Yan-Feng; YANG Gui-An; ZHOU Liang; XU Hong; DONG Jing; YANG Lei

    2011-01-01

    A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on one surface of the aluminum cathode plate as the neutron convertor. 96 channel pads with an area of 8 mm×8 mm each are used for fast signal readout.In order to study the basic characteristics of a boron-coated GEM, several irradiation tests were carried out with α source 239pu and neutron source 241Am(Be). The signal induced by the neutron source has a high signal-to-noise ratio. A clear image obtained from α source 239pu is presented, which shows that the neutron beam monitor based on a boron-coated GEM has a good two-dimensional imaging ability.

  9. Determination of residual boron in thermally treated controlled-porosity glasses, by colorimetry, spectrography and isotachophoresis

    International Nuclear Information System (INIS)

    Controlled-porosity glasses (CPGs) are often applied as sorbents in chromatography. Besides having high thermal, chemical and mechanical resistance they are characterized by a very narrow pore-size distribution and the choice of mean pore diameter and porosity covers a wide range. In spite of these advantages, their range of use in chromatography is restricted because of their strong adsorption properties, which are connected with the presence of residual boron atoms in the porous CPG skeleton. The boron concentration on the CPG surface can be increased by proper thermal treatment. When CPGs are heated in the range 400-8000 the residual boron atoms in the network diffuse from the bulk to the surface. The paper discusses the boron content in porous glasses of different mean pore diameters and the determination of the enrichment of boron on the GPG surface, by three independent methods: colorimetry, spectrography and isotachophoresis. (author)

  10. Bright prospects for boron

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  11. Plasma boron and the effects of boron supplementation in males.

    Science.gov (United States)

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  12. Colorimetric determination of Boron-10 in macromolecular delivery agents

    Energy Technology Data Exchange (ETDEWEB)

    Camillo, Maria A.P.; Moura, Eduardo [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Biologia Molecular]. E-mail: mcamillo@ipen.br; Queiroz, Alvaro A.A.A.de [Universidade Federal de Itajuba, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Fisica e Quimica]. E-mail: alencar@unifei.edu.br

    2005-07-01

    A polyglycerol with dendritic structure (PGLD) was synthesized by the ring opening polymerization of deprotonated glycidol using a polyglycerol as core functionality in a step-growth process denominated divergent synthesis. After PGLD reaction with {sup 10}B-enriched boric acid there was a marked increase in the bulk viscosity of the PGLD dendrimer evidencing the polyester formation. Gel permeation chromatography (GPC) analysis was used to characterize the molecular weight and the polydispersivity of the synthesized PGLD dendrimer. A dendritic polyglycerol structure with M{sub n} value of 16.7 kDa and a narrow polydispersivity (M{sub w}/M{sub n} = 1.05) was obtained in this work. {sup 1}H-NMR and {sup 13}C-NMR measurements were employed to assess the degree of branching (DB) in PGLD. The DB of 0.85 indicates the tendency of a dentritic structure for the PGLD synthesized in this work. The boron-10 concentration was dependent of the PGLD generation. A selective reagent, curcumine, was studied for spectrophotometric determination of boron in polyglycerol dendrimers. Boron reacts with curcumine to form a complex, which has a maximum absorption peak at 552 nm. Under the optimal conditions, Beer's law was obeyed over the range 0{approx}20 {mu}g of boron in 25 mL of solution. The biological assays indicate the PGLD-B with boron-10 concentration of 25 mg{sup 10}B/gPGLD as the most promising macromolecule enriched with boron-10 for the BNCT therapy. (author)

  13. The interaction of boron with goethite: Experiments and CD-MUSIC modeling

    NARCIS (Netherlands)

    Goli, E.; Rahnemaie, R.; Hiemstra, T.; Malakouti, M.J.

    2011-01-01

    Boron (B) is an essential element for plants and animals growth that interacts with mineral surfaces regulating its bioavailability and mobility in soils, sediments, and natural ecosystems. The interaction with mineral surfaces is quite important because of a narrow range between boron deficiency an

  14. Boron exposure assessment using drinking water and urine in the North of Chile

    International Nuclear Information System (INIS)

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3 mg L−1, with a median value of 2.9 mg L−1, while concentrations of boron in bottled water varied from 0.01 to 12.2 mg L−1. Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4 mg L−1, with a median of 4.28 mg L−1 and was found to be correlated with tap water sampled from the homes of the volunteers (r = 0.64). Authors highly recommend that in northern Chile – where levels of boron are naturally high – that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure.

  15. Boron exposure assessment using drinking water and urine in the North of Chile

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, S., E-mail: scortes@med.puc.cl [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Reynaga-Delgado, E. [Centro de Investigaciones Biologicas del Noroeste, La Paz B.C.S. (Mexico); Sancha, A.M. [Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Ferreccio, C. [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3 mg L{sup -1}, with a median value of 2.9 mg L{sup -1}, while concentrations of boron in bottled water varied from 0.01 to 12.2 mg L{sup -1}. Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4 mg L{sup -1}, with a median of 4.28 mg L{sup -1} and was found to be correlated with tap water sampled from the homes of the volunteers (r = 0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure.

  16. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  17. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  18. Isotopic effect on thermal physical properties of isotopically modified boron single crystals

    International Nuclear Information System (INIS)

    The measurement of specific heat and thermal conductivity at low temperature for isotopically modified boron single crystals was performed between 0.5 and 100K using relaxation method and steady heat flow method, respectively. The results indicate that the specific heat has obvious divergences at T10B-enriched crystal is about 570 W/m·K, which is 40% larger than that of natural boron crystal. The influence of lattice vibration modes and the isotopic effect on specific heat and thermal conductivity for isotopically modified boron are discussed. (author)

  19. Effect of boron on creep characteristics in 9Cr-1.5Mo alloys

    Science.gov (United States)

    Kim, Bumjoon; Yun, Haksu; Lee, Dongbok; Lim, Byeongsoo

    2009-01-01

    For thick-section components such as headers and pipes of the power plants, high creep rupture strength and oxidation resistance are required. It is known that the addition of boron can improve the creep strength and oxidation resistance through the stabilization of M23C6 carbides in the vicinity of prior austenite grain boundaries. In this study, the effect of boron addition with the range of 0.0033~0.0133 wt% on the creep behavior of 9Cr-1.5Mo steel was investigated. Small punch creep tests were carried out to investigate the effect of boron addition on creep properties. Microstructure observation was performed to analyze the effect of boron addition on creep strength and rupture life. Also, the relationship between the minimum creep rate and the amount of boron addition were analyzed. The addition of boron is beneficial in lowering the steady-state creep rate.

  20. A feasibility study for the application of enriched gadolinia burnable absorber rods in nuclear core design

    International Nuclear Information System (INIS)

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  1. Oxidation of Silicon and Boron in Boron Containing Molten Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new process of directly smelting boron steel from boron-containing pig iron has been established. The starting material boron-containing pig iron was obtained from ludwigite ore, which is very abundant in the eastern area of Liaoning Province of China. The experiment was performed in a medium-frequency induction furnace, and Fe2O3 powder was used as the oxidizing agent. The effects of temperature, addition of Fe2O3, basicity, stirring, and composition of melt on the oxidation of silicon and boron were investigated respectively. The results showed that silicon and boron were oxidized simultaneously and their oxidation ratio exceeded 90% at 1 400 ℃. The favorable oxidation temperature of silicon was about 1 300-1 350 C. High oxygen potential of slag and strong stirring enhanced the oxidation of silicon and boron.

  2. The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites.

    Science.gov (United States)

    Sun, Liang; Wei, Yu; Zhang, Dan-Dan; Ma, Xiao-Yu; Xiao, Yong; Zhang, Ya-Nan; Yang, Xian-Ming; Xiao, Qiang; Guo, Yu-Yuan; Zhang, Yong-Jun

    2016-01-01

    Odorant binding proteins (OBPs) are proposed to be directly required for odorant discrimination and represent potential interesting targets for pest control. In the notoriously agricultural pest Adelphocoris lineolatus, our previous functional investigation of highly expressed antennal OBPs clearly supported this viewpoint, whereas the findings of the current study by characterizing of AlinOBP11 rather indicated that OBP in hemipterous plant bugs might fulfill a different and tantalizing physiological role. The phylogenetic analysis uncovered that AlinOBP11 together with several homologous bug OBP proteins are potential orthologs, implying they could exhibit a conserved function. Next, the results of expression profiles solidly showed that AlinOBP11 was predominantly expressed at adult mouthparts, the most important gustatory organ of Hemiptera mirid bug. Finally, a rigorously selective binding profile was observed in the fluorescence competitive binding assay, in which recombinant AlinOBP11 displayed much stronger binding abilities to non-volatile secondary metabolite compounds than the volatile odorants. These results reflect that AlinOBP11, even its orthologous proteins across bug species, could be associated with a distinctively conserved physiological role such as a crucial carrier for non-volatiles host secondary metabolites in gustatory system. PMID:27313540

  3. A Preliminary experimental study of the boron concentration in vapor and the isotopic A preliminary experimental study of the boron concentrationin vapor and the isotopic fractionation of boron betweenseawater and vapor during evaporation of seawater

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A laboratory experiment was undertaken to investigate the behaviour of boron at theseawater-air interface under air flow conditions. Dried air at 25 and 35℃ was passed over or bub-bled through seawater at the same temperature. A combination of ice-chilled condensers and KOHimpregnated cellulose fibre filters was used to collect boron from the reacted air. When air strippedof boron was passed over the seawater, boron was found in the reacted air, and its concentrationwas higher in the higher temperature test. In the tests where air was bubbled through seawater theconcentration of boron in the reacted air was directly proportional to the air flow rate. In this situa-tion the boron in the reacted air was mainly introduced as a spray of microdroplets. Isotopic analy-sis of the collected boron in the non-bubbled tests yields fractionation factors which demonstratethat the lighter isotope, 10B, is enriched in the reacted air. The size of the fractionation changeswith temperature, ruling out a purely kinetic effect.

  4. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; Zhong, J. X.

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  5. Boron uptake, localization, and speciation in marine brown algae.

    Science.gov (United States)

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus. PMID:26679972

  6. An overview of male reproductive studies of boron with an emphasis on studies of highly exposed Chinese workers

    DEFF Research Database (Denmark)

    Scialli, Anthony R; Bonde, Jens Peter; Brüske-Hohlfeld, Irene;

    2010-01-01

    Boron treatment of rats, mice, and dogs has been associated with testicular toxicity, characterized by inhibited spermiation at lower dose levels and a reduction in epididymal sperm count at higher dose levels. The no-adverse-effect level for reproductive effects in male rats is 17.5mg B/kg bw...... working in boron (B) mining or processing in Liaoning province in northeast China has been published in several Chinese and a few English language papers. This study included individual assessment of boron exposure, interview data on reproductive experience and semen analysis. Employed men living...... in the same community and in a remote community were used as controls. Boron workers (n=75) had a mean daily boron intake of 31.3mg B/day, and a subset of 16 of these men, employed at a plant where there was heavy boron contamination of the water supply, had an estimated mean daily boron intake of 125 mg B...

  7. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  8. Effect of Nitrogen and Boron in Seed Yield and Yield Attributing Characters of Broccoli

    Directory of Open Access Journals (Sweden)

    A. Khanal

    2015-09-01

    Full Text Available Plant nutrient is one of the limiting factors affecting crop production. Nitrogen and boron are major nutrients in case of broccoli. So, an experiment was carried out to evaluate the effect of nitrogen and boron in seed yield and yield attributing characters of broccoli in Rampur, Chitwan during winter season. The experiment was laid out in factorial RCBD design with four levels of nitrogen and two levels of boron. Each plot consists of 25 plants which were separated by 60 * 60 cm spacing. There are altogether eight treatments replicates thrice. Local variety Calabrese was used. Significant effect of different dose of nitrogen and boron on yield attributing characters was found. Also interactive effect of nitrogen and boron in number of pods, pod length, seed yield and number of seeds per pod was found significantly different.

  9. Cosmis Lithium-Beryllium-Boron Story

    Science.gov (United States)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  10. Boron in Pariette Wetland Sediments, Aquatic Vegetation & Benthic Organisms

    Science.gov (United States)

    Vasudeva, P.; Jones, C. P.; Powelson, D.; Jacobson, A. R.

    2015-12-01

    The Pariette Wetlands are comprised of 20 ponds located in Utah's Uintah Basin. Boron concentration in the Pariette Wetlands have been observed to exceed the total maximum daily limit of 750 µg L-1. Considering water flow in and out of the wetlands, boron is accumulating within the wetlands where it is sorbed to sediments and bioconcentrated by wetland plant and macro invertebrates. Since boron is an avian teratogen, an estimate of boron ingestion exposure is warranted. Samples from 3 of the 23 Pariette Wetland ponds with one pond near the inlet, one near the outlet, and one in the middle were collected. Five sampling points were designated along a 100 m transect of each pond. At each sampling point duplicate (or triplicate) samples of water, sediments, benthic organisms and wetland vegetation were collected. The sediments were collected with a KB-corer and divided at depths of 0-2 cm, 2-7 cm, and 7+ cm from the sediment surface. Sample splits were sent to the USU Bug lab for identification of invertebrate species. Whenever this transect was not intercepting vegetation, 2-3 additional sample sites were identified at the pond within stands of representative vegetation where bird nests are located. The plant parts used for boron analyses will include seeds, shoot and roots of vascular plants, as well as algae or duckweeds skimmed from the surface. Samples were processed within 2 days of collection. Water samples filtered through a 0.45 μ membrane filter were analyzed for DOC, pH and ECe. The dried and washed vegetation samples were ground and stored. The benthic organisms and macro invertebrates were netted at the water surface. The dried samples were weighed, ground and stored. Samples were weighed, oven dried and reweighed. For plant and macro-invertebrate samples, a nitric and hydrogen peroxide digestion procedure is used to dissolve environmentally available elements. The Hot Water extraction and DTPA-Sorbitol extraction were compared to estimate wetland plant

  11. Microwave digestion techniques applied to determination of boron by ICP-AES in BNCT program

    International Nuclear Information System (INIS)

    Recently, boron neutron capture therapy (BNCT) has merged as an interesting option for the treatment of some kind of tumors where established therapies show no success. A molecular boronated species, enriched in 10B is administrated to the subject; it localizes in malignant tissues depending the kind of tumor and localization. Therefore, a very important fact in BNCT research is the detection of boron at trace or ultra trace levels precisely and accurately. This is extremely necessary as boronated species do localize in tumoral tissue and also localize in liver, kidney, spleen, skin, membranes. By this way, before testing a boronated species, it is mandatory to determine its biodistribution in a statistically meaning population, that is related with managing of a great number of samples. In the other hand, it is necessary to exactly predict when to begin the irradiation and to determine the magnitude of radiation to obtain the desired radiological dose for a specified mean boron concentration. This involves the determination of boron in whole blood, which is related with boron concentration in the tumor object of treatment. The methodology selected for the analysis of boron in whole blood and tissues must join certain characteristics: it must not be dependant of the chemical form of boron, it has to be fast and capable to determine boron accurately and precisely in a wide range of concentrations. The design and validation of experimental models involving animals in BNCT studies and the determination of boron in blood of animals and subjects upon treatment require reliable analytical procedures to determine boron quantitatively in those biologic materials. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) using pneumatic nebulization is one of the most promising methods for boron analysis, but the sample must be liquid and have low solid concentration. In our case, biological tissues and blood, it is mandatory to mineralize and/or dilute samples

  12. A new soil test for quantitative measurement of available and adsorbed boron

    Science.gov (United States)

    Boron soil tests currently in use, do not extract all plant available B but are used by relating the extractable amount of B to plant B content. There is a need to accurately measure all plant available or adsorbed B because B can be toxic to plants at elevated concentrations and can cause marked y...

  13. Boron toxicity causes multiple effects on Malus domestica pollen tube growth

    Directory of Open Access Journals (Sweden)

    Kefeng eFang

    2016-02-01

    Full Text Available Boron is an essential micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this stress is not known. This study aimed to evaluate the effect of boron stress on Malus domestica pollen tube growth and its possible regulatory pathway. Our results show that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron stress could decrease [Ca2+]c and induce the disappearance of the [Ca2+]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron stress. Immuno-localization and fluorescence labeling, together with Fourier-transform infrared analysis (FTIR, suggested that boron stress influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca2+]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

  14. New evidences on efficacy of boronic acid-based derivatization method to identify sugars in plant material by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Faraco, Marianna; Fico, Daniela; Pennetta, Antonio; De Benedetto, Giuseppe E

    2016-10-01

    This work presents an analytical procedure based on gas chromatography-mass spectrometry which allows the determination of aldoses (glucose, mannose, galactose, arabinose, xylose, fucose, rhamnose) and chetoses (fructose) in plant material. One peak for each target carbohydrate was obtained by using an efficient derivatization employing methylboronic acid and acetic anhydride sequentially, whereas the baseline separation of the analytes was accomplished using an ionic liquid capillary column. First, the proposed method was optimized and validated. Successively, it was applied to identify the carbohydrates present in plant material. Finally, the procedure was successfully applied to samples from a XVII century painting, thus highlighting the occurrence of starch glue and fruit tree gum as polysaccharide materials. PMID:27474277

  15. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  16. The levels of boron-uptake proteins in roots are correlated with tolerance to boron stress in barley

    Science.gov (United States)

    Boron (B) is an essential micronutrient required for plant growth and development. Recently, two major B-uptake proteins, BOR1 and NIP5;1 have been identified and partially characterized. BOR1 is a high-affinity B transporter involved in xylem loading in roots, and NIP5;1 acts is a major boric-acid ...

  17. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters.

    Science.gov (United States)

    Del-Campo Marín, Claudia M; Oron, Gideon

    2007-12-01

    Boron (B) is often found in polluted and desalinated waters. Despite its potentially environmental damaging effects, efficient treatments are lacking. The duckweed Lemna gibba has been shown to remove toxic elements from water; however, its applicability to B removal is unknown. In this study, L. gibba was examined for its tolerance to B in water and its B removal efficiency. Duckweed plants were grown in outdoor 12-day batch experiments in nutrient solution containing 0.3-10 mg B L(-1). Plant biomass production was not affected by B over the tested concentrations during the 12-day cultivation period. Boron removal and the bioconcentration factor of B in L. gibba were highest at initial B concentrations below 2 mg L(-1), and decreased as the initial B concentration increased. Boron content in the plants at the end of the experiment ranged between 930 and 1900 mg kg(-1) dry weight, and was comparable to that of wetland plants reported to be good B accumulators. Boron removal by L. gibba may therefore be a suitable option for the treatment of water containing B concentrations below 2 mg L(-1). PMID:17643472

  18. Tandem anion and cation exchange solid phase extraction for the enrichment of micropollutants and their transformation products from ozonation in a wastewater treatment plant.

