WorldWideScience

Sample records for boron coatings produced

  1. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  2. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  3. Effect of Boron on Microstructure and Microhardness Properties of Mo-Si-B Based Coatings Produced Via TIG Process

    Directory of Open Access Journals (Sweden)

    Islak S.

    2016-09-01

    Full Text Available In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo–Si–B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the microstructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.

  4. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  5. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  6. Ion-beam-deposited boron carbide coatings for the extreme ultraviolet.

    Science.gov (United States)

    Blumenstock, G M; Keski-Kuha, R A

    1994-09-01

    The normal-incidence reflectance of ion-beam-deposited boron carbide thin films has been evaluated in the extreme ultraviolet (EUV) spectral region. High-reflectance coatings have been produced with reflectances greater than 30% between 67 and 121.6 nm. This high reflectance makes ion-beam-deposited boron carbide an attractive coating for EUV applications.

  7. Boronized steels with corundum-baddeleyite coatings

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes preparation and properties of anti-corrosion and anti-abrasive coatings from corundum-baddeleyite ceramics deposited on surface of low-carbon boronized steel S235JRH-1.0038 (EN 10025-1 by plasma spraying method. Adhesive interlayers Fe2B reaches bond strength of up to 20 MPa in the pull-off tests, the ZrO2 - Al2O3 - SiO2 coatings have a value of fracture adhesion of 4 - 6 MPa. Hardness of these ceramic coatings on steel is as high as 1 800 HV100 and its polarization resistance is 1 600 Ω/cm2 to 4 000 Ω/cm2.

  8. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  9. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  10. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  11. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  12. Neutron beam monitor based on a boron-coated GEM

    Institute of Scientific and Technical Information of China (English)

    周健荣; 李仪; 孙志嘉; 刘贲; 王艳凤; 杨桂安; 周良; 许虹; 董静; 杨雷

    2011-01-01

    A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on

  13. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  14. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  15. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  16. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    Science.gov (United States)

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-01-30

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation.

  17. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  18. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  19. AUTOCATALYTIC REDUCTION AND CHARACTERISTICS OF BORON-CONTAINING COATINGS

    Directory of Open Access Journals (Sweden)

    V. Covaliov

    2013-06-01

    Full Text Available The research results of the plating conditions, chemical composition and properties of Ni-B coatings and Ni-Re-B, Ni-Mo-B and Ni-W-B alloys are given. It was shown that introduction of alloying elements (Re, Мо and W in the composition of Ni-containing coatings modifies the catalytic activity of the alloys’ surface, with regard to the parallel reactions of dimethylamino-borane (DMAB heterogeneous hydrolysis, Ni reduction and evolving of the molecular hydrogen. It was found that with the increase in concentration of alloying element, boron content in the coatings is decreased to the trace amounts. The effect of alloys composition on hydrogen evolving overvoltage was studied. Due to the low overvoltage of hydrogen evolving (HE on the alloy Ni-Re-B surface (11 at.% Re, it can be used as electrode for hydrogen generation from water in the electrolytic cell with novel design and improved technical-economic indicators.

  20. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzhinskiy, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  1. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-01

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400-1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  2. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  3. Effect of boron on hot strips of low carbon steel produced by compact strip production

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Yonglin Kang

    2008-01-01

    The effect of boron on hot strips of low carbon steel produced by compact strip production (CSP) to reduce the strength to a certain degree was investigated, which is quite different from that of high-strength low alloy steel. The mechanical properties and microstructural evolution of the hot strip were studied using optical microscopy and tensile tests. By means of an electrolytic disso- lution technique and Thermo-Cal calculation, the precipitates containing boron were analyzed and detected. From the electron back- scattered diffraction analysis, it can be deciphered whether the microstructure has recrystallized or not. Furthermore, the effect of boron segregation on the recrystallization or non-recrystallization conditions can be distinguished. The segregation behavior of boron was investigated in boron-containing steel. The nonequilibrium segregation of boron during processing was discussed on the basis of the forming complexes with vacancies that migrate to the boundaries prior to annihilation, which was confirmed by the subsequent cold rolling with annealing experiments.

  4. Characterization of Vc-Vb Particles Reinforced Fe-Based Composite Coatings Produced by Laser Cladding

    Science.gov (United States)

    Qu, K. L.; Wang, X. H.; Wang, Z. K.

    2016-03-01

    In situ synthesized VC-VB particles reinforced Fe-based composite coatings were produced by laser beam melting mixture of ferrovanadium (Fe-V) alloy, boron carbide (B4C), CaF2 and Fe-based self-melting powders. The results showed that VB particles with black regular and irregular blocky shape and VC with black flower-like shape were uniformly distributed in the coatings. The type, amount, and size of the reinforcements were influenced by the content of FeV40 and B4C powders. Compared to the substrate, the hardness and wear resistance of the composite coatings were greatly improved.

  5. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel.

    Science.gov (United States)

    Husain, Esam; Narayanan, Tharangattu N; Taha-Tijerina, Jose Jaime; Vinod, Soumya; Vajtai, Robert; Ajayan, Pulickel M

    2013-05-22

    Recently, two-dimensional, layered materials such as graphene and hexagonal boron nitride (h-BN) have been identified as interesting materials for a range of applications. Here, we demonstrate the corrosion prevention applications of h-BN in marine coatings. The performance of h-BN/polymer hybrid coatings, applied on stainless steel, were evaluated using electrochemical techniques in simulated seawater media [marine media]. h-BN/polymer coating shows an efficient corrosion protection with a low corrosion current density of 5.14 × 10(-8) A/cm(2) and corrosion rate of 1.19 × 10(-3) mm/year and it is attributed to the hydrofobic, inert and dielectric nature of boron nitride. The results indicated that the stainless steel with coatings exhibited improved corrosion resistance. Electrochemical impedance spectroscopy and potentiodynamic analysis were used to propose a mechanism for the increased corrosion resistance of h-BN coatings.

  6. Boron carbide (B{sub 4}C) coating. Deposition and testing

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E.; Barsuk, V. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Buzhinsky, O. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Evsin, A.; Gordeev, A.; Grunin, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Klimov, N. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Kurnaev, V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mazul, I. [Federal State Unitary Interprise Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA Efremov), St-Peterburg (Russian Federation); Otroshchenko, V.; Putric, A. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-15

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B{sub 4}C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B{sub 4}C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B{sub 4}C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B{sub 4}C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  7. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.

  8. Hexagonal Boron Nitride Nanosheets as High-Performance Binder-Free Fire-Resistant Wood Coatings.

    Science.gov (United States)

    Liu, Juanjuan; Kutty, Rajendrannair Govindan; Zheng, Qingshen; Eswariah, Varrla; Sreejith, Sivaramapanicker; Liu, Zheng

    2017-01-01

    Hexagonal boron nitride (h-BN) nanosheets are synthesized through a facile shear force liquid phase exfoliation method and their use as a binder-free oxidation and fire-resistant wood coating is demonstrated. Characterized by intrinsic low thermal diffusivity and thermal effusivity, h-BN nanosheet coatings show an excellent fire resistance and oxidation resistance up to 900 °C in air.

  9. Influence of boron doping on mechanical and tribological properties in multilayer CVD-diamond coating systems

    Indian Academy of Sciences (India)

    SAJAD HUSSAIN DIN; M A SHAH; N A SHEIKH; K A NAJAR; K RAMASUBRAMANIAN; S BALAJI; M S RAMACHANDRA RAO

    2016-12-01

    Titanium alloy (Ti6Al4V) substrates were deposited with smooth multilayer coatings, by hot filament chemical vapour deposition technique. The effect of boron doping on lattice parameter, residual stresses, hardness and coefficient of friction in multilayer-diamond coating system was studied. The frictional behaviour of the coatings was studied using a ball-on-disc micro-tribometer by sliding the coated samples of titanium alloy (Ti6Al4V) substrates against alumina (Al$_2$O$_3$) balls, and increasing normal load from 1 to 10N. The average friction coefficient decreased from 0.36 to 0.29 for undoped multilayer-diamond coating system and from 0.33 to 0.18 for borondoped (BD) multilayer-diamond coating system. The average indentation depths for undoped and BD multilayerdiamond coating systems were found to be equal to $\\sim$58 and $\\sim$65 nm, respectively, and their hardness values were 60 and 55~GPa, respectively.

  10. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  11. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  12. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  13. Microstructural study of oxidation of carbon-rich amorphous boron carbide coating

    Institute of Scientific and Technical Information of China (English)

    Bin ZENG; Zu-de FENG; Si-wei LI; Yong-sheng LIU

    2008-01-01

    Carbon-rich amorphous boron carbide (BxC) coatings were annealed at 400℃, 700℃, 1000℃ and 1200℃ for 2 h in air atmosphere. The microstructure and composition of the as-deposited and annealed coat-ings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectro-scopy and energy dispersive X-ray spectroscopy (EDS). All of the post-anneal characterizations demonstrated the ability of carbon-rich BxC coatings to protect the graphite substrate against oxidation. Different oxidation modes of the coatings were found at low temperature (400℃), moderate temperature (700℃) and high temper-ature (1000℃ and 1200℃). Finally, the feasibility of the application of carbon-rich BxC instead of pyrolytic car-bon (PyC) as a fiber/matrix interlayer in ceramics-matrix composites (CMCs) is discussed here.

  14. Superior critical current density obtained in MgB2 bulks via employing carbon-coated boron and minor Cu addition

    Science.gov (United States)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-09-01

    High performance Cu doped MgB2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB2 grains, as well as a high level of homogeneous carbon doping in the MgB2 samples, which significantly enhance the Jc in both Cu doped and undoped bulks compared to MgB2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (Jc) at self fields and low fields (the best values are 7 × 105 A/cm2 at self fields, and 1 × 105 A/cm2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of Jc at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB2 bulks or wires with excellent Jc on an industrial scale.

  15. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.

  16. Structure and properties of Ti-C-B coatings produced by non-vacuum electron beam cladding

    Science.gov (United States)

    Lenivtseva, O. G.; Belousova, N. S.; Lozhkina, E. A.; Zimoglyadova, T. A.; Samoylenko, V. V.; Chuchkova, L. V.

    2016-11-01

    Cp-Ti/TiB+TiC wear-resistance coatings produced by non-vacuum electron beam cladding of boron carbide and titanium powders are studied in the paper. The X-ray phase analysis of the composite coatings microstructure showed that titanium carbide and boride reinforcing particles are evolved during the process. The obtained data are in good agreement with results of optical and electron microscopy. Undissolved particles of the initial boron carbide powder are detected in the coatings. The microhardness test as well as wear resistance test of materials under conditions of loose abrasive particles are conducted. It is established that the precipitation of reinforcing particles improves the tribological properties of the composite coatings.

  17. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li Junsheng, E-mail: charlesljs@163.com [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha, 410073 (China); Zhang Changrui; Li Bin [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha, 410073 (China)

    2011-06-15

    Boron nitride (BN) coatings were deposited on carbon fibers by chemical vapor deposition (CVD) using borazine as single source precursor. The deposited coatings were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The effect of temperatures on growth kinetics, morphology, composition and structure of the coatings was investigated. In the low temperature range of 900 deg. C-1000 deg. C, the growth rate increased with increasing temperature complying with Arrhenius law, and an apparent active energy of 72 kJ/mol was calculated. The coating surface was smooth and compact, and the coatings uniformly deposited on individual fibers of carbon fiber bundles. The growth was controlled by surface reaction. At 1000 deg. C, the deposition rate reached a maximum (2.5 {mu}m/h). At the same time, the limiting step of the growth translated to be mass-transportation. Above 1100 deg. C, the growth rate decreased drastically due to the occurrence of gas-phase nucleation. Moreover, the coating surface became loose and rough. Composition and structure examinations revealed that stoichiometric BN coatings with turbostratic structure were obtained below 1000 deg. C, while hexagonal BN coatings were deposited above 1100 deg. C. A penetration of carbon element from the fibers to the coatings was observed.

  18. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-01

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  19. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Science.gov (United States)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu

    2016-09-01

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiCf/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  20. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu, E-mail: lfchen@xmu.edu.cn

    2016-09-30

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiC{sub f}/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  1. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    Science.gov (United States)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  2. Functionalized hexagonal boron nitride nano-coatings for protection of transparent plastics

    Science.gov (United States)

    Van Tran, Thu; Usta, Aybala; Asmatulu, Ramazan

    2016-04-01

    Nanocoating is the result of a coating application of nanomaterials to build a consistent network of molecules in a paint to protect the surfaces of various materials and devices. Hexagonal Boron Nitride (h-BN) is in two dimensional form with excellent thermal, mechanical and chemical properties. These BN nanocoatings are also a thermally insulating material for heat management. After adding functionalized h-BNs into paints or other coatings, they will absorb the harmful UV part of sunlight and prevent coating against the environmental degradations. The impacts of the environmental factors on the coatings can be substantially eliminated. In the present study, h-BNs were modified with [2-(2-Aminoethylamino) propyl] trimethoxysilane and uniformly dispersed into the polyurethane coatings with different amounts, such as 0.1, 0.2, 0.4, and 0.8wt% to increase hardness and water resistance, and decrease the UV degradation level of coatings and transparent plastics. The prepared samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis Spectroscopy, Scanning Electron Microscope (SEM), Water Contact Angle, and Differential Scanning Calorimeter (DSC). The test results showed that the nanocoatings with functionalized h-BN provided excellent physical and chemical behaviors against the UV and other physical degradations on the substrates.

  3. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  4. A boron-coated ionization chamber for ultra-cold neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, D.J., E-mail: dsalvat@indiana.edu [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Morris, C.L.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Adamek, E.R. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Bacon, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Hickerson, K.P. [California Institute of Technology, Pasadena, CA 91125 (United States); Hoagland, J.; Holley, A.T. [North Carolina State University, Raleigh, NC 27695 (United States); Liu, C.-Y. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Makela, M.; Ramsey, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Reid, A. [North Carolina State University, Raleigh, NC 27695 (United States); Rios, R. [Idaho State University, Pocatello, ID 83209 (United States); Saunders, A.; Sjue, S.K.L. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); VornDick, B.; Young, A.R. [North Carolina State University, Raleigh, NC 27695 (United States)

    2012-11-01

    The design and performance of a boron-coated ionization chamber for the detection of ultra-cold neutrons (UCN) are presented. We detect UCN from the solid deuterium-based UCN source at the Los Alamos Neutron Science Center. Our results indicate comparable efficiency to {sup 3}He ionization chambers and proportional counters currently used at the UCN source. In addition, the ion chamber is used to detect thermal neutrons; a comparison of the thermal neutron and UCN pulse-height spectra indicates that UCN mostly capture near the layer surface.

  5. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    Science.gov (United States)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  6. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non-3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  7. Properties of multilayer coatings produced by coaxial laser cladding

    Science.gov (United States)

    Petrovskiy, V. N.; Bykovskiy, D. P.; Dzhumaev, P. S.; Polskiy, V. I.; Prokopova, N. M.; Chirikov, S. N.

    2016-09-01

    This article contains results of the study of multilayer coatings produced by laser cladding on the substrate steel 34HMA using iron based powder PR-10R6M5 as the filler material. The coatings were produced with consistent application of the tracks with fixed overlapping. The dependencies between the characteristics of tracks and the technological mode of deposition were revealed. Properties of coatings were determined for various overlapping of tracks and directions of the cladding layers.

  8. Boron deposition from fused salts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.L.

    1980-08-01

    A partial evaluation of the feasibility of a process to electrodeposit pure coherent coatings of elemental boron from molten fluorides has been performed. The deposit produced was powdery and acicular, unless the fluoride melt was purified to have very low oxygen concentration. When the oxygen activity was reduced in the melt by addition of crystalline elemental boron, dense, amorphous boron deposit was produced. The boron deposits produced had cracks but were otherwise pure and dense and ranged up to 0.35 mm thick. Information derived during this project suggests that similar deposits might be obtained crack-free up to 1.00 mm thick by process modifications and improvements.

  9. Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    Science.gov (United States)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    2000-01-01

    An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.

  10. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru; Chuchkova, Lyubov V., E-mail: twitty-kun@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation)

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  11. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Science.gov (United States)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  12. Determination of boron in produced water using the carminic acid assay.

    Science.gov (United States)

    Floquet, Cedric F A; Sieben, Vincent J; MacKay, Bruce A; Mostowfi, Farshid

    2016-04-01

    Using the carminic acid assay, we determined the concentration of boron in oilfield waters. We investigated the effect of high concentrations of salts and dissolved metals on the assay performance. The influence of temperature, development time, reagent concentration, and water volume was studied. Ten produced and flowback water samples of different origins were measured, and the method was successfully validated against ICP-MS measurements. In water-stressed regions, produced water is a potential source of fresh water for irrigation, industrial applications, or consumption. Therefore, boron concentration must be determined and controlled to match the envisaged waste water reuse. Fast, precise, and onsite measurements are needed to minimize errors introduced by sample transportation to laboratories. We found that the optimum conditions for our application were a 5:1 mixing volume ratio (reagent to sample), a 1 g L(-1) carminic acid concentration in 99.99% sulfuric acid, and a 30 min reaction time at ambient temperature (20 °C to 23 °C). Absorption values were best measured at 610 nm and 630 nm and baseline corrected at 865 nm. Under these conditions, the sensitivity of the assay to boron was maximized while its cross-sensitivity to dissolved titanium, iron, barium and zirconium was minimized, alleviating the need for masking agents and extraction methods.

  13. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  14. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    Directory of Open Access Journals (Sweden)

    Zhiming Zhang

    2013-07-01

    Full Text Available Thin boron doped diamond (BDD film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co micro drills by using the hot filament chemical vapor deposition (HFCVD technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools.

  15. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating - A molecular dynamic study

    Science.gov (United States)

    Badjian, H.; Setoodeh, A. R.

    2017-02-01

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  16. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  17. Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings.

    Science.gov (United States)

    Parra, Carolina; Montero-Silva, Francisco; Henríquez, Ricardo; Flores, Marcos; Garín, Carolina; Ramírez, Cristian; Moreno, Macarena; Correa, Jonathan; Seeger, Michael; Häberle, Patricio

    2015-04-01

    Understanding biological interaction with graphene and hexagonal-boron nitride (h-BN) membranes has become essential for the incorporation of these unique materials in contact with living organisms. Previous reports show contradictions regarding the bacterial interaction with graphene sheets on metals. Here, we present a comprehensive study of the interaction of bacteria with copper substrates coated with single-layer graphene and h-BN. Our results demonstrate that such graphitic coatings substantially suppress interaction between bacteria and underlying Cu substrates, acting as an effective barrier to prevent physical contact. Bacteria do not "feel" the strong antibacterial effect of Cu, and the substrate does not suffer biocorrosion due to bacteria contact. Effectiveness of these systems as barriers can be understood in terms of graphene and h-BN impermeability to transfer Cu(2+) ions, even when graphene and h-BN domain boundary defects are present. Our results seem to indicate that as-grown graphene and h-BN films could successfully protect metals, preventing their corrosion in biological and medical applications.

  18. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  19. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Science.gov (United States)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  20. SaOS-2 cell response to macro-porous boron-incorporated TiO2 coating prepared by micro-arc oxidation on titanium.

    Science.gov (United States)

    Huang, Qianli; Elkhooly, Tarek A; Liu, Xujie; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO2 coating (B-TiO2 coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO2 coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO2 coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO2 coating. The spreading of SaOS-2 cells on B-TiO2 coating was faster than that on TiO2 coating. The proliferation rate of SaOS-2 cells cultured on B-TiO2 decreased after 5days of culture compared to that on TiO2 coating. SaOS-2 cells cultured on B-TiO2 coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO2 coating. The present findings suggest that B-TiO2 coating is a promising candidate surface for orthopedic implants.

  1. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice

    Science.gov (United States)

    Liu, Bo; Qi, Wei; Tian, Longlong; Li, Zhan; Miao, Guoying; An, Wenzhen; Liu, Dan; Lin, Jing; Zhang, Xiaoyong; Wu, Wangsuo

    2015-12-01

    The boron nitride (BN) nanoparticles, as the structural analogues of graphene, are the potential biomedicine materials because of the excellent biocompatibility, but their solubility and biosafety are the biggest obstacle for the clinic application. Here, we first synthesized the highly soluble BN nanoparticles coated by PEG (BN-PEG) with smaller size (~10 nm), then studied their biodistribution in vivo through radioisotope (Tc99mO4 -) labeling, and the results showed that BN-PEG nanoparticles mainly accumulated in the liver, lung, and spleen with the less uptake by the brain. Moreover, the pathological changes induced by BN-PEG could be significantly observed in the sections of the liver, lung, spleen, and heart, which can be also supported by the test of biochemical indexes in serum. More importantly, we first observed the biodistribution of BN-PEG in the heart tissues with high toxicity, which would give a warning about the cardiovascular disease, and provide some opportunities for the drug delivery and treatment.

  2. Experimental Study of Boron-coated Straws with a Neutron Source

    CERN Document Server

    Xie, Zhaoyang; Sun, Liang; Song, Yushou; Sun, Zhijia; Hu, Bitao; Chen, Yuanbo

    2016-01-01

    Different types of high quality neutron detectors are proposed for China Spallation Neutron Source (CSNS), phase one of which is going to be commissioned in 2018. Considering the issue of 3He supply, a detector module composed of 49 boron-coated straws (BCS) was developed by Proportional technologies Inc. (PTI). Each straw has a length of 1000 mm and diameter of 7.5 mm. Seven straws are packed compactly in a tube, and the tubes are organized in one row to form a detector module. The charge division method is used for longitudinal positioning. A specific readout system was utilized to output the signal and synchronously to encode each straw. The performances of this detector module were studied using a moderated 252Cf source at Institute of High Energy Physics (IHEP). The spectrum result indicates good n-gamma discrimination. Benefitting from the tricky readout a longitudinal resolution of 6.1/pm 0.5 mm was obtained. The three dimensional positioning ability qualifies this BCS detector module to be a promising...

  3. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  4. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent

    Science.gov (United States)

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-01

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  5. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    Science.gov (United States)

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  6. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Science.gov (United States)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  7. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Zhou, Fei, E-mail: fzhou@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Gao, Song; Wu, Zhiwei; Wang, Qianzhi [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Chen, Kangmin [Center of Analysis, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhifeng; Li, Lawrence Kwok-Yan [Advanced Coatings Applied Research Laboratory, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-07-30

    Highlights: • Cr-B-N coatings were deposited via adjusting the CrB{sub 2} target current. • Cr-B-N nanocomposite coatings consisted of CrN nanograins and amorphous BN phase. • The hardness of Cr-B-N coating increased firstly, and then decreased with increasing CrB{sub 2} target current. • The frictional behavior of Cr-B-N coatings deposited at different CrB{sub 2} target currents was compared in deionized water. • In comparison to CrN coatings, Cr-B-N coatings exhibited superior tribological properties in water. - Abstract: Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB{sub 2} target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB{sub 2} target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB{sub 2} target current of 2 A, and then decreased gradually with further increasing the CrB{sub 2} target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  8. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  9. Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas.

    Science.gov (United States)

    Crank, M; Harilal, S S; Hassan, S M; Hassanein, A

    2012-02-01

    We investigated the effects of laser excitation wavelength on water-window emission lines of laser-produced boron-nitride plasmas. Plasmas are produced by focusing 1064 nm and harmonically generated 532 and 266 nm radiation from a Nd:YAG laser on BN target in vacuum. Soft x-ray emission lines in the water-window region are recorded using a grazing-incidence spectrograph. Filtered photodiodes are used to obtain complementary data for water-window emission intensity and angular dependence. Spectral emission intensity changes in nitrogen Ly-α and He-α are used to show how laser wavelength affects emission. Our results show that the relative intensity of spectral lines is laser wavelength dependent, with the ratio of Ly-α to He-α emission intensity decreasing as laser wavelength is shortened. Filtered photodiode measurements of angular dependence showed that 266 and 532 nm laser wavelengths produce uniform emission.

  10. Plasma-Arc Deposited Elemental Boron Film for use as a Durable Nonstick Coating

    Science.gov (United States)

    2007-09-01

    It will be noted that these two samples were ones for which no surface cleaning, acid pickling , or treatment of the “swaged in oxide layer” was done...stages of the project, it was decided to try an idea to use titanium as the interlayer between boron and aluminum. Titanium is a light material that is...been overcome by acid pickling of the substrate and pulse-dc bias techniques. The Contractor Name: HY-Tech Research Corporation 16 Contract No

  11. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  12. Silicon Carbide/Boron Nitride Dual In-Line Coating of Silicon Carbide Fiber Tows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will demonstrate monolayer and dual layer coating of SiC fiber by leveraging Laser Chemical Vapor Deposition techniques developed by Free...

  13. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan (Jane); Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  14. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  15. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitride.

  16. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitfide.

  17. Measurements of nanoparticle size distribution produced by laser ablation of tungsten and boron-carbide in N 2 ambient

    Science.gov (United States)

    Bereznai, Miklós; Heszler, Péter; Tóth, Zsolt; Wilhelmsson, Ola; Boman, Mats

    2006-04-01

    Nanoparticles (NPs) were produced by ablating tungsten and boron-carbide (B 4C) target materials in atmospheric pressure nitrogen ambient using ArF excimer laser pulses. The size distributions of the NPs formed during the ablation were monitored—within a 7-133 nm size window—by a condensation particle counter connected to a differential mobility analyzer. The laser repetition rate was varied between 1-50 Hz, and the fluence was systematically changed in the range of 0.5-15 J/cm 2, for both materials, allowing a comparative study in an extended laser parameter regime. The multishot ablation threshold ( Φth) of B 4C was determined to be ˜1.9 J/cm 2 for the laser used (ArF excimer, λ = 193 nm). Similarly to earlier studies, it was shown that the size distributions consist of mainly small nanoparticles (<˜20 nm) attributed to a non-thermal ablation mechanism below Φth. An additional broad peak appears (between 20 and 40 nm) above Φth as a consequence of the thermally induced macroscopic ablation. Chemical composition of deposited polydisperse nanoparticles was studied by X-ray photoelectron spectroscopy showing nitrogen incorporation into the boron-carbide.

  18. Chitosan-coated boron nitride nanospheres enhance delivery of CpG oligodeoxynucleotides and induction of cytokines

    Directory of Open Access Journals (Sweden)

    Zhang H

    2013-05-01

    Full Text Available Huijie Zhang,1,2 Song Chen,3 Chunyi Zhi,4 Tomohiko Yamazaki,1,2 Nobutaka Hanagata1,2,5 1Graduate School of Life Science, Hokkaido University, Sapporo, Japan; 2Biomaterials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki, Japan; 3Japanese Society for the Promotion of Science, Tokyo, Japan; 4Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People’s Republic of China; 5Nanotechnology Innovation Station, Ibaraki, Japan Background: Cytosine-phosphate-guanine (CpG oligodeoxynucleotides activate Toll-like receptor 9, leading to induction of proinflammatory cytokines, which play an important role in induction and maintenance of innate and adaptive immune responses. Previously, we have used boron nitride nanospheres (BNNS as a carrier for delivery of unmodified CpG oligodeoxynucleotides to activate Toll-like receptor 9. However, because CpG oligodeoxynucleotides and BNNS are both negatively charged, electrostatic repulsion between them is likely to reduce the loading of CpG oligodeoxynucleotides onto BNNS. Therefore, the efficiency of uptake of CpG oligodeoxynucleotides is also limited and does not result in induction of a robust cytokine response. To ameliorate these problems, we developed a CpG oligodeoxynucleotide delivery system using chitosan-coated BNNS as a carrier. Methods: To facilitate attachment of CpG oligodeoxynucleotides onto the BNNS and improve their loading capacity, we prepared positively charged BNNS by coating them with chitosan preparations of three different molecular weights and used them as carriers for delivery of CpG oligodeoxynucleotides. Results: The zeta potentials of the BNNS-CS complexes were positive, and chitosan coating improved their dispersity and stability in aqueous solution compared with BNNS. The positive charge of the BNNS-CS complexes greatly improved the loading capacity and cellular uptake efficiency of Cp

  19. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values. It was round that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interracial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  20. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values.It was found that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interfacial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  1. Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials

    Indian Academy of Sciences (India)

    J Z Shi; C Z Chen; H J Yu; S J Zhang

    2008-11-01

    Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition, influence of heat treatment on magnetron sputtered coatings is discussed. The heat treated coatings have been shown to exhibit bioactive behaviour both in vivo and in vitro. At last, the future application of the bioactive ceramic coating deposited by magnetron sputtering is mentioned.

  2. Interface behavior study of WC92-Co8 coating produced by electrospark deposition

    Science.gov (United States)

    Ruijun, Wang; Yiyu, Qian; Jun, Liu

    2005-02-01

    WC92-Co8 coating produced by electrospark deposition effectively improves the surface performance of the substrate. The behavior of the interface between the WC92-Co8 coating and the substrate is studied in this paper. The high-melting-point WC92-Co8 was deposited onto the surface of Ti alloy, and the coating was usually more than 50 μm thick. The surface of the coating is mainly composed of TiC and W 2C besides a small amount of W, and its micro hardness reaches HV1129. The coating dramatically improves the performance of the substrate.

  3. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  4. Interface behavior study of WC92-Co8 coating produced by electrospark deposition

    Institute of Scientific and Technical Information of China (English)

    汪瑞军; 钱乙余; 刘军

    2004-01-01

    ESD (electrospark deposition) is a promising process to produce hard and wear-resisting coatings on metallic substrates. In this paper microstructure and interfacial characteristics of the WC92-Co8 coated on titanium and carbon steel are presented. A metallurgical bonding between the coating and substrate is obtained. The Ti element was found to distribute in WC92-Co8 at the metal pool, as well as the interface by diffusion. Some new phases were produced in the coating layer due to the chemical reaction during the ESD process. Experimental observation and thermodynamic analysis were utilized to study the mechanism of ESD.

  5. Quantifying Friction Effects of Molybdenum Disulfide, Tungsten Disulfide, Hexagonal Boron Nitride, and Lubalox as Bullet Coating

    Science.gov (United States)

    2012-07-30

    also claims that these coatings eliminate copper fouling of the barrel. The Swedish ammunition company Norma Precision advertises friction reduction...Lubricant,” US Patent 6036996. [7] Norma , 2011. “ Norma Diamond Line.” http://www.norma.cc/en/Products/Our-Brands/ Norma - Diamond-Line/ Accessed

  6. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  7. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    CERN Document Server

    Blostein, Juan Jerónimo; Tartaglione, Aureliano; Haro, Miguel Sofo; Moroni, Guillermo Fernández; Cancelo, Gustavo

    2014-01-01

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned ionizing particles, with energies in the range 0.5-5.5 MeV, produce a plasma effect in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the relationship observed between the spot diameter and the charge collected, is used for the event recognition, allowing the discrimination of undesirable gamma events. We present the first results recently obtained with this technique, which has the potential to perform neutron tomography investigations with a spatial resolution better than that...

  8. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition.

    Science.gov (United States)

    Quesada-González, Miguel; Boscher, Nicolas D; Carmalt, Claire J; Parkin, Ivan P

    2016-09-28

    The work presented here describes the preparation of transparent interstitial boron-doped TiO2 thin-films by atmospheric pressure chemical vapor deposition (APCVD). The interstitial boron-doping, on TiO2, proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), is shown to enhance the crystallinity and significantly improve the photocatalytic activity of the TiO2 films. The synthesis, highly suitable for a reel-to-reel process, has been carried out in one step.

  9. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  10. Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2013-05-01

    Full Text Available In this study, magnesium composites with nano-size boron nitride (BN particulates of varying contents were synthesized using the powder metallurgy (PM technique incorporating microwave-assisted two-directional sintering followed by hot extrusion. The effect of nano-BN addition on the microstructural and the mechanical behavior of the developed Mg/BN composites were studied in comparison with pure Mg using the structure-property correlation. Microstructural characterization revealed uniform distribution of nano-BN particulates and marginal grain refinement. The coefficient of thermal expansion (CTE value of the magnesium matrix was improved with the addition of nano-sized BN particulates. The results of XRD studies indicate basal texture weakening with an increase in nano-BN addition. The composites showed improved mechanical properties measured under micro-indentation, tension and compression loading. While the tensile yield strength improvement was marginal, a significant increase in compressive yield strength was observed. This resulted in the reduction of tension-compression yield asymmetry and can be attributed to the weakening of the strong basal texture.

  11. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  12. MCrA1Y/TaC Metal Matrix Composite Coatings Produced by Electrospark Deposition

    Institute of Scientific and Technical Information of China (English)

    Yujiang XIE; Yanhong YANG; Mingsheng WANG; Jian HOU

    2013-01-01

    MCrAlY/TaC metal matrix composite coatings with 10,20 and 30 wt.% TaC have been successfully produced by electrospark deposition (ESD).The effects of TaC content on microstructure,hardness and oxidation behavior of the composite coatings were studied.The results showed that the composite coatings were composed of superfine γ columnar dendrite and large TaC particles dispersedly distributed.The hardness was enhanced but oxidation resistance of the composite coatings was reduced with increasing TaC contents.

  13. First gaseous boronization during pulsed discharge cleaning

    Science.gov (United States)

    Ko, J.; Den Hartog, D. J.; Goetz, J. A.; Weix, P. J.; Limbach, S. T.

    2013-01-01

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  14. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  15. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  16. Comparison of the boronic acid disk potentiation test and cefepime-clavulanic acid method for the detection of ESBL among AmpC-producing Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    R M Shoorashetty

    2011-01-01

    Full Text Available Purpose: Extended spectrum β-lactamase (ESBL and AmpC β-lactamase are important mechanisms of betalactam resistance among Enterobacteriaceae . The ESBL confirmation test described by Clinical Laboratory Standards Institute (CLSI is in routine use. This method fails to detect ESBL in the presence of AmpC. Therefore, we compared two different ESBL detection methods against the CLSI confirmatory test. Materials and Methods: A total 200 consecutive clinical isolates of Enterobacteriaceae from various clinical samples were tested for ESBL production using (i CLSI described phenotypic confirmatory test (PCT, (ii boronic acid disk potentiation test and (iii cefepime-CA disk potentiation method. AmpC confirmation was done by a modified three-dimensional test. Results: Among total 200 Enterobacteriaceae isolates, 82 were only ESBL producers, 12 were only AmpC producers, 55 were combined ESBL and AmpC producers, 14 were inducible AmpC producers and 37 isolates did not harboured any enzymes. The CLSI described PCT detected ESBL-producing organisms correctly but failed to detect 36.3% of ESBLs among combined enzyme producers. The boronic acid disk potentiation test reliably detected all ESBL, AmpC, and combined enzyme producers correctly. The cefepime-CA method detected all ESBLs correctly but another method of AmpC detection has to be adopted. Conclusion: The use of boronic acid in disk diffusion testing along with the CLSI described PCT enhances ESBL detection in the presence of AmpC betalactamases.

  17. Antimicrobial coatings for ensuring safety of fresh produces

    Science.gov (United States)

    Safety of fresh produce has been a perennial issue for the industry in the US despite tightening up regulations and implementing good manufacturing practice. The diversity of crops and labor-intense operations in the fresh produce production created a unique set of contamination routes that are not...

  18. Reactions of pulsed laser produced boron and nitrogen atoms in a condensing argon stream

    Science.gov (United States)

    Andrews, Lester; Hassanzadeh, Parviz; Burkholder, Thomas R.; Martin, J. M. L.

