WorldWideScience

Sample records for boron coatings produced

  1. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  2. Amorphous boron coatings produced with vacuum arc deposition technology

    Science.gov (United States)

    Klepper, C. C.; Hazelton, R. C.; Yadlowsky, E. J.; Carlson, E. P.; Keitz, M. D.; Williams, J. M.; Zuhr, R. A.; Poker, D. B.

    2002-05-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresponding modulus of 180 GPa. This gives a very high value for the H/E ratio, a figure-of-merit for impact resistance of the film. A number of applications are contemplated, including corrosion/abrasion protection for die-casting dies and improved wear resistance for biomedical implants.

  3. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  4. Mechanical properties of boron coatings

    International Nuclear Information System (INIS)

    Internal stress of coatings will cause reliability problems, such as adhesion failure and peeling. We measured the internal stress in boron coatings, which was prepared by the ion plating method, with an apparatus based on the optically levered laser technique. The boron coatings exhibited large compressive stress in the range from -0.5 GPa to -2.6 GPa. It was found that these compressive stresses were decreasing functions of the deposition rate and were increasing functions of the ion bombardment energy. ((orig.))

  5. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  6. CVD-produced boron filaments

    Science.gov (United States)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  7. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  8. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  9. Ion-beam-deposited boron carbide coatings for the extreme ultraviolet.

    Science.gov (United States)

    Blumenstock, G M; Keski-Kuha, R A

    1994-09-01

    The normal-incidence reflectance of ion-beam-deposited boron carbide thin films has been evaluated in the extreme ultraviolet (EUV) spectral region. High-reflectance coatings have been produced with reflectances greater than 30% between 67 and 121.6 nm. This high reflectance makes ion-beam-deposited boron carbide an attractive coating for EUV applications.

  10. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  11. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  12. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  13. Neutron beam monitor based on a boron-coated GEM

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian-Rong; LI Yi; SUN Zhi-Jia; LIU Ben; WANG Yan-Feng; YANG Gui-An; ZHOU Liang; XU Hong; DONG Jing; YANG Lei

    2011-01-01

    A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on one surface of the aluminum cathode plate as the neutron convertor. 96 channel pads with an area of 8 mm×8 mm each are used for fast signal readout.In order to study the basic characteristics of a boron-coated GEM, several irradiation tests were carried out with α source 239pu and neutron source 241Am(Be). The signal induced by the neutron source has a high signal-to-noise ratio. A clear image obtained from α source 239pu is presented, which shows that the neutron beam monitor based on a boron-coated GEM has a good two-dimensional imaging ability.

  14. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  15. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  16. Processability of Nickel-Boron Nanolayer Coated Boron Carbide

    OpenAIRE

    Zhu, Xiaojing

    2008-01-01

    This dissertation work focuses on the processability improvement of B4C, especially the compaction and sintering improvement of B4C by applying a Ni-B nanolayer coating on individual B4C particles. A modified electroless coating procedure was proposed and employed to coat nanometer Ni-B layer onto micron-sized B4C particles. The thickness was able to be tuned and controlled below 100 nm. Key parameters, including the amount of nickel source, the amount of the surface activation agent (PdCl...

  17. Modification of optical surfaces employing CVD boron carbide coatings

    International Nuclear Information System (INIS)

    Non-reflective or high emissivity optical surfaces require materials with given roughness or surface characteristics wherein interaction with incident radiation results in the absorption and dissipation of a specific spectrum of radiation. Coatings have been used to alter optical properties, however, extreme service environments, such as experienced by satellite systems and other spacecraft, necessitate the use of materials with unique combinations of physical, chemical, and mechanical properties. Thus, ceramics such as boron carbide are leading candidates for these applications. Boron carbide was examined as a coating for optical baffle surfaces. Boron carbide coatings were deposited on graphite substrates from BCl3, CH4, and H2 gases employing chemical vapor deposition (CVD) techniques. Parameters including temperature, reactant gas compositions and flows, and pressure were explored. The structures of the coatings were characterized using electron microscopy and compositions were determined using x-ray diffraction. The optical properties of the boron carbide coatings were measured, and relationships between processing conditions, deposit morphology, and optical properties were determined

  18. Molybdenum-boron-silicon coating on VN-3 niobium alloy

    International Nuclear Information System (INIS)

    Heat resistance of the complex molybdenum-boron-silicon coating on VN-3 niobium alloy is studied. The coating phase composition in the initial state and after heating in air at 1200 deg C during 100-1300 h is determined using X-ray diffraction, electron diffraction and X-ray spectrum analyses. It is shown that high heat resistance of the coating is ensured due to formation of an external film of silicon oxide and a boride sublayer between the metal and coating

  19. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  20. Nitrogen implantation effects on the chemical bonding and hardness of boron and boron nitride coatings

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S; Felter, T; Hayes, J; Jankowski, A F; Patterson, R; Poker, D; Stamler, T

    1999-02-08

    Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N{sub 2}) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B 1s photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N{sup +} and N{sub 2}{sup +}) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B 1s NEXAFS spectra.

  1. Process for producing wurtzitic or cubic boron nitride

    International Nuclear Information System (INIS)

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described

  2. Deposition and adhesion of PECVD boron coatings on Ti-6Al-4V substrates

    International Nuclear Information System (INIS)

    Plasma-enhanced chemical vapor deposition (PECVD) has been used to produce elemental boron coatings on Ti-6Al-4V substrates. Deposition has been accomplished using a novel PECVD reactor in which a serpentine, rather than a helical, RF coil has been employed. Transmission electron microscopy has confirmed the amorphous nature of these boron coatings. Scratch adhesion properties of this coating/substrate system, including an investigation of the effects of nitrogen ion implantation energy and fluence prior to deposition, have been determined. Both acoustic emission and frictional force measurements have been recorded during scratch removal traverses to detect incipient coating and/or substrate failure. Differences in failure mechanism have been found to result as a consequence of the substrate surface pretreatment, with untreated substrates giving rise to adhesive failures and ion implanted substrates leading to cohesive coating failures. The acoustic emission technique has demonstrated great sensitivity in the detection of both adhesive and cohesive coating failures, and scanning electron microscopy has been effective in differentiating adhesive failures, such as spallation, from coating microcracking in a cohesive failure mode

  3. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride

    Science.gov (United States)

    Liu, Zheng; Gong, Yongji; Zhou, Wu; Ma, Lulu; Yu, Jingjiang; Idrobo, Juan Carlos; Jung, Jeil; MacDonald, Allan H.; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.

    2013-10-01

    Hexagonal boron nitride is a two-dimensional layered material that can be stable at 1,500 °C in air and will not react with most chemicals. Here we demonstrate large-scale, ultrathin, oxidation-resistant coatings of high-quality hexagonal boron nitride layers with controlled thicknesses from double layers to bulk. We show that such ultrathin hexagonal boron nitride films are impervious to oxygen diffusion even at high temperatures and can serve as high-performance oxidation-resistant coatings for nickel up to 1,100 °C in oxidizing atmospheres. Furthermore, graphene layers coated with a few hexagonal boron nitride layers are also protected at similarly high temperatures. These hexagonal boron nitride atomic layer coatings, which can be synthesized via scalable chemical vapour deposition method down to only two layers, could be the thinnest coating ever shown to withstand such extreme environments and find applications as chemically stable high-temperature coatings.

  4. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  5. Flow characteristics of aluminum coated boron steel in hot press forming

    Institute of Scientific and Technical Information of China (English)

    Jeong-Hwan JANG; Jae-Ho LEE; Byeong-Don JOO; Young-Hoon MOON

    2009-01-01

    The flow characteristics of aluminum coated boron steel in hot press forming were investigated. Furthermore, the effects of aluminum coated layer on press forming were analyzed during deep drawing. The results show that aluminum coated boron steel exhibits a high sensitivity on temperature and strain rate. Aluminum coating layer appears in surface flaking in a temperature range of 700-800 ℃, but smooth surface is formed above 900 ℃.

  6. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.;

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammoniu...

  7. AUTOCATALYTIC REDUCTION AND CHARACTERISTICS OF BORON-CONTAINING COATINGS

    Directory of Open Access Journals (Sweden)

    V. Covaliov

    2013-06-01

    Full Text Available The research results of the plating conditions, chemical composition and properties of Ni-B coatings and Ni-Re-B, Ni-Mo-B and Ni-W-B alloys are given. It was shown that introduction of alloying elements (Re, Мо and W in the composition of Ni-containing coatings modifies the catalytic activity of the alloys’ surface, with regard to the parallel reactions of dimethylamino-borane (DMAB heterogeneous hydrolysis, Ni reduction and evolving of the molecular hydrogen. It was found that with the increase in concentration of alloying element, boron content in the coatings is decreased to the trace amounts. The effect of alloys composition on hydrogen evolving overvoltage was studied. Due to the low overvoltage of hydrogen evolving (HE on the alloy Ni-Re-B surface (11 at.% Re, it can be used as electrode for hydrogen generation from water in the electrolytic cell with novel design and improved technical-economic indicators.

  8. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  9. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  10. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzhinskiy, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  11. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-01

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400-1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  12. Distinct surface hydration behaviors of boron-rich boride thin film coatings

    International Nuclear Information System (INIS)

    In this work, the surface boron chemical states and surface hydration behaviors of the as-deposited and annealed boron-rich boride thin film coatings, including AlMgB14, TiB2 and AlMgB14–TiB2, were systematically studied by use of X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS results indicate that boron at annealed AlMgB14 film surface can be oxidized; surprisingly, such oxidation does not lead to the formation of boric acid in ambient air. Instead, boric acid can be produced at the surface of annealed TiB2 film and AlMgB14–TiB2 film. It is shown, via the water contact angle measurements, that these boride films exhibit distinct surface wettability characteristics, which are believed to result in the observed surface hydration processes. Furthermore, we found anatase TiO2 formation plays a major role in the surface wetting behaviors for these boride films

  13. Distinct surface hydration behaviors of boron-rich boride thin film coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xinhong [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Liu, Wei [Institute of Crystal Materials, Shandong University, Jinan 250100 (China); Ouyang, Jun [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Tian, Yun, E-mail: ytian@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2014-08-30

    In this work, the surface boron chemical states and surface hydration behaviors of the as-deposited and annealed boron-rich boride thin film coatings, including AlMgB{sub 14}, TiB{sub 2} and AlMgB{sub 14}–TiB{sub 2}, were systematically studied by use of X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS results indicate that boron at annealed AlMgB{sub 14} film surface can be oxidized; surprisingly, such oxidation does not lead to the formation of boric acid in ambient air. Instead, boric acid can be produced at the surface of annealed TiB{sub 2} film and AlMgB{sub 14}–TiB{sub 2} film. It is shown, via the water contact angle measurements, that these boride films exhibit distinct surface wettability characteristics, which are believed to result in the observed surface hydration processes. Furthermore, we found anatase TiO{sub 2} formation plays a major role in the surface wetting behaviors for these boride films.

  14. Coating on steel ST-37 type with nano powder pack of boron carbide

    International Nuclear Information System (INIS)

    Steel ST-37 is a material widely used in industry. The quality of steel ST-37 can be improved by means of surface coating. At present the development of the technology shows the tendency toward nanoscience and nanotechnology that can be applied to various fields, among others energy, industry, medicine, information technology and communication as well as food necessitated by people at competitive selling prices. The steps in powder pack boronizing include: Pre-treatment, powder preparation, boronizing agent preparation, container preparation, boronizing process, metallography, hardness testing and corrosion testing. From the study, it is concluded as follows. The mechanism of boronizing process is divided into three stages, which are the boride compound formation stage, the diffusion stage, and the grain growth and orientation stage. Carbon in B4C on boronizing process does not diffuse into the substrate. The formation of boride compound begins to occur at a temperature of 600 °C, the diffusion process at 700 °C, and the grain growth and orientation at 800 °C. The hardness of boron coating reaches a value of 1115 VHN. Coating by boronizing process shows corrosion resistance in 10% HCl. (author)

  15. Improving tribological properties of sputtered boron carbide coatings by process modifications

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, T.; Bewilogua, K. [Fraunhofer-Institut fuer Schicht- und Oberflaechentechnik, Braunschweig (Germany); van der Kolk, G.; Hurkmans, T.; Trinh, T.; Fleischer, W. [Hauzer Techno Coating Europe BV, Van Heemskerckweg 22, NL-5920, Venlo (Netherlands)

    2000-04-03

    Boron carbide coatings are well-known for extreme hardness and excellent wear resistance. In this paper a d.c. magnetron sputter process for the deposition of boron carbide coatings is described. It is shown that by adding small amounts of a hydrocarbon reactive gas (in this case acetylene) the coefficient of friction can be reduced from 0.8 down to 0.2. Results from a laboratory scale deposition device are successfully transferred to an industrial batch coater. The coating adhesion is well enhanced by a titanium interlayer. From the analysis of the chemical composition and from hardness values it is concluded that a structural modification is responsible for the improvement of sliding behaviour. It is suggested that the introduction of additional bondings reduces the brittleness of boron carbide. Furthermore, a comparison with metal-containing amorphous carbon coatings (Me-DLC) reveals several similarities. (orig.)

  16. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  17. Dip coating of boron nitride thin films on nicalon fibers

    International Nuclear Information System (INIS)

    This paper discusses a process involving dip coating of ceramic fibers in H3BO3 solution followed by reaction with NH3 has resulted in the formation of a BN coating on Nicalon and a carbon coated Nicalon fiber. BN coated C-Nicalon fiber maintained its strength during the coating process, while the BN coated Nicalon did not

  18. Characterization of Vc-Vb Particles Reinforced Fe-Based Composite Coatings Produced by Laser Cladding

    Science.gov (United States)

    Qu, K. L.; Wang, X. H.; Wang, Z. K.

    2016-03-01

    In situ synthesized VC-VB particles reinforced Fe-based composite coatings were produced by laser beam melting mixture of ferrovanadium (Fe-V) alloy, boron carbide (B4C), CaF2 and Fe-based self-melting powders. The results showed that VB particles with black regular and irregular blocky shape and VC with black flower-like shape were uniformly distributed in the coatings. The type, amount, and size of the reinforcements were influenced by the content of FeV40 and B4C powders. Compared to the substrate, the hardness and wear resistance of the composite coatings were greatly improved.

  19. Boron carbide (B{sub 4}C) coating. Deposition and testing

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E.; Barsuk, V. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Buzhinsky, O. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Evsin, A.; Gordeev, A.; Grunin, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Klimov, N. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Kurnaev, V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mazul, I. [Federal State Unitary Interprise Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA Efremov), St-Peterburg (Russian Federation); Otroshchenko, V.; Putric, A. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-15

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B{sub 4}C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B{sub 4}C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B{sub 4}C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B{sub 4}C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  20. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.

  1. Effect of boron on hot strips of low carbon steel produced by compact strip production

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Yonglin Kang

    2008-01-01

    The effect of boron on hot strips of low carbon steel produced by compact strip production (CSP) to reduce the strength to a certain degree was investigated, which is quite different from that of high-strength low alloy steel. The mechanical properties and microstructural evolution of the hot strip were studied using optical microscopy and tensile tests. By means of an electrolytic disso- lution technique and Thermo-Cal calculation, the precipitates containing boron were analyzed and detected. From the electron back- scattered diffraction analysis, it can be deciphered whether the microstructure has recrystallized or not. Furthermore, the effect of boron segregation on the recrystallization or non-recrystallization conditions can be distinguished. The segregation behavior of boron was investigated in boron-containing steel. The nonequilibrium segregation of boron during processing was discussed on the basis of the forming complexes with vacancies that migrate to the boundaries prior to annihilation, which was confirmed by the subsequent cold rolling with annealing experiments.

  2. Feasibility study of Boron Nitride coating on Lithium-ion battery casing

    International Nuclear Information System (INIS)

    Increasing in public awareness about global warming and exhaustion of energy resources has led to a flourishing electric vehicle industry that would help realize a zero-emission society. The thermal management of battery packs, which is an essential issue closely linked to a number of challenges for electric vehicles including cost, safety, reliability and lifetime, has been extensively studied. However, relatively little is known about the thermal effect of polymer insulation on the Lithium-ion battery casing. This study investigates the feasibility of replacing the polymer insulation with a Boron Nitride coating on the battery casing using the Taguchi experimental method. The effect of casing surface roughness, coating thickness and their interaction were examined using orthogonal array L9 (34). Nominal the best is chosen for the optimization process to achieve optimum adhesion strength. In addition, the thermal improvements of the coating as compared to conventional polymer insulator on the battery are further investigated. - Highlights: • We studied the Boron Nitride coating on battery casing using Taguchi method. • We investigated the effect of surface roughness and coating thickness on adhesion strength. • We compared the effect of coating and polymer insulator in heat transfer. • The Boron Nitride coating could enhance the thermal management of the battery

  3. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  4. Surface analysis of VPS-W coatings boronized by an ICRF discharge in HT-7

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhongshi, E-mail: zsyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China); Wang Wanjing [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China); Radiosicence Research Laboratory, Shizuoka University, 836 Oya, Shizuoka 422-8529 (Japan); Li Qiang; Wu Jing [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China); Okuno, Kenji; Oya, Yasuhisa [Radiosicence Research Laboratory, Shizuoka University, 836 Oya, Shizuoka 422-8529 (Japan); Luo Guangnan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China)

    2011-10-01

    To understand the surface compositions and the hydrogen isotope behavior in boronized Vacuum plasma spraying (VPS)-W, the boron coating has been achieved by means of Ion Cyclotron Radio Frequency (ICRF) boronization using carborane (C{sub 2}B{sub 10}H{sub 12}) powder as the precursor material in HT-7. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to observe the morphology of the VPS-W and boronized W surfaces. The X-ray Photoelectron Spectroscopy (XPS) of W-4f, O-1s, C-1s and B-1s on the VPS-W sample before and after boronization and after plasma exposure have been measured. The B-B and B-C bonds were observed after boronization treatment for VPS-W. Thermal Desorption Spectroscopy (TDS) experiments were also carried out to investigate the thermal desorption behavior of D implanted into the samples. After HT-7 plasma exposure, the desorption spectrum had a low temperature peak associated with trapping in intrinsic defects in polycrystalline W and a high temperature peak associated with B-O-D and B-C-D bonds.

  5. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  6. Formation of borohydride-reduced nickel-boron coatings on various steel substrates

    Science.gov (United States)

    Vitry, V.; Delaunois, F.

    2015-12-01

    Electroless nickel-boron coatings are widely used in industrial on various substrates: ferrous and non-ferrous alloys mainly but also in some cases non-metallic materials. However, their growth process is still not fully understood and the influence of the nature of the substrate on this process is completely unknown. The formation of electroless nickel-boron was observed on five ferrous alloys: a mild steel, a high carbon unalloyed steel, a cryogenic steel (that contains 9 wt.% nickel), an austenitic stainless steel and an austeno-ferritic (duplex) stainless steel. Nickel-boron films were prepared by electroless deposition, using sodium borohydride as a reducing agent. Samples were immersed in a plating bath for times ranging from 5 s to 60 min. The influence of the nature of the substrate on the initial deposition of the coatings was investigated in detail: the initiation mechanism was identified for all substrates and it was found to be related to catalytic oxidation of the reducing agent rather than to a displacement process. The delay before initiation was influenced by the nickel content of the coating and by a high number of grain boundaries. In all cases, the plating rate varied with plating time, with a slower period during the first 10 min that corresponds to morphological modification of the coating.

  7. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  8. Microstructural study of oxidation of carbon-rich amorphous boron carbide coating

    Institute of Scientific and Technical Information of China (English)

    Bin ZENG; Zu-de FENG; Si-wei LI; Yong-sheng LIU

    2008-01-01

    Carbon-rich amorphous boron carbide (BxC) coatings were annealed at 400℃, 700℃, 1000℃ and 1200℃ for 2 h in air atmosphere. The microstructure and composition of the as-deposited and annealed coat-ings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectro-scopy and energy dispersive X-ray spectroscopy (EDS). All of the post-anneal characterizations demonstrated the ability of carbon-rich BxC coatings to protect the graphite substrate against oxidation. Different oxidation modes of the coatings were found at low temperature (400℃), moderate temperature (700℃) and high temper-ature (1000℃ and 1200℃). Finally, the feasibility of the application of carbon-rich BxC instead of pyrolytic car-bon (PyC) as a fiber/matrix interlayer in ceramics-matrix composites (CMCs) is discussed here.

  9. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.

  10. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. PMID:25464183

  11. Superior critical current density obtained in MgB2 bulks via employing carbon-coated boron and minor Cu addition

    Science.gov (United States)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-09-01

    High performance Cu doped MgB2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB2 grains, as well as a high level of homogeneous carbon doping in the MgB2 samples, which significantly enhance the Jc in both Cu doped and undoped bulks compared to MgB2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (Jc) at self fields and low fields (the best values are 7 × 105 A/cm2 at self fields, and 1 × 105 A/cm2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of Jc at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB2 bulks or wires with excellent Jc on an industrial scale.

  12. Effects of nano-sized boron nitride (BN) reinforcement in expandable graphite based in-tumescent fire retardant coating

    Science.gov (United States)

    Zulkurnain, E. S.; Ahmad, F.; Gillani, Q. F.

    2016-08-01

    The purpose of in-tumescent fire retardant coating (IFRC) is to protect substrate from fire attack by limiting heat transfer. A range of coating formulations have been prepared using Bisphenol A epoxy resin BE-188 and polyamide solidifier H-2310 as two-part binder, ammonium polyphosphate (APP) as acid source, melamine (MEL) as the blowing agent, expandable graphite (EG) as carbon source and nano-boron nitride (BN) as inorganic nano filler. The filler was used to improve the performances of the APP-EG-MEL coating. The effects of nano-BN on the char morphology and thermal degradation were investigated by fire test, thermo gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X- ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). The results showed that by substituting or reinforcing of 4% weight percentage of nano-BN, residual weight of the char increases by 23.82% compared to APP-EG-MEL coating without filler. Higher carbon content was obtained in the char and a more compact char was produced. The results indicated that nano-BN could be used as a filler to improve thermal stability of the APP-EG-MEL coating.

  13. Oxygen gettering properties of boron film produced by diborane DC glow discharge

    International Nuclear Information System (INIS)

    Boron film coated on plasma facing walls has been utilized to reduce the oxygen impurity level by the gettering action. The boron film is also useful to reduce the hydrogen recycling. In this study, the boronization was conducted by a DC glow discharge with a mixture gas of diborane and helium both for a graphite and a stainless steel (SS) liners. After the boronization, the oxygen glow discharge was carried out to evaluate the gettered oxygen amount. The state of the oxygen in the surface was also examined. The gettered oxygen amount in the case of the graphite liner was about twice larger than that in the case of the SS liner. The oxygen was trapped in the depth range from the top surface to 100 nm or from the top surface to 20-30 nm in the case of graphite or SS, respectively. The oxygen was observed to be chemically bonded with the boron. After the oxygen discharge, the helium discharge was conducted to recover the oxygen gettering ability. After the helium discharge, the oxygen discharge was again carried out. The gettered oxygen amount in the case of graphite was comparable with that in the case of SS. (orig.)

  14. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code

    International Nuclear Information System (INIS)

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5 cm2 configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSPBICHP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSPBERTHP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25 meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. - Highlights: • The results of boron-coated GEM for thermal neutrons are described. • The simulations were performed by GEANT4 MC code. • The evaluation was determined by GEANT4 using two physics lists. • The response of the detector was taken for En=25–100 meV

  15. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-01

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  16. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  17. ICRF Impurity Behavior with Boron Coated Molybdenum Tiles in Alcator C-Mod

    International Nuclear Information System (INIS)

    Full text: Although ion cyclotron range of frequency (ICRF) heating is considered an excellent candidate for bulk heating, minimizing impurity production associated with ICRF operation, particularly with metallic plasma facing components (PFC), remains one of the primary challenges for ICRF utilization. In C-Mod and present experiments, boronization, an in-situ applied boron film, is utilized to control impurities and its effectiveness has a limited lifetime. In C-Mod, the lifetime has been observed to be proportional to integrated injected RF Joules and the degradation is faster than in equivalent ohmic heated discharges the ICRF is enhancing the erosion rate of the boron film. In an effort to identify important erosion and impurity source locations, we have vacuum plasma sprayed ∼ 100 microns of boron on molybdenum tiles from the outer divertor shelf, main plasma limiters, and the RF antennas. We have also modified the shape of the main plasma limiter and increased our spectroscopic monitoring diagnostics of the main plasma limiter. Finally, we have installed a set of probes to monitor the plasma potential and RF fields on field lines connected an antenna. For ICRF heated H-modes, the core molybdenum levels was significantly reduced and remained at low levels for increased integrated injected RF Joules. The core molybdenum levels also no longer scales with RF power in L-mode in contrast with previous results with boronization and molybdenum plasma facing components. Initial Post campaign analysis of the boron coating will also be presented. Boronization and impurity, typically nitrogen or neon, seeded discharges enabled high plasma and ICRF antenna performance. The boronization suggests that other impurity sources are important but are yet to be identified. Impurity seeding had two important effects: reduced core molybdenum levels and suppressed antenna faults due to arcs and injections from antenna structure. The lower core molybdenum level is surprising since

  18. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Science.gov (United States)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu

    2016-09-01

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiCf/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  19. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    Science.gov (United States)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  20. Cracking and interfacial debonding of the Al–Si coating in hot stamping of pre-coated boron steel

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Zhong-Xiang; Wang, Kai; Zhang, Yi-Sheng [College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhu, Bin, E-mail: zhubin26@gmail.com [College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-15

    Highlights: • Cracking failure of the Al–Si coating in hot stamping process was investigated. • Microcracks initiated inside the coating during the austenitization. • Microcrack initiation in the hot deformation correlated to the Fe–Al intermetallics. • Macrocracks extended along the Mode I path led to the coating break into segments. • Macrocracks growth followed Mode II path resulted in the interfacial debonding. - Abstract: This study is focused on the mechanisms of cracks initiation, propagation and interfacial debonding of the Al–Si coating in hot stamping of the pre-coated boron steel. The investigation was performed isothermally at three deformation temperatures (700, 750, 800 °C) at a strain rate of 0.1/s. Cracking and interfacial debonding of the coating were observed with optical and scanning electron microscope, to reveal the damage evolution under applied tensile strains. Microstructures and phase inside the coating before and after austenitization were determined by energy dispersive spectroscopy and X-ray diffraction. The results indicate that austenitization led to micro-cracks and Kirkendall voids initiation inside the Al–Si coating because of thermal loading, and the cracks were arrested by α-Fe diffusion layer. When the coating on substrate system was submitted to the uniaxial tensile test, the surface coating exhibited multiple cracking normal to the tensile direction. The Kirkendall voids seemed to promote the macro-crack growth through the diffusion layer. The macro-cracks followed a Mode I path, leading to the coating deteriorates to cracked segments. The macro-cracks then continued to propagate following a Mode II path that along the diffusion layer/substrate interface because of shear stress transferred from the deformed substrate, resulting in the interfacial debonding of the coating segments. The crack density firstly increased with the increasing tensile strain and then reached saturation. Decreasing deformation

  1. Properties of multilayer coatings produced by coaxial laser cladding

    Science.gov (United States)

    Petrovskiy, V. N.; Bykovskiy, D. P.; Dzhumaev, P. S.; Polskiy, V. I.; Prokopova, N. M.; Chirikov, S. N.

    2016-09-01

    This article contains results of the study of multilayer coatings produced by laser cladding on the substrate steel 34HMA using iron based powder PR-10R6M5 as the filler material. The coatings were produced with consistent application of the tracks with fixed overlapping. The dependencies between the characteristics of tracks and the technological mode of deposition were revealed. Properties of coatings were determined for various overlapping of tracks and directions of the cladding layers.

  2. Functionalized hexagonal boron nitride nano-coatings for protection of transparent plastics

    Science.gov (United States)

    Van Tran, Thu; Usta, Aybala; Asmatulu, Ramazan

    2016-04-01

    Nanocoating is the result of a coating application of nanomaterials to build a consistent network of molecules in a paint to protect the surfaces of various materials and devices. Hexagonal Boron Nitride (h-BN) is in two dimensional form with excellent thermal, mechanical and chemical properties. These BN nanocoatings are also a thermally insulating material for heat management. After adding functionalized h-BNs into paints or other coatings, they will absorb the harmful UV part of sunlight and prevent coating against the environmental degradations. The impacts of the environmental factors on the coatings can be substantially eliminated. In the present study, h-BNs were modified with [2-(2-Aminoethylamino) propyl] trimethoxysilane and uniformly dispersed into the polyurethane coatings with different amounts, such as 0.1, 0.2, 0.4, and 0.8wt% to increase hardness and water resistance, and decrease the UV degradation level of coatings and transparent plastics. The prepared samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis Spectroscopy, Scanning Electron Microscope (SEM), Water Contact Angle, and Differential Scanning Calorimeter (DSC). The test results showed that the nanocoatings with functionalized h-BN provided excellent physical and chemical behaviors against the UV and other physical degradations on the substrates.

  3. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    Science.gov (United States)

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed. PMID:24245317

  4. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  5. A boron-coated ionization chamber for ultra-cold neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, D.J., E-mail: dsalvat@indiana.edu [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Morris, C.L.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Adamek, E.R. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Bacon, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Hickerson, K.P. [California Institute of Technology, Pasadena, CA 91125 (United States); Hoagland, J.; Holley, A.T. [North Carolina State University, Raleigh, NC 27695 (United States); Liu, C.-Y. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Makela, M.; Ramsey, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Reid, A. [North Carolina State University, Raleigh, NC 27695 (United States); Rios, R. [Idaho State University, Pocatello, ID 83209 (United States); Saunders, A.; Sjue, S.K.L. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); VornDick, B.; Young, A.R. [North Carolina State University, Raleigh, NC 27695 (United States)

    2012-11-01

    The design and performance of a boron-coated ionization chamber for the detection of ultra-cold neutrons (UCN) are presented. We detect UCN from the solid deuterium-based UCN source at the Los Alamos Neutron Science Center. Our results indicate comparable efficiency to {sup 3}He ionization chambers and proportional counters currently used at the UCN source. In addition, the ion chamber is used to detect thermal neutrons; a comparison of the thermal neutron and UCN pulse-height spectra indicates that UCN mostly capture near the layer surface.

  6. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    Science.gov (United States)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  7. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru; Chuchkova, Lyubov V., E-mail: twitty-kun@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation)

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  8. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Science.gov (United States)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  9. 利用市售不锈钢箔制备氮化硼纳米线%Boron Nitride Nanowires Produced on Commercial Stainless Steel foil

    Institute of Scientific and Technical Information of China (English)

    陈拥军; 童张法; 骆丽杰

    2008-01-01

    Chemical vapor deposition growth of one-dimensional nanomaterials usually demands substrates that have been coated with a layer of catalyst film. In this study, a green process to synthesize boron nitride (BN) nanowires directly on commercial stainless steel foils was proposed by heating boron and zinc oxide powders under a mixture gas flow of N2 and 15% H2 at 1100℃, and a large quantities of pure h-BN nanowires have been produced directly on commercial stainless steel foil. The stainless steel foils not only acted as the substrate but also the catalyst for the nanowire growth. The synthesized BN nanowires were characterized by X-ray diffraction, scanning and transmission electron microscopes, X-ray energy dispersive spectrometer and photoluminescence spectroscopy. The nanowires also possess strong PL emission bands at 515, 535, and 728nm.

  10. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    Directory of Open Access Journals (Sweden)

    Zhiming Zhang

    2013-07-01

    Full Text Available Thin boron doped diamond (BDD film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co micro drills by using the hot filament chemical vapor deposition (HFCVD technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools.

  11. Online detection of radiation produced in Boron-10 neutron capture reaction: preliminary studies

    International Nuclear Information System (INIS)

    Boron microdistribution in both tumor and normal tissue sections can be studied by the autoradiography technique in solid state nuclear track detectors (SSNTD). A measurement of boron concentration in tissue is obtained through the evaluation of the density of tracks produced by alpha and lithium ions generated in the neutron capture reaction 10B(n,α) 7Li. This knowledge is pivotal when a BNCT (Boron Neutron Capture Therapy) protocol is considered. A new methodology is proposed in order to record alpha and lithium events in real time, as light spots superimposed to the tissue section image. CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) are used as detectors, with the advantage of avoiding the superposition of events. Commercial web cams were employed for the preliminary experiments. They were partially disassembled in order to get the sensor chip uncovered. These devices were exposed to different radiation sources: 6.118 MeV alpha particles (252Cf), 0.662 MeV gamma rays (137Cs) and thermal neutrons (moderated 241Am-Be source, 103n.cm2.seg-1), to analyze the characteristics of the respective images. Pictures from tissue sections put in contact with the sensor surface were also acquired. A software was developed in Matlab to perform the image capture and processing. Early results show the feasibility of using these devices to study the distribution 10B in tissue samples. (author)

  12. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  13. Monte Carlo simulation on the application of boron-coated MRPC thermal neutron detector to the compensated neutron logging

    International Nuclear Information System (INIS)

    Background: The compensated neutron logging technology is widely used in oil exploration and development. The neutron detector commonly used in this technology is the helium-3 proportional counter. Due to the decreasing in supply of the helium-3 gas, the price of the helium-3 proportional counter rises quickly. Purpose: The aim is to develop a new type of neutron detector to replace the helium-3 tubes in the compensated neutron logging technology. Methods: A new thermal neutron detector coated with a layer of thermal neutron converter in the inner glass of the Multi-gap Resistive Plate Chamber (MRPC) was developed. Under the conventional and underbalanced conditions, Monte Carlo method was used to simulate the response of the boron-coated MRPC thermal neutron detector and helium-3 proportional counter employed in compensated neutron logging technology. Results: It is shown that the SS/LS increases with the rise of porosity using either the boron-coated MRPC thermal neutron detector or the helium-3 proportional counter, and the results of these two detectors are basically identical. Conclusion: It indicates that the boron-coated MRPC thermal neutron detector can be used for compensated neutron logging. (authors)

  14. Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings.

    Science.gov (United States)

    Parra, Carolina; Montero-Silva, Francisco; Henríquez, Ricardo; Flores, Marcos; Garín, Carolina; Ramírez, Cristian; Moreno, Macarena; Correa, Jonathan; Seeger, Michael; Häberle, Patricio

    2015-04-01

    Understanding biological interaction with graphene and hexagonal-boron nitride (h-BN) membranes has become essential for the incorporation of these unique materials in contact with living organisms. Previous reports show contradictions regarding the bacterial interaction with graphene sheets on metals. Here, we present a comprehensive study of the interaction of bacteria with copper substrates coated with single-layer graphene and h-BN. Our results demonstrate that such graphitic coatings substantially suppress interaction between bacteria and underlying Cu substrates, acting as an effective barrier to prevent physical contact. Bacteria do not "feel" the strong antibacterial effect of Cu, and the substrate does not suffer biocorrosion due to bacteria contact. Effectiveness of these systems as barriers can be understood in terms of graphene and h-BN impermeability to transfer Cu(2+) ions, even when graphene and h-BN domain boundary defects are present. Our results seem to indicate that as-grown graphene and h-BN films could successfully protect metals, preventing their corrosion in biological and medical applications.