    Science.gov (United States)

    Deeb, Ahmad A; Schmidt, Torsten C

    2016-06-01

    The presence of organic micropollutants and their transformation products (TPs) from biotic and abiotic processes in aquatic environments is receiving intense public and scientific attention. Yet a suitable sample preparation method that would enable extraction and enrichment of a wide range of such compounds from water is missing. The focus of this paper was to develop an enhanced solid phase extraction (SPE) protocol which enabled isolation of parent compounds and low molecular weight transformation products (that are produced after treatment of water with ozone) from different water matrices. Ten SPE sorbents were evaluated with regard to their ability to extract acidic, neutral, and basic compounds from water at several pH values. Highest recoveries (91-99 %) for all analytes in pure water were obtained by combining strong anion and cation exchangers of two manufacturers in a tandem mode without pH adjustment. Tandem Oasis (MAX+MCX) was finally applied to extract the spiked analytes from tap water, surface water, and several wastewater samples. The efficiency of the used SPE procedure was examined using an optimized liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method using multiple reaction monitoring (MRM) mode. The occurrence of some of the investigated TPs in environmental water matrices was proven for the first time in this study. Method quantification limits (MQLs) for all compounds ranged from 3.7 to 15.3 ng/L in all matrices. Recoveries (%RE) were between 90 and 110 %. Intraday and interday precision, expressed as relative standard deviation, varied from 0.7 to 5.9 % and 1.8 to 10.3 %, respectively. Matrix effect (%ME) evaluation demonstrated that even complex sample matrices did not show significant ion suppression or enhancement. The applicability of the method was shown during two sampling campaigns at Ruhr river and a wastewater treatment plant (WWTP) equipped with an ozonation step after regular

  19. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability

    OpenAIRE

    Takano, Junpei; Miwa, Kyoko; Yuan, Lixing; von Wirén, Nicolaus; Fujiwara, Toru

    2005-01-01

    Boron (B) is essential for plants but toxic when present in excess. Arabidopsis thaliana BOR1 is a B exporter for xylem loading and is essential for efficient B translocation from roots to shoots under B limitation. B translocation to shoots was enhanced under B limitation in WT but not in bor1-1 mutant plants. The enhanced translocation was suppressed upon resupply of high levels of B within several hours. Unlike a number of transporters for essential mineral nutrients, BOR1 mRNA accumulatio...

  20. THE EFFECT OF BORON DOSES ON PARICA (Schizolobium amazonicum Herb.)

    OpenAIRE

    Sebastião Ferreira de Lima; Rodrigo Luz da Cunha; Janice Guedes de Carvalho; Carlos Alberto Spaggiari Souza; Fernando Luiz de Oliveira Corrêa

    2003-01-01

    An experiment was conducted in a greenhouse in order to evaluate the effects of boron on parica growth and on concentration and contents of macro and micronutrients indry matter of shoots and roots. Six treatments constituted by boron doses of 0.0; 0.1; 0.3; 0.9;1.5 and 2.1 mg/dm3 in four replications were used. It was evaluated the characteristics:visual diagnostic, plants height and diameter, dry matter production of shoots and roots,concentration and contents of nutrients in dry matter of ...

  1. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  2. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to ‑41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  3. Effects of Boron Nutrition on 45Ca Retranslocation and Distribution in Rape (Brassica napus L. ) Cultivars

    Institute of Scientific and Technical Information of China (English)

    WANG Huo-yan; WANG Yun-hua; WU Li-shu; DU Chang-wen; XU Fang-sun

    2003-01-01

    Using tracer techniques with the radioisotope 45Ca, the effects of boron supply from soil andnutrient solution on the retranslocation of 45 Ca from leaves to other parts of rape plants were studied. Resultsindicated that only a small portion of foliar-applied 45Ca could be retranslocated to other parts of the rapeplant. There was no pronounced effect of boron level in the soil on 45 Ca retranslocation. Increasing boron con-centrations in the nutrient solution significantly reduced 45 Ca radioactivity in root and stem, but increased 45 Cauptake and 45 Ca translocation to the upper leaves of rape plants. It was suggested that 45 Ca absorbed by newlydeveloped roots was easily distributed to upper leaves of rape plants. Boron may alter distribution of calciumvia its effect on root development or growth of newly developed roots.

  4. Dietary boron, brain function, and cognitive performance.

    OpenAIRE

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and wo...

  5. Analytical methods for the determination of boron in reactor materials programme

    International Nuclear Information System (INIS)

    Spectrophotometric methods of determination of boron based on the complexation reaction between boric acid and protonated curcumin are briefly reviewed. Direct determination of boron in heavy water, plant leaves, copper and its alloys, and aluminium and its alloys using a modified method of Hayes and Metcalfe is described. A method for determination of boron, when its content is very low as in case of uranium metal, diuranate, uranium oxide and thorium nitrate, is also described. In this method, boron is first separated as methyl borate by distillation of the sample with methanol in acid media. The distilled ester is absorbed by hydroxide solution and boron is analysed after removal of methanol. The precision obtained is indicated. (M.G.B.)

  6. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-09-30

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution`s concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the `Poisoned Tube Tank` because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service.

  7. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  8. Banishing brittle bones with boron

    Energy Technology Data Exchange (ETDEWEB)

    A 6-month study indicates that boron, not even considered an essential nutrient for people and animals, may be a key to preventing osteoporosis, say nutritionist Forrest H. Nielsen and anatomist Curtiss D. Hunt at ARS' Grand Forks, North Dakota, Human Nutrition Research Center. They believe the results of the study - the first to look at the nutritional effects of boron in humans - will generate a lot of interest in the element. In the study, 12 postmenopausal women consumed a very low boron diet (0.25 milligrams per day) for 17 weeks then were given a daily 3-mg supplement - representing the boron intake from a well-balanced diet - for 7 more weeks. Within 8 days after the supplement was introduced, the lost 40 percent less calcium, one-third less magnesium, and slightly less phosphorus through the urine. In fact, their calcium and magnesium losses were lower than prestudy levels, when they were on their normal diets. Since boron isn't considered essential for people, there is not recommended intake and no boron supplement on the market. Nielsen says the supplement of sodium borate used in the study was specially prepared based on the amount of boron a person would get from a well-balanced diet containing fruits and vegetables. He says the average boron intake is about 1.5 mg - or half the experimental dose - but average means a lot of people get less and a lot get more. Hunt cautioned that large doses of boron can be toxic, even lethal. The lowest reported lethal dose of boric acid is about 45 grams (1.6 ounces) for an adult and only 2 grams (0.07 ounce) for an infant.

  9. A study on the nuclear characteristics of enriched gadolinia burnable absorber rods; the first year (2000) report

    International Nuclear Information System (INIS)

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  10. Engineering design feasibility of low boron concentration core in PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, A. T.; Kim, M. H. [Kyung Hee University, Yongin-shi, Gyeonggi-do, 446-701 Republic of Korea (Korea, Republic of); Woo, I.; Shon, S. R., E-mail: atdaing@khu.ac.k [Korea Nuclear Fuel, 1047 Daedukdaero, Yuseong-gu, Daejeon, 305-353 Republic of Korea (Korea, Republic of)

    2010-10-15

    In pressurized water reactor operation, higher level of soluble boron concentration could contribute higher impact from boron dilution situations, higher amount of liquid waste, and higher radiation dose to operators from higher corrosion potential to cladding and structure. Two practical and feasible means to reduce the maximum boron concentration were investigated in this study. A technically straightforward, possible means, can be achieved either by implementation of enriched boric acid (Eba) or by increasing more shim rod (fixed burnable absorber) worth. A simplest option is that the Eba is applied into reference core (Ref) design, OPR-1000 design, Ulchin unit-5 by allowing use of same fuel assemblies and core design without changing any nuclear design methodology used in that Ref design. Although results of Eba option proved its favorable power distribution and peaking factor, its moderator temperature coefficient (MTC) value reached positive, 3.25 pcm/ C at 40 EFPD which is beyond the design safety limit. An alternative option with more shim rods in fuel assemblies was tried with four types of integral burnable absorbers: gadolinia, integral fuel burnable absorber (Ifba), erbium and alumina boron carbide. Four core design candidates have been developed by keeping major engineering designs and preserving equivalent fuel enrichment level used in Ref design. However, all optimal designs were targeted to achieve comparable discharge burnup as well as favorable design safety parameters. The comparative analysis between Ref and optimal core designs is presented here. One of them is suggested as the most promising and favorable low boron core (Lbc) design in this framework. The proper combination of axial and radial enrichment zoning pattern in Lbc design candidate with Ifba-bearing fuel assemblies at equilibrium cycle, could bring 2 times narrower axial offset variation than that of Ref design, and maintain acceptable power peaking factor around 23% lower than

  11. Proceedings of a specialist meeting on boron reactivity transients

    International Nuclear Information System (INIS)

    The CSNI Specialist Meeting on Boron Dilution Reactivity Transients was hosted by the Penn State University in collaboration with the US Nuclear Regulatory Commission and the TRAC Users Group. More than 70 experts from 12 OECD countries, as well as experts from Russia and other non-OECD countries attended the meeting. Thirty papers were presented in five technical sessions. The purpose of the meeting was to bring together experts involved in the different activities related to boron dilution transients. The experts came from all involved parties, including research organizations, regulatory authorities, vendors and utilities. Information was openly shared and discussed on the experimental results, plant and systems analysis, numerical analysis of mixing and probability and consequences of these transients. Regulatory background and licensing implications were also included to provide the proper frame work for the technical discussion. Each of these areas corresponded to a separate session. The meeting focused on the thermal-hydraulic aspects because of the current interest in that subject and the significant amount of new technical information being generated. Three papers of the same conference are already available in INIS as individual reports: Potential for boron dilution during small-break LOCAs in PWRs (Ref. number: 27029412); Analysis of boron dilution in a four-loop PWR (Ref. number: 27051651); Probability and consequences of a rapid boron dilution sequence in a PWR (Ref. number: 27029411)

  12. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  13. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  14. A reactivity hold-down strategy for soluble boron free operation by introducing Pu-238 added fuel

    International Nuclear Information System (INIS)

    A new concept of Pu-238 added fuel is introduced to control the reactivity and power distribution in soluble boron free (SBF) pressurized water reactor (PWR) core. Though extensive use of burnable poison and control rods is inevitable for reactivity suppression in SBF core, it causes the core power distribution control to be so difficult that a practical SBF operation is far distant. In this work, it is confirmed that the excess reactivity can be greatly suppressed by introducing the Pu-238 added fuel. As a result of the conceptual core design of the 600 MWe SBF PWR using Pu-238 added fuel, the core reactivity is well controlled in comparison with the results obtained from the earlier 600 MWe SBF core design works. Especially, the axial power shape control is performed successfully with the aid of simple axial zoning scheme, developed in this study, by using Pu-238 enrichment zoning. The Pu-238 added fuel is also tested for 1300 MWe SBF PWR core design, in which the power distribution control can be more difficult than that of smaller plants if soluble boron control is not available. The results show that the core excess reactivity and the power distribution can be well controlled without using soluble boron even in a large-sized PWR. Hence, one of the difficult control problems arising in SBF core design can be greatly mitigated by introducing the new fuel concept. It is further expected that the Pu-238 added fuel, the simple axial zoning scheme, and the control bank operation strategy introduced in this study are directly applicable to practical SBF core design

  15. Development of a method to extend by boron neutron capture process the therapeutic possibilities of a liver autograft

    Science.gov (United States)

    Pinelli, Tazio; Altieri, Saverio; Fossati, F.; Zonta, Aris; Prati, U.; Roveda, L.; Nano, Rosanna

    1997-02-01

    We present results on surgical technique, neutron filed and irradiation facility concerning the original treatment of the liver diffused metastases. Our method plans to irradiate the isolated organ at a thermal neutron field soon after having been explanted and boron enriched and before being grafted into the same donor. In particular the crucial point of boron uptake was investigated by a rat model with a relevant number of procedure. We give for the first time statistically significant results on the selective boron absorption by tumor tissues.

  16. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  17. Determination of boron in water solution by an indirect neutron activation technique from a 241Am/Be source

    International Nuclear Information System (INIS)

    Boron content in water solutions has been analysed by Indirect Activation Technique a twin 241Am/Be neutron source with a source strength of 9x106 n/seg. The boron concentration was inferred from the measurement of the activity induced in a vanadium flux monitor. The vanadium rod was located inside the boron solution in a standart geometrical set up with respect to the neutron source. Boron concentrations in the range of 100 to 1000 ppm were determined with an overall accuracy of about 2% during a total analysis time of about 20 minutes. Eventhough the analysis is not selective for boron yet due the rapid, simple and precise nature, it is proposed for the analysis of boron in the primary coolant circuit of Nuclear Power Plants of PWR type. (Author)

  18. Developing selenium-enriched animal feed and biofuel from canola planted for managing Se-laden drainage waters in the westside of central California.

    Science.gov (United States)

    Bañuelos, G S; Da Roche, J; Robinson, J

    2010-03-01

    We studied the reuse of selenium (Se)-laden effluent for producing canola (Brassica napus) and subsequent bioproducts in central California. Canola was irrigated with poor quality waters [electrical conductivity (EC) of approximately 5 dS m(-1) sulfate-salinity, 5 mg B L(-1), and 0.25 mg Se L(-1)]. Typical seed yields were 2.2 metric tons ha(-1). Seeds were processed for their oil, and transesterified to produce ASTM-quality biodiesel (BD) blends. The resulting Se-enriched seed cake meal (containing approximately 2 mg Se kg(-1) DM) was used in a dairy feed trial. Seventy-two Jersey and Holstein cows, 36 respectively, were fed Se-enriched canola meal as 6.2% of their daily feed ration for five weeks. Blood and milk samples were collected weekly and analyzed for total Se. This study showed that Se-enriched canola meal did not significantly increase total blood Se content in either cow breed. Milk Se concentrations did, however, significantly increase to safe levels of 59 microg Se L(-1) and 52 microg Se L(-1) in Jersey and Holstein cows, respectively. The production of BD 20 biofuels and Se-enriched feed meal from canola irrigated with poor quality waters may help sustain similar phytomanagement strategies under Se-rich conditions. PMID:20734619

  19. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  20. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  1. Basic uranium-235 enrichment by the Asahi Chemical Enrichment Process (ACEP)

    International Nuclear Information System (INIS)

    The development of Asahi Chemical Enrichment Process (ACEP) led to the establishment of basic process technology permitting attainment of 3% enrichment within several months of operation by the mid-1980s, through advances which brought increased electron-exchange and adsorption-desorption reaction rates, effective uranium adsorption band formation and maintenance, and equilibrium plate height reductions based on the elucidation of mobile-phase dispersion. The theoretical and experimental development of redox agent self-regeneration led to a new 'Super Process' characterized by greater simplicity and efficiency than previously thought possible. A semi-commercial plant with enrichment columns of 1 m in diameter and 3 m in height, constructed at Hyuga City in Miyazaki Prefecture, demonstrated 3% uranium enrichment in April 1988. Through the improvement of enrichment efficiency, overall enrichment costs have been greatly lowered. The advantage of the chemical enrichment process, and its low cost of enrichment, have now been clearly demonstrated. (author)

  2. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  3. Boron toxicity in Lemna gibba

    OpenAIRE

    Mayra Sánchez Villavicencio; Carlos Álvarez Silva; Guadalupe Miranda Arce

    2007-01-01

    Total soluble phenols and total chlorophylls content, changes of biomass and concentration factor in Lemna gibba exposed to different concentrations of boron were measured. Day six soluble phenols showed significant differences in treatment with 10 mg/L of boron. At day ten, chlorophylls content in treatment 2 mg/L concentration increased respect to other experimental groups and control group, there were no significant differences. Biomass of Lemna gibba decreased significant in treatments wi...

  4. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  5. Avalanche proton-boron fusion based on elastic nuclear collisions

    Science.gov (United States)

    Eliezer, Shalom; Hora, Heinrich; Korn, Georg; Nissim, Noaz; Martinez Val, Josè Maria

    2016-05-01

    Recent experiments done at Prague with the 600 J/0.2 ns PALS laser interacting with a layer of boron dopants in a hydrogen enriched target have produced around 109 alphas. We suggest that these unexpected very high fusion reactions of proton with 11B indicate an avalanche multiplication for the measured anomalously high nuclear reaction yields. This can be explained by elastic nuclear collisions in the broad 600 keV energy band, which is coincident with the high nuclear p-11B fusion cross section, by the way of multiplication through generation of three secondary alpha particles from a single primarily produced alpha particle.

  6. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey); Yilmaz, M. Tolga [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Chemical Engineering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey)

    2005-01-31

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions.

  7. Cubic boron nitride: a new prospective material for ultracold neutron application

    CERN Document Server

    Sobolev, Yu; Borisov, Yu; Daum, M; Fresne, N du; Goeltl, L; Hampel, G; Heil, W; Knecht, A; Keunecke, M; Kratz, J V; Lang, T; Meister, M; Plonka-Spehr, Ch; Pokotilovski, Yu; Reichert, P; Schmidt, U; Krist, Th; Wiehl, N; Zenner, J

    2009-01-01

    For the first time, the neutron optical wall-potential of natural cubic boron nitride (cBN) was measured at the ultracold neutron (UCN) source of the research reactor TRIGA Mainz using the time-of-flight method (TOF). The samples investigated had a wall-potential of (305 +/- 15) neV. This value is in good agreement with the result extracted from neutron reflectometry data and theoretical expectations. Because of its high critical velocity for UCN and its good dielectric characteristics, cubic boron nitride coatings (isotopically enriched) will be useful for a number of applications in UCN experiments.

  8. Beyond Job Enrichment to Employment Enrichment

    Science.gov (United States)

    Werther, William B., Jr.

    1975-01-01

    Employment enrichment views the total work environment confronting employees as a system consisting of two overlapping areas: worker-job and worker-organization subsystems. Job enrichment has improved the worker-job subsystem. The focus of this article is on methods of improving the worker-organization relationship. (Author/JB)

  9. Carbon dioxide enrichment of greenhouse crops

    Energy Technology Data Exchange (ETDEWEB)

    Enoch, H.Z.; Kimball, B.A.

    1986-01-01

    This volume contains the following on these major topics of physiology, yield and economics: Fixation of Inorganic Carbon in Plant Cells. Effects of CO/sub 2/ Enrichment on Photosynthesis of C/sub 3/ Plants. Effects of CO/sub 2/ Concentration on Photosynthesis and Respiration of C/sub 4/ and CAM Plants. Effects of CO/sub 2/ Concentration on Composition, Anatomy, and Morphology of Plants. Stimulation of Growth and Yield Under Environmental Restraints. Woody Plant Reactions to CO/sub 2/ Enrichment. Influence of the CO/sub 2/ Content of the Ambient Air on Stomatal Conductance and CO/sub 2/ Concentration in Leaves. Influence of Elevated CO/sub 2/ on Crop Yield. Fertilization of Carnations and Some Other Flower Crops. CO/sub 2/ Enrichment for Greenhouse Rose Production. CO/sub 2/ Enrichment of Tomato Crops. CO/sub 2/ Enrichment Duration and Heating Credit as Determined by Climate. Economics of CO/sub 2/ Enrichment in Greenhouses. Units Conversion. Currency Exchange Rates.

  10. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-12-14

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows for

  11. Assessment of metal enrichment and their bioavailability in sediment and bioaccumulation by mangrove plant pneumatophores in a tropical (Zuari) estuary, west coast of India.