    1993-01-01

    Reactions of pulsed laser produced B and N atoms at high dilution in argon favored diboron species. At low laser power with minimum radiation, the dominant reaction with N2 gave BBNN (3Π). At higher laser power, reactions of N atoms contributed the B2N (2B2), BNB (2Σu+), NNBN (1Σ+), and BNBN (3Π) species. These new transient molecules were identified from mixed isotopic patterns, isotopic shifts, and ab initio calculations of isotopic spectra.

  19. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    Energy Technology Data Exchange (ETDEWEB)

    Blostein, Juan Jerónimo; Estrada, Juan; Tartaglione, Aureliano; Sofo haro, Miguel; Fernández Moroni, Guillermo; Cancelo, Gustavo

    2015-01-19

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned ionizing particles, with energies in the range 0.5-5.5 MeV, produce a plasma effect in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the relationship observed between the spot diameter and the charge collected, is used for the event recognition, allowing the discrimination of undesirable gamma events. We present the first results recently obtained with this technique, which has the potential to perform neutron tomography investigations with a spatial resolution better than that previously achieved. Numerical simulations indicate that the spatial resolution of this technique will be about 15 $\\mu$m, and the intrinsic detection efficiency for thermal neutrons will be about 3 %. We compare the proposed technique with other neutron detection techniques and analyze its advantages and disadvantages.

  20. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.

    with a surface less prone to the adsorption of biological matter. In the current study two different hydrophilic nanoscale coatings were produced by low energy plasma polymerization [3] and investigated· f()rl()w ... pr()tein adsorption and bacterial attachment properties. Methods were setup to enable...... and Methods: Coatings: Plasma polymerized poly(vinyl pyrrolidone) (PP-PVP), poly(2-methoxyethyl methacrylate) (PPPMEA) or an inorganic oxide (10) coating were applied onto medical grade silicon rubber sheets (Silopren LSR 2050, Momentive Performance Materials Inc.). Plasma polymerization chamber......-coated crystals were then treated with one of the plasma polymerized coatings. Adsorption of fibrinogen, human serum albumin or immunoglobulin G was measured using a QCM-D instrument [5] (model E4, Q-Sense AB, Vastra Frolunda, Sweden) using a solution of 50llg/1 protein in PBS buffer. Results and Discussion: Our...

  1. In-situ TiC Reinforced Composite Coating Produced by Powder Feeding Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    Sen YANG; Wenjin LIU; Minlin ZHONG

    2006-01-01

    A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and surface morphology of the cladded layer were analyzed using energy dispersive X-ray spectroscopy (EDX),scanning electron microscope (SEM), and X-ray diffractometry (XRD). The experimental results showed that an excellent metallurgical bonding between the coating and the substrate was obtained. The microstructure of the coating was mainly composed of γ-Ni dendrites, a small amount of CrB, Ni3B, M23C6 and dispersed TiC particles. Much more and larger TiC particles formed in the overlapping zone, which led to a slightly higher microhardness of this zone. The maximum microhardness of the coating was about HV0.21200. The effects of the laser processing parameters on the microstructures and properties of coating were also investigated.

  2. Synthesis and characterization of boron-doped NiO thin films pro-duced by spray pyrolysis

    Institute of Scientific and Technical Information of China (English)

    U Alver; H Yaykasl; S Kerli; A Tanrverdi

    2013-01-01

    Boron-doped NiO thin films were prepared on glass substrates at 400◦C by airbrush spraying method using a solution of nickel nitrate hexahydrate. Their physical properties were investigated as a function of dopant concentration. From X-ray diff raction patterns, it is observed that the films have cubic structure with lattice parameters varying with boron concentration. The morphologies of the films were examined by using scanning electron microscopy, and the grain sizes were measured to be around 30-50 nm. Optical measurements show that the band gap energies of the films first decrease then increase with increasing boron concentration. The resistivities of the films were determined by four point probe method, and the changes in resistivity with boron concentration were investigated.

  3. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian; Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn; Peng, Hui; Gong, Shengkai

    2013-06-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ′ grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  4. Conversion Coatings Produced on AZ61 Magnesium Alloy by Low-Voltage Process

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2016-03-01

    Full Text Available The resultes of anodic oxide conversion coatings on wrought AZ61 magnesium alloy production are describe. The studies were conducted in a solution containing: KOH (80 g/l and KF (300 g/l using anodic current densities of 3, 5 and 10 A/dm2 and different process durations. The obtained coatings were examined under a microscope and corrosion tests were performed by electrochemical method. Based on these results, it was found that the low-voltage process produces coatings conferring improved corrosion resistance to the tested magnesium alloy.

  5. Experimental modeling of polymer latex spray coating for producing controlled-release urea

    Institute of Scientific and Technical Information of China (English)

    Rui Lan; Yonghui Liu; Guanda Wang; Tingjie Wang; Chengyou Kan; Yong Jin

    2011-01-01

    Spray coating of polymer latex onto fertilizer particles in a fluidized bed for producing controlled-release urea is an environment friendly technology as it does not need any toxic organic solvent.Since the spray coating process in a fluidized bed occurs in the presence of particle collisions,the coating of the particles is random,intermittent and multiple,thus making it difficult to investigate the film formation process.In this paper,an experimental model apparatus was designed and used to investigate the effects of the key factors in the spray coating process.This apparatus reasonably simplified the complex process to avoid particle collisions and randomness in the coating.The intermittent coating in the fluidized bed was modeled by periodic coating and dewatering in the experimental apparatus.A large area film was obtained,and the film permeability was measured.The effects of atomizing gas flow rate,spray rate of latex,solid content of latex and gas temperature on film structure and film permeability were investigated.It was found that water transfer played a dominant role in the spray coating process.

  6. FEM ANALYSIS OF THERMAL STRESSES IN GRADIENT THERMAL BARRIER COATINGS PRODUCED BY EB-PVD

    Institute of Scientific and Technical Information of China (English)

    H.B. Guo; H.B. Xu; S.K. Gong

    2001-01-01

    Gradient thermal barrier coatings (GTBCs) produced by co-deposition of mixtures ofAl-Al2 O3-YSZ onto metallic bond coat exhibited longer lifetimes than the two-layeredTBCs. The finite element method (FEM) numerical models were used to investigatestress and strain states in the GTBCs and traditional two-layered TBCs as they cooledto 750℃ from a stress-free state at 850℃.

  7. Toxicity of hydrogen peroxide produced by electroplated coatings to pathogenic bacteria.

    Science.gov (United States)

    Zhao, Z H; Sakagami, Y; Osaka, T

    1998-05-01

    The ability of various electroplated coatings (cobalt, zinc, copper, and cobalt-containing alloys of nickel, zinc, chromium, etc.) to inhibit the growth of pathogenic bacteria (Gram-positive bacteria Enterococcus faecalis and methicillin-resistant Staphylococcus aureus and Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae) was determined by a drop-method antibacterial experiment. The amounts of H2O2 produced and metal ions dissolved from the surfaces of various electroplated coatings were measured and it was found that the inhibitory ability of coatings corresponded to the amounts of H2O2 produced. The more significant the inhibition of the coating to bacterial growth, the greater the amount of H2O2 production. In addition, the bacterial survival rates on the surfaces of coatings were almost zero when H2O2 was produced in amounts greater than 10(-6) mmol/cm2. However, the dominant concentrations of metal ions dissolved from coatings were outside of the bacterial lethal range.

  8. MoS2 PARTICLES MODIFIED WITH POLYSTYRENE FOR PRODUCING Ni–PS/MoS2 COATINGS

    OpenAIRE

    ZHONGJIA HUANG; DANGSHENG XIONG

    2008-01-01

    The MoS2 particles were coated with polystyrene and can be written as PS/MoS2 hereinafter. Ni–PS/MoS2 coatings and Ni–MoS2 coatings were produced by PC electrodeposition technique. The surface morphology of Ni–PS/MoS2 coating was examined and compared with those of Ni–MoS2 coating. The effect of particle concentrations on the volume percent of particles incorporated in the coatings was investigated. And the microhardness of coatings was also investigated. Results show that the surface morphol...

  9. Characterization of Fe-Cr-B based coatings produced by HVOF and PTA processes

    Science.gov (United States)

    Kim, Hyung-Jun; Grossi, Stephanie; Kweon, Young-Gak

    1999-02-01

    Two Fe-Cr-B based gas atomized powders, Armacor M and 16, were thermally sprayed on a low carbon steel substrate, using the HVOF (High Velocity Oxygen Fuel) process. Armacor M was also weld-surfaced with the PTA (Plasma Transferred Arc) process. The resultant deposits were subsequently characterized, using X-ray diffraction, scanning electron microscopy, and microhardness measurement. The effects of heat treatment were also studied for HVOF-sprayed coatings. The wear performance of the coatings was investigated by two-body abrasive wear tests. The results of microstructural analysis of as-sprayed deposits revealed oxide and boride phases such as Fe3O4 and Cr1.65F0.35B0.96 in an α matrix for the HVOF-sprayed Armacor 16 coating, and only the boride phases (Cr1.65F0.35B0.96 and Cr2B) in an α matrix for the HVOFsprayed Armacor M coating. PTA weld-surfaced Armacor M coating contains needle-type long precipitates of Cr2B) and Cr1.65F0.35B0.96, in the α matrix. The hardness of the HVOF-sprayed Armacor 16 coating after heat treatment was substantially less than that of the as-sprayed coating due to the phase transformation from α to γ phase. Heat treatments of the HVOF-sprayed Armacor M coating did not produce changes in phase and its hardness decreased as compared to that of the as-sprayed coating. While HVOF-sprayed and PTA weld-surfaced Armacor M coatings have the same hardness, the latter shows better abrasive wear resistance because of the size and orientation of its boride phases. The broadening of the XRD patterns and the increase in hardness after wear testing suggest that the transformation from the crystalline to the amorphous structure occurred on the uppermost layer during wear testing.

  10. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Mello, A [Instituto Militar de Engenharia, IME, Rio de Janeiro, 22290-270, RJ (Brazil); Hong, Z [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Rossi, A M [Centro Brasileiro de Pesquisas FIsicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, RJ (Brazil); Luan, L [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Farina, M [Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ, 21941-590 (Brazil); Querido, W [Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ, 21941-590 (Brazil); Eon, J [Inst. QuImica, PUC/RJ, Rio de Janeiro, 21941-590, RJ (Brazil); Terra, J [Centro Brasileiro de Pesquisas FIsicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, RJ (Brazil); Balasundaram, G [Division of Engineering, Brown University, Providence, RI, 02912 (United States); Webster, T [Division of Engineering, Brown University, Providence, RI, 02912 (United States); Feinerman, A [Department of Electrical and Computer Engineering, University of Illinois, Chicago, IL, 60612 (United States); Ellis, D E [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Ketterson, J B [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Ferreira, C L [Instituto Militar de Engenharia, IME, Rio de Janeiro, 22290-270, RJ (Brazil)

    2007-06-01

    Right angle magnetron sputtering (RAMS) was used to produce hydroxyapatite (HA) film coatings on pure titanium substrates and oriented silicon wafer (Si(0 0 1)) substrates with flat surfaces as well as engineered surfaces having different forms. Analyses using synchrotron XRD, AFM, XPS, FTIR and SEM with EDS showed that as-sputtered thin coatings consist of highly crystalline hydroxyapatite. The HA coatings induced calcium phosphate precipitation when immersed in simulated body fluid, suggesting in vivo bioactive behavior. In vitro experiments, using murine osteoblasts, showed that cells rapidly adhere, spread and proliferate over the thin coating surface, while simultaneously generating strong in-plane stresses, as observed on SEM images. Human osteoblasts were seeded at a density of 2500 cells cm{sup -2} on silicon and titanium HA coated substrates by RAMS. Uncoated glass was used as a reference substrate for further counting of cells. The highest proliferation of human osteoblasts was achieved on HA RAMS-coated titanium substrates. These experiments demonstrate that RAMS is a promising coating technique for biomedical applications.

  11. OXIDATION RESISTANCE OF NANOCRYSTAL ODS ALUMINIDE COATINGS PRODUCED BY PACK ALUMINIZING PROCESS ASSISTED BY BALL PEENING

    Institute of Scientific and Technical Information of China (English)

    Z.L. Zhan; Y.D. He; W. Gao

    2006-01-01

    Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pack aluminizing process assisted by ball peening. Pure Al powders and 1% of ultra-fine Y2O3 powders were mixed by ball milling. The ultra-fine Y2O3powders were dispersed in Al particles. Ball peening welded the Al particles onto the substrate and accelerated the formation of aluminide coating. Nanocrystal ODS aluminide coatings were produced by the outward growth at a much low temperature (below 600℃) in a short treatment time.The effects of the operation temperature and treatment time on the formation of the coatings were analyzed. SEM (scanning electron microscope), AFM (atomic force microscope), EDS (energy dispersive X-ray spectroscopy), XRF (X-ray fluorescence spectrometer) and XRD (X-ray diffraction )methods were applied to investigate the microstructure of the coatings. High-temperature oxidation tests were carried out to evaluate the oxidation resistance of the ODS aluminide coatings.

  12. 等离子喷涂B4C涂层的抗辐射性能研究%Anti-radiation behavior of plasma sprayed boron carbide coatings

    Institute of Scientific and Technical Information of China (English)

    李龙根; 徐志勇; 钱浩

    2009-01-01

    目的 研究用等离子技术喷涂的碳化硼(B4C)涂层的抗辐射能力.方法 将0.1 mm厚度B4C涂在16号锰钢上,研究它对加速器产生的6、10、15 MV高能射线,6、9、12、15 MeV高能电子线,60Co γ线和快中子辐射的防护作用.同时将0.1 mm B4C涂在纸板上,研究它对深部X线机的X线辐射的防护作用.结果 等离子喷涂制备B4C涂层对高能X线和60Co γ线没有防护作用.对电子线有一定防护作用,且随深度的增加有增大趋势,但作用不大.对快中子有较大防护作用.对深部X线机X线有防护作用,防护能力较强.0.1 mm厚的涂层就可带来15%的衰减.结论 用等离子技术喷涂的B4C涂层可在医学领域用来防护千伏级射线.%Objective To study anti-radiation behavior of plasma sprayed boron carbide coatings. Methods The anti-radiation capacity of 16Mn steel which was coated with 0.1 mm plasma sprayed boron carbide were studied. The irradiation beams were 6,10,15 MY X-ray and 6,9,12,15 MeV electron emitted by accelerator, X-ray emitted by 60Co machine,fast neutron, and X-ray emitted by kilovoltage X-ray ma-chine. Results Anti-radiation capacity of plasma sprayed boron carbide coatings was not found for X-ray beams emitted by accelerator and 60Co machine. For electron beams,the anti-radiation capacity were found. The deeper of location, the stronger was anti-radiation. However, the anti-radiation capacity was not good. For fast neutron,the anti-radiation capacity was good. For X-ray emitted by kilovoltage X-ray machine,the anti-radiation was good,and only 0.1 nun plasma sprayed boron carbide had 15% attenuation. Conclusions The plasma sprayed boron carbide coatings have the anti-radiation capacity for X-ray emitted by kilovoltage X-ray machine in medical field.

  13. Beryllium coating produced by evaporation-condensation method and some their properties

    Energy Technology Data Exchange (ETDEWEB)

    Pepekin, G.I.; Anisimov, A.B.; Chernikov, A.S.; Mozherinn, S.I.; Pirogov, A.A. [SRI SIA Lutch., Podolsk (Russian Federation)

    1998-01-01

    The method of vacuum evaporation-condensation for deposition of beryllium coatings on metal substrates, considered in the paper, side by side with a plasma-spray method is attractive fon ITER application. In particular this technique may be useful for repair the surface of eroded tiles which is operated in a strong magnetic field. The possibility of deposition of beryllium coatings with the rate of layer growth 0.1-0.2 mm/h is shown. The compatibility of beryllium coating with copper or stainless steel substrate is provided due to intermediate barrier. The results of examination of microstructure, microhardness, porosity, thermal and physical properties and stability under thermal cycling of beryllium materials are presented. The value of thermal expansion coefficient and thermal conductivity of condensed beryllium are approximately the same as for industrial grade material produced by powder mettalurgy technique. However, the condensed beryllium has higher purity (up to 99.9-99.99 % wt.). (author)

  14. Bright prospects for boron

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  15. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    Science.gov (United States)

    2010-02-01

    Portland cement is manufactured by firing the clinker at 1400 C Enamel application produces no changes BUILDING STRONG® Treatment Average Peak...ceramic Coated Reinforcing Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER... transition zone at the surface of the reinforcement steel is often the most permeable part of the concrete BUILDING STRONG® Schematic of Ceramic

  16. Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

  17. Bioactivity assessment of hydroxyapatite coatings produced by alkali conversion of monetite

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.H.P. da [Military Inst. of Engineering, Rio de Janeiro, RJ (Brazil); Soares, G.A. [Federal Univ. of Rio de Janeiro, RJ (Brazil); Elias, C.N. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Matematica; Gibson, I.R. [London Univ. (United Kingdom). IRC Biomedical Materials; Best, S.M. [Cambridge Univ. (United Kingdom). Dept. of Metallurgy and Materials Science

    2001-07-01

    Commercially pure titanium sheets were coated with hydroxyapatite using three different routes: alkali conversion of monetite to hydroxyapatite utilising NH{sub 4}OH, KOH and NaOH solutions with pH=12.5. The hydroxyapatite coatings produced by each of the three different routes all exhibited similar morphologies and crystallinities, and hydroxyapatite was the only crystalline phase observed in all the coatings. The crystallinity and identification of the phases present were obtained by X-ray diffraction (XRD) analysis and the bioactivity was assessed according to the method developed by KOKUBO and co-workers. SEM analysis showed that all specimens exhibited areas with apatite precipitation from the SBF solution after 3 days immersion in SBF solution, irrespective of the alkaline solution used for the conversion process. This finding was confirmed by XRD analysis, which revealed a pattern corresponding to poorly-crystallinity hydroxyapatite. There appeared to be no effect of the ammonium, sodium or potassium ions from the different alkaline solutions used on the chemical conversion of monetite to hydroxyapatite on the properties of the resulting coating. (orig.)

  18. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Directory of Open Access Journals (Sweden)

    Andrea Angelastro

    2013-01-01

    Full Text Available As a surface coating technique, laser cladding (LC has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr composite coatings were fabricated by the multilayer laser cladding technique (MLC. An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.

  19. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.; Kampmann, R.; Höche, D.; Lorenz, U.; Müller, M.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht (Germany); Becker, H.-W. [RUBION-Zentrale Einrichtung für Ionenstrahlen und Radionuklide, Ruhr-Universität Bochum, 44780 Bochum (Germany); Haese-Seiller, M.; Moulin, J.-F.; Pomm, M. [Helmholtz-Zentrum Geesthacht, Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Randau, C. [Georg-August Universität Göttingen, Geowissenschaftliches Zentrum, 37077 Göttingen, Germany and Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Hall-Wilton, R. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden)

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.

  20. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling

    Directory of Open Access Journals (Sweden)

    Pawel Twardowski

    2015-06-01

    Full Text Available The objective of the investigation was analysis of the wear of milling cutters made of sintered carbide and of boron nitride. The article presents the life period of the cutting edges and describes industrial conditions of the applicability of tools made of the materials under investigation. Tests have been performed on modern toroidal and ball-end mill cutters. The study has been performed within a production facility in the technology of high speed machining of 55NiCrMoV6 and X153CrMoV12 hardened steel. The analysed cutting speed is a parameter which significantly influences the intensity of heat generated in the cutting zone. Due to the wear characteristics, two areas of applicability of the analysed tools have been distinguished. For vc  ≤ 300 m/min, sintered carbide edges are recommended; for vc  > 500 m/min, boron nitride edges. For 300 ≤ vc  ≤ 500 m/min, a transition area has been observed. It has been proved that the application of sintered carbide edges is not economically justified above certain cutting speed.

  1. Ablation of boron carbide for high-order harmonic generation of ultrafast pulses in laser-produced plasma

    Science.gov (United States)

    Ganeev, R. A.; Suzuki, M.; Kuroda, H.

    2016-07-01

    We demonstrate the generation of harmonics up to the 27th order (λ=29.9 nm) of 806 nm radiation in the boron carbide plasma. We analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by studying the plasma emission and harmonic spectra from three species. We compare different schemes of the two-color pump of B4C plasma, particularly using the second harmonics of 806 nm laser and optical parametric amplifier (1310 nm) as the assistant fields, as well as demonstrate the sum and difference frequency generation using the mixture of the wavelengths of two laser sources. These studies showed the advantages of the two-color pump of B4C plasma leading to the stable harmonic generation and the growth of harmonic conversion efficiency. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic. Our spatial characterization of harmonics shows their on-axis modification depending on the conditions of frequency conversion.

  2. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  3. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Directory of Open Access Journals (Sweden)

    G Ciofani

    2010-04-01

    Full Text Available G Ciofani1, L Ricotti1, S Danti2,3, S Moscato4, C Nesti2, D D’Alessandro2,4, D Dinucci5, F Chiellini5, A Pietrabissa3, M Petrini2,3, A Menciassi1,61Scuola Superiore Sant’Anna, Pisa, Italy; 2CUCCS-RRMR, Center for the Clinical Use of Stem Cells – Regional Network of Regenerative Medicine, 3Department of Oncology, Transplants and Advanced Technologies, 4Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; 5Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, Italy; 6Italian Institute of Technology, Genova, ItalyAbstract: Boron nitride nanotubes (BNNTs have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-L-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation.Keywords: boron nitride nanotubes, C2C12 cells, cytocompatibility, up-take, differentiation, MyoD, connexin 43

  4. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Jiryun, E-mail: jilyoon@naver.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Seo, Eun-Young, E-mail: sey22@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Moon, E-mail: moonlit51@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Vaira, Anna Maria, E-mail: a.vaira@ivv.cnr.it [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135 (Italy); Bae, Hanhong, E-mail: hanhongbae@ynu.ac.kr [School of Biotechnology, Yeungnam University, Geongsan 712-749 (Korea, Republic of); Jang, Chan-Yong, E-mail: sunbispirit@gmail.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Cheol Ho, E-mail: chlee1219@hanmail.net [Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704 (Korea, Republic of); Kim, Hong Gi, E-mail: hgkim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Roh, Mark, E-mail: marksroh@gmail.com [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714 (Korea, Republic of); Hammond, John, E-mail: john.hammond@ars.usda.gov [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States)

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  5. Method of Producing a Film Coating by Matrix Assisted Pulsed Laser Deposition

    Science.gov (United States)

    1997-05-28

    N.C. 78,117 PATENT APPLICATION Inventor’s Name: R. Andrew McGill and Douglas B. Chrisey 1 in a technique called spin coating . These techniques have...several disadvantages. It is difficult with 2 the spin coating or spray coating methods to control the coating thickness precisely, or to ensure 3... Spin coating potentially provides a more uniform 5 coating surface than does spray coating, but nevertheless this method has the disadvantage that 6

  6. Measurements of nanoparticle size distribution produced by laser ablation of tungsten and boron-carbide in N{sub 2} ambient

    Energy Technology Data Exchange (ETDEWEB)

    Bereznai, Miklos [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, 6720 Szeged (Hungary) and Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, PO Box 538, SE-75121 Uppsala (Sweden)]. E-mail: bereznai@physx.u-szeged.hu; Heszler, Peter [Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, PO Box 534, SE-75121 Uppsala (Sweden); Research Group on Laser Physics of the Hungarian Academy of Sciences, University of Szeged, Dom ter 9, 6720 Szeged (Hungary); Toth, Zsolt [Research Group on Laser Physics of the Hungarian Academy of Sciences, University of Szeged, Dom ter 9, 6720 Szeged (Hungary); Wilhelmsson, Ola [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, PO Box 538, SE-75121 Uppsala (Sweden); Boman, Mats [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, PO Box 538, SE-75121 Uppsala (Sweden)

    2006-04-30

    Nanoparticles (NPs) were produced by ablating tungsten and boron-carbide (B{sub 4}C) target materials in atmospheric pressure nitrogen ambient using ArF excimer laser pulses. The size distributions of the NPs formed during the ablation were monitored-within a 7-133 nm size window-by a condensation particle counter connected to a differential mobility analyzer. The laser repetition rate was varied between 1-50 Hz, and the fluence was systematically changed in the range of 0.5-15 J/cm{sup 2}, for both materials, allowing a comparative study in an extended laser parameter regime. The multishot ablation threshold ({phi} {sub th}) of B{sub 4}C was determined to be {approx}1.9 J/cm{sup 2} for the laser used (ArF excimer, {lambda} = 193 nm). Similarly to earlier studies, it was shown that the size distributions consist of mainly small nanoparticles (<{approx}20 nm) attributed to a non-thermal ablation mechanism below {phi} {sub th}. An additional broad peak appears (between 20 and 40 nm) above {phi} {sub th} as a consequence of the thermally induced macroscopic ablation. Chemical composition of deposited polydisperse nanoparticles was studied by X-ray photoelectron spectroscopy showing nitrogen incorporation into the boron-carbide.

  7. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    Science.gov (United States)

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  8. Residual stresses in boron/tungsten and boron/carbon fibers

    Science.gov (United States)

    Behrendt, D. R.

    1977-01-01

    Longitudinal residual stress distribution is determined for 102-micron diam B/W and B/C fibers. The 102-micron diam B/W fibers are deposited on a 12.7-micron diam tungsten wire resistively heated in a BCl3-H2 reactor. The 102-micron diam B/C fibers are made by deposition of boron on a pyrolytic graphite-coated carbon fiber. The longitudinal residual stress distribution is calculated from measurements of the change in length of the fiber produced by removal of the surface through electropolishing. It is found that for both types of fibers, the residual stress vary from a compressive stress at the surface to a tensile stress in the boron near the core. Closer to the core and in the core, significant differences in the residual stresses are observed for the B/W and B/C fibers.

  9. Structure and Properties Characterization of Ceramic Coatings Produced on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHENDe-jiu; WANGYu-lin; GUWei-chao; XINGGuang-zhong

    2004-01-01

    Metallurgically bonded ceramic coatings were prepared on a steel surface with a combined method of arc spraying and micro-arc oxidation for the first time. Coatings were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Point and line distribution of elements of the ceramic coatings were determined using energy dispersive spectroscopy (EDS). Coatings abrasive wear resistance, corrosion resistance and hot impact property were assessed respectively. The property test results show that metallurgically bonded ceramic coatings were formed on aluminum coatings and the ceramic coatings is mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and a little amorphous. The coatings possess excellent abrasive wear, corrosion and hot shock resistance, which can in part be attributed to the gradual distribution of different phases from surface to the substrate.

  10. A comparative study of the corrosion performance of TiN, Ti(B,N) and (Ti,Al)N coatings produced by physical vapour deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Aromaa, J.; Ronkainen, H.; Mahiout, A.; Hannula, S.P. (Technical Research Centre of Finland, Espoo (Finland)); Leyland, A.; Matthews, A. (Univ. of Hull (United Kingdom)); Matthes, B.; Broszeit, E. (Technische Hochschule Darmstadt (Germany))

    1991-07-07

    Thin film coatings produced by physical vapour deposition methods often exhibit porosity. Local defects can cause local and rapid corrosion of the base material. The porosity is difficult to estimate and electrochemical methods are most suitable for evaluating the corrosion resistance of the coated material. This paper compares the corrosion resistance of TiN, Ti(B,N), (Ti,Al)N- and TiB{sub 2}-coated ASP 23 high speed steel. For the materials studied here the corrosion performance of TiB{sub 2}-coated samples was poor. Ti(B,N) coatings obtained by two different methods were quite similar even though the calculated porosity of the coating produced by magnetron sputtering was lower than that of coatings produced by the electron beam technique. These coatings had similar or slightly better corrosion resistance than (Ti,Al)N coatings with a high aluminium-to-titanium ratio. (Ti,Al)N coatings with a low aluminium-to-titanium ratio were better than coatings with a high aluminium-to-titanium ratio. TiN coatings were better than other types excluding (Ti,Al)N+AlN layer coatings, which performed best. (Ti,Al)N+AlN coatings have an insulating layer on top of the coating, which increases the polarization resistance and decreases the corrosion current density. (orig.).

  11. Tribological and Corrosion Properties of Nickel/TiC Bilayered Coatings Produced by Electroless Deposition and PACVD

    Science.gov (United States)

    Shanaghi, Ali; Chu, Paul K.

    2016-10-01

    Ni/TiC bilayered coatings are deposited on hot-working steel (H11) by plasma-assisted chemical vapor deposition and electroless technique. The TiC layer is deposited at 490 °C using a gas mixture of TiCl4, CH4, H2, and Ar, and a dense nanostructured TiC coating with minimum excessive carbon phases and low chlorine concentration is produced. The effects of the Ni intermediate layer on the microstructure, tribology, and corrosion behavior of the nanostructured TiC coating are investigated. The friction coefficient of the Ni/TiC bilayered coating (Ni thickness = 4 µm) at 500 cycles is much smaller than that of the coating without the Ni intermediate layer. The smallest friction coefficient is about 0.2, and the hardness values of the Ni/TiC bilayered samples with three different Ni layer thicknesses of 2, 4, and 6 µm are 2534, 3070, and 2008 Hv, respectively. The wear mechanism of the Ni/TiC bilayered coatings is abrasive induced by plastic deformation and fatigue during the sliding process. The smaller groove width on the 4-µm electroless nickel-Ni3P/TiC bilayered coating correlates with the larger H/E ratio and the 4-µm nickel/TiC bilayered sample shows the better wear resistance. The polarization resistance of the 6-µm electroless nickel-Ni3P/TiC coating in 0.05 M NaCl and 0.5 M H2SO4 increases by about 8 and 15 times, respectively. The Ni intermediate layer increases the toughness of the coating and adhesion between the hard coating and steel substrate thereby enhancing the tribological properties and corrosion resistance.

  12. Tribological and Corrosion Properties of Nickel/TiC Bilayered Coatings Produced by Electroless Deposition and PACVD

    Science.gov (United States)

    Shanaghi, Ali; Chu, Paul K.

    2016-11-01

    Ni/TiC bilayered coatings are deposited on hot-working steel (H11) by plasma-assisted chemical vapor deposition and electroless technique. The TiC layer is deposited at 490 °C using a gas mixture of TiCl4, CH4, H2, and Ar, and a dense nanostructured TiC coating with minimum excessive carbon phases and low chlorine concentration is produced. The effects of the Ni intermediate layer on the microstructure, tribology, and corrosion behavior of the nanostructured TiC coating are investigated. The friction coefficient of the Ni/TiC bilayered coating (Ni thickness = 4 µm) at 500 cycles is much smaller than that of the coating without the Ni intermediate layer. The smallest friction coefficient is about 0.2, and the hardness values of the Ni/TiC bilayered samples with three different Ni layer thicknesses of 2, 4, and 6 µm are 2534, 3070, and 2008 Hv, respectively. The wear mechanism of the Ni/TiC bilayered coatings is abrasive induced by plastic deformation and fatigue during the sliding process. The smaller groove width on the 4-µm electroless nickel-Ni3P/TiC bilayered coating correlates with the larger H/ E ratio and the 4-µm nickel/TiC bilayered sample shows the better wear resistance. The polarization resistance of the 6-µm electroless nickel-Ni3P/TiC coating in 0.05 M NaCl and 0.5 M H2SO4 increases by about 8 and 15 times, respectively. The Ni intermediate layer increases the toughness of the coating and adhesion between the hard coating and steel substrate thereby enhancing the tribological properties and corrosion resistance.

  13. Dry wear behaviors of wear resistant composite coatings produced by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Wenjin Liu; Minlin Zhong

    2004-01-01

    Using different proportional mixtures of Ni-coated MoS2, TiC and pure Ni powders, new typical wear resistant and selflubricant coatings were formed on low carbon steel by laser cladding process. The microstructures and phase composition of the composite coatings were studied by SEM and XRD. The typical microstructure of the composite coating is composed of multisulfide phases including binary element sulfide and ternary element sulfide, γ-Ni, TiC and Mo2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The friction coefficient and mass loss of three kinds of MoS2/TiC/Ni laser clad coatings are lower than those of quenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because of high hardness combined with low friction, the laser cladding composite coating with a mixture of 70% Ni-coated MoS2, 20%TiC and 10%pure Ni powder presents better wear behaviors than the composite coating with other powder blends. The composition analysis of the worn surface of GCr15 bearing steel shows that the transferred film from the laser cladding coating to the opposite surface of GCr15beating steel contains an amount of sulfide, which can change the micro-friction mechanism and lead to a reduced friction coefficient.

  14. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cansen; Su, Fenghua, E-mail: fhsu@scut.edu.cn; Liang, Jizhao

    2015-10-01

    Graphical abstract: - Highlights: • Graphene oxide/cobalt coatings are synthesized by pulse electrodeposition. • Incorporating GO refines the grain size and changes the microstructure of the coating. • Incorporating GO greatly improves the friction reduction and wear resistance of the coating. • The corrosion resistance is enhanced by the incorporation of GO. - Abstract: Cobalt (Co) and graphene oxide/cobalt (GO/Co) composite coatings were fabricated by pulse electrodeposition technique from an aqueous bath containing cobalt sulfate and GO, etc. Effect of the incorporations of GO on morphology, phase structure, average grain size and corrosion and wear resistance of the resulting composite coatings were evaluated in detail. Scanning electron microscope (SEM) and energy dispersed X-ray (EDX) show that the GO nanosheets disperse homogeneously in the composite coating and the incorporations of GO change the morphologies of the deposit from conical shaped structure to protruding structure. In addition, the co-deposition GO with Co ions favor the formation of hcp (1 0 0), (0 0 2) and (1 0 1) textures in the composite coating and have functions of grain refining and hardness enhancement. The wear tests show that the incorporations of GO in the coating improve the wear resistance and friction reduction of the deposit. The electrochemical corrosion tests using potentiodynamic polarization and electrochemical impedance spectroscopy show that the GO/Co composite coating possesses better corrosion resistance than the pure Co coating.

  15. New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders.

    Science.gov (United States)

    Yang, Se Fei; Yang, Li Qiang; Jin, Zhi Hao; Guo, Tian Wen; Wang, Lei; Liu, Hong Chen

    2009-06-01

    Partially sintered 3 mol % yttria-stabilized tetragonal zirconium dioxide (ZrO(2), zirconia) polycrystal (3Y-TZP) ceramics are used in dental posterior restorations with computer-aided design-computer-aided manufacturing (CAD/CAM) techniques. High strength is acquired after sintering, but shape distortion of preshaped compacts during their sintering is inevitable. The aim of this study is to fabricate new machinable ceramic composites with strong mechanical properties that are fit for all-ceramic dental restorations. Aluminum oxide (Al(2)O(3))-coated 3Y-TZP powders were first prepared by the heterogeneous precipitation method starting with 3Y-TZP, Al(NO(3))(3) . 9H(2)O, and ammonia, then amorphous boron nitride (BN) was produced and the as-received composite powders were coated via in situ reaction with boric acid and urea. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyze the status of Al(2)O(3)-BN on the surface of the 3Y-TZP particles. TEM micrographs show an abundance of Al(2)O(3) particles and amorphous BN appearing uniformly on the surface of the 3Y-TZP particles after the coating process. The size of the Al(2)O(3) particles is about 20 nm. The XRD pattern shows clearly the peak of amorphous BN among the peaks of ZrO(2).