  15. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  16. Thermal stability of protective coatings produced on nickel based superalloy

    Directory of Open Access Journals (Sweden)

    M. Pytel

    2012-04-01

    Full Text Available Purpose: In this paper the results of high temperature cyclic oxidation tests of the protective diffusion coatings were presented. One of the main purposes of this work was to produce three different types of protective coatings by three different methods, i.e. slurry method, vapour phase aluminizing (VPA and chemical vapour deposition (CVD, applied on nickel based René 80 superalloy substrate.Design/methodology/approach: The high temperature cyclic oxidation tests were carried out in 23h cycles at constant temperature 1100°C using Carbolite CWF 1300 chamber furnace. The samples were removed outside and were weighted after each cycle. The microstructure investigations of all kinds of the coatings were conducted by the use of light microscope (Nikon Epiphot 300 and a scanning electron microscope (Hitachi S-3400N. In the analysis influence of each method have been taken into consideration, i.e. especially influence of the kind of process on microstructure, coating thickness, chemical composition, first of all aluminium content (in outer ȕ-NiAl layer so-called additive layer, diffusion layer and substrate. For the chemical composition examination x-ray energy dispersive (EDS method was applied using Thermo equipment.Findings: It was found that the best high cyclic oxidation resistance of coating was obtained using CVD method (the maximal increase of samples weight after 28th cycle was observed, whereas in case of the slurry sample after 3rd and VPA after 5th.Research limitations/implications: The research results will be used in the future in order to increase coating thickness, aluminium content and to produce Pt, Pd, Zr, Hf and Si modified aluminide coatings.Practical implications: The CVD method will be used to coat internal passages of turbine blades, for example to produce modified aluminide bond coats on single crystal nickel based superalloys.Originality/value: Chemical vapour deposition is an unique method which is a “pure method

  17. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  18. SaOS-2 cell response to macro-porous boron-incorporated TiO2 coating prepared by micro-arc oxidation on titanium.

    Science.gov (United States)

    Huang, Qianli; Elkhooly, Tarek A; Liu, Xujie; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO2 coating (B-TiO2 coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO2 coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO2 coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO2 coating. The spreading of SaOS-2 cells on B-TiO2 coating was faster than that on TiO2 coating. The proliferation rate of SaOS-2 cells cultured on B-TiO2 decreased after 5days of culture compared to that on TiO2 coating. SaOS-2 cells cultured on B-TiO2 coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO2 coating. The present findings suggest that B-TiO2 coating is a promising candidate surface for orthopedic implants.

  19. SaOS-2 cell response to macro-porous boron-incorporated TiO2 coating prepared by micro-arc oxidation on titanium.

    Science.gov (United States)

    Huang, Qianli; Elkhooly, Tarek A; Liu, Xujie; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO2 coating (B-TiO2 coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO2 coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO2 coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO2 coating. The spreading of SaOS-2 cells on B-TiO2 coating was faster than that on TiO2 coating. The proliferation rate of SaOS-2 cells cultured on B-TiO2 decreased after 5days of culture compared to that on TiO2 coating. SaOS-2 cells cultured on B-TiO2 coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO2 coating. The present findings suggest that B-TiO2 coating is a promising candidate surface for orthopedic implants. PMID:27287114

  20. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    Science.gov (United States)

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  1. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice

    Science.gov (United States)

    Liu, Bo; Qi, Wei; Tian, Longlong; Li, Zhan; Miao, Guoying; An, Wenzhen; Liu, Dan; Lin, Jing; Zhang, Xiaoyong; Wu, Wangsuo

    2015-12-01

    The boron nitride (BN) nanoparticles, as the structural analogues of graphene, are the potential biomedicine materials because of the excellent biocompatibility, but their solubility and biosafety are the biggest obstacle for the clinic application. Here, we first synthesized the highly soluble BN nanoparticles coated by PEG (BN-PEG) with smaller size (~10 nm), then studied their biodistribution in vivo through radioisotope (Tc99mO4 -) labeling, and the results showed that BN-PEG nanoparticles mainly accumulated in the liver, lung, and spleen with the less uptake by the brain. Moreover, the pathological changes induced by BN-PEG could be significantly observed in the sections of the liver, lung, spleen, and heart, which can be also supported by the test of biochemical indexes in serum. More importantly, we first observed the biodistribution of BN-PEG in the heart tissues with high toxicity, which would give a warning about the cardiovascular disease, and provide some opportunities for the drug delivery and treatment.

  2. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    Science.gov (United States)

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  3. Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas

    OpenAIRE

    Crank, M.; Harilal, S. S.; S.M. Hassan; Hassanein, A.

    2012-01-01

    We investigated the effects of laser excitation wavelength on water-window emission lines of laser-produced boron-nitride plasmas. Plasmas are produced by focusing 1064 nm and harmonically generated 532 and 266 nm radiation from a Nd:YAG laser on BN target in vacuum. Soft x-ray emission lines in the water-window region are recorded using a grazing-incidence spectrograph. Filtered photodiodes are used to obtain complementary data for water-window emission intensity and angular dependence. Spec...

  4. Deposition and characterization of pyrocarbon coatings produced by use of CO2 dilution

    International Nuclear Information System (INIS)

    A Biso-coated fuel particle for the High-Temperature Gas-Cooled Reactor (HTGR) consists of a 500 μm ThO2 kernel, an 85-μm layer of low-density carbon, and a 75-μm layer of high-density pyrocarbon. Coatings produced from mixtures of 50% propylene, 25% CO2, and 25% Ar were found to be more gastight than were coatings produced from mixtures of propylene and argon, helium, or H2. Higher concentrations of CO2 in the gas mixture caused severe oxidation of graphite components within the coating furnace. The permeability of coatings deposited by use of CO2 dilution was found to depend on the deposition temperature. Low deposition temperatures produced more gastight coatings. It was determined that CO2 had little or no effect on coating anisotropy. 6 figures

  5. Silicon Carbide/Boron Nitride Dual In-Line Coating of Silicon Carbide Fiber Tows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will demonstrate monolayer and dual layer coating of SiC fiber by leveraging Laser Chemical Vapor Deposition techniques developed by Free...

  6. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  7. Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials

    Indian Academy of Sciences (India)

    J Z Shi; C Z Chen; H J Yu; S J Zhang

    2008-11-01

    Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition, influence of heat treatment on magnetron sputtered coatings is discussed. The heat treated coatings have been shown to exhibit bioactive behaviour both in vivo and in vitro. At last, the future application of the bioactive ceramic coating deposited by magnetron sputtering is mentioned.

  8. Wear resistance of composite coatings produced by thermal spraying

    International Nuclear Information System (INIS)

    Injection of refractory additions (carbides, borides, oxides etc.) into self-fluxing alloys is a well-known technique for their hardening. Nevertheless the matter of influence of refractory components on the structure and characteristics of composite coatings is not studied well enough. This paper presents the results of investigations of gas thermal coatings (plasma and detonation ones) on the base of stellite with refractory components in the form of borides such as CrB2, TiB2, (TiCr)B2. This study is concerned with the influence of refractory additions (carbides, borides, oxides) on the wear resistance sprayed coatings based on self-fluxing alloys NiCrBSi and CoCrBSi

  9. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitride.

  10. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitfide.

  11. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values. It was round that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interracial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  12. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values.It was found that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interfacial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  13. Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres

    Institute of Scientific and Technical Information of China (English)

    Mostafa Amirjan; Hamid Khorsand; Manouchehr Khorasani

    2014-01-01

    We performed fluidized bed coating of Al-based nanocomposite powder–binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating process efficiency and coating characteristics were investigated. The efficiency decreased from 52% to 49% as the processing time increased from 15 to 20 min. However, the amount and thickness of the coating also increased as the processing time and amount of the binder were increased. The addition of nanoparticles to the system decreased the thickness of the coating from 222 to 207 µm when polyvinyl alcohol (PVA) was used as a binder. The suspension containing 3wt% R-4410 binder exhibited the greatest efficiency of 60%.

  14. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    CERN Document Server

    Blostein, Juan Jerónimo; Tartaglione, Aureliano; Haro, Miguel Sofo; Moroni, Guillermo Fernández; Cancelo, Gustavo

    2014-01-01

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned ionizing particles, with energies in the range 0.5-5.5 MeV, produce a plasma effect in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the relationship observed between the spot diameter and the charge collected, is used for the event recognition, allowing the discrimination of undesirable gamma events. We present the first results recently obtained with this technique, which has the potential to perform neutron tomography investigations with a spatial resolution better than that...

  15. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  16. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  17. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    Science.gov (United States)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed. PMID:26625888

  18. Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2013-05-01

    Full Text Available In this study, magnesium composites with nano-size boron nitride (BN particulates of varying contents were synthesized using the powder metallurgy (PM technique incorporating microwave-assisted two-directional sintering followed by hot extrusion. The effect of nano-BN addition on the microstructural and the mechanical behavior of the developed Mg/BN composites were studied in comparison with pure Mg using the structure-property correlation. Microstructural characterization revealed uniform distribution of nano-BN particulates and marginal grain refinement. The coefficient of thermal expansion (CTE value of the magnesium matrix was improved with the addition of nano-sized BN particulates. The results of XRD studies indicate basal texture weakening with an increase in nano-BN addition. The composites showed improved mechanical properties measured under micro-indentation, tension and compression loading. While the tensile yield strength improvement was marginal, a significant increase in compressive yield strength was observed. This resulted in the reduction of tension-compression yield asymmetry and can be attributed to the weakening of the strong basal texture.

  19. Nanocomposite coatings produced by electrodeposition from additive-free bath: the potential of the ultrasonic vibrations

    OpenAIRE

    Zanella, Caterina

    2010-01-01

    The main objectives of this Ph.D. research work are the development of enhanced nickel matrix nanocomposite coatings and the optimization of the codeposition parameters. Two different nanopowder, i.e. silicon carbide and alumina, were added to a Watts type galvanic bath in order to produce the nanocomposites coatings and ultrasonic vibrations have been considered as an alternative to pitting control agents in order to produce pore-free layers. The powders and the stability of their suspension...

  20. First gaseous boronization during pulsed discharge cleaning

    Science.gov (United States)

    Ko, J.; Den Hartog, D. J.; Goetz, J. A.; Weix, P. J.; Limbach, S. T.

    2013-01-01

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  1. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  2. Comparison of the boronic acid disk potentiation test and cefepime-clavulanic acid method for the detection of ESBL among AmpC-producing Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    R M Shoorashetty

    2011-01-01

    Full Text Available Purpose: Extended spectrum β-lactamase (ESBL and AmpC β-lactamase are important mechanisms of betalactam resistance among Enterobacteriaceae . The ESBL confirmation test described by Clinical Laboratory Standards Institute (CLSI is in routine use. This method fails to detect ESBL in the presence of AmpC. Therefore, we compared two different ESBL detection methods against the CLSI confirmatory test. Materials and Methods: A total 200 consecutive clinical isolates of Enterobacteriaceae from various clinical samples were tested for ESBL production using (i CLSI described phenotypic confirmatory test (PCT, (ii boronic acid disk potentiation test and (iii cefepime-CA disk potentiation method. AmpC confirmation was done by a modified three-dimensional test. Results: Among total 200 Enterobacteriaceae isolates, 82 were only ESBL producers, 12 were only AmpC producers, 55 were combined ESBL and AmpC producers, 14 were inducible AmpC producers and 37 isolates did not harboured any enzymes. The CLSI described PCT detected ESBL-producing organisms correctly but failed to detect 36.3% of ESBLs among combined enzyme producers. The boronic acid disk potentiation test reliably detected all ESBL, AmpC, and combined enzyme producers correctly. The cefepime-CA method detected all ESBLs correctly but another method of AmpC detection has to be adopted. Conclusion: The use of boronic acid in disk diffusion testing along with the CLSI described PCT enhances ESBL detection in the presence of AmpC betalactamases.

  3. Characterization of industrially produced galvannealed coating using cross-sectional specimen in TEM

    International Nuclear Information System (INIS)

    Galvannealed coated sheet steels are extensively used in the automotive industry due to their inherent advantages, as compared to other zinc based coating, such as excellent spot weldability, good corrosion resistance and better paintability. Despite the above advantages, galvannealed coating suffers from poor formability due to the presence of hard and brittle Fe-Zn intermetallic phases. The formability of the coating depends on the amount and orientation of different Fe-Zn intermetallic phases. The present study deals with the characterization of an industrially produced galvannealed coating using cross-sectional specimen in a Transmission Electron Microscope. From the selected area diffraction patterns obtained in Transmission Electron Microscope, the orientations of the delta phase were calculated.

  4. Boronization of Russian tokamaks from carborane precursors

    International Nuclear Information System (INIS)

    A new and cheap boronization technique using the nontoxic and nonexplosive solid substance carborane has been developed and successfully applied to the Russian tokamaks T-11M, T-3M, T-10 and TUMAN-3. The glow discharge in a mixture of He and carborane vapor produced the amorphous B/C coating with the B/C ratio varied from 2.0-3.7. The deposition rate was about 150 nm/h. The primary effect of boronization was a significant reduction of the impurity influx and the plasma impurity contamination, a sharp decrease of the plasma radiated power, and a decrease of the effective charge. Boronization strongly suppressed the impurity influx caused by additional plasma heating. ECR- and ICR-heating as well as ECR current drive were more effective in boronized vessels. Boronization resulted in a significant extension of the Ne- and q-region of stable tokamak operation. The density limit rose strongly. In Ohmic H-mode energy confinement time increased significantly (by a factor of 2) after boronization. It rose linearly with plasma current Ip and was 10 times higher than Neo-Alcator time at maximum current. ((orig.))

  5. Experimental modeling of polymer latex spray coating for producing controlled-release urea

    Institute of Scientific and Technical Information of China (English)

    Rui Lan; Yonghui Liu; Guanda Wang; Tingjie Wang; Chengyou Kan; Yong Jin

    2011-01-01

    Spray coating of polymer latex onto fertilizer particles in a fluidized bed for producing controlled-release urea is an environment friendly technology as it does not need any toxic organic solvent.Since the spray coating process in a fluidized bed occurs in the presence of particle collisions,the coating of the particles is random,intermittent and multiple,thus making it difficult to investigate the film formation process.In this paper,an experimental model apparatus was designed and used to investigate the effects of the key factors in the spray coating process.This apparatus reasonably simplified the complex process to avoid particle collisions and randomness in the coating.The intermittent coating in the fluidized bed was modeled by periodic coating and dewatering in the experimental apparatus.A large area film was obtained,and the film permeability was measured.The effects of atomizing gas flow rate,spray rate of latex,solid content of latex and gas temperature on film structure and film permeability were investigated.It was found that water transfer played a dominant role in the spray coating process.

  6. Conversion Coatings Produced on AZ61 Magnesium Alloy by Low-Voltage Process

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2016-03-01

    Full Text Available The resultes of anodic oxide conversion coatings on wrought AZ61 magnesium alloy production are describe. The studies were conducted in a solution containing: KOH (80 g/l and KF (300 g/l using anodic current densities of 3, 5 and 10 A/dm2 and different process durations. The obtained coatings were examined under a microscope and corrosion tests were performed by electrochemical method. Based on these results, it was found that the low-voltage process produces coatings conferring improved corrosion resistance to the tested magnesium alloy.

  7. Electrical furnace for producing carbide coatings using the thermoreactive deposition/diffusion technique

    OpenAIRE

    FABIO CASTILLEJO; DIANA MARULANDA; OLIVO RODRIGUEZ; JHON OLAYA

    2011-01-01

    In this work, the design of an electrical furnace for producing transition metal-based hard coatings using the thermo-reactive deposition and diffusion (TRD) technique is described. Performance of the system was tested through production of vanadium carbide (VC) and niobium carbide (NbC) coatings on steel AISI D2. X-ray diffraction (XRD) and optical microscopy techniques were used to study phase formation and microstructure, respectively. Hardness was determined by using Knoop microhardness m...

  8. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    Energy Technology Data Exchange (ETDEWEB)

    Blostein, Juan Jerónimo; Estrada, Juan; Tartaglione, Aureliano; Sofo haro, Miguel; Fernández Moroni, Guillermo; Cancelo, Gustavo

    2015-01-19

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned ionizing particles, with energies in the range 0.5-5.5 MeV, produce a plasma effect in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the relationship observed between the spot diameter and the charge collected, is used for the event recognition, allowing the discrimination of undesirable gamma events. We present the first results recently obtained with this technique, which has the potential to perform neutron tomography investigations with a spatial resolution better than that previously achieved. Numerical simulations indicate that the spatial resolution of this technique will be about 15 $\\mu$m, and the intrinsic detection efficiency for thermal neutrons will be about 3 %. We compare the proposed technique with other neutron detection techniques and analyze its advantages and disadvantages.

  9. MoS2 PARTICLES MODIFIED WITH POLYSTYRENE FOR PRODUCING Ni–PS/MoS2 COATINGS

    OpenAIRE

    ZHONGJIA HUANG; DANGSHENG XIONG

    2008-01-01

    The MoS2 particles were coated with polystyrene and can be written as PS/MoS2 hereinafter. Ni–PS/MoS2 coatings and Ni–MoS2 coatings were produced by PC electrodeposition technique. The surface morphology of Ni–PS/MoS2 coating was examined and compared with those of Ni–MoS2 coating. The effect of particle concentrations on the volume percent of particles incorporated in the coatings was investigated. And the microhardness of coatings was also investigated. Results show that the surface morphol...

  10. Synthesis and characterization of boron-doped NiO thin films pro-duced by spray pyrolysis

    Institute of Scientific and Technical Information of China (English)

    U Alver; H Yaykasl; S Kerli; A Tanrverdi

    2013-01-01

    Boron-doped NiO thin films were prepared on glass substrates at 400◦C by airbrush spraying method using a solution of nickel nitrate hexahydrate. Their physical properties were investigated as a function of dopant concentration. From X-ray diff raction patterns, it is observed that the films have cubic structure with lattice parameters varying with boron concentration. The morphologies of the films were examined by using scanning electron microscopy, and the grain sizes were measured to be around 30-50 nm. Optical measurements show that the band gap energies of the films first decrease then increase with increasing boron concentration. The resistivities of the films were determined by four point probe method, and the changes in resistivity with boron concentration were investigated.

  11. OXIDATION RESISTANCE OF NANOCRYSTAL ODS ALUMINIDE COATINGS PRODUCED BY PACK ALUMINIZING PROCESS ASSISTED BY BALL PEENING

    Institute of Scientific and Technical Information of China (English)

    Z.L. Zhan; Y.D. He; W. Gao

    2006-01-01

    Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pack aluminizing process assisted by ball peening. Pure Al powders and 1% of ultra-fine Y2O3 powders were mixed by ball milling. The ultra-fine Y2O3powders were dispersed in Al particles. Ball peening welded the Al particles onto the substrate and accelerated the formation of aluminide coating. Nanocrystal ODS aluminide coatings were produced by the outward growth at a much low temperature (below 600℃) in a short treatment time.The effects of the operation temperature and treatment time on the formation of the coatings were analyzed. SEM (scanning electron microscope), AFM (atomic force microscope), EDS (energy dispersive X-ray spectroscopy), XRF (X-ray fluorescence spectrometer) and XRD (X-ray diffraction )methods were applied to investigate the microstructure of the coatings. High-temperature oxidation tests were carried out to evaluate the oxidation resistance of the ODS aluminide coatings.

  12. 等离子喷涂B4C涂层的抗辐射性能研究%Anti-radiation behavior of plasma sprayed boron carbide coatings

    Institute of Scientific and Technical Information of China (English)

    李龙根; 徐志勇; 钱浩

    2009-01-01

    目的 研究用等离子技术喷涂的碳化硼(B4C)涂层的抗辐射能力.方法 将0.1 mm厚度B4C涂在16号锰钢上,研究它对加速器产生的6、10、15 MV高能射线,6、9、12、15 MeV高能电子线,60Co γ线和快中子辐射的防护作用.同时将0.1 mm B4C涂在纸板上,研究它对深部X线机的X线辐射的防护作用.结果 等离子喷涂制备B4C涂层对高能X线和60Co γ线没有防护作用.对电子线有一定防护作用,且随深度的增加有增大趋势,但作用不大.对快中子有较大防护作用.对深部X线机X线有防护作用,防护能力较强.0.1 mm厚的涂层就可带来15%的衰减.结论 用等离子技术喷涂的B4C涂层可在医学领域用来防护千伏级射线.%Objective To study anti-radiation behavior of plasma sprayed boron carbide coatings. Methods The anti-radiation capacity of 16Mn steel which was coated with 0.1 mm plasma sprayed boron carbide were studied. The irradiation beams were 6,10,15 MY X-ray and 6,9,12,15 MeV electron emitted by accelerator, X-ray emitted by 60Co machine,fast neutron, and X-ray emitted by kilovoltage X-ray ma-chine. Results Anti-radiation capacity of plasma sprayed boron carbide coatings was not found for X-ray beams emitted by accelerator and 60Co machine. For electron beams,the anti-radiation capacity were found. The deeper of location, the stronger was anti-radiation. However, the anti-radiation capacity was not good. For fast neutron,the anti-radiation capacity was good. For X-ray emitted by kilovoltage X-ray machine,the anti-radiation was good,and only 0.1 nun plasma sprayed boron carbide had 15% attenuation. Conclusions The plasma sprayed boron carbide coatings have the anti-radiation capacity for X-ray emitted by kilovoltage X-ray machine in medical field.

  13. Effect of boron paste thickness on the growth kinetics of polyphase boride coatings during the boriding process

    International Nuclear Information System (INIS)

    The growth kinetics of FeB and Fe2B phases forming on AISI M2 steel by paste boriding was studied using different values of paste thickness, treating temperature and exposure time. The growth of iron boride layers is described by the mass balance equation between phases in thermodynamic equilibrium, assuming that the boron concentration at the interfaces remain constant during the treatment. The experimental results show that boron mobility and growth kinetics of iron borides are considerably increased when the paste thickness is increased at constant values of temperature and exposure time

  14. CVD aluminiding process for producing a modified platinum aluminide bond coat for improved high temperature performance

    Science.gov (United States)

    Nagaraj, Bangalore A. (Inventor); Williams, Jeffrey L. (Inventor)

    2003-01-01

    A method of depositing by chemical vapor deposition a modified platinum aluminide diffusion coating onto a superalloy substrate comprising the steps of applying a layer of a platinum group metal to the superalloy substrate; passing an externally generated aluminum halide gas through an internal gas generator which is integral with a retort, the internal gas generator generating a modified halide gas; and co-depositing aluminum and modifier onto the superalloy substrate. In one form, the modified halide gas is hafnium chloride and the modifier is hafnium with the modified platinum aluminum bond coat comprising a single phase additive layer of platinum aluminide with at least about 0.5 percent hafnium by weight percent and about 1 to about 15 weight percent of hafnium in the boundary between a diffusion layer and the additive layer. The bond coat produced by this method is also claimed.

  15. Beryllium coating produced by evaporation-condensation method and some their properties

    Energy Technology Data Exchange (ETDEWEB)

    Pepekin, G.I.; Anisimov, A.B.; Chernikov, A.S.; Mozherinn, S.I.; Pirogov, A.A. [SRI SIA Lutch., Podolsk (Russian Federation)

    1998-01-01

    The method of vacuum evaporation-condensation for deposition of beryllium coatings on metal substrates, considered in the paper, side by side with a plasma-spray method is attractive fon ITER application. In particular this technique may be useful for repair the surface of eroded tiles which is operated in a strong magnetic field. The possibility of deposition of beryllium coatings with the rate of layer growth 0.1-0.2 mm/h is shown. The compatibility of beryllium coating with copper or stainless steel substrate is provided due to intermediate barrier. The results of examination of microstructure, microhardness, porosity, thermal and physical properties and stability under thermal cycling of beryllium materials are presented. The value of thermal expansion coefficient and thermal conductivity of condensed beryllium are approximately the same as for industrial grade material produced by powder mettalurgy technique. However, the condensed beryllium has higher purity (up to 99.9-99.99 % wt.). (author)

  16. High-temperature tensile behavior of a boron nitride-coated silicon carbide-fiber glass-ceramic composite

    International Nuclear Information System (INIS)

    Tensile properties of a cross-ply glass-ceramic composite were investigated by conducting fracture, creep, and fatigue experiments at both room temperature and high temperatures in air. The composite consisted of a barium magnesium aluminosilicate (BMAS) glass-ceramic matrix reinforced with SiC fibers with a SiC/BN coating. The material exhibited retention of most tensile properties up to 1,200 C. Monotonic tensile fracture tests produced ultimate strengths of 230--300 MPa with failure strains of ∼1%, and no degradation in ultimate strength was observed at 1,100 and 1,200 C. In creep experiments at 1,100 C, nominal steady-state creep rates in the 10-9 s-1 range were established after a period of transient creep. Tensile stress rupture experiments at 1,100 and 1,200 C lasted longer than one year at stress levels above the corresponding proportional limit stresses for those temperatures. Tensile fatigue experiments were conducted in which the maximum applied stress was slightly greater than the proportional limit stress of the matrix, and, in these experiments, the composite survived 105 cycles without fracture at temperatures up to 1,200 C. Microscopic damage mechanisms were investigated by TEM, and microstructural observations of tested samples were correlated with the mechanical response. The SiC/BN fiber coatings effectively inhibited diffusion and reaction at the interface during high-temperature testing. The BN layer also provided a weak interfacial bond that resulted in damage-tolerant fracture behavior

  17. Synthesis and characterization of silicide coating on niobium alloy produced using molten salt method

    International Nuclear Information System (INIS)

    Nb based alloys are promising structural materials for high temperature reactors due to their strength at higher temperatures. However Nb based alloys undergoes substantial oxidation at high temperatures. In order to improve its oxidation resistance property at high temperatures (>400 °C) a protective layer must be provided to avoid direct contact of the component to atmospheric oxygen. In the present work, attempts have been made to obtain silicide coatings on Nb alloy using molten salt method. In this method, deposition of silicon is a multistep process. Metallic Si produced by the subsequent reactions in the molten salt diffuses and an oxidation resistant silicide coating forms on the surface of substrate. To study the variation in the thickness of coated layer on the Nb alloy, experiments were carried out at different temperature and time periods. These silicide coated samples were characterized using optical, SEM and XRD techniques. Based on these results mechanism of silicide coating on Nb alloys has been discussed in detail. (author)

  18. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    OpenAIRE

    Blostein, Juan Jerónimo; Estrada, Juan; Tartaglione, Aureliano; Haro, Miguel Sofo; Moroni, Guillermo Fernández; Cancelo, Gustavo

    2014-01-01

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned io...

  19. Silicon Carbide Coating for Carbon Materials Produced by a Pack-Cementation Process

    OpenAIRE

    Paccaud, O.; Derré, A.

    1995-01-01

    A pack-cementation process has been developed in order to produce SiC coating on carbon materials. At high temperature gaseous silicon monoxide generated from a SiC-SiO2 powders mixture reacts with carbon substrate by converting the outer surfaces into silicon carbide. The correlation between density measurements and thermochemical calculations allows to determine the reaction path mechanism for the SiC layer formation. Iridium marker experiments are proposed to localize the substrate initial...

  20. Bright prospects for boron

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  1. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Directory of Open Access Journals (Sweden)

    Andrea Angelastro

    2013-01-01

    Full Text Available As a surface coating technique, laser cladding (LC has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr composite coatings were fabricated by the multilayer laser cladding technique (MLC. An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.

  2. Bioactivity assessment of hydroxyapatite coatings produced by alkali conversion of monetite

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.H.P. da [Military Inst. of Engineering, Rio de Janeiro, RJ (Brazil); Soares, G.A. [Federal Univ. of Rio de Janeiro, RJ (Brazil); Elias, C.N. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Matematica; Gibson, I.R. [London Univ. (United Kingdom). IRC Biomedical Materials; Best, S.M. [Cambridge Univ. (United Kingdom). Dept. of Metallurgy and Materials Science

    2001-07-01

    Commercially pure titanium sheets were coated with hydroxyapatite using three different routes: alkali conversion of monetite to hydroxyapatite utilising NH{sub 4}OH, KOH and NaOH solutions with pH=12.5. The hydroxyapatite coatings produced by each of the three different routes all exhibited similar morphologies and crystallinities, and hydroxyapatite was the only crystalline phase observed in all the coatings. The crystallinity and identification of the phases present were obtained by X-ray diffraction (XRD) analysis and the bioactivity was assessed according to the method developed by KOKUBO and co-workers. SEM analysis showed that all specimens exhibited areas with apatite precipitation from the SBF solution after 3 days immersion in SBF solution, irrespective of the alkaline solution used for the conversion process. This finding was confirmed by XRD analysis, which revealed a pattern corresponding to poorly-crystallinity hydroxyapatite. There appeared to be no effect of the ammonium, sodium or potassium ions from the different alkaline solutions used on the chemical conversion of monetite to hydroxyapatite on the properties of the resulting coating. (orig.)

  3. Corrosion resistance of Cu-Al coatings produced by thermal spray

    Directory of Open Access Journals (Sweden)

    Laura Marcela Dimaté Castellanos

    2012-04-01

    Full Text Available Many components in the shipbuilding industry are made of copper-based alloys. These pieces tend to break due to corrosion generated by a marine environment; such components can be salvaged through surface engineering, through deposition of suitable coatings. This paper studied the influence of three surface preparation methods involving phosphor bronze substrates concerning the corrosion resistance of commercial coatings having Al-Cu +11% Fe chemical composition. The surface was prepared using three methods: sand blasting, shot blasting and metal polishing with an abrasive disk (with and without a base layer. The deposited coatings were micro-structurally characterised by x-ray diffraction (XRD, optical microscopy and scanning electron microscopy (SEM. Corrosion resistance was evaluated by electrochemical test electrochemical impedance spectroscopy (EIS. Surfaces prepared by sandblasting showed the best resistance to corrosion, so these systems could be a viable alternative for salvaging certain parts in the marine industry. The corrosion mechanisms for the coatings produced are discussed in this research.

  4. Characterization of solid particle suspensions with organic coatings in oilfield produced water

    Energy Technology Data Exchange (ETDEWEB)

    Dudasova, Dorota

    2008-09-15

    Produced water is water trapped in underground formations that is brought to the surface along with oil or gas. In general, produced water is a mixture of dispersed oil in water (o/w), dissolved organic compounds (included hydrocarbons), residual concentration of chemical additives from the production line, heavy metals, dissolved minerals and suspended solids. In the year 2006, 173 million m3 of produced water were discharged on the Norwegian Continental Shelf (NCS). Discharges will increase in the years ahead, primarily because of increased water production from the major fields on the NCS, and because the use of chemicals is greater in fields with seabed completions. Although removal of pollutants from produced water is possible with existing technology, the applicability, effectiveness and costs of these technologies are not acceptable for the industry. It is necessary to develop more suitable and cost effective solutions tailored for both the treatment process on offshore installations and site specific conditions with respect to produced water quality. The technologies for enhanced removal of dispersed oil and selected dissolved/soluble compounds were studied within the TOP Water project. This thesis presents studies of dispersed solid particles in the waste water systems prior to treatment. In order to achieve the desired treatment efficiency it is necessary to have a basic understanding of the stabilisation/destabilisation mechanisms of dispersed constituents present in waste water. The findings which have been summarized in this thesis include adsorption of surface active crude oil components - asphaltenes on the planar model solid surfaces as well as model inorganic particles, and particle suspension studies of pure and asphaltene coated particles. The adsorption study was done on asphaltenes of different origin and solids with different surface properties in order to mimic the history of particles from the reservoir to the sea. This gave better

  5. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.; Kampmann, R.; Höche, D.; Lorenz, U.; Müller, M.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht (Germany); Becker, H.-W. [RUBION-Zentrale Einrichtung für Ionenstrahlen und Radionuklide, Ruhr-Universität Bochum, 44780 Bochum (Germany); Haese-Seiller, M.; Moulin, J.-F.; Pomm, M. [Helmholtz-Zentrum Geesthacht, Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Randau, C. [Georg-August Universität Göttingen, Geowissenschaftliches Zentrum, 37077 Göttingen, Germany and Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Hall-Wilton, R. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden)

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.

  6. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  7. Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

  8. Co-precipitation/Adsorption of Boron for Treatment of Produced Water at the Arroyo Grande Oil Field, California

    OpenAIRE

    Wörlén, Cecilia

    2008-01-01

    The goal of this Master’s thesis project is to develop a method for boron precipitation inproduced waters from the Arroyo Grande oil field outside San Luis Obispo in centralCalifornia. The current oil recovery is a closed system that pumps up to 1,500 barrelsoil/day. A new system is proposed to increase oil production three times andsimultaneously dewater half of the water in the oil formation during the time span of tenyears, which amounts to 55,000 barrels/day. The water will be treated and...

  9. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Jiryun, E-mail: jilyoon@naver.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Seo, Eun-Young, E-mail: sey22@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Moon, E-mail: moonlit51@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Vaira, Anna Maria, E-mail: a.vaira@ivv.cnr.it [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135 (Italy); Bae, Hanhong, E-mail: hanhongbae@ynu.ac.kr [School of Biotechnology, Yeungnam University, Geongsan 712-749 (Korea, Republic of); Jang, Chan-Yong, E-mail: sunbispirit@gmail.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Cheol Ho, E-mail: chlee1219@hanmail.net [Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704 (Korea, Republic of); Kim, Hong Gi, E-mail: hgkim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Roh, Mark, E-mail: marksroh@gmail.com [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714 (Korea, Republic of); Hammond, John, E-mail: john.hammond@ars.usda.gov [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States)

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  10. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Directory of Open Access Journals (Sweden)

    G Ciofani

    2010-04-01

    Full Text Available G Ciofani1, L Ricotti1, S Danti2,3, S Moscato4, C Nesti2, D D’Alessandro2,4, D Dinucci5, F Chiellini5, A Pietrabissa3, M Petrini2,3, A Menciassi1,61Scuola Superiore Sant’Anna, Pisa, Italy; 2CUCCS-RRMR, Center for the Clinical Use of Stem Cells – Regional Network of Regenerative Medicine, 3Department of Oncology, Transplants and Advanced Technologies, 4Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; 5Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, Italy; 6Italian Institute of Technology, Genova, ItalyAbstract: Boron nitride nanotubes (BNNTs have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-L-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation.Keywords: boron nitride nanotubes, C2C12 cells, cytocompatibility, up-take, differentiation, MyoD, connexin 43

  11. Ablation of boron carbide for high-order harmonic generation of ultrafast pulses in laser-produced plasma

    Science.gov (United States)

    Ganeev, R. A.; Suzuki, M.; Kuroda, H.

    2016-07-01

    We demonstrate the generation of harmonics up to the 27th order (λ=29.9 nm) of 806 nm radiation in the boron carbide plasma. We analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by studying the plasma emission and harmonic spectra from three species. We compare different schemes of the two-color pump of B4C plasma, particularly using the second harmonics of 806 nm laser and optical parametric amplifier (1310 nm) as the assistant fields, as well as demonstrate the sum and difference frequency generation using the mixture of the wavelengths of two laser sources. These studies showed the advantages of the two-color pump of B4C plasma leading to the stable harmonic generation and the growth of harmonic conversion efficiency. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic. Our spatial characterization of harmonics shows their on-axis modification depending on the conditions of frequency conversion.

  12. Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding

    Science.gov (United States)

    Zhang, Li-Min; Liu, Bang-Wu; Sun, Dong-Bai

    2011-12-01

    A novel approach to produce an intermetallic composite coating was put forward. The microstructure, microhardness, and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) analysis, microhardness test, and ball-on-disc wear experiment. XRD results indicate that some new phases FeAl, Fe0.23Ni0.77Al, and Ni3Al exit in the composite coating with the Al2O3 addition. SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures. The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating. The formation mechanism of the intermetallic compounds was also investigated.

  13. Energy and particle balance studies under full boron and lithium-coated walls in TJ-II

    International Nuclear Information System (INIS)

    The Spanish stellarator TJ-II has been operated under lithium wall conditions for two years so far. Important changes in plasma parameters and, in particular, on particle recycling have been recorded with respect to the normal, boronized wall conditions previously prevailing. The specific effects that the new recycling scenario could have on the improved plasma parameters, and in particular to the global energy balance of electrons and protons are addressed in the present work. In addition, the possible increase in ion energies impinging on the walls should be mirrored by the incoming flux of sputtered lithium atoms. However, a strong decrease of the corresponding sputtering yield is recorded. This effect is analyzed in terms of possible material mixing effects among others. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  15. Coatings.