    Science.gov (United States)

    Noronha-D'Mello, Cheryl A; Nayak, G N

    2016-09-15

    Sediment collected from the estuarine mangroves of the Zuari estuary and Cumbharjua canal were analyzed to assess the concentration, contamination and bioavailability of metals. Mangrove pneumatophores were also analyzed to understand the metal bioaccumulation in mangrove plants. The results indicated the variation of metal concentrations in sediment along the estuary was attributed to changing hydrodynamic conditions, type of sediment and metal sources. Further, speciation studies revealed that Fe, Cr, Co, Ni, Cu and Zn were mainly of lithogenic origin and less bioavailable while high Mn content in the sediment raised concerns over its potential mobility, bioavailability and subsequent toxicity. The mangrove plants exhibited difference in metal accumulation due to variations in sediment parameters and metal availability, in addition to difference in plant species and tissue physiology that affect metal uptake. Moreover, the mangrove plants reflected the quality of the underlying sediment and can be used as a potential bio-indicator tool. PMID:27325605

  12. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  13. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  14. CO2浓度升高对植物种子萌发及叶片的影响%THE IMPACTS OF CO2 CONCENTRATION ENRICHMENT ON PLANT SEED GERMINATION AND LEAF

    Institute of Scientific and Technical Information of China (English)

    高素华; 郭建平; 毛飞; 白月明

    2000-01-01

    利用OTC-1型开顶式气室进行了CO2浓度对植物种子发芽率、发芽势以及叶片形态结构的影响试验研究。结果表明:CO2浓度升高对发芽率影响不大,但发芽势明显增高,CO2浓度有加速种子萌发的作用。CO2浓度升高对C3作物叶面积、叶干物重增加显著,C4作物增加不明显;随着CO2浓度升高,C3作物叶片气孔密度变小,C4作物(玉米)呈相反趋势;水分胁迫使气孔密度增加;CO2浓度升高,气孔阻力增大,蒸腾速率下降。%The experimental study on the impacts of CO2 concentration on plant seed germination percentage, germination energy and leaf structure is conducted by using OTC-1 Open Top Chambers. The results show that the impact of CO2 concentration enrichment on germination percentage is small, but the increase in germination energy is remarkable. The CO2 concentration enrichment can quicken seed germination. CO2 concentration enrichment can apparently increase leaf area and dry weight of C3 crops, but it is not significant for C4 crops. With CO2 concentration enrichment, the leaf stoma density becomes small for C3 crops, but it shows the opposite tendency for C4 crops (maize). The soil water stress leads to the increase in stoma density. With the CO2 concentration enrichment, the stoma resistance will be increased, but the transpiration will be decreased.

  15. Interferência da disponibilidade de luz na resposta à adubação de plantios de enriquecimento com leguminosas arbóreas Interference of light availability on response to fertilization of enrichment plantings with leguminous trees

    Directory of Open Access Journals (Sweden)

    Marco Aurélio de Carvalho Silva

    2013-03-01

    Full Text Available O objetivo deste trabalho foi avaliar a interferência da disponibilidade de luz na resposta à adubação de plantios de enriquecimento da capoeira com leguminosas arbóreas. As espécies Hymenaea courbaril, Stryphnodendron guianense, Parkia platycephala e Stryphnodendron microstachyum foram plantadas em capoeira, sob três tratamentos de fertilização: adubação orgânica, adubação orgânica acrescida de mineral e ausência de adubação. A disponibilidade de luz condicionou a resposta de P. platycephala e H. courbaril à fertilização. A aleatorização não foi suficiente para garantir condições semelhantes de luz nos plantios de enriquecimento. A variação na quantidade de luz incidente no sub‑bosque compromete a correta avaliação dos tratamentos de fertilização.The objective of this work was to evaluate the interference of light availability on response to fertilization of enrichment plantings of secondary growth forest with leguminous trees. The species Hymenaea courbaril, Stryphnodendron guianense, Parkia platycephala, and Stryphnodendron microstachyum were planted in a secondary growth forest under three fertilization treatments: organic fertilization, organic fertilization plus mineral fertilization, and absence of fertilization. Light availability modulated the response of P. platycephala and H. courbaril to fertilization treatments. Randomization was not sufficient to ensure similar light conditions in the enrichment plantings. Variation in the amount of incident light compromises the sound evaluation of fertilization treatments.

  16. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  17. Mechanical properties of boron coatings

    International Nuclear Information System (INIS)

    Internal stress of coatings will cause reliability problems, such as adhesion failure and peeling. We measured the internal stress in boron coatings, which was prepared by the ion plating method, with an apparatus based on the optically levered laser technique. The boron coatings exhibited large compressive stress in the range from -0.5 GPa to -2.6 GPa. It was found that these compressive stresses were decreasing functions of the deposition rate and were increasing functions of the ion bombardment energy. ((orig.))

  18. Enrichment technology. Dependable vendor of gas centrifuges

    International Nuclear Information System (INIS)

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  19. Ferrocenyl-substituted Schiff base complexes of boron: Synthesis, structural, physico-chemical and biochemical aspects

    Science.gov (United States)

    Yadav, Sunita; Singh, R. V.

    2011-01-01

    Biological important complexes of boron(III) derived from 1-acetylferrocenehydrazinecarboxamide (L 1H), 1-acetylferrocenehydrazinecarbothioamide (L 2H) and 1-acetylferrocene carbodithioic acid (L 3H) have been prepared and investigated using a combination of microanalytical analysis, melting point, electronic, IR, 1H NMR and 13C NMR spectral studies, cyclic voltammetry and X-ray powder diffraction studies. Boron isopropoxide interacts with the ligands in 1:1, 1:2 and 1:3 molar ratios (boron:ligand) resulting in the formation of coloured products. On the basis of conductance and spectral evidences, tetrahedral structures for boron(III) complexes have been assigned. The ligands are coordinated to the boron(III) via the azomethine nitrogen atom and the thiolic sulfur atom/enolic oxygen atom. On the basis of X-ray powder diffraction study one of the representative boron complex was found to have orthorhombic lattice, having lattice parameters: a = 9.9700, b = 15.0000 and c = 7.0000. Both the ligands and their complexes have been screened for their biological activity on several pathogenic fungi and bacteria and were found to possess appreciable fungicidal and bactericidal properties. Plant growth regulating activity of one of the ligand and its complexes has also been recorded on gram plant, and results have been discussed.

  20. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  1. Synthesis and biological evaluation of boronated polyglycerol dendrimers as potential agent for neutron capture therapy

    International Nuclear Information System (INIS)

    In this work, the polyglycerol dendrimer (PGLD) generation 5 was used to obtain a boronated macromolecule for boron neutron capture therapy. The PGLD dendrimer was synthesized by the ring opening polymerization of deprotonated glycidol using polyglycerol as core functionality in a step-growth processes denominated divergent synthesis. The PGLD dendritic structure was confirmed by gel permeation chromatography, nuclear magnetic resonance (1H-NMR, 13C-NMR) and matrix assisted laser desorption/ionization techniques. The synthesized dendrimer presented low dispersion in molecular weights (Mw/Mn = 1.05) and a degree of branching of 0.82, which characterize the polymer dendritic structure. Quantitative neutron capture radiography was used to investigate the boron-10 enrichment of the polyglycerol dendrimer. The in vitro cytotoxicity to Chinese hamster ovary cells of 10B-PGLD dendrimer indicate lower cytotoxicity, suggesting that the macromolecule is a biocompatible material. (author)

  2. Incorporation and characterization of boron neutron capture therapy agents into mesoporous silicon and silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ke; Coffer, Jeffery L. [Department of Chemistry, Texas Christian University, Fort Worth, TX 76129 (United States); Loni, Armando; Canham, Leigh T. [PSi Medica Ltd., Malvern, Worcestershire, WR14 3SZ (United Kingdom); Intrinsiq Materials Ltd., Malvern, Worcestershire, WR14 3SZ (United Kingdom)

    2009-06-15

    The tunable pore size, biodegradability, and surface chemistry of mesoporous silicon (BioSilicon trademark) are important to a broad spectrum of uses for drug delivery. For the case of Boron Neutron Capture Therapy (BNCT), encapsulation of a given boron-containing drug molecule within a porous BioSilicon trademark microparticle provides a vehicle for a brachytherapy method that avoids the necessity of drug modification. In this work, the loading and characterization of three clinically approved BNCT drugs into mesoporous Si is demonstrated. Because of difficulties associated with light element detection, a method based on a Beer's Law analysis of selected FTIR vibrational bands has been developed to estimate boron-containing drug loading in these materials. As a complementary nanostructural platform, a cathodic deposition process for the surface enriched growth of selected drugs onto the surface of silicon nanowires is also described. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Analysis of boronized wall in LHD

    International Nuclear Information System (INIS)

    Boronization has been carried out in some experimental fusion devices as one of wall conditioning Methods. The well-known merits of the boronization are as follows: 1) coated-boron on the first wall has strong gettering function for oxygen impurities and oxygen has been kept into boron films as a boron-oxide and 2) boron film covers first wall with apparently low Z materials facing the plasma. However, an operation scenario of boronization for next generation devices such as ITER is not optimized. In this paper, we discuss an optimized method of coated film uniformity in a wide area and a lifetime of boron film as an oxygen getter using experimental data in the large helical device (LHD). In LHD, boronization by glow discharges has been carried out a few times during each experimental campaign. Helium-diborane mixtured gas is used and plasma facing components (PFM) are stainless steel (SS) for the first wall and carbon for the divertor plates kept in the room temperature. Material probes made of SS316 and Si were installed in the vacuum vessel and exposed during the experimental campaign. Depth profiles of their impurities were analyzed using the X-ray Photoelectron Spectroscopy (XPS) and the Auger electron spectroscopy (AES). Two types of gettering process by boron film have been investigated. One is the process during boronization and the other is that after boronization. Concerning a lifetime of boron film, the distribution of oxygen near the top surface region (0 to 20 nm) indicates a process of oxygen gettering, it shows a contribution after boronization. In this paper, these kinds of process using material probes are shown. (authors)

  4. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  5. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  6. Raman spectroscopy of boron carbides and related boron-containing materials

    International Nuclear Information System (INIS)

    Raman spectra of crystalline boron, boron carbide, boron arsenide (B12As2), and boron phosphide (B12P2) are reported. The spectra are compared with other boron-containing materials containing the boron icosahedron as a structural unit. The spectra exhibit similar features some of which correlate with the structure of the icosahedral units of the crystals. The highest Raman lines appear to be especially sensitive to the B-B distance in the polar triangle of the icosahedron. Such Raman structural markers are potentially useful in efforts to tailor electronic properties of these high temperature semiconductors and thermoelectrics

  7. Status report on uranium enrichment associates

    International Nuclear Information System (INIS)

    Uranium Enrichment Associates (UEA) had as its priority project financing, an approach in which the total project is financially self-liquidating. UEA worked with financial institutions to define the combination of assurances and guarantees required by lenders in order to provide the required debt funding. UEA's assets against which the debt liability for the plant would be balanced would be the facilities under construction and the equipment on order. On the customer side, there was major concern on the part of the utilities of whether private industry would be able to complete and operate the plant owing to many of the same possibilities which concerned financial institutions. The disparity between the conditions under which financing could be obtained and the terms acceptable to utilities was a significant element in EUA's choice of process to use for its enrichment plants. UEA's technical staff then began to parallel conceptual designs of gaseous diffusion and gas cenrifuge plants. UEA negotiated with ERDA on the terms of a Cooperative Arrangement, within the provisions of the NFAA, providing the minimum conditions necessary to obtain financing and contracts with utilities for enrichment sources. The UEA plant has several features different from the ERDA plants. The UEA plant used only two basic stage sizes. The UEA design employed four main process buildings. The partners in UEA have mutually agreed to follow the private uranium enrichment project to a logical conclusion. 6 figures

  8. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  9. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  10. Distribution of equilibrium burnup for an homogeneous core with fuel elements of slightly enriched uranium (0.85% U-235) at Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    At Atucha I, the present fuel management with natural uranium comprises three burnup areas and one irradiation path, sometimes performing four steps in the reactor core, according to the requirements. The discharge burnup is 6.0 Mw d/kg U for a waste reactivity of 6.5 m k and a heavy water purity of 99.75%. This is a preliminary study to obtain the distribution of equilibrium burnup of an homogeneous core with slightly enriched uranium (0.85% by weight U-235), using the time-averaged method implemented in the code PUMA and a representative model of one third of core and fixed rod position. It was found a strategy of three areas and two paths that agrees with the present limits of channel power and specific power in fuel rod. The discharge burnup obtained is 11.6 Mw d/kg U. This strategy is calculated with the same method and a full core representation model is used to verify the obtained results. (Author)

  11. Environmental signatures of enrichment facilities

    International Nuclear Information System (INIS)

    Environmental sampling is a potentially useful tool that could be used for the detection of undeclared enrichment facilities. However, this would be likely to require the use of sophisticated and expensive analytical techniques to evaluate 235U/238U ratios. It would be, therefore, unlikely to be an inexpensive approach to detect proliferation. The probability of detecting an enrichment operation will depend on the type of facility. A gaseous diffusion operation will be relatively difficult to detect in relation to an EMIS facility and a gaseous centrifuge plant will be more difficult still. Releases from an enrichment operation are likely to be restricted to atmospheric discharges. Aquatic discharges would be relatively easy to contain and it would be unwise to devise a sampling strategy based on the measurement of these. The detection of atmospheric discharges is likely to be dependent on meteorological conditions, in particular stability. Stable atmospheric conditions are the most favourable for detecting releases at significant distances from the plant. Given stable conditions, detection of an EMIS facility might be possible at a distance of several 10s of km

  12. Profile of World Uranium Enrichment Programs - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL

    2007-11-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring weapons grade fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, while HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use in fuel for nuclear reactors. However, the same equipment used to produce LEU for nuclear fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is only enriched to LEU, no undeclared LEU is produced, and no uranium is enriched to HEU or secretly diverted. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity, but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 53 million kg-separative work units (SWU) per year, with 22 million in gaseous diffusion and 31 million in gas centrifuge plants. Another 23 million SWU/year of capacity are under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique

  13. Development of Digital Boron Dilution Alarm System (DBDAS)

    International Nuclear Information System (INIS)

    It is imperative that a reactor which has been shutdown remain subcritical and not inadvertently return to power. Such an event could occur for instance through failure of a component in the complex control system or inadvertent action taken by the operator. In any case, during such an event the reactor approaches criticality exponentially with respect to time thus making it more difficult for the operator to detect the event and take appropriate action before the reactor goes to criticality [Ref. 1]. This paper is prepared for the development of the Digital Boron Dilution Alarm System (DBDAS) to improve the sub-criticality monitoring of Advanced Power Reactor 1400 Standard Nuclear Power Plant (APR1400). This system is designed to provide operators with useful information about an inadvertent boron dilution event occurring with the plant in Modes 3, 4, 5, and 6 before the reactor coolant system is diluted sufficiently to result in a total loss of shutdown margin. The acceptance criteria of APR1400 for an unplanned boron (moderator) dilution specify at least 30 minutes in all operational modes. The main features of DBAS are the use of digital information from the startup neutron monitoring channels and a boronometer

  14. Development of Digital Boron Dilution Alarm System (DBDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Cheol; Lee, Hwan Soo; Moon, Chan Kook [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2012-05-15

    It is imperative that a reactor which has been shutdown remain subcritical and not inadvertently return to power. Such an event could occur for instance through failure of a component in the complex control system or inadvertent action taken by the operator. In any case, during such an event the reactor approaches criticality exponentially with respect to time thus making it more difficult for the operator to detect the event and take appropriate action before the reactor goes to criticality [Ref. 1]. This paper is prepared for the development of the Digital Boron Dilution Alarm System (DBDAS) to improve the sub-criticality monitoring of Advanced Power Reactor 1400 Standard Nuclear Power Plant (APR1400). This system is designed to provide operators with useful information about an inadvertent boron dilution event occurring with the plant in Modes 3, 4, 5, and 6 before the reactor coolant system is diluted sufficiently to result in a total loss of shutdown margin. The acceptance criteria of APR1400 for an unplanned boron (moderator) dilution specify at least 30 minutes in all operational modes. The main features of DBAS are the use of digital information from the startup neutron monitoring channels and a boronometer

  15. Carbon isotope signatures of latest Permian marine successions of the Southern Alps suggest a continental runoff pulse enriched in land plant material

    Directory of Open Access Journals (Sweden)

    S. H. Kraus

    2013-02-01

    Full Text Available The latest Permian mass extinction, the most severe Phanerozoic biotic crisis, is marked by dramatic changes in palaeoenvironments. These changes significantly disrupted the global carbon cycle, reflected by a prominent and well known negative carbon isotope excursion recorded in marine and continental sediments. Carbon isotope trends of bulk carbonate and bulk organic matter in marine deposits of the European Southern Alps near the low-latitude marine event horizon deviate from each other. A positive excursion of several permil in δ13Corg starts earlier and is much more pronounced than the short-term positive 13Ccarb excursion; both excursions interrupt the general negative trend. Throughout the entire period investigated, 13Corg values become lighter with increasing distance from the palaeocoastline. Changing 13Corg values may be due to the influx of comparatively isotopically heavy land plant material. The stronger influence of land plant material on the 13Corg during the positive isotope excursion indicates a temporarily enhanced continental runoff that may either reflect increased precipitation, possibly triggered by aerosols originating from Siberian Trap volcanism, or indicate higher erosion rate in the face of reduced land vegetation cover. doi:10.1002/mmng.201300004

  16. Crescimento e índices de troca gasosa em plantas de pepino irrigadas com água enriquecida com CO2 Growth analysis and gaseous exchange in cucumber plants irrigated with carbon dioxide enriched water

    Directory of Open Access Journals (Sweden)

    Kathia A.L. Canizares

    2004-12-01

    physiological indices and gaseous exchange of leaves of Japanese cucumber plants. The experimental design was of randomized blocks, with four and five replications. The treatments consisted of the hybrids Hokuho and Tsuyataro, irrigated with water enriched or not with CO2, 1‰ in the first semester and 0,25‰ in the second. Dry mass weight and leaf area presented an exponential tendency. The beginning of mass production decrease on dry matter, 63 days after transplanting date (DAT, was not possible to be observed. The growth rate and relative growth rate response of hybrid Hokuho differed between treatments, however, for hybrid Tsuyataro the response was similar. The net assimilation rate reached the pending maxim in the phase of vegetative growth and flowering, and was reduced drastically after 20 DAT for hybrid Hokuho, and after the 35 DAT for hybrid Tsuyataro. The leaf area rate from both hybrids decreases lightly during the cultivation, without differences between enriched and non enriched water after 20 DAT. The CO2 assimilation transpiration rate, stomatal conductance and water use efficiency were similar among plants irrigated with enriched and non enriched water during the first semester. Already in the second semester, higher values were observed in plants irrigated with enriched water.

  17. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    Science.gov (United States)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  18. Velocities of Reacting Boron Particles within a Solid Fuel Ramjet Combustion Chamber

    OpenAIRE

    Sender, J.; H.K. Ciezki

    1998-01-01

    A 2D-laser doppler velocimeter was used to measure velocities of reacting boron (B) particles during the combustion of a metallised solid fuel slab inside a 20-combustion chamber. The solid fuel hydroxyl-terminated polybutadiene (HTPB) was enriched with B particles to increase its specific heat. To obtain information on the combustion process and on the movement of B particles, their velocities were measured. The experiments were performed at ambient pressure. The behaviour of the B pa...