  16. Effect of LiF Coating on the Thermal Oxidation Characteristics for Boron Powder%LiF包覆对硼粉热氧化特性的影响

    Institute of Scientific and Technical Information of China (English)

    陈涛; 张先瑞; 王园园; 黄凌; 肖金武

    2013-01-01

    In order to investigate the effect of LiF coating on the thermal oxidation characteristics for amorphous boron powder,the thermal analysis experiment of boron coated with LiF (BLiF) was conducted by DSC-TC. Propellant samples containing BLif were prepared. The heat of detonation and heat of combustion were determined by an oxygen bomb calorimeter. The effects of BLif on the energy release features in primary combustion and after-burning processes of the propellant were discussed. The results indicate that in comparison with amorphous boron, BLiF shows a fast oxidation reaction at 599 XL ,and a 39. 9% higher percentage of boron participated in B/O reaction. The propellant containing BLiF makes primary combustion and after-burning energy release efficiencies (ηc1 and ηc2) increased and combustion efficiencies of B enhanced significantly from 65.48% to 81 .57%. This is due to the consumption of B2O3 layer on the boron particle surface via endothermic reaction of LiF and B2O3 at high temperature and the acceleration of B/O reaction.%为考察LiF包覆对硼粉热氧化特性的影响,采用DSC-TG技术对LiF包覆硼(BLiF)进行热分析试验.制备了含BLiF的推进剂样品.采用氧弹量热计测试其爆热和热值.考察了BLiF对推进剂一次、二次燃烧过程中能量释放特性的影响.结果表明:与无定形硼相比,BLiF在599℃存在快速氧化反应,有39.9%(质量百分数)的B参与了B/O反应.含BLiF的推进剂使一次能量释放效率和二次能量释放效率明显提高,硼的燃烧效率从65.48%提高到81.57%.这是由高温下LiF通过吸热反应消耗硼粉表面B2O3氧化层,加速B/O反应所引起的.

  17. Investigation of coatings of austenitic steels produced by supersonic laser deposition

    Science.gov (United States)

    Gorunov, A. I.; Gilmutdinov, A. Kh.

    2017-02-01

    The structure and properties of stainless austenitic steel coatings obtained by the supersonic laser deposition are studied in the paper. Implantation of the powder particles into the substrate surface and simultaneous plastic deformation at partial melting improved the mechanical properties of the coatings - tensile strength limit was 650 MPa and adhesion strength was 105 MPa. It was shown that insufficient laser power leads to disruption of the deposition process stability and coating cracking. Surface temperature increase caused by laser heating above 1300 °C resulted in coating melting. The X-ray analysis showed that radiation intensifies the cold spray process and does not cause changes in the austenitic base structure.

  18. Microanalyses of the hydroxyl-poly-calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thin calcium phosphate coatings on titanium alloy substrates wereprepared by Ar+ ion beam assisted deposition (IBAD) from hydroxyl-poly-calciumsodium phosphate (HPPA) target. The coatings were analyzed by XRD, FTIR, XPS.These analyses revealed that the as-deposited films were amorphous or no apparentcrystallinity. No distinct absorption band of the hydroxyl group was observed in FTIRspectra of the coatings but new absorption bands were presented for CO3-2. Thecalcium to phosphorous ratio of these coatings in different IBAD conditions variedfrom 0.46 to 3.36.

  19. Study on Fe-Based Coating Produced by Plasma Surface Metallurgy

    Institute of Scientific and Technical Information of China (English)

    LI Hui-qi; LIU Bang-wu; LI Hui-dong; ZHANG Li-min; LI Min; SUN Yu-zong

    2004-01-01

    In the paper, plasma surface metallurgy was performed using Fe-based powder on steel substrate. The microstructure and microhardness of the coating have been analyzed. On the base of orthogonal comparison tests,influences of many factors on the cracking sensibility of plasma metallurgy coating have also been studied. The results indicate that substrate and its surface condition, processing parameters and components of plasma metallurgy coating have great effects on cracking sensibility of plasma metallurgy coating. Through changing these factors, it is possible to reduce cracks and promote the applications of this technology.Key Words: plasma surface metallurgy, microstructure, microhardness, cracking sensibility

  20. Study on Fe-Based Coating Produced by Plasma Surface Metallurgy

    Institute of Scientific and Technical Information of China (English)

    LIHui-qi; LIUBang-wu; LIHui-dong; ZHANGLi-min; LIMin; SUNYu-zong

    2004-01-01

    In the paper, plasma surface metallurgy was performed using Fe-based powder on steel substrate. The microstructure and microhardness of the coating have been analyzed. On the base of orthogonal comparison tests, influences of many factors on the cracking sensibility of plasma metallurgy coating have also been studied. The results indicate that substrate and its surface condition, processing parameters and components of plasma metallurgy coating have great effects on cracking sensibility of plasma metallurgy coating. Through changing these factors, it is possible to reduce cracks and promote the applications of this technology.

  1. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  2. Comparison of the surface morphologies of boron carbide coatings prepared by bouncing agitation and rolling agitation%跳动及滚动激励制备的碳化硼涂层表面形貌的对比

    Institute of Scientific and Technical Information of China (English)

    王自磊; 廖志君; 陶勇; 于小河; 林涛; 伍登学; 卢铁城

    2011-01-01

    Boron carbide(B4C) coatings are deposited on the glass and steel mandrels using two agitation methods, rolling agitation and bouncing agitation, by electron beam evaporation.Various surface morphologies of the coatings are investigated through the scanning electron microscope.It is found that the surface deposited by rolling agitation has fewer cracks and better compactness, and the particles grow better than that deposited by bouncing agitation.From a comparison of two kinds of B4C coatings, one can find that rolling agitation has more advantages than bouncing agitation in fabricating boron carbide coatings.%利用电子束蒸发技术蒸发碳化硼,通过弹跳激励和滚动激励两种方案来随机滚动小球,从而分别在玻璃和钢球心轴上制备了碳化硼涂层.采用扫描电子显微镜对涂层表面形貌进行了分析.同采用弹跳激励制备的涂层相比,在用滚动激励制备的涂层表面不存在裂纹和微粒脱落现象,其微粒生长的更大,相互接合的更致密.经对比证明,在制备碳化硼涂层上,滚动激励装置优于跳动激励装置.

  3. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  4. ELECTRICAL FURNACE FOR PRODUCING CARBIDE COATINGS USING THE THERMOREACTIVE DEPOSITION/DIFFUSION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    FABIO CASTILLEJO

    2011-01-01

    the presence of VC and NbC, and as MEB results clearly show, the formation of regular thickness coatings. The results obtained allow for assessing that the designed and built furnace fulfills the requirements of the TRD technique for obtaining different types of hard coatings.

  5. X-ray residual stress measurement of laminated coating layers produced by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Masayuki (Faculty of Engineering, Tokushima Univ. (Japan)); Hanabusa, Takao (Faculty of Engineering, Tokushima Univ. (Japan)); Fujiwara, Haruo (Faculty of Engineering, Tokushima Univ. (Japan))

    1993-12-03

    The present paper describes residual stress in laminated layers deposited by thermal spraying on a low carbon steel substrate. Laminated layers were made of Al[sub 2]O[sub 3]-NiCr or Al[sub 2]O[sub 3]-NiAl with various combinations of mixing ratios. X-Ray diffraction was used to measure residual stress in the outermost surface layer. The results of finite-element method (FEM) thermal stress analysis were compared with the experimental results of X-ray measurements. From the X-ray stress measurements, tensile residual stress (100-300 MPa) was measured in the as-coated surface layers of all specimens. The effect of annealing on residual stress variation was also examined. In the case of the Al[sub 2]O[sub 3] (100%) layer of the Al[sub 2]O[sub 3]-NiCr system, residual stress of surface layers was not greatly affected by the method of lamination and did not change significantly upon annealing. In contrast, in the layer with mixed Al[sub 2]O[sub 3] and NiAl, residual stress in the as-coated layer was influenced by the mixing ratio of Al[sub 2]O[sub 3] and NiAl. Furthermore, residual stresses were gradually reduced in both the Al[sub 2]O[sub 3] and Ni phase following annealing. FEM calculation revealed that large compressive residual stress (about -2 GPa) was produced in the 100% Al[sub 2]O[sub 3] layer after a full annealing treatment. The value of residual stress depends on the difference between the thermal expansion coefficients of the laminated layers and the substrate. This result was exactly opposite to the experimental results for the fully annealed Al[sub 2]O[sub 3]-NiCr system. However, residual stresses in the mixed layer (Al[sub 2]O[sub 3]-NiAl) depended on the mixing ration of Al[sub 2]O[sub 3] and NiAl. This agrees qualitatively with the experimental results. (orig.)

  6. Microstructure Characterization of WCCo-Mo Based Coatings Produced Using High Velocity Oxygen Fuel

    Directory of Open Access Journals (Sweden)

    Serkan Islak

    2015-12-01

    Full Text Available The present study has been carried out in order to investigate the microstructural properties of WCCo-Mo composite coatings deposited onto a SAE 4140 steel substrate by high velocity oxygen fuel (HVOF thermal spray. For this purpose, the Mo quantity added to the WCCo was changed as 10, 20, 30 and 40 wt. % percents. The coatings are compared in terms of their phase composition, microstructure and hardness. Phase compound and microstructure of coating layers were examined using X-ray diffractometer (XRD and scanning electron microscope (SEM. XRD results showed that WCCo-Mo composite coatings were mainly composed of WC, W2C, Co3W3C, Mo2C, MoO2, Mo and Co phases. The average hardness of the coatings increased with increasing Mo content.

  7. Automated coating procedures to produce poly(ethylene glycol) brushes in fused-silica capillaries

    DEFF Research Database (Denmark)

    Poulsen, Nicklas N.; Østergaard, Jesper; Petersen, Nickolaj J.

    2017-01-01

    . Flexible and reliable approaches for preventing unwanted protein adsorption in separation science are thus in high demand. We therefore present new coating approaches based on an automated in-capillary surface initiated atom transfer radical polymerization process (covalent coating) as well...... as by electrostatically adsorbing a pre-synthesized polymer leading to functionalized molecular brushes. The electroosmotic flow was measured following each step of the covalent coating procedure providing a detailed characterization and quality control. Both approaches resulted in good fouling resistance against...... the four model proteins cytochrome c, myoglobin, ovalbumin and human serum albumin in the pH range 3.4-8.4. Further, even samples containing 10% v/v plasma derived from human blood did not show signs of adsorbing to the coated capillaries. The covalent as well as the electrostatically adsorbed coating were...

  8. Microstructures and Composition of Ceramic Coatings on Aluminum Produced by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Microstructures and phase composition of the ceramic coatings formed on pure aluminum by heteropolar pulsed current ceramic synthesizing system for different periods were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Results show that the amount of the discharge channels in the ceramic coating sminish while the aperture largen in the micro-arc oxidation process, and the surface of the ceramic coatingmelted and solidified in the process.XRD studies of ceramic coatings deposited for different time show that these coatings consist mainly of α-Al2 O3, γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase, and phase composition of compact and porous ceramic coatings don' t have much difference but have a little change of the content of α-Al2 O3 and amorphous phase.

  9. COMPARISON OF THERMAL SHOCK BEHAVIOR OF 7YSZ, 15YSZ AND SYSZ THERMAL BARRIER COATINGS PRODUCED BY APS METHOD

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2016-07-01

    Full Text Available Nanostructured scandia, yttria doped zirconia (SYSZ, 7wt. % yttria stabilized zirconia (7YSZ and 15YSZ thermal barrier coatings (TBCs were produced by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C was investigated. The results indicated that the thermal cycling lifetime of SYSZ and 7YSZ TBCs was longer than the 15YSZ TBCs due to the lower thermal mismatch stress between the ceramic layer and the metallic layer at high temperature and higher amount of tetragonal phase.

  10. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Onder, Sakip [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Molecular Biology-Genetics and Biotechnology Program (MOBGAM), Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Kok, Fatma Nese [Molecular Biology-Genetics and Biotechnology Program (MOBGAM), Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Department of Molecular Biology and Genetics, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Kazmanli, Kursat, E-mail: kursat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Urgen, Mustafa [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey)

    2013-10-15

    In this study, formation of magnesium substituted hydroxyapatite (Ca{sub 10−x}Mg{sub x}(PO{sub 4}){sub 6}(OH){sub 2}) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti{sub 1−x},Mg{sub x})N (x = 0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. - Highlights: • Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase • Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation • (Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF.

  11. Structure and properties of protective coatings produced by vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Leontiev, S.A. [Leningradsky Metallitchesky Zavod, St. Petersburg (Russian Federation); Kuznetsov, V.G. [Machine Research Problems Institute, Russian Academy of Sciences V.O., Bolshoy pr. 61, 199178 St. Petersburg (Russian Federation); Rybnikov, A.I. [Polzunov Central Boiler and Turbine Institute (NPO TsKTI), Polytechnicheskaya 24, 194021 St. Petersburg (Russian Federation); Burov, I.V. [Machine Research Problems Institute, Russian Academy of Sciences V.O., Bolshoy pr. 61, 199178 St. Petersburg (Russian Federation)

    1995-11-01

    CoCrAlY, NiCrWTi and CoCrAlY/ZrO{sub 2}+8wt.%Y{sub 2}O{sub 3} coatings were deposited by vacuum arc evaporation. Coatings were deposited onto specimens for metallographic analysis, corrosion resistance testing, thermal fatigue testing, high-frequency fatigue and onto gas turbine blades. It has been shown by testing that the developed procedures ensure gas turbine blade coatings of high quality comparable with those manufactured by electron beam procedures. (orig.)

  12. Investigation of Ni-Cr-Si-Fe-B coatings produced by the electron beam cladding technique

    Science.gov (United States)

    Zimogliadova, T. A.; Drobyaz, E. A.; Golkovskii, M. G.; Bataev, V. A.; Durakov, V. G.; Cherkasova, N. Yu

    2016-11-01

    This paper presents the results of structural investigations and results of tribological and microhardness tests of the coating obtained by electron beam cladding of a Ni-Cr-Si-Fe-B self-fluxing alloy on low-carbon steel. After electron beam treatment high-quality dense layer with a thickness of 1.2-1.8 mm was obtained. The structure of the coating consisted of dendrite crystals based on y-Ni-solid solution and eutectic with complex composition. Microhardness of the coating achieves 370 HV. Wear-resistance of the coating obtained by electron-beam cladding technique was 1.6-fold higher than that of low-carbon carburized steel.

  13. Characterization of nanostructured Ti-B-(N) coatings produced by direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Cartes, C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, 41092 Sevilla (Spain)]. E-mail: clopez@icmse.csic.es; Martinez-Martinez, D. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, 41092 Sevilla (Spain); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, 41092 Sevilla (Spain); Fernandez, A. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, 41092 Sevilla (Spain); Garcia-Luis, A. [Fundacion INASMET, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Brizuela, M. [Fundacion INASMET, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Onate, J.I. [Fundacion INASMET, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain)

    2007-02-26

    A series of Ti-B-(N) coatings prepared by dc magnetron sputtering using TiB{sub 2} targets in Ar/N{sub 2} gas mixtures has been chemically and structurally characterized by transmission electron microscopy, X-ray diffraction, electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy. The influence of synthesis parameters such as applied heating power and nitrogen flow on the structure and chemical composition of the coatings has been studied. Independently of the experimental conditions employed during the synthesis, hexagonal TiB{sub 2} is the main crystalline phase present in the coatings. The use of N{sub 2} leads to the formation of an amorphous mixture of BN/TiN phases, as well as a diminution of the TiB{sub 2} crystalline phase. The influence of the composition and structure of the coatings on their hardness is also discussed.

  14. Oxidation performance of Fe-Al/WC composite coatings produced by high velocity arc spraying

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-jun; XU Bin-shi; ZHU Sheng; MA Shi-ning; ZHANG wei

    2005-01-01

    Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room tem perature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800 ℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2 O3, Fe2 O3, Fe3 O4 and FeO. These phases distribute unevenly. The protective Al2 O3 film firstly forms and preserves the coatings from further oxidation.

  15. Sol-gel coatings: An alternative route for producing planar optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Rey-Garcia, F.; Gomez-Reino, C. [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); Flores-Arias, M.T., E-mail: maite.flores@usc.es [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); De La Fuente, G.F., E-mail: xerman@unizar.es [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Maria de Luna 3, E-50018 Zaragoza (Spain); Duran, A. [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain); Castro, Y., E-mail: castro@icv.csic.es [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain)

    2011-09-01

    Inorganic and hybrid planar waveguides with different compositions (silica-titania, methacrylate-silica-cerium oxide, zirconia-cerium oxide and silica-zirconia) have been obtained by sol-gel synthesis followed by dip-coating. Soda-lime glass slides and conventional commercial window glass were used as substrates. The thickness and refractive index of the coatings were determined by profilometry and Spectroscopic Ellipsometry. Waveguide efficiency was measured at ca. 70.8% with a He-Ne laser beam, coupled with an optical microscope objective into and out of the waveguiding layer via a double prism configuration. Thicknesses between 150 and 2000 nm, along with refractive index values ranging between 1.45 and {approx} 1.99 ({lambda} = 633 nm) were obtained depending on the sol composition and the dip-coating conditions. This wide range of values allows designing multilayered guides that can be used in a variety of applications.

  16. Microanalyses of the hydroxyl—poly—calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Yang; WANGChang-Xing; 等

    2002-01-01

    Thin calcium phosphate catings on titanium alloy substrates were prepared by Ar+ ion beam assisted deposition(IBAD) from hydroxyl-poly-calcium sodium phosphate(HPPA) target.The coatings were analyzed by XRD,FTIR,XPS,These analyses revealed that the as-deposited films were amorphous or no apparent crystallinity.No distinct absorption band of the hydroxyl group was observed in FTIR spectra of the coatings but new absorption bands were presented for CO3-2,The calcium to phosphorous ratio of these catings in different IBAD conditions varied from 0.46 to 3.36.

  17. Microstructure and Properties of FeCrB Alloy Coatings Prepared by Wire-Arc Spraying

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, Y. M.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-02-01

    To improve the heat transfer ability and wear resistance of drying cylinders in paper production machines, a series of Fe87- x Cr13B x ( x = 1 wt.%, 1.5 wt.%, 2 wt.%, 2.5 wt.%, 3 wt.%, and 4 wt.%) cored wires have been produced and used to prepare coatings by wire-arc spraying, in comparison with conventional X30Cr13 solid wire. All coatings presented dense layered structure with porosity of around 4%. The boron content in the cored wires significantly affected the thermal conductivity of the coating, which is attributed to the combined effects of the crystal structure, grain size, and oxide content of the coating. In the investigated range, the coating with 2 wt.% boron content exhibited the highest thermal conductivity, reaching 8.83 W/m-K, greater than that of X30Cr13 coating (5.45 W/m-K). Furthermore, the microhardness and relative wear resistance of the FeCrB coatings obtained from cored wires with boron addition were greatly increased compared with commercial X30Cr13 coating. Therefore, wire-arc-sprayed FeCrB coating has promise as an effective and economic approach to improve the heat transfer behavior and wear resistance of drying cylinders in the paper industry.

  18. Microstructure and Properties of FeCrB Alloy Coatings Prepared by Wire-Arc Spraying

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, Y. M.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2016-12-01

    To improve the heat transfer ability and wear resistance of drying cylinders in paper production machines, a series of Fe87-x Cr13B x (x = 1 wt.%, 1.5 wt.%, 2 wt.%, 2.5 wt.%, 3 wt.%, and 4 wt.%) cored wires have been produced and used to prepare coatings by wire-arc spraying, in comparison with conventional X30Cr13 solid wire. All coatings presented dense layered structure with porosity of around 4%. The boron content in the cored wires significantly affected the thermal conductivity of the coating, which is attributed to the combined effects of the crystal structure, grain size, and oxide content of the coating. In the investigated range, the coating with 2 wt.% boron content exhibited the highest thermal conductivity, reaching 8.83 W/m-K, greater than that of X30Cr13 coating (5.45 W/m-K). Furthermore, the microhardness and relative wear resistance of the FeCrB coatings obtained from cored wires with boron addition were greatly increased compared with commercial X30Cr13 coating. Therefore, wire-arc-sprayed FeCrB coating has promise as an effective and economic approach to improve the heat transfer behavior and wear resistance of drying cylinders in the paper industry.

  19. Low porosity and fine coatings produced by a new type nozzle of high velocity arc spray gun

    Institute of Scientific and Technical Information of China (English)

    Wang Ruijun; Zhang Tianjian; Xu Lin; Huang Xiaoou

    2006-01-01

    The new designed high-velocity arc spray gun with three different nozzles is developed to match the DZ400 arc spray system, which can produce the coatings with the structure of superfine and low porosity.This system can be used to spray three normal wires such as 4Cr13, FeCrAl and 7Cr13 (flux cored wires).Using the scanning electron microscope (SEM) to analyze shape and particles size that sprayed by the nozzles with different parameters, as well as with the S-3500N SEM and the energy spectrum analytic ( ESA ) instrument to identify the content of the oxides, porosity and thickness of the coatings, we get the result that the porosity in the coatings of solid wire is less than 3%, of the flux-cored wires is less than 5%, and the distribution of the coatings sprayed by the nozzle with secondary supplementary airflow is typically shown in the form of highdensity lamellarsplat structure and the average lamellar thickness is around 5 μm.

  20. Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ugur

    2004-07-15

    There are a lot of technologically interesting characteristics of niobium carbide coating deposited by pack method which is the production of hard, wear-resistant, oxidation and corrosion resistant coating layer on the steel substrates. In the present study, the growth kinetics of niobium carbide layer deposited by thermo-reactive diffusion techniques in a solid medium on steel samples was reported. Niobium carbide coating treatment was performed on AISI 1040 steels in the powder mixture consisting of ferro-niobium, ammonium chloride and alumina at 1073, 1173 and 1273 K for 1-4 h. The presence of NbC and Nb{sub 2}C phases formed on the surface of the steel substrates was confirmed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analyses. Niobium carbide layer thickness ranges from 3.42{+-}0.52 to 11.78{+-}2.29 {mu}m depending upon the treatment time and temperature. Layer growth kinetics was analyzed by measuring the depth of niobium carbide layer as a function of time and temperature. The kinetics of niobium carbide coating by pack method shows a parabolic relationship between carbide layer thickness and treatment time, and the activation energy for the process is estimated to be 91.257 kJ mol{sup -1}. Moreover, an attempt was made to investigate the possibility of predicting the contour diagram of niobium carbide layer variation and to establish some empirical relationships between process parameters and niobium carbide layer thickness.

  1. Thick metallic coatings produced by coaxial and side laser cladding : Processing and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.T.M.

    2010-01-01

    Cobalt and iron-based, defect-free coatings with thicknesses from 1 to 3.3. mm were created by a laser cladding process on different steel substrates. Extensive laser cladding experiments with a gradual change of laser power were used to study relations between main processing parameters and geometr

  2. Microstructure characteristics of ZrO2 coating produced by atmospheric pressure chemical vapor deposition.

    Science.gov (United States)

    Sun, Wei; Xiong, Xiang; Li, Xiaobin

    2011-09-01

    To settle the problem of low growth rate when prepare ZrO2 thermal barrier coating by Metalorganic CVD (MOCVD), a simple method was employed-atmospheric pressure CVD (APCVD). The paper firstly thermodynamic calculated the effect of O/Zr ratio and temperature on phase formation at various H/C ratios for ZrCl4-CO2-H2-Ar system. With temperature increment, the solid phase changes from C+ monoclinic ZrO2 to Monoclinic ZrO2 then to tetragonal ZrO2. With the increase of H/C ratio, the phase zone of C+ monoclinic ZrO2 expands. XRD and Raman spectrum were employed to measure phase structure of ZrO2 coating at different temperature. At 1300 degrees C, the coating contains a small amount tetragonal ZrO2 phase besides monoclinic phase; at 1100 degrees C, the coating is composed of monoclinic ZrO2 phase and a little C. The surface SEM images show the small grains evolve to polycrystals which have clear crystal form when raising temperature. The cross-section images show that dense ZrO2 column crystals arrange normal to the substrate.

  3. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  4. Some preliminary evaluations of black coating on aluminium AA2219 alloy produced by plasma electrolytic oxidation (PEO) process for space applications

    Science.gov (United States)

    Shrestha, S.; Merstallinger, A.; Sickert, D.; Dunn, B. D.

    2003-09-01

    This paper describes the results of a study of a black coating produced on aluminium AA2219 alloy using a process that involves creation of a hard ceramic oxide layer on the surface of the alloy by plasma electrolytic oxidation (PEO) known as the 'KERONITE®' process. Coating microstructure has been examined and the coating characteristics such as porosity, hardness, adhesion and phase composition were measured. The thermo-optical properties such as solar absorptance 'as' and normal infrared emittance 'en-IR' of the coating were measured in the 'as-prepared' condition and after environmental exposures to humidity, thermal cycling and UV-radiation in vacuum and to thermal shock. Comparison was made with alternative coatings produced using standard black anodising processes. The study also looked at the cold welding and friction behaviours of the coated alloy in vacuum and in an ambient laboratory environment. Standard spacecraft materials tests were conducted on the coated disc against an AISI 52100 steel ball and also against a coated pin using a pin-on-disc apparatus. Parameters such as friction coefficient and wear depth were measured and the cold welding behaviours were investigated. Test results were compared with the data generated for NiCr plated and anodised coatings. Corrosion performance was assessed using a salt spray exposure test and using an accelerated electrochemical test method. In addition, the study looked at the effect of post coating sealing with a sol-gel solution.

  5. Cutting performance and wear mechanisms of PVD coated carbide tools during dry drilling of newly produced ADI

    Science.gov (United States)

    Meena, Anil; El Mansori, Mohamed

    2016-10-01

    The austempered ductile iron (ADI) material is widely used for automotive and structural applications. However, it is considered a difficult to machine material due to its strain hardening behavior and low thermal conductivity characteristics; thus delivering higher mechanical and thermal loads at the tool-chip interface, which significantly affects the tool wear and surface quality. The paper thus overviews the cutting performance and wear behavior of different cutting tools during dry drilling of newly produced ADI material. Cutting performance was evaluated in terms of specific cutting energy, workpiece surface integrity and tool wear behavior. Tool wear behavior shows crater wear mode and workpiece adhesion. The surface alteration at the machined subsurface was confirmed from the hardness variation. Multilayer (Ti,Al,Cr)N coated tool shows improved cutting performance and wear behavior due to its enhanced tribological adaptability as compared to another PVD coating leading to the reduction in specific cutting energy by 25%.

  6. Microstructural Characterization and Wear Properties of Fe-Based Amorphous-Crystalline Coating Deposited by Twin Wire Arc Spraying

    Directory of Open Access Journals (Sweden)

    Ana Arizmendi-Morquecho

    2014-01-01

    Full Text Available Twin wire arc spraying (TWAS was used to produce an amorphous crystalline Fe-based coating on AISI 1018 steel substrate using a commercial powder (140MXC in order to improve microhardness and wear properties. The microstructures of coating were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM as well as the powder precursor. Analysis in the coating showed the formation of an amorphous matrix with boron and tungsten carbides randomly dispersed. At high amplifications were identified boron carbides at interface boron carbide/amorphous matrix by TEM. This kind of carbides growth can be attributed to partial crystallization by heterogeneous nucleation. These interfaces have not been reported in the literature by thermal spraying process. The measurements of average microhardness on amorphous matrix and boron carbides were 9.1 and 23.85 GPa, respectively. By contrast, the microhardness values of unmelted boron carbide in the amorphous phase were higher than in the substrate, approaching 2.14 GPa. The relative wear resistance of coating was 5.6 times that of substrate. These results indicate that the twin wire arc spraying is a promising technique to prepare amorphous crystalline coatings.

  7. Preparation of Cubic Boron Nitride Coating on WC-Co Substrate by Micro/Nanocrystalline Diamond Film Interlayer%基于微纳米金刚石过渡层的cBN刀具涂层制备

    Institute of Scientific and Technical Information of China (English)

    徐锋; 左敦稳; 张旭辉; 户海峰; 张骋; 王珉

    2013-01-01

    Cubic Boron Nitride(cBN) is a super-hard material, of which hardness is only less than diamond. But it has excellent chemical stability, especially no chemical reaction with ferrous materials. The cBN coating has irreplaceable function in the application of modern cutting tools. Research is carried out on the preparation of cBN coating on YG6 by micro/nanocrystalline diamond (M/NCD) film inter-layer. The micro/nanocrystalline diamond film is deposited in hot filament chemical vapor deposition system and cBN is deposited in radio frequency magnetron sputtering system. The scanning electron microscopy (SEM), Raman, atomic force microscopy(AFM), Fourier transferred infrared(FTIR) and in-denter are used to investigate the content, morphology and adhesion of the coating. The results show that the adhesion of cBN coating on WC-Co by micro/nanocrystalline diamond interlayer is much higher than that by nano diamond interlayer. The moderate bias voltage is important for the cBN film deposition in the magnetron sputtering process.%立方氮化硼(Cubic Boron Nitride,cBN)是仅次于金刚石的超硬材料,比金刚石具有更高的化学稳定性,可以胜任铁系金属的加工.本文在YG6硬质合金上基于微纳米金刚石过渡层开展cBN涂层的制备研究.本文在热丝化学气相沉积系统中制备微纳米金刚石过渡层(Micro/nanocrystalline diamond,M/NCD),在射频磁控溅射系统中制备cBN涂层,并对M/NCD与cBN涂层进行了成分、微观形貌与结合性能的研究.研究结果发现,在硬质合金基体上,M/NCD过渡层的结合性能明显优于NCD过渡层.磁控溅射制备cBN涂层过程中,存在适合cBN沉积的衬底偏压阈值,过高或过低的衬底偏压均不利于cBN含量的提高.

  8. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  9. 涂硼GEM中子束流监测器物理过程的蒙特卡罗模拟%Monte Carlo Simulation Study on the Physical Process of the Boron-coated GEM Neutron Beam Monitor

    Institute of Scientific and Technical Information of China (English)

    王拓; 周健荣; 孙志嘉; 吴冲; 王艳凤; 杨桂安; 陈元柏

    2014-01-01

    基于硼转换的GEM (Gas Electron Multiplier)探测器性能突出,计数率高达10 MHz以上,耐辐射,信号读出方式简单、灵活,位置与时间分辨率高,是下一代中子束流监测器极具优势的候选者。这种新型中子束流监测器主要由硼中子转换层、气体电离粒子放大的GEM以及二维读出电极组成。通过Geant4程序包对探测器物理过程进行蒙特卡罗(Monte Carlo)模拟,主要研究了硼中子转换层转换效率与厚度及中子波长的关系、出射粒子的能谱、不同气体比分不同气体厚度中的能量沉积、以及γ的能量沉积,计算比较了不同厚度GEM膜对快中子产生的影响。模拟结果表明,出射粒子在漂移区的能量沉积几乎与气体比分无关,硼层厚度取0.1µm以下,漂移区厚度6 mm时,可以确保出射粒子在漂移区能量完全沉积,同时具有最佳n/γ区分能力。%The performance of a boron-coated GEM (Gas Electron Multiplier) neutron beam monitor is outstanding, with the counting rate up to 10 MHz, radiation resistance, flexible readout patterns, high resolution in position and time, which is considered as a good candidate for the next generation of neutron beam monitor. This new kind of neutron beam monitor mainly consists of boron convertor, GEM and two-dimensional readout electrode. In this paper, the Monte Carlo simulation on the physical process of the detector has been carried out by using Geant4 package, including the conversion efficiency of the boron layer influenced by the thickness and the neutron wavelength, the spectrum of emitted ions, and the energy deposition of the ions and the gamma in the different gas thickness of several gas volume ratio. Besides, the effect by the fast neutrons with GEM foils has also been calculated. The results show that the ions energy deposited in the drift region is almost independent of the gas volume ratio, the thickness 6 mm of the drift region is

  10. Brush seal shaft wear resistant coatings

    Science.gov (United States)

    Howe, Harold

    1995-03-01

    Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.

  11. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  12. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating

    DEFF Research Database (Denmark)

    Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, Lasse

    2000-01-01

    content. The wavelengths studied were 6, 200 and 2000 nm and the total thickness of the coatings was 25 mu m approximately. Using a range of normal loads between 2 and 110 N and a range of sliding speeds between 14 and 90 cm/s, the Stribeck curve of the system was constructed. indicating the various...... lubrication regimes. The wear mechanisms in each lubrication regime were studied and in mixed lubrication regime, the effect of normal load and sliding speed on wear volume and friction coefficient was also studied. (C) 2000 Elsevier Science S.A. All rights reserved....

  13. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  14. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  15. SiC-Si[sub 3]N[sub 4] composite coatings produced by plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gerretsen, J. (Centre for Technical Ceramics, Netherlands Organization for Applied Scientific Research, Eindhoven (Netherlands)); Kirchner, G. (Centre for Technical Ceramics, Netherlands Organization for Applied Scientific Research, Eindhoven (Netherlands)); Kelly, T. (Irish Science and Technology Agency, Dublin (Ireland)); Mernagh, V. (Irish Science and Technology Agency, Dublin (Ireland)); Koekoek, R. (Tempress, Hoogeveen (Netherlands)); McDonnell, L. (Tekscan Ltd., Cork (Ireland))

    1993-10-08

    Silicon carbonitride coatings have been produced by plasma-enhanced chemical vapour deposition (CVD) on AISI 440C steel in a hot-wall reactor at 250 C from a mixture of SiH[sub 4], N[sub 2]-NH[sub 3] and C[sub 2]H[sub 4], and analysed by electron probe microanalysis and Rutherford backscattering spectroscopy-elastic recoil detection. Coatings with different ratios of silicon carbide to silicon nitride and silicon suband superstoichiometries have been deposited. Stoichiometric coatings show a maximum in their mechanical properties. Depending on the SiC-to-Si[sub 3]N[sub 4] ratio, the Knoop hardness values vary between 1500 and 2800 HK[sub 0.025]. Internal stress is low at a level of 100-300 MPa. The pinhole density is less than 2 cm[sup -2]. The fracture toughness as determined from indention tests is 4 MPa m[sup 1/2]. Linear polarization testing results show excellent protection of the substrate material against chemically aggressive media as compared with conventional CVD. (orig.)

  16. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  17. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    Science.gov (United States)

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  18. 化学镀Ni-B合金镀层组织形态的研究%A Study of Microstructure of Electroless Nickel-Boron Alloy Coatings

    Institute of Scientific and Technical Information of China (English)

    程鑫; 饶群力

    2012-01-01

    The effects of bath composition on the microstructure of electroless Ni-B alloy coatings were investigated. By using contrast experiment design, both crystalline and amorphous coatings were obtained, and technological methods for controlling coating microstructure were acquired.%研究了镀液成分对化学镀Ni-B合金镀层组织形态的影响.通过对比实验设计,获得晶态与非晶态镀层,得到了可调控镀层组织形态的工艺方法.

  19. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianwei; Zhang, Hailong; Zhang, Yang; Che, Zifan; Wang, Xitao, E-mail: xtwang@ustb.edu.cn

    2015-10-25

    As an attractive thermal management material, diamond particles reinforced Cu matrix (Cu/diamond) composites generally exhibit thermal conductivities lower than expected. To exploit the potential of heat conduction, a combination of Ti coating on diamond particles and gas pressure infiltration was used to prepare Cu/diamond(Ti) composites. A high thermal conductivity of 716 W/mK and a low coefficient of thermal expansion of 5.8 ppm/K at 323 K were obtained in the composites. Auger electron spectroscopy (AES) characterization shows that a TiC layer was formed between Cu matrix and diamond reinforcement, which is responsible for the enhancement of thermal conductivity. The results suggest that Ti coating can significantly promote interface bonding between Cu and diamond and gas pressure infiltration is an effective method to produce Cu/diamond composites. - Highlights: • The Cu/diamond(Ti) composites are produced by gas pressure infiltration. • A TiC layer is formed between Cu matrix and diamond reinforcement. • A thermal conductivity of 716 W/mK is obtained for the composites. • A coefficient of thermal expansion of 5.8 ppm/K at 323 K was obtained.