    Science.gov (United States)

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  16. MICROSTRUCTURAL CHARACTERIZATION OF TiN/ZrN MULTILAYER COATINGS ON TITANIUM ALLOY PRODUCED BY POWDER METALLURGY

    Directory of Open Access Journals (Sweden)

    Vinicius André Rodrigues Henriques

    2014-10-01

    Full Text Available The development of multilayered structures has attracted attention from scientific community during recent years. TiN/ZrN coatings with a number of alternate layers have high potential for use in optical, electromagnetism and wear areas. In this work, three sets of multilayered TiN/ZrN coatings presenting variable thickness were designed and deposited by electron beam-physical vapor deposition (EB-PVD. Ti-35Nb-7Zr-5Ta substrates were produced by powder metallurgy from a mixture of hydrided powders with subsequent cold pressing steps and sintering at 1400°C, in high vacuum. TiN/ZrN coatings were obtained by evaporation of alternating Ti and Zr cylindrical targets under a nitrogen flow. The multilayer coatings were characterized by means of scanning electron microscopy (SEM, chemical analysis via energy dispersive spectrometry (EDS and Vickers indentation. The multilayer produced showed homogeneous thickness and a consistent columnar structure.

  17. The influence of surface preparation on the properties of tungsten carbide coatings produced by gas-detonation method

    International Nuclear Information System (INIS)

    One of the most promising method of obtaining wear, erosive and corrosive resistant coatings is the gas-detonation method. The coatings produced by this method permit widening the application range due to increasing of useful properties of low alloy steels. The paper deals with the influence of technological parameters on the properties of coatings produced from tungsten carbide powder on 1045 steel. The role of modifying the substrate surface state before process is discussed. The four methods of changing the surface state are presented : grinding, sand-blast cleaning, sanding by gas-detonation method and electroless nickel plating. The microstructure of WC coatings are described by metallographic and scanning electron microscopy (EDS method) investigations. The wear and corrosion resistance are also presented. The preparation of the substrate surface using a sand paper, compressed air sand blasting or detonation sand blasting, aiming at making this surface more developed, worsened and adhesion of the coating to the substrate, since the substrate-coating interface zone was then more porous with respect to that observed when the coating was deposited on the ground or nickel placed substrate. (author)

  18. Uniform trapped fields produced by stacks of HTS coated conductor tape

    Science.gov (United States)

    Mitchell-Williams, T. B.; Baskys, A.; Hopkins, S. C.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.; Patel, A.

    2016-08-01

    The trapped magnetic field profile of stacks of GdBa2Cu3O7‑x superconducting tape was investigated. Angled stacks of superconducting tape were magnetized and found to produce very uniform trapped field profiles. The angled stacks were made of 12 mm × 24 mm solder coated tape pieces and were bonded together following a brief consolidation heat treatment. Layering multiple stacks together and adding a ferromagnetic plate beneath the samples were both found to enhance the magnitude and uniformity of the trapped field profiles. Stationary and time-dependent critical state finite element models were also developed to complement the experimental results and investigate the magnetization process. The size and shapes possible with the angled stacks make them attractive for applications requiring uniform magnetic fields over larger areas than can be achieved with existing bulk rings or tape annuli.

  19. Confined fracture behavior of bulk metallic glass-coated tungsten composite wires produced by continuously coating process

    International Nuclear Information System (INIS)

    Highlights: ► BMG-coated composite wires with different coating thickness were synthesized. ► The axial and radical stresses at the interface were calculated by elasticity theory. ► The compressive axial thermal stresses slightly improved the tensile strength. ► The compressive radial thermal stresses lead the fracture mode to change. -- Abstract: The effects of thermal residual stresses on the tensile fracture behavior of the bulk metallic glass (BMG)-coated composite wires have been investigated by fabricating a series of BMG composite wires at varies drawing velocity. It is found that the coating thickness increases with the increase of drawing velocity and the axial and radial thermal stresses of the composite wires increase with the increase of the coating thickness. The values of axial thermal stresses are comparable with the tensile strength difference between the composite wires and the tungsten wire. Due to the effects of radial thermal stresses, the fracture mode change from the unconfined cleavage fracture of pure tungsten wire to confined step-like fracture mode of composite wires

  20. Structure and Properties Characterization of Ceramic Coatings Produced on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Metallurgically bonded ceramic coatings were prepared on a steel surface with a combined method of arc spraying and micro-arc oxidation for the first time. Coatings were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Point and line distribution of elements of the ceramic coatings were determined using energy dispersive spectroscopy (EDS). Coatings abrasive wear resistance, corrosion resistance and hot impact property were assessed respectively. The property test results show that metallurgically bonded ceramic coatings were formed on aluminum coatings and the ceramic coatings is mainly composed of α-Al2O3、γ-Al2O3、θ-Al2O3 and a little amorphous. The coatings possess excellent abrasive wear, corrosion and hot shock resistance, which can in part be attributed to the gradual distribution of different phases from surface to the substrate.

  1. Structure and Properties Characterization of Ceramic Coatings Produced on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHENDe-jiu; WANGYu-lin; GUWei-chao; XINGGuang-zhong

    2004-01-01

    Metallurgically bonded ceramic coatings were prepared on a steel surface with a combined method of arc spraying and micro-arc oxidation for the first time. Coatings were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Point and line distribution of elements of the ceramic coatings were determined using energy dispersive spectroscopy (EDS). Coatings abrasive wear resistance, corrosion resistance and hot impact property were assessed respectively. The property test results show that metallurgically bonded ceramic coatings were formed on aluminum coatings and the ceramic coatings is mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and a little amorphous. The coatings possess excellent abrasive wear, corrosion and hot shock resistance, which can in part be attributed to the gradual distribution of different phases from surface to the substrate.

  2. A comparative study of the corrosion performance of TiN, Ti(B,N) and (Ti,Al)N coatings produced by physical vapour deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Aromaa, J.; Ronkainen, H.; Mahiout, A.; Hannula, S.P. (Technical Research Centre of Finland, Espoo (Finland)); Leyland, A.; Matthews, A. (Univ. of Hull (United Kingdom)); Matthes, B.; Broszeit, E. (Technische Hochschule Darmstadt (Germany))

    1991-07-07

    Thin film coatings produced by physical vapour deposition methods often exhibit porosity. Local defects can cause local and rapid corrosion of the base material. The porosity is difficult to estimate and electrochemical methods are most suitable for evaluating the corrosion resistance of the coated material. This paper compares the corrosion resistance of TiN, Ti(B,N), (Ti,Al)N- and TiB{sub 2}-coated ASP 23 high speed steel. For the materials studied here the corrosion performance of TiB{sub 2}-coated samples was poor. Ti(B,N) coatings obtained by two different methods were quite similar even though the calculated porosity of the coating produced by magnetron sputtering was lower than that of coatings produced by the electron beam technique. These coatings had similar or slightly better corrosion resistance than (Ti,Al)N coatings with a high aluminium-to-titanium ratio. (Ti,Al)N coatings with a low aluminium-to-titanium ratio were better than coatings with a high aluminium-to-titanium ratio. TiN coatings were better than other types excluding (Ti,Al)N+AlN layer coatings, which performed best. (Ti,Al)N+AlN coatings have an insulating layer on top of the coating, which increases the polarization resistance and decreases the corrosion current density. (orig.).

  3. Analysis of boronized wall in LHD

    International Nuclear Information System (INIS)

    Boronization has been carried out in some experimental fusion devices as one of wall conditioning Methods. The well-known merits of the boronization are as follows: 1) coated-boron on the first wall has strong gettering function for oxygen impurities and oxygen has been kept into boron films as a boron-oxide and 2) boron film covers first wall with apparently low Z materials facing the plasma. However, an operation scenario of boronization for next generation devices such as ITER is not optimized. In this paper, we discuss an optimized method of coated film uniformity in a wide area and a lifetime of boron film as an oxygen getter using experimental data in the large helical device (LHD). In LHD, boronization by glow discharges has been carried out a few times during each experimental campaign. Helium-diborane mixtured gas is used and plasma facing components (PFM) are stainless steel (SS) for the first wall and carbon for the divertor plates kept in the room temperature. Material probes made of SS316 and Si were installed in the vacuum vessel and exposed during the experimental campaign. Depth profiles of their impurities were analyzed using the X-ray Photoelectron Spectroscopy (XPS) and the Auger electron spectroscopy (AES). Two types of gettering process by boron film have been investigated. One is the process during boronization and the other is that after boronization. Concerning a lifetime of boron film, the distribution of oxygen near the top surface region (0 to 20 nm) indicates a process of oxygen gettering, it shows a contribution after boronization. In this paper, these kinds of process using material probes are shown. (authors)

  4. Tribological and Corrosion Properties of Nickel/TiC Bilayered Coatings Produced by Electroless Deposition and PACVD

    Science.gov (United States)

    Shanaghi, Ali; Chu, Paul K.

    2016-10-01

    Ni/TiC bilayered coatings are deposited on hot-working steel (H11) by plasma-assisted chemical vapor deposition and electroless technique. The TiC layer is deposited at 490 °C using a gas mixture of TiCl4, CH4, H2, and Ar, and a dense nanostructured TiC coating with minimum excessive carbon phases and low chlorine concentration is produced. The effects of the Ni intermediate layer on the microstructure, tribology, and corrosion behavior of the nanostructured TiC coating are investigated. The friction coefficient of the Ni/TiC bilayered coating (Ni thickness = 4 µm) at 500 cycles is much smaller than that of the coating without the Ni intermediate layer. The smallest friction coefficient is about 0.2, and the hardness values of the Ni/TiC bilayered samples with three different Ni layer thicknesses of 2, 4, and 6 µm are 2534, 3070, and 2008 Hv, respectively. The wear mechanism of the Ni/TiC bilayered coatings is abrasive induced by plastic deformation and fatigue during the sliding process. The smaller groove width on the 4-µm electroless nickel-Ni3P/TiC bilayered coating correlates with the larger H/E ratio and the 4-µm nickel/TiC bilayered sample shows the better wear resistance. The polarization resistance of the 6-µm electroless nickel-Ni3P/TiC coating in 0.05 M NaCl and 0.5 M H2SO4 increases by about 8 and 15 times, respectively. The Ni intermediate layer increases the toughness of the coating and adhesion between the hard coating and steel substrate thereby enhancing the tribological properties and corrosion resistance.

  5. Dry wear behaviors of wear resistant composite coatings produced by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Wenjin Liu; Minlin Zhong

    2004-01-01

    Using different proportional mixtures of Ni-coated MoS2, TiC and pure Ni powders, new typical wear resistant and selflubricant coatings were formed on low carbon steel by laser cladding process. The microstructures and phase composition of the composite coatings were studied by SEM and XRD. The typical microstructure of the composite coating is composed of multisulfide phases including binary element sulfide and ternary element sulfide, γ-Ni, TiC and Mo2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The friction coefficient and mass loss of three kinds of MoS2/TiC/Ni laser clad coatings are lower than those of quenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because of high hardness combined with low friction, the laser cladding composite coating with a mixture of 70% Ni-coated MoS2, 20%TiC and 10%pure Ni powder presents better wear behaviors than the composite coating with other powder blends. The composition analysis of the worn surface of GCr15 bearing steel shows that the transferred film from the laser cladding coating to the opposite surface of GCr15beating steel contains an amount of sulfide, which can change the micro-friction mechanism and lead to a reduced friction coefficient.

  6. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cansen; Su, Fenghua, E-mail: fhsu@scut.edu.cn; Liang, Jizhao

    2015-10-01

    Graphical abstract: - Highlights: • Graphene oxide/cobalt coatings are synthesized by pulse electrodeposition. • Incorporating GO refines the grain size and changes the microstructure of the coating. • Incorporating GO greatly improves the friction reduction and wear resistance of the coating. • The corrosion resistance is enhanced by the incorporation of GO. - Abstract: Cobalt (Co) and graphene oxide/cobalt (GO/Co) composite coatings were fabricated by pulse electrodeposition technique from an aqueous bath containing cobalt sulfate and GO, etc. Effect of the incorporations of GO on morphology, phase structure, average grain size and corrosion and wear resistance of the resulting composite coatings were evaluated in detail. Scanning electron microscope (SEM) and energy dispersed X-ray (EDX) show that the GO nanosheets disperse homogeneously in the composite coating and the incorporations of GO change the morphologies of the deposit from conical shaped structure to protruding structure. In addition, the co-deposition GO with Co ions favor the formation of hcp (1 0 0), (0 0 2) and (1 0 1) textures in the composite coating and have functions of grain refining and hardness enhancement. The wear tests show that the incorporations of GO in the coating improve the wear resistance and friction reduction of the deposit. The electrochemical corrosion tests using potentiodynamic polarization and electrochemical impedance spectroscopy show that the GO/Co composite coating possesses better corrosion resistance than the pure Co coating.

  7. Dispersion of boron carbide in a tungsten carbide/cobalt matrix

    International Nuclear Information System (INIS)

    Particles of boron carbide (105-125 microns) were coated with a layer (10-12 microns) of titanium carbide in a fluidized bed. These coated particles have been successfully incorporated in a tungsten carbide--cobalt matrix by hot pressing at 1 tonf/in2, (15.44 MN/m2) at 13500C. Attempts to produce a similar material by a cold pressing and sintering technique were unsuccessful because of penetration of the titanium carbide layer by liquid cobalt. Hot-pressed material containing boron carbide had a static strength in bend of approximately 175,000 lbf/in2, (1206MN/m2) which compares favorably with the strength of conventionally produced tungsten carbide/cobalt. The impact strength of the material containing boron carbide was however considerably lower than tungsten carbide/cobalt. In rock drilling tests on Darley Dale sandstone at low speeds and low loads, the material containing boron carbide drilled almost ten times as far without seizure as tungsten carbide/cobalt. In higher speed and higher load rotary drilling tests conducted by the National Coal Board, the material containing boron carbide chipped badly compared with normal NCB hardgrade material

  8. Diffusion research between Ni3Al coating and titanium alloy produced by plasma spraying process

    International Nuclear Information System (INIS)

    A Ni3Al coating was prepared by plasma spraying technique on the surface of titanium alloy. Ni-Al mixed powders, coatings and reaction products were investigated by scanning electron microscope, EDS, DSC and XRD. A tight bonding between the coating and the substrate was formed. The X-ray diffraction analysis of the patterns showed that the coating not only had Ni3Al phase, but also had NiO and Al2O3 phase microcontent. Comparing Ni coated Al to Ni3Al at 900 deg. C, the diffusion was stronger and the diffusion layer was thicker. A minute pore structure was formed at 1200 deg. C in the front edge of solid-state reaction layer. So Ni3Al restrained the solid-state reaction of the coating with the substrate, and as a whole weakened the entry of oxygen atoms into the substrate and quenched the out-diffusion of titanium.

  9. Development and Characterization of Nanostructured Cermet Coatings Produced by Co-electrodeposition

    Science.gov (United States)

    Farrokhzad, Mohammad Ali

    Nanostructured cermet (ceramic-metallic) coatings are a group of materials that combine properties possessed by ceramics, such as oxidation resistance and high hardness, and the properties of metals such as strength and ductility. These coatings consist of nano-sized metal-oxide particles (i.e. Al2 O3) dispersed into a corrosion resistant metal matrix such as nickel. Cermet coatings have been used in many industrial applications such as cutting tools and jet engines where high temperature and erosion resistance performance are required. However, despite the promising properties, the lack of experimental data and theories on high temperature oxidation and mechanical properties of cermet coatings have restricted their full potential to be used in technologies for oil sand production such as In-Situ Combustion (ISC). In this study, the structure of cermet coatings was investigated to identify the characteristics that give rise to oxidation performance and wear resistance properties of cermet coatings. The experimental oxidation results on the single-component oxide cermet coatings showed that when Al2O3 and TiO2 were combined in the electrolyte, the new combination can improve oxidation performance (less mass gain) as compared to a pure Ni coating. Based on the oxidation and micro-hardness results, a new group of nanostructured cermet coatings (double-component oxides) was developed and investigated using long term oxidation tests, thermo-gravimetric analysis in mixed gas, thermal cycling, micro-hardness and abrasive wear tests. The mechanical analysis of the newly developed coatings showed improved resistance against wear and thermal cycling compared to single-component oxide cermet and pure Ni coatings. Furthermore, some new theoretical analysis were also put forward that aims at a new explanation of high temperature oxidation for cermet coatings.

  10. Microanalyses of the hydroxyl-poly-calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thin calcium phosphate coatings on titanium alloy substrates wereprepared by Ar+ ion beam assisted deposition (IBAD) from hydroxyl-poly-calciumsodium phosphate (HPPA) target. The coatings were analyzed by XRD, FTIR, XPS.These analyses revealed that the as-deposited films were amorphous or no apparentcrystallinity. No distinct absorption band of the hydroxyl group was observed in FTIRspectra of the coatings but new absorption bands were presented for CO3-2. Thecalcium to phosphorous ratio of these coatings in different IBAD conditions variedfrom 0.46 to 3.36.

  11. ELECTRICAL FURNACE FOR PRODUCING CARBIDE COATINGS USING THE THERMOREACTIVE DEPOSITION/DIFFUSION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    FABIO CASTILLEJO

    2011-01-01

    the presence of VC and NbC, and as MEB results clearly show, the formation of regular thickness coatings. The results obtained allow for assessing that the designed and built furnace fulfills the requirements of the TRD technique for obtaining different types of hard coatings.

  12. Microstructure Characterization of WCCo-Mo Based Coatings Produced Using High Velocity Oxygen Fuel

    Directory of Open Access Journals (Sweden)

    Serkan Islak

    2015-12-01

    Full Text Available The present study has been carried out in order to investigate the microstructural properties of WCCo-Mo composite coatings deposited onto a SAE 4140 steel substrate by high velocity oxygen fuel (HVOF thermal spray. For this purpose, the Mo quantity added to the WCCo was changed as 10, 20, 30 and 40 wt. % percents. The coatings are compared in terms of their phase composition, microstructure and hardness. Phase compound and microstructure of coating layers were examined using X-ray diffractometer (XRD and scanning electron microscope (SEM. XRD results showed that WCCo-Mo composite coatings were mainly composed of WC, W2C, Co3W3C, Mo2C, MoO2, Mo and Co phases. The average hardness of the coatings increased with increasing Mo content.

  13. Microstructures and Composition of Ceramic Coatings on Aluminum Produced by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Microstructures and phase composition of the ceramic coatings formed on pure aluminum by heteropolar pulsed current ceramic synthesizing system for different periods were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Results show that the amount of the discharge channels in the ceramic coating sminish while the aperture largen in the micro-arc oxidation process, and the surface of the ceramic coatingmelted and solidified in the process.XRD studies of ceramic coatings deposited for different time show that these coatings consist mainly of α-Al2 O3, γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase, and phase composition of compact and porous ceramic coatings don' t have much difference but have a little change of the content of α-Al2 O3 and amorphous phase.

  14. Effect of LiF Coating on the Thermal Oxidation Characteristics for Boron Powder%LiF包覆对硼粉热氧化特性的影响

    Institute of Scientific and Technical Information of China (English)

    陈涛; 张先瑞; 王园园; 黄凌; 肖金武

    2013-01-01

    In order to investigate the effect of LiF coating on the thermal oxidation characteristics for amorphous boron powder,the thermal analysis experiment of boron coated with LiF (BLiF) was conducted by DSC-TC. Propellant samples containing BLif were prepared. The heat of detonation and heat of combustion were determined by an oxygen bomb calorimeter. The effects of BLif on the energy release features in primary combustion and after-burning processes of the propellant were discussed. The results indicate that in comparison with amorphous boron, BLiF shows a fast oxidation reaction at 599 XL ,and a 39. 9% higher percentage of boron participated in B/O reaction. The propellant containing BLiF makes primary combustion and after-burning energy release efficiencies (ηc1 and ηc2) increased and combustion efficiencies of B enhanced significantly from 65.48% to 81 .57%. This is due to the consumption of B2O3 layer on the boron particle surface via endothermic reaction of LiF and B2O3 at high temperature and the acceleration of B/O reaction.%为考察LiF包覆对硼粉热氧化特性的影响,采用DSC-TG技术对LiF包覆硼(BLiF)进行热分析试验.制备了含BLiF的推进剂样品.采用氧弹量热计测试其爆热和热值.考察了BLiF对推进剂一次、二次燃烧过程中能量释放特性的影响.结果表明:与无定形硼相比,BLiF在599℃存在快速氧化反应,有39.9%(质量百分数)的B参与了B/O反应.含BLiF的推进剂使一次能量释放效率和二次能量释放效率明显提高,硼的燃烧效率从65.48%提高到81.57%.这是由高温下LiF通过吸热反应消耗硼粉表面B2O3氧化层,加速B/O反应所引起的.

  15. COMPARISON OF THERMAL SHOCK BEHAVIOR OF 7YSZ, 15YSZ AND SYSZ THERMAL BARRIER COATINGS PRODUCED BY APS METHOD

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2016-07-01

    Full Text Available Nanostructured scandia, yttria doped zirconia (SYSZ, 7wt. % yttria stabilized zirconia (7YSZ and 15YSZ thermal barrier coatings (TBCs were produced by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C was investigated. The results indicated that the thermal cycling lifetime of SYSZ and 7YSZ TBCs was longer than the 15YSZ TBCs due to the lower thermal mismatch stress between the ceramic layer and the metallic layer at high temperature and higher amount of tetragonal phase.

  16. Plasma Sprayed NiA1 Intermetallic Coating Produced with Mechanically Alloyed Powder

    Institute of Scientific and Technical Information of China (English)

    Mehrshad Moshref Javadi; Hossein Edris; Mahdi Salehi

    2011-01-01

    In the present research, mechanically alloyed Ni-AI powder was utilized to develop plasma sprayed coatings, and the effect of the spray distance and heat treatment on the phases, microstructure, and hardness of the coat- ings were examined. Coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and through microhardness measurements. Although mechanically alloyed Ni-AI powder showed no intermetallic phases, the coatings did. Different spray distances from 5 to 19 cm were employed for plasma spray and the specimens were heat treated at different temperatures, then the amount of oxides, porosity and hardness of the coatings were changed according to the spray condition. The thermal energy of the plasma spray caused the formation of NiAI phases while particles flew to the substrate or after that. Extreme increase in heat treatment temperature and spray distance resulted in oxidation and reduction in the quality of the coating. Furthermore, the best spray distance and heat treatment temperature to gain the NiAI intermetallic coating were established.

  17. Comparison of the surface morphologies of boron carbide coatings prepared by bouncing agitation and rolling agitation%跳动及滚动激励制备的碳化硼涂层表面形貌的对比

    Institute of Scientific and Technical Information of China (English)

    王自磊; 廖志君; 陶勇; 于小河; 林涛; 伍登学; 卢铁城

    2011-01-01

    Boron carbide(B4C) coatings are deposited on the glass and steel mandrels using two agitation methods, rolling agitation and bouncing agitation, by electron beam evaporation.Various surface morphologies of the coatings are investigated through the scanning electron microscope.It is found that the surface deposited by rolling agitation has fewer cracks and better compactness, and the particles grow better than that deposited by bouncing agitation.From a comparison of two kinds of B4C coatings, one can find that rolling agitation has more advantages than bouncing agitation in fabricating boron carbide coatings.%利用电子束蒸发技术蒸发碳化硼,通过弹跳激励和滚动激励两种方案来随机滚动小球,从而分别在玻璃和钢球心轴上制备了碳化硼涂层.采用扫描电子显微镜对涂层表面形貌进行了分析.同采用弹跳激励制备的涂层相比,在用滚动激励制备的涂层表面不存在裂纹和微粒脱落现象,其微粒生长的更大,相互接合的更致密.经对比证明,在制备碳化硼涂层上,滚动激励装置优于跳动激励装置.

  18. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  19. Method of producing an oxide dispersion strengthened coating and micro-channels

    Science.gov (United States)

    Kang, Bruce S; Chyu, Minking K; Alvin, Mary Anne; Gleeson, Brian M

    2013-12-17

    The disclosure provides a method for the production of composite particles utilizing a mechano chemical bonding process following by high energy ball milling on a powder mixture comprised of coating particles, first host particles, and second host particles. The composite particles formed have a grain size of less than one micron with grains generally characterized by a uniformly dispersed coating material and a mix of first material and second material intermetallics. The method disclosed is particularly useful for the fabrication of oxide dispersion strengthened coatings, for example using a powder mixture comprised of Y.sub.2O.sub.3, Cr, Ni, and Al. This particular powder mixture may be subjected to the MCB process for a period generally less than one hour following by high energy ball milling for a period as short as 2 hours. After application by cold spraying, the composite particles may be heat treated to generate an oxide-dispersion strengthened coating.

  20. A MICROPOROUS COATING OR STRUCTURE AND A PROCESS FOR PRODUCING IT

    DEFF Research Database (Denmark)

    2008-01-01

    A microporous coating or structure is established as a thin metallic layer by deposition of one or more alloys on a metallic substrate, each of said alloys consisting of two or more phases, one of which can be selectively dissolved in a solution that will not significantly attack the other phase ...... phases. Such microporous coatings or structures are useful in the production of various product types, such as fuel cells, catalysts, microfilters, heat exchangers, micro-components and heat transfer devices....

  1. Oxidation performance of Fe-Al/WC composite coatings produced by high velocity arc spraying

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-jun; XU Bin-shi; ZHU Sheng; MA Shi-ning; ZHANG wei

    2005-01-01

    Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room tem perature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800 ℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2 O3, Fe2 O3, Fe3 O4 and FeO. These phases distribute unevenly. The protective Al2 O3 film firstly forms and preserves the coatings from further oxidation.

  2. Microanalyses of the hydroxyl—poly—calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Yang; WANGChang-Xing; 等

    2002-01-01

    Thin calcium phosphate catings on titanium alloy substrates were prepared by Ar+ ion beam assisted deposition(IBAD) from hydroxyl-poly-calcium sodium phosphate(HPPA) target.The coatings were analyzed by XRD,FTIR,XPS,These analyses revealed that the as-deposited films were amorphous or no apparent crystallinity.No distinct absorption band of the hydroxyl group was observed in FTIR spectra of the coatings but new absorption bands were presented for CO3-2,The calcium to phosphorous ratio of these catings in different IBAD conditions varied from 0.46 to 3.36.

  3. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    OpenAIRE

    Andrea Angelastro; Sabina L. Campanelli; Giuseppe Casalino; Antonio D. Ludovico

    2013-01-01

    As a surface coating technique, laser cladding (LC) has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy ...

  4. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating

    DEFF Research Database (Denmark)

    Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, Lasse

    2000-01-01

    The lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings sliding against hardened steel discs was studied, in a pin-on-disc set-up. The multilayered coatings had been deposited on mild steel pins by pulse plating and they consisted of ternary Ni-P-W layers of high and low W...... lubrication regimes. The wear mechanisms in each lubrication regime were studied and in mixed lubrication regime, the effect of normal load and sliding speed on wear volume and friction coefficient was also studied. (C) 2000 Elsevier Science S.A. All rights reserved....

  5. Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique

    International Nuclear Information System (INIS)

    There are a lot of technologically interesting characteristics of niobium carbide coating deposited by pack method which is the production of hard, wear-resistant, oxidation and corrosion resistant coating layer on the steel substrates. In the present study, the growth kinetics of niobium carbide layer deposited by thermo-reactive diffusion techniques in a solid medium on steel samples was reported. Niobium carbide coating treatment was performed on AISI 1040 steels in the powder mixture consisting of ferro-niobium, ammonium chloride and alumina at 1073, 1173 and 1273 K for 1-4 h. The presence of NbC and Nb2C phases formed on the surface of the steel substrates was confirmed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analyses. Niobium carbide layer thickness ranges from 3.42±0.52 to 11.78±2.29 μm depending upon the treatment time and temperature. Layer growth kinetics was analyzed by measuring the depth of niobium carbide layer as a function of time and temperature. The kinetics of niobium carbide coating by pack method shows a parabolic relationship between carbide layer thickness and treatment time, and the activation energy for the process is estimated to be 91.257 kJ mol-1. Moreover, an attempt was made to investigate the possibility of predicting the contour diagram of niobium carbide layer variation and to establish some empirical relationships between process parameters and niobium carbide layer thickness

  6. Use of gamma-irradiation technology in combination with edible coating to produce shelf-stable foods

    Energy Technology Data Exchange (ETDEWEB)

    Ouattara, B.; Sabato, S.F.; Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca

    2002-03-01

    This research was undertaken to determine the effectiveness of low-dose gamma-irradiation combined with edible coatings to produce shelf-stable foods. Three types of commercially distributed food products were investigated: precooked shrimps, ready to cook pizzas, and fresh strawberries. Samples were coated with various formulations of protein-based solutions and irradiated at total doses between 0 and 3 kGy. Samples were stored at 4 deg. C and evaluated periodically for microbial growth. Sensorial analysis was also performed using a nine-point hedonic scale to evaluate the organoleptic characteristics (odor, taste and appearance). The results showed significant (p{<=}0.05) combined effect of gamma-irradiation and coating on microbial growth (APCs and Pseudomonas putida). The shelf-life extension periods ranged from 3 to 10 days for shrimps and from 7 to 20 days for pizzas, compared to uncoated/unirradiated products. No significant (p>0.05) detrimental effect of gamma-irradiation on sensorial characteristics (odor, taste, appearance) was observed. In strawberries, coating with irradiated protein solutions resulted in significant reduction of the percentage of mold contamination.

  7. Low porosity and fine coatings produced by a new type nozzle of high velocity arc spray gun

    Institute of Scientific and Technical Information of China (English)

    Wang Ruijun; Zhang Tianjian; Xu Lin; Huang Xiaoou

    2006-01-01

    The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity.This system can be used to spray three normal wires such as 4Cr13, FeCrAl and 7Cr13 (flux cored wires).Using the scanning electron microscope (SEM) to analyze shape and particles size that sprayed by the nozzles with different parameters, as well as with the S-3500N SEM and the energy spectrum analytic ( ESA ) instrument to identify the content of the oxides, porosity and thickness of the coatings, we get the result that the porosity in the coatings of solid wire is less than 3%, of the flux-cored wires is less than 5%, and the distribution of the coatings sprayed by the nozzle with secondary supplementary airflow is typically shown in the form of highdensity lamellarsplat structure and the average lamellar thickness is around 5 μm.

  8. Microstructure and abrasive wear properties of M(Cr,Fe)7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW) process

    OpenAIRE

    Buytoz, Soner; M.Mustafa YILDIRIM

    2010-01-01

    In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW) process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectroscopy (EDS). Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were c...

  9. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    Science.gov (United States)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  10. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  11. Preparation of Cubic Boron Nitride Coating on WC-Co Substrate by Micro/Nanocrystalline Diamond Film Interlayer%基于微纳米金刚石过渡层的cBN刀具涂层制备

    Institute of Scientific and Technical Information of China (English)

    徐锋; 左敦稳; 张旭辉; 户海峰; 张骋; 王珉

    2013-01-01

    Cubic Boron Nitride(cBN) is a super-hard material, of which hardness is only less than diamond. But it has excellent chemical stability, especially no chemical reaction with ferrous materials. The cBN coating has irreplaceable function in the application of modern cutting tools. Research is carried out on the preparation of cBN coating on YG6 by micro/nanocrystalline diamond (M/NCD) film inter-layer. The micro/nanocrystalline diamond film is deposited in hot filament chemical vapor deposition system and cBN is deposited in radio frequency magnetron sputtering system. The scanning electron microscopy (SEM), Raman, atomic force microscopy(AFM), Fourier transferred infrared(FTIR) and in-denter are used to investigate the content, morphology and adhesion of the coating. The results show that the adhesion of cBN coating on WC-Co by micro/nanocrystalline diamond interlayer is much higher than that by nano diamond interlayer. The moderate bias voltage is important for the cBN film deposition in the magnetron sputtering process.%立方氮化硼(Cubic Boron Nitride,cBN)是仅次于金刚石的超硬材料,比金刚石具有更高的化学稳定性,可以胜任铁系金属的加工.本文在YG6硬质合金上基于微纳米金刚石过渡层开展cBN涂层的制备研究.本文在热丝化学气相沉积系统中制备微纳米金刚石过渡层(Micro/nanocrystalline diamond,M/NCD),在射频磁控溅射系统中制备cBN涂层,并对M/NCD与cBN涂层进行了成分、微观形貌与结合性能的研究.研究结果发现,在硬质合金基体上,M/NCD过渡层的结合性能明显优于NCD过渡层.磁控溅射制备cBN涂层过程中,存在适合cBN沉积的衬底偏压阈值,过高或过低的衬底偏压均不利于cBN含量的提高.

  12. Microstructural Characterization and Wear Properties of Fe-Based Amorphous-Crystalline Coating Deposited by Twin Wire Arc Spraying

    Directory of Open Access Journals (Sweden)

    Ana Arizmendi-Morquecho

    2014-01-01

    Full Text Available Twin wire arc spraying (TWAS was used to produce an amorphous crystalline Fe-based coating on AISI 1018 steel substrate using a commercial powder (140MXC in order to improve microhardness and wear properties. The microstructures of coating were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM as well as the powder precursor. Analysis in the coating showed the formation of an amorphous matrix with boron and tungsten carbides randomly dispersed. At high amplifications were identified boron carbides at interface boron carbide/amorphous matrix by TEM. This kind of carbides growth can be attributed to partial crystallization by heterogeneous nucleation. These interfaces have not been reported in the literature by thermal spraying process. The measurements of average microhardness on amorphous matrix and boron carbides were 9.1 and 23.85 GPa, respectively. By contrast, the microhardness values of unmelted boron carbide in the amorphous phase were higher than in the substrate, approaching 2.14 GPa. The relative wear resistance of coating was 5.6 times that of substrate. These results indicate that the twin wire arc spraying is a promising technique to prepare amorphous crystalline coatings.

  13. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    Science.gov (United States)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  14. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10-6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with all

  15. Characterization of solid particle suspensions with organic coatings in oilfield produced water

    OpenAIRE

    Dudásová, Dorota

    2008-01-01

    Produced water is water trapped in underground formations that is brought to the surface along with oil or gas. In general, produced water is a mixture of dispersed oil in water (o/w), dissolved organic compounds (included hydrocarbons), residual concentration of chemical additives from the production line, heavy metals, dissolved minerals and suspended solids.In the year 2006, 173 million m3 of produced water were  discharged on the Norwegian Continental Shelf (NCS). Discharges will increase...

  16. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  17. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  18. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    Science.gov (United States)

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  19. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.;

    Introduction Silicone rubber is among the most biocompatible materials available, exhibiting low levels of extractables, absence of plasticizers and additives and fairly low activation of blood thrombogenesis components. However untreated silicone rubber does not efficiently resist protein...... by staining with crystal violet with the extent of biofilm formation determined from absorbance measurement of the extracted dye. Flow chamber assay: Measurements of bacterial colonization during prolonged growth in liquid flow were done using a flow chamber (modified version of FCS lc, Oligene, Germany......). Quantification was carried out by a similar method as described above, using crystal violet as a direct measure of the amount of adhering bacteria. Protein adsorption measurements: Gold plated QCMcrystals were spin coated with polystyrene (PS) to create a hydrophobic reference surface similar to silicone. PS...

  20. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianwei; Zhang, Hailong; Zhang, Yang; Che, Zifan; Wang, Xitao, E-mail: xtwang@ustb.edu.cn

    2015-10-25

    As an attractive thermal management material, diamond particles reinforced Cu matrix (Cu/diamond) composites generally exhibit thermal conductivities lower than expected. To exploit the potential of heat conduction, a combination of Ti coating on diamond particles and gas pressure infiltration was used to prepare Cu/diamond(Ti) composites. A high thermal conductivity of 716 W/mK and a low coefficient of thermal expansion of 5.8 ppm/K at 323 K were obtained in the composites. Auger electron spectroscopy (AES) characterization shows that a TiC layer was formed between Cu matrix and diamond reinforcement, which is responsible for the enhancement of thermal conductivity. The results suggest that Ti coating can significantly promote interface bonding between Cu and diamond and gas pressure infiltration is an effective method to produce Cu/diamond composites. - Highlights: • The Cu/diamond(Ti) composites are produced by gas pressure infiltration. • A TiC layer is formed between Cu matrix and diamond reinforcement. • A thermal conductivity of 716 W/mK is obtained for the composites. • A coefficient of thermal expansion of 5.8 ppm/K at 323 K was obtained.