  19. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  20. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  1. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  2. 洞庭湖湿地8种优势植物对镉的富集特征%Cadmium enrichment characteristics of eight dominant plant species in Dongting Lake wetland

    Institute of Scientific and Technical Information of China (English)

    董萌; 赵运林; 库文珍; 庹瑞锐; 戴枚斌; 易合成

    2011-01-01

    针对洞庭湖湿地土壤Cd污染严重的现状,对湖区滨岸带8种优势植物的Cd富集特征及其修复效果进行了分析.结果表明,蒌蒿(Artemisia selengensis)对Cd表现出显著的富集特征,对Cd污染的修复效果好,是洞庭湖土壤Cd污染的理想修复材料;南艾蒿(Artemisia verlotorum)对Cd污染具有较好的修复效果,可作为湿地土壤Cd污染修复的备选材料;芦苇(Phragmites australis)和南荻(Miscanthus lutarioriparius)植株的根部对Cd的积累量较高,具有良好的稳定修复效果,且由于二者地上部生物量大、能被连续刈割的特点,对洞庭湖湿地Cd污染治理起到一定的促进作用.%Aiming at the present serious situation of soil Cd pollution in Dongting Lake wetland, this paper analyzed the Cd enrichment characteristics and remediation effects of eight dominant plant species growing in Dongting Lake area. Among the eight dominant plants, Artemisia selen-gensis presented a notable capacity to absorb Cd from lake soil, and had good effect in the remediation of Cd pollution, being an ideal plant for the bioremediation of Cd-poiluted soil in Dongting Lake wetland. A. Verlotorum had acceptable effect in the remediation of Cd pollution, being able to be selected as a potential candidate for the bioremediation of wetland soil Cd pollution. Phrag-mites australis and Miscanthus lutarioriparius had higher Cd accumulation in their roots, being a-vailable for the Cd enrichment, and their higher aboveground biomass, which could be harvested every year, could also play a positive role in controlling the Cd pollution in Dongting Lake wetland.

  3. Synthesis of Enriched 10B Boric Acid of Nuclear Grade

    Institute of Scientific and Technical Information of China (English)

    张雷; 张卫江; 徐姣; 任新

    2014-01-01

    An economic and effective method of preparing enriched 10B boric acid was established by chemical reac-tion of enriched 10BF3 and CaCO3. A process of boron trifluoride reacting with water was investigated under certain conditions. Calcium carbonate was selected to counteract hydrofluoric acid followed on. Some key operation factors were investigated, such as temperature, reaction time and the ratio of CaCO3 to 10BF3. The results showed that the yield of enriched 10B boric acid could reach 97. 2%and the purity was up to 94. 1%under the following conditions:the tem-perature was 50—60,℃, the reaction time was 28 h and the ratio of CaCO3 to 10BF3 was 4. In addition, after recrystal-lization and titration analysis, the purity of the product could reach over 99. 2%from 94.1%.

  4. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  5. CVD-produced boron filaments

    Science.gov (United States)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  6. Influence of operating conditions for volatile fatty acids enrichment as a first step for polyhydroxyalkanoate production on a municipal waste water treatment plant.

    Science.gov (United States)

    Pittmann, Timo; Steinmetz, Heidrun

    2013-11-01

    This work describes the generation of volatile fatty acids (VFAs) as the first step of the polyhydroxyalkanoate (PHA) production cycle. Therefore four different substrates from a municipal waste water treatment plant (WWTP) were investigated regarding high VFA production and stable VFA composition. Due to its highest VFA yield primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable conditions for a stable VFA production. The results demonstrated that although the substrate primary sludge differs in its consistence a stable composition of VFA could be achieved. Experiments with a semi-continuous reactor operation showed that a short RT of 4d and a small WD of 25% at pH=6 and around 30°C is preferable for high VFA mass flow (MF=1913 mg VFA/(Ld)) and a stable VFA composition.

  7. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  8. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  9. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    Science.gov (United States)

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance. PMID:27467416

  10. 利用富氧技术提高硫回收装置的处理能力和效率%Oxygen enrichment technology for process capacity and efficiency enhancement in sulphur plants

    Institute of Scientific and Technical Information of China (English)

    M.BAERENDS; J.S.FLOWERS; V.W.WONG; T.K.CHOW; 王爱群

    2011-01-01

    By replacing some or all of the nitrogen present in combustion air with oxygen,flow rates though the SRU/TGTU can be substantially reduced.In the design of a new unit,this translates to smaller equipment and thus a reduced capital cost.When applied to a revamp,oxygen enrichment can provide a cost-effective incremental capacity increase.This technology not only provides economic benefits,but can also improve the operation of the SRU/TGTU.Enhanced contaminant destruction,sulphur recovery efficiency,reliability and robustness of operation have all been realized though implementation of this technology.The extent of oxygen enrichment can be custom-tailored depending on the plant configuration,processing capacity requirement,plot space availability, feed gas compositions,and desired operating scenario.%用氧气代替空气中的部分或全部氮气可大大降低克劳斯硫回收及尾气处理装置的气体流量。对于新建装置,富氧技术可减小设备尺寸从而减少投资;对于改造项目,富氧技术是一个高投资效益的扩能方案。除经济优点外,富氧技术还可改善硫回收及尾气处理装置的操作,提高污染物分解率、硫回收率、操作可靠性和稳健性。富氧浓度可根据装置布局、处理能力、可利用空间、原料气组成和工况要求而定制。

  11. Improved detection of extended spectrum beta-lactamase (ESBL-producing Escherichia coli in input and output samples of German biogas plants by a selective pre-enrichment procedure.

    Directory of Open Access Journals (Sweden)

    Thorsten Schauss

    Full Text Available The presence of extended-spectrum beta-lactamase (ESBL-producing Escherichia coli was investigated in input (manure from livestock husbandry and output samples of six German biogas plants in 2012 (one sampling per biogas plant and two German biogas plants investigated in an annual cycle four times in 2013/2014. ESBL-producing Escherichia coli were cultured by direct plating on CHROMagar ESBL from input samples in the range of 100 to 104 colony forming units (CFU per g dry weight but not from output sample. This initially indicated a complete elimination of ESBL-producing E. coli by the biogas plant process. Detected non target bacteria were assigned to the genera Acinetobacter, Pseudomonas, Bordetella, Achromobacter, Castellaniella, and Ochrobactrum. A selective pre-enrichment procedure increased the detection efficiency of ESBL-producing E. coli in input samples and enabled the detection in five of eight analyzed output samples. In total 119 ESBL-producing E. coli were isolated from input and 46 from output samples. Most of the E. coli isolates carried CTX-M-type and/or TEM-type beta lactamases (94%, few SHV-type beta lactamase (6%. Sixty-four blaCTX-M genes were characterized more detailed and assigned mainly to CTX-M-groups 1 (85% and 9 (13%, and one to group 2. Phylogenetic grouping of 80 E. coli isolates showed that most were assigned to group A (71% and B1 (27%, only one to group D (2%. Genomic fingerprinting and multilocus sequence typing (MLST showed a high clonal diversity with 41 BOX-types and 19 ST-types. The two most common ST-types were ST410 and ST1210. Antimicrobial susceptibility testing of 46 selected ESBL-producing E. coli revealed that several isolates were additionally resistant to other veterinary relevant antibiotics and some grew on CHROMagar STEC but shiga-like toxine (SLT genes were not detected. Resistance to carbapenems was not detected. In summary the study showed for the first time the presence of ESBL-producing E

  12. Improved detection of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli in input and output samples of German biogas plants by a selective pre-enrichment procedure.

    Science.gov (United States)

    Schauss, Thorsten; Glaeser, Stefanie P; Gütschow, Alexandra; Dott, Wolfgang; Kämpfer, Peter

    2015-01-01

    The presence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli was investigated in input (manure from livestock husbandry) and output samples of six German biogas plants in 2012 (one sampling per biogas plant) and two German biogas plants investigated in an annual cycle four times in 2013/2014. ESBL-producing Escherichia coli were cultured by direct plating on CHROMagar ESBL from input samples in the range of 100 to 104 colony forming units (CFU) per g dry weight but not from output sample. This initially indicated a complete elimination of ESBL-producing E. coli by the biogas plant process. Detected non target bacteria were assigned to the genera Acinetobacter, Pseudomonas, Bordetella, Achromobacter, Castellaniella, and Ochrobactrum. A selective pre-enrichment procedure increased the detection efficiency of ESBL-producing E. coli in input samples and enabled the detection in five of eight analyzed output samples. In total 119 ESBL-producing E. coli were isolated from input and 46 from output samples. Most of the E. coli isolates carried CTX-M-type and/or TEM-type beta lactamases (94%), few SHV-type beta lactamase (6%). Sixty-four blaCTX-M genes were characterized more detailed and assigned mainly to CTX-M-groups 1 (85%) and 9 (13%), and one to group 2. Phylogenetic grouping of 80 E. coli isolates showed that most were assigned to group A (71%) and B1 (27%), only one to group D (2%). Genomic fingerprinting and multilocus sequence typing (MLST) showed a high clonal diversity with 41 BOX-types and 19 ST-types. The two most common ST-types were ST410 and ST1210. Antimicrobial susceptibility testing of 46 selected ESBL-producing E. coli revealed that several isolates were additionally resistant to other veterinary relevant antibiotics and some grew on CHROMagar STEC but shiga-like toxine (SLT) genes were not detected. Resistance to carbapenems was not detected. In summary the study showed for the first time the presence of ESBL-producing E. coli in

  13. Uranium enrichment. Principles

    International Nuclear Information System (INIS)

    Uranium enrichment industry is a more than 60 years old history and has developed without practically no cost, efficiency or profit constraints. However, remarkable improvements have been accomplished since the Second World War and have led to the development of various competing processes which reflect the diversity of uranium compositions and of uranium needs. Content: 1 - general considerations: uranium isotopes, problem of uranium enrichment, first realizations (USA, Russia, Europe, Asia, other countries), present day situation, future needs and market evolution; 2 - principles of isotopic separation: processes classification (high or low enrichment), low elementary enrichment processes, equilibrium time, cascade star-up and monitoring, multi-isotopes case, uranium reprocessing; 3 - enrichment and proliferation. (J.S.)

  14. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  15. Method for determination of boron carbide in wurtzite-like boron nitride

    International Nuclear Information System (INIS)

    A technique for increase of sensitivity and analysis accuracy while boron carbide determination in wurtzite-like boron nitride is proposed. Boron nitride with an addition of boron carbide is bjected to treatment by the mixture of concentrated sulphuric acid and 0.1-0.5 N of porassium bichromate solution at ratio of (2-1):1 at the temperature of mixture boiling. Boron carboide content is calculated according to the quantity of restored Cr(3+), which is determined by titration of Cr(6+) excess with the Mohr's salt solution

  16. Boron water quality for the Plynlimon catchments

    Directory of Open Access Journals (Sweden)

    C. Neal

    1997-01-01

    Full Text Available Boron concentrations in rainfall, throughfall and stemflow for Spruce stands, mist, streamwater and groundwater are compared with chloride to assess atmospheric sources and catchment input-output balances for the Plynlimon catchments. In rainfall, boron concentration averages about 4.5 μg-B l-1 and approximately two thirds of this comes from anthropogenic sources. In through-fall and stemflow, boron concentrations are approximately a factor of ten times higher than in rainfall. This increase is associated with enhanced scavenging of mist and dry deposition by the trees. As the sampling sites were close to a forest edge, this degree of scavenging is probably far higher than in the centre of the forest. The throughfall and stemflow concentrations of boron show some evidence of periodic variations with time with peak concentrations occurring during the summer months indicating some vegetational cycling. In mist, boron concentrations are almost twenty times higher than in rainfall and anthropogenic sources account for about 86% of this. Within the Plynlimon streams, boron concentrations are about 1.4 to 1.7 times higher than in rainfall. However, after allowance for mist and dry deposition contributions to atmospheric deposition, it seems that, on average, about 30% of the boron input is retained within the catchment. For the forested catchments, felling results in a disruption of the biological cycle and a small increase in boron leaching from the catchment results in the net retention by the catchment being slightly reduced. Despite the net uptake by the catchment, there is clear evidence of a boron component of weathering from the bedrock. This is shown by an increased boron concentration in a stream influenced by a nearby borehole which increased groundwater inputs. The weathering component for boron is also observed in Plynlimon groundwaters as boron concentrations and boron to chloride ratios are higher than for the streams. For these

  17. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  18. Some physical properties of compacted specimens of highly dispersed boron carbide and boron suboxide

    International Nuclear Information System (INIS)

    Structure, shear modulus and internal friction (IF) of compacted specimens of boron carbide and boron suboxide have been investigated. Microtwins and stacking faults were observed along the {100} plane systems of polycrystalline specimens of boron carbide. Electrical conductivity of the specimens was that of p-type. Concentration of holes varied from 1017 to 1019 cm-3. The IF was measured in the temperature range 80-300 K. It was shown that the IF of boron carbide and that of boron suboxide were characterized with a set of similar relaxation processes. Mechanisms of the relaxation processes in boron carbide and boron suboxide are discussed in terms of the Hasiguti model of interaction between dislocations and point defects

  19. U.S. forms uranium enrichment corporation

    International Nuclear Information System (INIS)

    After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel

  20. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  1. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with General Atomic's standard commercial warranty

  2. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  3. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  4. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  5. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  6. Is The Boron Uptake Affected When Sunflower (Helianthus annuus L.) Grown At Poly Culture Systems?

    OpenAIRE

    YILDIZTEKİN, Mahmut; TUNA, Atilla Levent

    2015-01-01

    n this study, sunflower (Helianthus annuus L.) was growth alone and with wheat (Triticum aestivum L.) and clover plants (Medicago sativa L.). Boron at 25-50-75 mg L-1 concentrations was applied by the foliarly in the forms of Boric

  7. 水培条件下几种观赏植物对铅的富集特征%Enrichment Characteristics of Pb by Several Kinds of Ornamental Plants Under Hydroponic Culture

    Institute of Scientific and Technical Information of China (English)

    李翠兰; 邵泽强; 王玉军; 张晋京

    2011-01-01

    通过水培试验,研究了铅处理质量浓度为0~200 mg·L-1条件下,7种观赏植物(包括四季海棠、百日草、茶花凤仙、金鱼草、金盏菊、天竺葵和雁来红)的生长反应和富集特征.结果表明:供试观赏植物在试验的铅胁迫水平下都具有较强的耐性;四季海棠和百日草的地上部最大铅质量分数分别达到了1 229.2、1 209.7 mg·kg-1,满足超富集植物的临界质量分数标准,同时它们在试验铅处理质量浓度下的地上部铅质量分数和富集系数均显著高于其他观赏植物;四季海棠和百日草的铅转移系数最高值可达到0.9以上,并且百日草铅质量浓度在200 mg·L-1时的转移系数仍高于100 mg·L-1时的转移系数.%The growth response and enrichment characteristics of seven ornamental plants, Begonia semperflorens, Zinnia elegan, Impatiens balsamina, Antirrhinum majus, Calendula officinalis, Pelargonium hortorum and Amaranthus tricolo, were studied under hydroponic culture with 0-200 mg · L-1 of Pb. Results showed that all the tested ornamental plants had higher tolerance to Pb in the range of experimental Pb stress levels. The highest Pb mass fractions in the above-ground parts of B. semperflorens and Z. elegan were 1 229.2 and 1 209.7 mg · kg-1, respectively, which reached the critical standard of Pb hyperaccumulating plants. And the Pb mass fraction and bioaccumulation coefficient in the above-ground parts of B. semperflorens and Z. elegan was significantly higher than those of the other five ornamental plants. The highest Pb translocation factors for B. semperflorens and Z. elegan were over 0.9, and the Pb translocation factor for Z. elegan was still higher under 200 mg · L-1 than under 100 mg · L-1 of Pb.

  8. 几种花卉植物对土壤中铅富集特征的研究%Enrichment Characteristics of Several Ornamental Plants to Lead in Soil

    Institute of Scientific and Technical Information of China (English)

    吴桐; 李翠兰; 邵泽强; 张晋京; 马天军; 盛媛; 李亚萍

    2012-01-01

    通过土培试验,研究了铅添加量为0,350,700mg/kg条件下,19种花卉植物(矮牵牛、八宝景天、八仙花、百日草、彩叶草、茶花凤仙、大丽花、金边天竺葵、君子兰、孔雀草、美人蕉、射干、蜀葵、四季海棠、万寿菊、一串红、银边天竺葵、月季、紫茉莉)对铅的富集特征.结果表明:供试花卉植物在试验的铅胁迫水平下都具有较强的耐性,但其地上部干重随铅处理浓度的增加通常都有所降低;紫茉莉、蜀葵、四季海棠和茶花凤仙对铅的富集能力较强,在最高的铅处理条件(700 mg/kg)下,它们的地上部铅含量都>100 mg/kg,并且地上部铅富集系数均显著高于其他花卉植物;紫茉莉、银边天竺葵、金边天竺葵、八宝景天的铅转移系数最高值≥0.45,并且它们在铅添加量为700 mg/kg时的转移系数均显著高于铅添加量为350 mg/kg时的转移系数.综合本研究结果可知,紫茉莉不仅对铅胁迫具有较强的耐性,而且具有较高的铅富集能力和转移能力,在铅污染土壤的修复方面具有较大的应用价值.%The Pb enrichment characteristics of nineteen ornamental plants were studied under soil culture with the addition of 0, 350 and 700 mg/kg. Results showed that all the tested ornamental plants had the high Pb tolerance under the experimental Pb levels, while the dry weight in the shoots generally decreased with the increase of Pb concentrations. The contents and bioaccumulation coefficients of Pb were higher in the shoots of Mirabilis jalapa. , Althaea rosea, Begonia semperflorens, and Impatiens bahamina than in the shoots of the other tested ornamental plants. The Pb contents in the shoots of the above four ornamental plants were all above 100 mg/kg under 700 mg/kg. The highest translocation factor of Pb for Mirabilis jalapa. , Pelargonium hortorum Bailey., Pelargonium hortorum Bailey, var. , and Sedum spectabite Boreau reached above 0.45, and the

  9. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  10. Boronated mesophase pitch coke for lithium insertion

    Science.gov (United States)

    Frackowiak, E.; Machnikowski, J.; Kaczmarska, H.; Béguin, F.

    Boronated carbons from mesophase pitch have been used as materials for lithium storage in Li/carbon cells. Doping by boron has been realized by co-pyrolysis of coal tar pitch with the pyridine-borane complex. Amount of boron in mesocarbon microbeads (MCMB) varied from 1.4 to 1.8 wt.% affecting the texture of carbon. Optical microscopy and X-ray diffractograms have shown tendency to more disordered structure for boron-doped carbon. The values of specific reversible capacity ( x) varied from 0.7 to 1.1 depending significantly on the final temperature of pyrolysis (700-1150°C). The optimal charge/discharge performance was observed for boronated carbon heated at 1000°C.

  11. The case for enrichment of uranium in Australia

    International Nuclear Information System (INIS)

    Information is presented on the number of nuclear power plants in operation and under construction and on the extent of the use of uranium. The case for enrichment of uranium in Australia is then considered in detail and the status of feasbility studies being carried out is discussed. Arguments to support an enrichment industry include: the need for additional enrichment capacity; added value; potential profitability; increased employment and industrial opportunities; and retention of depleted uranium

  12. Contamination of urban garden soils with copper, boron, and lead

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1967-04-01

    Spectrochemical analysis of representative samples of topsoil from urban gardens and from individual fields in rural areas indicates that the level of total copper, EDTA-extractable copper, water-soluble boron, and acetic-acid extractable lead are markedly enhanced in urban areas. No significant differences were discovered between levels of these elements in soils from built-up areas in small towns and large conurbations. These results suggest the possibility of general enhancement of the trace element content of plants grown in private gardens in built-up areas.