  20. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  1. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  2. Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process

    Energy Technology Data Exchange (ETDEWEB)

    Monfared, A., E-mail: amirmonfared25@yahoo.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Kokabi, A.H.; Asgari, S. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Tungsten Inert Gas (TIG) process and titanium cored wires filled with micro size TiC particles were employed to produce surface composite coatings on commercial pure Ti substrate for wear resistance improvement. Wire drawing process was utilized to produce several cored wires from titanium strips and titanium carbide powders. Subsequently, these cored wires were melted and coated on commercial pure Ti using TIG process. This procedure was repeated at different current intensities and welding travel speeds. Composite coating tracks were found to be affected by TIG heat input. The microstructural studies using optical and scanning electron microscopy supported by X-ray diffraction showed that the surface composite coatings consisted of {alpha} Prime -Ti, spherical and dendritic TiC particles. Also, greater volume fractions of TiC particles in the coatings were found at lower heat input. A maximum microhardness value of about 1100 HV was measured which is more than 7 times higher than the substrate material. Pin-on-disk wear tests exhibited a better performance of the surface composite coatings than the untreated material which was attributed to the presence of TiC particles in the microstructure. -- Highlights: Black-Right-Pointing-Pointer Ti/TiC composite coatings were produced on the CP-Ti. Black-Right-Pointing-Pointer Titanium cored wire and TIG process were employed for production of the coatings. Black-Right-Pointing-Pointer Decreasing heat input, increased the volume fraction of TiC in the coatings. Black-Right-Pointing-Pointer The maximum microhardness obtained in the lowest heat input. Black-Right-Pointing-Pointer The wear resistance of the coatings improved due to the formation of TiC particles.

  3. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, Gozde, E-mail: gozdeunsoy@hotmail.com [Middle East Technical University, Department of Biotechnology (Turkey); Yalcin, Serap [Middle East Technical University, Department of Biological Sciences (Turkey); Khodadust, Rouhollah [Middle East Technical University, Department of Biotechnology (Turkey); Gunduz, Gungor [Middle East Technical University, Department of Chemical Engineering (Turkey); Gunduz, Ufuk, E-mail: ufukg@metu.edu.tr [Middle East Technical University, Department of Biological Sciences (Turkey)

    2012-11-15

    The chitosan-coated magnetic nanoparticles (CS MNPs) were in situ synthesized by cross-linking method. In this method; during the adsorption of cationic chitosan molecules onto the surface of anionic magnetic nanoparticles (MNPs) with electrostatic interactions, tripolyphosphate (TPP) is added for ionic cross-linking of the chitosan molecules with each other. The characterization of synthesized nanoparticles was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS/ESCA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and vibrating sample magnetometry (VSM) analyses. The XRD and XPS analyses proved that the synthesized iron oxide was magnetite (Fe{sub 3}O{sub 4}). The layer of chitosan on the magnetite surface was confirmed by FTIR. TEM results demonstrated a spherical morphology. In the synthesis, at higher NH{sub 4}OH concentrations, smaller sized nanoparticles were obtained. The average diameters were generally between 2 and 8 nm for CS MNPs in TEM and between 58 and 103 nm in DLS. The average diameters of bare MNPs were found as around 18 nm both in TEM and DLS. TGA results indicated that the chitosan content of CS MNPs were between 15 and 23 % by weight. Bare and CS MNPs were superparamagnetic. These nanoparticles were found non-cytotoxic on cancer cell lines (SiHa, HeLa). The synthesized MNPs have many potential applications in biomedicine including targeted drug delivery, magnetic resonance imaging (MRI), and magnetic hyperthermia.

  4. Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Institute of Tissue Engineering and Regenerative Medicine, University Hospital of the Julius-Maximilians University, Röntgenring 11, 97070 Würzburg (Germany); Warmuth, Franziska [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Werner, Ewald; Hertl, Cornelia [Institute of Materials Science and Mechanics of Materials, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching (Germany); Groll, Jürgen; Gbureck, Uwe [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Moseke, Claus, E-mail: claus.moseke@fmz.uni-wuerzburg.de [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany)

    2014-11-01

    Silver-doped Ti films were produced using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The Ti(Ag) films were characterized regarding their morphology, contact angle, phase composition, silver content and distribution as well as the elution of Ag{sup +} ions into cell media. SEM and AFM pictures showed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, an effect that could even be enforced, when a substrate bias voltage was applied instead. The deposition of both Ti and Ag was confirmed by X-ray diffraction. ICP-MS and EDX showed a clear correlation between the applied sputtering parameters and the silver content of the coatings. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. - Highlights: • Modular targets were used to deposit Ti(Ag) films. • Ag-content is adjustable by bias voltage, sputtering power and substrate temperature. • Coating parameters significantly change film morphology and roughness. • A critical parameter for Ag release is the fraction of silver on the film surface.

  5. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    Science.gov (United States)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  6. THE EFFECT OF DEPOSITION PARAMETERS ON THE CHEMICAL COMPOSITION AND CORROSION RESISTANCE OF TICXNY COATINGS PRODUCED ON HIGH-SPEED STEEL SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Senna L.F.

    2001-01-01

    Full Text Available TiCxNy coatings deposited on high-speed steel substrates have been used to enhance the tribological properties of cutting tools (hardness, wear resistance, etc. as well as their corrosion resistance in an aggressive environment. These layers are usually produced by plasma deposition techniques (PVD or CVD, and different coating properties can be obtained with each method. In this work, TiCxNy films were deposited on AISI M2 high-speed steel substrates by the reactive magnetron sputtering technique. A series of samples with a variety of reactive gas mixtures (nitrogen and methane, substrate biases, and deposition temperatures was produced. As a result, coatings with different chemical compositions were deposited for each group of deposition parameters. Gas mixture composition and substrate bias directly affected the chemical composition of the coating, while deposition temperature influenced the chemical composition of TiCxNy layers to a very low extent.

  7. Mössbauer study of carbon coated iron magnetic nanoparticles produced by simultaneous reduction/pyrolysis

    Science.gov (United States)

    Mendonça, Fernanda G.; Ardisson, José D.; Rosmaninho, Marcelo G.; Lago, Rochel M.; Tristão, Juliana C.

    2011-11-01

    Magnetic iron nanoparticles immersed in a carbon matrix were produced by a combined process of controlled dispersion of Fe3 + ions in sucrose, thermal decomposition with simultaneous reduction of iron cores and the formation of the porous carbonaceous matrix. The materials were prepared with iron contents of 1, 4 and 8 in %wt in sucrose and heated at 400, 600 and 800°. The samples were analyzed by XRD, Mössbauer spectroscopy, magnetization measurements, TG, SEM and TEM. The materials prepared at 400° are composed essentially of Fe3O4 particles and carbon, while treatments at higher temperatures, e.g. 600 and 800° produced as main phases Fe0 and Fe3C. The Mössbauer spectra of samples heated at 400° showed two sextets characteristic of a magnetite phase and other contributions compatible with Fe3 + and Fe2 + phases in a carbonaceous matrix. Samples treated at temperatures above 600° showed the presence of metallic iron with concentrations between 16-43%. The samples heated at 800° produced higher amounts of Fe3C (between 20% and 58%). SEM showed for the iron 8% sample treated at 600-800°C particle sizes smaller than 50 nm. Due to the presence of Fe0 particles in the carbonaceous porous matrix the materials have great potential for application as magnetic adsorbents.

  8. A human-mouse hybridoma producing monoclonal antibody against human sperm coating antigen.

    Science.gov (United States)

    Kyurkchiev, S D; Shigeta, M; Koyama, K; Isojima, S

    1986-01-01

    Since anti-sperm antibodies were first discovered in the sera of women, the relationship of these antibodies to sterility has been studied by many investigators. In order to determine the antigens of spermatozoa responsible for raising antibodies to spermatozoa in humans, many studies have been carried out by purifying human spermatozoa cell membrane and seminal plasma components. Since it was found that the purification was difficult by physiochemical procedures, the immunoaffinity chromatography bound monoclonal antibody (Mab) to spermatozoa antigens was attempted for this purpose. The establishment of hybridomas producing Mabs to human seminal plasma and human spermatozoa was reported by Shigeta et al. (1980), Isojima, Koyoma & Fujiwara (1982), Lee et al. (1982) and Isahakia & Alexander (1984). The ordinary approaches to obtain the Mabs consisted of xenogenic immunization with human semen and cell fusion of immunized spleen cells with mouse myeloma cells. However, the antigenic epitopes of human spermatozoa, which induced antibody production, are xenogenic for the mouse, and therefore there is a possibility that there is a difference in recognized antigenic epitopes in humans as isotypic and in mice as xenogenic. In order to study these antigenic epitopes, which correspond to antibodies against spermatozoa in women, the establishment of human-mouse hybridomas, which produced anti-semen antibodies as produced in sterile women, became essential. In these studies, we used recently developed cell fusion techniques to fuse immunized human peripheral lymphocytes with mouse myeloma cells. PMID:3456978

  9. Microstructure and microhardness characterization of Cr{sub 3}C{sub 2}-SiC coatings produced by the plasma transferred arc method

    Energy Technology Data Exchange (ETDEWEB)

    Islak, Serkan [Kastamonu Univ. (Turkey). Cide Rifat Ilgaz Vocational High School; Eski, Oezkan [Kastamonu Univ. (Turkey). Kastamonu Vocational High School; Buytoz, Soner [Firat Univ., Elazig (Turkey). Dept. of Metallurgy and Materials Engineering; Karagoez, Muzaffer [Bartin Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Stokes, Joseph [Dublin City Univ. (Ireland). School of Mechanical and Manufacturing Engineering

    2012-07-01

    The purpose of this work was to investigate the coatings made of Cr{sub 3}C{sub 2} and SiC powder manufactured on AISI 304 stainless steel applied by the plasma transferred arc (PTA) welding process. SiC content in the produced coated layer was varied between 0-100 wt. % and the effect of SiC concentration on the microstructure and hardness of the coating was measured experimentally. SEM analyses revealed that the composite coatings had a homogeneous, nonporous, and crack-free microstructure. Dendrites and interdendrite eutectics formed on the coating layer, subject to the temperature gradient and the solidification ratio. There was a significant increase in the hardness of coating layers with the effect of the {gamma}-(Fe,Ni), Cr{sub 7}C{sub 3}, Cr{sub 23}C{sub 6}, Fe{sub 5}C{sub 2}, Cr{sub 3}Si, CrSi{sub 2}, Fe{sub 0.64}Ni{sub 0.36}, CFe{sub 15.1}, C-(Fe,Cr)-Si phases formed in the microstructure. In comparison to the substrate, the microhardness of the coatings produced by PTA were 2.5-3.5 times harder. (orig.)

  10. On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jinneth Lorena Castro-Mayorga

    2016-12-01

    Full Text Available Electro-hydrodynamic processing, comprising electrospraying and electrospinning techniques, has emerged as a versatile technology to produce nanostructured fiber-based and particle-based materials. In this work, an antimicrobial active multilayer system comprising a commercial polyhydroxyalkanoate substrate (PHA and an electrospun PHA coating containing in situ-stabilized silver nanoparticles (AgNPs was successfully developed and characterized in terms of morphology, thermal, mechanical, and barrier properties. The obtained materials reduced the bacterial population of Salmonella enterica below the detection limits at very low silver loading of 0.002 ± 0.0005 wt %. As a result, this study provides an innovative route to generate fully renewable and biodegradable materials that could prevent microbial outbreaks in food packages and food contact surfaces.

  11. Moessbauer study of carbon coated iron magnetic nanoparticles produced by simultaneous reduction/pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Fernanda G. [Universidade Federal de Minas Gerais, Departamento de Quimica - ICEx (Brazil); Ardisson, Jose D. [CDTN, Laboratorio de Fisica Aplicada, Centro de Desenvolvimento de Tecnologia Nuclear (Brazil); Rosmaninho, Marcelo G.; Lago, Rochel M.; Tristao, Juliana C., E-mail: juliana@ufv.br [Universidade Federal de Minas Gerais, Departamento de Quimica - ICEx (Brazil)

    2011-11-15

    Magnetic iron nanoparticles immersed in a carbon matrix were produced by a combined process of controlled dispersion of Fe{sup 3 + } ions in sucrose, thermal decomposition with simultaneous reduction of iron cores and the formation of the porous carbonaceous matrix. The materials were prepared with iron contents of 1, 4 and 8 in %wt in sucrose and heated at 400, 600 and 800 Degree-Sign . The samples were analyzed by XRD, Moessbauer spectroscopy, magnetization measurements, TG, SEM and TEM. The materials prepared at 400 Degree-Sign are composed essentially of Fe{sub 3}O{sub 4} particles and carbon, while treatments at higher temperatures, e.g. 600 and 800 Degree-Sign produced as main phases Fe{sup 0} and Fe{sub 3}C. The Moessbauer spectra of samples heated at 400 Degree-Sign showed two sextets characteristic of a magnetite phase and other contributions compatible with Fe{sup 3 + } and Fe{sup 2 + } phases in a carbonaceous matrix. Samples treated at temperatures above 600 Degree-Sign showed the presence of metallic iron with concentrations between 16-43%. The samples heated at 800 Degree-Sign produced higher amounts of Fe{sub 3}C (between 20% and 58%). SEM showed for the iron 8% sample treated at 600-800 Degree-Sign C particle sizes smaller than 50 nm. Due to the presence of Fe{sup 0} particles in the carbonaceous porous matrix the materials have great potential for application as magnetic adsorbents.

  12. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    Science.gov (United States)

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry.

  13. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  14. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.;

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...

  15. Synthesis of an orthorhombic high pressure boron phase

    Science.gov (United States)

    Zarechnaya, Evgeniya Yu; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Miyajima, Nobuyoshi; Filinchuk, Yaroslav; Chernyshov, Dmitry; Dmitriev, Vladimir

    2008-12-01

    The densest boron phase (2.52 g cm-3) was produced as a result of the synthesis under pressures above 9 GPa and temperatures up to ~1800 °C. The x-ray powder diffraction pattern and the Raman spectra of the new material do not correspond to those of any known boron phases. A new high-pressure high-temperature boron phase was defined to have an orthorhombic symmetry (Pnnm (No. 58)) and 28 atoms per unit cell.

  16. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating

    NARCIS (Netherlands)

    Biemond, J.E.; Hannink, G.J.; Verdonschot, N.J.; Buma, P.

    2013-01-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bon

  17. Optical properties of thin flms of MEH-PPV produced by the spin-coating technique at different rotational speeds

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Soares Guimarães

    2008-08-01

    Full Text Available We present a study on the optical properties of thin flms of poly[2-methoxy-5-(20-ethyl-hexyloxy-1,4-phenylene vinylene] (MEH-PPV produced at a concentration of 10 mg/ml xylene. The solution was deposited onto glass substrates by the spin-coating technique at different rotational speeds (300, 1000 and 4000 rpm. We study the effect of rotational speeds on the sample at 300 K, by analyzing the photoluminescence (PL spectra at different points of the polymeric flm. We also analyze the effects of the excitation power on the optical behavior of MEH-PPV at 300 K. At low temperatures the PL spectra of sample A1000 (1000 rpm show a narrow peak for the electronic transition and a series of vibronic sidebands which reveal the electron coupling with two different vibronic modes. In the temperature range of 130 K to 290 K, we analyze systematically the transition lineshapes in the optical spectra using Gaussian curves.

  18. Stabilization of the high-temperature phases in ceramic coatings on zirconium alloy produced by plasma electrolytic oxidation

    Science.gov (United States)

    Apelfeld, A. V.; Betsofen, S. Y.; Borisov, A. M.; Vladimirov, B. V.; Savushkina, S. V.; Knyazev, E. V.

    2016-09-01

    The composition and structure of ceramic coatings obtained on Zr-1%Nb alloy by plasma electrolytic oxidation (PEO) in aqueous electrolyte comprising 2 g/L KOH, 6 g/L NaAlO2 and 2 g/L Na2SiO3 with addition of yttria nanopowder, have been studied. The PEO coatings of thickness ∼⃒20 μm were studied using scanning electron microscopy, X-ray microanalysis and X-ray phase analysis. Additives in the electrolyte of yttria nanopowder allowed stabilizing the high-temperature tetragonal and cubic zirconia in the coating.

  19. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  20. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-05

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite.

  1. High-temperature thermo-mechanical behavior of functionally graded materials produced by plasma sprayed coating: Experimental and modeling results

    Science.gov (United States)

    Choi, Kang Hyun; Kim, Hyun-Su; Park, Chang Hyun; Kim, Gon-Ho; Baik, Kyoung Ho; Lee, Sung Ho; Kim, Taehyung; Kim, Hyoung Seop

    2016-09-01

    Thermal barrier coatings are widely used in aerospace industries to protect exterior surfaces from harsh environments. In this study, functionally graded materials (FGMs) were investigated with the aim to optimize their high temperature resistance and strength characteristics. NiCrAlY bond coats were deposited on Inconel-617 superalloy substrate specimens by the low vacuum plasma spraying technique. Functionally graded Ni-yttria-stabilized zirconia (YSZ) coatings with gradually varying amounts of YSZ (20%-100%) were fabricated from composite powders by vacuum plasma spraying. Heat shield performance tests were conducted using a high- temperature plasma torch. The temperature distributions were measured using thermocouples at the interfaces of the FGM layers during the tests. A model for predicting the temperature at the bond coating-substrate interface was established. The temperature distributions simulated using the finite element method agreed well with the experimental results.

  2. XPS analysis for cubic boron nitride crystal synthesized under high pressure and high temperature using Li{sub 3}N as catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaofei [School of Materials Science and Engineering, Shandong Jianzhu University, Ji’nan 250101 (China); School of Materials Science and Engineering, Shandong University, Ji’nan 250061 (China); Xu, Bin, E-mail: xubin@sdjzu.edu.cn [School of Materials Science and Engineering, Shandong Jianzhu University, Ji’nan 250101 (China); Zhang, Wen [School of Materials Science and Engineering, Shandong Jianzhu University, Ji’nan 250101 (China); Cai, Zhichao [School of Materials Science and Engineering, Shandong University, Ji’nan 250061 (China); Wen, Zhenxing [School of Materials Science and Engineering, Shandong Jianzhu University, Ji’nan 250101 (China)

    2014-12-01

    Highlights: • The cBN was synthesized by Li{sub 3}N as catalyst under high pressure and high temperature (HPHT). • The film coated on the as-grown cBN crystals was studied by XPS. • The electronic structure variation in the film was investigated. • The growth mechanism of cubic boron nitride crystal was analyzed briefly. - Abstract: Cubic boron nitride (cBN) single crystals are synthesized with lithium nitride (Li3N) as catalyst under high pressure and high temperature. The variation of electronic structures from boron nitride of different layers in coating film on the cBN single crystal has been investigated by X-ray photoelectron spectroscopy. Combining the atomic concentration analysis, it was shown that from the film/cBN crystal interface to the inner, the sp{sup 2} fractions are decreasing, and the sp{sup 3} fractions are increasing in the film at the same time. Moreover, by transmission electron microscopy, a lot of cBN microparticles are found in the interface. For there is no Li{sub 3}N in the film, it is possible that Li{sub 3}N first reacts with hexagonal boron nitride to produce Li{sub 3}BN{sub 2} during cBN crystals synthesis under high pressure and high temperature (HPHT). Boron and nitrogen atoms, required for cBN crystals growth, could come from the direct conversion from hexagonal boron nitride with the catalysis of Li{sub 3}BN{sub 2} under high pressure and high temperature, but not directly from the decomposition of Li{sub 3}BN{sub 2}.

  3. Double helix boron-10 powder thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  4. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  5. High abrasion resistance coating materials from organic/inorganic hybrid materials produced by the sol-gel method

    OpenAIRE

    1990-01-01

    A series of new high abrasion resistance coating materials have been prepared utilizing organic/inorganic hybrid materials formed by cohydrolyzing a metal alkoxide sol (e.g. silicon, aluminum, titanium, or zirconium metal alkoxide sol) with one or more bis(trialkoxysilane-containing) organic components or related functionalized species. These hybrid materials show optical clarity and improve the abrasion resistance of polymer substrates when applied as coatings and cured on such substrates.

  6. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  7. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  8. The high temperature corrosion behaviour of Hf modified chromo-aluminised coatings produced by a single step process

    Energy Technology Data Exchange (ETDEWEB)

    Du, H.L. [Northumbria Univ., Newcastle-upon-Tyne (United Kingdom). Surface Eng. Res. Group; Kipkemoi, J. [Dept. of Mechanical Engineering, Aristoteles Univ., Thessaloniki (Greece); Tsipas, D.N. [Dept. of Mechanical Engineering, Aristoteles Univ., Thessaloniki (Greece); Datta, P.K. [Northumbria Univ., Newcastle-upon-Tyne (United Kingdom). Surface Eng. Res. Group

    1996-12-01

    In this paper the introduction of Cr, Al and Hf into the surface of the RENE 80, INC718 and 2.25Cr-1Mo steel by pack cementation in a single step process has been described. The coated alloys were subject to cyclic hot corrosion and cyclic oxidation test at 870 and 875 C. The surface treated alloys were also sulphidised at 750 C in an environment of H{sub 2}/H{sub 2}S/H{sub 2}O yielding P{sub S{sub 2}} = 10{sup -6} atm. and P{sub O{sub 2}} = 10{sup -23} atm. The coated and exposed specimens were characterised by optical microscope, SEM, EPMA, EDX and XRD. Cyclic hot corrosion and cyclic oxidation tests showed that the presence of the Cr-Al-Hf on the surface of the alloys enhanced their corrosion resistance. The rare earth element modified chromium aluminide coatings showed superior protectivity. However the Cr-Al-Hf coating on INC718 delayed the formation of the refractory metal sulphides in sulphidising atmosphere and thereby reduced its sulphidation resistance whilst the coating on 2.25Cr-1Mo steel only slightly increased its resistance to sulphidation attack. (orig.)

  9. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Lai, Sheng-Feng [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Yan-Cheng; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Ong, Edwin B.L. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tan, Hui-Ru [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Tok, Eng Soon [Physics Department, National University of Singapore, 117542 (Singapore); Yang, C.S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-01-15

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue.

  10. Transparent binary-thickness coatings on metal substrates that produce binary patterns of orthogonal elliptical polarization states in reflected light

    Science.gov (United States)

    Azzam, Rasheed M. A.; Angel, Wade W.

    1992-12-01

    A reflective division-of-wavefront polarizing beam splitter is described that uses a dual- thickness transparent thin-film coating on a metal substrate. A previous design that used a partially clad substrate at the principal angle of the metal [Azzam, JOSA A 5, 1576 (1988)] is replaced by a more general one in which the substrate is coated throughout and the film thickness alternates between two non-zero levels. The incident linear polarization azimuth is chosen near, but not restricted to, 45 degree(s) (measured from the plane of incidence), and the angle of incidence may be selected over a range of values. The design procedure, which uses the two-dimensional Newton-Raphson method, is applied to the SiO2-Au film- substrate system at 633 nm wavelength, as an example, and the characteristics of the various possible coatings are presented.

  11. Corrosion resistance of Al-based coatings in flowing Pb–15.7Li produced by aluminum electrodeposition from ionic liquids

    Directory of Open Access Journals (Sweden)

    Sven-Erik Wulf

    2016-12-01

    Full Text Available Reduced activation ferritic–martensitic steels are intended to serve as structural materials in different blanket designs, e.g. HCLL, DCLL and WCLL. In these designs the material is supposed to be in direct contact with the flowing liquid breeder material Pb–15.7Li at an operating temperature of up to 550°C. These conditions will lead to severe corrosion attack of the steel and high corrosion rates of up to 400µm per year are reported in the literature. To avoid or reduce corrosion Al-based corrosion barriers were developed in the last years by using electrochemical techniques to deposit aluminum. Until now two processes have been developed. The first one, so called ECA process, is based on volatile toluene electrolytes. Long-term corrosion experiments on these coatings indicated reduced corrosion rates compared to bare Eurofer steel in flowing Pb–15.7Li. However, these Fe–Al scales showed inhomogeneous corrosion attack of the corrosion barrier itself. In this study the improved ECX process was applied to produce Al-based coatings. The short-term corrosion behavior of such barrier coatings was analyzed for up to 4000h by diameter measurements and metallographic examinations. The investigation revealed uniform corrosion in comparison to inhomogeneous attack in case of ECA coated samples and reduced corrosion rates of around 20µm/a even for low exposure times of 4000h.

  12. The analysis of impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources

    Directory of Open Access Journals (Sweden)

    N. A. Nerosin

    2015-01-01

    Full Text Available The impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources was analyzed. On engineering software MATHCAD the program for calculation of absorbed dose produced by grid of microsources was created. To verify this algorithm the calculation model for MCNP code was established and represented the area consisted of soft biological tissue or any other tissue in which the grid of microsources was incorporated. Using the developed system the value of possible systematic irregular coating of radioactivity on the microsource’s core was analyzed. The distribution of activity along the surface of microsource was simulated to create distribution of absorbed dose rate corresponding to experimental data on radiation injury. The obtained model of microsource with irregular distribution of activity was compared to conventional microsource with core coated regularly along the entire area of the silver stem by main dosimetry characteristics. The results showed that even for extremely irregular distribution of activity the distribution of dose rate produced by microsource in the tumor area was not substantially different from dose-rate field obtained for microsource with regularly coated activity. The differences in dose rates (up to 10% in areas which were the nearest to the center of the grid were significantly lower than its decline from center to periphery of the grid. For spatial distribution of absorbed dose for specific configuration of microsource set and tracing of curves of equal level by selected cut-off the program SEEDPLAN was developed. The developed program represents precisely enough the spatial distribution of selected configuration set of microsources using results of calculation data for absorbed dose around the single microsource as basic data and may be used for optimal planning of brachytherapy with microsources. 

  13. Laser surface alloying of commercially pure titanium with boron and carbon

    Science.gov (United States)

    Makuch, N.; Kulka, M.; Dziarski, P.; Przestacki, D.

    2014-06-01

    Laser surface alloying with boron and carbon was applied to produce the composite layers, reinforced by the hard ceramic phases (titanium borides and titanium carbides), on commercially pure titanium. The external cylindrical surface of substrate material was coated by paste containing boron, boron and graphite, or graphite. Then, the laser re-melting was carried out with using the continuous-wave CO2 laser. This enabled the formation of laser-borided, laser-borocarburized, and laser-carburized layers. The microstructure or the re-melted zone consisted of the hard ceramic phases (TiB+TiB2, TiB+TiB2+TiC, or TiC) located in the eutectic mixture of Tiα'-phase with borides, borides and carbides, or carbides, respectively. All the composite layers were characterized by the sufficient cohesion. The significant increase in microhardness and in wear resistance of all the laser-alloyed layers was observed in comparison with commercially pure titanium. The percentage of hard ceramic phases in more plastic eutectic mixture influenced the measured microhardness values. The dominant wear mechanism (abrasive or adhesive) depended on the method of laser alloying, and the type of test used. The wear tests for longer duration, without the change in the counter specimen, created the favourable conditions for adhesive wear, while during the shorter tests the abrasive wear dominated, as a rule.

  14. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...... with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy....

  15. Composite Nickel Coatings Produced on 6XXX Series Aluminium Alloys with the Addition of Vanadium / Kompozytowe Powłoki Niklowe Wytwarzane Na Stopach Aluminum Serii 6XXX Z Dodatkiem Wanadu

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2015-12-01

    Full Text Available Studies of composite nickel coatings electrolytically deposited on aluminium alloys with different content of vanadium were described. Composite coatings were deposited from a Watts bath containing fine-dispersed SiC powder particles in an amount of 20 g/l and organic matters such as saccharin and sodium laurate. The morphology, structure and thickness of the obtained composite coatings were presented. The corrosion resistance of produced coatings was examined by electrochemical method. Basing on the results of studies it was found that coatings obtained with the sole addition of saccharin were characterized by numerous surface defects. The addition of sodium laurate eliminated the occurrence of defects caused by hydrogen evolution and the resulting coatings were continuous with good adhesion to the substrate. The distribution of the ceramic SiC phase in coatings was fairly uniform for all the examined variants of aluminium alloys. SEM examinations did not reveal the phenomenon of the ceramic particles agglomeration.

  16. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution.

  17. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  18. Influence of Nitrided Layer on The Properties of Carbon Coatings Produced on X105CrMo17 Steel Under DC Glow-Discharge Conditions

    Directory of Open Access Journals (Sweden)

    Tomasz BOROWSKI

    2016-09-01

    Full Text Available In most cases, machine components, which come in contact with each other, are made of steel. Common steel types include 100Cr6 and X105CrMo17 are widely used in rolling bearings, which are subjected to high static loads. However, more and more sophisticated structural applications require increasingly better performance from steel. The most popular methods for improving the properties of steel is carburisation or nitriding. Unfortunately, when very high surface properties of steel are required, this treatment may be insufficient. Improvement of tribological properties can be achieved by increasing the hardness of the surface, reducing roughness or reducing the coefficient of friction. The formation of composite layers on steel, consisting of a hard nitride diffusion layer and an external carbon coating with a low coefficient of friction, seems to be a prospect with significant potential. The article describes composite layers produced on X105CrMo17 steel and defines their morphology, surface roughness and their functional properties such as: resistance to friction-induced wear, coefficient of friction and corrosion resistance. The layers have been formed at a temperature of 370°C in successive processes of: nitriding in low-temperature plasma followed by deposition of a carbon coating under DC glow-discharge conditions. An evaluation was also made of the impact of the nitrided layers on the properties and morphology of the carbon coatings formed by comparing them to coatings formed on non-nitrided X105CrMo17 steel substrates. A study of the surface topography, adhesion, resistance to friction-induced wear and corrosion shows the significant importance of the substrate type the carbon coatings are formed on.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7532

  19. Boron and the kidney.

    Science.gov (United States)

    Pahl, Madeleine V; Culver, B Dwight; Vaziri, Nosratola D

    2005-10-01

    Boron, the fifth element in the periodic table, is ubiquitous in nature. It is present in food and in surface and ocean waters, and is frequently used in industrial, cosmetic, and medical settings. Exposure to boron and related compounds has been recently implicated as a potential cause of chronic kidney disease in Southeast Asia. This observation prompted the present review of the published data on the effects of acute and chronic exposure to boron on renal function and structure in human beings and in experimental animals.

  20. Innovative method for boron extraction from iron ore containing boron

    Science.gov (United States)

    Wang, Guang; Wang, Jing-song; Yu, Xin-yun; Shen, Ying-feng; Zuo, Hai-bin; Xue, Qing-guo

    2016-03-01

    A novel process for boron enrichment and extraction from ludwigite based on iron nugget technology was proposed. The key steps of this novel process, which include boron and iron separation, crystallization of boron-rich slag, and elucidation of the boron extraction behavior of boron-rich slag by acid leaching, were performed at the laboratory. The results indicated that 95.7% of the total boron could be enriched into the slag phase, thereby forming a boron-rich slag during the iron and slag melting separation process. Suanite and kotoite were observed to be the boron-containing crystalline phases, and the boron extraction properties of the boron-rich slag depended on the amounts and grain sizes of these minerals. When the boron-rich slag was slowly cooled to 1100°C, the slag crystallized well and the efficiency of extraction of boron (EEB) of the slag was the highest observed in the present study. The boron extraction property of the slow-cooled boron-rich slag obtained in this study was much better than that of szaibelyite ore under the conditions of 80% of theoretical sulfuric acid amount, leaching time of 30 min, leaching temperature of 40°C, and liquid-to-solid ratio of 8 mL/g.

  1. Bioactive ZnO Coatings Deposited by MAPLE—An Appropriate Strategy to Produce Efficient Anti-Biofilm Surfaces

    Directory of Open Access Journals (Sweden)

    Alexandra Elena Oprea

    2016-02-01

    Full Text Available Deposition of bioactive coatings composed of zinc oxide, cyclodextrin and cefepime (ZnO/CD/Cfp was performed by the Matrix Assisted Pulsed Laser Evaporation (MAPLE technique. The obtained nanostructures were characterized by X-ray diffraction, IR microscopy and scanning electron microscopy. The efficient release of cefepime was correlated with an increased anti-biofilm activity of ZnO/CD/Cfp composites. In vitro and in vivo tests have revealed a good biocompatibility of ZnO/CD/Cfp coatings, which recommend them as competitive candidates for the development of antimicrobial surfaces with biomedical applications. The release of the fourth generation cephalosporin Cfp in a biologically active form from the ZnO matrix could help preventing the bacterial adhesion and the subsequent colonization and biofilm development on various surfaces, and thus decreasing the risk of biofilm-related infections.

  2. Structure and properties of chromium-containing coatings produced by electron-beam facing in the atmosphere

    Science.gov (United States)

    Poletika, I. M.; Golkovskii, M. G.; Krylova, T. A.; Perovskaya, M. V.

    2009-03-01

    The chemical and phase compositions and the structure of layers formed by electron-beam facing of low-carbon steel with mixtures of powdered chromium and chromium carbide in air are studied. The microhardness of the layers is determined over their thickness. The faced steels are tested for bending strength, corrosion resistance, and resistance to abrasive wear. A possible mechanism of formation of the properties of the coating, i.e., the hardness, the wear resistance, and the crack resistance, is considered.

  3. Preparation and characterization of boron nitride/carbon fiber composite with high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan; Fan, Mingwen [Wuhan Univ. (China). Key Laboratory for Oral Biomedical Engineering; Yuan, Songdong; Xiong, Kun; Hu, Kunpeng; Luo, Yi [Hubei Univ. of Technology, Wuhan (China). School of Chemistry and Chemical Engineering; Li, Dong [Hubei Univ. of Technology, Wuhan (China). School of Chemistry and Chemical Engineering; Oxford Univ. (United Kingdom). Chemistry Research Lab.

    2014-06-15

    Boron nitride can be used as a good catalyst carrier because of its high thermal conductivity and chemical stability. However, a high specific surface area of boron nitride is still desirable. In this work, a carbon fiber composite coated with boron nitride villous nano-film was prepared, and was also characterized by means of scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The results indicated that the carbon fibers were covered by uniform villous boron nitride films whose thickness was about 150 - 200 nm. The specific surface area of the boron nitride/carbon fiber composite material was 96 m{sup 2} g{sup -1}, which was markedly improved compared with conventional boron nitride materials. (orig.)

  4. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  5. Metallogenic Model and Prospecting Indicators of the Boron Deposits in East Liaoning Area

    Institute of Scientific and Technical Information of China (English)

    Qu Hongxiang; Zhang Guoren; Li Xiandong; Chen Shuliang; Yang Zhongzhu; Wang Zhongjiang

    2001-01-01

    The Paleoproterozoic boron deposits in east Liaoning occur in Mg- rich marble of Li' eryu Formation of Liaohe group. The mineralization was controlled by stratigraphic lithology. The volcano ~ sedimentation is the material base of ore-formation. Boron mainly derived from volcanic source. Boron in Li' eryu formation was activated and transferred by migmatization and then deposited into ore when metasomatism occurrs in Mg - rich marble. Structural deformation reconstructed the boron ore bodies. Meanwhile, ore - bearing hyd~othermal solution produced by structural deformation and remetasomated the host - ore rocks or filled in fissure of ore. Boron deposit is a stratabound deposit, which formed by migmatization and structural deformation mineralization.