  1. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P2O5) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  2. 化学镀Ni-B合金镀层组织形态的研究%A Study of Microstructure of Electroless Nickel-Boron Alloy Coatings

    Institute of Scientific and Technical Information of China (English)

    程鑫; 饶群力

    2012-01-01

    The effects of bath composition on the microstructure of electroless Ni-B alloy coatings were investigated. By using contrast experiment design, both crystalline and amorphous coatings were obtained, and technological methods for controlling coating microstructure were acquired.%研究了镀液成分对化学镀Ni-B合金镀层组织形态的影响.通过对比实验设计,获得晶态与非晶态镀层,得到了可调控镀层组织形态的工艺方法.

  3. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, Gozde, E-mail: gozdeunsoy@hotmail.com [Middle East Technical University, Department of Biotechnology (Turkey); Yalcin, Serap [Middle East Technical University, Department of Biological Sciences (Turkey); Khodadust, Rouhollah [Middle East Technical University, Department of Biotechnology (Turkey); Gunduz, Gungor [Middle East Technical University, Department of Chemical Engineering (Turkey); Gunduz, Ufuk, E-mail: ufukg@metu.edu.tr [Middle East Technical University, Department of Biological Sciences (Turkey)

    2012-11-15

    The chitosan-coated magnetic nanoparticles (CS MNPs) were in situ synthesized by cross-linking method. In this method; during the adsorption of cationic chitosan molecules onto the surface of anionic magnetic nanoparticles (MNPs) with electrostatic interactions, tripolyphosphate (TPP) is added for ionic cross-linking of the chitosan molecules with each other. The characterization of synthesized nanoparticles was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS/ESCA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and vibrating sample magnetometry (VSM) analyses. The XRD and XPS analyses proved that the synthesized iron oxide was magnetite (Fe{sub 3}O{sub 4}). The layer of chitosan on the magnetite surface was confirmed by FTIR. TEM results demonstrated a spherical morphology. In the synthesis, at higher NH{sub 4}OH concentrations, smaller sized nanoparticles were obtained. The average diameters were generally between 2 and 8 nm for CS MNPs in TEM and between 58 and 103 nm in DLS. The average diameters of bare MNPs were found as around 18 nm both in TEM and DLS. TGA results indicated that the chitosan content of CS MNPs were between 15 and 23 % by weight. Bare and CS MNPs were superparamagnetic. These nanoparticles were found non-cytotoxic on cancer cell lines (SiHa, HeLa). The synthesized MNPs have many potential applications in biomedicine including targeted drug delivery, magnetic resonance imaging (MRI), and magnetic hyperthermia.

  4. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  5. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  6. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  7. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  8. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  9. Increasing heat stress relief produced by coupled coat wetting and forced ventilation.

    Science.gov (United States)

    Berman, A

    2008-12-01

    Coupling repeated wetting of the coat and forced ventilation is most efficient in removing heat stress in more humid climates. The procedure was initiated approximately 24 yr ago and is widely used, but the impact of air velocity on the efficiency of heat stress relief has not been examined. This study examined the feasibility of using surface temperature for real-time estimation of heat stress relief. It was carried out in midsummer in Israel on 6 mature lactating Holsteins. A 15 x 15 cm area on the right side of the body was thoroughly wetted. Hair surface and skin temperature on the wetted area and adjacent dry area were measured at 1-min intervals for 15 min while air movement was less than 0.1 m/s, and the sequence was repeated with air velocities of 0.5 to 3 m/s perpendicular to the body surface. Because the cooled surface was small, the response to cooling was local. In 3 animals, the whole left side of the body also was wetted and exposed to forced ventilation (1.5 m/s) to combine local cooling with larger body surface cooling. The air temperature was 29.5 +/- 0.05 degrees C, and the relative humidity was 56.7 +/- 0.2%. Rectal temperature and respiratory frequency indicated minor heat stress. Mean wet hair surface temperature (Thw) and wet skin temperature were 2.1 and 1.5 degrees C lower than the respective dry hair surface temperature (Thd) and dry skin temperature. At an air velocity of 0.5 m/s, Thw was practically identical to that in still air and to Thd. At greater air velocities, Thw decreased immediately after wetting, and minimal values were reached within 1 min, were maintained for 6 to 7 min after wetting, and reached 95% of the mean Thd value by 8 and 11 min after wetting at 1 and 2 m/s, respectively. Wetting the coat had the potential to reduce Thd temperature by 10 to 11 degrees C. The relatively small difference between Thd and Thw probably is due to heat flow from the body. The latter was estimated by comparing enthalpies at Thd, at Thw, and

  10. Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Institute of Tissue Engineering and Regenerative Medicine, University Hospital of the Julius-Maximilians University, Röntgenring 11, 97070 Würzburg (Germany); Warmuth, Franziska [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Werner, Ewald; Hertl, Cornelia [Institute of Materials Science and Mechanics of Materials, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching (Germany); Groll, Jürgen; Gbureck, Uwe [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Moseke, Claus, E-mail: claus.moseke@fmz.uni-wuerzburg.de [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany)

    2014-11-01

    Silver-doped Ti films were produced using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The Ti(Ag) films were characterized regarding their morphology, contact angle, phase composition, silver content and distribution as well as the elution of Ag{sup +} ions into cell media. SEM and AFM pictures showed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, an effect that could even be enforced, when a substrate bias voltage was applied instead. The deposition of both Ti and Ag was confirmed by X-ray diffraction. ICP-MS and EDX showed a clear correlation between the applied sputtering parameters and the silver content of the coatings. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. - Highlights: • Modular targets were used to deposit Ti(Ag) films. • Ag-content is adjustable by bias voltage, sputtering power and substrate temperature. • Coating parameters significantly change film morphology and roughness. • A critical parameter for Ag release is the fraction of silver on the film surface.

  11. Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets

    International Nuclear Information System (INIS)

    Silver-doped Ti films were produced using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The Ti(Ag) films were characterized regarding their morphology, contact angle, phase composition, silver content and distribution as well as the elution of Ag+ ions into cell media. SEM and AFM pictures showed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, an effect that could even be enforced, when a substrate bias voltage was applied instead. The deposition of both Ti and Ag was confirmed by X-ray diffraction. ICP-MS and EDX showed a clear correlation between the applied sputtering parameters and the silver content of the coatings. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. - Highlights: • Modular targets were used to deposit Ti(Ag) films. • Ag-content is adjustable by bias voltage, sputtering power and substrate temperature. • Coating parameters significantly change film morphology and roughness. • A critical parameter for Ag release is the fraction of silver on the film surface

  12. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    Science.gov (United States)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  13. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  14. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 3000C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 10500C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  15. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(d,l-lactic acid) coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mantsos, T; Chatzistavrou, X; Roether, J A; Boccaccini, A R [Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hupa, L; Arstila, H, E-mail: a.boccaccini@imperial.ac.u [Process Chemistry Centre, Abo Akademi University, Piispankatu 8, FI-20500 Turku (Finland)

    2009-10-15

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO{sub 2}, 22.6 CaO, 5.9 Na{sub 2}O, 4 P{sub 2}O{sub 5}, 12 K{sub 2}O, 5.3 MgO and 0.2 B{sub 2}O{sub 3}. The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 deg, C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly({sub D,L}-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications.

  16. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings.

    Science.gov (United States)

    Mantsos, T; Chatzistavrou, X; Roether, J A; Hupa, L; Arstila, H; Boccaccini, A R

    2009-10-01

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO(2), 22.6 CaO, 5.9 Na(2)O, 4 P(2)O(5), 12 K(2)O, 5.3 MgO and 0.2 B(2)O(3). The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 degrees C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly((D,L)-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications. PMID:19776493

  17. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(d,l-lactic acid) coatings

    International Nuclear Information System (INIS)

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO2, 22.6 CaO, 5.9 Na2O, 4 P2O5, 12 K2O, 5.3 MgO and 0.2 B2O3. The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 deg, C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly(D,L-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications.

  18. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    Science.gov (United States)

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry.

  19. Microstructure Characteristics and Mechanical Properties of Al-12Si Coatings on AZ31 Magnesium Alloy Produced by Cold Spray Technique

    Science.gov (United States)

    Hao, Yi; Wang, Ji-qiang; Cui, Xin-yu; Wu, Jie; Li, Tie-fan; Xiong, Tian-ying

    2016-06-01

    The cold spray technique was to deposit Al-12Si coatings on AZ31 magnesium alloy. The influence of gas pressure and gas temperature on the microstructure of coatings was investigated so as to optimize the process parameters. OM, SEM, and XRD were used to characterize the as-sprayed coatings. Mechanical properties including Vickers microhardness and adhesion strength were measured in order to evaluate coating quality. Test results indicate that the Al-12Si coatings possess the same crystal structure with powders, sufficient thickness, low porosity, high hardness, and excellent adhesion strength under optimal cold spray process parameters.

  20. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  1. Optical properties of thin flms of MEH-PPV produced by the spin-coating technique at different rotational speeds

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Soares Guimarães

    2008-08-01

    Full Text Available We present a study on the optical properties of thin flms of poly[2-methoxy-5-(20-ethyl-hexyloxy-1,4-phenylene vinylene] (MEH-PPV produced at a concentration of 10 mg/ml xylene. The solution was deposited onto glass substrates by the spin-coating technique at different rotational speeds (300, 1000 and 4000 rpm. We study the effect of rotational speeds on the sample at 300 K, by analyzing the photoluminescence (PL spectra at different points of the polymeric flm. We also analyze the effects of the excitation power on the optical behavior of MEH-PPV at 300 K. At low temperatures the PL spectra of sample A1000 (1000 rpm show a narrow peak for the electronic transition and a series of vibronic sidebands which reveal the electron coupling with two different vibronic modes. In the temperature range of 130 K to 290 K, we analyze systematically the transition lineshapes in the optical spectra using Gaussian curves.

  2. Extension of Shelf Life and Control of Human Pathogens in Produce by Antimicrobial Edible Films and Coatings

    Science.gov (United States)

    This chapter provides general information about edible films and coatings, and their use with fruits and vegetables to control human pathogens. It reviews potential antimicrobial phytochemicals used in edible films and coatings, and summarizes methods for measuring the antimicrobial activity and ph...

  3. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  4. Boron-lined proportional counters with improved neutron sensitivity

    CERN Document Server

    Dighe, P M; Prasad, K R; Kataria, S K; Athavale, S N; Pappachan, A L; Grover, A K

    2003-01-01

    Boron-lined proportional counters with higher neutron sensitivity have been developed by introducing baffle structures within the sensitive volume. the results are compared to devices developed with multiple cathode assemblies in a single enclosure. in either case, the increase in the boron-coated surface area results in higher neutron sensitivity. one of these counters has 51 annular baffles coated with natural boron with 10 mm hole for the anode wire to pass through. filled with p-10 gas at 20 cm hg, it has an overall diameter of 30 and 300 mm length. multiple dip coating method was employed for better uniformity in boron thickness. the neutron sensitivity of this counter is 1.6 cps/nv, which is 2.5 times that of a counter with standard electrode geometry. another counter was developed with three cathode assemblies (30 mm IDx300 mm) coated with 92% sup 1 sup 0 B while the third has seven assemblies coated with natural boron (16 mm IDx750 mm length). the neutron sensitivity is 10 and 5.5 cps/nv, respectively...

  5. THE INVESTIGATION OF WEAR BEHAVIOURS OF SiC(p) BASED COATINGS PRODUCED BY GTA WELDING PROCESS

    OpenAIRE

    Islak, Serkan

    2009-01-01

    In this study, the silicon carbide (SiC) powder has been coated by using of GTA process on the surface of a substrate material from 45Mn5 steel. The abrasive wear behaviours of samples which had different amounts of coating powders were determined by pin-on-disc test apparatus. The effects of the formed microstructures and the production parameters on abrasive wear properties of samples in coated zone were investigated. The highest wear resistance was observed at 41.3 kJ/cm energy input, 0.44...

  6. Electron beam irradiating process for rendering rough or topographically irregular surface substrates smooth; and coated substrates produced thereby

    International Nuclear Information System (INIS)

    This disclosure involves a novel process for instantaneous electron-beam curing of very thin low viscosity, solventless coating upon rough, irregular or textured surfaces of a substrate such as paper or the like. Through rather critical timing and energy adjustment procedures, the coating firmly adheres to the surface before the coating can conform to the roughness or texture contour or substantially penetrate into the surface. By this method a solidified very smooth outer surface is provided for the substrate that is particularly used for metalization and other finished layerings. (author)

  7. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.;

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...

  8. Research on Aluminum-Based Boron Nitrid Powder and the Properties of the Seal Coating by Plasma Spraying%新型铝基氮化硼封严涂层材料及其涂层组织性能的研究

    Institute of Scientific and Technical Information of China (English)

    魏明霞; 刘笑笑; 任先京; 章德铭

    2012-01-01

    In this paper, Aluminum-based boron nitrid composite which composed of Aluminum powder and boron nitrid as raw material, adding binder was prepared using solid phase blending method. Seal coating was prepared by plasma spraying. The hardness, bonding strength, thermal shock resistance and micro-structure of coating were researched. Tests showed that this kind of powder has outstanding physical and chemical properties. Good performances of the coating showed after spraying, which were able to meet the application requirements.%本文以铝粉及六方氮化硼为原材料,添加粘结剂,采用固相混合的方法制备了复合型铝基氮化硼封严涂层材料;采用等离子喷涂方法制备了封严涂层,并对喷涂后涂层的微观结构、硬度、结合强度和抗热震性等进行了研究。试验表明,该种涂层材料粉末具有良好的物理、化学性能,且喷涂后的涂层各项性能良好,可作为一种新型的封严涂层材料加以应用。

  9. Phase transformations in nanostructured coatings based on Zr-Y-O and produced by a pulse magnetron sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Fedorischeva, Marina V., E-mail: fmw@ispms.tsc.ru; Kalashnikov, Mark P., E-mail: kmp1980@mail.ru; Sergeev, Victor P., E-mail: vserg@mail.tomsknet.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Deposition of nanostructured coatings on the basis of Zr-Y-O was implemented by the pulse magnetron methods. Structural-phase states and morphology of the nanostructured coatings were investigated by TEM, SEM and the high-temperature X-ray method. The method of the high-temperature X-ray diffraction revealed the presence of reversible phase transition of the tetragonal phase to the monoclinic phase, which can ensure stress relaxation and closure of surface cracks.

  10. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  11. Cubic boron nitride- a new material for ultracold neutron application

    International Nuclear Information System (INIS)

    For the first time, the Fermi potential of cubic boron nitride (cBN) was measured at the ultra cold neutron source at the TRIGA reactor, Mainz using the time of flight method (TOF). The investigated samples have a Fermi potential of about 300 neV. Because of its good dielectric characteristics, cubic boron nitride could be used as suitable coating for insulator in storage chambers of future EDM projects. This talk presents recent results and an outlook on further investigations.

  12. Comparing the Ranking of Cobalt Coating Microstructures, Produced by Direct Current through Experimental Studies and the Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    H. Shirdastian

    2013-03-01

    Full Text Available In recent years, cobalt has been known as an alternative coating material to chromium in corrosion and erosion resistant applications. Extensive research has been carried out on a variety of electroplated cobalt coatings. In this study, for the first time, the relative priority of cobalt coatings has been evaluated by using the Analytic Hierarchy Process (AHP, in combination with empirical methods. In the first step, Cu substrates have been coated with Co under different experimental conditions. The SEM micrographs of Co coatings have been analyzed via image analysis (Clemex software. In the second step, through the AHP and the Expert Choice software, benefiting from expert opinions, the relative weights of the effective parameters with an influence on microstructure have been calculated. Subsequently, by using the weights obtained, the relative priority of alternatives was calculated and the quality of coatings was ranked. The predicted ranking has been found to be in consistence with the experimental results. This result shows that before experimental tests, the best alternatives to achieve the ultimate goal could be anticipated. This anticipation leads to reduce in trial and error and the multiplicity of the tests in investigations.

  13. Phase evolution and sintering characteristics of porous mullite ceramics produced from the flyash-Al(OH){sub 3} coating powders

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yingchao; Diwu Juan; Feng Xuefei; Feng Xuyong [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 (China); Liu Xingqin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 (China)], E-mail: xqliu@ustc.edu.cn; Meng Guangyao [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026 (China)

    2008-07-28

    Mullite precursors, waste flyash coated with aluminum hydroxide, were used to prepare low cost porous mullite-based ceramics by reaction sintering. The samples with different alumina contents (0-41.20 wt.%) were sintered at several temperatures from 1000 to 1500 deg. C. Phase evolution, sintering characteristics and microstructures were investigated in terms of alumina coating content and heat treating temperature. The X-ray diffraction (XRD) results showed, for the 33.30 wt.% alumina coated samples, the mullitization began to occur at 1250 deg. C via the reaction of {alpha}-alumina coating and silica (cristobalite and silica-rich glassy phase) in flyash, and completed at around 1400 deg. C. With increasing alumina content, both the crystallinity of mullite phase and aspect ratio of mullite crystals were decreased. Our results also demonstrated that the introduction of aluminum hydroxide coating had a positive effect on improving open porosity by inhibiting sintering shrinkage. Compared with flyash, the aluminum hydroxide coated samples showed a more wide sintering temperature range and well-controlled open porosity.

  14. Thermal conductivity of vertically aligned boron nitride nanotubes

    Science.gov (United States)

    Essedik Belkerk, Boubakeur; Achour, Amine; Zhang, Dongyan; Sahli, Salah; Djouadi, M.-Abdou; Khin Yap, Yoke

    2016-07-01

    For the first time, we report the thermal conductivity of vertically aligned boron nitride nanotube (BNNT) films produced by catalytic chemical vapor deposition. High-quality BNNTs were synthesized at 1200 °C on fused silica substrates precoated with Pt thin-film thermometers. The thermal conductivity of the BNNTs was measured at room temperature by using a pulsed photothermal technique. The apparent thermal conductivity of the BNNT coatings increased from 55 to 170 W m‑1 K‑1 when the thickness increased from 10 to 28 µm, while the thermal conductivity attained a value as high as 2400 W m‑1 K‑1. These results suggested that BNNTs, which are highly thermally conductive, but electrically insulating, are promising materials with unique properties.

  15. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Lai, Sheng-Feng [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Yan-Cheng; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Ong, Edwin B.L. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tan, Hui-Ru [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Tok, Eng Soon [Physics Department, National University of Singapore, 117542 (Singapore); Yang, C.S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-01-15

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue.

  16. Transparent binary-thickness coatings on metal substrates that produce binary patterns of orthogonal elliptical polarization states in reflected light

    Science.gov (United States)

    Azzam, Rasheed M. A.; Angel, Wade W.

    1992-12-01

    A reflective division-of-wavefront polarizing beam splitter is described that uses a dual- thickness transparent thin-film coating on a metal substrate. A previous design that used a partially clad substrate at the principal angle of the metal [Azzam, JOSA A 5, 1576 (1988)] is replaced by a more general one in which the substrate is coated throughout and the film thickness alternates between two non-zero levels. The incident linear polarization azimuth is chosen near, but not restricted to, 45 degree(s) (measured from the plane of incidence), and the angle of incidence may be selected over a range of values. The design procedure, which uses the two-dimensional Newton-Raphson method, is applied to the SiO2-Au film- substrate system at 633 nm wavelength, as an example, and the characteristics of the various possible coatings are presented.

  17. Phase composition and tribological properties of Ti-Al coatings produced on pure Ti by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baogang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang Shitang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Pu Yuping [Central Iron and Steel Research Institute, Beijing 100081 (China); Chen Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: chenjm@lzb.ac.cn

    2007-10-15

    Ti-Al coatings with {approx}14.7, 18.1, 25.2 and 29.7 at.% Al contents were fabricated on pure Ti substrate by laser cladding. The laser cladding Ti-Al coatings were analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that with the increase of Al content, the diffraction peaks shifted gradually to higher 2{theta} values. The laser cladding Ti-Al coatings with 14.7 and 18.1 at.% Al were composed of {alpha}-Ti and {alpha}{sub 2}-Ti{sub 3}Al phases, while those with 25.2 and 29.7 at.% Al were composed of {alpha}{sub 2}-Ti{sub 3}Al phase. With the increase of Al content, the cross-sectional hardness increased, while the fracture toughness decreased. For the laser cladding Ti-Al coatings, when the Al content was {<=}18.1 at.%, the wear mechanism was adhesive wear and abrasive wear; while when the Al content {>=}25.2 at.%, the wear mechanism was adhesive wear, abrasive wear and microfracture. With the increase of Al content, the wear rate of laser cladding Ti-Al coatings decreased under 1 N normal load, while the wear rate firstly decreased and then increased under a normal load of 3 N. Due to its optimized combination of high hardness and high fracture toughness, the laser cladding Ti-Al coating with 18.1 at.% Al showed the best anti-wear properties at higher normal load.

  18. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  19. Influence of boron on texture of low carbon batch-annealed steel produced by compact strip production%硼对TSCR低碳罩式退火钢板织构的影响

    Institute of Scientific and Technical Information of China (English)

    王小燕; 于浩

    2011-01-01

    To study the influence of boron on the texture of low carbon batch-annealed steel with given chemistry elements produced by Compact Strip Production(CSP),the texture of B-contained and B-free low-carbon annealed steel were tested by X-ray diffraction(ODF analyses),and the hot-rolled and annealed sheets were analyzed by electrolysis chemical phase analysis.The results showed that γ-fiber texture in B-contained annealed steel was lower than that of B-free steel with almost equal AlN contents.Samples of hot-rolled and annealed steel with B or without B after electrolyzing contain some powders such as carbon,AlN and so on.Besides,the steel with B also contains boron compounds.It′s the coactions of the small AlN,BN,and Fe3(B,C) that affect the formation and development of texture,and B affects the development of texture mainly through the second phase particles such as BN affecting the deformation and growth of grain.It′s concluded that AlN is not the only determinant that affects the development of texture.%为了研究薄板坯连铸连轧(TSCR-Thin Slab Casting and Rolling)工艺生产条件以及给定化学成分下B对低碳罩式退火钢板织构的影响,对含B和无B退火板进行了X射线织构测试,并对热轧、退火板进行了电解化学相分析.试验结果表明:在AlN含量几乎相等的情况下,退火板中γ纤维织构组分含B钢低于无B钢;含B钢和无B钢热轧、退火板电解溶样均得到包含碳化物、AlN等在内的粉末,含B钢中还有B的化合物.含B钢中细小的AlN、BN及Fe的B、C化物共同作用影响织构的生成与发展,而B主要是通过BN等第

  20. Composition and microhardness of CAE boron nitride films

    International Nuclear Information System (INIS)

    The paper deals with boron nitride produced by cathodic arc evaporation techniques.The films were applied on titanium and cemented carbide substrates. Their characterization was carried out using X-ray diffraction and Knoop microhardness tests. Demonstrated are the high properties of two-phase films, containing β (cubic) and γ (wurtzitic) modifications of boron nitride. (author). 7 refs., 1 fig., 3 tabs

  1. The analysis of impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources

    Directory of Open Access Journals (Sweden)

    N. A. Nerosin

    2015-01-01

    Full Text Available The impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources was analyzed. On engineering software MATHCAD the program for calculation of absorbed dose produced by grid of microsources was created. To verify this algorithm the calculation model for MCNP code was established and represented the area consisted of soft biological tissue or any other tissue in which the grid of microsources was incorporated. Using the developed system the value of possible systematic irregular coating of radioactivity on the microsource’s core was analyzed. The distribution of activity along the surface of microsource was simulated to create distribution of absorbed dose rate corresponding to experimental data on radiation injury. The obtained model of microsource with irregular distribution of activity was compared to conventional microsource with core coated regularly along the entire area of the silver stem by main dosimetry characteristics. The results showed that even for extremely irregular distribution of activity the distribution of dose rate produced by microsource in the tumor area was not substantially different from dose-rate field obtained for microsource with regularly coated activity. The differences in dose rates (up to 10% in areas which were the nearest to the center of the grid were significantly lower than its decline from center to periphery of the grid. For spatial distribution of absorbed dose for specific configuration of microsource set and tracing of curves of equal level by selected cut-off the program SEEDPLAN was developed. The developed program represents precisely enough the spatial distribution of selected configuration set of microsources using results of calculation data for absorbed dose around the single microsource as basic data and may be used for optimal planning of brachytherapy with microsources. 

  2. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  3. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  4. Inheritance of Boron Efficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; WANG Yun-Hua; NIAN Fu-Zhao; LU Jian-Wei; MENG Jin-Ling; XU Fang-Sen

    2009-01-01

    Field experiments were conducted to study the inheritance of boron efficiency in oilseed rape (Brassica napus L.) by evaluating the boron (B) efficiency coefficient (BEC,the ratio of the seed yield at below the critical boron level to that at the boron-sufficient level) with 657 F2:3 fines of a population derived from a cross between a B-efficient cultivar,Qingyou 10,and a B-inefficient cultivar,Bakow.Qingyou i0 had high BEC as well as high seed yield at low available soil B.On the contrary,Bakow produced low seed yield at low B status.Boron deficiency decreased the seed yield of the F2:3 lines to different extents and the distribution of BEC of the population showed a bimodal pattern.When the 657 F2:3 lines were grouped into B-efficient lines and B-inefficient lines according to their BEC,the ratio of B-efficient lines to B-inefficient lines fitted the expected ratio (3:1),indicating that one major gene controlled the B-efficiency trait.127 F2:3 lines selected from the population at random,with distribution of BEC similar to that of the overall population,were used to identify the target region for fine mapping of the boron efficiency gene.

  5. Composite Nickel Coatings Produced on 6XXX Series Aluminium Alloys with the Addition of Vanadium / Kompozytowe Powłoki Niklowe Wytwarzane Na Stopach Aluminum Serii 6XXX Z Dodatkiem Wanadu

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2015-12-01

    Full Text Available Studies of composite nickel coatings electrolytically deposited on aluminium alloys with different content of vanadium were described. Composite coatings were deposited from a Watts bath containing fine-dispersed SiC powder particles in an amount of 20 g/l and organic matters such as saccharin and sodium laurate. The morphology, structure and thickness of the obtained composite coatings were presented. The corrosion resistance of produced coatings was examined by electrochemical method. Basing on the results of studies it was found that coatings obtained with the sole addition of saccharin were characterized by numerous surface defects. The addition of sodium laurate eliminated the occurrence of defects caused by hydrogen evolution and the resulting coatings were continuous with good adhesion to the substrate. The distribution of the ceramic SiC phase in coatings was fairly uniform for all the examined variants of aluminium alloys. SEM examinations did not reveal the phenomenon of the ceramic particles agglomeration.

  6. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution.

  7. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. PMID:27040264

  8. Influence of Nitrided Layer on The Properties of Carbon Coatings Produced on X105CrMo17 Steel Under DC Glow-Discharge Conditions

    Directory of Open Access Journals (Sweden)

    Tomasz BOROWSKI

    2016-09-01

    Full Text Available In most cases, machine components, which come in contact with each other, are made of steel. Common steel types include 100Cr6 and X105CrMo17 are widely used in rolling bearings, which are subjected to high static loads. However, more and more sophisticated structural applications require increasingly better performance from steel. The most popular methods for improving the properties of steel is carburisation or nitriding. Unfortunately, when very high surface properties of steel are required, this treatment may be insufficient. Improvement of tribological properties can be achieved by increasing the hardness of the surface, reducing roughness or reducing the coefficient of friction. The formation of composite layers on steel, consisting of a hard nitride diffusion layer and an external carbon coating with a low coefficient of friction, seems to be a prospect with significant potential. The article describes composite layers produced on X105CrMo17 steel and defines their morphology, surface roughness and their functional properties such as: resistance to friction-induced wear, coefficient of friction and corrosion resistance. The layers have been formed at a temperature of 370°C in successive processes of: nitriding in low-temperature plasma followed by deposition of a carbon coating under DC glow-discharge conditions. An evaluation was also made of the impact of the nitrided layers on the properties and morphology of the carbon coatings formed by comparing them to coatings formed on non-nitrided X105CrMo17 steel substrates. A study of the surface topography, adhesion, resistance to friction-induced wear and corrosion shows the significant importance of the substrate type the carbon coatings are formed on.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7532

  9. Bioactive ZnO Coatings Deposited by MAPLE—An Appropriate Strategy to Produce Efficient Anti-Biofilm Surfaces

    Directory of Open Access Journals (Sweden)

    Alexandra Elena Oprea

    2016-02-01

    Full Text Available Deposition of bioactive coatings composed of zinc oxide, cyclodextrin and cefepime (ZnO/CD/Cfp was performed by the Matrix Assisted Pulsed Laser Evaporation (MAPLE technique. The obtained nanostructures were characterized by X-ray diffraction, IR microscopy and scanning electron microscopy. The efficient release of cefepime was correlated with an increased anti-biofilm activity of ZnO/CD/Cfp composites. In vitro and in vivo tests have revealed a good biocompatibility of ZnO/CD/Cfp coatings, which recommend them as competitive candidates for the development of antimicrobial surfaces with biomedical applications. The release of the fourth generation cephalosporin Cfp in a biologically active form from the ZnO matrix could help preventing the bacterial adhesion and the subsequent colonization and biofilm development on various surfaces, and thus decreasing the risk of biofilm-related infections.

  10. Bioactive ZnO Coatings Deposited by MAPLE-An Appropriate Strategy to Produce Efficient Anti-Biofilm Surfaces.

    Science.gov (United States)

    Oprea, Alexandra Elena; Pandel, Loredana Mihaela; Dumitrescu, Ana Maria; Andronescu, Ecaterina; Grumezescu, Valentina; Chifiriuc, Mariana Carmen; Mogoantă, Laurenţiu; Bălşeanu, Tudor-Adrian; Mogoşanu, George Dan; Socol, Gabriel; Grumezescu, Alexandru Mihai; Iordache, Florin; Maniu, Horia; Chirea, Mariana; Holban, Alina Maria

    2016-01-01

    Deposition of bioactive coatings composed of zinc oxide, cyclodextrin and cefepime (ZnO/CD/Cfp) was performed by the Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The obtained nanostructures were characterized by X-ray diffraction, IR microscopy and scanning electron microscopy. The efficient release of cefepime was correlated with an increased anti-biofilm activity of ZnO/CD/Cfp composites. In vitro and in vivo tests have revealed a good biocompatibility of ZnO/CD/Cfp coatings, which recommend them as competitive candidates for the development of antimicrobial surfaces with biomedical applications. The release of the fourth generation cephalosporin Cfp in a biologically active form from the ZnO matrix could help preventing the bacterial adhesion and the subsequent colonization and biofilm development on various surfaces, and thus decreasing the risk of biofilm-related infections. PMID:26891290

  11. Thermal coatings for titanium-aluminum alloys

    Science.gov (United States)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  12. In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil

    Directory of Open Access Journals (Sweden)

    Afsaneh Fazili

    2016-09-01

    Full Text Available Objective: This study examined the in vivo differentiation of mesenchymal stem cells (MSCs into insulin producing cells (IPCs on electrospun poly-L-lactide acid (PLLA scaffolds coated with Matricaria chammomila L. (chamomile oil. Materials and Methods: In this interventional, experimental study adipose MSCs (AMSCs were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control or PLLA scaffold coated with chamomile oil (experimental. A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs. Real-time polymerase chain reaction (PCR determined the expressions of genes related to pancreatic endocrine development and function. Results: Fourier transform infrared spectroscopy (FTIR results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm-1 for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001 compared to control group (0.063 ± 0.009, P≤0.05. Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. Conclusion: The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular

  13. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  14. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  15. Supplement to report on boron disposition from fused salts. Final report

    International Nuclear Information System (INIS)

    The goal of this project was to develop a process to fabricate pure, dense, coherent boron coatings 1 mm thick on graphite or copper substrates. Electrodeposition from molten fluoride salts was the technique chosen for development. The investigation was begun by making a thorough search of the relevant literature and consulting with workers active in the field or related fields. As a result of this search, the technique selected from the literature was a process whereby boron is electrodeposited from a molten equimolal mixture of potassium and lithium fluorides containing dissolved boron trifluoride gas. Initial tests at Bendix consisted of a material evaluation study of 0.02-mm-thick, boron-coated copper specimens. The properties of the boron deposit determined from this material evaluation study were such that an apparatus was designed, constructed, and tested at Bendix Kansas City

  16. First boronization in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H., E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, K.S.; Kim, K.M.; Kim, H.T.; Kim, G.P. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, J.H.; Woo, H.J. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Park, J.M.; Kim, W.C.; Kim, H.K.; Park, K.R.; Yang, H.L.; Na, H.K. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Chung, K.S. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    First boronization in KSTAR is reported. KSTAR boronization system is based on a carborane (C{sub 2}B{sub 10}H{sub 12}) injection system. The design, construction, and test of the system are accomplished and it is tested by using a small vacuum vessel before it is mounted to a KSTAR port. After the boronization in KSTAR, impurity levels are significantly reduced by factor of 3 (oxygen) and by 10 (carbon). Characteristics of a-C/B:H thin films deposited by carborane vapor are investigated. Re-condensation of carborane vapor during the test phase has been reported.

  17. A review of producing hard coatings by means of duplex treatments using an electroplated coating–thermochemical treatment combination

    Directory of Open Access Journals (Sweden)

    Héctor Cifuentes Aya

    2011-12-01

    Full Text Available Duplex treatments have been developed to overcome the disadvantages presented by simple treatments to surfaces of different materials and have, in a combined and complementary way, the properties that each of these methods supplies individually. The difference between thermal expansion coefficients for Fe and Cr in hard chrome plating leads to crack formation in the deposited coat, through which corrosive agents migrate and reduce the system’s integrity.Direct deposition by physical vapour deposition (PVD, used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

  18. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  19. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-01

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite. PMID:17830955

  20. Metal-coated second-order fibre Bragg gratings produced by infrared femtosecond radiation for dual temperature and strain sensing

    Science.gov (United States)

    Chah, K.; Kinet, D.; Caucheteur, C.

    2016-05-01

    We report highly localized second-order fibre Bragg gratings at 1585 nm inscribed by point-by-point focused infrared femtosecond pulses. A thin gold coating deposited on the fibre outer surface at the grating location allows shielding the cladding mode resonances from the outer medium, so that they remain present in the transmitted amplitude spectrum. The Bragg resonance of the second-order grating is surrounded by high-order cladding mode resonances of the first-order grating. These cladding modes exhibit the same temperature sensitivity as the Bragg resonance (10.6 pm/°C) but high differential strain sensitivity (-0.55 pm/μepsilon versus 1.20 pm/μepsilon for the Bragg mode). Therefore, the conditioning of the matrix inversion as demodulation method is fully satisfied, yielding a new design of fibre sensor able to discriminate between temperature and strain, with an unprecedented sensitivity.

  1. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  2. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst. PMID:18961131

  3. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  4. Safety Assessment of Boron Nitride as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations.

  5. Boron removal from metallurgical grade silicon using a FeCl2 molten salt refining technique

    OpenAIRE

    Jia B.J.; Wu J. J.; Ma W.H.; Yang B; Liu D.C.; Dai Y.N.

    2013-01-01

    The slag refining for boron removal from metallurgical grade silicon is a promising metallurgical process for producing solar grade silicon. In this paper, FeCl2 molten salt has been used as a new refining agent to remove boron from MG-Si. The effects of refining time and mass ratio of MG-Si to FeCl2 molten salt on boron removal have been investigated in detail. The results showed that boron can be efficiently removed in form of BCl3 and boron concentration...

  6. Metallogenic Model and Prospecting Indicators of the Boron Deposits in East Liaoning Area

    Institute of Scientific and Technical Information of China (English)

    Qu Hongxiang; Zhang Guoren; Li Xiandong; Chen Shuliang; Yang Zhongzhu; Wang Zhongjiang

    2001-01-01

    The Paleoproterozoic boron deposits in east Liaoning occur in Mg- rich marble of Li' eryu Formation of Liaohe group. The mineralization was controlled by stratigraphic lithology. The volcano ~ sedimentation is the material base of ore-formation. Boron mainly derived from volcanic source. Boron in Li' eryu formation was activated and transferred by migmatization and then deposited into ore when metasomatism occurrs in Mg - rich marble. Structural deformation reconstructed the boron ore bodies. Meanwhile, ore - bearing hyd~othermal solution produced by structural deformation and remetasomated the host - ore rocks or filled in fissure of ore. Boron deposit is a stratabound deposit, which formed by migmatization and structural deformation mineralization.