  13. Boronate Affinity-Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring.

    Science.gov (United States)

    Chen, Guosheng; Qiu, Junlang; Fang, Xu'an; Xu, Jianqiao; Cai, Siying; Chen, Qing; Liu, Yan; Zhu, Fang; Ouyang, Gangfeng

    2016-08-19

    A biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity-molecular imprinted polymers (BA-MIPs). The unique pre-self-assembly between glucose and boronic acids creates glucose-specific memory cavities in the BA-MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude. The BA-MIPs probe was applied to glucose determination in serum and urine and implanted into plant tissues for low-destructive and long-term in vivo continuous glucose monitoring. PMID:27411946

  14. 蚯蚓对城市污水污泥中重金属的富集特征%Enrichment characteristics of earthworm on heavy metal in sludge from municipal sewage treatment plant

    Institute of Scientific and Technical Information of China (English)

    魏明蓉; 刘康怀; 李艳红; 马邦定

    2015-01-01

    利用桂林城市污水处理厂剩余活性污泥养殖蚯蚓 (赤子爱胜蚓), 研究了蚯蚓生物量的变化、 蚯蚓体内和试验后混合物中重金属含量、 蚯蚓对污泥中重金属的富集特征, 以及处理后蚯蚓产品的再利用.结果表明: 加入污泥以后蚯蚓体重增长极其显著; 蚯蚓体内的重金属含量显著低于混合物中重金属的含量, 两者的Cd、 Cu、 Pb正相关, Zn负相关; 重金属的富集顺序为 Cd>Zn>Cu>Pb; 投加污泥以后, 蚯蚓体内重金属含量显著提高; 蚯蚓和混合物的重金属组分含量能够满足相关的国家标准, 可以再利用.%Earthworm ( Eisenia fetida) was cultured in excess activated sludge from municipal sewage treatment plant of Guilin.Biomass change of earthworm was investigated.Content of heavy metal in earthworm and mix-ture after test was studied.Enrichment characteristics of earthworm of cadmium, zinc, copper and lead in ex-cess activated sludge were studied.Reuse of earthworm products characteristics after treatment was analyzed . The results show that weight increase of earthworm is extremely obvious after adding sludge.Heavy metal con-tent in the earthworms was much lower than that in mixture.The correlation between earthworm and mixture is positive for cadmium, copper and lead, and is negative for zinc.The enrichment comparative order is Cd>Pb>Zn>Cu.Heavy metal content in earthworm increased obviously after sludge added.Heavy metal content in products measured can meet the relevant national standards.

  15. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf;

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre...

  16. Profile of World Uranium Enrichment Programs-2009

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL

    2009-04-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, whereas HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use as fuel for nuclear reactors to generate electricity. However, the same equipment used to produce LEU for nuclear reactor fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is not diverted or enriched to HEU. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 56 million kilogram separative work units (SWU) per year, with 22.5 million in gaseous diffusion and more than 33 million in gas centrifuge plants. Another 34 million SWU/year of capacity is under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique of the future but has yet to be

  17. Review of uranium enrichment prospects in Canada, 1976

    International Nuclear Information System (INIS)

    Developments since 1971 which affect the prospects for uranium enrichment in Canada from the federal government point of view are reviewed. The market for enriched uranium to the year 2000 is similar to that projected in 1971. The committed enrichment capacity of the world will be sufficient until 1990. The Canadian uranium mining capability may be adequate to supply an enrichment plant, but the present reserves policy along with the currently known resources are likely to restrict exports of its products during the plant life. Prices for enriched uranium produced in Canada would be higher than those reported by other proposed new plants; however, newer enrichment techniques have some potential for cost reductions. Application of enrichment with U235 (or plutonium and U233/thorium) to CANDU offers some uranium resource conservation and possible slight power cost reductions. Construction of an enrichment plant in Canada to supply the export market is less attractive in 1976 than in 1971, but there is potential for such a business in the future. (L.L.)

  18. SE-ENRICHMENT OF CARROT AND ONION VIA FOLIAR APPLICATION

    OpenAIRE

    Kapolna, Emese; Laursen, Kristian H; Hillestrøm, Peter; Husted, Søren; Larsen, Erik H.

    2008-01-01

    The aim of this work was to study the selenium accumulation in carrot and onion plants using foliar application by sodium selenite and sodium selenate. Furthermore, we aimed at identifying the Se species biosynthesised by onion and carrot plants. The results were used to prepare for production of 77Se enriched plants for an ongoing human absorption study.

  19. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    OpenAIRE

    Yuya Egawa; Ryotaro Miki; Toshinobu Seki

    2014-01-01

    In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conj...

  20. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  1. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 3000C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 10500C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  2. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  3. The interaction of boron with goethite: experiments and CD-MUSIC modeling.

    Science.gov (United States)

    Goli, Esmaiel; Rahnemaie, Rasoul; Hiemstra, Tjisse; Malakouti, Mohammad Jafar

    2011-03-01

    Boron (B) is an essential element for plants and animals growth that interacts with mineral surfaces regulating its bioavailability and mobility in soils, sediments, and natural ecosystems. The interaction with mineral surfaces is quite important because of a narrow range between boron deficiency and toxicity limits. In this study, the interaction of boric acid with goethite (α-FeOOH) was measured in NaNO(3) background solution as a function of pH, ionic strength, goethite and boron concentration representing as adsorption edges and isotherms. Boron adsorption edges showed a bell-shaped pattern with maximum adsorption around pH 8.50, whereas adsorption isotherms were rather linear. The adsorption data were successfully described with the CD-MUSIC model in combination with the Extended Stern (ES) model. The charge distribution (CD) of inner-sphere boron surface complexes was calculated from the geometry optimized with molecular orbital calculations applying density functional theory (MO/DFT). The CD modeling suggested dominant binding of boric acid as a trigonal inner-sphere complex with minor contributions of a tetrahedral inner-sphere complex (at high pH) and a trigonal outer-sphere complex (at low pH). The interpretation with the CD model is consistent with the spectroscopic observations.

  4. Metallogenic Chronology of Boron Deposits in the Eastern Liaoning Paleoproterozoic Rift Zone

    Institute of Scientific and Technical Information of China (English)

    LU Yuanfa; CHEN Yuchuan; LI Huaqing; XUE Chunji; CHEN Fuwen

    2005-01-01

    Lead isotopic analytic data of 30 ores gathered from the Zhuanmiao boron deposit, Wengquangou boron (iron) deposit and its Dongtaizi Ore Member constitute three isochrons, the corresponding ages of which are 1902±12 Ma,1852±9 Ma and 1917±48 Ma. Lead isotopic analyses of marble from the Xiquegou Member of the Qingchenzi orefield yield a Pb-Pb isochron age of 1844±27 Ma. 40Ar-39Ar quick neutron activation dating of phlogopites and microclines coexisting with ore minerals in the Wengquangou boron (iron) and Zhuanmiao boron deposits shows that: (1) the phlogopite from the Wengquangou has a plateau age of 1923±1.5 Ma and an isochron age of 1924±2.5 Ma; (2) the microcline from the Wengquangou has the plateau age of 1407±5.4 Ma and 220±12 Ma and an isochron age of 1403±19Ma; (3) the phlogopites from the Zhuanmiao yield a plateau age 1918±1.3 Ma and an isochron age of 1918±2.9 Ma; (4) the microclines from the Zhuanmiao yield the plateau age of 1420±16 Ma and 250±8 Ma and an isochron age of 1425±19 Ma and 269±16 Ma. These ages indicate that the eastern Liaoning area happened around 1900 Ma, an important tectonomagmatic event, which is consistent with the worldwide Mid-Proterozoic tectonomagmatic event. During this period, the Proterozoic Liaohe Group was folded and underwent strong normal metamorphism, and the (hydrothermal)sedimentary boron deposits (or source beds) formed earlier were strongly superimposed by mineralization, resulting in enrichment of boron; later regional geological processes made little contribution to the formation of the boron deposits.Lead isotopic components show that the U-Pb and Th-Pb isotopic system reached homogenization in the ores whereas only the U-Pb isotopic system reached homogenization in the marble from the Xiquegou district, which indicates that the boron deposits superimposed in the studied area endured a relatively strong process of hydrothermal migmatization during the end phase of early Proterozoic metamorphism.

  5. Short-Term Coral Bleaching Is Not Recorded by Skeletal Boron Isotopes

    Science.gov (United States)

    Schoepf, Verena; McCulloch, Malcolm T.; Warner, Mark E.; Levas, Stephen J.; Matsui, Yohei; Aschaffenburg, Matthew D.; Grottoli, Andréa G.

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  6. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  7. Synthesis of Boron Nanorods by Smelting Non-Toxic Boron Oxide in Liquid Lithium

    OpenAIRE

    Amartya Chakrabarti; Tao Xu; Laura K. Paulson; Krise, Kate J.; Maguire, John A; Hosmane, Narayan S.

    2010-01-01

    In contrast to the conventional bottom-up syntheses of boron nanostructures, a unique top-down and greener synthetic strategy is presented for boron nanorods involving nontoxic boron oxide powders ultrasonically smelted in liquid lithium under milder conditions. The product was thoroughly characterized by energy dispersive X-ray analysis, atomic emission spectroscopy, thermogravimetric analysis and, UV-Vis spectroscopy, including structural characterization by transmission electron microscop...

  8. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  9. First boronization in KSTAR: Experiences on carborane

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Suk-Ho, E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Kun-Su; Kim, Kwang-Pyo; Kim, Kyung-Min; Kim, Hong-Tack [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, Jong-Ho; Woo, Hyun-Jong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jae-Min [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Park, Eun-Kyong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Woong-Chae; Kim, Hak-Kun; Park, Kap-Rai; Yang, Hyung-Lyeol; Oh, Yeong-Kook; Na, Hoon-Kyun [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lho, Taehyeop [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, Kyu-Sun [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-08-01

    First boronization was performed in KSTAR tokamak during 2009 campaign in order to reduce oxygen impurities and to lower the power loss due to radiation. We report the results from the experiences on carborane during the first boronization in KSTAR. After the boronization, H{sub 2}O and O{sub 2} level in the vacuum vessel are reduced significantly. The characteristics of the deposited thin films were analyzed by variable angle spectroscopic ellipsometry, XPS, and AES. {approx}1.78 x 10{sup 16} cm{sup -2} s{sup -1} of carbon flux on the wall is estimated by using cavity technique.

  10. From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

    OpenAIRE

    Hongsheng Liu; Junfeng Gao; Jijun Zhao

    2013-01-01

    As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster BN with increasing cluster size and low diffusion barrier for a single B atom on Cu(111) surface ensure cont...

  11. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  12. Alternative water chemistry for the primary loop of PWR plants

    International Nuclear Information System (INIS)

    Advanced fuel element concepts (longer cycles, higher burnup, increased rod power) call for more reactivity binding capacity and, moreover, might produce higher void fractions, particularly in the hot channel. Thus, on the one hand, more alcalizing agent is needed to maintain a high coolant pH according to the approved ''modified boron-lithium mode of operation'' in the presence of more boric acid (chemical shim); on the other hand, increasing enrichment of coolant constituents due to local boiling (higher void fraction), which must not result in accelerated corrosion of fuel cladding and structural materials, imposes enhanced requirements on both, materials technology and water chemistry. At present, the use of boric acid enriched in B10 (the isotope effective in terms of reactivity control) appears to advantageously compromise in capturing more neutrons with less total boron while maintaining or even slightly reducing lithium concentrations at the same time. There is no feasible alternative for boric acid used as the chemical shim and for hydrogen gas as the reducing agent used to suppress oxygen formation by water radiolysis. Systematic screening as performed in phase 1 of a recent project proved potassium hydroxide to be the only potential candidate to favourably replace lithium 7 hydroxide as an alcalizing agent. Unfortunately, the results of pertinent comparative corrosion tests are not unambiguous, and available operational experience with potassium hydroxide in WWER plants is not readily applicable to western world-type PWR plants. Therefore, a switch-over from lithium to potassium can be envisaged only subsequent to a comprehensive qualification program which is planned to be the objective of phase 2 of the project. This program should also comprise zinc addition tests in order to confirm the alleged positive impact of this element on corrosion rates and activity buildup. Supplementary, it is recommended to consider amendments to existing water chemistry

  13. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  14. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  15. Laser and gas centrifuge enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Olli [Senior Fellow, Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, Massachusetts (United States)

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  16. Laser and gas centrifuge enrichment

    Science.gov (United States)

    Heinonen, Olli

    2014-05-01

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  17. Segal Enriched Categories I

    CERN Document Server

    Bacard, Hugo V

    2010-01-01

    We develop a theory of enriched categories over a (higher) category M equipped with a class W of morphisms called homotopy equivalences. We call them Segal M_W -categories. Our motivation was to generalize the notion of "up-to-homotopy monoids" in a monoidal category M, introduced by Leinster. The formalism adopted generalizes the classical Segal categories and extends the theory of enriched category over a bicategory. In particular we have a linear version of Segal categories which did not exist so far. Our goal in this paper is to present the theory and provide some examples. Applications are reserved for the future.

  18. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  19. Report of Sectional Committee on Industrialization of Uranium Enrichment

    International Nuclear Information System (INIS)

    In order to accelerate the development and utilization of atomic energy which is the core of the substitute energies for petroleum, it is indispensable requirement to establish independent fuel cycle as the base. In particular, the domestic production of enriched uranium is necessary to eliminate the obstacles to secure the energy supply in Japan. The construction and operation of the pilot plant for uranium enrichment by centrifugal separation method have progressed smoothly, and the technical base for the domestic production of enriched uranium is being consolidated. For the time being, the service of uranium enrichment is given by USA and France, but it is expected that the short supply will arise around 1990. The start of operation of the uranium enrichment plant in Japan is scheduled around 1990, and the scale of the plant will be expanded stepwise thereafter. The scale of production is assumed as 3000 t SWU/year in 2000. Prior to this commercial plant, the prototype plant of up to 250 t SWU/year capacity will be operated in 1986, starting the production of centrifugal separators in 1983. The production line for centrifugal separators will have the capacity of up to 125 t SWU/year. The organization for operating these plants, the home production of natural uranium conversion, the uranium enrichment by chemical method and others are described. (Kako, I.)

  20. Carbon, oxygen and boron isotopic studies of Huangbaishuwan witherite deposit at Ziyang and Wenyuhe witherite deposit at Zhushan

    Institute of Scientific and Technical Information of China (English)

    吕志成; 刘丛强; 刘家军; 赵志琦

    2003-01-01

    Being stratiform or stratoid, the Huangbaishuwan witherite deposit at Ziyang and the Wenyuhe witherite-barite deposit at Zhushan occur in the lower Lower Cambrian siliceous rocks and the orebodies are remarkably controlled by lithological character and petrography. Boron, carbon and oxygen isotopic studies of witherite, barytocalcite and calcite have shown that the carbon, involved in the formation of these minerals, was derived mainly from hydrocarbons and biogenetic gases resulting from degradation, polycondensation and dehydroxylation of bio-organic matter in sediments at the early stage of diagenesis; the boron was a mixture of boron in pore water and that released in the process of degradation of organic matter, with a minor amount of boron from cycling brines in the deep interior of the basin. Boron, carbon and oxygen isotopic studies unanimously demonstrated that witherite was precipitated in this sort of organic carbon-rich pore water medium during the early stage of diagenesis. Extensive occurrence of biodetritus and clastic texture in witherite ores strongly evidenced that Ba2+ was concentrated and settled down in the form of bio-barite on the seafloor as a result of biological processes, thereafter forming the initially enriched orebodies of barium deposits. Biological processes in seawater and early diagenesis in sediments are the major ore-forming mechanisms of witherite deposits in the region studied.

  1. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.

  2. Boron Drug Delivery via Encapsulated Magnetic Nanocomposites: A New Approach for BNCT in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yinghuai Zhu

    2010-01-01

    Full Text Available Ortho-carborane cages have been successfully attached to modified magnetic nanoparticles via catalytic azide-alkyne cycloadditions between 1-R-2-butyl-Ortho-C2B10H10(R=Me,3;Ph,4 and propargyl group-enriched magnetic nanoparticles. A loading amount of 9.83 mmol boron atom/g starch-matrixed magnetic nanoparticles has been reached. The resulting nanocomposites have been found to be highly tumor-targeted vehicles under the influence of an external magnetic field (1.14T, yielding a high boron concentration of 51.4 μg/g tumor and ratios of around 10 : 1 tumor to normal tissues.

  3. A passive rem counter based on CR39 SSNTD coupled with a boron converter

    CERN Document Server

    Agosteo, S; Ferrarini, c, M; Silari, M

    2009-01-01

    A passive neutron rem counter using a CR39 SSNTD coupled with a boron converter has been developed. The rem counter is a polythene sphere with cadmium and lead insets, designed to have a response function proportional to the fluence to ambient dose equivalent conversion coefficients, H*(10)/Φ, for energies ranging from thermal up to 1 GeV. At its centre is a thermal neutron detector made of a CR39 SSNTD coupled with an enriched boron neutron converter. The rem counter was first calibrated at CERN and at the Politecnico di Milano, and then tested in high-energy neutron fields at GSI, Darmstadt, Germany and at the CERF facility at CERN. Its most important features are a very high neutron sensitivity and conversely a complete insensitivity to gamma radiation.

  4. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. PMID:25464183

  5. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  6. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  7. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  8. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  9. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  10. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  11. Uranium enrichment and the environment

    International Nuclear Information System (INIS)

    The three gaseous diffusion plants comprise one of the largest industrial complexes in the free world. Since all of the enrichment is done inside a very large plumbing maze, the control of radioactivity does not present a serious problem. Conventional, nonexotic engineering and administrative measures adequately control the minor levels of radioactivity associated with support activities such as equipment decontamination and maintenance. The treatment and control of chemical waste streams to comply with Federal and state regulations has required the commitment of 47 million dollars since 1974. Through 1982, an additional 84 million dollars may be required. The high cost is not a reflection of initially poor conditions but is rather the result of providing large treatment systems to meet very low discharge limits. Examples that will be discussed include airborne particulate removal, recirculating cooling water treatment, and hazardous waste disposal concepts

  12. Nutrient enrichment increases mortality of mangroves.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.

  13. Innovative boron nitride-doped propellants

    OpenAIRE

    Thelma Manning; Richard Field; Kenneth Klingaman; Michael Fair; John Bolognini; Robin Crownover; Carlton P. Adam; Viral Panchal; Eugene Rozumov; Henry Grau; Paul Matter; Michael Beachy; Christopher Holt; Samuel Sopok

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower ...

  14. Lithium-Beryllium-Boron : Origin and Evolution

    OpenAIRE

    Vangioni-Flam, Elisabeth; Casse, Michel; Audouze, Jean

    1999-01-01

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to...

  15. Enriching Number Knowledge

    Science.gov (United States)

    Mack, Nancy K.