  6. Safety Assessment of Boron Nitride as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations.

  7. Boron-Based Drug Design.

    Science.gov (United States)

    Ban, Hyun Seung; Nakamura, Hiroyuki

    2015-06-01

    The use of the element boron, which is not generally observed in a living body, possesses a high potential for the discovery of new biological activity in pharmaceutical drug design. In this account, we describe our recent developments in boron-based drug design, including boronic acid containing protein tyrosine kinase inhibitors, proteasome inhibitors, and tubulin polymerization inhibitors, and ortho-carborane-containing proteasome activators, hypoxia-inducible factor 1 inhibitors, and topoisomerase inhibitors. Furthermore, we applied a closo-dodecaborate as a water-soluble moiety as well as a boron-10 source for the design of boron carriers in boron neutron capture therapy, such as boronated porphyrins and boron lipids for a liposomal boron delivery system.

  8. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  9. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  10. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    Science.gov (United States)

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level 22.2 in order to avoid boron accumulation in the anolyte effluent.

  11. Isolation and characterization of indigenous Streptomyces and Lentzea strains from soils containing boron compounds in Argentina.

    Science.gov (United States)

    Moraga, Norma Beatriz; Poma, Hugo Ramiro; Amoroso, María Julia; Rajal, Verónica Beatriz

    2014-06-01

    The Salta Province - in the northwest of Argentina - is the main worldwide producer of hydroboracite and leads in exports of boron mineral and its derivatives in Latin America. In addition to the natural presence of boron compounds in the soils, there are others contaminated due to the boron mining industry. Although some bacteria are known to require boron for their growth or to be capable of storing boron, no studies have been published about Streptomyces or Lentzea genera's capacity to tolerate high boron concentrations, or about their metabolic capacities in boron contaminated environments. The results of this research show the isolation and molecular characterization of eight strains belonging to the actinobacteria phylum collected from different soils contaminated with high boron concentration in Salta state. The boron tolerance assays, which show that three of the strains were able to tolerate up 60-80 mM boron, demonstrate the potential capability of this group of bacteria to grow and maybe to remove boron from the environment. They appear to be promising, considering that these microorganisms are infrequent pathogens, are metabolically versatile and many Streptomyces can synthesize boron containing metabolites.

  12. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water.

  13. In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil

    Directory of Open Access Journals (Sweden)

    Afsaneh Fazili

    2016-09-01

    Full Text Available Objective: This study examined the in vivo differentiation of mesenchymal stem cells (MSCs into insulin producing cells (IPCs on electrospun poly-L-lactide acid (PLLA scaffolds coated with Matricaria chammomila L. (chamomile oil. Materials and Methods: In this interventional, experimental study adipose MSCs (AMSCs were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control or PLLA scaffold coated with chamomile oil (experimental. A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs. Real-time polymerase chain reaction (PCR determined the expressions of genes related to pancreatic endocrine development and function. Results: Fourier transform infrared spectroscopy (FTIR results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm-1 for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001 compared to control group (0.063 ± 0.009, P≤0.05. Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. Conclusion: The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular

  14. The Role of SiO2 Gas in the Operation of Anti-Corrosion Coating Produced by PVD

    Directory of Open Access Journals (Sweden)

    Meysam Zarchi

    2015-09-01

    Full Text Available This study examined theSiO2 gas present in the coatings used in corrosion industry.These layers have been created by physical vapor deposition (PVD, with an appropriate performance. Sublimation of SiO2is used to protect PVD aluminum flakes from water corrosionand to generate highly porous SiO2 flakes with holes in the nanometer range. SiOx/Al/SiOx sandwiches were made as well as Ag loaded porous SiO2 as antimicrobial filler.

  15. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  16. A review of producing hard coatings by means of duplex treatments using an electroplated coating–thermochemical treatment combination

    Directory of Open Access Journals (Sweden)

    Héctor Cifuentes Aya

    2011-12-01

    Full Text Available Duplex treatments have been developed to overcome the disadvantages presented by simple treatments to surfaces of different materials and have, in a combined and complementary way, the properties that each of these methods supplies individually. The difference between thermal expansion coefficients for Fe and Cr in hard chrome plating leads to crack formation in the deposited coat, through which corrosive agents migrate and reduce the system’s integrity.Direct deposition by physical vapour deposition (PVD, used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

  17. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coate

  18. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  19. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  20. Synthesis of an orthorhombic high pressure boron phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zarechnaya, Evgeniya; Dubrovinsky, Leonid; Miyajima, Nobuyoshi [Bayerisches Geoinstitut, Universitaet Bayreuth, 95440 Bayreuth (Germany); Dubrovinskaia, Natalia [Institute of Earth Sciences, Universitaet Heidelberg, Im Neuenheimer Feld 236, 69120 Heidelberg (Germany); Filinchuk, Yaroslav; Chernyshov, Dmitry; Dmitriev, Vladimir [Swiss Norwegian Beam lines at ESRF, 38043 Gernoble (France)], E-mail: Evgeniya.Zarechnaya@uni-bayreuth.de

    2008-12-15

    The densest boron phase (2.52 g cm{sup -3}) was produced as a result of the synthesis under pressures above 9 GPa and temperatures up to {approx}1800 deg. C. The x-ray powder diffraction pattern and the Raman spectra of the new material do not correspond to those of any known boron phases. A new high-pressure high-temperature boron phase was defined to have an orthorhombic symmetry (Pnnm (No. 58)) and 28 atoms per unit cell.

  1. Synthesis of an orthorhombic high pressure boron phase

    Directory of Open Access Journals (Sweden)

    Evgeniya Yu Zarechnaya, Leonid Dubrovinsky, Natalia Dubrovinskaia, Nobuyoshi Miyajima, Yaroslav Filinchuk, Dmitry Chernyshov and Vladimir Dmitriev

    2008-01-01

    Full Text Available The densest boron phase (2.52 g cm-3 was produced as a result of the synthesis under pressures above 9 GPa and temperatures up to ~1800 °C. The x-ray powder diffraction pattern and the Raman spectra of the new material do not correspond to those of any known boron phases. A new high-pressure high-temperature boron phase was defined to have an orthorhombic symmetry (Pnnm (No. 58 and 28 atoms per unit cell.

  2. INFLUENCE OF MICROALLOYING BY BORON ON HARDENABILITY OF STEEL

    Directory of Open Access Journals (Sweden)

    E. P. Baradyntseva

    2016-01-01

    Full Text Available The research conducted in laboratory of metallurgical science by which the factors exerting impact on hardenability of steel microalloyed by boron were analysed. The research was made because the implementation of this process in mass production is connected with the certain difficulties. The conducted researches have allowed to draw a conclusion that changing content of various chemical elements, such as nitrogen, boron, the titan and aluminum in steel containing boron, produced by JSC «BSW – Management Company of Holding «BMC» at the stage of preparation of chart flowsheet make it possible to predict terms of hardenability of the final product.

  3. Electrochemical characterization of V{sub x}Nb{sub y}C{sub z}/Bi{sub x}Ti{sub y}O{sub z} coatings produced through thermo-reactive diffusion and the sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Castro H, S. A.; Alfonso, J. E.; Olaya, J. J., E-mail: jealfonso@unal.edu.co [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Ciencia de Materiales y Superficies, AA-14490 Bogota (Colombia)

    2016-11-01

    We present and experimental study of the structural evolution of a bilayer V{sub x}Nb{sub y}C{sub z}/Bi{sub x}Ti{sub y}O{sub z} coating produced via thermo-reactive diffusion (TRD) and the RF sputtering process on D-2 steel substrate. The TRD treatments were carried out in a molten mixture consisting of borax, ferro-niobium, ferro-vanadium, and aluminum, at 1313 K for 3 hours, using a resistance-heating furnace. Bi{sub x}Ti{sub y}O{sub z} coatings were deposited using RF magnetron sputtering on TRD coatings, in order to carry out a study of the corrosion behavior of this compound. The crystallographic structure of the coatings was determined via X-ray diffraction, the corrosion resistance was analyzed through the potentiodynamic polarization test (Tafel Extrapolation) and electrochemical impedance spectroscopic analysis (EIS). X-ray diffraction patterns showed that the ternary coating (VNbC{sub 2}) was preferentially oriented along the [200] direction with a cubic-centered face structure, and the Bi{sub x}Ti{sub y}O{sub z} coatings were amorphous. The electrochemical studies showed that the resistance corrosion of the coatings increased with respect to the bare substrate, and that polarization resistance in the bilayer coatings increased with respect to the ternary coatings, suggesting that the titanate has anti corrosive barrier effects. (Author)

  4. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  5. Soft-agar-coated filter method for early detection of viable and thermostable direct hemolysin (TDH)- or TDH-related hemolysin-producing Vibrio parahaemolyticus in seafood.

    Science.gov (United States)

    Hayashi, Sachiko; Okura, Masatoshi; Osawa, Ro

    2006-07-01

    A novel method for detecting viable and thermostable direct hemolysin (TDH)-producing or TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in seafood was developed. The method involved (i) enrichment culture, selective for viable, motile cells penetrating a soft-agar-coated filter paper, and (ii) a multiplex PCR assay targeting both the TDH gene (tdh) and TRH gene (trh) following DNase pretreatment on the test culture to eradicate any incidental DNAs that might have been released from dead cells of tdh- or trh-positive (tdh+ trh+) strains and penetrated the agar-coated filter. A set of preliminary laboratory tests performed on 190 ml of enrichment culture that had been inoculated simultaneously with ca. 100 viable cells of a strain of tdh+ trh+ V. parahaemolyticus and dense populations of a viable strain of tdh- and trh-negative V. parahaemolyticus or Vibrio alginolyticus indicated that the method detected the presence of viable tdh+ trh+ strains. Another set of preliminary tests on 190 ml of enrichment culture that had been initially inoculated with a large number of dead cells of the tdh+ trh+ strain together with dense populations of the tdh- and trh-negative strains confirmed that the method did not yield any false-positive results. Subsequent quasi-field tests using various seafood samples (ca. 20 g), each of which was experimentally contaminated with either or both hemolysin-producing strains at an initial density of ca. 5 to 10 viable cells per gram, demonstrated that contamination could be detected within 2 working days.

  6. Coating of Microbially Produced Calcium Carbonate Precipitation on Marble%大理石表面微生物诱导碳酸钙覆膜

    Institute of Scientific and Technical Information of China (English)

    牟涛; 竹文坤; 段涛; 张友魁; 陈晓明

    2014-01-01

    选育碳酸盐矿化菌,利用其诱导CaCO3沉积,采用涂覆法和浸泡法进行细菌矿化试验,最终在大理石样品表面形成一层致密的矿化膜。采用扫描电镜(SEM)和X射线衍射(XRD)对大理石空白试样和处理后试样进行分析,并对矿化膜进行抗酸性测试。结果表明,涂覆法和浸泡法均能在大理石表面粘结一层细小颗粒,形成一层致密、厚度为50~100μm的CaCO3矿化膜。经过覆膜处理的大理石耐酸性能得到了明显提升。%CaCO3 precipitation was induced by carbonate-mineralization microbe using the immersion method and the coating method, and ifnally formed a dense mineralization membrane layer on marble sample surface. The immersed and smeared samples were characterized by scanning electron microscopic (SEM) and X-ray diffraction (XRD), as well as tested the acid-resistance of the calcium carbonate layer. Experimental results showed that both immersion method and coating method can produce calcium carbonate particle forming a layer of dense mineralization membrane of 50~100μm, acid-resistance of the coated marble samples was improved signiifcantly.

  7. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  8. Submicron MC-type reinforced coating produced by laser alloying%激光合金化引入亚微米MC型增强相的研究

    Institute of Scientific and Technical Information of China (English)

    韩甜; 王爱华; 彭锦; 吴宝业; 黄朝

    2012-01-01

    为了研究不同反应方式的原位合成或直接添加所引入的碳化物增强相对碳化物强化铁基复合涂层耐磨性能的影响,采用CO2激光器在T10钢表面激光合金化制备TiC/Fe基复合涂层,对涂层的组织结构、显微硬度和耐磨性能进行了检测和分析.结果表明,合金化层组织致密无缺陷,由γ-CrFe7C0.5相+亚微米MC相(M=Ti,Cr,W)组成,其中奥氏体在磨损过程中由于加工硬化转变成马氏体;直接添加增强相的磨损失重是原位合成反应生成增强相的2倍~3倍;Ti+C化合反应生成的碳化物含量高于TiO2+C还原反应,耐磨性能更优异.该实验结果对制备TiC强化Fe基复合涂层时陶瓷相的最佳引入方式,有一定的指导借鉴作用.%In order to study the influence of carbides produced by in situ synthesis of various chemical reactions or direct addition on wear resistance of carbide reinforced composite coatings, TiC reinforced Fe-based composite coatings were prepared on T10 steel substrate by laser alloying. Then their microstructures, phases, microhardness and wear properties were investigated and analyzed. Results showed that compact and non-defective alloy layers were obtained, consisting of γ-CrFe, C0.5 and submicron MC(M=Ti, Cr, W) particles. Austenite transformed into martensite in wear testing because of processing hardening. Wear weight loss of direct addition was 2 times to 3 times larger than that of in situ synthesis. The content of carbides produced through combination reaction between Ti and C was higher than that produced through reduction reaction between TiO2 and C, which led to a better tribological performance. The results can serve as a guide in selecting the best method of the ceramic phase introduction when preparing TiC reinforced Fe-based composite coatings.

  9. High-performance resin-bonded magnets produced from zinc metal-coated Sm2(Fe0.9Co0.1)17Nx fine powders

    Science.gov (United States)

    Noguchi, K.; Machida, K.; Yamamoto, K.; Nishimura, M.; Adachi, G.

    1999-09-01

    Fine powders of Sm2(Fe0.9Co0.1)17Nx (x=˜3) with particle sizes (d) around 1 μm as coated with zinc metal produced via the photodecomposition of diethylzinc [Zn(C2H5)2], which still provided high remanence (Br) and coercivity (Hcj) values of ˜1.43 T and ˜0.85 MAm-1, were molded to compression-type resin bonded Zn/Sm2(Fe0.9Co0.1)17Nx magnets with density values of ˜6.33 g cm-3. By optimizing the preparation conditions such as grinding, surface coating, and molding for them, the highest maximum energy product of (BH)max=186 kJm-3 for Hcj=0.73 MAm-1 was recorded among all kinds of the Sm-Fe-N based magnets reported to date. Furthermore, the excellent aging behavior of the bonded Zn/Sm2(Fe0.9Co0.1)17Nx magnets was observed after standing in air at ˜393 K and the thermal coefficient for permanent magnet was evaluated to be α(Br)=-0.04% K-1.

  10. On the influence of a TiN interlayer on DLC coatings produced by pulsed vacuum arc discharge: Compositional and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Giraldo, B. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Departamento de Fisica y Quimica, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Grupo de Desarrollo de Nuevos Materiales, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Arango-Arango, P.J. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia); Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, Km. via al aeropuerto, Manizales (Colombia)

    2009-10-15

    The influence of a TiN interlayer on DLC coatings grown on silicon (1 0 0), 316 stainless steel and KCl by using the PAPVD pulsed arc discharge technique is presented in this paper. The structure of the coatings was determined by means of FTIR through observation of the absorption band modes of CH{sub 2} between 3100 and 2800 cm{sup -1} and representation of the sp{sup 3} and sp{sup 2} carbon bonds, respectively. The sp{sup 3}/sp{sup 2} bonds ratio was calculated by using the base line method and producing a value greater than 1 which was a good prediction of high hardness. XPS analysis of the films was made; the wide spectrum showed the elemental composition of the films (Ti, N, C). A narrow spectrum of C1s at binding energy of 284.48 eV was obtained, and its deconvolution showed peaks of sp{sup 3}, sp{sup 2} and Ti-C. Ti-C bonds were formed due to diffusion of carbon atoms into a TiN matrix. The concentration for the XPS spectra was calculated by using the area under the curve of sp{sup 3} and sp{sup 2} peaks. The morphology of the bilayer, including roughness, grain size and thickness was studied through SPM techniques.

  11. Research on the abrasive wear resistance of YDCrMoV coating produced by CO2 shielded flux-cored wire surfacing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.

  12. Boron effects on the ductility of a nano-cluster-strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.W. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849 (United States); Liu, C.T., E-mail: mmct8tc@inet.polyu.edu.hk [Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849 (United States); Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Guo, S. [Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Cheng, J.L.; Chen, G. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Fujita, Takeshi; Chen, M.W. [Institute for Materials Research, and World Premier International Research Center for Atoms, Molecules and Materials, Tohoku University, Sendai 980-8577 (Japan); Chung, Yip-Wah; Vaynman, Semyon; Fine, Morris E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Chin, Bryan A. [Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849 (United States)

    2011-01-25

    Research highlights: {yields} Cu-rich nano-particle precipitation strengthens the ferritic steels. {yields} Boron doping suppresses brittle intergranular fracture. {yields} Moisture-induced environmental embrittlement can be alleviated by surface coating. - Abstract: The mechanical properties of Cu-rich nano-cluster-strengthened ferritic steels with and without boron doping were investigated. Tensile tests at room temperature in air showed that the B-doped ferritic steel has similar yield strength but a larger elongation than that without boron doping after extended aging at 500 deg. C. There are three mechanisms affecting the ductility and fracture of these steels: brittle cleavage fracture, week grain boundaries, and moisture-induced hydrogen embrittlement. Our study reveals that boron strengthens the grain boundary and suppresses the intergranular fracture. Furthermore, the moisture-induced embrittlement can be alleviated by surface coating with vacuum oil.

  13. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  14. Plasma boron and the effects of boron supplementation in males.

    Science.gov (United States)

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  15. 含B量对激光熔覆FeCoCrNiBx(x=0.5,0.75,1.0,1.25)高熵合金涂层组织结构与耐磨性的影响%Effect of Boron Addition on the Microstructure and Wear Resistance of FeCoCrNiBx (x=0.5, 0.75, 1.0, 1.25) High-Entropy alloy Coating Prepared by Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    陈国进; 张冲; 唐群华; 戴品强

    2015-01-01

    采用激光熔覆技术制备FeCoCrNiBx高熵合金涂层,用X射线衍射(XRD)、扫描电镜(SEM)、硬度和耐磨测试等方法,研究了B含量对激光熔覆FeCoCrNiBx高熵合金涂层的组织结构、硬度和耐磨性能的影响.结果表明,随B含量的增加,合金相结构逐渐由fcc固溶体结构转变为fcc固溶体和M3B相共存,M3B相主要为Cr、Fe硼化物.随B含量的增加,枝晶组织中析出颗粒状和短棒状的M3B相,且M3B相逐渐长大成长条状.B的增加显著提高合金涂层的硬度,由4470 MPa增加到8480 MPa,且磨损量随着B的增加而减少.%The FeCoCrNiBx high-entropy alloy coatings were prepared by laser cladding.The effect of boron addition on microstructure,hardness and wear resistance of FeCoCrNiBx high-entropy alloy coating were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),hardness and wear testers.The results show that with the boron addition increasing,the structure of alloys change from fcc structure to fcc structure with M3B phase precipitation,and M3B phase are mainly borides of Cr and Fe.Meanwhile,the granular and short rod-like M3B phase is precipitated in the coatings.And a blocky M3B phase forms with boron addition.Microhardness and wear resistance are significantly enhanced by the formation M3B phase.The microhardness increases from 4470 to 8480 MPa,and the wear-loss of FeCoCrNiBx high-entropy alloy coating decrease with boron addition.

  16. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    Science.gov (United States)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  17. Investigation of the Microstructure and the Mechanical Properties of Cu-NiC Composite Produced by Accumulative Roll Bonding and Coating Processes

    Science.gov (United States)

    Shabani, Ali; Toroghinejad, Mohammad Reza

    2015-12-01

    In the present study, Cu-1.8 wt.% NiC (nickel coating) composite was produced by the combination of two methods, including accumulative roll bonding (ARB) and electroplating processes. Electroplating process was done on copper strips in order to produce a nickel-particle-reinforced composite. Microstructure, texture, and the mechanical properties of the produced composite were evaluated during various cycles of ARB using optical and scanning electron microscopes, x-ray diffraction, microhardness, and tensile tests. In addition, the results were compared with Cu-Cu and also Cu-NiS (nickel sheet) samples. It was found that nickel layers were fractured from the first cycle of the process, and nickel fragments were distributed in the copper matrix as the number of cycles was increased. Variation of orientation density of α-, β-, and τ-fibers for the produced composite was examined in different cycles. Microhardness for different elements in different cycles of Cu-NiC was also evaluated. Also, the investigation of the mechanical properties showed that by proceeding the ARB process, the tensile strength of the produced Cu-NiC and Cu-Cu samples was increased. However, improvement in the mechanical properties of composite samples was more noticeable due to the reinforcing effect of nickel particles. The elongation of composite samples showed a decrease in the primary cycles, unlike Cu-Cu ones; however, it was then increased. Finally, by using scanning electron microscopy, the fracture surfaces of Cu-NiC composite were studied to disclose the fracture mechanism of the samples.

  18. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  19. Oxidation of Silicon and Boron in Boron Containing Molten Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new process of directly smelting boron steel from boron-containing pig iron has been established. The starting material boron-containing pig iron was obtained from ludwigite ore, which is very abundant in the eastern area of Liaoning Province of China. The experiment was performed in a medium-frequency induction furnace, and Fe2O3 powder was used as the oxidizing agent. The effects of temperature, addition of Fe2O3, basicity, stirring, and composition of melt on the oxidation of silicon and boron were investigated respectively. The results showed that silicon and boron were oxidized simultaneously and their oxidation ratio exceeded 90% at 1 400 ℃. The favorable oxidation temperature of silicon was about 1 300-1 350 C. High oxygen potential of slag and strong stirring enhanced the oxidation of silicon and boron.

  20. Electrodeposition of nickel-BN composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pompei, E. [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20151 Milano (Italy); Magagnin, L. [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20151 Milano (Italy)], E-mail: luca.magagnin@polimi.it; Lecis, N. [Dip. di Meccanica, Politecnico di Milano, Milano (Italy); Cavallotti, P.L. [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20151 Milano (Italy)

    2009-03-30

    Electrodeposition of nickel-boron nitride (Ni-BN) composites is carried out from a sulfamate bath containing up to 10 g/l of dispersed boron nitride particles with size 0.5 {mu}m. Microhardness and wear resistance of the composites are investigated. Both the properties are influenced by the amount of incorporated boron nitride particles. Commercial surfactant containing alkyl-dimethyl-benzyl-ammonium saccharinate is used to stabilize the electrolyte: the effects on mechanical properties and structure of the electrodeposits are investigated. Morphology of the coatings and the effects of codeposited particles on metal matrix structure are reported.

  1. Magnetron sputtering synthesis of large area well-ordered boron nanowire arrays

    Institute of Scientific and Technical Information of China (English)

    CAO; Limin; ZHANG; Ze; WANG; Wenkui

    2004-01-01

    One-dimensionally nanostructured materials, such as nanowires and nanotubes, are the smallest dimensional structures for efficient transport of electrons and excitons, and are therefore critical building blocks for nanoscale electronic and mechanical devices. In this paper, boron nanowires with uniform diameters from 20 to 80nm were synthesized by radio-frequency magnetron sputtering of pure boron powder and B2O3 powder mixtures in argon atmosphere. The boron nanowires produced stand vertically on the substrate surface to form well-ordered arrays over large areas with selforganized arrangements without involvement of any template and patterned catalyst. The high-density boron nanowires are parallel to each other and well distributed, forming highly ordered and uniform arrays. A more interesting and unique feature of the boron nanowires is that most of their tips are flat rather than hemispherical in morphologies.Detailed studies on its structure and composition indicate that boron nanowires are amorphous. Boron nanowire appears as a new member in the family of one-dimensional nanostructures. Considering the unique properties of boron-rich solids and other nanostructures, it is reasonable to expect that the boron nanowires will display some exceptional and interesting properties. A vapor-cluster-solid (VCS) mechanism was proposed to explain the growth of boron nanowires based on our experimental observations.

  2. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    Science.gov (United States)

    Rinaldo, Steven G.

    formation of boron nitride nanotubes (BNNTs). In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and introduce a new method involving injection of boron powder into an induction furnace. In Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor generated in situ, either through the reaction of boron with metal oxides or through the decomposition of metal borides.

  3. Novel method to produce {sup 109}Cd via proton irradiation of electroplated silver on a gold-coated copper backing

    Energy Technology Data Exchange (ETDEWEB)

    Gholamzadeh, Z.; Sadeghi, M.; Mirzaei, M. [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Agricultural, Medical and Industrial Research School; Aref, M. [Zanjan Univ. (Iran, Islamic Republic of). Faculty of Physics

    2011-08-15

    Silver electrodeposition on gold layer was carried out by the alkaline plating baths to produce cadmium-109 via {sup nat}Ag(p, n){sup 109}Cd nuclear reaction. Gold was electrodeposited on copper backing in the beginning; the bath content consisted of 17.7 gl{sup -1} KCN, 6.6 gl{sup -1} Au, 6.6 gl{sup -1} K{sub 2}CO{sub 3} and 3.3 gl{sup -1} Na{sub 2}CO{sub 3} while acidity and temperature of the bath adjusted at 10 and 45 C respectively. A DC current density of ca 2.08 mA . cm{sup -2} was used to electroplate gold. A gold layer of 63 {mu}m thickness with suitable morphology was obtained after the electrodeposition. Silver was electrodeposited on the gold layer with 100% efficiency using a cyanide bath. The silver target was irradiated with 15 MeV proton beam and current of 150 {mu}A; the {sup 109}Cd production yield was 2.0 {mu}Ci/{mu}A . h (0.074 MBq/{mu}A . h). The target material was dissolved by 14 M HNO{sub 3}{sup .} Cadmium-109 in the dissolved target solution was separated from silver by evaporation process. Cadmium recovered with more than 88% efficiency involved non-detected silver impurity. (orig.)

  4. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; J. X. Zhong

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  5. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    Science.gov (United States)

    Joshi, Foram M.; Joshipura, K. N.; Chaudhari, Asha S.

    2016-05-01

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Qion and the summed-electronic excitation cross section ΣQexc in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incident electron energy along with available comparisons.

  6. Investigation of the hot ductility of a high-strength boron steel

    Energy Technology Data Exchange (ETDEWEB)

    Güler, Hande, E-mail: handeguler@uludag.edu.tr; Ertan, Rukiye; Özcan, Reşat

    2014-07-01

    In this study, the high-temperature ductility behaviour of an Al–Si-coated 22MnB5 sheet was investigated. The mechanical properties of Al–Si-coated 22MnB5 boron steel were examined via hot tensile tests performed at temperatures ranging from 400 to 900 °C at a strain rate of 0.083 s{sup −1}. The deformation and fracture mechanisms under hot tensile testing were considered in relation to the testing data and to the fracture-surface observations performed via SEM. The hot ductility of the tested boron steel was observed as a function of increasing temperature and the Al–Si-coated 22MnB5 boron steel exhibited a ductility loss at 700 °C.

  7. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  8. Nickel-boron electrochemical properties investigations

    Energy Technology Data Exchange (ETDEWEB)

    Kanta, A.-F., E-mail: abdoul.kanta@umons.ac.b [Service de Science des Materiaux, Universite de Mons, 56 rue de l' Epargne, 7000 Mons (Belgium); Poelman, M. [Materia Nova a.s.b.l, 56 rue de l' Epargne, 7000 Mons (Belgium); Vitry, V.; Delaunois, F. [Service de Metallurgie, Universite de Mons, 56 rue de l' Epargne, 7000 Mons (Belgium)

    2010-08-27

    Electroless nickel-boron (Ni-B) was synthesized on mild steel. Coating thickness was approximately 30 {mu}m. Some of the coatings were submitted to a hardening heat treatment at 400 {sup o}C for 1 h in an atmosphere containing 95% Ar and 5% H{sub 2} to improve their mechanical performance. Heat treated and untreated samples were submitted to the Taber abrasion test to assess their wear resistance. The wear track was then examined by SEM and roughness measurement. The Taber Wear Index of untreated samples was slightly better than that of steel but heat treated samples attained TWI as small as 13. The corrosion resistance of the Ni-B coatings was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy. The EIS results showed diffusion phenomena in 0.1 M NaCl solution. Electroless Ni-B coating increases the corrosion resistance of steel and heat treatments allow a further enhancement. Wear decreases that resistance but the worn product keeps a better behaviour than uncoated parts.

  9. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  10. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  11. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES).

    Science.gov (United States)

    Kataoka, Hiroko; Okamoto, Yasuaki; Tsukahara, Satoshi; Fujiwara, Terufumi; Ito, Kazuaki

    2008-03-10

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me(4)NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B(4)C), etc. but also boric acid (B(OH)(3)) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described.

  12. Characterization of boron doped nanocrystalline diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/{mu}m range.

  13. Corrosion resistance of monolayer hexagonal boron nitride on copper

    Science.gov (United States)

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-02-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating.

  14. Comparative High-Temperature Corrosion Behavior of Ni-20Cr Coatings on T22 Boiler Steel Produced by HVOF, D-Gun, and Cold Spraying

    Science.gov (United States)

    Kaushal, Gagandeep; Bala, Niraj; Kaur, Narinder; Singh, Harpreet; Prakash, Satya

    2014-01-01

    To protect materials from surface degradations such as wear, corrosion, and thermal flux, a wide variety of materials can be deposited on the materials by several spraying processes. This paper examines and compares the microstructure and high-temperature corrosion of Ni-20Cr coatings deposited on T22 boiler steel by high velocity oxy-fuel (HVOF), detonation gun spray, and cold spraying techniques. The coatings' microstructural features were characterized by means of XRD and FE-SEM/EDS analyses. Based upon the results of mass gain, XRD, and FE-SEM/EDS analyses it may be concluded that the Ni-20Cr coating sprayed by all the three techniques was effective in reducing the corrosion rate of the steel. Among the three coatings, D-gun spray coating proved to be better than HVOF-spray and cold-spray coatings.

  15. The effect of zinc bath temperature on the morphology, texture and corrosion behaviour of industrially produced hot-dip galvanized coatings

    Directory of Open Access Journals (Sweden)

    A. Bakhtiari

    2014-03-01

    Full Text Available The purpose of this work is to identify the influence of zinc bath temperature on the morphology, texture and corrosion behavior of hot-dip galvanized coatings. Hot-dip galvanized samples were prepared at temperature in the range of 450-480 °C in steps of 10 °C, which is the conventional galvanizing temperature range in the galvanizing industries. The morphology of coatings was examined with optical microscopy and scanning electron microscopy (SEM. The composition of the coating layers was determined using energy dispersive spectroscopy (EDS analysis. The texture of the coatings was evaluated using X-ray diffraction. Corrosion behavior was performed using salt spray cabinet test and Tafel extrapolation test. From the experimental results, it was found that increasing the zinc bath temperature affects the morphology of the galvanized coatings provoking the appearance of cracks in the coating structure. These cracks prevent formation of a compact structure. In addition, it was concluded that (00.2 basal plane texture component was weakened by increasing the zinc bath temperature and, conversely, appearance of (10.1 prism component, (20.1 high angle pyramidal component and low angle component prevailed. Besides, coatings with strong (00.2 texture component and weaker (20.1 components have better corrosion resistance than the coatings with weak (00.2 and strong (20.1 texture components. Furthermore, corrosion resistance of the galvanized coatings was decreased by increasing the zinc bath temperature.

  16. Advances in PSII Deposited Diamond-Like Carbon Coatings for Use as a Barrier to Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Lillard, R.S.; Butt, D.P.; Baker, N.P.; Walter, K.C.; Nastasi, M.

    1998-10-01

    Plasma source ion implantation (PSII) is a non line of sight process for implanting complex shaped targets without the need for complex fixturing. The breakdown initiation of materials coated with diamond-like carbon (DLC) produced by PSII occurs at defects in the DLC which expose the underlying material. To summarize these findings, a galvanic couple is established between the coating and exposed material at the base of the defect. Pitting and oxidation of the base and metal leads to the development of mechanical stress in the coating and eventually spallation of the coating. This paper presents our current progress in attempting to mitigate the breakdown of these coatings by implanting the parent material prior to coating with DLC. Ideally one would like to implant the parent material with chromium or molybdenum which are known to improve corrosion resistance, however, the necessary organometallics needed to implant these materials with PSII are not yet available. Here we report on the effects of carbon, nitrogen, and boron implantation on the susceptibility of PSII-DLC coated mild steel to breakdown.

  17. 覆砂铁型铸造工艺生产ADI摩擦斜楔%ADI Oblique Wedge Produced with Resin Sand Coated-Iron Mold Casting Process

    Institute of Scientific and Technical Information of China (English)

    王彬; 鲍玉龙; 王德军

    2013-01-01

    The casting method and heat treatment process adopted for using resin sand coated-iron mold to produce ADI oblique wedge of railway vehicles was introduced. By adopting semi -pressurized gating system and filter to skim slag, choosing rational melting charge mixture ratio and the cored-wire injection nodularizing process, using salt bath isothermal quenching process, the hi-strength , hi-hardness and hi-toughness ADI castings with bainite + residual austenite as matrix were finally obtained.%介绍了采用覆砂铁型铸造生产火车用摩擦斜楔ADI铸件的铸造工艺和热处理工艺.通过采用半封闭式浇注系统和过滤网挡渣;选用合理的炉料配比及喂丝球化处理工艺;采用盐浴等温淬火工艺,最终获得以贝氏体+残余奥氏体为基体的高强度、高硬度及高韧性的ADI铸件.

  18. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    Science.gov (United States)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  19. Microstructure and corrosion performance of steam-based conversion coatings produced in the presence of TiO2 particles on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl;

    2016-01-01

    The steam-based conversion coatings containing TiO2 particleswere prepared using a two-step process comprising of spin coating of particles onto an aluminiumsubstrate followed by a high-pressure steam treatment. Process has resulted in the formation of aluminium oxide layer (~1.3 μm thick) embedded...

  20. The Kinetics and Dry-Sliding Wear Properties of Boronized Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Dong Mu

    2013-01-01

    Full Text Available Some properties of boride formed on gray cast iron (GCI have been investigated. GCI was boronized by powder-pack method using Commercial LSB-II powders at 1123, 1173, and 1223 K for 2, 4, 6, and 8 h, respectively. Scanning electron microscopy showed that boride formed on the surface of boronized GCI had tooth-shaped morphology. The hardness of boride formed on surfaces of GCI ranged from 1619 to 1343 HV0.025, and quenched and tempered GCI ranged from 400 to 610 HV0.025. The boride formed in the coating layer confirmed by X-ray diffraction analysis was Fe2B single phase. Depending on boronizing time and temperature, the thickness of coating layers on boronized GCI ranged from 26 to 105 μm. The activation energy was 209 kJ/mol for boronized GCI. Moreover, the possibility of predicting the iso-thickness of boride layers variation was studied. Dry-sliding wear tests showed that the wear resistance of boronized sample was greater than that of quenched and tempered sample.

  1. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  2. Chronic boron exposure and human semen parameters.