  7. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water.

  8. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    Science.gov (United States)

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level 22.2 in order to avoid boron accumulation in the anolyte effluent. PMID:27387806

  9. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  10. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coate

  11. Research on the abrasive wear resistance of YDCrMoV coating produced by CO2 shielded flux-cored wire surfacing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.

  12. On the influence of a TiN interlayer on DLC coatings produced by pulsed vacuum arc discharge: Compositional and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Giraldo, B. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Departamento de Fisica y Quimica, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Grupo de Desarrollo de Nuevos Materiales, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Arango-Arango, P.J. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia)

    2009-10-15

    The influence of a TiN interlayer on DLC coatings grown on silicon (1 0 0), 316 stainless steel and KCl by using the PAPVD pulsed arc discharge technique is presented in this paper. The structure of the coatings was determined by means of FTIR through observation of the absorption band modes of CH{sub 2} between 3100 and 2800 cm{sup -1} and representation of the sp{sup 3} and sp{sup 2} carbon bonds, respectively. The sp{sup 3}/sp{sup 2} bonds ratio was calculated by using the base line method and producing a value greater than 1 which was a good prediction of high hardness. XPS analysis of the films was made; the wide spectrum showed the elemental composition of the films (Ti, N, C). A narrow spectrum of C1s at binding energy of 284.48 eV was obtained, and its deconvolution showed peaks of sp{sup 3}, sp{sup 2} and Ti-C. Ti-C bonds were formed due to diffusion of carbon atoms into a TiN matrix. The concentration for the XPS spectra was calculated by using the area under the curve of sp{sup 3} and sp{sup 2} peaks. The morphology of the bilayer, including roughness, grain size and thickness was studied through SPM techniques.

  13. Hard coatings

    OpenAIRE

    Dan, J.; Boving, H.; Hintermann, H.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many process...

  14. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  15. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...

  16. Preparation of boron-containing polysilicate aluminium ferric and its disposal of oilfield produced water%硼聚硅酸铝铁絮凝剂处理油气田采出水的研究

    Institute of Scientific and Technical Information of China (English)

    边伟; 刘乃瑞; 李欣

    2012-01-01

    Oilfield produced water is characterized by high oil content, high salt concentration and viscosity. Flocculant was used for the treatment of oilfield wastewater. A new type of inorganic polymer flocculant called boron-containing polysilicate aluminium ferric (PSAFB) was prepared by using sodium silicate, ferric sulfate, aluminium sulfate and sodium borate. The optimal preparation conditions were defined as follows; n( Fe)/n(Si) = 0.3, n(Al)/n(Si) = 1. 5,n( B)/n(Si) =0.28,the concentration of Na2SiO3 was 0. 5 mol/L. Oilfield produced water was disposed by PSAFB prepared under the optimal preparation conditions. When pH of wastewater was about 7. 00 and the dosage of PSAFB was 25 mL/L,the adsorption capacity and the ability to bridge were the strongest under these conditions. The pattern and flocculant mechanism of PSAFB were studied by using XRD, 1R and SEM analysis method. The results show that the PSAFB is the raw material that is not simply mixed, but interaction to generated atypical macromolecular polymers. So a flocculant has good effect, which is much better than that of PFC, PAC, PSAF.%油气田采出水盐度高、含油高、含菌量大造成了采出水回注困难的问题,文中采用絮凝法进行处理.在常温常压下,利用硅酸钠、硫酸铝、硫酸铁、四硼酸钠制备一种新型无机高分子絮凝剂含硼聚硅酸铝铁(PSAFB),并利用单因素分析法确定了最佳制备条件:n(Fe)/n(Si) =0.3,n(Al)/n(Si)=1.5,n(B)/n(Si) =0.28,硅酸钠的浓度0.5 mol/L.采用最佳条件下制备的絮凝剂处理油气田采出水,得到最佳絮凝剂投加量为25 mL/L,最佳pH值为7.00左右.同时利用X射线衍射,红外光谱分析,扫描电子显微镜,对絮凝剂的形貌结构和絮凝剂机理进行探讨.实验及表征结果表明:PSAFB絮凝剂的原料不是简单地混合,而是形成无定型的大分子聚合物,因此PSAFB絮凝剂具有很好的稳定性,对油气田采出水有优良的处理效果,且是一种较传

  17. Investigation of the Microstructure and the Mechanical Properties of Cu-NiC Composite Produced by Accumulative Roll Bonding and Coating Processes

    Science.gov (United States)

    Shabani, Ali; Toroghinejad, Mohammad Reza

    2015-12-01

    In the present study, Cu-1.8 wt.% NiC (nickel coating) composite was produced by the combination of two methods, including accumulative roll bonding (ARB) and electroplating processes. Electroplating process was done on copper strips in order to produce a nickel-particle-reinforced composite. Microstructure, texture, and the mechanical properties of the produced composite were evaluated during various cycles of ARB using optical and scanning electron microscopes, x-ray diffraction, microhardness, and tensile tests. In addition, the results were compared with Cu-Cu and also Cu-NiS (nickel sheet) samples. It was found that nickel layers were fractured from the first cycle of the process, and nickel fragments were distributed in the copper matrix as the number of cycles was increased. Variation of orientation density of α-, β-, and τ-fibers for the produced composite was examined in different cycles. Microhardness for different elements in different cycles of Cu-NiC was also evaluated. Also, the investigation of the mechanical properties showed that by proceeding the ARB process, the tensile strength of the produced Cu-NiC and Cu-Cu samples was increased. However, improvement in the mechanical properties of composite samples was more noticeable due to the reinforcing effect of nickel particles. The elongation of composite samples showed a decrease in the primary cycles, unlike Cu-Cu ones; however, it was then increased. Finally, by using scanning electron microscopy, the fracture surfaces of Cu-NiC composite were studied to disclose the fracture mechanism of the samples.

  18. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    Science.gov (United States)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  19. 含B量对激光熔覆FeCoCrNiBx(x=0.5,0.75,1.0,1.25)高熵合金涂层组织结构与耐磨性的影响%Effect of Boron Addition on the Microstructure and Wear Resistance of FeCoCrNiBx (x=0.5, 0.75, 1.0, 1.25) High-Entropy alloy Coating Prepared by Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    陈国进; 张冲; 唐群华; 戴品强

    2015-01-01

    采用激光熔覆技术制备FeCoCrNiBx高熵合金涂层,用X射线衍射(XRD)、扫描电镜(SEM)、硬度和耐磨测试等方法,研究了B含量对激光熔覆FeCoCrNiBx高熵合金涂层的组织结构、硬度和耐磨性能的影响.结果表明,随B含量的增加,合金相结构逐渐由fcc固溶体结构转变为fcc固溶体和M3B相共存,M3B相主要为Cr、Fe硼化物.随B含量的增加,枝晶组织中析出颗粒状和短棒状的M3B相,且M3B相逐渐长大成长条状.B的增加显著提高合金涂层的硬度,由4470 MPa增加到8480 MPa,且磨损量随着B的增加而减少.%The FeCoCrNiBx high-entropy alloy coatings were prepared by laser cladding.The effect of boron addition on microstructure,hardness and wear resistance of FeCoCrNiBx high-entropy alloy coating were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),hardness and wear testers.The results show that with the boron addition increasing,the structure of alloys change from fcc structure to fcc structure with M3B phase precipitation,and M3B phase are mainly borides of Cr and Fe.Meanwhile,the granular and short rod-like M3B phase is precipitated in the coatings.And a blocky M3B phase forms with boron addition.Microhardness and wear resistance are significantly enhanced by the formation M3B phase.The microhardness increases from 4470 to 8480 MPa,and the wear-loss of FeCoCrNiBx high-entropy alloy coating decrease with boron addition.

  20. Renewed first wall coating in plasma shots at the T-11M tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Buzhinskij, O.I., E-mail: buzh@triniti.ru [Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow Reg. 142190 (Russian Federation); Barsuk, V.A.; Otroshchenko, V.G. [Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow Reg. 142190 (Russian Federation)

    2010-12-15

    Experimental results on boronization in situ in the tokamak T-11M plasma shots using non-toxic and not explosive metacarborane C{sub 2}H{sub 12}B{sub 10} are presented. As a result of boronization, the film with thickness up to 0.2 {mu}m at deposition rate {approx}25 nm/s was produced. The microhardness of the formed boron containing film H{sub 10} - 600, which indicates on structuredness of coating (the microhardness of the CVD B{sub 4}C films was H{sub 100} - 1800). Injection of carborane in the plasma shots has improved a stabilization of plasma filament. The impurities in wall area have been suppressed, high-vacuum characteristics of the discharge chamber were stabilized. Plasma shot duration without disruption increased essentially. At the density of n{sub e} = 1.3 x 10{sup 13} cm{sup -3}, I{sub p} = 70 kA a shot duration was 350 ms and at the density of n{sub e} = 4.65 x 10{sup 13} cm{sup -3}, I{sub p} = 70 kA was {approx}250 ms. High repeatability of experimental results has appeared. Boronization results in to an essential decrease of the volt-second consumption rate and, correspondingly, to an increase of shot duration. Developed technology opens an opportunity of practical production of renewed structured boron-carbon coatings using of plasma shots in existing large-scale tokamaks and plasma devices.

  1. Boron effects on the ductility of a nano-cluster-strengthened ferritic steel

    International Nuclear Information System (INIS)

    Research highlights: → Cu-rich nano-particle precipitation strengthens the ferritic steels. → Boron doping suppresses brittle intergranular fracture. → Moisture-induced environmental embrittlement can be alleviated by surface coating. - Abstract: The mechanical properties of Cu-rich nano-cluster-strengthened ferritic steels with and without boron doping were investigated. Tensile tests at room temperature in air showed that the B-doped ferritic steel has similar yield strength but a larger elongation than that without boron doping after extended aging at 500 deg. C. There are three mechanisms affecting the ductility and fracture of these steels: brittle cleavage fracture, week grain boundaries, and moisture-induced hydrogen embrittlement. Our study reveals that boron strengthens the grain boundary and suppresses the intergranular fracture. Furthermore, the moisture-induced embrittlement can be alleviated by surface coating with vacuum oil.

  2. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  3. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  4. Plasma boron and the effects of boron supplementation in males.

    Science.gov (United States)

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  5. Electrodeposition of nickel-BN composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pompei, E. [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20151 Milano (Italy); Magagnin, L. [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20151 Milano (Italy)], E-mail: luca.magagnin@polimi.it; Lecis, N. [Dip. di Meccanica, Politecnico di Milano, Milano (Italy); Cavallotti, P.L. [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20151 Milano (Italy)

    2009-03-30

    Electrodeposition of nickel-boron nitride (Ni-BN) composites is carried out from a sulfamate bath containing up to 10 g/l of dispersed boron nitride particles with size 0.5 {mu}m. Microhardness and wear resistance of the composites are investigated. Both the properties are influenced by the amount of incorporated boron nitride particles. Commercial surfactant containing alkyl-dimethyl-benzyl-ammonium saccharinate is used to stabilize the electrolyte: the effects on mechanical properties and structure of the electrodeposits are investigated. Morphology of the coatings and the effects of codeposited particles on metal matrix structure are reported.

  6. Oxidation of Silicon and Boron in Boron Containing Molten Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new process of directly smelting boron steel from boron-containing pig iron has been established. The starting material boron-containing pig iron was obtained from ludwigite ore, which is very abundant in the eastern area of Liaoning Province of China. The experiment was performed in a medium-frequency induction furnace, and Fe2O3 powder was used as the oxidizing agent. The effects of temperature, addition of Fe2O3, basicity, stirring, and composition of melt on the oxidation of silicon and boron were investigated respectively. The results showed that silicon and boron were oxidized simultaneously and their oxidation ratio exceeded 90% at 1 400 ℃. The favorable oxidation temperature of silicon was about 1 300-1 350 C. High oxygen potential of slag and strong stirring enhanced the oxidation of silicon and boron.

  7. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  8. Effect of the Oxidation Time on Properties of Ceramic Coatings Produced on Ti-6Al-4V by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    Zhaohua JIANG; Xuetong SUN; Yanping LI; Fuping WANG; Yandong LU

    2005-01-01

    Ceramic coatings were prepared on Ti-6AI-4V alloy using ac micro-arc oxidation (MAO) in silicate-hypophosphate solution. Growth regularity and formation mechanism of ceramic coatings were discussed. It was found that during the first stage the growth rate of coatings toward the external surface was larger than that toward substrate and then the coating began to grow mainly towards Ti alloy. When the total coating thickness reaches a certain value, it would no longer increase. In addition, the variations of the composition and microstructure of ceramic coatings according to the depositing time were also investigated with X-ray diffraction (XRD) and scanning electron microscope (SEM).The amount of rutile TiO2 gradually increased, whereas the amounts of the anatase TiO2 and amorphous phases first increased and then decreased slightly.

  9. Comparative High-Temperature Corrosion Behavior of Ni-20Cr Coatings on T22 Boiler Steel Produced by HVOF, D-Gun, and Cold Spraying

    Science.gov (United States)

    Kaushal, Gagandeep; Bala, Niraj; Kaur, Narinder; Singh, Harpreet; Prakash, Satya

    2014-01-01

    To protect materials from surface degradations such as wear, corrosion, and thermal flux, a wide variety of materials can be deposited on the materials by several spraying processes. This paper examines and compares the microstructure and high-temperature corrosion of Ni-20Cr coatings deposited on T22 boiler steel by high velocity oxy-fuel (HVOF), detonation gun spray, and cold spraying techniques. The coatings' microstructural features were characterized by means of XRD and FE-SEM/EDS analyses. Based upon the results of mass gain, XRD, and FE-SEM/EDS analyses it may be concluded that the Ni-20Cr coating sprayed by all the three techniques was effective in reducing the corrosion rate of the steel. Among the three coatings, D-gun spray coating proved to be better than HVOF-spray and cold-spray coatings.

  10. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    International Nuclear Information System (INIS)

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  11. The importance of coating standardization in gastro-resistant capsules produced in magistral pharmacy - doi: 10.4025/actascihealthsci.v35i2.14581

    OpenAIRE

    Suelen Cristina Franco; Flávia Cristina da Silva; Marcela Maria Baracat; Rúbia Casagrande; Janice Aparecida Rafael; Daniela Cristina de Medeiros

    2013-01-01

    Gastro-resistant capsules are often used for several purposes, such as protection of unstable drugs in acid medium to the action of gastric fluids or protection of the gastric mucosa to irritants drugs. The aim of this study was to verify the variation of preparations of capsules coating with cellulose acetate phthalate and methacrylic acid copolymer, without drug addition, in 7-10% coating concentrations, prepared manually with four or five immersions in tested coating solution. Results were...

  12. The effect of zinc bath temperature on the morphology, texture and corrosion behaviour of industrially produced hot-dip galvanized coatings

    Directory of Open Access Journals (Sweden)

    A. Bakhtiari

    2014-03-01

    Full Text Available The purpose of this work is to identify the influence of zinc bath temperature on the morphology, texture and corrosion behavior of hot-dip galvanized coatings. Hot-dip galvanized samples were prepared at temperature in the range of 450-480 °C in steps of 10 °C, which is the conventional galvanizing temperature range in the galvanizing industries. The morphology of coatings was examined with optical microscopy and scanning electron microscopy (SEM. The composition of the coating layers was determined using energy dispersive spectroscopy (EDS analysis. The texture of the coatings was evaluated using X-ray diffraction. Corrosion behavior was performed using salt spray cabinet test and Tafel extrapolation test. From the experimental results, it was found that increasing the zinc bath temperature affects the morphology of the galvanized coatings provoking the appearance of cracks in the coating structure. These cracks prevent formation of a compact structure. In addition, it was concluded that (00.2 basal plane texture component was weakened by increasing the zinc bath temperature and, conversely, appearance of (10.1 prism component, (20.1 high angle pyramidal component and low angle component prevailed. Besides, coatings with strong (00.2 texture component and weaker (20.1 components have better corrosion resistance than the coatings with weak (00.2 and strong (20.1 texture components. Furthermore, corrosion resistance of the galvanized coatings was decreased by increasing the zinc bath temperature.

  13. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    Science.gov (United States)

    Rinaldo, Steven G.

    formation of boron nitride nanotubes (BNNTs). In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and introduce a new method involving injection of boron powder into an induction furnace. In Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor generated in situ, either through the reaction of boron with metal oxides or through the decomposition of metal borides.

  14. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J; Yoon, D; Shin, H; Kim, M; Suh, T [The Catholic University Seoul (Korea, Republic of)

    2015-06-15

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show that the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  15. Magnetron sputtering synthesis of large area well-ordered boron nanowire arrays

    Institute of Scientific and Technical Information of China (English)

    CAO; Limin; ZHANG; Ze; WANG; Wenkui

    2004-01-01

    One-dimensionally nanostructured materials, such as nanowires and nanotubes, are the smallest dimensional structures for efficient transport of electrons and excitons, and are therefore critical building blocks for nanoscale electronic and mechanical devices. In this paper, boron nanowires with uniform diameters from 20 to 80nm were synthesized by radio-frequency magnetron sputtering of pure boron powder and B2O3 powder mixtures in argon atmosphere. The boron nanowires produced stand vertically on the substrate surface to form well-ordered arrays over large areas with selforganized arrangements without involvement of any template and patterned catalyst. The high-density boron nanowires are parallel to each other and well distributed, forming highly ordered and uniform arrays. A more interesting and unique feature of the boron nanowires is that most of their tips are flat rather than hemispherical in morphologies.Detailed studies on its structure and composition indicate that boron nanowires are amorphous. Boron nanowire appears as a new member in the family of one-dimensional nanostructures. Considering the unique properties of boron-rich solids and other nanostructures, it is reasonable to expect that the boron nanowires will display some exceptional and interesting properties. A vapor-cluster-solid (VCS) mechanism was proposed to explain the growth of boron nanowires based on our experimental observations.

  16. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; Zhong, J. X.

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  17. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    Science.gov (United States)

    Joshi, Foram M.; Joshipura, K. N.; Chaudhari, Asha S.

    2016-05-01

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Qion and the summed-electronic excitation cross section ΣQexc in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incident electron energy along with available comparisons.

  18. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  19. Effect of diborane on the microstructure of boron-doped silicon nanowires

    Science.gov (United States)

    Pan, Ling; Lew, Kok-Keong; Redwing, Joan M.; Dickey, Elizabeth C.

    2005-04-01

    Boron-doped silicon (Si) nanowires, with nominal diameters of 80 nm, were grown via the vapor-liquid-solid (VLS) mechanism using gold (Au) as a catalyst and silane (SiH 4) and diborane (B 2H 6) as precursors. The microstructure of the nanowires was studied by scanning electron microscopy, transmission electron microscopy and electron energy-loss spectroscopy. At lower B 2H 6 partial pressure and thus lower doping levels (⩽1×10 18 cm -3), most of the boron-doped Si nanowires exhibited high crystallinity. At higher B 2H 6 partial pressure (˜2×10 19 cm -3 doping level), the majority of the wires exhibited a core-shell structure with an amorphous Si shell (20-30 nm thick) surrounding a crystalline Si core. Au nanoparticles on the outer surface of the nanowires were also observed in structures grown with high B/Si gas ratios. The structural changes are believed to result from an increase in the rate of Si thin-film deposition on the outer surface of the nanowire at high B 2H 6 partial pressure, which produces the amorphous coating and also causes an instability at the liquid/solid interface resulting in a loss of Au during nanowire growth.

  20. Carbon coating on the wall of nuclear fusion devices and plasma-surface interactions

    International Nuclear Information System (INIS)

    The plasma-assisted carbon-film coating of the inner walls of nuclear fusion devices, which is a new technical trend, is reviewed in view of plasma-surface interactions. A great advantage of the easiness for both wide-area and repeated coatings is due to the so-called in situ coating of the walls compared with the precoating. The amorphous carbon films produced by this in situ plasma coating contain ordinarily a large number of H atoms (H/C = 0.4∼0.6), which lead to recycling of a large amount of hydrogen (release and implantation of H atoms) in nuclear fusion discharges. This demerit of the plasma method can be covered by reducing the H content in the films under suitable coating conditions, and also by conditioning the film surface with a helium glow discharge. A simple model for the interaction between a-C : H film and hydrogen plasma is proposed. Further, another low-Z material coating, that is in situ boron coating, is briefly discussed. (author)

  1. Single layer broadband anti-reflective coatings for plastic substrates produced by full wafer and roll-to-roll step-and-flash nano-imprint lithography

    NARCIS (Netherlands)

    Burghoorn, M.M.A.; Roosen-Melsen, D.A.; Riet, J.F.J. de; Sabik, S.; Vroon, Z.A.E.P.; Yakimets, I.; Buskens, P.J.P.

    2013-01-01

    Anti-reflective coatings (ARCs) are used to lower the reflection of light on the surface of a substrate. Here, we demonstrate that the two main drawbacks of moth eye-structured ARCs-i.e., the lack of suitable coating materials and a process for large area, high volume applications-can be largely eli

  2. Tribological behavior of improved chemically vapor-deposited boron on beryllium

    International Nuclear Information System (INIS)

    Earlier chemical vapor deposition (CVD) experiments with diborane as the boron source gave well-bonded boron films up to 10 μm thick on beryllium, with layered intermetallic compounds below a top layer of boron. The films were nonuniform in thickness and cracked badly when given diffusion heat treatments to produce desired intermetallic compounds. By rotating the beryllium samples during the CVD, films of uniform thickness have now been produced. A variety of compounds of beryllium and boron have been produced on the outer surface of the CVD film by varying the concentration of diborane in the CVD gas. Wear and friction tests performed on various CVD surfaces using sapphire and diamond pins showed remarkable differences in that the CVD boron surface appeared to be substantially more compatible with diamond than with sapphire. The results of these tests are discussed. (Auth.)

  3. Longitudinal residual stresses in boron fibers

    Science.gov (United States)

    Behrendt, D. R.

    1976-01-01

    A technique is proposed for measuring the longitudinal residual stress distribution in commercial CVD (Chemical Vapor Deposition) boron on tungsten fibers of 102, 142, and 203 microns in diameter. The experimental apparatus is so designed that continuous measurements are made of the length changes of a boron fiber specimen as the surface of the fiber is removed by electropolishing. The effects of surface removal on core residual stress and core-initiated fracture are discussed. The three sizes of boron fibers investigated show similar residual stress distributions, i.e., compressive at the surface, tensile near the core, and for the 102-micron fiber compressive again in the core. It is shown that an increase in UTS is due to the increase in the compressive stress at the core produced by fiber contraction during surface removal. An expression is derived for calculating the longitudinal residual stress at a given radius for an as-received fiber of a certain radius from measurements of the axial strain produced by removal of the surface by electropolishing.

  4. Characterization of boron doped nanocrystalline diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/{mu}m range.

  5. Techniques for increasing boron fiber fracture strain

    Science.gov (United States)

    Dicarlo, J. A.

    1977-01-01

    Improvement in the strain-to-failure of CVD boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. The results of three methods are presented in which etching and thermal processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment induced surface flaws were removed from 203 micrometers (8 mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment induced contraction on the core flaw. Commercial feasibility considerations suggest as the most cost effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed are presented and discussed both for high vacuum and argon gas heat treatment environments.

  6. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES).

    Science.gov (United States)

    Kataoka, Hiroko; Okamoto, Yasuaki; Tsukahara, Satoshi; Fujiwara, Terufumi; Ito, Kazuaki

    2008-03-10

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me(4)NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B(4)C), etc. but also boric acid (B(OH)(3)) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described.

  7. Hard coatings

    International Nuclear Information System (INIS)

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  8. Microstructure and corrosion performance of steam-based conversion coatings produced in the presence of TiO2 particles on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl;

    2016-01-01

    The steam-based conversion coatings containing TiO2 particleswere prepared using a two-step process comprising of spin coating of particles onto an aluminiumsubstrate followed by a high-pressure steam treatment. Process has resulted in the formation of aluminium oxide layer (~1.3 μm thick) embedded...... to the coatings without TiO2 particles, while the shift in thepitting potential was a function of the steam treatment time and degree of particle incorporation into the oxide....

  9. Influence of the HVOF Gas Composition on the Thermal Spraying of WC-Co Submicron Powders (-8 + 1 μm) to Produce Superfine Structured Cermet Coatings

    Science.gov (United States)

    Tillmann, W.; Vogli, E.; Baumann, I.; Matthaeus, G.; Ostrowski, T.

    2008-12-01

    Thermal spraying technology represents a novel and promising approach to protect forming tools with complex surfaces and highest shape accuracy against abrasive wear and galling. However, due to high or nonuniform layer thicknesses or inappropriate surface roughness conventional coarse-structured coatings are not suitable to achieve this aim. The application of novel submicron or nanoscaled feedstock materials in the thermal spray process can provide the deposition of cermet coatings with significantly improved characteristics and is recently of great interest in science and industry. In this collaborative study, the feeding and HVOF spraying of WC-Co submicron powders (-8 + 1 μm) have been investigated to manufacture superfine structured, wear resistant, near-net-shape coatings with improved macroscopic properties and smooth surfaces. The influences of varying HVOF gas compositions on the spray process and the coating properties have been analyzed.

  10. Effect of Y2O3 Content on Microstructure of Gradient Bioceramic Composite Coating Produced by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    Liu Qibin; Zou Jianglong; Zheng Min; Dong Chuang

    2005-01-01

    To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that "monosodium glutamate" effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.

  11. Synovectomy by neutron capture in boron

    International Nuclear Information System (INIS)

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, α) in the 10 B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a 239 Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the blood tissue

  12. 钛涂铂电极在电解功能水机中的应用研究%Study on application of platinum-coated titanium electrode to electrolysis functional water producing device

    Institute of Scientific and Technical Information of China (English)

    罗小军; 徐永海; 张招贤

    2009-01-01

    钛涂铂电极是近年来活跃应用在电解功能水机中的一种新型电极材料.本文介绍了钛涂铂电极制造的工艺条件,用扫描电镜对钛涂铂电极表面形貌进行了表征.采用电化学工作站,在三电极体系中测试了钛涂铂电极析氧极化曲线及循环伏安曲线.测试数据表明,在水电解中,钛涂铂电极析氧活性高于钛镀铂电极.%Pt-coated titanium electrode, a new electrode material was applied actively to electrolysis functional water producing device. This paper introduced a preparation process of Pt-coated titanium electrode, and the surface morphology of the coating was characterized by scanning electron microscopy. The oxygen evolution polarization curves and cyclic voltammetric curve of Pt-coated titanium electrode were tested using an electrochemical workstation with three electrode system. Test data indicated that the oxygen evolution activity of the Pt-coated titanium electrode is higher than that of a platinized titanium electrode in water electrolysis.

  13. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  14. The Kinetics and Dry-Sliding Wear Properties of Boronized Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Dong Mu

    2013-01-01

    Full Text Available Some properties of boride formed on gray cast iron (GCI have been investigated. GCI was boronized by powder-pack method using Commercial LSB-II powders at 1123, 1173, and 1223 K for 2, 4, 6, and 8 h, respectively. Scanning electron microscopy showed that boride formed on the surface of boronized GCI had tooth-shaped morphology. The hardness of boride formed on surfaces of GCI ranged from 1619 to 1343 HV0.025, and quenched and tempered GCI ranged from 400 to 610 HV0.025. The boride formed in the coating layer confirmed by X-ray diffraction analysis was Fe2B single phase. Depending on boronizing time and temperature, the thickness of coating layers on boronized GCI ranged from 26 to 105 μm. The activation energy was 209 kJ/mol for boronized GCI. Moreover, the possibility of predicting the iso-thickness of boride layers variation was studied. Dry-sliding wear tests showed that the wear resistance of boronized sample was greater than that of quenched and tempered sample.

  15. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk, E-mail: suhsanta@catholic.ac.kr [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 505 (Korea, Republic of)

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  16. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk; AdamLejwoda; PrzemyslawCieszkowski; PrzemyslawLibuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqyist's method for measurement of coating susceptibility to brittle cracking.

  17. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk; Adam Lejwoda; Przemyslaw Cieszkowski; Przemyslaw Libuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqvist's method for measurement of coating susceptibility to brittle cracking.

  18. Triobological Properties of Nanocrystalline Co-Ni Coating Produced by Pulse Electrodeposition%脉冲电沉积制备的纳米晶钴-镍合金薄膜的摩擦学性能

    Institute of Scientific and Technical Information of China (English)

    苏峰华; 刘灿森

    2014-01-01

    Nanocrystalline Co-Ni alloy coatings were prepared by direct current(DC),unipolar and bipolar pulse elec-trodeposition techniques.The surface morphology and surface roughness of the coatings were characterized with atomic force microscope(AFM)and a surface profile measurement system.The microhardness was measured on a MV-2T Vickers micro-hardness tester.The friction and wear properties of the coatings wear evaluated using a ball-on-disc tribometer and their worn surfaces were studied by SEM to illustrate their wear mechanisms.The results show that the morphology,hardness and the tribological properties of the nanocrystalline Co-Ni coatings are significantly affected by the electrodeposition tech-niques.DC electrodeposition results in the as-prepared Co-Ni coating having low surface roughness,low hardness,and the columnar crystal with big size.The Co-Ni coating produced by the bipolar pulse electrodeposition exhibits the highest hard-ness,the smallest surface roughness,and the columnar crystals with the smallest size.The wear resistance of the Co-Ni coating produced by the bipolar pulse electrodeposition is improved almost one order of magnitude when compared to the Co-Ni coating produced by DC eletrodeposition.The coating produced by DC eletrodeposition exhibits the severely adhesive and abrasive wear during the sliding process.However the coating produced by bipolar pulse eletrodeposition exhibits the slightly fatigue and abrasive wear.%采用直流电、单脉冲和双脉冲制备纳米晶钴-镍(Co-Ni)合金薄膜。用原子力显微镜(AFM)和表面轮廓仪分析薄膜表面形貌与表面粗糙度,用MV-2T显微硬度计测试薄膜的硬度,用球盘式摩擦磨损试验机的评价Co-Ni合金薄膜的摩擦磨损性能,用扫描电子显微镜分析Co-Ni合金薄膜的摩擦磨损机制。研究发现,电沉积技术显著影响纳米Co-Ni薄膜的表面形貌、硬度和摩擦磨损性能与机制。直流电制备的Co-Ni合金薄膜柱

  19. Cosmis Lithium-Beryllium-Boron Story

    Science.gov (United States)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  20. Dietary boron, brain function, and cognitive performance.

    OpenAIRE

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and wo...

  1. Banishing brittle bones with boron

    Energy Technology Data Exchange (ETDEWEB)

    A 6-month study indicates that boron, not even considered an essential nutrient for people and animals, may be a key to preventing osteoporosis, say nutritionist Forrest H. Nielsen and anatomist Curtiss D. Hunt at ARS' Grand Forks, North Dakota, Human Nutrition Research Center. They believe the results of the study - the first to look at the nutritional effects of boron in humans - will generate a lot of interest in the element. In the study, 12 postmenopausal women consumed a very low boron diet (0.25 milligrams per day) for 17 weeks then were given a daily 3-mg supplement - representing the boron intake from a well-balanced diet - for 7 more weeks. Within 8 days after the supplement was introduced, the lost 40 percent less calcium, one-third less magnesium, and slightly less phosphorus through the urine. In fact, their calcium and magnesium losses were lower than prestudy levels, when they were on their normal diets. Since boron isn't considered essential for people, there is not recommended intake and no boron supplement on the market. Nielsen says the supplement of sodium borate used in the study was specially prepared based on the amount of boron a person would get from a well-balanced diet containing fruits and vegetables. He says the average boron intake is about 1.5 mg - or half the experimental dose - but average means a lot of people get less and a lot get more. Hunt cautioned that large doses of boron can be toxic, even lethal. The lowest reported lethal dose of boric acid is about 45 grams (1.6 ounces) for an adult and only 2 grams (0.07 ounce) for an infant.

  2. XPS, SIMS and FTIR-ATR characterization of boronized graphite from the thermonuclear plasma device RFX-mod

    Science.gov (United States)

    Ghezzi, F.; Laguardia, L.; Caniello, R.; Canton, A.; Dal Bello, S.; Rais, B.; Anderle, M.

    2015-11-01

    In this paper the characterization of a thin (tens of nanometers) boron layer on fine grain polycrystalline graphite substrate is presented. The boron film is used as conditioning technique for the full graphite wall of the Reversed Field eXperiment-modified (RFX-mod) experiment, a device for the magnetic confinement of plasmas of thermonuclear interest. Aim of the present analysis is to enlighten the chemical structure of the film, the trapping mechanism that makes it a getter for oxygen and hydrogen and the reason of its loss of effectiveness after exposure to about 100 s of hydrogen plasma. X-ray Photoelectron Spectroscopy (XPS), Secondary Ions Mass Spectrometry (SIMS) and Fourier Transform Infra Red spectroscopy in combination with the Attenuated Total Reflectance (FTIR-ATR) were used to obtain the structure and the chemical composition of graphitic samples as coated or coated and subsequently exposed to hydrogen plasma after boron deposition. The boron layers on the only coated samples were found to be amorphous hydrogenated boron carbide plus a variety of bonds like B-B, B-H, B-O, B-OH, C-C, C-H, C-O, C-OH. Both the thickness and the homogeneity of the layers were found to depend on the distance of the sample from the anode during the deposition. The samples contained oxygen along the layer thickness, at level of 5%, bound to boron. The gettering action of the boron is therefore already active during the deposition itself. The exposure to plasma caused erosion of the boron film and higher content of H and O bound to boron throughout the whole thickness. The interaction of the B layer with plasma is therefore a bulk phenomenon.

  3. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  4. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  5. Growth Characteristics and Kinetics of Niobium Carbide Coating Obtained on AISI 52100 by Thermal-reactive Diffusion Technique

    Institute of Scientific and Technical Information of China (English)

    YAN Shaojin; WANG Hongfu; SUN Qikun; HE Peng; PANG Chengang; WANG Huachang; WANG Ailing

    2014-01-01

    Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fluoride, boron carbide, and niobium pentoxide. The presence of NbC phase on the steel surface was confirmed by X-ray diffraction analysis. Microscopic observation showed that niobium carbide coating formed on the substrate was smooth and compact. There was a distinct and flat interface between the coating and substrate. The micro-hardness of niobium carbide coating was 2892±145HV. The thickness of coating ranged from 1.6μm to 14μm. The forming kinetics of niobium carbide coating was revealed. Moreover, a contour diagram derived from experimental data was graphed for correct selection of process parameters. Some mathematical equations were built for predicting the coating thickness with predetermined processing temperature and time. The results showed that these mathematical equations are very practical as well as the kinetics equation.

  6. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  7. STUDY ON THE CARDANOL-ALDEHYDE CONDENSATION POLYMER CONTAINING BORON-NITROGEN COORDINATE BOND

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Cardanol-aldehyde condensation polymer containing boron-nitrogen coordinate bond (CFBN) has been synthesized and characterized by IR, XPS, HPLC and DTA-TG. Its properties were also investigated. The results show that the coating film of CFBN has excellent physico-mechanical properties, good anticorrosive properties and stable at high temperature.

  8. Seebeck coefficient and electrical conductivity of doped Beta-Boron

    International Nuclear Information System (INIS)

    Beta-rhombohedral boron (β-B) was investigated to determine its potential for use as a high temperature thermoelectric material. Single dopants to produce n or p-type material were found. The figure of merit for both types of materials is less than that of silicongermanium thermoelectric alloys

  9. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  10. Coated Aerogel Beads

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  11. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  12. Influence of powder particle injection velocity on the microstructure of Al-12Si/SiCp coatings produced by laser cladding

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J. Th M.

    2009-01-01

    The influence of powder particle injection velocity on the microstructure of coatings consisting of an Al-Si matrix reinforced with SiC particles prepared by laser cladding from mixtures of powders of Al-12 wt.% Si alloy and SiC was investigated both experimentally and by modeling. At low injection

  13. Infrared emission spectrophotometric study of the changes produced by TiN coating of metal surfaces in an operating EHD contact

    Science.gov (United States)

    Keller, L. E.; Lauer, J. L.; Jones, W. R., Jr.