    2011-01-01

    Exploring number systems of other cultures can be an enjoyable learning experience that enriches students' knowledge of numbers and number systems in important ways. It helps students deepen mental computation fluency, knowledge of place value, and equivalent representations for numbers. This article describes how the author designed her…

  16. Designing job enrichment projects.

    Science.gov (United States)

    Clakeley, G L

    1988-01-01

    This paper describes a management strategy for a job satisfaction program utilized in a large occupational therapy department. The goal of the program is to retain satisfied, productive employees and reduce attrition of therapists and assistants. The use of job enrichment projects for occupational therapy assistants will be presented with brief descriptions of two projects. PMID:23944880

  17. Job Enrichment in Extension.

    Science.gov (United States)

    Fourman, Louis S.; Jones, Jo

    1997-01-01

    Interviews with 10 participants in Ohio State University's job enrichment program for midcareer extension agents found that 5 returned to their same jobs after the experience but only 2 felt challenged/renewed. Part-time participation while working made it difficult to balance responsibilities. More information and a structured orientation were…

  18. Enriching the Catalog

    Science.gov (United States)

    Tennant, Roy

    2004-01-01

    After decades of costly and time-consuming effort, nearly all libraries have completed the retrospective conversion of their card catalogs to electronic form. However, bibliographic systems still are really not much more than card catalogs on wheels. Enriched content that Amazon.com takes for granted--such as digitized tables of contents, cover…

  19. Methodology for content enrichment

    NARCIS (Netherlands)

    Nederbragt, H.; Heerlien, M.

    2010-01-01

    The STERNA project mainly focuses on enrichment of existing content of content holding organisations in the natural history domain. Therefore, developing a methodology on how to best integrate one’s content into the STERNA information space is an essential part of the project. This document is the o

  20. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  1. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  2. Inheritance of Boron Efficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; WANG Yun-Hua; NIAN Fu-Zhao; LU Jian-Wei; MENG Jin-Ling; XU Fang-Sen

    2009-01-01

    Field experiments were conducted to study the inheritance of boron efficiency in oilseed rape (Brassica napus L.) by evaluating the boron (B) efficiency coefficient (BEC,the ratio of the seed yield at below the critical boron level to that at the boron-sufficient level) with 657 F2:3 fines of a population derived from a cross between a B-efficient cultivar,Qingyou 10,and a B-inefficient cultivar,Bakow.Qingyou i0 had high BEC as well as high seed yield at low available soil B.On the contrary,Bakow produced low seed yield at low B status.Boron deficiency decreased the seed yield of the F2:3 lines to different extents and the distribution of BEC of the population showed a bimodal pattern.When the 657 F2:3 lines were grouped into B-efficient lines and B-inefficient lines according to their BEC,the ratio of B-efficient lines to B-inefficient lines fitted the expected ratio (3:1),indicating that one major gene controlled the B-efficiency trait.127 F2:3 lines selected from the population at random,with distribution of BEC similar to that of the overall population,were used to identify the target region for fine mapping of the boron efficiency gene.

  3. Boronization of Russian tokamaks from carborane precursors

    International Nuclear Information System (INIS)

    A new and cheap boronization technique using the nontoxic and nonexplosive solid substance carborane has been developed and successfully applied to the Russian tokamaks T-11M, T-3M, T-10 and TUMAN-3. The glow discharge in a mixture of He and carborane vapor produced the amorphous B/C coating with the B/C ratio varied from 2.0-3.7. The deposition rate was about 150 nm/h. The primary effect of boronization was a significant reduction of the impurity influx and the plasma impurity contamination, a sharp decrease of the plasma radiated power, and a decrease of the effective charge. Boronization strongly suppressed the impurity influx caused by additional plasma heating. ECR- and ICR-heating as well as ECR current drive were more effective in boronized vessels. Boronization resulted in a significant extension of the Ne- and q-region of stable tokamak operation. The density limit rose strongly. In Ohmic H-mode energy confinement time increased significantly (by a factor of 2) after boronization. It rose linearly with plasma current Ip and was 10 times higher than Neo-Alcator time at maximum current. ((orig.))

  4. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 105 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  5. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    OpenAIRE

    Blostein, Juan Jerónimo; Estrada, Juan; Tartaglione, Aureliano; Haro, Miguel Sofo; Moroni, Guillermo Fernández; Cancelo, Gustavo

    2014-01-01

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned io...

  6. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  7. How is uranium supply affecting enrichment?

    International Nuclear Information System (INIS)

    As a result of the enlivened uranium market, momentum has in turn picked up in the enrichment sector. What are the consequences of higher uranium prices? There is, of course, a link between uranium and enrichment supply to the extent that they are at least partial substitutes. On the enrichment supply side, the most obvious feature is the gradual replacement of the old gas diffusion facilities of Usec in the USA and EURODIF in France with more modern and economical centrifuge plants. Assuming Usec can overcome the financing and technical issues surrounding its plans, the last gas diffusion capacity should disappear around 2015 and the entire enrichment market should then be using centrifuges. On the commercial side, the key anticipated developments are mostly in Russia. Although there should still continue to be substantial quantities of surplus Russian HEU available for down blending in the period beyond 2013, it is now reasonable to expect that it will be mostly consumed by internal needs, to fuel Russian-origin reactors both at home and in export markets such as China and India. Finally, as a key sensitive area for the non-proliferation of nuclear weapons, the enrichment sector is likely to be a central point of the new international arrangements which must be developed to support a buoyant nuclear sector throughout this century.

  8. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  9. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  10. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  11. Comparison of effect of zinc-enriched pod of Phaseolus vulgaris and inner rice husk composts with zinc sulphate and zinc 14% chelate on zinc availability in maize plant in a calcareous soil

    OpenAIRE

    Rasouli, Mrs. Shabnam; Azizi, Prof. Pirouz; Forghani, Dr. Akbar; Asghar Zade, Dr. Ahmad

    2008-01-01

    Mixtures of Zn salts and organic matter have been used successfully in controlling zinc deficiency in various crops. The aim of the present study was to optimize the effectiveness, on zinc availability in maize, of natural organic substances by enriching them with zinc sulfate. For this purpose pod of Phaseolus vulgaris and inner rice husk, as abundant organic wastes in the north of Iran, were incubated with increasing quantities of zinc sulphate. The effect of these zinc-enriched composts, z...

  12. Oilseed rape genotypes response to boron toxicity

    Directory of Open Access Journals (Sweden)

    Savić Jasna

    2013-01-01

    Full Text Available Response of 16 oilseed rape genotypes to B (boron toxicity was analyzed by comparing the results of two experiments conducted in a glasshouse. In Experiment 1 plants were grown in standard nutrient solutions with 10 µMB (control and 1000 µM B. Relative root and shoot growth varied from 20-120% and 31-117%, respectively. Variation in B concentration in shoots was also wide (206.5-441.7 µg B g-1 DW as well as total B uptake by plant (62.3-281.2 µg B g1. Four selected genotypes were grown in Experiment 2 in pots filled with high B soil (8 kg ha-1 B; B8. Shoot growth was not affected by B8 treatment, while root and shoot B concentration was significantly increased compared to control. Genotypes Panther and Pronto which performed low relative root and shoot growth and high B accumulation in plants in Experiment 1, had good growth in B8 treatment. In Experiment 2 genotype NS-L-7 had significantly lower B concentration in shots under treatment B8, but also very high B accumulation in Experiment 1. In addition, cluster analyses classified genotypes in three groups according to traits contrasting in their significance for analyzing response to B toxicity. The first group included four varieties based on their shared characteristics that have small value for the relative growth of roots and shoots and large values of B concentration in shoot. In the second largest group were connected ten genotypes that are heterogeneous in traits and do not stand out on any characteristic. Genotypes NS-L-7 and Navajo were separated in the third group because they had big relative growth of root and shoot, but also a high concentration of B in the shoot, and high total B uptake. Results showed that none of tested genotypes could not be recommended for breeding process to tolerance for B toxicity. [Projekat Ministarstva nauke Republike Srbije, br. OI 173028

  13. The energy landscape of fullerene materials: a comparison between boron, boron-nitride and carbon

    CERN Document Server

    De, Sandip; Amsler, Maximilian; Pochet, Pascal; Genovese, Luigi; Goedecker, Stefan

    2010-01-01

    Using the minima hopping global geometry optimization method on the density functional potential energy surface we study medium size and large boron clusters. Even though for isolated medium size clusters the ground state is a cage like structure they are unstable against external perturbations such as contact with other clusters. The energy landscape of larger boron clusters is glass like and has a large number of structures which are lower in energy than the cages. This is in contrast to carbon and boron nitride systems which can be clearly identified as structure seekers in our minima hopping runs. The differences in the potential energy landscape explain why carbon and boron nitride systems are found in nature whereas pure boron fullerenes have not been found.

  14. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  15. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  16. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    Science.gov (United States)

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  17. Spectrographic determination of impurities in enriched uranium solutions; Determinacion espectrografica de impurezas en soluciones de uranio enriquecido

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila, C.; Roca, M.

    1980-07-01

    A spectrographic procedure for the determination of trace amounts of Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, L i , Hg, Mn, Mo, Na, Nb, Ni, P, Pb, Ru, Sb, Sn, Sr, Ti, V, Zn, and Zr in enriched uranyl nitrate solutions from the reprocessing of spent nuclear fuels is described. After removal of uranium by either TBP or TNOA solvent extraction, the aqueous phase Is analysed by the graphite spark technique. TBP is adequate for all impurities, excepting boron and phosphorus; both of these elements can sat is factory be determined by using TNOA after the addition of mannitol to avoid boron losses. (Author) 4 refs.

  18. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model

    International Nuclear Information System (INIS)

    Unilamellar liposomes formulated with an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the lipid bilayer, and encapsulating Na3[ae-B10-H9)-2-NH3B10H8] were prepared by probe sonication and investigated in vivo. Microwave assisted digestion followed by inductively coupled plasma-optical emission spectroscopy was utilized to determine the biodistribution of boron in various tissues following either a single tail vein injection or two identical injections (separated by 24 hours) of the liposomal suspension in BALB/c mice bearing EMT6 mammary adenocarcinomas in their right flank. Double-injection protocols resulted in a boron content in the tumor exceeding 50 µg of boron per gram of tissue for 48 to 72 hours subsequent to the initial injection while tumor:blood boron ratios were more ideal from 54 hours (1.9:1) to 96 hours (5.7:1) subsequent to the initial injection. Tumor bearing mice were given a double-injection of liposomes containing the 10B-enriched analogs of the aforementioned agents and subjected to a 30 minute irradiation by thermal neutrons with a flux of 8.8 x 108 (±7%) neutrons/cm2 s integrated over the energy range of 0.0 - 0.414 eV. Significant tumor response for a single BNCT treatment was demonstrated by growth curves versus a control group. Vastly diminished tumor growth was witnessed at 14 days (186% increase versus 1551% in controls) in mice that were given a second injection/radiation treatment 7 days after the first. Mice given a one hour neutron irradiation following the double-injection of liposomes had a similar response (169% increase at 14 days) suggesting that neutron fluence is the limiting factor towards BNCT efficacy in this study.

  19. Use of calcium and boron in the production of grain and sunflower silage

    Directory of Open Access Journals (Sweden)

    Thomas Newton Martin

    2014-09-01

    Full Text Available Boron and calcium are related to many physiological processes of the plant, which are affected by its deficiency, such as sugar transport, synthesis and cell wall structure, carbohydrate metabolism and plasma membrane integrity. The objective of this study was to evaluate the efficiency of boron and calcium application via leaf and soil on the yield components in silage quality and content of macronutrients in leaves of sunflower. The experiment was conducted at Universidade Tecnológica Federal do Paraná – UTFPR, Campus Dois Vizinhos, from September 2008 to April 2009, in a randomized block design with four replications, using the genotype Agrobel - La Tijereta. Morphological characteristics of the plants, the yield components (grain yield and weight of hundred grains, silage quality and content of nutrient uptake were evaluated. The sunflower crop did not respond to application of boron and calcium, to effects on yield components in silage quality and content of nutrients absorbed by plants. However, it was found increases in the partition dry grain and plant height.

  20. The effect of changing enrichments on core performance

    International Nuclear Information System (INIS)

    Highlights: • Five cores were analyzed with the same core configuration but with higher enrichments. • The highest enrichment core produced longest possible cycle length of 750 days. • New method for designing BP placement was introduced for the longer cycle lengths. • Fuel costs were calculated showing fuel costs decrease with increasing cycle length. - Abstract: The information presented in this paper has been developed as a follow on to two previous papers published using the same low leakage core configuration with the addition in this paper of evaluating fuel costs. The two previous publications studied the characteristics of this low leakage core with two different enrichment sets, where each enrichment set represents the three batches in the core. The purpose of the two previous papers proved the effectiveness of using the Haling Power Depletion (HPD) method as a guide. The first purpose of this paper is to extend this study to higher enrichment sets to finally attain a core having close to the highest possible cycle length. Three additional similar enrichment sets are studied increasing the number of enrichment sets to five. The ratio between the enrichment sets was maintained constant except for the highest enrichment set. This was done to increase the cycle length to approximately the longest possible cycle length of 800 days for a 1000 MWe reactor limited to a maximum 5% enrichment. The core reactor physics characteristics of these five cores are presented in this paper together with the evaluating of the fuel costs. These core characteristics include radial power fractions (RPF), Haling Power Depletion, RPF distributions, maximum pin peak powers (PPPMAX), and other important data. The HPD RPFs of all 5 cores were similar and used to help develop the burnable poison placement designs for each core. The longest two cycles required an improved technique using more information than the HPD results to develop successful BP placement designs. Also, it

  1. 硼胁迫对枳橙砧木细根根尖成熟区和幼嫩叶片细胞结构的影响%Effects of Boron Deficiency on Cellular Structures of Maturation Zone from Root Tips and Functional Leaves from Middle and Upper Plant in Trifoliate Orange Rootstock

    Institute of Scientific and Technical Information of China (English)

    刘磊超; 姜存仓; 董肖昌; 吴秀文; 刘桂东; 卢晓佩

    2015-01-01

    胞内淀粉粒积累加剧;影响叶片中海绵组织细胞形态大小,细胞出现不正常增生,从而抑制砧木根尖及叶片中维管束的发育。%[Objective]The aim of this study was to determine the effects of boron deficiency on the cellular structures of the maturation zone in root tips and the functional leaves in citrus.[Method]A hydroponic experiment was conducted with (10μmol·L-1 H3BO3, +B) and without boron (-B) treatment. Fine root mature zone and young leaf samples were observed by paraffin sections and transmission electron microscope (TEM).[Result]Boron deficiency reduced the amount of parenchyma cell in root and, arranged loosely, led to cell deformation and enlarged the intercellular space. Also, boron deficiency caused the disintegration of the cytoplasm and organelles, and increased the cell wall. Whereas the parenchyma cell morphology was normal, evenly sized, and arranged densely in +B treatment, the parafin section showed the root vascular bundle was dyed deeper and the structure was clearly organized in a circular pattern around the root pulp. Low B stress seriously inhibited the development of vascular bundle and restricted its differentiation, making the cell small and randomly arranged. In the plant, Boron leakage made the leaves thick and uneven and sponge tissue became deformed, leading to bigger cell gaps and an increase in the number and volume of sponge tissue. This improved the proportion of sponge tissue in mesophyll. However, in B+ treatment, leaf thickness was more even and the epidermis cell was more densely arranged. The palisade mesophyll was closely packed and sponge tissue underneath was loosely and organically arranged. Under B deficiency, there was also an accumulation of starch grains in the cell and leaf soluble sugar and starch content increased by 35.3% and 66.7%, respectively. But there was no obvious accumulation of starch in the leaves with +B treatment.[Conclusion] The internal structure of the

  2. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  3. Enrichment marketplace - today (and tomorrow)

    International Nuclear Information System (INIS)

    The technologies and capacities of the four primary sources of enrichment services, the United States Department of Energy, Eurodif, Techsnabexport of the Soviet Union, and Urenco, were given. Forecasts of future capacities and prices of enriched uranium were also included

  4. Velocities of Reacting Boron Particles within a Solid Fuel Ramjet Combustion Chamber

    Directory of Open Access Journals (Sweden)

    J. Sender

    1998-10-01

    Full Text Available A 2D-laser doppler velocimeter was used to measure velocities of reacting boron (B particles during the combustion of a metallised solid fuel slab inside a 20-combustion chamber. The solid fuel hydroxyl-terminated polybutadiene (HTPB was enriched with B particles to increase its specific heat. To obtain information on the combustion process and on the movement of B particles, their velocities were measured. The experiments were performed at ambient pressure. The behaviour of the B particles concerning the exit velocities from the fuel slab has been discussed on the basis of the experimental results.

  5. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  6. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  7. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P2O5) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  8. First gaseous boronization during pulsed discharge cleaning

    Science.gov (United States)

    Ko, J.; Den Hartog, D. J.; Goetz, J. A.; Weix, P. J.; Limbach, S. T.

    2013-01-01

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  9. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  10. THE EFFECT OF BORON DOSES ON PARICA (Schizolobium amazonicum Herb.

    Directory of Open Access Journals (Sweden)

    Sebastião Ferreira de Lima

    2003-07-01

    Full Text Available An experiment was conducted in a greenhouse in order to evaluate the effects of boron on parica growth and on concentration and contents of macro and micronutrients indry matter of shoots and roots. Six treatments constituted by boron doses of 0.0; 0.1; 0.3; 0.9;1.5 and 2.1 mg/dm3 in four replications were used. It was evaluated the characteristics:visual diagnostic, plants height and diameter, dry matter production of shoots and roots,concentration and contents of nutrients in dry matter of shoots and roots. The symptoms ofdeficiency can be observed in new leaves and roots and the toxicity in older leaves. Bothboron deficiency and excess inhibits plants growth, but toxicity is more damaging. The Comportamento do paricá (Schizolobium amazonicum Herb. submetido ...193approximate dose of 0 Estimate of average equilibrium moisture content of wood for 26Brazilian states, by Hailwood and Harrobin one hydrate sorption theory equation.15mg/dm3 was the best for plants growth in MSPA and MSRA. The concentration of boronincreased in MSPA and MSRA with application of increasing concentration of B, with a smallreduction in concentration of MSRA from the concentration 1.9 mg/dm3. The toxicity of boronbegins when concentration reaches 36.06 mg/dm3 in shoots and 32.38 in roots. The contentsof all nutrients, except Mn and Fe in MSPA and Cu, Fe and B in MSRA, followed its own drymatter production curves.

  11. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  12. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  13. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  14. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  15. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  16. Enhanced Plasma Performance by ICRF Boronization

    Institute of Scientific and Technical Information of China (English)

    万宝年; 赵燕平; 李建刚; 宋梅; 吴振伟; 罗家融; 李成富; 王小明

    2002-01-01

    Boronization with carborane (C2B10H12) by ICRF has been applied routinely to the walls of HT-7 super-conducting tokamak for the reduction of impurity influx, especially carbon and oxygen. Significant suppression of metallic impurities and radiating power fraction are achieved. The improved confinement for both particle and energy is observed in full range of operation parameters. Energy balance analysis shows that electron heat diffusion coefficient is strongly reduced. Measurements by Langmuir probes at the edge plasma show that the poloidal velocity shear after boronization is changed to a profile favoring to good confinement. The main emphasis of this paper is to describe effects of boronization on aspects of the enhanced plasma performance.