    Science.gov (United States)

    Robbins, Wendie A; Xun, Lin; Jia, Juan; Kennedy, Nola; Elashoff, David A; Ping, Liu

    2010-04-01

    Boron found as borates in soil, food, and water has important industrial and medical applications. A panel reviewing NTP reproductive toxicants identified boric acid as high priority for occupational studies to determine safe versus adverse reproductive effects. To address this, we collected boron exposure/dose measures in workplace inhalable dust, dietary food/fluids, blood, semen, and urine from boron workers and two comparison worker groups (n=192) over three months and determined correlations between boron and semen parameters (total sperm count, sperm concentration, motility, morphology, DNA breakage, apoptosis and aneuploidy). Blood boron averaged 499.2 ppb for boron workers, 96.1 and 47.9 ppb for workers from high and low environmental boron areas (pBoron concentrated in seminal fluid. No significant correlations were found between blood or urine boron and adverse semen parameters. Exposures did not reach those causing adverse effects published in animal toxicology work but exceeded those previously published for boron occupational groups.

  3. Microstructure and corrosion performance of steam-based conversion coatings produced in the presence of TiO2 particles on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl

    2016-01-01

    The steam-based conversion coatings containing TiO2 particleswere prepared using a two-step process comprising of spin coating of particles onto an aluminiumsubstrate followed by a high-pressure steam treatment. Process has resulted in the formation of aluminium oxide layer (~1.3 μm thick) embedded...... to the coatings without TiO2 particles, while the shift in thepitting potential was a function of the steam treatment time and degree of particle incorporation into the oxide....

  4. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk; Adam Lejwoda; Przemyslaw Cieszkowski; Przemyslaw Libuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqvist's method for measurement of coating susceptibility to brittle cracking.

  5. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk; AdamLejwoda; PrzemyslawCieszkowski; PrzemyslawLibuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqyist's method for measurement of coating susceptibility to brittle cracking.

  6. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  7. XPS, SIMS and FTIR-ATR characterization of boronized graphite from the thermonuclear plasma device RFX-mod

    Science.gov (United States)

    Ghezzi, F.; Laguardia, L.; Caniello, R.; Canton, A.; Dal Bello, S.; Rais, B.; Anderle, M.

    2015-11-01

    In this paper the characterization of a thin (tens of nanometers) boron layer on fine grain polycrystalline graphite substrate is presented. The boron film is used as conditioning technique for the full graphite wall of the Reversed Field eXperiment-modified (RFX-mod) experiment, a device for the magnetic confinement of plasmas of thermonuclear interest. Aim of the present analysis is to enlighten the chemical structure of the film, the trapping mechanism that makes it a getter for oxygen and hydrogen and the reason of its loss of effectiveness after exposure to about 100 s of hydrogen plasma. X-ray Photoelectron Spectroscopy (XPS), Secondary Ions Mass Spectrometry (SIMS) and Fourier Transform Infra Red spectroscopy in combination with the Attenuated Total Reflectance (FTIR-ATR) were used to obtain the structure and the chemical composition of graphitic samples as coated or coated and subsequently exposed to hydrogen plasma after boron deposition. The boron layers on the only coated samples were found to be amorphous hydrogenated boron carbide plus a variety of bonds like B-B, B-H, B-O, B-OH, C-C, C-H, C-O, C-OH. Both the thickness and the homogeneity of the layers were found to depend on the distance of the sample from the anode during the deposition. The samples contained oxygen along the layer thickness, at level of 5%, bound to boron. The gettering action of the boron is therefore already active during the deposition itself. The exposure to plasma caused erosion of the boron film and higher content of H and O bound to boron throughout the whole thickness. The interaction of the B layer with plasma is therefore a bulk phenomenon.

  8. Effect of Y2O3 Content on Microstructure of Gradient Bioceramic Composite Coating Produced by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    Liu Qibin; Zou Jianglong; Zheng Min; Dong Chuang

    2005-01-01

    To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that "monosodium glutamate" effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.

  9. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  10. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  11. Fe nanowire encapsulated in boron nitride nanotubes

    Science.gov (United States)

    Koi, Naruhiro; Oku, Takeo; Nishijima, Masahiko

    2005-11-01

    Boron nitride (BN) nanotubes, nanohorns, nanocoils were synthesized by annealing Fe 4N and B powders at 1000 °C for 1 h in nitrogen gas atmosphere. Especially, Fe-filled BN nanotubes were produced, and investigated by high-resolution electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy, which indicates that the [110] of Fe is parallel to the BN nanotube axis. Formation mechanism of Fe-filled BN nanotube was speculated based on these results.

  12. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  13. Boron Diffused Thermoluminescent Surface Layer in LiF TLDs for Skin Dose Assessments

    DEFF Research Database (Denmark)

    Christensen, Poul; Majborn, Benny

    1980-01-01

    A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry.......A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry....

  14. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  15. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  16. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  17. Combustion of boron containing compositions

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Y.; Pivkina, A. [Institute of Chemical Physics, Russian Academy of Science, Moscow (Russian Federation)

    1996-12-31

    Boron is one of the most energetic components for explosives, propellants and for heterogeneous condensed systems in common. The combustion process of mixtures of boron with different oxidizers was studied. The burning rate, concentration combustion limits, the agglomeration and dispersion processes during reaction wave propagation were analysed in the respect of the percolation theory. The linear dependence of the burning rate on the contact surface value was demonstrated. The percolative model for the experimental results explanation is proposed. (authors) 5 refs.

  18. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  19. Thermal Studies on Boron-Based Initiator Formulation.

    Directory of Open Access Journals (Sweden)

    A. G. Rajendran

    1996-12-01

    Full Text Available Boron-potassium nitrate pyrotechnic composition can be converted into a hot wire-sensitive initiator formulation by the addition of an extra fuel. viz. lead thiocyanate. The ignition temperature of this composition depends on the percentage of thiocyanate in the mix and follows a binomial fit. The kinetic parameters. viz. activation energy E and pre-exponential factor A of the charge have been calculated from TG and DSC curves using different approaches developed by Coats-Redfern and Kissinger. Ignition delays measured from isothermal TG runs were found to yield equally good values of E and A. A comparison of these values for the tricomponent system' with those of the bicomponent systems as well as of the ingredients suggests that the starting reaction in this formulation is the reaction between lead thiocyanate and potassium nitrate which energises the main reaction between boron and potassium nitrate. leading to ignition.

  20. Facile synthesis of boron nitride nanotubes and improved electrical conductivity.

    Science.gov (United States)

    Chen, Yongjun; Luo, Lijie; Zhou, Longchang; Mo, Libin; Tong, Zhangfa

    2010-02-01

    A layer of catalyst film on substrate is usually required during the vapor-liquid-solid (VLS) growth of one-dimensional (1D) nanomaterials. In this work, however, a novel approach for synthesizing high-purity bamboo-like boron nitride (BN) nanotubes directly on commercial stainless steel foils was demonstrated. Synthesis was realized by heating boron and zinc oxide (ZnO) powders at 1200 degrees C under a mixture gas flow of nitrogen and hydrogen. The stainless steel foils played an additional role of catalyst besides the substrate during the VLS growth of the nanotubes. In addition, the electrical conductivity of the BN nanotubes was efficiently improved in a simple way by coating with Au and Pd nanoparticles. The decorated BN nanotubes may find potential applications in catalysts, sensors and nanoelectronics.

  1. Growth Characteristics and Kinetics of Niobium Carbide Coating Obtained on AISI 52100 by Thermal-reactive Diffusion Technique

    Institute of Scientific and Technical Information of China (English)

    YAN Shaojin; WANG Hongfu; SUN Qikun; HE Peng; PANG Chengang; WANG Huachang; WANG Ailing

    2014-01-01

    Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fluoride, boron carbide, and niobium pentoxide. The presence of NbC phase on the steel surface was confirmed by X-ray diffraction analysis. Microscopic observation showed that niobium carbide coating formed on the substrate was smooth and compact. There was a distinct and flat interface between the coating and substrate. The micro-hardness of niobium carbide coating was 2892±145HV. The thickness of coating ranged from 1.6μm to 14μm. The forming kinetics of niobium carbide coating was revealed. Moreover, a contour diagram derived from experimental data was graphed for correct selection of process parameters. Some mathematical equations were built for predicting the coating thickness with predetermined processing temperature and time. The results showed that these mathematical equations are very practical as well as the kinetics equation.

  2. Methods for producing silicon carbide architectural preforms

    Science.gov (United States)

    DiCarlo, James A. (Inventor); Yun, Hee (Inventor)

    2010-01-01

    Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties for each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.

  3. Improved creep and oxidation behavior of a martensitic 9Cr steel by the controlled addition of boron and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science; Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Holzer, Ivan; Mendez-Martin, Francisca [Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Albu, Mihaela; Mitsche, Stefan [Graz Univ. of Technology (Austria). Inst. for Electron Microscopy; Gonzalez, Vanessa; Agueero, Alina [Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz (Spain)

    2010-07-01

    This manuscript gives an overview on recent developments of a martensitic steel grade based on 9Cr3W3CoVNb with controlled additions of boron and nitrogen. Alloy design by thermodynamic equilibrium calculations and calculation of boron-nitrogen solubility is discussed. Out of this alloy design process, two melts of a 9Cr3W3CoVNbBN steel were produced. The investigation focused on microstructural evolution during high temperature exposure, creep properties and oxidation resistance in steam at 650 C. Microstructural characterization of ''as-received'' and creep exposed material was carried out using conventional optical as well as advanced electron microscopic methods. Creep data at 650 was obtained at various stress levels. Longest-running specimens have reached more than 20,000 hours of testing time. In parallel, long-term oxidation resistance has been studied at 650 C in steam atmosphere up to 5,000 hours. Preliminary results of the extensive testing program on a 9Cr3W3CoVNbBN steel show significant improvement in respect to creep strength and oxidation resistance compared to the state-of-the-art 9 wt. % Cr martensitic steel grades. Up to current testing times, the creep strength is significantly beyond the +20% scatterband of standard grade P92 material. Despite the chromium content of 9 wt % the material exhibits excellent oxidation resistance. Steam exposed plain base material shows comparable oxidation behavior to coated material, and the corrosion rate of the boron-nitrogen controlled steel is much lower compared to standard 9 wt % Cr steel grades, P91 and P92. (orig.)

  4. Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

    Science.gov (United States)

    Kallenbach, A.; Dux, R.; Mayer, M.; Neu, R.; Pütterich, T.; Bobkov, V.; Fuchs, J. C.; Eich, T.; Giannone, L.; Gruber, O.; Herrmann, A.; Horton, L. D.; Maggi, C. F.; Meister, H.; Müller, H. W.; Rohde, V.; Sips, A.; Stäbler, A.; Stober, J.; ASDEX Upgrade Team

    2009-04-01

    After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (≈10 MW m-2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved

  5. Carbothermal synthesis of coatings on silicon carbide fibers

    Science.gov (United States)

    Chen, Linlin

    Four kinds of protective coatings---carbide derived carbon (CDC), boron nitride (BN), Al-O-N and BN doped Al-O-N (BAN) have been successfully synthesized on the surface of SiC fibers on the target to enhance the mechanical properties and oxidation resistance of the coated SiC fibers for the application as the reinforcements in the Ceramic Matrix Composites (CMCs) in the high temperatures. First of all, CDC coatings have been uniformly produced on Tyranno ZMI SiC fibers with good thickness control within nanometer accuracy by the chlorination in the temperature range of 550--700°C at atmospheric pressure. Kinetics of the carbon coating growth on the fibers has been systematically studied and thus a good foundation was set up for the further coating synthesis. BN coatings have been synthesized on the surface of SiC powders, fibers and fabrics by a novel carbothermal nitridation method. Non-bridging has been achieved in the BN-coated fiber tows by the nitridation in ammonia at atmospheric pressure in a temperature below 1200°C, which is lower compared to the traditional BN synthesis method and does not cause the degradation of the coated-fibers. BN coatings on the carbon nanotubes have also been formed and unlike the common methods, no additional dopant (such as metal catalyst) is introduced into the system during the BN coatings syntheses, thus the contamination of the final product is avoided. A novel Al-O-N coating has been explored with the most impressive point is that a more than 65% improvement in the tensile strength (up to ˜5.1GPa) and a three-time increase in the Weibull modulus compared to the as-received fibers are resulted by the formation of 200nm Al-O-N coating on the SiC fibers. It exceeds the strength of all other small diameter SiC fibers reported in the literature. Furthermore, BAN coating has also been produced on the surface of SiC fibers and about 20% enhancement in mechanical strength is achieved compared to that of the original fibers

  6. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    Science.gov (United States)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  7. Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing

    Science.gov (United States)

    Lee, Jay; Novikov, Nikolay

    The book contains the results of the latest achievements of leading researchers from 9 countries in the field of diamond and diamond-like carbon, cubic boron nitride and other superhard materials; high-density engineering ceramics; high pressure-high temperature technique; computer-aided modeling; diamond, cubic boron nitride, ceramic and cemented carbide tools; development, production and applications of nanostructured materials; films and wear-resistant coating; methods for quality control of tool materials and tools.

  8. Structure of surface layers produced by non-vacuum electron beam boriding

    Energy Technology Data Exchange (ETDEWEB)

    Bataev, I.A., E-mail: ivanbataev@ngs.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation); Bataev, A.A., E-mail: bataev@adm.nstu.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation); Golkovski, M.G., E-mail: M.G.Golkovski@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Lavrentieva prospect 11, 630090 Novosibirsk (Russian Federation); Krivizhenko, D.S., E-mail: dinylkaa@yandex.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation); Losinskaya, A.A., E-mail: anna.losinskaya@mail.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation); Lenivtseva, O.G., E-mail: lenivtseva_olga@mail.ru [Novosibirsk State Technical University, K. Marks 20, 630092 Novosibirsk (Russian Federation)

    2013-11-01

    The structure and mechanical properties of boronized layers produced on low carbon steel substrates by non-vacuum electron-beam cladding were studied. This process provides high performance and high thickness of coatings and can be used to process large workpieces. In this study, we investigated coatings obtained by one, two or three passes of the electron beam. The thickness of the coatings varied from 0.6 to 1.0 mm, and the maximum hardness achieved was 21 GPa. Structural analysis revealed the oriented growth of eutectic colonies near the primary crystals of iron borides, which was explained by the commonality of the boride phases in the primary Fe{sub 2}B and eutectic Fe{sub 2}B. The eutectic colonies formed during electron-beam cladding consisted of a continuous framework of borides crystals and segregations of α-Fe in the form of oriented fibers. Coatings produced by electron-beam cladding had higher contact-fatigue endurance than those produced by pack boriding.

  9. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites

    Energy Technology Data Exchange (ETDEWEB)

    Jakubinek, Michael B.; Kim, Keun Su; Simard, Benoit [Security and Disruptive Technologies, Division of Emerging Technologies, National Research Council Canada, Ottawa, ON (Canada); Niven, John F. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Johnson, Michel B. [Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Ashrafi, Behnam [Aerospace, Division of Engineering, National Research Council Canada, Montreal, QC (Canada); White, Mary Anne [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Department of Chemistry, Dalhousie University, Halifax, NS (Canada)

    2016-08-15

    The thermal conductivity of bulk, self-supporting boron nitride nanotube (BNNT) sheets composed of nominally 100% BNNTs oriented randomly in-plane was measured by a steady-state, parallel thermal conductance method. The sheets were either collected directly during synthesis or produced by dispersion and filtration. Differences between the effective thermal conductivities of filtration-produced BNNT buckypaper (∝1.5 W m{sup -1} K{sup -1}) and lower-density as-synthesized sheets (∝0.75 W m{sup -1} K{sup -1}), which are both porous materials, were primarily due to their density. The measured results indicate similar thermal conductivity, in the range of 7-12 W m{sup -1} K{sup -1}, for the BNNT network in these sheets. High BNNT-content composites (∝30 wt.% BNNTs) produced by epoxy impregnation of the porous BNNT network gave 2-3 W m{sup -1} K{sup -1}, more than 10 x the baseline epoxy. The combination of manufacturability, thermal conductivity, and electrical insulation offers exciting potential for electrically insulating, thermally conductive coatings and packaging. Thermal conductivity of free-standing BNNT buckypaper, buckypaper composites, and related materials at room temperature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Clean diffusion coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Warnes, B.M.; Punola, D.C. [Howmet Thermatech Coatings, Whitehall, MI (United States)

    1997-10-01

    An experimental program was undertaken to identify diffusion coating impurities introduced by standard aluminizing processes and to evaluate the impact of those impurities on oxidation resistance of the resultant Pt aluminide coating. IN-738 tabs and foils were platinum-electroplated, and then aluminized using three different processes: high-activity pack cementation, high-activity CVD and low-activity CVD. The results suggest that aluminizing processes which involve aluminum bearing alloys in the coating retort with H{sub 2} or H{sub 2}/HCl gas at high temperature can contaminate the diffusion coating during deposition. CVD low-activity aluminizing (coating gas generated at low temperature outside the coating chamber from 99.999% Al) did not introduce any coating impurities. In addition, the data indicates that harmful impurities from the IN-738 substrate (sulfur, boron and tungsten) and the electroplating process (phosphorus) were removed from the coating during deposition. The CVD low-activity Pt aluminide coating was the `cleanest` in the study, and it exhibited the best high-temperature oxidation resistance of the coatings considered. It can be concluded that trace elements in diffusion coatings from the superalloy substrate and/or the aluminizing process can adversely effect the oxidation resistance of those coatings, and that CVD low-activity aluminizing yields cleaner coatings than other commercially available aluminizing techniques. (orig.) 10 refs.

  11. Influence of powder particle injection velocity on the microstructure of Al-12Si/SiCp coatings produced by laser cladding

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J. Th M.

    2009-01-01

    The influence of powder particle injection velocity on the microstructure of coatings consisting of an Al-Si matrix reinforced with SiC particles prepared by laser cladding from mixtures of powders of Al-12 wt.% Si alloy and SiC was investigated both experimentally and by modeling. At low injection

  12. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    Science.gov (United States)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  13. Preparation of High Purity Amorphous Boron Powder

    Directory of Open Access Journals (Sweden)

    K.V. Tilekar

    2005-10-01

    Full Text Available Amorphous boron powder of high purity (92-94 % with a particle size of l-2 mm is preferred as a fuel for fuel-rich propellants for integrated rocket ramjets and for igniter formulations. Thispaper describes the studies on process optimisation of two processes, ie, oxidative roasting of boron (roasting boron in air and roasting boron with zinc in an inert medium for preparing high purity boron. Experimental studies reveal that roasting boron with zinc at optimised process conditions yields boron of purity more than 93 per cent, whereas oxidative roasting method yields boron of purity - 92 per cent. Oxidative roasting has comparative edge over the other processes owing to its ease of scale-up and simplicity

  14. Development of a novel carbon-coating strategy for producing core-shell structured carbon coated LiFePO4 for an improved Li-ion battery performance.

    Science.gov (United States)

    Pratheeksha, Parakandy Muzhikara; Mohan, Erabhoina Hari; Sarada, Bulusu Venkata; Ramakrishna, Mantripragada; Hembram, Kalyan; Srinivas, Pulakhandam Veera Venkata; Daniel, Paul Joseph; Rao, Tata Narasinga; Anandan, Srinivasan

    2016-12-21

    In the present study, LiFePO4 (LFP) has been synthesized using a flame spray pyrolysis unit followed by carbon coating on LFP using a novel strategy of dehydration assisted polymerization process (DAP) in order to improve its electronic conductivity. Characterization studies revealed the presence of a pure LFP structure and the formation of a thin, uniform and graphitic carbon layer with a thickness of 6-8 nm on the surface of the LFP. A carbon coated LFP with 3 wt% of carbon, using a DAP process, delivered a specific capacity of 167 mA h g(-1) at a 0.1C rate, whereas LFP carbon coated by a carbothermal process (CLFP-C) delivered a capacity of 145 mA h g(-1) at 0.1C. Further carbon coated LFP by the DAP exhibited a good rate capability and cyclic stability. The enhanced electrochemical performance of C-LFP by DAP is attributed to the presence of a uniform, thin and ordered graphitic carbon layer with a core-shell structure, which greatly increased the electronic conductivity of LFP and thereby showed an improved electro-chemical performance. Interestingly, the developed carbon coating process has been extended to synthesize a bulk quantity (0.5 kg) of carbon coated LFP under optimized experimental conditions as a part of up-scaling and the resulting material electro-chemical performance has been evaluated and compared with commercial electrode materials. Bulk C-LFP showed a capacity of 131 mA h g(-1) and 87 mA h g(-1) at a rate of 1C and at 10C, respectively, illustrating that the developed DAP process greatly improved the electrochemical performance of LFP in terms of rate capability and cyclic stability, not only during the lab scale synthesis but also during the large scale synthesis. Benchmark studies concluded that the electro-chemical performance of C-LFP by DAP is comparable with that of TODA LFP and better than that of UNTPL LFP. The DAP process developed in the present study can be extended to other electrode materials as well.

  15. 自蔓延法在金刚石表面形成碳硼化铝涂层的研究%Formation of aluminum boron carbide coating on the surface of diamond by self-propagation

    Institute of Scientific and Technical Information of China (English)

    王艳芝; 梁宝岩; 张旺玺; 刘嘉霖

    2014-01-01

    采用Ti/Al/B/金刚石粉体为原料,通过自蔓延高温反应技术,制备了 Al-TiB2结合剂金刚石复合材料,在金刚石表面合成了碳硼化铝涂层。采用X射线衍射(XRD)、扫描电镜(SEM)结合能谱仪(EDS)分析试样。研究结果表明:各种原料经自蔓延高温烧结后,产物的主相为 Al、TiB2和金刚石。同时当 Al质量分数较高时(60%~80%),在金刚石表面形成了致密的碳硼化铝涂层,呈薄片状,金刚石附近也生长出许多碳硼化铝晶粒,尺寸可达到几十微米。但是当 Al 质量分数较低(40%和50%)时,金刚石会发生严重的碎裂。%Al-TiB2 boned diamond composites were fabricated by self-propagation high temperature sintering SHS from Ti Al B Diamond powders The samples were analyzed by XRD SEM and EDS It was shown that Al-TiB2 boned diamond composites were obtained by SHS The main phases of the products were Al TiB2 and diamond by SHS from every raw material Meanwhile the Al4 BC coating was formed on the face of diamond When mass fraction of Al was higher 60%~80% dense Al4 BC coating with thin flake was formed Meanwhile many Al4 BC grains also grown neighbor the diamond These grains had dozes of micron With mass fraction of Al decreasing to 40% and 50%diamond broke because of its graphitization.

  16. Research on the Cutting Performance of Cubic Boron Nitride Tools

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic c...

  17. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  18. Synthesis of boron carbide nano particles using polyvinyl alcohol and boric acid

    Directory of Open Access Journals (Sweden)

    Amir Fathi

    2012-03-01

    Full Text Available In this study boron carbide nano particles were synthesized using polyvinyl alcohol and boric acid. First, initial samples with molar ratio of PVA : H3BO3 = 2.7:2.2 were prepared. Next, samples were pyrolyzed at 600, 700 and 800°C followed by heat treatment at 1400, 1500 and 1600°C. FTIR analysis was implemented before and after pyrolysis in order to study the reaction pathway. XRD technique was used to study the composition of produced specimens of boron carbide. Moreover, SEM and PSA analysis were also carried out to study the particle size and morphology of synthesized boron carbide. Finally, according to implemented tests and analyses, carbon-free boron carbide nano particles with an average size of 81 nm and mainly spherical morphology were successfully produced via this method.

  19. Pure and doped boron nitride nanotubes

    Directory of Open Access Journals (Sweden)

    M. Terrones

    2007-05-01

    Full Text Available More than ten years ago, it was suggested theoretically that boron nitride (BN nanotubes could be produced. Soon after, various reports on their synthesis appeared and a new area of nanotube science was born. This review aims to cover the latest advances related to the synthesis of BN nanotubes. We show that these tubes can now be produced in larger amounts and, in particular, that the chemistry of BN tubes appears to be very important to the production of reinforced composites with insulating characteristics. From the theoretical standpoint, we also show that (BN-C heteronanotubes could have important implications for nanoelectronics. We believe that BN nanotubes (pure and doped could be used in the fabrication of novel devices in which pure carbon nanotubes do not perform very efficiently.

  20. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    Science.gov (United States)

    Kartal, Muhammet; Uysal, Mehmet; Gul, Harun; Alp, Ahmet; Akbulut, Hatem

    2015-11-01

    A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55-65%).

  1. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  2. Immunodetection of Triticum mosaic virus by DAS- and DAC-ELISA using antibodies produced against coat protein expressed in Escherichia coli: potential for high-throughput diagnostic methods.

    Science.gov (United States)

    Tatineni, Satyanarayana; Sarath, Gautam; Seifers, Dallas; French, Roy

    2013-04-01

    Triticum mosaic virus (TriMV), an economically important virus infecting wheat in the Great Plains region of the USA, is the type species of the Poacevirus genus in the family Potyviridae. Sensitive and high-throughput serology-based detection methods are crucial for the management of TriMV and germplasm screening in wheat breeding programs. In this study, TriMV coat protein (CP) was expressed in Escherichia coli, and polyclonal antibodies were generated against purified soluble native form recombinant CP (rCP) in rabbits. Specificity and sensitivity of resulting antibodies were tested in Western immuno-blot and enzyme-linked immunosorbent assays (ELISA). In direct antigen coating (DAC)-ELISA, antibodies reacted specifically, beyond 1:20,000 dilution with TriMV in crude sap, but not with healthy extracts, and antiserum at a 1:10,000 dilution detected TriMV in crude sap up to 1:4860 dilution. Notably, rabbit anti-TriMV IgG and anti-TriMV IgG-alkaline phosphatase conjugate reacted positively with native virions in crude sap in a double antibody sandwich-ELISA, suggesting that these antibodies can be used as coating antibodies which is crucial for any 'sandwich' type of assays. Finally, the recombinant antibodies reacted positively in ELISA with representative TriMV isolates collected from fields, suggesting that antibodies generated against rCP can be used for sensitive, large-scale, and broad-spectrum detection of TriMV.

  3. Friction and Wear Performance of Boron Doped, Undoped Microcrystalline and Fine Grained Composite Diamond Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xinchang; WANG Liang; SHEN Bin; SUN Fanghong

    2015-01-01

    Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don’t have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti

  4. Friction and wear performance of boron doped, undoped microcrystalline and fine grained composite diamond films

    Science.gov (United States)

    Wang, Xinchang; Wang, Liang; Shen, Bin; Sun, Fanghong

    2015-01-01

    Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti

  5. Synthesis of a boron modified phenolic resin

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2010-08-01

    Full Text Available Phenolic resin has long been used as matrix for composites mainly because of its flame retardant behavior and high char yield after pyrolysis, which results in a self supporting structure. The addition of ceramic powders, such as SiC and B4C, as fillers to the phenolic resin, results in better thermo-oxidative stability, but as drawbacks, it has poor homogeneity, adhesion and processing difficulties during molding of the composites. The addition of single elements, such as boron, silicon and phosphorus in the main backbone of the thermo-set resin is a new strategy to obtain special high performance resins, which results in higher mechanical properties, avoiding the drawbacks of simply adding fillers, which results in enhanced thermo-oxidative stability compared to conventional phenol-formaldehyde resins. Therefore, the product can have several applications, including the use as ablative thermal protection for thermo-structural composites. This work describes the preparation of a boron-modified phenolic resin (BPR using salicyl alcohol and boric acid. The reaction was performed in refluxing toluene for a period of four hours, which produced a very high viscosity amber resin in 90% yield.The final structure of the compound, the boric acid double, substituted at the hydroxyl group of the aromatic ring, was determined with the help of the Infrared Spectroscopy, ¹H-NMR, TGA-DSC and boron elemental analysis. The absorption band of the group B-O at 1349 cm ˉ¹ can be visualized at the FT-IR spectrum. ¹H-NMR spectra showed peaks at 4.97-5.04 ppm and 3.60-3.90 ppm assigned to belong to CH2OH groups from the alcohol. The elemental analysis was also performed for boron determination.The product has also been tested in carbon and silicon fibers composite for the use in thermal structure. The results of the tests showed composites with superior mechanical properties when compared with the conventional phenolic resin.

  6. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  7. Tribological properties of boron nitride synthesized by ion beam deposition

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  8. Methods of Boron-carbon Deposited Film Removal

    Science.gov (United States)

    Airapetov, A.; Terentiev, V.; Voituk, A.; Zakharov, A.

    Boron carbide was proposed as a material for in-situ renewable protecting coating for tungsten tiles of the ITER divertor. It is necessary to develop a method of gasification of boron-carbon film which deposits during B4C sputtering. In this paper the results of the first stage investigation of gasification methods of boron-carbon films are presented. Two gasification methods of films are investigated: interaction with the ozone-oxygen mixture and irradiation in plasma with the working gas composed of oxygen, ethanol, and, in some cases, helium. The gasification rate in the ozone-oxygen mixture at 250 °C for B/C films with different B/C ratio and carbon fiber composite (CFC), was measured. For B/C films the gasification rate decreased with increasing B/C ratio (from 45 nm/h at B/C=0.7 to 4 nm/h at B/C=2.1; for CFC - 15 μm/h). Films gasification rates were measured under ion irradiation from ethanol-oxygen-helium plasma at different temperatures, with different ion energies and different gas mixtures. The maximum obtained removal rate was near 230 nm/h in case of ethanol-oxygen plasma and at 150°C of the sample temperature.

  9. Techniques for increasing boron fiber fracture strain

    Science.gov (United States)

    Dicarlo, J. A.

    1977-01-01

    Improvement in the strain-to-failure of chemical-vapor-deposition boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. Results of three methods are presented in which etching and thermal-processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment-induced surface flaws were removed from 203-micron (8-mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment-induced contraction on the core flaw. To date, average fracture strains and stresses greater than 1.4% and 5.5 GN/sq m (800 ksi), respectively, have been achieved. Commercial feasibility considerations suggest as the most cost-effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed with this technique are presented and discussed for both high-vacuum and argon-gas heat-treatment environments.

  10. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    Science.gov (United States)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  11. Effects of boron on structure and antioxidative activities of spleen in rats.

    Science.gov (United States)

    Hu, Qianqian; Li, Shenghe; Qiao, Enmei; Tang, Zhongtao; Jin, Erhui; Jin, Guangming; Gu, Youfang

    2014-04-01

    In order to determine the relationship between boron and development of the spleen, especially in the promoting biological effects, we examined the effects of different levels of boron on weight, organ index, microstructure, and antioxidative activities of the spleen in rats. Sprague-Dawley (SD) rats were selected and treated with different concentrations of boron, and then, the organs were resected and weighed. One half of the tissue was fixed and embedded in paraffin to observe tissue structure changes. The other half of the tissue was homogenated for determining the antioxidant activities. The results showed that 40 mg/L of boron could increase weight, organ indexes, and antioxidant capacity of spleens and improve the spleen tissue structure, while the boron concentration above 80 mg/L could decrease weight, organ indexes, and antioxidant capacity of spleens and damage the spleen tissue structure. The higher the concentration, the more serious the damage was. Especially at the concentration of 640 mg/L, it could significantly inhibit the development of the spleen and even exhibit toxic effect. Hence, low boron concentration played a protective role in the development of the spleen, while high boron concentration could damage the organs and even produce toxic effect.

  12. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Abstract Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices. PMID:28179961

  13. B4C protective coating under irradiation by QSPA-T intensive plasma fluxes

    Science.gov (United States)

    Buzhinskij, O. I.; Barsuk, V. A.; Begrambekov, L. B.; Klimov, N. S.; Otroshchenko, V. G.; Putric, A. B.

    2016-12-01

    The effect of the QSPA-T pulsed plasma irradiation on the crystalline boron carbide B4C coating was examined. The duration of the rectangular plasma pulses was 0.5 ms with an interval of 5-10 min between pulses. The maximum power density in the central part of plasma stream was 1 GW/m2. The coating thickness varied from 20 to 40 μm on different surface areas. Modification of the surface layers and transformation of the coating at elevated temperature under plasma pulse irradiation during four successive series of impulses are described. It is shown that the boron carbide coating withstood the full cycle of tests under irradiation with 100 plasma pulses with peak power density of 1GW/m2. Constitutive surface deterioration was not detected and the boron carbide coating kept crystal structure B4C throughout the irradiation zone at the surface depth no less 2 μm.

  14. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  15. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  16. Effect of Heat Treatment on the Structural Properties of TiO2 Films Produced by Sol-Gel Spin Coating Technique

    Science.gov (United States)

    Nebi, M.; Peker, D.

    2016-10-01

    Due to have superior properties as fotocatalyst and have wide band gap, TiO2 thin films often investigated by researchers and used by technological applications widely. In this study TiO2 films were deposited on glass substrate by Sol-Gel Spin Coating Technic. TiO2 films were deposited at different number of layer and then annealed at 400o C, 500o C, and 600o C in air. Effect of anneal temperature to structural properties were investigated by XRD analysis. It was observed by the light of XRD results that the structural properties of films had changed by anneal temperature.

  17. Tool life of the edges coated with the c-BN+h-BN coatings with different structures during hard machinable steel machining

    Directory of Open Access Journals (Sweden)

    Kupczyk, M.

    2005-12-01

    Full Text Available In the presented paper the experimental results concerning the functional quality (durability during steel machining of thin, superhard coatings produced on the cutting edges are described. Differences among mentioned properties of coatings mainly result from a coating structure. But the structure of coatings results from deposition parameters Superhard boron nitride coatings were deposited on insert cutting edges made of cemented carbides by the pulse-plasma method applying different values of the discharge voltage. The comparative investigations of mentioned coatings have been concerned of tool life of edges during hard machinable material machining (nitriding steel hardened in oil. In these investigations for the purpose of additional increase of coatings adhesion to substrates an interfacial layers were applied.

    En este trabajo se describen los resultados experimentales referentes a la calidad funcional (durabilidad durante el mecanizado del acero de recubrimientos delgados, de elevada dureza del filo de corte. Las diferencias en las propiedades de los recubrimientos se deben, principalmente, a la estructura del recubrimiento. No obstante, la estructura del recubrimiento está relacionada con los parámetros de la deposición. Recubrimientos de nitruro de boro de elevada dureza se depositaron sobre filos de corte insertados, fabricados con carburos cementados mediante el método de pulsos de plasma aplicando diferentes valores de voltaje de descarga. Las investigaciones comparativas de los mencionados recubrimientos han relacionado la vida del filo de la herramienta durante el mecanizado del material (acero nitrurado endurecido en aceite. En estas investigaciones se aplicaron capas interfaciales para aumentar la adherencia del recubrimiento.

  18. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  19. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs

    Energy Technology Data Exchange (ETDEWEB)

    Atila, Alptug, E-mail: alptugatila@yahoo.com [Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Halici, Zekai; Cadirci, Elif [Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240 (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, School of Veterinary Medicine, Ataturk University, Erzurum 25240 (Turkey); Palabiyik, Saziye Sezin [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Ay, Nuran [Department of Material Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir 26555 (Turkey); Bakan, Feray [Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956 (Turkey); Yilmaz, Sahin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul 34755 (Turkey)

    2016-01-01

    ABSTRACT: Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN–HA composites in rat femurs. All rats were (n = 126) divided into five experimental groups (n = 24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100HA (Group2), femoral defect + %2.5hBN + %97.5HA (Group3), femoral defect + %5hBN + %95HA (Group4), femoral defect + %10hBN + %90 HA (Group5), femoral defect + %100hBN (Group6). The femoral defect was created in the distal femur (3 mm drill-bit). Each implant group was divided into four different groups (n = 24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN–HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN–HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. - Highlights: • Nano-hBN–HA composites are new targets for biomaterial and implant bioengineers. • Serum boron levels were researched after implantation of nano-hBN–HA composites. • Implantation of hBN–HA composite did not result in increased serum boron levels. • The use of boron in composite form with HA did not change the stability of the implant.