    1982-01-01

    Infrared emission spectra and related measurements were obtained from an operating ball/plate EHD sliding contact under a variety of operating conditions. In order to be able to compare the effect of the ball surface, some of the steel balls were coated with a thin layer of titanium nitride (TiN) by vapor deposition. Polyphenyl ether (5P4E) was used as the lubricant and 1 percent of 1,1,2-trichloroethane TCE) as an additive with a high affinity for steel but a low affinity for TiN. TiN is chemically inert, but its thermal conductivity is lower than that of steel. Therefore, the overall temperatures with TiN-coated balls were higher. Nevertheless, no scuffng was observed with the coated balls under conditions giving rise to scuffing with the uncoated balls. Tractions were lower with the TiN-coated balls and with the steel balls when TCE was added to the 5P4E. These findings were found to be inversely related to the degree of polarization of the spectral emission bands. The intensity and the dichroism of these bands were related to shear rates and inlet conditions of the EHD contact.

  14. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    Science.gov (United States)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  15. Synthesis of Boron Nitride Nanotubes for Engineering Applications

    Science.gov (United States)

    Hurst, Janet; Hull, David; Gorican, Dan

    2005-01-01

    Boron Nitride nanotubes (BNNT) are of interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted large amounts of attention. Both materials have potentially unique and significant properties which may have important structural and electronic applications in the future. However of even more interest than their similarities may be the differences between carbon and boron nanotubes. Whilt boron nitride nanotubes possess a very high modulus similaar to CNT, they are also more chemically and thermally inert. Additionally BNNT possess more uniform electronic properties, having a uniform band gap of approximately 5.5 eV while CNT vary from semi-conductin to conductor behavior. Boron Nitride nanotubes have been synthesized by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistently producing a reliable product has proven difficult. Progress in synthesis of 1-2 gram sized batches of Boron Nitride nanotubes will be discussed as well as potential uses for this unique material.

  16. Boron Diffused Thermoluminescent Surface Layer in LiF TLDs for Skin Dose Assessments

    DEFF Research Database (Denmark)

    Christensen, Poul; Majborn, Benny

    1980-01-01

    A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry.......A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry....

  17. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  18. Boron toxicity in Lemna gibba

    OpenAIRE

    Mayra Sánchez Villavicencio; Carlos Álvarez Silva; Guadalupe Miranda Arce

    2007-01-01

    Total soluble phenols and total chlorophylls content, changes of biomass and concentration factor in Lemna gibba exposed to different concentrations of boron were measured. Day six soluble phenols showed significant differences in treatment with 10 mg/L of boron. At day ten, chlorophylls content in treatment 2 mg/L concentration increased respect to other experimental groups and control group, there were no significant differences. Biomass of Lemna gibba decreased significant in treatments wi...

  19. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  20. Structure of surface layers produced by non-vacuum electron beam boriding

    Energy Technology Data Exchange (ETDEWEB)

    Bataev, I.A., E-mail: ivanbataev@ngs.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation); Bataev, A.A., E-mail: bataev@adm.nstu.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation); Golkovski, M.G., E-mail: M.G.Golkovski@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Lavrentieva prospect 11, 630090 Novosibirsk (Russian Federation); Krivizhenko, D.S., E-mail: dinylkaa@yandex.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation); Losinskaya, A.A., E-mail: anna.losinskaya@mail.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation); Lenivtseva, O.G., E-mail: lenivtseva_olga@mail.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation)

    2013-11-01

    The structure and mechanical properties of boronized layers produced on low carbon steel substrates by non-vacuum electron-beam cladding were studied. This process provides high performance and high thickness of coatings and can be used to process large workpieces. In this study, we investigated coatings obtained by one, two or three passes of the electron beam. The thickness of the coatings varied from 0.6 to 1.0 mm, and the maximum hardness achieved was 21 GPa. Structural analysis revealed the oriented growth of eutectic colonies near the primary crystals of iron borides, which was explained by the commonality of the boride phases in the primary Fe{sub 2}B and eutectic Fe{sub 2}B. The eutectic colonies formed during electron-beam cladding consisted of a continuous framework of borides crystals and segregations of α-Fe in the form of oriented fibers. Coatings produced by electron-beam cladding had higher contact-fatigue endurance than those produced by pack boriding.

  1. Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element.

    Science.gov (United States)

    Li, Jian; Zhang, Ning; Sun, Qingqing; Bai, Zhanming; Zheng, Jianbin

    2016-10-01

    A novel imprinted silica matrix-poly(aniline boronic acid) hybrid for electrochemical detection of dopamine (DA) was developed. Boronic acid functionalized conducting polymer was electrochemically prepared on Au electrode. The number of covalent binding sites toward DA templates was controlled by potential cycles. A precursory sol solution of ammonium fluorosilicate (as cross-linking monomer) containing DA was spin-coated on the polymer modified electrode. Under NH3 atmosphere, the hydroxyl ions were generated in the solution and catalyzed the hydrolysis of fluorosilicate to form silica matrix. After this aqueous sol-gel process, an inorganic framework around the DA template was formed and the imprinted hybrid for DA was also produced. As revealed by scanning electron microscopy, UV-vis spectroscopy and cyclic voltammetry characterization, DA was embedded in the imprinted hybrid successfully. The affinity and selectivity of the imprinted hybrid were also characterized by cyclic voltammetry. The imprinted hybrid showed higher affinity for DA than that for epinephrine, and little or no affinity for ascorbic acid and uric acid due to the combined effects of covalent interaction, cavities matching and electrostatic repulsion. The imprinted hybrid sensor exhibited a quick response (within 5min) to DA in the concentration range from 0.05 to 500μmolL(-1) with a detection limit of 0.018μmolL(-1). The prepared sensor was also applied to detect DA in real samples with a satisfactory result. PMID:27474321

  2. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    Science.gov (United States)

    Kartal, Muhammet; Uysal, Mehmet; Gul, Harun; Alp, Ahmet; Akbulut, Hatem

    2015-11-01

    A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55-65%).

  3. Improved creep and oxidation behavior of a martensitic 9Cr steel by the controlled addition of boron and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science; Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Holzer, Ivan; Mendez-Martin, Francisca [Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Albu, Mihaela; Mitsche, Stefan [Graz Univ. of Technology (Austria). Inst. for Electron Microscopy; Gonzalez, Vanessa; Agueero, Alina [Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz (Spain)

    2010-07-01

    This manuscript gives an overview on recent developments of a martensitic steel grade based on 9Cr3W3CoVNb with controlled additions of boron and nitrogen. Alloy design by thermodynamic equilibrium calculations and calculation of boron-nitrogen solubility is discussed. Out of this alloy design process, two melts of a 9Cr3W3CoVNbBN steel were produced. The investigation focused on microstructural evolution during high temperature exposure, creep properties and oxidation resistance in steam at 650 C. Microstructural characterization of ''as-received'' and creep exposed material was carried out using conventional optical as well as advanced electron microscopic methods. Creep data at 650 was obtained at various stress levels. Longest-running specimens have reached more than 20,000 hours of testing time. In parallel, long-term oxidation resistance has been studied at 650 C in steam atmosphere up to 5,000 hours. Preliminary results of the extensive testing program on a 9Cr3W3CoVNbBN steel show significant improvement in respect to creep strength and oxidation resistance compared to the state-of-the-art 9 wt. % Cr martensitic steel grades. Up to current testing times, the creep strength is significantly beyond the +20% scatterband of standard grade P92 material. Despite the chromium content of 9 wt % the material exhibits excellent oxidation resistance. Steam exposed plain base material shows comparable oxidation behavior to coated material, and the corrosion rate of the boron-nitrogen controlled steel is much lower compared to standard 9 wt % Cr steel grades, P91 and P92. (orig.)

  4. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey); Yilmaz, M. Tolga [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Chemical Engineering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey)

    2005-01-31

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions.

  5. Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel

    International Nuclear Information System (INIS)

    Highlights: → Unique feature of low strain hardening exponent (n) with high total elongation has been discussed in industrially produced low carbon boron containing steel. → n has been correlated with the micro structural changes occurring during deformation of steel. → This feature of low n and high % elongation has potential for higher cold reducibility. → The work is being reported for the first time on industrially produced low carbon boron containing steel. - Abstract: The beneficial effect of boron on mechanical properties of low carbon Al-killed steel has been reported in recent past. However, the effect of boron on strain hardening exponent (n) and ductility has not been fully understood. This aspect has been discussed in present work. The results of mill trials with reference to n and ductility with boron added steel are compared to those for commercial grade. The lowering of 'n' with increased total elongation in boron bearing steel has been related to the microstructural evolution as a result of boron addition.

  6. The boron trifluoride nitromethane adduct

    Science.gov (United States)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  7. Ion implantation of boron in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.S.

    1985-05-01

    Ion implantation of /sup 11/B/sup +/ into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of /sup 11/B/sup +/ into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10/sup 11//cm/sup 2/ to 1 x 10/sup 14//cm/sup 2/) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses (<1 x 10/sup 12//cm/sup 2/). Three damage related hole traps are produced by ion implantation of /sup 11/B/sup +/. Two of these hole traps have also been observed in ..gamma..-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures (<300/sup 0/C). Boron, from room temperature implantation of BF/sub 2//sup +/ into Ge, is not substitutionally active prior to a post implant annealing step of 250/sup 0/C for 30 minutes. After annealing additional shallow acceptors are observed in BF/sub 2//sup +/ implanted samples which may be due to fluorine or flourine related complexes which are electrically active.

  8. Research on the Cutting Performance of Cubic Boron Nitride Tools

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic c...

  9. Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition

    Science.gov (United States)

    Gül, H.; Kılıç, F.; Uysal, M.; Aslan, S.; Alp, A.; Akbulut, H.

    2012-03-01

    In the present work, a nickel sulfate bath containing SiC submicron particles between 100 and 1000 nm was used as the plating electrolyte. The aim of this work is to obtain Ni-SiC metal matrix composites (MMCs) reinforced with submicron particles on steel surfaces with high hardness and wear resistance for using in anti-wear applications such as dies, tools and working parts for automobiles and vehicles. The influence of the SiC content in the electrolyte on particle distribution, microhardness and wear resistance of nano-composite coatings was studied. During the electroplating process, the proper stirring speed was also determined for sub-micron SiC deposition with Ni matrix. The Ni films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The depositions were controlled to obtain a specific thickness (between 50 and 200 μm) and volume fraction of the particles in the matrix (between 0.02 and 0.10). The hardness of the coatings was measured to be 280-571 HV depending on the particle volume in the Ni matrix. The tribological behaviors of the electrodeposited SiC nanocomposite coatings sliding against an M50 steel ball (Ø 10 mm) were examined on a tribometer. All the friction and wear tests were performed without lubrication at room temperature and in the ambient air (with a relative humidity of 55-65%). The results showed that the wear resistance of the nanocomposites was approximately 2-2.2 times more than those of unreinforced Ni.

  10. Cubic boron nitride: a new prospective material for ultracold neutron application

    CERN Document Server

    Sobolev, Yu; Borisov, Yu; Daum, M; Fresne, N du; Goeltl, L; Hampel, G; Heil, W; Knecht, A; Keunecke, M; Kratz, J V; Lang, T; Meister, M; Plonka-Spehr, Ch; Pokotilovski, Yu; Reichert, P; Schmidt, U; Krist, Th; Wiehl, N; Zenner, J

    2009-01-01

    For the first time, the neutron optical wall-potential of natural cubic boron nitride (cBN) was measured at the ultracold neutron (UCN) source of the research reactor TRIGA Mainz using the time-of-flight method (TOF). The samples investigated had a wall-potential of (305 +/- 15) neV. This value is in good agreement with the result extracted from neutron reflectometry data and theoretical expectations. Because of its high critical velocity for UCN and its good dielectric characteristics, cubic boron nitride coatings (isotopically enriched) will be useful for a number of applications in UCN experiments.

  11. Boronate Affinity-Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring.

    Science.gov (United States)

    Chen, Guosheng; Qiu, Junlang; Fang, Xu'an; Xu, Jianqiao; Cai, Siying; Chen, Qing; Liu, Yan; Zhu, Fang; Ouyang, Gangfeng

    2016-08-19

    A biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity-molecular imprinted polymers (BA-MIPs). The unique pre-self-assembly between glucose and boronic acids creates glucose-specific memory cavities in the BA-MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude. The BA-MIPs probe was applied to glucose determination in serum and urine and implanted into plant tissues for low-destructive and long-term in vivo continuous glucose monitoring. PMID:27411946

  12. Pure and doped boron nitride nanotubes

    Directory of Open Access Journals (Sweden)

    M. Terrones

    2007-05-01

    Full Text Available More than ten years ago, it was suggested theoretically that boron nitride (BN nanotubes could be produced. Soon after, various reports on their synthesis appeared and a new area of nanotube science was born. This review aims to cover the latest advances related to the synthesis of BN nanotubes. We show that these tubes can now be produced in larger amounts and, in particular, that the chemistry of BN tubes appears to be very important to the production of reinforced composites with insulating characteristics. From the theoretical standpoint, we also show that (BN-C heteronanotubes could have important implications for nanoelectronics. We believe that BN nanotubes (pure and doped could be used in the fabrication of novel devices in which pure carbon nanotubes do not perform very efficiently.

  13. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  14. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  15. Synthesis of boron carbide nano particles using polyvinyl alcohol and boric acid

    Directory of Open Access Journals (Sweden)

    Amir Fathi

    2012-03-01

    Full Text Available In this study boron carbide nano particles were synthesized using polyvinyl alcohol and boric acid. First, initial samples with molar ratio of PVA : H3BO3 = 2.7:2.2 were prepared. Next, samples were pyrolyzed at 600, 700 and 800°C followed by heat treatment at 1400, 1500 and 1600°C. FTIR analysis was implemented before and after pyrolysis in order to study the reaction pathway. XRD technique was used to study the composition of produced specimens of boron carbide. Moreover, SEM and PSA analysis were also carried out to study the particle size and morphology of synthesized boron carbide. Finally, according to implemented tests and analyses, carbon-free boron carbide nano particles with an average size of 81 nm and mainly spherical morphology were successfully produced via this method.

  16. Friction and Wear Performance of Boron Doped, Undoped Microcrystalline and Fine Grained Composite Diamond Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xinchang; WANG Liang; SHEN Bin; SUN Fanghong

    2015-01-01

    Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don’t have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti

  17. Tool life of the edges coated with the c-BN+h-BN coatings with different structures during hard machinable steel machining

    Directory of Open Access Journals (Sweden)

    Kupczyk, M.

    2005-12-01

    Full Text Available In the presented paper the experimental results concerning the functional quality (durability during steel machining of thin, superhard coatings produced on the cutting edges are described. Differences among mentioned properties of coatings mainly result from a coating structure. But the structure of coatings results from deposition parameters Superhard boron nitride coatings were deposited on insert cutting edges made of cemented carbides by the pulse-plasma method applying different values of the discharge voltage. The comparative investigations of mentioned coatings have been concerned of tool life of edges during hard machinable material machining (nitriding steel hardened in oil. In these investigations for the purpose of additional increase of coatings adhesion to substrates an interfacial layers were applied.

    En este trabajo se describen los resultados experimentales referentes a la calidad funcional (durabilidad durante el mecanizado del acero de recubrimientos delgados, de elevada dureza del filo de corte. Las diferencias en las propiedades de los recubrimientos se deben, principalmente, a la estructura del recubrimiento. No obstante, la estructura del recubrimiento está relacionada con los parámetros de la deposición. Recubrimientos de nitruro de boro de elevada dureza se depositaron sobre filos de corte insertados, fabricados con carburos cementados mediante el método de pulsos de plasma aplicando diferentes valores de voltaje de descarga. Las investigaciones comparativas de los mencionados recubrimientos han relacionado la vida del filo de la herramienta durante el mecanizado del material (acero nitrurado endurecido en aceite. En estas investigaciones se aplicaron capas interfaciales para aumentar la adherencia del recubrimiento.

  18. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  19. Methods of Boron-carbon Deposited Film Removal

    Science.gov (United States)

    Airapetov, A.; Terentiev, V.; Voituk, A.; Zakharov, A.

    Boron carbide was proposed as a material for in-situ renewable protecting coating for tungsten tiles of the ITER divertor. It is necessary to develop a method of gasification of boron-carbon film which deposits during B4C sputtering. In this paper the results of the first stage investigation of gasification methods of boron-carbon films are presented. Two gasification methods of films are investigated: interaction with the ozone-oxygen mixture and irradiation in plasma with the working gas composed of oxygen, ethanol, and, in some cases, helium. The gasification rate in the ozone-oxygen mixture at 250 °C for B/C films with different B/C ratio and carbon fiber composite (CFC), was measured. For B/C films the gasification rate decreased with increasing B/C ratio (from 45 nm/h at B/C=0.7 to 4 nm/h at B/C=2.1; for CFC - 15 μm/h). Films gasification rates were measured under ion irradiation from ethanol-oxygen-helium plasma at different temperatures, with different ion energies and different gas mixtures. The maximum obtained removal rate was near 230 nm/h in case of ethanol-oxygen plasma and at 150°C of the sample temperature.

  20. Tribological properties of boron nitride synthesized by ion beam deposition

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  1. Boron-Lined Multitube Neutron Proportional Counter Test

    Energy Technology Data Exchange (ETDEWEB)

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, “multitube” proportional counter manufactured by Centronic Ltd. (Surry, U.K. and Houston, TX). This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detector.

  2. Reduction of hematite with ethanol to produce magnetic nanoparticles of Fe3O4, Fe1 - x O or Fe0 coated with carbon

    Science.gov (United States)

    Tristão, Juliana C.; Ardisson, José D.; Sansiviero, Maria Terezinha C.; Lago, Rochel M.

    2010-01-01

    The production of magnetic nanoparticles of Fe3O4 or Fe0 coated with carbon and carbon nanotubes was investigated by the reduction of hematite with ethanol in a Temperature Programmed Reaction up to 950°C. XRD and Mössbauer measurements showed after reaction at 350°C the partial reduction of hematite to magnetite. At 600°C the hematite is completely reduced to magnetite (59%), wüstite (39%) and metallic iron (7%). At higher temperatures, carbide and metallic iron are the only phases present. TG weight losses suggested the formation of 3-56 wt.% carbon deposits after reaction with ethanol. It was observed by SEM images a high concentration of nanometric carbon filaments on the material surface. BET analyses showed a slight increase in the surface area after reaction. These materials have potential application as catalyst support and removal of spilled oil contaminants.

  3. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  4. Boron removal from metallurgical grade silicon using a FeCl2 molten salt refining technique

    Directory of Open Access Journals (Sweden)

    Jia B.J.

    2013-01-01

    Full Text Available The slag refining for boron removal from metallurgical grade silicon is a promising metallurgical process for producing solar grade silicon. In this paper, FeCl2 molten salt has been used as a new refining agent to remove boron from MG-Si. The effects of refining time and mass ratio of MG-Si to FeCl2 molten salt on boron removal have been investigated in detail. The results showed that boron can be efficiently removed in form of BCl3 and boron concentration in MG-Si was successfully reduced from 22×10-6 to 4×10-6 at 1823K for 2 h with the mass ratio of FeCl2 molten salt to MG-Si for 1.0. The rate equation of boron removal using FeCl2 molten salt was proposed and established in kinetic, which showed a large difference in removal limitation of boron compared with thermodynamics.

  5. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  6. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  7. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  8. Boron Poisoning of Plutonium Solutions

    International Nuclear Information System (INIS)

    The results of a theoretical investigation into the possible relaxation of criticality concentration limits in wet chemical reprocessing plants, due to the introduction of boron poisoning, are reported. The following systems were considered: 1. 1 in. stainless steel tubes filled with boron carbide at various pitches in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 2. 1 in. and 2 in borosilicate glass Raschig rings in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 3. The concentration of natural boron required for k∞ = 1 in homogeneous mixtures of 239Pu-B-H2O. The method of calculation was Monte Carlo using the GEM code with Nuclear Data File cross-sections. The Raschig rings used are those commercially available. The core model consisted of a cubic arrangement of unit cubes of solution within each of which a Raschig ring was centrally placed. The arrangement was such that the rings were regularly stacked with axes parallel, but the side of the unit cube was fixed to preserve the random packing density. Comparison is made with other reported results on boron poisoning. (author)

  9. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  10. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  11. Raman spectroscopy of boron carbides and related boron-containing materials

    International Nuclear Information System (INIS)

    Raman spectra of crystalline boron, boron carbide, boron arsenide (B12As2), and boron phosphide (B12P2) are reported. The spectra are compared with other boron-containing materials containing the boron icosahedron as a structural unit. The spectra exhibit similar features some of which correlate with the structure of the icosahedral units of the crystals. The highest Raman lines appear to be especially sensitive to the B-B distance in the polar triangle of the icosahedron. Such Raman structural markers are potentially useful in efforts to tailor electronic properties of these high temperature semiconductors and thermoelectrics

  12. Chemical vapor deposition coatings for oxidation protection of titanium alloys

    Science.gov (United States)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1991-01-01

    Results of an experimental investigation of the oxidation protection afforded to Ti-14Al-21Nb and Ti-14Al-23Nb-2V titanium aluminides and Ti-17Mo-3Al-3Nb titanium alloy by aluminum-boron-silicon and boron-silicon coatings are presented. These coatings are applied by a combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The former is for the application of aluminum, and the latter is for codeposition of boron and silicon. Coating thickness is in the range of 2 to 7 microns, and coating weights are 0.6 to 2.0 mg/sq cm. Oxidation testing was performed in air at temperatures to 1255 K in both static and hypersonic flow environments. The degree of oxidation protection provided by the coatings is determined from weight change measurements made during the testing and post test compositional analyses. Temperature-dependent total normal emittance data are also presented for four coating/substrate combinations. Both types of coatings provided excellent oxidation protection for the exposure conditions of this investigation. Total normal emittances were greater than 0.80 in all cases.

  13. Mechanical properties of chemical vapor deposited coatings for fusion reactor application

    International Nuclear Information System (INIS)

    Chemical vapor deposited coatings of TiB2, TiC and boron on graphite substrates are being developed for application as limiter materials in magnetic confinement fusion reactors. In this application severe thermal shock conditions exist and to do effective thermo-mechanical modelling of the material response it is necessary to acquire elastic moduli, fracture strength and strain to fracture data for the coatings. Four point flexure tests have been conducted from room temperature to 20000C on TiB2 and boron coated graphite with coatings in tension and compression and the mechanical properties extracted from the load-deflection data. In addition, stress relaxation tests from 500 to 11500C were performed on TiB2 and TiC coated graphite beams to assess the low levels of plastic deformation which occur in these coatings. Significant differences have been observed between the effective mechanical properties of the coatings and literature values of the bulk properties

  14. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  15. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  16. Graphite–boron composite heater in a Kawai-type apparatus: the inhibitory effect of boron oxide and countermeasures

    Science.gov (United States)

    Xie, Longjian; Yoneda, Akira; Yoshino, Takashi; Fei, Hongzhan; Ito, Eiji

    2016-04-01

    We have investigated the performance of a graphite-boron composite (GBC) with 3 wt % boron as a precursor for a boron-doped diamond heater in a Kawai-type apparatus at 15 GPa. We first tested a machinable cylinder of GBC sintered at 1000°C in Ar/H2 gas (99:1 molar ratio). Boron oxide (B2O3) formed during sintering frequently hindered the GBC heater from stable operation at temperatures higher than 1400°C by producing melt throughout the heater together with oxide and/or silicates. We then rinsed the GBC heater in hydrochloric acid to remove B2O3. After rinsing, we succeeded in stably generating temperatures higher than 2000°C. We also improved a molding process of different-sized GBC tubes for convenient use and tested the molded GBC heater. It was free from the B2O3 problem. The electromotive force of the W/Re thermocouple was successfully monitored up to 2400°C.

  17. Nuclear microprobe analysis of the selective boron uptake obtained with BPA in brain tumour tissue

    Science.gov (United States)

    Wegdén, M.; Kristiansson, P.; Ceberg, C.; Munck af Rosenschöld, P.; Auzelyte, V.; Elfman, M.; Malmqvist, K. G.; Nilsson, C.; Pallon, J.; Shariff, A.

    2004-06-01

    The tumour selective ability of the boron compound boronophenylalanine (BPA), today used in Boron Neutron Capture Therapy in Sweden, has been investigated with the Lund Nuclear Microprobe. The tumour to tissue ratio of the boron concentration, as well as the location of boron within the cells, is critical for the efficiency of the therapy. It is desirable that the boron is accumulated as close as possible to the cell nucleus, since the alpha particles produced in the 10B(n,α) 7Li reaction only have a range of about 10 microns, i.e. a cell diameter. The nuclear reaction 11B(p,α)2α, which has an especially high cross-section (300 mb) for 660 keV protons, has been used to analyse brain tissue from BPA-injected rats. Previous studies on other boron compounds have shown significant background problems when the alpha particles are detected in the backward direction. By a specially designed set-up, alpha particles in the forward and backward direction are detected simultaneously, and only the coincidences between the two directions are considered to be true boron events. In this way we could achieve excellent background suppression. The analysis shows that BPA indeed is tumour selective. Quantifications show a boron abundance of 150 ± 20 ng/cm 2 in normal tissue and 567 ± 70 ng/cm 2 in tumour tissue. If the rat is fed with L-dopa before the injection of BPA the uptake increases 3-4 times. The boron is homogeneously distributed in the cellular structure and no specific intracellular accumulation has been shown.

  18. Nuclear microprobe analysis of the selective boron uptake obtained with BPA in brain tumour tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wegden, M. E-mail: marie.wegden@nuclear.lu.se; Kristiansson, P.; Ceberg, C.; Munck af Rosenschoeld, P.; Auzelyte, V.; Elfman, M.; Malmqvist, K.G.; Nilsson, C.; Pallon, J.; Shariff, A

    2004-06-01

    The tumour selective ability of the boron compound boronophenylalanine (BPA), today used in Boron Neutron Capture Therapy in Sweden, has been investigated with the Lund Nuclear Microprobe. The tumour to tissue ratio of the boron concentration, as well as the location of boron within the cells, is critical for the efficiency of the therapy. It is desirable that the boron is accumulated as close as possible to the cell nucleus, since the alpha particles produced in the {sup 10}B(n,{alpha}){sup 7}Li reaction only have a range of about 10 microns, i.e. a cell diameter. The nuclear reaction {sup 11}B(p,{alpha})2{alpha}, which has an especially high cross-section (300 mb) for 660 keV protons, has been used to analyse brain tissue from BPA-injected rats. Previous studies on other boron compounds have shown significant background problems when the alpha particles are detected in the backward direction. By a specially designed set-up, alpha particles in the forward and backward direction are detected simultaneously, and only the coincidences between the two directions are considered to be true boron events. In this way we could achieve excellent background suppression. The analysis shows that BPA indeed is tumour selective. Quantifications show a boron abundance of 150 {+-} 20 ng/cm{sup 2} in normal tissue and 567 {+-} 70 ng/cm{sup 2} in tumour tissue. If the rat is fed with L-dopa before the injection of BPA the uptake increases 3-4 times. The boron is homogeneously distributed in the cellular structure and no specific intracellular accumulation has been shown.

  19. Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH

    Science.gov (United States)

    Gilbert, B.; Perfetti, L.; Fauchoux, O.; Redondo, J.; Baudat, P.-A.; Andres, R.; Neumann, M.; Steen, S.; Gabel, D.; Mercanti, Delio; Ciotti, M. Teresa; Perfetti, P.; Margaritondo, G.; de Stasio, Gelsomina

    2000-07-01

    Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 μm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism.

  20. Incidence of Lettuce mosaic virus in lettuce and its detection by polyclonal antibodies produced against recombinant coat protein expressed in Escherichia coli.

    Science.gov (United States)

    Sharma, Prachi; Sharma, Susheel; Singh, Jasvir; Saha, Swati; Baranwal, V K

    2016-04-01

    Lettuce mosaic virus (LMV), a member of the genus Potyvirus of family Potyviridae, causes mosaic disease in lettuce has recently been identified in India. The virus is seed borne and secondary infection occurs through aphids. To ensure virus freedom in seeds it is important to develop diagnostic tools, for serological methods the production of polyclonal antibodies is a prerequisite. The coat protein (CP) gene of LMV was amplified, cloned and expressed using pET-28a vector in Escherichia coli BL21DE3 competent cells. The LMV CP was expressed as a fusion protein containing a fragment of the E. coli His tag. The LMV CP/His protein reacted positively with a commercial antiserum against LMV in an immunoblot assay. Polyclonal antibodies purified from serum of rabbits immunized with the fusion protein gave positive results when LMV infected lettuce (Lactuca sativa) was tested at 1:1000 dilution in PTA-ELISA. These were used for specific detection of LMV in screening lettuce accessions. The efficacy of the raised polyclonal antiserum was high and it can be utilized in quarantine and clean seed production. PMID:26850143

  1. Charged-particle coating

    International Nuclear Information System (INIS)

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  2. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren;

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  3. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, So Young; Kim, Jong Do [Korea Maritime and Ocean University, Busan (Korea, Republic of); Kim, Jong Su [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-01-15

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained.

  4. On characterization of deformation microstructure in Boron modified Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Addition of boron in small quantities to various titanium alloys have shown significant improvement in mechanical behavior of materials. In the present study, electron back-scatter diffraction (EBSD) techniques have been applied to investigate the deformation microstructure evolution in boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 deg. C up to 50% height reduction at two different strain rates (10-3 s-1 and 1 s-1). The EBSD analyses indicated significant differences in deformed microstructure of the base alloy and the alloy containing boron. A strong subgrain formation tendency was observed along with inhomogeneous distribution of dislocations inside large α colonies of Ti64. In contrast, α colonies were relatively strain free for Ti64 + B, with more uniform dislocation density distribution. The observed difference is attributed to microstructural modifications viz. grain size refinement and presence of TiB particles at grain boundary produced due to boron addition.

  5. Preliminary study of neutron absorption by concrete with boron carbide addition

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Ariffin, Fatin Nabilah Tajul; Ahmad, Sahrim [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Hamid, Roszilah [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Mohamed, Abdul Aziz [College of Engineering, Universiti Tenaga National, Jalan Ikram-Uniten, 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.

  6. Investigation of Properties of Asphalt Concrete Containing Boron Waste as Mineral Filler

    Directory of Open Access Journals (Sweden)

    Cahit GÜRER

    2016-05-01

    Full Text Available During the manufacture of compounds in the boron mining industry a large quantity of waste boron is produced which has detrimental effects on the environment. Large areas have to be allocated for the disposal of this waste. Today with an increase in infrastructure construction, more efficient use of the existing sources of raw materials has become an obligation and this involves the recycling of various waste materials. Road construction requires a significant amount of raw materials and it is possible that substantial amounts of boron-containing waste materials can be recycled in these applications. This study investigates the usability of boron wastes as filler in asphalt concrete. For this purpose, asphalt concrete samples were produced using mineral fillers containing 4%, 5%, 6%, 7% and 8% boron waste as well as a 6% limestone filler (6%L as the control sample. The Marshall Design, mechanical immersion and Marshall Stability test after a freeze-thaw cycle and indirect tensile stiffness modulus (ITSM test were performed for each of the series. The results of this experimental study showed that boron waste can be used in medium and low trafficked asphalt concrete pavements wearing courses as filler.

  7. Grain refinement by boron nitride; Gefuegemodifizierung durch Bornitrid

    Energy Technology Data Exchange (ETDEWEB)

    Bach, F.W.; Guenther, A.; Phan-Tan, T.; Kruessel, T.; Wilk, P. [Institut fuer Werkstoffkunde der Universitaet Hannover, Struktur- und Biomedizinwerkstoffe, Garbsen (Germany)

    2005-01-01

    Grain refinement of magnesium alloys aims at better deformation behaviour, higher strength and improved corrosion resistance. Besides mechanical treatment like pressing, it is possible to refine the grainsize by using nucleation materials. Whereas calcium and rare earth elements are already widely used, the use of boron nitride offers a cheap alternative to refine grains of magnesium aluminum alloys. The effect is achieved by the reaction of boron nitride with aluminum which cracks the chemical compound to form aluminum nitride with the nitrogen while boron is forming different magnesium borides. These two compounds both exhibit very high melting points and are stable in this environment so that they can act as seed crystals. Because boron nitride shows a bad wettability to metal molds, it would float on top of the mold. Therefore, it is necessary to produce pellets out of boron nitride and aluminum powder to improve contact to the mold and enhance reaction velocity. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Durch die Kornfeinung von Magnesiumlegierungen wird das Ziel einer Festigkeitssteigerung, einer verbesserten Umformbarkeit und einer erhoehten Korrosionsbestaendigkeit verfolgt. Neben mechanischen Loesungswegen (Strangpressen etc.) besteht die Moeglichkeit legierungstechnisch durch den Einsatz keimbildender Stoffe eine Kornfeinung zu erzielen. Neben dem Einsatz von Kalzium oder Seltenen Erden bietet Bornitrid eine kostenguenstige Moeglichkeit eine Kornfeinung fuer aluminiumhaltige Magnesiumlegierungen zu erzeugen. Die Kornfeinung beruht dabei auf der Reaktion des Bornitrids mit dem Aluminium in der Schmelze, durch welche das Bornitrid zersetzt wird und mit dem freiwerdenden Stickstoff zu Aluminiumnitrid reagiert, waehrend sich das Bor mit Magnesium zu Magnesiumboriden verbindet. Bei beiden Produkten handelt es sich um hochschmelzende, in dieser Umgebung stabile Verbindungen, die als Kristallisationskeime wirken koennen. Die Zugabe des

  8. Preparation and Characterization of Ni Spines Grown on the Surface of Cubic Boron Nitride Grains by Electroplating Method

    Directory of Open Access Journals (Sweden)

    Yanghai Gui

    2016-03-01

    Full Text Available Cubic boron nitride (cBN is widely applied in cutting and grinding tools. cBN grains plated by pure Ni and Ni/SiC composite were produced under the same conditions from an additive-free nickel Watts type bath. The processed electroplating products were characterized by the techniques of scanning electron microscopy (SEM, X-ray diffraction (XRD and thermoanalysis (TG-DTA. Due to the presence of SiC particles, there are some additional nodules on the surface of Ni/SiC plated cBN compared with the pure Ni plated cBN. The unique morphology of Ni/SiC plated cBN should attain greater retention force in resin bond. Moreover, the coating weight of cBN grains could be controlled by regulating the plating time. cBN grains with 60% coating weight possess the optimum grinding performance due to their roughest and spiniest surface. In addition, Ni spines plated cBN grains show good thermal stability when temperature is lower than 464 °C. Therefore, the plated cBN grains are more stable and suitable for making resin bond abrasive tools below 225 °C. Finally, the formation mechanism of electroplating products is also discussed.

  9. Natural-oxide solar-collector coatings

    Science.gov (United States)

    Krupnick, A. C.; Roberts, M. L.; Sharpe, M. H.

    1979-01-01

    Optically selective coatings for solar collectors are produced by thermally treating stainless steel in furnace after series of cleaning and soaking operations. Coatings have withstood 18-month exposure tests at 100 percent relative humidity and temperatures of 95 F. Room temperature coatings are valuable as they are inexpensive to produce, highly production oriented, and environmentally stable.

  10. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    Science.gov (United States)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  11. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  12. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  13. Synthesis of one-dimensional boron-related nanostructures by chemical vapor deposition

    Science.gov (United States)

    Guo, Li

    microwave plasma enhanced chemical vapor deposition process using gas reactions of diborane and ammonia. The catalytic growth of BNNTs done in this work provided a novel way to selectively grow BNNTs in thin film form on Ni or Co coated Si substrates. For boron nanowires, the co-existence of two growth mechanisms was discovered having completely different morphology and crystallinity using the thermal CVD process. The metal catalyst assisted the growth of the crystalline BNWs by vapor-liquid-solid mechanism, which amorphous BNWs were produced without the use of the catalyst. These results are expected to open up more pathways to scale up the fabrication of vertically aligned BNNTs and BNWs for studies of their properties and applications.