  17. Depth resolved investigations of boron implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sztucki, M. E-mail: michael@sztucki.de; Metzger, T.H.; Milita, S.; Berberich, F.; Schell, N.; Rouviere, J.L.; Patel, J

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6x10{sup 15} ions/cm{sup -2} at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {l_brace}1 1 1{r_brace} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  18. Potential for boron dilution during small-break LOCAs in PWRs

    International Nuclear Information System (INIS)

    This paper documents the results of a scoping study of boron dilution and mixing phenomena during small break loss of coolant accidents (LOCAs) in pressurized water reactors (PWRs). Boron free condensate can accumulate in the cold leg loop seals when the reactor is operating in a reflux/boiler condenser mode. A problem may occur when the subsequent change in flow conditions such as loop seal clearing or re-establishment of natural circulation flow drive the diluted water in the loop seals into the reactor core without sufficient mixing with the highly borated water in the reactor downcomer and lower plenum. The resulting low boron concentration coolant entering the core may cause a power excursion leading to fuel failure. The mixing processes associated with a slow moving stream of diluted water through the loop seal to the core were examined in this report. A bounding evaluation of the range of boron concentration entering the core during a small break LOCA in a typical Westinghouse-designed, four-loop plant is also presented in this report

  19. Mixing phenomena of interest to boron dilution during small break LOCAs in PWRs

    International Nuclear Information System (INIS)

    This paper presents the results of a study of mixing phenomena related to boron dilution during small break loss of coolant accidents (LOCAs)in pressurized water reactors (PWRs). Boron free condensate can accumulate in the cold leg loop seals when the reactor is operating in a reflux/boiler-condenser mode. A problem may occur when subsequent change in flow conditions such as loop seal clearing or re-establishment of natural circulation flow drive the diluted water in the loop seals into the reactor core without sufficient mixing with the highly borated water in the reactor downcomer and lower plenum. The resulting low boron concentration coolant entering the core may cause a power excursion leading to fuel failure. The mixing processes associated with a slow moving stream of diluted water through the loop seal to the core are examined in this paper. Bounding calculations for boron concentration of coolant entering the core during a small break LOCA in a typical Westinghouse-designed four-loop plant are also presented

  20. Voltammetric determination of wedelolactone, an anti-HIV herbal drug, at boron-doped diamond electrode

    Indian Academy of Sciences (India)

    Sachin Saxena; Ratnanjali Shrivastava; Soami P Satsangee

    2015-05-01

    Boron-doped diamond electrode has been utilized for the study of electrochemical behaviour of an anti-HIV herbal drug wedelolactone in Britton-Robinson buffer (pH-2.5) by square-wave and cyclic voltammetry techniques. The response characteristics of cyclic voltammetry and square wave voltammetry showed a remarkable increase in the anodic peak current and electrochemical impedance spectroscopy revealed a lowering in charge transfer resistance at the boron-doped diamond electrode as compared to the glassy carbon electrode that can be attributed to the higher sensitivity of boron-doped diamond sensor. Cyclic voltammetry at the boron-doped diamond surface revealed the oxidation of wedelolactone with two oxidation peaks (P1 and P2) with Ep1 = 0.4V and Ep2 =1.00 V with scan rate varying from 10 - 220 mV/s and exhibits diffusion-controlled process. Based on the electrochemical measurements, a probable oxidation mechanism has been deduced and the electrode dynamics parameters have been evaluated. The effect of concentration on the peak currents of wedelolactone was found to have a linear relationship within the concentration range of 50–700 ng/mL. The LOD and LOQ were found to be 43.87 and 132.93 ng/mL respectively. The applicability of the proposed method was further scrutinized by the successful determination of wedelolactone in real plant samples.

  1. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water.

  2. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and co

  3. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  4. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-01-01

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070

  5. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code

    International Nuclear Information System (INIS)

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5 cm2 configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSPBICHP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSPBERTHP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25 meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. - Highlights: • The results of boron-coated GEM for thermal neutrons are described. • The simulations were performed by GEANT4 MC code. • The evaluation was determined by GEANT4 using two physics lists. • The response of the detector was taken for En=25–100 meV

  6. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  7. Computational Aspects of Carbon and Boron Nanotubes

    Directory of Open Access Journals (Sweden)

    Paul Manuel

    2010-11-01

    Full Text Available Carbon hexagonal nanotubes, boron triangular nanotubes and boron a-nanotubes are a few popular nano structures. Computational researchers look at these structures as graphs where each atom is a node and an atomic bond is an edge. While researchers are discussing the differences among the three nanotubes, we identify the topological and structural similarities among them. We show that the three nanotubes have the same maximum independent set and their matching ratios are independent of the number of columns. In addition, we illustrate that they also have similar underlying broadcasting spanning tree and identical communication behavior.

  8. Use of the HRICP-MS technique for the evaluation of boron isotopes in Eucalitpus plants; Uso da tecnica HRICP-MS na avaliacao dos isotopos de boro em eucalipto

    Energy Technology Data Exchange (ETDEWEB)

    Mattiello, Edson Marcio; Ruiz, Hugo Alberto; Silva, Ivo Ribeiro da, E-mail: mattiello@ufv.b [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Solos; Sarkis, Jorge Eduardo de Souza [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The {sup 10}B isotope tracer technique is essential to study the B mobility in plants. Factors that can influence the quality of measured B isotope ratios were optimized experimentally using High Resolution Inductively Coupled Plasma Mass Spectrometry (HRICP-MS). An isotopically certified standard (NIST SRM-951) was used. The best combination was obtained using a resolution of 400, a RF power of 1250 W, followed by 15 measurements over a 10-s integration period each (15*10). Utilizing this approach it was possible to obtain a precision of 0.3 % in standard material and 2z % in the experimental samples. The results show the importance of establishing optimized work conditions before carrying out the analytical series. (author)

  9. Influence of salinity and boron on germination, seedling growth and transplanting mortality of guayule: a combined growth chamber and greenhouse study

    Science.gov (United States)

    Guayule (Parthenium argentatum A.Gray), a drought tolerant plant, originating from southwestern United States and northern Mexico, is considered to be a promising rubber-producing plant for arid and semiarid areas. To evaluate the potential of guayule as an alternative crop for saline boron-laden so...

  10. 乐安河-鄱阳湖湿地植物群落特征及其优势植物对重金属 Cu、Pb、Cd 的富集%Plant community characteristics and the enrichment of heavy species grown in the wetland of Lean River and Poyang Lake metals copper,lead and cadmium in the dominant plant

    Institute of Scientific and Technical Information of China (English)

    简敏菲; 周雪玲; 余厚平; 朱咏梅

    2015-01-01

    An investigation was conducted on the typical plant community and collected the soil and plant samples in different sampling sites in the wetland of Poyang Lake and Lean River.Plant community characteristics and the domi-nant plant community in different regions of Lean River were evaluated by using important value method.The con-tents of the heavy metals copper,lead and cadmium in the dominant plants in different habitats and the root zone soils were determined in the laboratory by using physical and chemical analysis methods,and the enrichment characteris-tics of heavy metals included copper,lead and cadmium in the dominant plants were evaluated by using bio-concentra-tion factor (BCF)method.The results indicated that the main wetland plants were dominated by herbaceous plants in the sampling sites and 124 species in total were found in the different sampling sites,including 2 families,2 genera and 2 species of ferns,and 40 families,97 genera and 122 species of seed plants.In the survey sampling sites, Rumex japonicus ,Polygonum orientale ,Gnaphalium affine ,Astragalus sinicus and Boehmeria nivea were the typical dominant plants which had strong enrichment ability of heavy metals.The heavy metals determined results in-dicated that the contents of copper and cadmium in some dominant plants’root zone soils exceeded the third class of the soil environmental quality standards.The highest content of copper in plant root zone soils was 824.03 mg·kg-1 and the highest content of cadmium in plant root zone soils was 5.03 mg·kg-1 .And the five dominant species showed hyperaccumulation ability to one or two kinds of the heavy metal pollutants including copper,lead and cadmium.For example,Polygonum orientale had strong accumulation ability on copper and the highest content in P .orientale reached to 148.80 mg·kg-1 ;another kind of dominant plant is Gnaphalium affine ,the bio-concentration factor values of the three heavy metal elements were much more than those of other

  11. INTEGRATED NITROGEN AND BORON FERTILIZATION IMPROVES THE PRODUCTIVITY AND OIL QUALITY OF SUNFLOWER GROWN IN A CALCAREOUS SOIL

    OpenAIRE

    SHEHZAD, Muhammad Asif; Maqsood, Muhammad

    2015-01-01

    Among biotic and abiotic factors, imbalanced plant nutrition is more indispensable for low sunflower productivity. To assess the interaction behavior of nitrogen with boron on sunflower growth, yield and its oil quality in alkaline-calcareous soils, a field experiment was conducted for two consecutive growing seasons of 2011 and 2012. Sunflower hybrid (Helianthus annuus ‘Hysun-33’) was grown on sandy clay loam soil that was amended with diverse boron rates of 0, 2, 4, and 6 kg ha-1 under vari...

  12. Direct evidence of metallic bands in a monolayer boron sheet

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Liu, Ro-Ya; Iimori, Takushi; Lian, Chao; Li, Hui; Chen, Lan; Wu, Kehui; Meng, Sheng; Komori, Fumio; Matsuda, Iwao

    2016-07-01

    The search for metallic boron allotropes has attracted great attention in the past decades and recent theoretical works predict the existence of metallicity in monolayer boron. Here, we synthesize the β12-sheet monolayer boron on a Ag(111) surface and confirm the presence of metallic boron-derived bands using angle-resolved photoemission spectroscopy. The Fermi surface is composed of one electron pocket at the S ¯ point and a pair of hole pockets near the X ¯ point, which is supported by the first-principles calculations. The metallic boron allotrope in β12 sheet opens the way to novel physics and chemistry in material science.

  13. Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandirma, Turkey.

    Science.gov (United States)

    Duydu, Yalçın; Başaran, Nurşen; Üstündağ, Aylin; Aydin, Sevtap; Ündeğer, Ülkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçın; Ickstadt, Katja; Waltrup, Britta Schulze; Golka, Klaus; Bolt, Hermann M

    2011-06-01

    Boric acid and sodium borates have been considered as being "toxic to reproduction and development", following results of animal studies with high doses. Experimentally, a NOAEL (no observed adverse effect level) of 17.5 mg B/kg-bw/day has been identified for the (male) reproductive effects of boron in a multigeneration study of rats, and a NOAEL for the developmental effects in rats was identified at 9.6 mg B/kg-bw/day. These values are being taken as the basis of current EU safety assessments. The present study was conducted to investigate the reproductive effects of boron exposure in workers employed in boric acid production plant in Bandirma, Turkey. In order to characterize the external and internal boron exposures, boron was determined in biological samples (blood, urine, semen), in workplace air, in food, and in water sources. Unfavorable effects of boron exposure on the reproductive toxicity indicators (concentration, motility, morphology of the sperm cells and blood levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and total testosterone) were not observed. The mean calculated daily boron exposure (DBE) of the highly exposed group was 14.45 ± 6.57 (3.32-35.62) mg/day. These human exposures represent worst-case exposure conditions to boric acid/borates in Turkey. These exposure levels are considerably lower than exposures, which have previously led to reproductive effects in experimental animals. In conclusion, this means that dose levels of boron associated with developmental and reproductive toxic effects in animals are by far not reachable for humans under conditions of normal handling and use.

  14. Enriching stable isotopes: Alternative use for Urenco technology

    Energy Technology Data Exchange (ETDEWEB)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D. [URENCO-NL, Almelo (Netherlands)

    1996-12-31

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope {sup 235}U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company`s uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco`s stable isotopes business.

  15. Enriching stable isotopes: Alternative use for Urenco technology

    International Nuclear Information System (INIS)

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope 235U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company's uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco's stable isotopes business

  16. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  17. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na210B12H11SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author)

  18. The structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron-nitride

    OpenAIRE

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H. G.; Liu, Zheng; Suenaga, Kazutomo

    2014-01-01

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra (EELS) of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sampl...

  19. Resonant soft x-ray reflectivity of Me/B(4)C multilayers near the boron K edge.

    Science.gov (United States)

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich

    2010-09-01

    Energy dependence of the optical constants of boron carbide in the short period Ru/B(4)C and Mo/B(4)C multilayers (MLs) are evaluated from complete reflectivity scans across the boron K edge using the energy-resolved photon-in-photon-out method. Differences between the refractive indices of the B(4)Cmaterial inside and close to the surface are obtained from the peak profile of the first order ML Bragg peak and the reflection profile near the critical angle of total external reflection close to the surface. Where a Mo/B(4)C ML with narrow barrier layers appears as a homogeneous ML at all energies, a Ru/B(4)C ML exhibits another chemical nature of boron at the surface compared to the bulk. From evaluation of the critical angle of total external reflection in the energy range between 184 and 186eV, we found an enriched concentration of metallic boron inside the Ru-rich layer at the surface, which is not visible in other energy ranges.

  20. Italian activities in uranium enrichment

    International Nuclear Information System (INIS)

    The paper describes Italian activities in uranium enrichment, which have mainly developed along the lines of the two classical processes: gaseous diffusion and centrifuges. Research, development and industrial activities play different roles in the two methods, and a special working group, GIAU, was established by CNEN to help co-ordinate this activity. In the field of gaseous diffusion, R and D effort was, from the start of the programme in 1968, mainly devoted to barriers and compressors, with the object of fully understanding the process and of demonstrating that it was capable of overcoming the main problems in this technology. Isotope separation of UF6 was demonstrated in 1974 at experimental plant level. Cost-sharing contracts were signed between CNEN and industries to build prototypes and ''first-of-a-kind'' components; small production lines have been set up to evaluate economics and assess production quality. Eurodif is partially associated with the development of this activity. On the industrial level, AGIP Nucleare and CNEN were among the promoters of the Eurodif venture from the beginning in 1973 and now own 25% of the shares. In the field of ultracentrifugation, work is still devoted mainly to R and D on the machines. The separation process was demonstrated in 1973 at laboratory level with a Zippe type centrifuge. Later activities aimed at developing high-capacity machines; different solutions are under close scrutiny. Carbon fibres and multiplerotor machines have been mechanically tested, and the first reference design of a small cascade plant has been completed. In the field of laser separation, after a complete and critical survey of different processes under development in other countries, experimental research work is now being undertaken, and experiments on basic aspects of the process are in progress. (author)

  1. Efeito da omissão de macronutrientes e boro no crescimento, nos sintomas de deficiências nutricionais e na composição mineral de plantas de camucamuzeiro Effect of omission of macronutrient and boron on growth, on symptoms of nutritional deficiency and mineral composition in camucamuzeiro plants (Myrciaria dubia

    Directory of Open Access Journals (Sweden)

    Ismael de Jesus Matos Viégas

    2004-08-01

    Full Text Available Com o objetivo de avaliar o efeito da omissão de macronutrientes e do micronutriente boro no crescimento, nos sintomas de deficiências nutricionais e na composição mineral em plantas de camucamuzeiro, conduziu-se experimento em casa de vegetação, mediante a técnica do elemento faltante. O delineamento experimental foi o inteiramente casualizado, com quatro repetições e oito tratamentos, sendo completo (N, P, K, Ca, Mg, S e micronutrientes e omissão individual de N, P, K, Ca, Mg, S e B. Os sintomas visuais de deficiências foram, de modo geral, de fácil caracterização para todos os nutrientes. Com exceção do fósforo, as omissões dos demais nutrientes afetaram a produção de matéria seca, quando comparados ao tratamento completo. Com base nos teores em g kg-1, dos macronutrientes, e em mg kg-1, do micronutriente boro nas folhas, infere-se em uma primeira aproximação dos valores adequados (completo, ou seja: 16,9 a 18,2 de N ; 1,2 a 1,9 de P; 5,2 a 6,0 de K; 9,9 a 11,7 de Ca; 1,4 a 3,6 de Mg; 2,4 a 2,8 de S ; 8,4 a 9,5 de B e do deficiente (omissão , 6,5 a 7,9 de N ; =0,9 de P; =1,7 de K ; 5,4 a 6,5 de Ca; =0,7 de Mg; 0,7 a 1,2 de S e 1,1 a 1,9 de BThe effects of omission of macronutrient and boron on growth, on symptoms of nutritional deficiency and mineral composition of plants of "camucamuzeiro" were evaluated. The experiment was carried out in a greenhouse, by means of the missing element technique. The experimental design was completely randomized, with eight treatments and four repetitions, including complete (N, P, K, Ca, Mg, S and micronutrients and individual omission of N, P, K, Ca, Mg, S and B. The visual symptoms of deficiency were easily characterized for all the nutrients. Excepting for P, dry mass was affected by the omission of all the other nutrients, when compared with the complete treatment. Based on the macronutrient (g kg-1 and on the micronutrient boron (mg kg-1 on leaves contents, a first approach of the

  2. Effects of boron number per unit volume on the shielding properties of composites made with boron ores form China

    International Nuclear Information System (INIS)

    The total macroscopic removal cross sections, deposited energies and the absorbed doses of three new shielding composites loaded with specific boron-rich slag, boron concentrate ore and boron mud of China for 252Cf neutron source were investigated by experimental and Monte Carlo calculation. The results were evaluated by boron mole numbers per unit volume in composites. The half value layers of the composites were calculated and compared with that of Portland concrete, indicating that ascending boron mole numbers per unit volume in the composites can enhance the shielding properties of the composites for 252Cf neutron source. (authors)

  3. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Ozkan Emre, E-mail: ozdemir@psu.edu; Avramova, Maria N., E-mail: mna109@psu.edu

    2014-10-15

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis.

  4. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    International Nuclear Information System (INIS)

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis

  5. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  6. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst. PMID:18961131

  7. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  8. Coadsorption of lanthanum with boron and gadolinium with boron on Mo(1 1 0)

    Science.gov (United States)

    Magkoev, Tamerlan T.; Vladimirov, Georgij G.; Rump, Gennadij A.

    2008-05-01

    Submonolayer to multilayer coadsorption of lanthanum (La) with boron (B) and gadolinium (Gd) with boron on the surface of Mo(1 1 0) has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and work function ( ϕ) measurements. The equilibrium state of double adsorbate systems achieved either by adsorption of rare-earth metal (REM) on boron precovered Mo(1 1 0) surface held at room temperature or after moderate annealing of the system with opposite order of adsorption (B on REM films) is the layer which is the inhomogeneous mixture of boron and REM atoms with preferential concentration of boron in the surface area of the mixed film. The work function of such films even at REM to boron concentration ratio much higher than 1/6 are very close to the values of corresponding bulk LaB 6 and GdB 6, favoring assumption of surface rearrangement as the dominant reason of high electron emission efficiency of hexaborides. Almost total similarity of the results for La-B and Gd-B systems can be viewed as the consequence of weak participation of Gd f-electrons in determining the thermionic properties of corresponding double layers.