  20. Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH

    Science.gov (United States)

    Gilbert, B.; Perfetti, L.; Fauchoux, O.; Redondo, J.; Baudat, P.-A.; Andres, R.; Neumann, M.; Steen, S.; Gabel, D.; Mercanti, Delio; Ciotti, M. Teresa; Perfetti, P.; Margaritondo, G.; de Stasio, Gelsomina

    2000-07-01

    Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 μm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism.

  1. Encapsulated boron as an osteoinductive agent for bone scaffolds.

    Science.gov (United States)

    Gümüşderelioğlu, Menemşe; Tunçay, Ekin Ö; Kaynak, Gökçe; Demirtaş, Tolga T; Aydın, Seda Tığlı; Hakkı, Sema S

    2015-01-01

    The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells.

  2. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  3. Coating Processes Group (Electrochemical Processes Lab and Vacuum Processes Lab) Materials Fabrication Division. Progress report, November 1982-January 1983. [Coatings development for weapons, lasers, magnetic fusion, and other programs

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J.W.; Romo, J.G.

    1983-01-31

    Some technical highlights are given for the following programs: Weapons Program - we are continuing to support the aluminum ion plating effort for the W-84 both at Y-12 and in-house; Weapons Program - a number of electroformed parts have been supplied for Crowdie; Nuclear Test Program - heavy support from VPL in vacuum engineering activities for Diamond Ace, Tomme and Cabra; Nuclear Design Program - heavy effort was supplied by VPL in the coating of various foils with lithium fluoride; Laser Program - we are gradually optimizing procedures for producing boron foils for Argus/Dante experiments; MFE Program - a pyrophosphate copper deposit shows potentially interesting properties for RTNS-II applications; Soft X-ray Multilayer Coatings - preliminary results with alternate layers of carbon and tungsten look promising; PERL - chemical milling is being used to mill channels in hydrostatic bearings; and Alpha Claddings - we are actively involved in generating data and providing consultation on this program in conjunction with LODTM.

  4. Preliminary study of neutron absorption by concrete with boron carbide addition

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Ariffin, Fatin Nabilah Tajul; Ahmad, Sahrim [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Hamid, Roszilah [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Mohamed, Abdul Aziz [College of Engineering, Universiti Tenaga National, Jalan Ikram-Uniten, 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.

  5. Boron-doped cobalt oxide thin films and its electrochemical properties

    Science.gov (United States)

    Kerli, S.

    2016-09-01

    The cobalt oxide and boron-doped cobalt oxide thin films were produced by spray deposition method. All films were obtained onto glass and fluorine-doped tin oxide (FTO) substrates at 400∘C and annealed at 550∘C. We present detailed analysis of the morphological and optical properties of films. XRD results show that boron doping disrupts the structure of the films. Morphologies of the films were investigated by using a scanning electron microscopy (SEM). Optical measurements indicate that the band gap energies of the films change with boron concentrations. The electrochemical supercapacitor performance test has been studied in aqueous 6 M KOH electrolyte and with scan rate of 5 mV/s. Measurements show that the largest capacitance is obtained for 3% boron-doped cobalt oxide film.

  6. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren;

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  7. Reduction of hematite with ethanol to produce magnetic nanoparticles of Fe3O4, Fe1 - x O or Fe0 coated with carbon

    Science.gov (United States)

    Tristão, Juliana C.; Ardisson, José D.; Sansiviero, Maria Terezinha C.; Lago, Rochel M.

    2010-01-01

    The production of magnetic nanoparticles of Fe3O4 or Fe0 coated with carbon and carbon nanotubes was investigated by the reduction of hematite with ethanol in a Temperature Programmed Reaction up to 950°C. XRD and Mössbauer measurements showed after reaction at 350°C the partial reduction of hematite to magnetite. At 600°C the hematite is completely reduced to magnetite (59%), wüstite (39%) and metallic iron (7%). At higher temperatures, carbide and metallic iron are the only phases present. TG weight losses suggested the formation of 3-56 wt.% carbon deposits after reaction with ethanol. It was observed by SEM images a high concentration of nanometric carbon filaments on the material surface. BET analyses showed a slight increase in the surface area after reaction. These materials have potential application as catalyst support and removal of spilled oil contaminants.

  8. 覆砂铁型铸造生产球铁法兰主轴%Main Bearing with Flange Produced by Permanent Die Coated with Sand

    Institute of Scientific and Technical Information of China (English)

    董琪; 顾厚军; 史传岳; 钟晓斌

    2014-01-01

    把原粘土砂湿型生产法兰主轴铸件的工艺改为覆砂铁型工艺,解决了内部缩松等一系列缺陷问题。与原工艺相比,实现了覆砂铁型工艺的“多、快、好、省”。%Problems as defects of inner shrinkage etc in castings of main bearing with flange have been solved when the former technology of clay green sand molding has had been changed to technology of permanent die coated with sand of which the advantages have been much output, quicker, better and cost saved.

  9. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  10. Chemical vapor deposition coatings for oxidation protection of titanium alloys

    Science.gov (United States)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1991-01-01

    Results of an experimental investigation of the oxidation protection afforded to Ti-14Al-21Nb and Ti-14Al-23Nb-2V titanium aluminides and Ti-17Mo-3Al-3Nb titanium alloy by aluminum-boron-silicon and boron-silicon coatings are presented. These coatings are applied by a combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The former is for the application of aluminum, and the latter is for codeposition of boron and silicon. Coating thickness is in the range of 2 to 7 microns, and coating weights are 0.6 to 2.0 mg/sq cm. Oxidation testing was performed in air at temperatures to 1255 K in both static and hypersonic flow environments. The degree of oxidation protection provided by the coatings is determined from weight change measurements made during the testing and post test compositional analyses. Temperature-dependent total normal emittance data are also presented for four coating/substrate combinations. Both types of coatings provided excellent oxidation protection for the exposure conditions of this investigation. Total normal emittances were greater than 0.80 in all cases.

  11. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    Science.gov (United States)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  12. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  13. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  14. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    Science.gov (United States)

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  15. Synthesis of one-dimensional boron-related nanostructures by chemical vapor deposition

    Science.gov (United States)

    Guo, Li

    microwave plasma enhanced chemical vapor deposition process using gas reactions of diborane and ammonia. The catalytic growth of BNNTs done in this work provided a novel way to selectively grow BNNTs in thin film form on Ni or Co coated Si substrates. For boron nanowires, the co-existence of two growth mechanisms was discovered having completely different morphology and crystallinity using the thermal CVD process. The metal catalyst assisted the growth of the crystalline BNWs by vapor-liquid-solid mechanism, which amorphous BNWs were produced without the use of the catalyst. These results are expected to open up more pathways to scale up the fabrication of vertically aligned BNNTs and BNWs for studies of their properties and applications.

  16. Composite Reinforcement using Boron Nitride Nanotubes

    Science.gov (United States)

    2014-05-09

    Final 3. DATES COVERED (From - To) 11-Mar-2013 to 10-Mar-2014 4. TITLE AND SUBTITLE Composite Reinforcement using Boron Nitride Nanotubes...AVAILABILITY STATEMENT Approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Boron nitride nanotubes have been proposed as a...and titanium (Ti) metal clusters with boron nitride nanotubes (BNNT). First-principles density-functional theory plus dispersion (DFT-D) calculations

  17. Oxygen radical functionalization of boron nitride nanosheets

    OpenAIRE

    MAY, PETER; Coleman, Jonathan; MCGOVERN, IGNATIUS; GOUNKO, IOURI; Satti, Amro

    2012-01-01

    PUBLISHED The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalisation of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-Vis, F...

  18. Boron-10 ABUNCL Active Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  19. Mineral resource of the month: boron

    Science.gov (United States)

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  20. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  1. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  2. Multi-Grid Boron-10 detector for large area applications in neutron scattering science

    CERN Document Server

    Andersen, Ken; Birch, Jens; Buffet, Jean-Claude; Correa, Jonathan; van Esch, Patrick; Guerard, Bruno; Hall-Wilton, Richard; Hultman, Lars; Höglund, Carina; Jensen, Jens; Khaplanov, Anton; Kirstein, Oliver; Piscitelli, Francesco; Vettier, Christian

    2012-01-01

    The present supply of 3He can no longer meet the detector demands of the upcoming ESS facility and continued detector upgrades at current neutron sources. Therefore viable alternative technologies are required to support the development of cutting-edge instrumentation for neutron scattering science. In this context, 10B-based detectors are being developed by collaboration between the ESS, ILL, and Link\\"{o}ping University. This paper reports on progress of this technology and the prospects applying it in modern neutron scattering experiments. The detector is made-up of multiple rectangular gas counter tubes coated with B4C, enriched in 10B. An anode wire reads out each tube, thereby giving position of conversion in one of the lateral co-ordinates as well as in depth of the detector. Position resolution in the remaining co-ordinate is obtained by segmenting the cathode tube itself. Boron carbide films have been produced at Link\\"{o}ping University and a detector built at ILL. The characterization study is pres...

  3. Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices

    Science.gov (United States)

    Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.

    2017-03-01

    Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant (ɛ r = 3334), low loss (tan δ = 3.54), capacitance (C = 4951 nF), which might satisfy the requirements of embedded capacitor.

  4. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  5. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  6. Study of boron behaviour in two Spanish coal combustion power plants.

    Science.gov (United States)

    Ochoa-González, Raquel; Cuesta, Aida Fuente; Córdoba, Patricia; Díaz-Somoano, Mercedes; Font, Oriol; López-Antón, M Antonia; Querol, Xavier; Martínez-Tarazona, M Rosa; Giménez, Antonio

    2011-10-01

    A full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination. A sample preparation procedure was optimised for coal and combustion by-products to overcome some specific shortcomings of the currently used acid digestion methods. In addition boron mass balances and removal efficiencies in ESP and FGD devices were calculated. Mass balance closures between 83 and 149% were obtained. During coal combustion, 95% of the incoming boron was collected in the fly ashes. The use of petroleum coke as co-combustible produced a decrease in the removal efficiency of the ESP (87%). Nevertheless, more than 90% of the remaining gaseous boron was eliminated via the FGD in the wastewater discharged from the scrubber, thereby causing environmental problems.

  7. Boronated monoclonal antibody 225. 28S for potential use in neutron capture therapy of malignant melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Tamat, S.R.; Moore, D.E.; Patwardhan, A.; Hersey, P. (Univ. of Sydney (Australia))

    1989-07-01

    The concept of conjugating boron cluster compounds to monoclonal antibodies has been examined by several groups of research workers in boron neutron capture therapy (BNCT). The procedures reported to date for boronation of monoclonal antibodies resulted in either an inadequate level of boron incorporation, the precipitation of the conjugates, or a loss of immunological activity. The present report describes the conjugation of dicesium-mercapto-undecahydrododecaborate (Cs2B12H11SH) to 225.28S monoclonal antibody directed against high molecular weight melanoma-associated antigens (HMW-MAA), using poly-L-ornithine as a bridge to increase the carrying capacity of the antibody and to minimize change in the conformational structure of antibody. The method produces a boron content of 1,300 to 1,700 B atoms per molecule 225.28S while retaining the immunoreactivity. Characterization in terms of the homogeneity of the conjugation of the boron-monoclonal antibody conjugates has been studied by gel electrophoresis and ion-exchange HPLC.

  8. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  9. Electrodeposition and characterization of Co–BN (h) nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shahri, Z.; Allahkaram, S.R., E-mail: akaram@ut.ac.ir; Zarebidaki, A.

    2013-07-01

    Co–BN (h) nanocomposite coatings were prepared by means of the conventional electrodeposition in a chloride solution containing different concentrations of hexagonal boron nitride particles, and pure Co coating was also prepared as a comparison. Morphology of the coatings and the effect of incorporated particles on metal matrix structure and composition were investigated via scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Microhardness, roughness, friction coefficient and wear resistance of the coatings were also evaluated using Vickers microhardness, stylus profilometer and pin-on disk machine. The results showed that Co–BN (h) nanocomposite coatings exhibit higher hardness and lower friction coefficient. Roughness and wear resistance compared with that of the pure Co coating obtained under the same electrodeposition condition and the wear mechanism of the coatings were also discussed.

  10. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  11. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  12. Science Letters:Development of supported boron-doping TiO2 catalysts by chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst.

  13. Natural-oxide solar-collector coatings

    Science.gov (United States)

    Krupnick, A. C.; Roberts, M. L.; Sharpe, M. H.

    1979-01-01

    Optically selective coatings for solar collectors are produced by thermally treating stainless steel in furnace after series of cleaning and soaking operations. Coatings have withstood 18-month exposure tests at 100 percent relative humidity and temperatures of 95 F. Room temperature coatings are valuable as they are inexpensive to produce, highly production oriented, and environmentally stable.

  14. Chitin-based coatings

    OpenAIRE

    1995-01-01

    A chitosan starting material is combined with a dilute organic acid to produce a chitosonium ion complex. The chitosonium ion complex is then cast, sprayed, extruded, or otherwise processed to produce filaments, coatings, fibers, or the like. Heat is then used to convert the chitosonium ion complex into a N-(C.sub.1-30)acyl glucose amine polymer.

  15. 解淀粉芽孢杆菌BI2产抑菌物质的新型种衣剂的研制%A Novel Seed Coating Formula with Antifungal Substances Produced by Bacillus amyloliquefaciens BI2

    Institute of Scientific and Technical Information of China (English)

    王亚军; 李昆; 王德培

    2015-01-01

    The antifungal substances produced from Bacillus amyloliquefaciens BI2,were for the first time used asactive ingredients in seed coating. The fermented broth containing antifungal substances was ultrafiltered and freeze-dried to form lyophilized powder,and then mixed with composite film-forming agent solution. Finally,peanut seeds were coated with this kind of seed coating containing antifungal substances. The results showed that the best volume ratio of 4%, polyvinyl alco-hol(PVA)to 1.5%, sodium carboxymethyl cellulose(CMC-Na)was 5:1,which is the best film former recipe in seed coating,and it has no significant effect on seed germination potential and germination rate. The pH stability andthermal stability of the lyophilized powder of the fermentated broth containing antifungal substances are good. The MIC of the pow-der to inhibitAspergillus flavus spore germination is 1.92,mg/mL. When the content of that powder in the film former reaches 4,mg/mL,A. flavuswas completely inhibited.%将解淀粉芽孢杆菌BI2发酵所产抑菌物质作为新型种衣剂的有效成分与研制的复合型成膜剂溶液混合,制成可抑制黄曲霉孢子萌发的花生种子包衣.结果表明,选用 4%,聚乙烯醇(PVA)与 1.5%,羧甲基纤维素钠(CMC-Na)以体积比 5:1 混合作为种子包衣最佳成膜剂配方,经过包衣后对花生种子的发芽势和发芽率没有显著影响.含有抑菌物质的发酵液冻干粉的 pH 稳定性和热稳定性均较好.发酵液冻干粉抑制黄曲霉孢子萌发的最小质量浓度为1.92,mg/mL.在与花生种子混合时,发酵液冻干粉在成膜剂中的含量达到4,mg/mL时,黄曲霉完全被抑制.

  16. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  17. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  18. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  19. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  20. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs.

    Science.gov (United States)

    Atila, Alptug; Halici, Zekai; Cadirci, Elif; Karakus, Emre; Palabiyik, Saziye Sezin; Ay, Nuran; Bakan, Feray; Yilmaz, Sahin

    2016-01-01

    Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN-HA composites in rat femurs. All rats were (n=126) divided into five experimental groups (n=24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100 HA (Group2), femoral defect + %2.5 hBN + %97.5 HA (Group3), femoral defect + %5 hBN + %95 HA (Group4), femoral defect + %10 hBN + %90 HA (Group5), femoral defect + %100 hBN (Group6). The femoral defect was created in the distal femur (3mm drill-bit). Each implant group was divided into four different groups (n=24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN-HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN-HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers.

  1. Boronated mesophase pitch coke for lithium insertion

    Science.gov (United States)

    Frackowiak, E.; Machnikowski, J.; Kaczmarska, H.; Béguin, F.

    Boronated carbons from mesophase pitch have been used as materials for lithium storage in Li/carbon cells. Doping by boron has been realized by co-pyrolysis of coal tar pitch with the pyridine-borane complex. Amount of boron in mesocarbon microbeads (MCMB) varied from 1.4 to 1.8 wt.% affecting the texture of carbon. Optical microscopy and X-ray diffractograms have shown tendency to more disordered structure for boron-doped carbon. The values of specific reversible capacity ( x) varied from 0.7 to 1.1 depending significantly on the final temperature of pyrolysis (700-1150°C). The optimal charge/discharge performance was observed for boronated carbon heated at 1000°C.

  2. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  3. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  4. Laser-initiated primary and secondary nuclear reactions in Boron-Nitride

    Science.gov (United States)

    Labaune, C.; Baccou, C.; Yahia, V.; Neuville, C.; Rafelski, J.

    2016-02-01

    Nuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + 11B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications.

  5. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating

    Science.gov (United States)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.

    2016-10-01

    This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  6. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  7. Boronic acids-a novel class of bacterial mutagen.

    Science.gov (United States)

    O'Donovan, Michael R; Mee, Christine D; Fenner, Simon; Teasdale, Andrew; Phillips, David H

    2011-09-18

    Boronic acids and their esters are important building blocks in organic syntheses including those for drug substances and for which, as far as it can be determined, there are no published reports of testing for genotoxicity. A number of boronic acids have now been tested in this laboratory using Salmonella typhimurium strains TA1535, TA1537, TA98 and TA100 and Escherichia coli strain WP2uvrA(pKM101). Twelve of the 13 structures presented here were found to be mutagenic. All the compounds except one were active only in TA100 and/or WP2uvrA(pKM101), did not require S9 activation and produced relatively weak responses, i.e. no more than seven times the concurrent solvent-control values at >1000μg/plate. The single exception was also weakly mutagenic for TA1537 in the presence of S9. Results with two compounds mutagenic for both TA100 and WP2uvrA(pKM101) showed no evidence of DNA-adduct formation detectable by (32)P-postlabelling. It appears that boronic acids represent a novel class of bacterial mutagen that may not act by direct covalent binding to DNA. However, their mechanism of action remains to be elucidated and it cannot yet be determined whether or not they present a real genotoxic hazard.

  8. Comparison of the level of boron concentrations in black teas with fruit teas available on the Polish market.

    Science.gov (United States)

    Zioła-Frankowska, Anetta; Frankowski, Marcin; Novotny, Karel; Kanicky, Viktor

    2014-01-01

    The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content) fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day) is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time.

  9. Comparison of the Level of Boron Concentrations in Black Teas with Fruit Teas Available on the Polish Market

    Directory of Open Access Journals (Sweden)

    Anetta Zioła-Frankowska

    2014-01-01

    Full Text Available The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time.

  10. Effect of boron addition on formation of a fine-grained microstructure in commercially pure titanium processed by hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Imayev, V.M., E-mail: vimayev@mail.ru; Gaisin, R.A.; Imayev, R.M.

    2015-07-15

    This paper is devoted to comparative investigation of recrystallization behavior during uniaxial hot compression at 600–900 °C of cast commercially pure titanium (CP-Ti) modified with boron and free of boron as well as of CP-Ti in initial wrought condition. Using optical microscopy and EBSD analysis it has been revealed that the boron addition in an amount of 0.2 wt% promoted much more uniform strain development and intensive dynamic recrystallization during hot compression in cast CP-Ti modified with boron as compared with cast CP-Ti free of boron. At the same time, hot compression led to similar fine-grained microstructures in cast CP-Ti modified with boron and wrought CP-Ti. The obtained results suggest that the boron additions to CP-Ti may reduce postcast processing steps and thus reduce the overall cost of produced fine-grained materials out of CP-Ti by means of hot working.

  11. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  12. Autoionizing states of atomic boron

    Science.gov (United States)

    Argenti, Luca; Moccia, Roberto

    2016-04-01

    We present a B -spline K -matrix method for three-active-electron atoms in the presence of a polarizable core, with which it is possible to compute multichannel single-ionization scattering states with good accuracy. We illustrate the capabilities of the method by computing the parameters of several autoionizing states of the boron atom, with S2e, 2,o2P and D2e symmetry, up to at least the 2 p2(1S) excitation threshold of the B ii parent ion, as well as selected portions of the photoionization cross section from the ground state. Our results exhibit remarkable gauge consistency, they significantly extend the existing sparse record of data for the boron atom, and they are in good agreement with the few experimental and theoretical data available in the literature. These results open the way to extend to three-active-electron systems the spectral analysis of correlated wave packets in terms of accurate scattering states that has already been demonstrated for two-electron atoms in Argenti and Lindroth [Phys. Rev. Lett. 105, 053002 (2010), 10.1103/PhysRevLett.105.053002].

  13. Effect of V addition on the hardness, adherence and friction coefficient of VC coatings produced by thermo-reactive diffusion deposition

    Directory of Open Access Journals (Sweden)

    Fredy Alejandro Orjuela-Guerrero

    2015-01-01

    Full Text Available Se produjeron recubrimientos de carburo de vanadio (VC sobre sustratos de acero AISI H13 y acero AISI D2 mediante deposito termoreactiva/ difusión (TRD con el fin de evaluar sus propiedades mecánicas como una función del contenido de vanadio. Los recubrimientos se producen con diferentes porcentajes de concentración de ferrovanadio. La composición química de los recubrimientos se determinó mediante fluorescencia de rayos X (XRF, la estructura cristalina se analizó utilizando difracción de rayos X (XRD, la morfología se caracterizó usando microscopía electrónica de barrido (SEM, la dureza se midió a través de nanoindentaciòn, y las propiedades tribológicas mediante la prueba de bola sobre disco. El análisis XRF indicó que los recubrimientos crecidos en acero D2 disminuyó el porcentaje atómico de vanadio cuando el recubrimiento se produce con 20% de ferrovanadio. El análisis XRD estableció que los recubrimientos eran policristalinos, con una estructura cúbica. Las imágenes de SEM revelaron que los recubrimientos crecidos en acero D2 eran más compactos que los crecidos en el acero H13. Finalmente, las pruebas de desgaste establecieron que el coeficiente de fricción disminuyó con un aumento de vanadio en el recubrimiento.

  14. Combustion synthesis of novel boron carbide

    Science.gov (United States)

    Harini, R. Saai; Manikandan, E.; Anthonysamy, S.; Chandramouli, V.; Eswaramoorthy, D.

    2013-02-01

    The solid-state boron carbide is one of the hardest materials known, ranking third behind diamond and cubic boron nitride. Boron carbide (BxCx) enriched in the 10B isotope is used as a control rod material in the nuclear industry due to its high neutron absorption cross section and other favorable physico-chemical properties. Conventional methods of preparation of boron carbide are energy intensive processes accompanied by huge loss of boron. Attempts were made at IGCAR Kalpakkam to develop energy efficient and cost effective methods to prepare boron carbide. The products of the gel combustion and microwave synthesis experiments were characterized for phase purity by XRD. The carbide formation was ascertained using finger-print spectroscopy of FTIR. Samples of pyrolized/microwave heated powder were characterized for surface morphology using SEM. The present work shows the recent advances in understanding of structural and chemical variations in boron carbide and their influence on morphology, optical and vibrational property results discussed in details.

  15. Method of synthesizing cubic system boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Yuzu, S.; Sumiya, H.; Degawa, J.

    1987-10-13

    A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.

  16. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  17. From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

    OpenAIRE

    Hongsheng Liu; Junfeng Gao; Jijun Zhao

    2013-01-01

    As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster BN with increasing cluster size and low diffusion barrier for a single B atom on Cu(111) surface ensure cont...

  18. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  19. Thermodynamics of electrodeposited Ni-B-SiC composite coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The φ-pH diagram of Ni-B-H2O system was drawn, and the mechanism of electrodepositing Ni-B-SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H2 because of the over-potential of H2 evolution on the Fe substrate. Boron can not singly deposit in aqueous solution. Nickel and boron can co-deposit in the form of Ni4B3 without evolution of hydrogen when the cathodical potential is kept to be -1.415~-1.700?V.

  20. Laser alloying of bearing steel with boron and self-lubricating addition

    Directory of Open Access Journals (Sweden)

    Kotkowiak Mateusz

    2016-12-01

    Full Text Available 100CrMnSi6-4 bearing steel has been widely used for many applications, e.g. rolling bearings which work in difficult operating conditions. Therefore, this steel has to be characterized by special properties such as high wear resistance and high hardness. In this study laser-boriding was applied to improve these properties. Laser alloying was conducted as the two step process with two different types of alloying material: amorphous boron only and amorphous boron with addition of calcium fluoride CaF2. At first, the surface was coated with paste including alloying material. Second step of the process consisted in laser re-melting. The surface of sample, coated with the paste, was irradiated by the laser beam. In this study, TRUMPF TLF 2600 Turbo CO2 laser was used. The microstructure, microhardness and wear resistance of both laser-borided layer and laser-borided layer with the addition of calcium fluoride were investigated. The layer, alloyed with boron and CaF2, was characterized by higher wear resistance than the layer after laser boriding only.

  1. Bonding in boron: building high-pressure phases from boron sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kunstmann, Jens [Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology (Germany); Boeri, Lilia [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kortus, Jens [Institute for Theoretical Physics, TU Bergakademie Freiberg (Germany)

    2010-07-01

    We present the results of a study of the high pressure phase diagram of elemental boron, using full-potential density functional calculations. We show that at high pressures (P > 100 GPa) boron crystallizes in quasi-layered bulk phases, characterized by in-plane multicenter bonds and out-of-plane unidimensional sigma bonds. These structures are all metallic, in contrast to the low-pressure icosahedral ones, which are semiconducting. We show that the structure and bonding of layered bulk phases can be easily described in terms of single puckered boron sheets. Our results bridge the gap between boron nanostructures and bulk phases.

  2. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  3. Complementary incorporation of boron compounds with different cellular targets in melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Morre, D.E. [University of Sydney, Dept. of Pharmacy, Sydney, NSW (Australia); Setiawan, Y.; Allen, B.J. [St George Cancer Care Centre, Kogarah, NSW (Australia)

    1996-12-31

    Full text. The heterogeneity of malignant tumours is well known, and post-surgical control may only be achieved by the application of a number of adjuvant therapies. In boron neutron capture therapy (BNCT), a similar effect could be achieved by utilising boron compounds with quite different uptake and incorporation mechanisms. While tumour growth delay or control can be induced by BNCT in animal models, long term control in human patients may be much more difficult. Thus we have carried out experiments with two boron compounds which exhibit quite different pharmacokinetics and interact with cancer cells by quite different mechanisms. The compounds studied were p-boronophenylalanine (BPA) and boronated low density lipoprotein (B-LDL). Non-specific boron compounds such as n-alkyl carboranes can be delivered to melanoma tumour cells when incorporated in reconstituted LDL. Biodistribution studies were performed with BALB/c mice bearing subcutaneous Harding-Passey melanoma xenografts. The mice were pretreated with a high fat diet and hydrocortisone to down regulate the non-autonomous LDL receptors. A tumour to blood boron concentration ratio of 5:1 was achieved 18 hours after administration of B-LDL. The same compound administered in a non-specific arachis oil vehicle failed to demonstrate selective uptake in the tumour. Neutron capture therapy using B-LDL as the boron delivery vehicle produced a growth delay effect on the tumours which was equivalent to that found when BPA was administered as the fructose complex to develop a similar boron concentration in the tumour. This is indicative that the boron microdistribution across different types of tumour cells achieved by B-LDL has a similar effect to that achieved by BPA in the tumour model, even though the uptake mechanisms for BPA and B-LDL are different. BPA uptake is thought to be dependent on the amino acid transport mechanism, whereas receptor density determines LDL incorporation. Thus the combined administration

  4. Thermal shock resistance of thick boron-doped diamond under extreme heat loads

    NARCIS (Netherlands)

    De Temmerman, G.; Dodson, J.; Linke, J.; Lisgo, S.; Pintsuk, G.; Porro, S.; Scarsbrook, G.

    2011-01-01

    Thick free-standing boron-doped diamonds were prepared by microwave plasma assisted chemical vapour deposition. Samples with a final thickness close to 5 mm and with lateral dimensions 25 x 25 mm were produced. The thermal shock resistance of the material was tested by exposure in the JUDITH electro

  5. Superconductivity of metallic boron in MgB2.

    Science.gov (United States)

    Kortus, J; Mazin, I I; Belashchenko, K D; Antropov, V P; Boyer, L L

    2001-05-14

    Boron in MgB2 forms stacks of honeycomb layers with magnesium as a space filler. Band structure calculations indicate that Mg is substantially ionized, and the bands at the Fermi level derive mainly from B orbitals. Strong bonding with an ionic component and considerable metallic density of states yield a sizable electron-phonon coupling. Together with high phonon frequencies, which we estimate via zone-center frozen phonon calculations to be between 300 and 700 cm(-1), this produces a high critical temperature, consistent with recent experiments. Thus MgB2 can be viewed as an analog of the long sought, but still hypothetical, superconducting metallic hydrogen.

  6. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani [School of Applied Physic, Faculty of Science and Technology, Universiti Kebangsaan Malaysia.43600 Bangi, Selangor (Malaysia)

    2015-09-25

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  7. Femtosecond Laser Crystallization of Boron-doped Amorphous Hydrogenated Silicon Films

    Directory of Open Access Journals (Sweden)

    P.D. Rybalko

    2016-10-01

    Full Text Available Crystallization of amorphous hydrogenated silicon films with femtosecond laser pulses is one of the promising ways to produce nanocrystalline silicon for photovoltaics. The structure of laser treated films is the most important factor determining materials' electric and photoelectric properties. In this work we investigated the effect of femtosecond laser irradiation of boron doped amorphous hydrogenated silicon films with different fluences on crystalline volume fraction and electrical properties of this material. A sharp increase of conductivity and essential decrease of activation energy of conductivity temperature dependences accompany the crystallization process. The results obtained are explained by increase of boron doping efficiency in crystalline phase of modified silicon film.

  8. Low temperature growth of heavy boron-doped hydrogenated Ge epilayers and its application in Ge/Si photodetectors

    Science.gov (United States)

    Kuo, Wei-Cheng; Lee, Ming Jay; Wu, Mount-Learn; Lee, Chien-Chieh; Tsao, I.-Yu; Chang, Jenq-Yang

    2017-04-01

    In this study, heavily boron-doped hydrogenated Ge epilayers are grown on Si substrates at a low growth temperature (220 °C). The quality of the boron-doped epilayers is dependent on the hydrogen flow rate. The optical emission spectroscopic, X-ray diffraction and Hall measurement results demonstrate that better quality boron-doped Ge epilayers can be obtained at low hydrogen flow rates (0 sccm). This reduction in quality is due to an excess of hydrogen in the source gas, which breaks one of the Ge-Ge bonds on the Ge surface, leading to the formation of unnecessary dangling bonds. The structure of the boron doped Ge epilayers is analyzed by transmission electron microscopy and atomic force microscopy. In addition, the performance, based on the I-V characteristics, of Ge/Si photodetectors fabricated with boron doped Ge epilayers produced under different hydrogen flow rates was examined. The photodetectors with boron doped Ge epilayers produced with a low hydrogen flow rate (0 sccm) exhibited a higher responsivity of 0.144 A/W and a lower dark current of 5.33 × 10-7 A at a reverse bias of 1 V.

  9. Boronline, a new generation of boron meter

    Energy Technology Data Exchange (ETDEWEB)

    Pirat, P. [Rolls-Royce Company, Meylan (France)

    2011-07-01

    Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions - civil aerospace, defence aerospace, marine and energy Rolls-Royce understands the challenges of design, procurement, manufacture, operation and in-service support of nuclear reactor plants, with over 50 years of experience through the Royal Navy submarine programme. Rolls-Royce can therefore offer full product life-cycle management for new civil nuclear installations, as well as support to existing installations, including plant lifetime extensions. Rolls-Royce produced for 40 years, Instrumentation and Control (I and C) systems of and associated services for nuclear reactors in Europe, including 58 French reactors and others situated in the United States and in others countries, such as China. Rolls-Royce equipped in this domain 200 nuclear reactors in 20 countries. Among all of its nuclear systems, Rolls Royce is presenting to the conference its new generation of on-line boron measurement system, so called Boronline. (authors)

  10. Boron-Based (Nano-Materials: Fundamentals and Applications

    Directory of Open Access Journals (Sweden)

    Umit B. Demirci

    2016-09-01

    Full Text Available The boron (Z = 5 element is unique. Boron-based (nano-materials are equally unique. Accordingly, the present special issue is dedicated to crystalline boron-based (nano-materials and gathers a series of nine review and research articles dealing with different boron-based compounds. Boranes, borohydrides, polyhedral boranes and carboranes, boronate anions/ligands, boron nitride (hexagonal structure, and elemental boron are considered. Importantly, large sections are dedicated to fundamentals, with a special focus on crystal structures. The application potentials are widely discussed on the basis of the materials’ physical and chemical properties. It stands out that crystalline boron-based (nano-materials have many technological opportunities in fields such as energy storage, gas sorption (depollution, medicine, and optical and electronic devices. The present special issue is further evidence of the wealth of boron science, especially in terms of crystalline (nano-materials.

  11. The heliospheric modulation of cosmic ray boron and carbon

    Directory of Open Access Journals (Sweden)

    M. S. Potgieter

    2004-11-01

    Full Text Available The observed boron to carbon ratio (B/C at Earth provides a good measure of the overall secondary to primary ratio of galactic cosmic rays. This makes B/C an important constraint and test for the validity and general applicability of theoretical and numerical models of galactic propagation and heliospheric modulation. For this purpose, the modulation of boron and carbon in the heliosphere must be understood in greater detail. The latest approach to heliospheric modulation, using a numerical model containing a termination shock, a heliosheath and particle drifts, is used to the study the modulation of the two species. This model also includes a more comprehensive set of diffusion coefficients. From this and previous work follows that the model is compatible with a variety of observations, for seven species, i.e. protons, anti-protons, electrons, positrons, helium, boron, and carbon, with the same set of parameters for both solar magnetic polarity cycles. Despite the rather flat interstellar spectrum for carbon below 100MeV/nuc, the modulated spectra at 1AU look very similar for boron and carbon, caused by adiabatic energy losses, implying that the carbon modulation should have a much larger radial gradient in the outer heliosphere below ~200-500MeV/nuc than boron. Significant modulation can be caused by the heliosheath but it is strongly dependent on energy and on the field polarity, with almost no effect at high energies to the largest effect at low energies. The solar wind termination shock has an important effect on the B to C ratio in the heliosphere, although small at Earth, during the A<0 cycle, with E<~600MeV/nuc, but it seems less significant for the A>0 cycle and with increasing tilt angles. Drift models produce different spectra for consecutive solar minimum conditions which may account for the modulation level differences between observations around 100MeV/nuc compared to around 500MeV/nuc. All factors taken into account

  12. Catalytic Asymmetric Synthesis of Phosphine Boronates

    NARCIS (Netherlands)

    Hornillos, Valentin; Vila, Carlos; Otten, Edwin; Feringa, Ben L.