  14. Purely inorganic coatings based on nanoparticles for magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feil, Florian [DECHEMA e.V., Karl-Winnacker-Institut, Frankfurt am Main (Germany)], E-mail: feil@dechema.de; Fuerbeth, Wolfram; Schuetze, Michael [DECHEMA e.V., Karl-Winnacker-Institut, Frankfurt am Main (Germany)

    2009-03-30

    The chemical nanotechnology is offering a chance to apply stable inorganic coatings onto magnesium alloys. The cast alloy AZ91 as well as the wrought alloy AZ31 could be dip-coated with aqueous dispersions based on commercially available silica particles and various additives. The high surface activity of the nanoparticles and appropriate additives, e.g. boron, aluminium or alkali salts, help to densify these coatings under moderate conditions even suitable for those thermally precarious magnesium alloys. Another coating technique is based on the electrophoretic deposition of nanoparticles already containing all sintering aids. These particles could be synthesised by a base-catalysed sol-gel process. Polydiethoxysiloxane can act as an adhesion promoter for these coatings. Additionally concentration gradients of different oxides within these particles can adjust the coating properties, too. Usually single coatings are very thin (200-500 nm). However, multiple coating applications as well as a process involving special particle mixtures lead to coatings with a thickness of up to several micrometers. Even after thermal treatment at 200 or 400 deg. C these coatings stay crack-free. The composition and texture of these coatings were studied using IR, atomic force microscopy (AFM), scanning electron microscopy (SEM) and other techniques. Electrochemical impedance measurements show an improvement of the corrosion performance by these coatings. The coating resistance is improving with the coating thickness.

  15. 解淀粉芽孢杆菌BI2产抑菌物质的新型种衣剂的研制%A Novel Seed Coating Formula with Antifungal Substances Produced by Bacillus amyloliquefaciens BI2

    Institute of Scientific and Technical Information of China (English)

    王亚军; 李昆; 王德培

    2015-01-01

    The antifungal substances produced from Bacillus amyloliquefaciens BI2,were for the first time used asactive ingredients in seed coating. The fermented broth containing antifungal substances was ultrafiltered and freeze-dried to form lyophilized powder,and then mixed with composite film-forming agent solution. Finally,peanut seeds were coated with this kind of seed coating containing antifungal substances. The results showed that the best volume ratio of 4%, polyvinyl alco-hol(PVA)to 1.5%, sodium carboxymethyl cellulose(CMC-Na)was 5:1,which is the best film former recipe in seed coating,and it has no significant effect on seed germination potential and germination rate. The pH stability andthermal stability of the lyophilized powder of the fermentated broth containing antifungal substances are good. The MIC of the pow-der to inhibitAspergillus flavus spore germination is 1.92,mg/mL. When the content of that powder in the film former reaches 4,mg/mL,A. flavuswas completely inhibited.%将解淀粉芽孢杆菌BI2发酵所产抑菌物质作为新型种衣剂的有效成分与研制的复合型成膜剂溶液混合,制成可抑制黄曲霉孢子萌发的花生种子包衣.结果表明,选用 4%,聚乙烯醇(PVA)与 1.5%,羧甲基纤维素钠(CMC-Na)以体积比 5:1 混合作为种子包衣最佳成膜剂配方,经过包衣后对花生种子的发芽势和发芽率没有显著影响.含有抑菌物质的发酵液冻干粉的 pH 稳定性和热稳定性均较好.发酵液冻干粉抑制黄曲霉孢子萌发的最小质量浓度为1.92,mg/mL.在与花生种子混合时,发酵液冻干粉在成膜剂中的含量达到4,mg/mL时,黄曲霉完全被抑制.

  16. Electrodeposition and characterization of Co–BN (h) nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shahri, Z.; Allahkaram, S.R., E-mail: akaram@ut.ac.ir; Zarebidaki, A.

    2013-07-01

    Co–BN (h) nanocomposite coatings were prepared by means of the conventional electrodeposition in a chloride solution containing different concentrations of hexagonal boron nitride particles, and pure Co coating was also prepared as a comparison. Morphology of the coatings and the effect of incorporated particles on metal matrix structure and composition were investigated via scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Microhardness, roughness, friction coefficient and wear resistance of the coatings were also evaluated using Vickers microhardness, stylus profilometer and pin-on disk machine. The results showed that Co–BN (h) nanocomposite coatings exhibit higher hardness and lower friction coefficient. Roughness and wear resistance compared with that of the pure Co coating obtained under the same electrodeposition condition and the wear mechanism of the coatings were also discussed.

  17. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization

    International Nuclear Information System (INIS)

    The measurement conditions for determining boron using graphite furnace–atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L−1 when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS. (author)

  18. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  19. Multi-Grid Boron-10 detector for large area applications in neutron scattering science

    CERN Document Server

    Andersen, Ken; Birch, Jens; Buffet, Jean-Claude; Correa, Jonathan; van Esch, Patrick; Guerard, Bruno; Hall-Wilton, Richard; Hultman, Lars; Höglund, Carina; Jensen, Jens; Khaplanov, Anton; Kirstein, Oliver; Piscitelli, Francesco; Vettier, Christian

    2012-01-01

    The present supply of 3He can no longer meet the detector demands of the upcoming ESS facility and continued detector upgrades at current neutron sources. Therefore viable alternative technologies are required to support the development of cutting-edge instrumentation for neutron scattering science. In this context, 10B-based detectors are being developed by collaboration between the ESS, ILL, and Link\\"{o}ping University. This paper reports on progress of this technology and the prospects applying it in modern neutron scattering experiments. The detector is made-up of multiple rectangular gas counter tubes coated with B4C, enriched in 10B. An anode wire reads out each tube, thereby giving position of conversion in one of the lateral co-ordinates as well as in depth of the detector. Position resolution in the remaining co-ordinate is obtained by segmenting the cathode tube itself. Boron carbide films have been produced at Link\\"{o}ping University and a detector built at ILL. The characterization study is pres...

  20. Boron Enrichment in Martian Clay

    OpenAIRE

    James D Stephenson; Lydia J Hallis; Kazuhide Nagashima; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest minera...

  1. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  2. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  3. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  4. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  5. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating

    Science.gov (United States)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.

    2016-10-01

    This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  6. Method for determination of boron carbide in wurtzite-like boron nitride

    International Nuclear Information System (INIS)

    A technique for increase of sensitivity and analysis accuracy while boron carbide determination in wurtzite-like boron nitride is proposed. Boron nitride with an addition of boron carbide is bjected to treatment by the mixture of concentrated sulphuric acid and 0.1-0.5 N of porassium bichromate solution at ratio of (2-1):1 at the temperature of mixture boiling. Boron carboide content is calculated according to the quantity of restored Cr(3+), which is determined by titration of Cr(6+) excess with the Mohr's salt solution

  7. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  8. Boron water quality for the Plynlimon catchments

    Directory of Open Access Journals (Sweden)

    C. Neal

    1997-01-01

    Full Text Available Boron concentrations in rainfall, throughfall and stemflow for Spruce stands, mist, streamwater and groundwater are compared with chloride to assess atmospheric sources and catchment input-output balances for the Plynlimon catchments. In rainfall, boron concentration averages about 4.5 μg-B l-1 and approximately two thirds of this comes from anthropogenic sources. In through-fall and stemflow, boron concentrations are approximately a factor of ten times higher than in rainfall. This increase is associated with enhanced scavenging of mist and dry deposition by the trees. As the sampling sites were close to a forest edge, this degree of scavenging is probably far higher than in the centre of the forest. The throughfall and stemflow concentrations of boron show some evidence of periodic variations with time with peak concentrations occurring during the summer months indicating some vegetational cycling. In mist, boron concentrations are almost twenty times higher than in rainfall and anthropogenic sources account for about 86% of this. Within the Plynlimon streams, boron concentrations are about 1.4 to 1.7 times higher than in rainfall. However, after allowance for mist and dry deposition contributions to atmospheric deposition, it seems that, on average, about 30% of the boron input is retained within the catchment. For the forested catchments, felling results in a disruption of the biological cycle and a small increase in boron leaching from the catchment results in the net retention by the catchment being slightly reduced. Despite the net uptake by the catchment, there is clear evidence of a boron component of weathering from the bedrock. This is shown by an increased boron concentration in a stream influenced by a nearby borehole which increased groundwater inputs. The weathering component for boron is also observed in Plynlimon groundwaters as boron concentrations and boron to chloride ratios are higher than for the streams. For these

  9. Science Letters:Development of supported boron-doping TiO2 catalysts by chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst.

  10. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  11. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  12. Some physical properties of compacted specimens of highly dispersed boron carbide and boron suboxide

    International Nuclear Information System (INIS)

    Structure, shear modulus and internal friction (IF) of compacted specimens of boron carbide and boron suboxide have been investigated. Microtwins and stacking faults were observed along the {100} plane systems of polycrystalline specimens of boron carbide. Electrical conductivity of the specimens was that of p-type. Concentration of holes varied from 1017 to 1019 cm-3. The IF was measured in the temperature range 80-300 K. It was shown that the IF of boron carbide and that of boron suboxide were characterized with a set of similar relaxation processes. Mechanisms of the relaxation processes in boron carbide and boron suboxide are discussed in terms of the Hasiguti model of interaction between dislocations and point defects

  13. Avalanche proton-boron fusion based on elastic nuclear collisions

    Science.gov (United States)

    Eliezer, Shalom; Hora, Heinrich; Korn, Georg; Nissim, Noaz; Martinez Val, Josè Maria

    2016-05-01

    Recent experiments done at Prague with the 600 J/0.2 ns PALS laser interacting with a layer of boron dopants in a hydrogen enriched target have produced around 109 alphas. We suggest that these unexpected very high fusion reactions of proton with 11B indicate an avalanche multiplication for the measured anomalously high nuclear reaction yields. This can be explained by elastic nuclear collisions in the broad 600 keV energy band, which is coincident with the high nuclear p-11B fusion cross section, by the way of multiplication through generation of three secondary alpha particles from a single primarily produced alpha particle.

  14. Production of diffusion heat-resistant coatings on niobium

    International Nuclear Information System (INIS)

    A possibility of producing diffusion heat-resistant coatings on the 5VMTs niobium alloy has been investigated. Coating heat-resistance was investigated in the air at 800-1100 deg C. Given are brief characteristics of diffusion coatings produced. It is shown, that the Re and V coatings have satisfactory protective properties

  15. Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder

    International Nuclear Information System (INIS)

    The unavailability of high quality precursor is encouraging researchers to seek effective ways to fabricate magnesium diboride (MgB2) wire. Herein, cost-effective amorphous boron powder produced through a diborane (B2H6) gas process is investigated for the possibility of further industrial application. A thin carbon layer to encapsulate the boron particles is simultaneously deposited by pyrolysis of hydrocarbon. We found that the carbon-encapsulated amorphous boron has a high upper critical field due to impurity scattering, and thereby, enhanced high-field critical current density

  16. Effect of V addition on the hardness, adherence and friction coefficient of VC coatings produced by thermo-reactive diffusion deposition

    Directory of Open Access Journals (Sweden)

    Fredy Alejandro Orjuela-Guerrero

    2015-01-01

    Full Text Available Se produjeron recubrimientos de carburo de vanadio (VC sobre sustratos de acero AISI H13 y acero AISI D2 mediante deposito termoreactiva/ difusión (TRD con el fin de evaluar sus propiedades mecánicas como una función del contenido de vanadio. Los recubrimientos se producen con diferentes porcentajes de concentración de ferrovanadio. La composición química de los recubrimientos se determinó mediante fluorescencia de rayos X (XRF, la estructura cristalina se analizó utilizando difracción de rayos X (XRD, la morfología se caracterizó usando microscopía electrónica de barrido (SEM, la dureza se midió a través de nanoindentaciòn, y las propiedades tribológicas mediante la prueba de bola sobre disco. El análisis XRF indicó que los recubrimientos crecidos en acero D2 disminuyó el porcentaje atómico de vanadio cuando el recubrimiento se produce con 20% de ferrovanadio. El análisis XRD estableció que los recubrimientos eran policristalinos, con una estructura cúbica. Las imágenes de SEM revelaron que los recubrimientos crecidos en acero D2 eran más compactos que los crecidos en el acero H13. Finalmente, las pruebas de desgaste establecieron que el coeficiente de fricción disminuyó con un aumento de vanadio en el recubrimiento.

  17. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  18. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  19. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  20. Boronated mesophase pitch coke for lithium insertion

    Science.gov (United States)

    Frackowiak, E.; Machnikowski, J.; Kaczmarska, H.; Béguin, F.

    Boronated carbons from mesophase pitch have been used as materials for lithium storage in Li/carbon cells. Doping by boron has been realized by co-pyrolysis of coal tar pitch with the pyridine-borane complex. Amount of boron in mesocarbon microbeads (MCMB) varied from 1.4 to 1.8 wt.% affecting the texture of carbon. Optical microscopy and X-ray diffractograms have shown tendency to more disordered structure for boron-doped carbon. The values of specific reversible capacity ( x) varied from 0.7 to 1.1 depending significantly on the final temperature of pyrolysis (700-1150°C). The optimal charge/discharge performance was observed for boronated carbon heated at 1000°C.

  1. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  2. Boron enrichment in martian clay.

    Science.gov (United States)

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  3. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  4. Laser-initiated primary and secondary nuclear reactions in Boron-Nitride

    Science.gov (United States)

    Labaune, C.; Baccou, C.; Yahia, V.; Neuville, C.; Rafelski, J.

    2016-02-01

    Nuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + 11B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications.

  5. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    OpenAIRE

    Wei Sun; Ying Liu; Guangyu Du

    2015-01-01

    Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytica...

  6. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 17000C was an important technical part of this work

  7. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  8. Thermodynamics of electrodeposited Ni-B-SiC composite coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The φ-pH diagram of Ni-B-H2O system was drawn, and the mechanism of electrodepositing Ni-B-SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H2 because of the over-potential of H2 evolution on the Fe substrate. Boron can not singly deposit in aqueous solution. Nickel and boron can co-deposit in the form of Ni4B3 without evolution of hydrogen when the cathodical potential is kept to be -1.415~-1.700?V.

  9. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf;

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre...

  10. Effect of boron addition on the microstructures and mechanical properties of thermomechanically processed and tempered low carbon bainitic steels

    Institute of Scientific and Technical Information of China (English)

    Liangyun LAN; Chunlin QIU; Ping ZHOU; Dewen ZHAO; Canming LI; Xiuhua GAO; Linxiu DU

    2011-01-01

    Thermomechanical process and tempering heat treatment were employed to produce the experimental steel plates.The effect of boron addition on the microstructure and mechanical properties of low carbon bainitic steels was studied in this paper.Microstructure observation and crystallographic features were conducted by using optical microscopy,SEM,TEM and electron back scattering diffraction (EBSD) analysis.The results showed that under the same rolling processes and heat treatment conditions,a substantial increase in strength is obtained by addition of boron into steel,but accompanied by an obvious drop in toughness.New martensite phase forms along the grain boundaries on tempering at 650 ℃ mainly due to boron segregation,which can further deteriorate impact toughness of the boron bearing steel.The EBSD analysis showed that high angle grain boundary,is not responsible for the deteriorated toughness of the boron bearing steel because it has relatively higher percentage of high angle grain boundary than the boron free steel.The low toughness of the boron bearing steel is mainly attributed to the coarse boride precipitated particles according to the results of fractograph observation.

  11. Effect of boron addition on formation of a fine-grained microstructure in commercially pure titanium processed by hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Imayev, V.M., E-mail: vimayev@mail.ru; Gaisin, R.A.; Imayev, R.M.

    2015-07-15

    This paper is devoted to comparative investigation of recrystallization behavior during uniaxial hot compression at 600–900 °C of cast commercially pure titanium (CP-Ti) modified with boron and free of boron as well as of CP-Ti in initial wrought condition. Using optical microscopy and EBSD analysis it has been revealed that the boron addition in an amount of 0.2 wt% promoted much more uniform strain development and intensive dynamic recrystallization during hot compression in cast CP-Ti modified with boron as compared with cast CP-Ti free of boron. At the same time, hot compression led to similar fine-grained microstructures in cast CP-Ti modified with boron and wrought CP-Ti. The obtained results suggest that the boron additions to CP-Ti may reduce postcast processing steps and thus reduce the overall cost of produced fine-grained materials out of CP-Ti by means of hot working.

  12. Comparison of the Level of Boron Concentrations in Black Teas with Fruit Teas Available on the Polish Market

    Directory of Open Access Journals (Sweden)

    Anetta Zioła-Frankowska

    2014-01-01

    Full Text Available The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time.

  13. Direct rolling of as-cast Ti-6Al-4V modified with trace additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Raghavan [Mechanical and Materials Engineering Department, Wright State University, 3640 Col. Glenn Highway, Dayton, OH 45435-0002 (United States)], E-mail: raghavan.srinivasan@wright.edu; Miracle, Daniel [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7817 (United States); Tamirisakandala, Sesh [FMW Composite Systems, Inc., 1200 West Benedum Industrial Drive, Bridgeport, WV 26330 (United States)

    2008-07-25

    Trace boron additions to titanium alloys produce an order of magnitude reduction in as-cast grain size, leading to the possibility of significant simplification of ingot breakdown and thermomechanical processing procedures. In this study, the boron modified titanium alloy Ti-6Al-4V + 0.1B (wt.%) was hot rolled from the cast + HIP condition to thickness reductions of 50% and 75% in multi-step rolling sequences. Baseline alloys (without boron) in the cast and wrought (mill product) states were also processed under identical conditions for comparison. After 50% reduction in thickness at 750-950 deg. C (1382-1742 deg. F), the deformation behavior of cast Ti-6Al-4V + 0.1B is not noticeably different from that of standard Ti-6Al-4V mill product, whereas cast Ti-6Al-4V without boron exhibited extensive cracking. The boron-containing alloy could be deformed further to 75% reduction in thickness at 950 deg. C (1742 deg. F) without producing any macroscopic defects. The alpha phase shows a tendency to globularize during heat treatment after a 50% reduction in thickness to produce an equiaxed microstructure. The potential, therefore, exists for the production of slab and sheet stock with an equiaxed microstructure by directly rolling the as-cast titanium alloys modified with trace boron additions.

  14. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    OpenAIRE

    Yuya Egawa; Ryotaro Miki; Toshinobu Seki

    2014-01-01

    In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conj...

  15. Synthesis and characterization of ammonium phosphate fertilizers with boron

    OpenAIRE

    ANGELA MAGDA; RODICA PODE; CORNELIA MUNTEAN; MIHAI MEDELEANU; ALEXANDRU POPA

    2010-01-01

    The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the ...

  16. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  17. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  18. Experiment study on osteointegration of prosthesis with Ti-HA graded coating being produced on pure titanium coatings in vacuum by plasma spraying%真空等离子喷涂Ti基层的HA+Ti阶梯式涂层的犬人工股骨柄与骨的结合性能

    Institute of Scientific and Technical Information of China (English)

    曾宪林; 邹枕玮; 杨述华

    2011-01-01

    Objective To evaluate bone ingrowth characteristics of a new prosthesis with Ti-HA graded coatings being produced on pure titanium coatings by plasma spraying.Methods The 12 hips from 6 adult health beagle dogs were divided into three groups (n =4 each),and transplanted with the following prostheses:hydroxyapatite coatings on pure titanium coatings under atmosphere ( HA + Ti + A group),hydroxyapatite coatings on pure titanium coatings under vaccum ( HA + Ti + V group),and HA-Ti graded coatings under vaccum (Ti + HAG + Ti + V group).The animals were sacrificed at 28th week after operation,and the histological changes and the interface shear strength were evaluated.Results Position and function of the artificial prostheses in all groups were all satisfactory after replacement.No loose prostheses were found.Histologically,there was a good interface osteointegration in the three groups.Shear strength was (16.04 ±0.95) MPa in HA+Ti +A group,(20.07 ± 1.95) MPa in HA +Ti +V group,and (23.43 ±0.37) MPa in Ti + HAG + Ti + V group respectively with the difference being statistically difference among three groups ( P < 0.05).On the 28 week postoperatively,the interface in Ti + HAG + Ti + V group was filled with calcified mature bone and partly mineralized osteoid tissue.The number of osteoblasts and osteocytes under a high powered field was significantly greater in Ti + HAG + Ti + V group than in HA + Ti + V group (t=9.98,P<0.05) and HA+Ti+A group (t=15.16,P<0.05).Conclusion Ti-HA graded coatings on pure Ti coatings under vaccum showed good osteointegration and bonding strength,which obviously improved the stability of the prosthesis in weight loading.%目的 探讨基于真空等离子喷涂人工股骨柄钛(Ti)基层后复合羟基磷灰石(HA)-钛阶梯涂层界面与骨的结合性能.方法 6条健康成年Beagle犬双侧髋关节人工股骨头置换术,置入大气等离子喷涂Ti基层结合纯HA涂层(HA +Ti+A)组,真空等离子喷涂Ti

  19. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  20. Synthesis of Boron Nanorods by Smelting Non-Toxic Boron Oxide in Liquid Lithium

    OpenAIRE

    Amartya Chakrabarti; Tao Xu; Laura K. Paulson; Krise, Kate J.; Maguire, John A; Hosmane, Narayan S.

    2010-01-01

    In contrast to the conventional bottom-up syntheses of boron nanostructures, a unique top-down and greener synthetic strategy is presented for boron nanorods involving nontoxic boron oxide powders ultrasonically smelted in liquid lithium under milder conditions. The product was thoroughly characterized by energy dispersive X-ray analysis, atomic emission spectroscopy, thermogravimetric analysis and, UV-Vis spectroscopy, including structural characterization by transmission electron microscop...

  1. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  2. First boronization in KSTAR: Experiences on carborane

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Suk-Ho, E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Kun-Su; Kim, Kwang-Pyo; Kim, Kyung-Min; Kim, Hong-Tack [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, Jong-Ho; Woo, Hyun-Jong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jae-Min [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Park, Eun-Kyong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Woong-Chae; Kim, Hak-Kun; Park, Kap-Rai; Yang, Hyung-Lyeol; Oh, Yeong-Kook; Na, Hoon-Kyun [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lho, Taehyeop [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, Kyu-Sun [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-08-01

    First boronization was performed in KSTAR tokamak during 2009 campaign in order to reduce oxygen impurities and to lower the power loss due to radiation. We report the results from the experiences on carborane during the first boronization in KSTAR. After the boronization, H{sub 2}O and O{sub 2} level in the vacuum vessel are reduced significantly. The characteristics of the deposited thin films were analyzed by variable angle spectroscopic ellipsometry, XPS, and AES. {approx}1.78 x 10{sup 16} cm{sup -2} s{sup -1} of carbon flux on the wall is estimated by using cavity technique.

  3. From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

    OpenAIRE

    Hongsheng Liu; Junfeng Gao; Jijun Zhao

    2013-01-01

    As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster BN with increasing cluster size and low diffusion barrier for a single B atom on Cu(111) surface ensure cont...

  4. Nanocrystalline Ni-W coatings on copper

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece); Plainakis, G.D.; Lagaris, D.A. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece)

    2011-04-15

    Nanocrystalline Ni-W coatings were produced on copper substrates with the aid of electrodeposition technique. The morphology, chemical composition and structure of the produced coatings were examined with the aid of scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The microhardness of alloy Ni-W coatings on copper substrate was also studied. The adhesion between the Ni-W coating, having W content 50 wt%, and the copper substrate, was also studied with a scratch testing apparatus. The scratch tests resulted in the coatings suffering an intensive brittle fracture and minor delamination.

  5. Kinetic regulation of coated vesicle secretion

    CERN Document Server

    Foret, Lionel

    2008-01-01

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also tri...

  6. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  7. Complementary incorporation of boron compounds with different cellular targets in melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Morre, D.E. [University of Sydney, Dept. of Pharmacy, Sydney, NSW (Australia); Setiawan, Y.; Allen, B.J. [St George Cancer Care Centre, Kogarah, NSW (Australia)

    1996-12-31

    Full text. The heterogeneity of malignant tumours is well known, and post-surgical control may only be achieved by the application of a number of adjuvant therapies. In boron neutron capture therapy (BNCT), a similar effect could be achieved by utilising boron compounds with quite different uptake and incorporation mechanisms. While tumour growth delay or control can be induced by BNCT in animal models, long term control in human patients may be much more difficult. Thus we have carried out experiments with two boron compounds which exhibit quite different pharmacokinetics and interact with cancer cells by quite different mechanisms. The compounds studied were p-boronophenylalanine (BPA) and boronated low density lipoprotein (B-LDL). Non-specific boron compounds such as n-alkyl carboranes can be delivered to melanoma tumour cells when incorporated in reconstituted LDL. Biodistribution studies were performed with BALB/c mice bearing subcutaneous Harding-Passey melanoma xenografts. The mice were pretreated with a high fat diet and hydrocortisone to down regulate the non-autonomous LDL receptors. A tumour to blood boron concentration ratio of 5:1 was achieved 18 hours after administration of B-LDL. The same compound administered in a non-specific arachis oil vehicle failed to demonstrate selective uptake in the tumour. Neutron capture therapy using B-LDL as the boron delivery vehicle produced a growth delay effect on the tumours which was equivalent to that found when BPA was administered as the fructose complex to develop a similar boron concentration in the tumour. This is indicative that the boron microdistribution across different types of tumour cells achieved by B-LDL has a similar effect to that achieved by BPA in the tumour model, even though the uptake mechanisms for BPA and B-LDL are different. BPA uptake is thought to be dependent on the amino acid transport mechanism, whereas receptor density determines LDL incorporation. Thus the combined administration

  8. Thermal shock resistance of thick boron-doped diamond under extreme heat loads

    NARCIS (Netherlands)

    De Temmerman, G.; Dodson, J.; Linke, J.; Lisgo, S.; Pintsuk, G.; Porro, S.; Scarsbrook, G.

    2011-01-01

    Thick free-standing boron-doped diamonds were prepared by microwave plasma assisted chemical vapour deposition. Samples with a final thickness close to 5 mm and with lateral dimensions 25 x 25 mm were produced. The thermal shock resistance of the material was tested by exposure in the JUDITH electro

  9. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani [School of Applied Physic, Faculty of Science and Technology, Universiti Kebangsaan Malaysia.43600 Bangi, Selangor (Malaysia)

    2015-09-25

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  10. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    Science.gov (United States)

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani

    2015-09-01

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  11. Superconductivity of metallic boron in MgB2.

    Science.gov (United States)

    Kortus, J; Mazin, I I; Belashchenko, K D; Antropov, V P; Boyer, L L

    2001-05-14

    Boron in MgB2 forms stacks of honeycomb layers with magnesium as a space filler. Band structure calculations indicate that Mg is substantially ionized, and the bands at the Fermi level derive mainly from B orbitals. Strong bonding with an ionic component and considerable metallic density of states yield a sizable electron-phonon coupling. Together with high phonon frequencies, which we estimate via zone-center frozen phonon calculations to be between 300 and 700 cm(-1), this produces a high critical temperature, consistent with recent experiments. Thus MgB2 can be viewed as an analog of the long sought, but still hypothetical, superconducting metallic hydrogen.

  12. Femtosecond Laser Crystallization of Boron-doped Amorphous Hydrogenated Silicon Films

    Directory of Open Access Journals (Sweden)

    P.D. Rybalko

    2016-10-01

    Full Text Available Crystallization of amorphous hydrogenated silicon films with femtosecond laser pulses is one of the promising ways to produce nanocrystalline silicon for photovoltaics. The structure of laser treated films is the most important factor determining materials' electric and photoelectric properties. In this work we investigated the effect of femtosecond laser irradiation of boron doped amorphous hydrogenated silicon films with different fluences on crystalline volume fraction and electrical properties of this material. A sharp increase of conductivity and essential decrease of activation energy of conductivity temperature dependences accompany the crystallization process. The results obtained are explained by increase of boron doping efficiency in crystalline phase of modified silicon film.

  13. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    International Nuclear Information System (INIS)

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report

  14. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  15. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  16. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  17. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  18. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  19. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  20. Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions

    International Nuclear Information System (INIS)

    This study demonstrates that trace boron addition to Ti–6Al–4V coupons produced by additive layer manufacturing is an effective way to eliminate the deleterious anisotropic microstructures often encountered with this manufacturing technique. Trace boron additions (up to 0.13 wt.%) to this alloy eliminate grain boundary-α and colony-α, and instead produce a homogeneous α-microstructure consisting of fine equiaxed α-grains in both as-deposited and heat treated coupons. Prior-β grains remain columnar with boron addition but become narrower due to the wider solidification range and growth restricting effect of the boron solute. Compared to unmodified Ti–6Al–4V alloy, Ti–6Al–4V modified with trace boron additions showed up to 40% improvement in plasticity with no loss in strength under uniaxial compression at room temperature. Boron additions were found to inhibit twinning transmission that causes sudden large load drops during deformation of the unmodified Ti–6Al–4V alloy in the heat treated condition

  1. The heliospheric modulation of cosmic ray boron and carbon

    Directory of Open Access Journals (Sweden)

    M. S. Potgieter

    2004-11-01

    Full Text Available The observed boron to carbon ratio (B/C at Earth provides a good measure of the overall secondary to primary ratio of galactic cosmic rays. This makes B/C an important constraint and test for the validity and general applicability of theoretical and numerical models of galactic propagation and heliospheric modulation. For this purpose, the modulation of boron and carbon in the heliosphere must be understood in greater detail. The latest approach to heliospheric modulation, using a numerical model containing a termination shock, a heliosheath and particle drifts, is used to the study the modulation of the two species. This model also includes a more comprehensive set of diffusion coefficients. From this and previous work follows that the model is compatible with a variety of observations, for seven species, i.e. protons, anti-protons, electrons, positrons, helium, boron, and carbon, with the same set of parameters for both solar magnetic polarity cycles. Despite the rather flat interstellar spectrum for carbon below 100MeV/nuc, the modulated spectra at 1AU look very similar for boron and carbon, caused by adiabatic energy losses, implying that the carbon modulation should have a much larger radial gradient in the outer heliosphere below ~200-500MeV/nuc than boron. Significant modulation can be caused by the heliosheath but it is strongly dependent on energy and on the field polarity, with almost no effect at high energies to the largest effect at low energies. The solar wind termination shock has an important effect on the B to C ratio in the heliosphere, although small at Earth, during the A<0 cycle, with E<~600MeV/nuc, but it seems less significant for the A>0 cycle and with increasing tilt angles. Drift models produce different spectra for consecutive solar minimum conditions which may account for the modulation level differences between observations around 100MeV/nuc compared to around 500MeV/nuc. All factors taken into account

  2. Investigation of optical, structural and morphological properties of nanostructured boron doped TiO2 thin films

    Indian Academy of Sciences (India)

    Savaş Sönmezoǧlu; Banu Erdoǧan; İskender Askeroǧlu

    2013-12-01

    Pure and different ratios (1, 3, 5, 7 and 10%) of boron doped TiO2 thin films were grown on the glass substrate by using sol–gel dip coating method having some benefits such as basic and easy applicability compared to other thin film production methods. To investigate the effect of boron doped on the physical properties of TiO2, structural, morphological and optical properties of growth thin films were examined. 1% boron-doping has no effect on optical properties of TiO2 thin film; however, optical properties vary with > 1%. From X-ray diffraction spectra, it is seen that TiO2 thin films together with doping of boron were formed along with TiB2 hexagonal structure having (111) orientation, B2O3 cubic structure having (310) orientation, TiB0.024O2 tetragonal structure having rutile phase (110) orientation and polycrystalline structures. From SEM images, it is seen that particles together with doping of boron have homogeneously distributed and held onto surface.

  3. Boron imaging with a microstrip silicon detector for applications in BNCT

    Science.gov (United States)

    Mattera, A.; Basilico, F.; Bolognini, D.; Borasio, P.; Cappelletti, P.; Chiari, P.; Conti, V.; Frigerio, M.; Gelosa, S.; Giannini, G.; Hasan, S.; Mascagna, V.; Mauri, P.; Monti, A. F.; Mozzanica, A.; Ostinelli, A.; Prest, M.; Scazzi, S.; Vallazza, E.; Zanini, A.

    2009-06-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapic technique exploiting the α particles produced after the irradiation of the isotope 10 of boron with thermal neutrons in the capture reaction B(n,α)710Li. It is used to treat tumours that for their features (radioresistance, extension, localization near vital organs) cannot be treated through conventional photon-beams radiotherapy. One of the main limitations of this technique is the lack of specificity (i.e. the ability of localizing in tumour cells, saving the healthy tissues) of the compounds used to carry the 10B isotope in the organs to be treated. This work, developed in the framework of the INFN PhoNeS project, describes the possibility of boron imaging performed exploiting the neutrons photoproduced by a linac (the Clinac 2100C/D of the S. Anna Hospital Radiotherapy Unit in Como, Italy) and detecting the α s with a non-depleted microstrip silicon detector: the result is a 1D scan of the boron concentration. Several boron doped samples have been analysed, from solutions of H3BO3 (reaching a minimum detectable amount of 25 ng of 10B) to biological samples of urine containing BPA and BSH (the two molecules currently used for the clinical trials in BNCT) in order to build kinetic curves (showing the absolute 10B concentration as a function of time). Further measurements are under way to test the imaging system with 10BPA-Fructose complex perfused human lung samples.

  4. Application of neutron induced radiography technique in determination of boron in aluminium

    International Nuclear Information System (INIS)

    The technique of Neutron Induced Radiography has been applied to determine boron concentration and its spatial distribution in aluminium using Allyl diglycol carbonate (CR-39) detectors. The technique is based upon the simultaneous irradiation of sample and a standard fixed on a track detector with thermal neutrons and the counting of alpha and /sup 7/Li tracks produced in the detector from the nuclear reaction /sup 10/B(n,α)/sup 7/Li after chemical etching. Boron concentration is determined by comparing the /sup 7/Li and alpha particle tracks density with that of a standard of known boron concentration. Boron concentration in aluminium has been found to be (135.8 ±0.7) ppm in this study which is on the higher side within the normal range reported in the literature. The technique of boron determination by Neutron Induced Radiography is a simple and reliable. It can be used to study the other α-emitting radionuclides in minerals and other materials. (author)

  5. Sprayed coatings

    Science.gov (United States)

    Steffens, H. D.

    1980-03-01

    Thermal spraying is shown to be an efficient means for the protection of surface areas against elevated temperature, wear, corrosion, hot gas corrosion, and erosion in structural aircraft components. Particularly in jet engines, numerous parts are coated by flame, detonation, or plasma spraying techniques. The applied methods of flame, detonation, and plasma spraying are explained, as well as electric arc spraying. Possibilities for spray coatings which meet aircraft service requirements are discussed, as well as methods for quality control, especially nondestructive test methods. In particular, coating characteristics and properties obtained by different spray methods are described, and special attention is paid to low pressure plasma spraying.

  6. Innovative boron nitride-doped propellants

    OpenAIRE

    Thelma Manning; Richard Field; Kenneth Klingaman; Michael Fair; John Bolognini; Robin Crownover; Carlton P. Adam; Viral Panchal; Eugene Rozumov; Henry Grau; Paul Matter; Michael Beachy; Christopher Holt; Samuel Sopok

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower ...

  7. Lithium-Beryllium-Boron : Origin and Evolution

    OpenAIRE

    Vangioni-Flam, Elisabeth; Casse, Michel; Audouze, Jean

    1999-01-01

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to...