  9. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT

    Directory of Open Access Journals (Sweden)

    Joo-Young Jung

    2016-09-01

    Full Text Available We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT. Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0 simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR thickness, BUR location, and boron concentration with differing proton beam energy (60–90 MeV. We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60–70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  10. Development of a new 48Ca enrichment method and the CANDLES experiment

    Science.gov (United States)

    Kishimoto, Tadafumi

    2015-10-01

    CANDLES is a project to study double beta decay of 48Ca. CANDLES could become the most competitive experiment if we could have an efficient method to enrich 48Ca. We developed a new method for enrichment of large amount of calcium isotopes. The method is called Multi-Channel Counter-Current Electrophoresis (MCCCE) which can be found elsewhre. Essential point is the increase of the power density in the migration path. In MCCCE, ions migrate in multi-channels on a boron nitride (BN) plate by which substantial increase of the power density was achieved. We made a tiny prototype instrument with a 10 mm thick BN plate and obtained 3 for an enrichment factor for the ratio of abundance of 48Ca to 43Ca over that of natural abundance. It corresponds to 6 for the enrichment factor of 48Ca to 40Ca. Recently we obtained 10 for the enrichment factor by using 20 mm BN plate. This remarkably large enrichment factor demonstrates that the MCCCE is a realistic and promising method for the enrichment of large amount of ions. This method can be applied to many other elements and compounds. I will describe MCCCE and its effect on the study of double beta decay and other fields.

  11. Novel Boron Based Multilayer Thermal Neutron Detector

    CERN Document Server

    SCHIEBER, M

    2010-01-01

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accor...

  12. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  13. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  14. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  15. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  16. Pechmann Reaction Promoted by Boron Trifluoride Dihydrate

    Directory of Open Access Journals (Sweden)

    J. Mezger

    2005-08-01

    Full Text Available The Pechmann reaction of substituted phenols 1a-e with methyl acetoacetate (2 can be activated by boron trifluoride dihydrate (3 to give the corresponding 4-methyl- coumarin derivatives 4a-e in excellent yield (98-99 %.

  17. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author)

  18. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  19. Stable isotope enrichment techniques and ORNL separation status

    International Nuclear Information System (INIS)

    The isotope separation program is described, emphasizing present state-of-the-art techniques utilized to achieve specific isotopic requirements. An interesting problem addressed here is the calutron enrichment of rare-earth isotopes where small quantities of feed (<5g) are available, and the unresolved feed is to be recovered and recycled. Conventional ion-source units using graphite and stainless steel deteriorate in the halogenating atmosphere or are permeable to rare-earth compounds, reducing the process efficiency. An ion source has been developed using boron nitride for containing the halogenating agent and rare-earth compounds. Tests have been successfully conducted using Lu/sub 2/O/sub 3/ and the in situ chlorinating technique with CCl/sub 4/. Collectively, 166 mg of /sup 176/Lu were recovered from two runs using 2.95 and 1.10 g of 44.5% /sup 176/Lu. Process efficiency of 10.5% was achieved, and 1.2 g of the unresolved feed were recovered. Material compatibility of the boron nitride, carbon tetrachloride, and lutetium compounds has been established

  20. Green House Effect and Plant Photosynthesis:An Analysis on the Influences of CO2 Enrichment on Photosynthetic Mechanism in Plants%温室效应与植物光合作用——大气CO2浓度升高对植物光合机理影响的分析

    Institute of Scientific and Technical Information of China (English)

    何平

    2001-01-01

    比较分析了植物光合同化CO2速率、Rubisco活 性等性状对长期和短期高浓度CO2的反应.结果表明:所研究的植物在高浓度CO2下生长 ,可以长期保持高的CO2同化速率;长期在高浓度CO2下生长植物的光合速率增加有两个 来源,其一,是CO2浓度增加而增加的底物浓度效应(ΔPc),它的大小随外界短期C O2浓度改变而改变,其二,是植物光合系统结构改变而提高光合能量转换或是电子传递效 率所产生的光合速率增加(ΔPs),它的大小不随外界短期CO2浓度变化而改变。植 物光合速率对大气CO2浓度升高的增加量是上述两者之和.%We compared the photosynthetic rate, CO2 uptake curves of light saturation, Ruisco activities of plants grown under different CO 2 concentration in the air. The results show that under enriched CO2 conditi ons plants occupied higher photosynthetic rate during the whole growth season an d did not show any down regulation. The photosynthetic rate is constituted by 2 components, one of which is a CO2 concentration dependant CO2 uptake(ΔP c) which changes with CO2 concentration in the air, and the other is the str ucture of photosystem dependant CO2 uptake(ΔPs) that has a nature of ph otosynthetic energy conversion or electron transport, which is an adaptation of plant to the high CO2 and does not change with the short-term variation of co ncentration in the air. The CO2 concentration determines the affinity to Rubis co, and the structure of photosystem effects the efficacy of photosynthetic elec tron transportaion. Thus influence of CO2 on the photosynthetic rate(ΔP) can be presented as the following:ΔP=ΔPc+ΔPs.

  1. The world market-situation for uranium and its enrichment

    International Nuclear Information System (INIS)

    The development of the uranium market is described as well as all pertinent facts which may have contributed to the strong rise in uranium prices of the past three years. The policies of countries which may in the future become major uranium exporters are discussed. For the conversion of uranium there is sufficient capacity. However, if construction of new plants is not started soon shortages could occur in the early 80ies. The market for enrichment has characterized in past years by substantial overcapacities. If new enrichment plants are constructed according to present schedules this overcapacity may prevail into the early 90ies. (orig.)

  2. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  3. Boron removal from aqueous solution by direct contact membrane distillation

    International Nuclear Information System (INIS)

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 μg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution.

  4. Coercivity enhancement in boron-enriched stoichiometric REFeB melt-spun alloys

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, I. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D.F. (Mexico)], E-mail: israelb@correo.unam.mx; Cruz-Arcos, G. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D.F. (Mexico); Schrefl, T.; Davies, H.A. [Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2008-10-15

    Considerable enhancement of magnetic properties was attained in initially stoichiometric nanophase RE{sub 12}Fe{sub 82}B{sub 6} melt-spun alloys (RE = Nd, Nd + Pr) by means of an excess B content (10 at%) and additions of Zr and Co (2% and 7%, respectively). The intrinsic coercivity exhibited a marked improvement (with respect to the stoichiometric 6 at% B alloy), within the range 50-65%, with a maximum of 1161 {+-} 14 kA m{sup -1} for the B-rich and Zr-containing alloy, together with an excellent combination of remanence and energy density values of 0.90 {+-} 0.01 T and 137 {+-} 4 kJ m{sup -3}, respectively. Further Co addition led to a Curie temperature increase, while preserving high coercivity (1176 {+-} 31 kA m{sup -1}) and useful energy densities (119 {+-} 4 kJ m{sup -3}). Results were interpreted on the basis of alloy microstructural features and on variations of the intrinsic magnetic properties, supported by micromagnetic calculations.

  5. Slow-Release Fertilizers For Plants

    Science.gov (United States)

    Ming, Douglas W.; Golden, D. C.

    1995-01-01

    Synthetic mineral provides growing plants with nutrients, including micronutrients. Dissolves slowly in moist soil or in hydroponic solution, releasing constituents. Mineral synthetic apatite into which nutrients calcium, phosphorous, iron, manganese, copper, zinc, molybdenum, chlorine, boron, and sulfur incorporated in form of various salts. Each pellet has homogeneous inorganic composition. Composition readily adjusted to meet precise needs of plant.

  6. Earthquake forecast enrichment scores

    Directory of Open Access Journals (Sweden)

    Christine Smyth

    2012-03-01

    Full Text Available The Collaboratory for the Study of Earthquake Predictability (CSEP is a global project aimed at testing earthquake forecast models in a fair environment. Various metrics are currently used to evaluate the submitted forecasts. However, the CSEP still lacks easily understandable metrics with which to rank the universal performance of the forecast models. In this research, we modify a well-known and respected metric from another statistical field, bioinformatics, to make it suitable for evaluating earthquake forecasts, such as those submitted to the CSEP initiative. The metric, originally called a gene-set enrichment score, is based on a Kolmogorov-Smirnov statistic. Our modified metric assesses if, over a certain time period, the forecast values at locations where earthquakes have occurred are significantly increased compared to the values for all locations where earthquakes did not occur. Permutation testing allows for a significance value to be placed upon the score. Unlike the metrics currently employed by the CSEP, the score places no assumption on the distribution of earthquake occurrence nor requires an arbitrary reference forecast. In this research, we apply the modified metric to simulated data and real forecast data to show it is a powerful and robust technique, capable of ranking competing earthquake forecasts.

  7. Surface Modification of Fuel Cladding Materials with Integral Fuel BUrnable Absorber Boron

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kumar Sridharan; Dr. Todd Allen; Jesse Gudmundson; Benjamin Maier

    2008-11-03

    Integral fuel burnable absorgers (IFBA) are added to some rods in the fuel assembly to counteract excessive reactivity. These IFBA elements (usually boron or gadolinium) are presently incorporated in the U)2 pellets either by mixing in the pellets or as coatings on the pellet surface. In either case, the incorporation of ifba into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be costly and can add from 20 to 30% to the manufacturing cost of the fuel. The goal of this NEER research project was to develop an alternative approach that involves incorporation of IFBA element boron at the surface of the fuel cladding material.

  8. Van Hove singularities of some icosahedral boron-rich solids by differential reflectivity spectra

    Science.gov (United States)

    Werheit, Helmut

    2015-09-01

    Differential reflectivity spectra of some icosahedral boron rich solids, β-rhombohedral boron, boron carbide and YB66-type crystals, were measured. The derivatives yield the van Hove singularities, which are compared with results obtained by other experimental methods.

  9. Photoelectron spectroscopy of boron-gold alloy clusters and boron boronyl clusters: B3Au(n)(-) and B3(BO)n(-) (n = 1, 2).

    Science.gov (United States)

    Chen, Qiang; Bai, Hui; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2013-07-28

    Photoelectron spectroscopy and density-functional theory are combined to study the structures and chemical bonding in boron-gold alloy clusters and boron boronyl clusters: B3Au(n)(-) and B3(BO)n(-) (n = 1, 2). Vibrationally resolved photoelectron spectra are obtained for all four species and the B-Au and B-BO clusters exhibit similar spectral patterns, with the latter species having higher electron binding energies. The electron affinities of B3Au, B3Au2, B3(BO), and B3(BO)2 are determined to be 2.29 ± 0.02, 3.17 ± 0.03, 2.71 ± 0.02, and 4.44 ± 0.02 eV, respectively. The anion and neutral clusters turn out to be isostructural and isovalent to the B3H(n)(-)∕B3H(n) (n = 1, 2) species, which are similar in bonding owing to the fact that Au, BO, and H are monovalent σ ligands. All B3Au(n)(-) and B3(BO)n(-) (n = 1, 2) clusters are aromatic with 2π electrons. The current results provide new examples for the Au∕H and BO∕H isolobal analogy and enrich the chemistry of boronyl and gold. PMID:23901981

  10. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  11. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg 10B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague–Dawley (SD) rats were studied by administrating 25 mg 10B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4–6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  12. Boron Rich Solids Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  13. Comments on Smith Barney's uranium enrichment analysis

    International Nuclear Information System (INIS)

    In a May 1990 report, Smith Barney, Harris Upham and Co. concluded that DOE's uranium enrichment program should be restructured as a government corporation; all past costs have been recovered, and DOE's customers have been overcharged about $1.2 billion; the government should retain responsibility for environment and decommissioning costs associated with enriched uranium production before the corporation's formation; and at some future time the corporation could be sold to the private sector. This report agrees with Smith Barney's recommendation to restructure the enrichment program as a government corporation, but disagrees that DOE's customers have paid for all past costs. According to the author, Smith Barney did not identify the total environmental or decommissioning costs between the government and the corporation. Since these costs are largely undefined, but could amount to billions, Congress should immediately require the program to begin setting aside funds for these costs. DOE estimates that government purchases are responsible for 50 percent of the decommissioning costs; therefore, the government should share these costs by matching the corporation's fund contributions. This requirement should continue until the existing plants have been decommissioned

  14. Hydrogen-enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R. [NRG Technologies, Inc., Reno, NV (United States)

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  15. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-01

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  16. Measurement of boron isotopes by negative thermal ionization mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The isobaric interference for boron isotopic measurement by negative thermal ionization mass spectrometry (NTIMS) has been studied. The result shows that the CNO- is not only from the organic material, but also from nitrate in loading reagent in NTIMS. Monitoring the mass 43 ion intensity and 43/42 ratio of blank are also necessary for the boron isotopic measurement by NTIMS, other than is only boron content.

  17. Successive Boronizing and Austempering for GGG-40 Grade Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    Murat Baydogan; Seckin Izzet Akray

    2009-01-01

    Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.

  18. Apparatus for the production of boron nitride nanotubes

    Science.gov (United States)

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  19. Characterization of boron doped nanocrystalline diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/{mu}m range.

  20. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  1. The spectrophotometric determination of boron in tourmalines

    Directory of Open Access Journals (Sweden)

    LJILJANA JAKSIC

    2005-02-01

    Full Text Available A procedure for the spectrophotometric determination of macro amounts of boron in tourmaline with azomethine H is described. The used tourmaline concentrate was obtained by magnetic separation and heavy-liquids purification of the schorl zone of pegmatite or granite aplite. The samples of tourmaline were decomposed by fusion with anhydrous sodium carbonate and taken up in dilute hydrochloric acid. The interfering effects of iron and aluminium were eliminated by masking with an EDTA – NTA solution. After pH adjustment, the boron was reacted with azomethine H and the absorbance of the obtained coloured complex was measured at 415 nm. The results are compared with those obtained by other procedures. The relative error of the determination was less than 3 %.

  2. Techniques for increasing boron fiber fracture strain

    Science.gov (United States)

    Dicarlo, J. A.

    1977-01-01

    Improvement in the strain-to-failure of CVD boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. The results of three methods are presented in which etching and thermal processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment induced surface flaws were removed from 203 micrometers (8 mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment induced contraction on the core flaw. Commercial feasibility considerations suggest as the most cost effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed are presented and discussed both for high vacuum and argon gas heat treatment environments.

  3. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  4. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  5. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  6. Multidimensional boron transport modeling in subchannel approach

    International Nuclear Information System (INIS)

    The main objective of this study is to implement a solute tracking model into the subchannel code CTF for simulations of boric acid transients. Previously, three different boron tracking models have been implemented into CTF and based on the applied analytical and nodal sensitivity studies the Modified Godunov Scheme approach with a physical diffusion term has been selected as the most accurate and best estimate solution. This paper will present the implementation of a multidimensional boron transport modeling with Modified Godunov Scheme within a thermal-hydraulic code based on a subchannel approach. Based on the cross flow mechanism in a multiple-subchannel rod bundle geometry, heat transfer and lateral pressure drop effects will be discussed in deboration and boration case studies. (author)

  7. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  8. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  9. Functionalized boron-dipyrromethenes and their applications

    OpenAIRE

    M. Ravikanth, M; Vellanki,Lakshmi; Sharma,Ritambhara

    2016-01-01

    Vellanki Lakshmi, Ritambhara Sharma, Mangalampalli Ravikanth Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, IndiaAbstract: Boron-dipyrromethenes/BF2-dipyrrins (BODIPYs) are highly fluorescent dyes with a wide range of applications in various fields because of their attractive photophysical properties. One of the salient features of BODIPYs is that the properties of the BODIPY can be fine-tuned at will by selectively introducing the substituent(s) at the desired locati...

  10. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  11. Formation and Structure of Boron Nitride Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG; Zongquan LI; Jin XU

    2005-01-01

    Boron nitride (BN) nanotubes were simply synthesized by heating well-mixed boric acid, urea and iron nitrate powders at 1000℃. A small amount of BN nanowires was also obtained in the resultants. The morphological and structural characters of the BN nanostructures were studied using transmission electron microscopy. Other novel BN nanostructures, such as Y-junction nanotubes and bamboo-like nanotubes, were simultaneously observed. The growth mechanism of the BN nanotubes was discussed briefly.

  12. Boron Nitride Nanosheets for Metal Protection

    OpenAIRE

    Li, Lu Hua; Xing, Tan; Chen, Ying; Jones, Rob

    2015-01-01

    Although the high impermeability of graphene makes it an excellent barrier to inhibit metal oxidation and corrosion, graphene can form a galvanic cell with the underlying metal that promotes corrosion of the metal in the long term. Boron nitride (BN) nanosheets which have a similar impermeability could be a better choice as protective barrier, because they are more thermally and chemically stable than graphene and, more importantly, do not cause galvanic corrosion due to their electrical insu...

  13. Anomalous thermal conductivity of monolayer boron nitride

    Science.gov (United States)

    Tabarraei, Alireza; Wang, Xiaonan

    2016-05-01

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate the mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.

  14. Clinical aspects of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is potentially useful in treating malignant tumors of the central nervous system and is technically possible. Additional in vitro and in vivo testing is required to determine toxicities, normal tissue tolerances and tissue responses to treatment parameters. Adequate tumor uptake of the capture agent can be evaluated clinically prior to implementation of a finalized treatment protocol. Phase I and Phase II protocol development, clinical pharmacokinetic studies and neutron beam development

  15. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.)

  16. Doping Silicon Wafers with Boron by Use of Silicon Paste

    Institute of Scientific and Technical Information of China (English)

    Yu Gao; Shu Zhou; Yunfan Zhang; Chen Dong; Xiaodong Pi; Deren Yang

    2013-01-01

    In this work we introduce recently developed silicon-paste-enabled p-type doping for silicon.Boron-doped silicon nanoparticles are synthesized by a plasma approach.They are then dispersed in solvents to form silicon paste.Silicon paste is screen-printed at the surface of silicon wafers.By annealing,boron atoms in silicon paste diffuse into silicon wafers.Chemical analysis is employed to obtain the concentrations of boron in silicon nanoparticles.The successful doping of silicon wafers with boron is evidenced by secondary ion mass spectroscopy (SIMS) and sheet resistance measurements.

  17. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  18. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, V., E-mail: V.Mohammadi@tudelft.nl; Nihtianov, S. [Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD, Delft (Netherlands)

    2016-02-15

    The lateral gas phase diffusion length of boron atoms, L{sub B}, along silicon and boron surfaces during chemical vapor deposition (CVD) using diborane (B{sub 2}H{sub 6}) is reported. The value of L{sub B} is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and confirmed analytically in the boron deposition temperature range from 700 °C down to 400 °C. For this temperature range the local loading effect of the boron deposition is investigated on the micro scale. A L{sub B} = 2.2 mm was determined for boron deposition at 700 °C, while a L{sub B} of less than 1 mm was observed at temperatures lower than 500 °C.

  19. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  20. The Effects of Organic Wastes on Soil and Cotton Quality with respect to the Risk of Boron and Heavy Metal Pollution

    Directory of Open Access Journals (Sweden)

    Müzeyyen Seçer

    2016-01-01

    Full Text Available The effects on soil and cotton quality of organic wastes from medicinal and aromatic plant factories were investigated with regard to the risks of boron and heavy metal pollution. Oily cumin, oregano, oilless oregano wastes, and mineral fertilizers were applied to cotton in two field experiments performed in the years 2003 and 2006. The Pb content of the soil differed significantly in the 2003 experiment and oregano wastes had significantly decreasing effect. Boron of soil to which oily cumin wastes had been applied reached a toxic limit value in 2006. Boron in soil adversely affected long fibres; B in leaves had a positive effect on the fineness of fibres in 2006. Soil Ni adversely affected plant height in 2006 and seed cotton yield in 2003. Leaf Ni had an adverse effect on fibre elasticity in 2006. Soil Co increased ginning out-turn and Cr decreased the fibre fineness of cotton in 2003.