  8. Boron based two-dimensional crystals: theoretical design, realization proposal and applications.

    Science.gov (United States)

    Li, Xian-Bin; Xie, Sheng-Yi; Zheng, Hui; Tian, Wei Quan; Sun, Hong-Bo

    2015-12-01

    The successful realization of free-standing graphene and the various applications of its exotic properties have spurred tremendous research interest for two-dimensional (2D) layered materials. Besides graphene, many other 2D materials have been successfully produced by experiment, such as silicene, monolayer MoS2, few-layer black phosphorus and so on. As a neighbor of carbon in the periodic table, element boron is interesting and many researchers have contributed their efforts to realize boron related 2D structures. These structures may be significant both in fundamental science and future technical applications in nanoelectronics and nanodevices. In this review, we summarize the recent developments of 2D boron based materials. The theoretical design, possible experimental realization strategies and their potential technical applications are presented and discussed. Also, the current challenges and prospects of this area are discussed. PMID:26523799

  9. Surface Modification of Fuel Cladding Materials with Integral Fuel BUrnable Absorber Boron

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kumar Sridharan; Dr. Todd Allen; Jesse Gudmundson; Benjamin Maier

    2008-11-03

    Integral fuel burnable absorgers (IFBA) are added to some rods in the fuel assembly to counteract excessive reactivity. These IFBA elements (usually boron or gadolinium) are presently incorporated in the U)2 pellets either by mixing in the pellets or as coatings on the pellet surface. In either case, the incorporation of ifba into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be costly and can add from 20 to 30% to the manufacturing cost of the fuel. The goal of this NEER research project was to develop an alternative approach that involves incorporation of IFBA element boron at the surface of the fuel cladding material.

  10. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 105 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  11. Modifications of thermal barrier coatings (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Thomas, K.G.; Haindl, H.; Fu, D. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Werkstoffe im Maschinenbau

    1997-10-01

    To develop highly efficient gas turbines, thermal barrier coating systems with a high reliability and a long lifetime under severe operating conditions are required. The failure of TBC-systems is caused by thermal cycling conditions, oxidation attack, and insufficient adhesion at the interface of the ceramic coating and the bond coat. Coating failure occurs mostly near the interface top coat-bond coat. Two modifications of a conventional duplex TBC-system consisting of a Ni-base alloy substrate/MCrAlY-bond coat/ZrO{sub 2} 7 wt.% Y{sub 2}O{sub 3}-top coat, which is used as the reference system, are presented as follows. (i) By contouring the MCrAlY-bond coat with a laser, the stress distribution at the ZrO{sub 2}-bond coat interface can be modified by forming folds within the laminate structure of the ceramic top coat and increasing the bonding area. TBC-systems containing a contoured bond coat show better thermal cycling behaviour. FEM-simulation of thermally induced stress shows an alternating stress distribution which is caused by the contoured bond coat interface. (ii) High-velocity oxygen fuel (HVOF)-sprayed MCrAlY layers are a new possibility to create homogeneous bond coats. Thermal barrier coatings with LPPS- (low pressure plasma sprayed) or HVOF-CoNiCrAlY bond coats are compared by investigating their porosity, roughness, and oxidation behaviour. The porosity is proportional to the roughness of the HVOF bond coats. The oxide content was examined by TEM and EDX analysis. HVOF-CoNiCrAlY bond coats show oxidation behaviour similar to coatings produced by LPPS. (orig.) 10 refs.

  12. Antioxidant Coating of SEN for Thin Slab Con-casting

    Institute of Scientific and Technical Information of China (English)

    PENG Dejiang; HE Zhongyang; LIU Baikuan

    2008-01-01

    The SEN for thin slab con-casting is easy to break and damage because of the oxidation during preheating and application. The enamel coating material is generally applied on the surface of SEN to avoid the oxidation. The coating material with born glass and silicon as main starting materials and silica sol as binder was studied. ZrO2-C and Al2O3-C materials containing 15% carbon were isostatic pressed, and heated at 600℃,900℃,1200℃,1500℃ for 2h, respectively. The results show that the coating material with 70% of boron glass and 30% of silicon bonded by silica sol can form denser protection layer in the above mentioned materials at the range of 600-1500℃. The oxidation area ratio and weight loss ratio with the coating are much lower than those without the coating.

  13. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  14. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  15. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  16. The energy landscape of fullerene materials: a comparison between boron, boron-nitride and carbon

    CERN Document Server

    De, Sandip; Amsler, Maximilian; Pochet, Pascal; Genovese, Luigi; Goedecker, Stefan

    2010-01-01

    Using the minima hopping global geometry optimization method on the density functional potential energy surface we study medium size and large boron clusters. Even though for isolated medium size clusters the ground state is a cage like structure they are unstable against external perturbations such as contact with other clusters. The energy landscape of larger boron clusters is glass like and has a large number of structures which are lower in energy than the cages. This is in contrast to carbon and boron nitride systems which can be clearly identified as structure seekers in our minima hopping runs. The differences in the potential energy landscape explain why carbon and boron nitride systems are found in nature whereas pure boron fullerenes have not been found.

  17. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  18. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  19. Quality of Coated Particles: Physical - Mechanical Characterization of Polymeric Film Coatings

    NARCIS (Netherlands)

    Perfetti, G.

    2012-01-01

    All coated particle producers, when applying the coating layer(s) would like to know precisely what is the best coating system to use in order to answer customer’s requests. It is, therefore, of very high relevance for many industries, to have a clear understanding of what are the parameters I need

  20. Addition of RDX/HMX on the Ignition Behaviour of Boron-Potassium Nitrate Pyrotechnic Charge

    Directory of Open Access Journals (Sweden)

    K.R. Rani Krishnan

    2006-07-01

    Full Text Available Boron-potassium nitrate (B-KNO3 (25/75 is a well-known pyrotechnic composition whichfinds application as energy-release system for small-calibre rockets and pyrogen igniters forlarger motors. The decomposition of the oxidiser in this composition is endothermic which canbe activated by the addition of high explosives, which decompose exothermically. This paperdescribes the influence of two nitramine explosives, RDX and HMX, on the ignition characteristicsof B-KNO3 composition using thermogravimetry, differential scanning calorimetry, heat andpressure output measurements. Different compositions were prepared by varying the amount ofRDX/HMX from 10 per cent to 50 per cent. Thermal studies on the B-KNO3/high explosivemixtures reveal that these undergo two-stage decomposition. The first stage corresponds to thedecomposition of high explosive and the second stage corresponds to that of the reaction betweenB and KNO3. Kinetic parameters were calculated for both the stages of TG curves using Coats-Redfern and Mac Callum-Tanner methods. Ignition temperature of B-KNO3 decreases on theaddition of RDX/HMX while the onset of RDX or HMX decomposition is not significantly affectedby B-KNO3. The pressure output of B-KNO3 increases on adding RDX/HMX. The heat outputof B-KNO3 is not much affected by the addition of RDX or HMX, even though the heat ofexplosion of RDX and HMX are low. This is due to the reaction between the combustion productsof RDX/HMX and reaction products of B-KNO3 to form more exothermic products like B2O3,releasing extra heat. The flame temperature of the charge increases while the average molecularweight of the products of combustion decreases as the RDX/HMX content increases. Thus, thecharge, on addition of RDX or HMX, produces higher pressure output, maintaining the heatoutput at comparable levels.

  1. A comparative machining study of diamond-coated tools made by plasma torch, microwave, and hot filament techniques

    Indian Academy of Sciences (India)

    C E Bauer; A Inspektor; E J Oles

    2003-10-01

    An effective metal-cutting tool is usually a combination of a hard coating and a tough substrate. The successful deposition of diamond outside its thermodynamic stability range has stimulated the development of a new class of cutting tools: those with diamond-coated inserts of any desired style and edge geometry. The successful implementation of diamond coatings also expedited similar research in the deposition of cubic boron nitride. This paper presents superhard coating tools, with emphasis on diamond-coated WC–Co tools, the corresponding deposition of technologies and the foreseen metal-cutting applications.

  2. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations.

    Science.gov (United States)

    Liakopoulos, Georgios; Stavrianakou, Sotiria; Filippou, Manolis; Fasseas, Costas; Tsadilas, Christos; Drossopoulos, Ioannis; Karabourniotis, George

    2005-02-01

    For plant species in which a considerable portion of the photoassimilates are translocated in the phloem as sugar alcohols, boron is freely translocated from mature organs to growing tissues. However, the effects of decreased plant boron status on boron remobilization are poorly understood. We conducted a growth chamber experiment (CE) and a field experiment (FE) to study the effects of low boron supply on boron remobilization in olive (Olea europaea L.), a species that transports considerable amounts of mannitol in the phloem. For the CE, several physiological parameters were compared between control (B+) and boron-deficient olive plants (B-) during the expansion of new leaves. Boron remobilization was assessed by measuring boron content of selected leaves at the beginning and at the end of the CE. As expected, boron was remobilized from mature leaves to young leaves of B+ plants; however, considerable boron remobilization was also observed in B- plants, suggesting a mechanism whereby olive can sustain a minimum boron supply for growth of new tissues despite an insufficient external boron supply. Boron deficiency caused inhibition of new growth but had no effect on photosynthetic capacity per unit leaf surface area of young and mature leaves, thereby altering the carbon utilization pattern and resulting in carbon allocation to structures within the source leaves and accumulation of soluble carbohydrates. Specifically, in mature B- leaves in the CE and in B- leaves in the FE, mannitol concentration on a leaf water content basis increased by 48 and 27% respectively, compared with controls. Carbon export ability (assessed by both phloem anatomy and phloem exudate composition of FE leaves) was enhanced at low boron supply. We conclude that, at low boron supply, increased mannitol concentrations maintain boron remobilization from source leaves to boron-demanding sink leaves. PMID:15574397

  3. The microstructural characteristics and mechanical properties of Ni-Al/h-BN coatings deposited using plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, W.T., E-mail: Jesse_Hsiao@itri.org.tw [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan (China); Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China); Su, C.Y., E-mail: cysu@ntut.edu.tw [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan (China); Huang, T.S., E-mail: 152827@mail.csc.com.tw [China Steel Corporation, Kaohsiung, Taiwan (China); Liao, W.H., E-mail: xhan@itri.org.tw [Nano Technology Laboratory, Department of Materials Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China)

    2011-08-11

    Highlights: > The Ni-Al/h-BN was co-deposited as plasma-sprayed coatings. > Lower degrees of crystallization after MA or plasma spray. > The h-BN phase transform into a-BN. > Better tribological properties coating were observed at high temperature. - Abstract: Hexagonal boron nitride (h-BN) material was added to a nickel aluminum alloy (Ni-Al), which was deposited as plasma spray coatings, and the resultant enhanced tribological properties of these coatings were investigated. The microstructures of the coatings were analyzed using a scanning electron microscope (SEM) to monitor the morphologies of both the powders and the coatings. After wear testing, the surface morphologies of the scratched coatings were analyzed using an SEM to monitor the fracture mode of the coatings. The results of this study indicate that the addition of h-BN material to Ni-Al results in coatings with enhanced tribological properties.

  4. Simultaneous Observation of Cells and Nuclear Tracks from the Boron Neutron Capture Reaction by UV-C Sensitization of Polycarbonate.

    Science.gov (United States)

    Portu, Agustina; Rossini, Andrés Eugenio; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Granell, Pablo; Golmar, Federico; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2015-08-01

    The distribution of boron in tissue samples coming from boron neutron capture therapy protocols can be determined through the analysis of its autoradiography image on a nuclear track detector. A more precise knowledge of boron atom location on the microscopic scale can be attained by the observation of nuclear tracks superimposed on the sample image on the detector. A method to produce an "imprint" of cells cultivated on a polycarbonate detector was developed, based on the photodegradation properties of UV-C radiation on this material. Optimal conditions to generate an appropriate monolayer of Mel-J cells incubated with boronophenylalanine were found. The best images of both cells and nuclear tracks were obtained for a neutron fluence of 1013 cm-2, 6 h UV-C (254 nm) exposure, and 4 min etching time with a KOH solution. The imprint morphology was analyzed by both light and scanning electron microscopy. Similar samples, exposed to UV-A (360 nm) revealed no cellular imprinting. Etch pits were present only inside the cell imprints, indicating a preferential boron uptake (about threefold the incubation concentration). Comparative studies of boron absorption in different cell lines and in vitro evaluation of the effect of diverse boron compounds are feasible with this methodology. PMID:26155721

  5. Modeling of the hot flow behavior of advanced ultra-high strength steels (A-UHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejía, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad Universitaria, 58066 Morelia, Michoacán (Mexico); Altamirano, G.; Bedolla-Jacuinde, A. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad Universitaria, 58066 Morelia, Michoacán (Mexico); Cabrera, J.M. [Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB – Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, 08240 Manresa (Spain)

    2014-07-29

    In this research work, modeling of the hot flow behavior was carried out in a low carbon advanced ultra-high strength steels (A-UHSS) microalloyed with different amounts of boron (14, 33, 82, 126 and 214 ppm). For this purpose, experimental stress–strain data of uniaxial hot-compression tests over a wide range of temperatures (1223, 1273, 1323 and 1373 K (950, 1000, 1050 and 1100 °C)) and strain rates (10{sup −3}, 10{sup −2} and 10{sup −1} s{sup −1}) were used. The stress–strain relationships as a function of temperature and strain rate were successfully described on the basis of the approach proposed by Estrin, Mecking, and Bergström, together with the classical Avrami equation and the conventional hyperbolic sine function. The analysis of the modeling parameters of the hot flow curves shows that boron additions to A-UHSS play a major role in softening mechanisms rather than on hardening. The peak stress (σ{sub p}) and steady-state stress (σ{sub ss}) values show a decreasing trend with increasing boron content, which indicates that boron additions promote a solid solution softening effect additional to that produced by DRX. The time for 50% recrystallization (t{sub 50%}) tends to increase with boron additions, revealing that boron additions cause a delay of the DRX kinetics during hot deformation. Similarly, the presence of boron in the steel decreases the apparent activation energy for recrystallization (Q{sub t}), indicating that boron additions accelerate the onset of DRX. The constitutive equations developed in this way provided an excellent description of the experimental hot flow curves.

  6. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  7. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  8. Producing superhydrophobic roof tiles

    Science.gov (United States)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  9. A Taguchi optimisation for production of Al–B master alloys using boron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Savaş, Ömer, E-mail: osavas@yildiz.edu.tr [Yildiz Technical University, Faculty of Naval Architecture and Maritime, Istanbul (Turkey); Kayikci, Ramazan [Sakarya University, Faculty of Technology, Dept. of Met. and Mat. Eng., 54187 Sakarya (Turkey)

    2013-12-15

    Highlights: •Al–B alloys have been produced by liquid state reaction with adding B{sub 2}O{sub 3} into Al. •Taguchi method has been employed to examine the effects of four process parameters. •Results showed that maximum 2.14 wt.% B has been dissolved in Al. •The cooling rate is the most effective factor on the size of AlB{sub 2} boride. -- Abstract: Al–B master alloys have been produced by liquid state reaction between aluminium and boron oxide in liquid aluminium. Taguchi design method has been employed to examine the effects of four process parameters of holding temperature, holding time, cooling rate and matrix type on the extent of boron dissolved and size distribution of the resulting AlB{sub 2} intermetallic flake structure. In the experiments, melting, casting, solidification, metallography, optical microscope, scanning electron microscope (SEM) and wet chemical analysis techniques have been used. Results showed that maximum 2.14 wt.% boron has been dissolved in the aluminium through direct addition of boron oxide (B{sub 2}O{sub 3}). It is concluded that the cooling rate is the most effective factor on the size of AlB{sub 2} particles.

  10. Plasma deposition of boron films with high growth rate and efficiency using carborane

    International Nuclear Information System (INIS)

    The injection of carborane (C2B10H12) on the PISCES-B linear plasma device has been used to produce boron containing films on various target species. Film growth rates achieved are extremely high (up to 30 nm/s) compared to those typically found for glow discharges (∼0.01 nm/s). For low-Z target materials (C and Al) the film production is highly efficient, with the boron film growth rate comparable to the incident ion flux and the injection rate of boron atoms. The boron to carbon ratio is 3.0-3.6 for these films. Similarly high growth rates (∼10 nm/s) are obtained with high-Z target (W), but with lower deposition efficiency and higher B/C film ratio. The high film growth rate/efficiency are apparently linked to the high degree of carborane ionization and dissociation caused by the ∼40 eV PISCES-B plasma, compared with T<1 eV plasmas of glow discharges. This technique opens the possibility of continuously producing protective B films in thermonuclear devices where net erosion rates approach 10 nm/s

  11. A Taguchi optimisation for production of Al–B master alloys using boron oxide

    International Nuclear Information System (INIS)

    Highlights: •Al–B alloys have been produced by liquid state reaction with adding B2O3 into Al. •Taguchi method has been employed to examine the effects of four process parameters. •Results showed that maximum 2.14 wt.% B has been dissolved in Al. •The cooling rate is the most effective factor on the size of AlB2 boride. -- Abstract: Al–B master alloys have been produced by liquid state reaction between aluminium and boron oxide in liquid aluminium. Taguchi design method has been employed to examine the effects of four process parameters of holding temperature, holding time, cooling rate and matrix type on the extent of boron dissolved and size distribution of the resulting AlB2 intermetallic flake structure. In the experiments, melting, casting, solidification, metallography, optical microscope, scanning electron microscope (SEM) and wet chemical analysis techniques have been used. Results showed that maximum 2.14 wt.% boron has been dissolved in the aluminium through direct addition of boron oxide (B2O3). It is concluded that the cooling rate is the most effective factor on the size of AlB2 particles

  12. Process to minimize cracking of pyrolytic carbon coatings

    International Nuclear Information System (INIS)

    The object of this invention is to provide a process which significantly improves upon prior techniques of producing fuel microspheres by producing carbon coated fuel particles with a small percentage of cracked particles and with reduced stress levels within the coated layers. This is accomplished by annealing the coated particles immediately after deposition of the dense pyrolytic carbon layer. (auth)

  13. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  14. Nanostructured Coatings

    Science.gov (United States)

    Rivière, J.-P.

    In many branches of technology where surfaces are playing a growing role, the use of coatings is often the only way to provide surfaces with specific functional properties. For example, the austenitic stainless steels or titanium alloys exhibit poor resistance to wear and low hardness values, which limits the field of applications. The idea then is to develop new solutions which would improve the mechanical performance and durability of objects used in contact and subjected to mechanical forces in hostile gaseous or liquid environments. Hard coatings are generally much sought after to enhance the resistance to wear and corrosion. They are of particular importance because they constitute a class of protective coatings which is already widely used on an industrial scale to improve the hardness and lifetime of cutting tools.

  15. Deposition of diamond and boron nitride films by plasma chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Albella, J.M. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Gomez-Aleixandre, C. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Sanchez-Garrido, O. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Vazquez, L. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Martinez-Duart, J.M. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.

    1995-01-01

    The deposition problems of diamond and cubic boron nitride (c-BN) by chemical vapour deposition techniques are reviewed, with major emphasis on the nucleation and reaction mechanisms. A discussion is made of the main deposition parameters (i.e. gas mixture, substrate conditioning, plasma discharges etc.) which favour the formation of the cubic phase. Most of the work is devoted to diamond owing to the large progress attained in this material. In fact, the use of diamond as a hard protective coating is now on a commercial scale. By contrast, the preparation of c-BN layers with good characteristics still needs of further research. ((orig.))

  16. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael W. [NASA Langley Research Center, Hampton, VA (United States); Jordan, Kevin C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Park, Cheol [NASA Langley Research Center, Hampton, VA (United States); Kim, Jae-Woo [NASA Langley Research Center, Hampton, VA (United States); Lillehei, Peter T. [NASA Langley Research Center, Hampton, VA (United States); Crooks, Roy [NASA Langley Research Center, Hampton, VA (United States); Harrison, Joycelyn S. [NASA Langley Research Center, Hampton, VA (United States)

    2009-11-01

    Boron nitride nanotubes (BNNTs) are desired for their exceptional mechanical, electronic, thermal, structural, textural, optical, and quantum properties. A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  17. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  18. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  19. Edison's vacuum coating patents

    International Nuclear Information System (INIS)

    Among the over one thousand patents bearing Thomas A. Edison's name are several for vacuum coating processes including chemical vapor deposition, evaporation, and sputter deposition. Beginning in 1880 Edison applied for patents that described carbon deposition processes that would now be called pyrolytic chemical vapor deposition. In 1884 Edison applied for a patent (granted in 1894) that described coating by evaporation in a vacuum by direct resistance heating or arc heating using a continuous current. Edison called the process 'electro vacuous deposition'. He prophetically wrote, 'the uses of the invention are almost infinite'. Edison also employed sputter deposition and in 1900 applied for a patent on a 'Process of Coating Phonograph Records'. Issued in 1902, the patent describes using a 'silent or brush electrical discharge' produced by an induction coil. The National Phonograph Company, one of Edison's many enterprises, used the sputtering process to deposit a thin layer of gold on wax phonograph cylinder masters that could then be electroplated to form molds to mass produce celluloid duplicates. The method was used for 20 years, from 1901 to 1921. It enabled the reproduction of cylinder grooves less than 0.001 in. deep at a density of 200 grooves per in. From 1913 to 1921, 10-in.-diameter Edison Diamond Disc phonograph records were made using the same method. Sputtering was abandoned in 1927, as it could not be scaled up to produce the 12 in. disks that were then introduced

  20. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  1. Influence of laser alloying with boron and niobium on microstructure and properties of Nimonic 80A-alloy

    Science.gov (United States)

    Makuch, N.; Piasecki, A.; Dziarski, P.; Kulka, M.

    2015-12-01

    Ni-base superalloys were widely used in aeronautics, chemical and petrochemical industries due to their high corrosion resistance, high creep and rupture strength at high temperature. However, these alloys were not considered for applications in which conditions of appreciable mechanical wear were predominant. The diffusion boriding provided suitable protection against wear. Unfortunately, this process required long duration and high temperature. In this study, instead of the diffusion process, the laser alloying with boron and niobium was used in order to produce the hard and wear resistant layer on Nimonic 80A-alloy. The laser-alloying was carried out as a two-step process. First, the external cylindrical surface of specimens was pre-placed with a paste containing boron and niobium. Then, the pre-placed coating and the thin surface layer of the substrate were re-melted by a laser beam. The high laser beam power (P=1.56 kW) and high averaging irradiance (E=49.66 kW/cm2) provided the thick laser re-melted zone. The laser-borided layers were significantly thicker (470 μm) in comparison with the layers obtained as a consequence of the diffusion boriding. Simultaneously, the high overlapping of multiple laser tracks (86%) caused that the laser-alloyed layer was uniform in respect of the thickness. The produced layer consisted of nickel borides (Ni3B, Ni2B, Ni4B3, NiB), chromium borides (CrB, Cr2B), niobium borides (NbB2, NbB) and Ni-phase. The presence of hard borides caused the increase in microhardness up to 1000 HV in the re-melted zone. However, the measured values were lower than those-characteristic of niobium borides, chromium borides and nickel borides. The presence of the soft Ni-phase in re-melted zone was the reason for such a situation. After laser alloying, the significant increase in abrasive wear resistance was also observed. The mass wear intensity factor, as well as the relative mass loss of the laser-alloyed specimens, was over 10 times smaller in

  2. Structure and corrosion properties of PVD Cr-N coatings

    CERN Document Server

    Liu, C; Ziegele, H; Leyland, A; Matthews, A

    2002-01-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating 'permeable' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, t...

  3. Performance of chromium nitride based coatings under plastic processing conditions

    OpenAIRE

    Cunha, l.; Andritschky, M.; Pischow, K.; Wang, Z.(Institute of High Energy Physics, Beijing, China); Zarychta, A.; Miranda, A. S.; A.M. Cunha

    2000-01-01

    Chromium nitride based coatings were produced in the form of monolithic and multilayer coatings, by DC and RF reactive magnetron sputtering. These coatings were deposited onto stainless steel and tool steel substrates. Chromium nitride coatings have;proved to be wear and corrosion resistant. The combination of these characteristics was necessary to protect surfaces during plastic processing. In order to select the best coatings, some mechanical and tribological tests were performed. Har...

  4. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  5. Enhanced Plasma Performance by ICRF Boronization

    Institute of Scientific and Technical Information of China (English)

    万宝年; 赵燕平; 李建刚; 宋梅; 吴振伟; 罗家融; 李成富; 王小明

    2002-01-01

    Boronization with carborane (C2B10H12) by ICRF has been applied routinely to the walls of HT-7 super-conducting tokamak for the reduction of impurity influx, especially carbon and oxygen. Significant suppression of metallic impurities and radiating power fraction are achieved. The improved confinement for both particle and energy is observed in full range of operation parameters. Energy balance analysis shows that electron heat diffusion coefficient is strongly reduced. Measurements by Langmuir probes at the edge plasma show that the poloidal velocity shear after boronization is changed to a profile favoring to good confinement. The main emphasis of this paper is to describe effects of boronization on aspects of the enhanced plasma performance.

  6. Depth resolved investigations of boron implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sztucki, M. E-mail: michael@sztucki.de; Metzger, T.H.; Milita, S.; Berberich, F.; Schell, N.; Rouviere, J.L.; Patel, J

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6x10{sup 15} ions/cm{sup -2} at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {l_brace}1 1 1{r_brace} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  7. 10Boron distribution measurement in laser ablated B4C thin films using (n,α) reaction and LR-115 passive detector

    International Nuclear Information System (INIS)

    Lateral distribution of the 10B isotope within a boron carbide film of 550 nm maximum thickness deposited on silicon wafer using pulsed laser deposition technique has been determined taking advantage of the high cross section for (n,α) reaction and nuclear tracks detectors (NTD - LR-115 Kodak Pathe). A radioisotope neutron source (252Cf, 20 μg) and a 60 x 60 x 80 cm3 graphite cube as moderator produce a relatively uniform thermal neutron field. Details of the passive detector etching process and data processing are included. The track density reveals the boron density spatial distribution. A 3D picture is produced to visualize the boron-10 spatial distribution. The result suggests that a gradient in the boron distribution exists to almost a factor of three. The advantages of the technique are discussed.

  8. {sup 10}Boron distribution measurement in laser ablated B{sub 4}C thin films using (n,alpha) reaction and LR-115 passive detector

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, L., E-mail: sajobohus@gmail.co [Universidad Simon Bolivar, Nuclear Physics Section, Valle de Sartenejas, Caracas 89000A (Venezuela, Bolivarian Republic of); Simon, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen 4026 (Hungary); Csako, T. [Dep. of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary); Nemeth, P.; Palacios, D. [Universidad Simon Bolivar, Nuclear Physics Section, Valle de Sartenejas, Caracas 89000A (Venezuela, Bolivarian Republic of); Espinosa, G. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Greaves, E.D. [Universidad Simon Bolivar, Nuclear Physics Section, Valle de Sartenejas, Caracas 89000A (Venezuela, Bolivarian Republic of); Szoerenyi, T. [Dep. of Nat. Sci. and Environ. Prot., College of Dunaujvaros, P.O. Box 152, H-2401 Dunaujvaros (Hungary); Barros, H. [Universidad Simon Bolivar, Nuclear Physics Section, Valle de Sartenejas, Caracas 89000A (Venezuela, Bolivarian Republic of)

    2009-10-15

    Lateral distribution of the {sup 10}B isotope within a boron carbide film of 550 nm maximum thickness deposited on silicon wafer using pulsed laser deposition technique has been determined taking advantage of the high cross section for (n,alpha) reaction and nuclear tracks detectors (NTD - LR-115 Kodak Pathe). A radioisotope neutron source ({sup 252}Cf, 20 mug) and a 60 x 60 x 80 cm{sup 3} graphite cube as moderator produce a relatively uniform thermal neutron field. Details of the passive detector etching process and data processing are included. The track density reveals the boron density spatial distribution. A 3D picture is produced to visualize the boron-10 spatial distribution. The result suggests that a gradient in the boron distribution exists to almost a factor of three. The advantages of the technique are discussed.

  9. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and co

  10. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  11. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-01-01

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070

  12. Electromagnetic properties and microstructures of in situ MgB2 wires made from three types of boron powders

    Science.gov (United States)

    Kodama, Motomune; Kotaki, Hiroshi; Yamamoto, Hiroyuki; Iwane, Tomohiro; Tanaka, Kazuhide; Tanaka, Hideki; Okishiro, Kenji; Okamoto, Kazutaka; Nishijima, Gen; Matsumoto, Akiyoshi; Kumakura, Hiroaki; Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Kishio, Kohji

    2016-10-01

    In powder-in-tube processed MgB2 wires, the choice of boron powder as a starting material crucially affects their performance. In this paper, we prepared in situ MgB2 wires from three types of boron powders in various heat-treatment conditions and investigated their electromagnetic properties and microstructures. Their critical current density, J c, varied over a wide range from sample to sample. The difference in J c is understood to be caused by the effect of changes in the electrical connectivity, K, and intrinsic residual resistivity, ρ 0. Here, K represents the effective cross-sectional area for current, and ρ 0 reflects the degree of the charge carrier scattering caused by lattice defects. It was found that the use of boron powder with a large specific surface area leads to a large degree of lattice defects in MgB2 grains and enhances ρ 0, resulting in improving J c. The boron powder produced by thermal decomposition of B2H6 has a large specific surface area. Hence, this boron powder is the most suitable as a starting material for MgB2. Meanwhile, dry pulverization of low-cost boron powder, which is largely produced by active-metal reduction of B2O3, is also effective to increase its specific surface area without introducing impurities, resulting in the enhancement of J c in the entire magnetic field region. This finding broadens the choice of boron powder and contributes to realizing superconducting applications with excellent balance between performance and cost.

  13. Computational Aspects of Carbon and Boron Nanotubes

    Directory of Open Access Journals (Sweden)

    Paul Manuel

    2010-11-01

    Full Text Available Carbon hexagonal nanotubes, boron triangular nanotubes and boron a-nanotubes are a few popular nano structures. Computational researchers look at these structures as graphs where each atom is a node and an atomic bond is an edge. While researchers are discussing the differences among the three nanotubes, we identify the topological and structural similarities among them. We show that the three nanotubes have the same maximum independent set and their matching ratios are independent of the number of columns. In addition, we illustrate that they also have similar underlying broadcasting spanning tree and identical communication behavior.

  14. Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T

    CERN Document Server

    Kowalski, Piotr M; Jahn, Sandro

    2012-01-01

    Over the last decade experimental studies have shown a large B isotope fractionation between materials carrying boron incorporated in trigonally and tetrahedrally coordinated sites, but the mechanisms responsible for producing the observed isotopic signatures are poorly known. In order to understand the boron isotope fractionation processes and to obtain a better interpretation of the experimental data and isotopic signatures observed in natural samples, we use first principles calculations based on density functional theory in conjunction with ab initio molecular dynamics and a new pseudofrequency analysis method to investigate the B isotope fractionation between B-bearing minerals (such as tourmaline and micas) and aqueous fluids containing H_3BO_3 and H_4BO_4- species. We confirm the experimental finding that the isotope fractionation is mainly driven by the coordination of the fractionating boron atoms and have found in addition that the strength of the produced isotopic signature is strongly correlated w...

  15. A Neutronic Feasibility Study of an OPR-1000 Core Design with Boron-bearing Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Sang Yoon; Lee, Chung Chan; Yang, Yong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Westinghouse plants, boron is mainly used as a form of the integral fuel burnable absorber (IFBA) with a thin coating of zirconium diboride (ZrB{sub 2}) or wet annular burnable absorber (WABA) with a hollow Al{sub 2}O{sub 3}+B{sub 4}C pellet. In OPR-1000, on the other hand, gadolinia is currently employed as a form of an admixture which consists of Gd{sub 2}O{sub 3} of 6∼8 w/o and UO{sub 2} of natural uranium. Recently, boron-bearing UO{sub 2} fuel (BBF) with the high density of greater than 94%TD has been developed by using a low temperature sintering technique. In this paper, the feasibility of replacing conventional gadolinia-bearing UO{sub 2} fuel (GBF) in OPR-1000 with newly developed boron-bearing fuel is evaluated. Neutronic feasibility study to utilize the BBF in OPR-1000 core has been performed. The results show that the OPR-1000 core design with the BBF is feasible and promising in neutronic aspects. Therefore, the use of the BBF in OPR-1000 can reduce the dependency on the rare material such as gadolinium. However, the burnout of the {sup 10}B isotope results in helium gas, so fuel performance related study with respect to helium generation is needed.

  16. Raman Microscopic Analysis of Internal Stress in Boron-Doped Diamond

    Directory of Open Access Journals (Sweden)

    Kevin E. Bennet

    2015-05-01

    Full Text Available Analysis of the induced stress on undoped and boron-doped diamond (BDD thin films by confocal Raman microscopy is performed in this study to investigate its correlation with sample chemical composition and the substrate used during fabrication. Knowledge of this nature is very important to the issue of long-term stability of BDD coated neurosurgical electrodes that will be used in fast-scan cyclic voltammetry, as potential occurrence of film delaminations and dislocations during their surgical implantation can have unwanted consequences for the reliability of BDD-based biosensing electrodes. To achieve a more uniform deposition of the films on cylindrically-shaped tungsten rods, substrate rotation was employed in a custom-built chemical vapor deposition reactor. In addition to visibly preferential boron incorporation into the diamond lattice and columnar growth, the results also reveal a direct correlation between regions of pure diamond and enhanced stress. Definite stress release throughout entire film thicknesses was found in the current Raman mapping images for higher amounts of boron addition. There is also a possible contribution to the high values of compressive stress from sp2 type carbon impurities, besides that of the expected lattice mismatch between film and substrate.

  17. Effects of heat treatment on properties of boron nitride fiber

    Institute of Scientific and Technical Information of China (English)

    LI Duan; ZHANG ChangRui; LI Bin; CAO Feng; WANG SiQing

    2012-01-01

    The boron nitride fibers were heated at the range of 600-1400°C in flowing nitrogen and air,respectively,and the effects of heat treatment on the structure,composition and morphology of BN fibers were studied.The results showed that BN fibers exhibited smooth surfaces,and that t-BN was the main phase with a little B2O3 included.After heat treatment at 1400°C in nitrogen atmosphere,the fibers displayed rough surfaces with little change in mass.Better crystallinity was obtained with the increasing temperature.During heat treatment in air,the fibers were oxidized severely as the temperature went up,especially at 1400°C.The volatilization of B2O3,HBO2 and H3BO3 led to the pores on the surfaces of the fibers,while the boron oxide glaze and nitrogen gas produced during the oxidation process protected the fibers from further oxidation.

  18. Direct evidence of metallic bands in a monolayer boron sheet

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Liu, Ro-Ya; Iimori, Takushi; Lian, Chao; Li, Hui; Chen, Lan; Wu, Kehui; Meng, Sheng; Komori, Fumio; Matsuda, Iwao

    2016-07-01

    The search for metallic boron allotropes has attracted great attention in the past decades and recent theoretical works predict the existence of metallicity in monolayer boron. Here, we synthesize the β12-sheet monolayer boron on a Ag(111) surface and confirm the presence of metallic boron-derived bands using angle-resolved photoemission spectroscopy. The Fermi surface is composed of one electron pocket at the S ¯ point and a pair of hole pockets near the X ¯ point, which is supported by the first-principles calculations. The metallic boron allotrope in β12 sheet opens the way to novel physics and chemistry in material science.

  19. TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements

    Science.gov (United States)

    Spende, Anne; Sobel, Nicolas; Lukas, Manuela; Zierold, Robert; Riedl, Jesse C.; Gura, Leonard; Schubert, Ina; Montero Moreno, Josep M.; Nielsch, Kornelius; Stühn, Bernd; Hess, Christian; Trautmann, Christina; Toimil-Molares, Maria E.

    2015-08-01

    Low-temperature atomic layer deposition (ALD) of TiO2, SiO2, and Al2O3 was applied to modify the surface and to tailor the diameter of nanochannels in etched ion-track polycarbonate membranes. The homogeneity, conformity, and composition of the coating inside the nanochannels are investigated for different channel diameters (18-55 nm) and film thicknesses (5-22 nm). Small angle x-ray scattering before and after ALD demonstrates conformal coating along the full channel length. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy provide evidence of nearly stoichiometric composition of the different coatings. By wet-chemical methods, the ALD-deposited film is released from the supporting polymer templates providing 30 μm long self-supporting nanotubes with walls as thin as 5 nm. Electrolytic ion-conductivity measurements provide proof-of-concept that combining ALD coating with ion-track nanotechnology offers promising perspectives for single-pore applications by controlled shrinking of an oversized pore to a preferred smaller diameter and fine-tuning of the chemical and physical nature of the inner channel surface.

  20. Methods and apparatus for coating particulate material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2012-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.