    2015-01-01

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of ,-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good y

  13. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  14. Boron-10 loaded inorganic shielding material

    Science.gov (United States)

    Baker, S. I.; Ryskiewicz, R. S.

    1972-01-01

    Shielding material containing Boron 10 and gadoliunium for neutron absorption has been developed to reduce interference from low energy neutrons in measurement of fission neutron spectrum using Li-6 fast neutron spectrometer.

  15. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  16. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  17. Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy

    Science.gov (United States)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; La Rosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    Recently, an approach exploiting the proton therapy biological enhancement by using Boron atoms injected inside a tumor, has been proposed [1-3]. Here, the 11B(p,α)2α nuclear fusion reaction channel, where three alpha particles are produced with an average energy around 4 MeV, is considered [4]. These alphas are able to penetrate the cells nucleus and strongly damage their DNA. In addition, gamma prompts emitted by the proton Boron nuclear reactions can be used for on-line proton beam imaging purposes. In this work an experimental study of the gamma prompt emissions from the proton Boron nuclear reactions has been carried out with the main aim to understand and quantify the most probable emission for future clinical applications.

  18. Design of low-energy neutron beams for boron neutron capture synovectomy

    Science.gov (United States)

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Binello, E.

    1997-02-01

    A novel application of the 10B(n, (alpha) )7Li nuclear reaction for the treatment of rheumatoid arthritis is under development. this application, called Boron Neutron Capture Synovectomy (BNCS), is briefly described here and the differences between BNCS and Boron Neutron Capture Therapy (BNCT) are discussed in detail. These differences lead to substantially altered demands on neutron beam design for each therapy application. In this paper the considerations for neutron beam design for the treatment of arthritic joints via BNCS are discussed, and comparisons with the design requirements for BNCT are made. This is followed by a description of potential moderator/reflector assemblies that are calculated to produce intense, high- quality neutron beams based on the 7Li(p,n) accelerator- based reactions. Total therapy time and therapeutic ratios are given as a function of both moderator length and boron concentration. Finally, a means of carrying out multi- directional irradiations of arthritic joints is proposed.

  19. Nanopipe formation as a result of boron impurity segregation in gallium nitride grown by halogen-free vapor phase epitaxy

    Science.gov (United States)

    Kimura, Taishi; Aoki, Yuko; Horibuchi, Kayo; Nakamura, Daisuke

    2016-12-01

    The work reported herein demonstrated that nanopipes can be formed via a surfactant effect, in which boron impurities preferentially migrate to semipolar and nonpolar facets. Approximately 3 μm-thick GaN layers were grown using halogen-free vapor phase epitaxy. All layers grown in pyrolytic boron nitride (pBN) crucibles were found to contain a high density of nanopipes in the range of 1010 to 1011 cm-2. The structural properties of these nanopipes were analyzed by X-ray rocking curve measurements, transmission electron microscopy, and three-dimensional atom probe (3DAP) tomography. The resulting 3DAP maps showed nanopipe-sized regions of boron segregation, and these nanopipes were not associated with the presence of dislocations. A mechanism for nanopipe formation was developed based on the role of boron as a surfactant and considering energy minima. A drastic reduction in the nanopipe density was achieved upon replacing the pBN crucibles with tantalum carbide-coated carbon crucibles. Consequently, we have confirmed that nanopipes can be formed solely due to surface energy changes induced by boron impurity surface segregation. For this reason, these results also indicate that nanopipes should be formed by other surfactant impurities such as Mg and Si.

  20. Investigation of optical, structural and morphological properties of nanostructured boron doped TiO2 thin films

    Indian Academy of Sciences (India)

    Savaş Sönmezoǧlu; Banu Erdoǧan; İskender Askeroǧlu

    2013-12-01

    Pure and different ratios (1, 3, 5, 7 and 10%) of boron doped TiO2 thin films were grown on the glass substrate by using sol–gel dip coating method having some benefits such as basic and easy applicability compared to other thin film production methods. To investigate the effect of boron doped on the physical properties of TiO2, structural, morphological and optical properties of growth thin films were examined. 1% boron-doping has no effect on optical properties of TiO2 thin film; however, optical properties vary with > 1%. From X-ray diffraction spectra, it is seen that TiO2 thin films together with doping of boron were formed along with TiB2 hexagonal structure having (111) orientation, B2O3 cubic structure having (310) orientation, TiB0.024O2 tetragonal structure having rutile phase (110) orientation and polycrystalline structures. From SEM images, it is seen that particles together with doping of boron have homogeneously distributed and held onto surface.

  1. Multispectral Coatings

    Science.gov (United States)

    2010-01-01

    nanowires. 2.2 Project Objectives  This project used spin coating technology, new and commercial nanoparticle composites, and ODC’s patented...of this project. The spin coating method to deposit polymers has been widely studied and allows for simple, low cost depositions of thin films...Figure 5). Spin coating controls the layer thickness by balancing the centrifugal forces of a developing thin film to the viscous forces that increase

  2. Combustion Behavior of Free Boron Slurry Droplets,

    Science.gov (United States)

    2014-09-26

    weak disruptive behavior while pure JP-1t burn quiescently, except for a flash extinction which occurs at the termination of combustion. The...I AD-R158 628 COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS(U) i/i I PRINCETON UNIV NJ DEPT OF MECHANICAL AND AEROSPACE ENINEERIN., F TAKAHASHI...COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS TAM by F. Takahashi, F.L. Dryer, and F.A. Williams Department of M~echanical and keyosase Engineering

  3. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  4. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  5. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    Science.gov (United States)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-01-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  6. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    Science.gov (United States)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-03-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  7. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  8. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    Science.gov (United States)

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  9. Junctions between a boron nitride nanotube and a boron nitride sheet.

    Science.gov (United States)

    Baowan, Duangkamon; Cox, Barry J; Hill, James M

    2008-02-20

    For future nanoelectromechanical signalling devices, it is vital to understand how to connect various nanostructures. Since boron nitride nanostructures are believed to be good electronic materials, in this paper we elucidate the classification of defect geometries for combining boron nitride structures. Specifically, we determine possible joining structures between a boron nitride nanotube and a flat sheet of hexagonal boron nitride. Firstly, we determine the appropriate defect configurations on which the tube can be connected, given that the energetically favourable rings for boron nitride structures are rings with an even number of sides. A new formula E = 6+2J relating the number of edges E and the number of joining positions J is established for each defect, and the number of possible distinct defects is related to the so-called necklace and bracelet problems of combinatorial theory. Two least squares approaches, which involve variation in bond length and variation in bond angle, are employed to determine the perpendicular connection of both zigzag and armchair boron nitride nanotubes with a boron nitride sheet. Here, three boron nitride tubes, which are (3, 3), (6, 0) and (9, 0) tubes, are joined with the sheet, and Euler's theorem is used to verify geometrically that the connected structures are sound, and their relationship with the bonded potential energy function approach is discussed. For zigzag tubes (n,0), it is proved that such connections investigated here are possible only for n divisible by 3.

  10. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  11. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  12. Nanocrystalline Ni-W coatings on copper

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece); Plainakis, G.D.; Lagaris, D.A. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece)

    2011-04-15

    Nanocrystalline Ni-W coatings were produced on copper substrates with the aid of electrodeposition technique. The morphology, chemical composition and structure of the produced coatings were examined with the aid of scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The microhardness of alloy Ni-W coatings on copper substrate was also studied. The adhesion between the Ni-W coating, having W content 50 wt%, and the copper substrate, was also studied with a scratch testing apparatus. The scratch tests resulted in the coatings suffering an intensive brittle fracture and minor delamination.

  13. Kinetic regulation of coated vesicle secretion

    CERN Document Server

    Foret, Lionel

    2008-01-01

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also tri...

  14. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  15. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  16. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  17. DABO Boronates: Stable Heterocyclic Boronic Acid Complexes for Use in Suzuki-Miyaura Cross-Coupling Reactions.

    Science.gov (United States)

    Reilly, Maureen K; Rychnovsky, Scott D

    2011-10-01

    Diethanolamine complexed heterocyclic boronic acids (DABO boronates) are air-stable reagents that can be used directly in Suzuki-Miyaura reactions in the presence of water or a protic co-solvent. Interestingly, heterocyclic DABO boronates can be stored for extended periods of time at room temperature with no noticeable degradation, unlike their boronic acid counterparts. Heterocyclic DABO boronates constitute an operationally simple and efficient alternative to other boronic acid derivatives as coupling partners in palladium catalyzed cross-coupling reactions under standard Suzuki-Miyaura conditions.

  18. Invisible face of boron pollution in fluvial ecosystem: the level in the tissues of sentinel and nectonic organisms.

    Science.gov (United States)

    Arslan, Naime

    2013-10-01

    Turkey is the largest producer of borate products in the world. Among four largest boron mines in Turkey two of them are located in basins of Orhaneli and Emet Streams. In this study, boron levels in abiotic (water-sediment) and some biotic elements (sentinel organisms; Asellus aquaticus, Gammarus pulex, Chironomus tentans, Limnodrilus hoffmeisteri and nektonic organism; Squalius cii) of Orhaneli and Emet Streams were investigated and their ranks among the food chain were demonstrated. Since Orhaneli and Emet Streams confluence to form Mustafakemalpaşa Brook which feeds Uluabat Lake which is one of the most important Ramsar fields of the world, Boron levels in those two streams have importance in terms of both continuances of aquatic systems. Present study results have shown that boron levels in water of both streams are much higher (vary between 8.64 and 16.73 mg L(-1)) than not only Turkish Standard but also limits determined by WHO, US EPA, and NAS. Boron levels determined in sediments of two streams vary between 18.05 and 36.7 mg kg(-1). The highest boron level in the biotic elements was determined in liver of Squalius cii (34.64 mg kg(-1)), it is followed by Limnodrilus hoffmeisteri (2.84 mg kg(-1)), Chironomus tentans (2.11 mg kg(-1)), and Gammarus pulex (1.98 mg kg(-1)).

  19. Bioceramics for implant coatings

    Directory of Open Access Journals (Sweden)

    Allison A Campbell

    2003-11-01

    Early research in this field focused on understanding the biomechanical properties of metal implants, but recent work has turned toward improving the biological properties of these devices. This has led to the introduction of calcium phosphate (CaP bioceramics as a bioactive interface between the bulk metal impart and the surrounding tissue. The first CaP coatings were produced via vapor phase processes, but more recently solution-based and biomimetic methods have emerged. While each approach has its own intrinsic materials and biological properties, in general CaP coatings promise to improve implant biocompatibility and ultimately implant longevity.

  20. Addition of RDX/HMX on the Ignition Behaviour of Boron-Potassium Nitrate Pyrotechnic Charge

    Directory of Open Access Journals (Sweden)

    K.R. Rani Krishnan

    2006-07-01

    Full Text Available Boron-potassium nitrate (B-KNO3 (25/75 is a well-known pyrotechnic composition whichfinds application as energy-release system for small-calibre rockets and pyrogen igniters forlarger motors. The decomposition of the oxidiser in this composition is endothermic which canbe activated by the addition of high explosives, which decompose exothermically. This paperdescribes the influence of two nitramine explosives, RDX and HMX, on the ignition characteristicsof B-KNO3 composition using thermogravimetry, differential scanning calorimetry, heat andpressure output measurements. Different compositions were prepared by varying the amount ofRDX/HMX from 10 per cent to 50 per cent. Thermal studies on the B-KNO3/high explosivemixtures reveal that these undergo two-stage decomposition. The first stage corresponds to thedecomposition of high explosive and the second stage corresponds to that of the reaction betweenB and KNO3. Kinetic parameters were calculated for both the stages of TG curves using Coats-Redfern and Mac Callum-Tanner methods. Ignition temperature of B-KNO3 decreases on theaddition of RDX/HMX while the onset of RDX or HMX decomposition is not significantly affectedby B-KNO3. The pressure output of B-KNO3 increases on adding RDX/HMX. The heat outputof B-KNO3 is not much affected by the addition of RDX or HMX, even though the heat ofexplosion of RDX and HMX are low. This is due to the reaction between the combustion productsof RDX/HMX and reaction products of B-KNO3 to form more exothermic products like B2O3,releasing extra heat. The flame temperature of the charge increases while the average molecularweight of the products of combustion decreases as the RDX/HMX content increases. Thus, thecharge, on addition of RDX or HMX, produces higher pressure output, maintaining the heatoutput at comparable levels.

  1. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations.

    Science.gov (United States)

    Liakopoulos, Georgios; Stavrianakou, Sotiria; Filippou, Manolis; Fasseas, Costas; Tsadilas, Christos; Drossopoulos, Ioannis; Karabourniotis, George

    2005-02-01

    For plant species in which a considerable portion of the photoassimilates are translocated in the phloem as sugar alcohols, boron is freely translocated from mature organs to growing tissues. However, the effects of decreased plant boron status on boron remobilization are poorly understood. We conducted a growth chamber experiment (CE) and a field experiment (FE) to study the effects of low boron supply on boron remobilization in olive (Olea europaea L.), a species that transports considerable amounts of mannitol in the phloem. For the CE, several physiological parameters were compared between control (B+) and boron-deficient olive plants (B-) during the expansion of new leaves. Boron remobilization was assessed by measuring boron content of selected leaves at the beginning and at the end of the CE. As expected, boron was remobilized from mature leaves to young leaves of B+ plants; however, considerable boron remobilization was also observed in B- plants, suggesting a mechanism whereby olive can sustain a minimum boron supply for growth of new tissues despite an insufficient external boron supply. Boron deficiency caused inhibition of new growth but had no effect on photosynthetic capacity per unit leaf surface area of young and mature leaves, thereby altering the carbon utilization pattern and resulting in carbon allocation to structures within the source leaves and accumulation of soluble carbohydrates. Specifically, in mature B- leaves in the CE and in B- leaves in the FE, mannitol concentration on a leaf water content basis increased by 48 and 27% respectively, compared with controls. Carbon export ability (assessed by both phloem anatomy and phloem exudate composition of FE leaves) was enhanced at low boron supply. We conclude that, at low boron supply, increased mannitol concentrations maintain boron remobilization from source leaves to boron-demanding sink leaves.

  2. Modeling of the hot flow behavior of advanced ultra-high strength steels (A-UHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejía, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad Universitaria, 58066 Morelia, Michoacán (Mexico); Altamirano, G.; Bedolla-Jacuinde, A. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad Universitaria, 58066 Morelia, Michoacán (Mexico); Cabrera, J.M. [Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB – Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, 08240 Manresa (Spain)

    2014-07-29

    In this research work, modeling of the hot flow behavior was carried out in a low carbon advanced ultra-high strength steels (A-UHSS) microalloyed with different amounts of boron (14, 33, 82, 126 and 214 ppm). For this purpose, experimental stress–strain data of uniaxial hot-compression tests over a wide range of temperatures (1223, 1273, 1323 and 1373 K (950, 1000, 1050 and 1100 °C)) and strain rates (10{sup −3}, 10{sup −2} and 10{sup −1} s{sup −1}) were used. The stress–strain relationships as a function of temperature and strain rate were successfully described on the basis of the approach proposed by Estrin, Mecking, and Bergström, together with the classical Avrami equation and the conventional hyperbolic sine function. The analysis of the modeling parameters of the hot flow curves shows that boron additions to A-UHSS play a major role in softening mechanisms rather than on hardening. The peak stress (σ{sub p}) and steady-state stress (σ{sub ss}) values show a decreasing trend with increasing boron content, which indicates that boron additions promote a solid solution softening effect additional to that produced by DRX. The time for 50% recrystallization (t{sub 50%}) tends to increase with boron additions, revealing that boron additions cause a delay of the DRX kinetics during hot deformation. Similarly, the presence of boron in the steel decreases the apparent activation energy for recrystallization (Q{sub t}), indicating that boron additions accelerate the onset of DRX. The constitutive equations developed in this way provided an excellent description of the experimental hot flow curves.

  3. Studies on Separation Process and Production Technology of Boron Isotope

    Directory of Open Access Journals (Sweden)

    LI Jian-ping

    2014-02-01

    Full Text Available The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material distillation purification is solved, boron isotopes feasibility with PTFE packing enrichment is verified in an exchange column. Also, effect of operating pressure, flow and other parameters on boron -10 isotopic enrichment experiments and the effect and properties of the PTFE packing have been investigated in the existing system. All the results are very useful for the industrialization of the boron isotopes separation system.

  4. Diffusion Coatings as Corrosion Inhibitors

    Science.gov (United States)

    Ivanov, Radoslav; Ignatova-Ivanova, Tsveteslava

    2016-03-01

    Corrosion is the cause of irretrievable loss of huge amounts of metals and alloys. The harmful effects of corrosion can be reduced significantly by applying appropriate methods of corrosion protection. One method to protect metals against corrosion is the formation of diffusion coatings on them. High corrosion resistance is typical for the boride diffusion layers. Aluminothermy is one of the main methods for diffusion saturation of the surface of metal products with various elements, including boron, and under certain conditions with aluminum, too. Samples of steel 45 were put to aluminothermic diffusion saturation with boron in a pressurized steel container at a temperature of 1100K, for 6 hours in powdered aluminothermic mixtures. The content of B2O3 in the starting mixtures decreased from the optimum - 20% to 0%, and the content of Al and the activator - (NH4)2.4BF3 is constant, respectively 7% and 0.5%. Al2O3 was used as filler. The borided samples were tested for corrosion resistance in 10% HCl for 72 hours. The results show that their corrosion resistance depends on the composition of the starting saturating mixture (mainly on the content of B2O3), and respectively on the composition, structure, thickness and degree of adhesion of the layer to the metal base.

  5. Diffusion Coatings as Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    Ivanov Radoslav

    2016-03-01

    Full Text Available Corrosion is the cause of irretrievable loss of huge amounts of metals and alloys. The harmful effects of corrosion can be reduced significantly by applying appropriate methods of corrosion protection. One method to protect metals against corrosion is the formation of diffusion coatings on them. High corrosion resistance is typical for the boride diffusion layers. Aluminothermy is one of the main methods for diffusion saturation of the surface of metal products with various elements, including boron, and under certain conditions with aluminum, too. Samples of steel 45 were put to aluminothermic diffusion saturation with boron in a pressurized steel container at a temperature of 1100K, for 6 hours in powdered aluminothermic mixtures. The content of В2О3 in the starting mixtures decreased from the optimum - 20% to 0%, and the content of Al and the activator - (NH42.4BF3 is constant, respectively 7% and 0.5%. Al2O3 was used as filler. The borided samples were tested for corrosion resistance in 10% HCl for 72 hours. The results show that their corrosion resistance depends on the composition of the starting saturating mixture (mainly on the content of В2О3, and respectively on the composition, structure, thickness and degree of adhesion of the layer to the metal base.

  6. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  7. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  8. A Taguchi optimisation for production of Al–B master alloys using boron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Savaş, Ömer, E-mail: osavas@yildiz.edu.tr [Yildiz Technical University, Faculty of Naval Architecture and Maritime, Istanbul (Turkey); Kayikci, Ramazan [Sakarya University, Faculty of Technology, Dept. of Met. and Mat. Eng., 54187 Sakarya (Turkey)

    2013-12-15

    Highlights: •Al–B alloys have been produced by liquid state reaction with adding B{sub 2}O{sub 3} into Al. •Taguchi method has been employed to examine the effects of four process parameters. •Results showed that maximum 2.14 wt.% B has been dissolved in Al. •The cooling rate is the most effective factor on the size of AlB{sub 2} boride. -- Abstract: Al–B master alloys have been produced by liquid state reaction between aluminium and boron oxide in liquid aluminium. Taguchi design method has been employed to examine the effects of four process parameters of holding temperature, holding time, cooling rate and matrix type on the extent of boron dissolved and size distribution of the resulting AlB{sub 2} intermetallic flake structure. In the experiments, melting, casting, solidification, metallography, optical microscope, scanning electron microscope (SEM) and wet chemical analysis techniques have been used. Results showed that maximum 2.14 wt.% boron has been dissolved in the aluminium through direct addition of boron oxide (B{sub 2}O{sub 3}). It is concluded that the cooling rate is the most effective factor on the size of AlB{sub 2} particles.

  9. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael W. [NASA Langley Research Center, Hampton, VA (United States); Jordan, Kevin C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Park, Cheol [NASA Langley Research Center, Hampton, VA (United States); Kim, Jae-Woo [NASA Langley Research Center, Hampton, VA (United States); Lillehei, Peter T. [NASA Langley Research Center, Hampton, VA (United States); Crooks, Roy [NASA Langley Research Center, Hampton, VA (United States); Harrison, Joycelyn S. [NASA Langley Research Center, Hampton, VA (United States)

    2009-11-01

    Boron nitride nanotubes (BNNTs) are desired for their exceptional mechanical, electronic, thermal, structural, textural, optical, and quantum properties. A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  10. Boron-Loaded Silicone Rubber Scintillators

    CERN Document Server

    Bell, Z W; Maya, L; Sloop, F V J

    2003-01-01

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon respons...

  11. Axial residual stresses in boron fibers

    Science.gov (United States)

    Behrendt, D. R.

    1978-01-01

    A method of measuring axial residual stresses in boron fibers is presented. With this method, the axial residual stress distribution as a function of radius is determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diam fibers are similar, being compressive at the surface and changing monotonically to a region of tensile stress within the boron. At approximately 25% of the original radius, the stress reaches a maximum tensile stress of about 860 MN sq m and then decreases to a compressive stress near the tungsten boride core. Data are presented for 203-micron diam B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102-micron diam B/W and boron on carbon (B/C) show that the residual stresses are similar in the outer regions of the fibers, but that large differences near and in the core are observed. Fracture of boron fibers is discussed.

  12. Update on human health effects of boron.

    Science.gov (United States)

    Nielsen, Forrest H

    2014-10-01

    In vitro, animal, and human experiments have shown that boron is a bioactive element in nutritional amounts that beneficially affects bone growth and central nervous system function, alleviates arthritic symptoms, facilitates hormone action and is associated with a reduced risk for some types of cancer. The diverse effects of boron suggest that it influences the formation and/or activity of substances that are involved in numerous biochemical processes. Several findings suggest that this influence is through the formation of boroesters in biomolecules containing cis-hydroxyl groups. These biomolecules include those that contain ribose (e.g., S-adenosylmethionine, diadenosine phosphates, and nicotinamide adenine dinucleotide). In addition, boron may form boroester complexes with phosphoinositides, glycoproteins, and glycolipids that affect cell membrane integrity and function. Both animal and human data indicate that an intake of less than 1.0mg/day inhibits the health benefits of boron. Dietary surveys indicate such an intake is not rare. Thus, increasing boron intake by consuming a diet rich in fruits, vegetables, nuts and pulses should be recognized as a reasonable dietary recommendation to enhance health and well-being.

  13. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  14. Controlled reactions between chromia and coating on alloy surface

    DEFF Research Database (Denmark)

    Linderoth, Søren

    1996-01-01

    An electrically conducting Sr-doped lanthanum chromite (LSC) coating has been produced by reacting a coating of fine particles of La oxide and Sr oxide with chromia formed as an external scale on a metallic alloy. In addition to the formation of LSC the coating also resulted in much reduced...... buckling of the underlying chromia layer compared with a non-coated alloy....

  15. Dietary boron: possible roles in human and animal physiology

    Science.gov (United States)

    Boron is a bioactive element of low molecular weight. Since discovery of the first boron biomolecule, boromycin, in 1967, several other similar biomolecules are now well-characterized. Most recently described was a bacterial cell-to-cell communication signal that requires boron, autoinducer-II. Boro...

  16. A comparative machining study of diamond-coated tools made by plasma torch, microwave, and hot filament techniques

    Indian Academy of Sciences (India)

    C E Bauer; A Inspektor; E J Oles

    2003-10-01

    An effective metal-cutting tool is usually a combination of a hard coating and a tough substrate. The successful deposition of diamond outside its thermodynamic stability range has stimulated the development of a new class of cutting tools: those with diamond-coated inserts of any desired style and edge geometry. The successful implementation of diamond coatings also expedited similar research in the deposition of cubic boron nitride. This paper presents superhard coating tools, with emphasis on diamond-coated WC–Co tools, the corresponding deposition of technologies and the foreseen metal-cutting applications.

  17. Influence of laser alloying with boron and niobium on microstructure and properties of Nimonic 80A-alloy

    Science.gov (United States)

    Makuch, N.; Piasecki, A.; Dziarski, P.; Kulka, M.

    2015-12-01

    Ni-base superalloys were widely used in aeronautics, chemical and petrochemical industries due to their high corrosion resistance, high creep and rupture strength at high temperature. However, these alloys were not considered for applications in which conditions of appreciable mechanical wear were predominant. The diffusion boriding provided suitable protection against wear. Unfortunately, this process required long duration and high temperature. In this study, instead of the diffusion process, the laser alloying with boron and niobium was used in order to produce the hard and wear resistant layer on Nimonic 80A-alloy. The laser-alloying was carried out as a two-step process. First, the external cylindrical surface of specimens was pre-placed with a paste containing boron and niobium. Then, the pre-placed coating and the thin surface layer of the substrate were re-melted by a laser beam. The high laser beam power (P=1.56 kW) and high averaging irradiance (E=49.66 kW/cm2) provided the thick laser re-melted zone. The laser-borided layers were significantly thicker (470 μm) in comparison with the layers obtained as a consequence of the diffusion boriding. Simultaneously, the high overlapping of multiple laser tracks (86%) caused that the laser-alloyed layer was uniform in respect of the thickness. The produced layer consisted of nickel borides (Ni3B, Ni2B, Ni4B3, NiB), chromium borides (CrB, Cr2B), niobium borides (NbB2, NbB) and Ni-phase. The presence of hard borides caused the increase in microhardness up to 1000 HV in the re-melted zone. However, the measured values were lower than those-characteristic of niobium borides, chromium borides and nickel borides. The presence of the soft Ni-phase in re-melted zone was the reason for such a situation. After laser alloying, the significant increase in abrasive wear resistance was also observed. The mass wear intensity factor, as well as the relative mass loss of the laser-alloyed specimens, was over 10 times smaller in

  18. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  19. Depth resolved investigations of boron implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sztucki, M. E-mail: michael@sztucki.de; Metzger, T.H.; Milita, S.; Berberich, F.; Schell, N.; Rouviere, J.L.; Patel, J

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6x10{sup 15} ions/cm{sup -2} at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {l_brace}1 1 1{r_brace} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  20. Oxygen radical functionalization of boron nitride nanosheets.

    Science.gov (United States)

    Sainsbury, Toby; Satti, Amro; May, Peter; Wang, Zhiming; McGovern, Ignatius; Gun'ko, Yurii K; Coleman, Jonathan

    2012-11-14

    The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution-phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalization of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-vis, FTIR, NMR, and TGA was performed to investigate both the structure of the BNNSs and the covalent functionalization methodology. OH-BNNSs were used to prepare polymer nanocomposites and their mechanical properties analyzed. The influence of the functional groups grafted to the surface of the BNNSs is investigated by demonstrating the impact on mechanical properties of both noncovalent and covalent bonding at the interface between the nanofiller and polymer matrixes.

  1. Electromagnetic properties and microstructures of in situ MgB2 wires made from three types of boron powders

    Science.gov (United States)

    Kodama, Motomune; Kotaki, Hiroshi; Yamamoto, Hiroyuki; Iwane, Tomohiro; Tanaka, Kazuhide; Tanaka, Hideki; Okishiro, Kenji; Okamoto, Kazutaka; Nishijima, Gen; Matsumoto, Akiyoshi; Kumakura, Hiroaki; Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Kishio, Kohji

    2016-10-01

    In powder-in-tube processed MgB2 wires, the choice of boron powder as a starting material crucially affects their performance. In this paper, we prepared in situ MgB2 wires from three types of boron powders in various heat-treatment conditions and investigated their electromagnetic properties and microstructures. Their critical current density, J c, varied over a wide range from sample to sample. The difference in J c is understood to be caused by the effect of changes in the electrical connectivity, K, and intrinsic residual resistivity, ρ 0. Here, K represents the effective cross-sectional area for current, and ρ 0 reflects the degree of the charge carrier scattering caused by lattice defects. It was found that the use of boron powder with a large specific surface area leads to a large degree of lattice defects in MgB2 grains and enhances ρ 0, resulting in improving J c. The boron powder produced by thermal decomposition of B2H6 has a large specific surface area. Hence, this boron powder is the most suitable as a starting material for MgB2. Meanwhile, dry pulverization of low-cost boron powder, which is largely produced by active-metal reduction of B2O3, is also effective to increase its specific surface area without introducing impurities, resulting in the enhancement of J c in the entire magnetic field region. This finding broadens the choice of boron powder and contributes to realizing superconducting applications with excellent balance between performance and cost.

  2. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and co

  3. GaN nanorods coated with pure BN

    Science.gov (United States)

    Han, Wei-Qiang; Zettl, A.

    2002-12-01

    We report a method to efficiently synthesize gallium nitride (GaN) nanorods coated with insulating boron nitride (BN) layers. The GaN core is crystalline (with either a cubic zincblende or hexagonal wurtzite structure) and has diameters ranging from 10 to 85 nm and lengths up to 60 μm. The outer encapsulating BN shells with typical thicknesses less than 5 nm extend fully over, and adhere well to, the entire nanorod surface.

  4. Investigation on the Effects of Titanium Diboride Particle Size on Radiation Shielding Properties of Titanium Diboride Reinforced Boron Carbide-Silicon Carbide Composites

    OpenAIRE

    A.O. Addemir; A.C. Akarsu; A.B. Tugrul; B. Buyuk

    2012-01-01

    Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the expe...

  5. Producing superhydrophobic roof tiles

    Science.gov (United States)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  6. Ultrahard nanotwinned cubic boron nitride.

    Science.gov (United States)

    Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan

    2013-01-17

    Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.

  7. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  8. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland;

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...... and still to realize Si-Si bonding. It has been demonstrated that ribbed silicon plates can be produced and assembled into stacks. All previously work has been done using uncoated Si plates. In this paper we describe how to coat the ribbed Si plates with an Ir coating and a top C coating through a mask so...

  9. Dietary boron: progress in establishing essential roles in human physiology.

    Science.gov (United States)

    Hunt, Curtiss D

    2012-06-01

    This review summarizes the progress made in establishing essential roles for boron in human physiology and assesses that progress in view of criteria for essentiality of elements. The evidence to date suggests that humans and at least some higher animals may use boron to support normal biological functions. These include roles in calcium metabolism, bone growth and maintenance, insulin metabolism, and completion of the life cycle. The biochemical mechanisms responsible for these effects are poorly understood but the nature of boron biochemistry suggests further characterization of the cell signaling molecules capable of complexing with boron. Such characterization may provide insights into the biochemical function(s) of boron in humans.

  10. Nuclear quadrupole resonance of boron in borate glasses

    Science.gov (United States)

    Gravina, Samuel J.; Bray, Phillip J.

    A continuous wave nuclear quadrupole resonance spectrometer that has a high sensitivity even at low frequencies has been built. Boron and aluminum NQR has been detected in the region 200 kHz to 1.4 MHz. For the first time, boron NQR has been detected in a glass. The NQR spectrum of pure B 20 3 glass is consistent with 85 ± 2% of the boron atoms belonging to boroxol rings. In sodium borate glasses, the number of borons in boroxol rings decreases with increasing sodium content, until when sodium oxide comprises 20 mol% of the glass less than 2% of the borons are in boroxol rings.

  11. A Neutronic Feasibility Study of an OPR-1000 Core Design with Boron-bearing Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Sang Yoon; Lee, Chung Chan; Yang, Yong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Westinghouse plants, boron is mainly used as a form of the integral fuel burnable absorber (IFBA) with a thin coating of zirconium diboride (ZrB{sub 2}) or wet annular burnable absorber (WABA) with a hollow Al{sub 2}O{sub 3}+B{sub 4}C pellet. In OPR-1000, on the other hand, gadolinia is currently employed as a form of an admixture which consists of Gd{sub 2}O{sub 3} of 6∼8 w/o and UO{sub 2} of natural uranium. Recently, boron-bearing UO{sub 2} fuel (BBF) with the high density of greater than 94%TD has been developed by using a low temperature sintering technique. In this paper, the feasibility of replacing conventional gadolinia-bearing UO{sub 2} fuel (GBF) in OPR-1000 with newly developed boron-bearing fuel is evaluated. Neutronic feasibility study to utilize the BBF in OPR-1000 core has been performed. The results show that the OPR-1000 core design with the BBF is feasible and promising in neutronic aspects. Therefore, the use of the BBF in OPR-1000 can reduce the dependency on the rare material such as gadolinium. However, the burnout of the {sup 10}B isotope results in helium gas, so fuel performance related study with respect to helium generation is needed.

  12. Raman Microscopic Analysis of Internal Stress in Boron-Doped Diamond

    Directory of Open Access Journals (Sweden)

    Kevin E. Bennet

    2015-05-01

    Full Text Available Analysis of the induced stress on undoped and boron-doped diamond (BDD thin films by confocal Raman microscopy is performed in this study to investigate its correlation with sample chemical composition and the substrate used during fabrication. Knowledge of this nature is very important to the issue of long-term stability of BDD coated neurosurgical electrodes that will be used in fast-scan cyclic voltammetry, as potential occurrence of film delaminations and dislocations during their surgical implantation can have unwanted consequences for the reliability of BDD-based biosensing electrodes. To achieve a more uniform deposition of the films on cylindrically-shaped tungsten rods, substrate rotation was employed in a custom-built chemical vapor deposition reactor. In addition to visibly preferential boron incorporation into the diamond lattice and columnar growth, the results also reveal a direct correlation between regions of pure diamond and enhanced stress. Definite stress release throughout entire film thicknesses was found in the current Raman mapping images for higher amounts of boron addition. There is also a possible contribution to the high values of compressive stress from sp2 type carbon impurities, besides that of the expected lattice mismatch between film and substrate.

  13. Effects of heat treatment on properties of boron nitride fiber

    Institute of Scientific and Technical Information of China (English)

    LI Duan; ZHANG ChangRui; LI Bin; CAO Feng; WANG SiQing

    2012-01-01

    The boron nitride fibers were heated at the range of 600-1400°C in flowing nitrogen and air,respectively,and the effects of heat treatment on the structure,composition and morphology of BN fibers were studied.The results showed that BN fibers exhibited smooth surfaces,and that t-BN was the main phase with a little B2O3 included.After heat treatment at 1400°C in nitrogen atmosphere,the fibers displayed rough surfaces with little change in mass.Better crystallinity was obtained with the increasing temperature.During heat treatment in air,the fibers were oxidized severely as the temperature went up,especially at 1400°C.The volatilization of B2O3,HBO2 and H3BO3 led to the pores on the surfaces of the fibers,while the boron oxide glaze and nitrogen gas produced during the oxidation process protected the fibers from further oxidation.

  14. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment

    Science.gov (United States)

    Li, Xia; Wang, Xiupeng; Zhang, Jun; Hanagata, Nobutaka; Wang, Xuebin; Weng, Qunhong; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri

    2017-01-01

    High global incidence of prostate cancer has led to a focus on prevention and treatment strategies to reduce the impact of this disease in public health. Boron compounds are increasingly recognized as preventative and chemotherapeutic agents. However, systemic administration of soluble boron compounds is hampered by their short half-life and low effectiveness. Here we report on hollow boron nitride (BN) spheres with controlled crystallinity and boron release that decrease cell viability and increase prostate cancer cell apoptosis. In vivo experiments on subcutaneous tumour mouse models treated with BN spheres demonstrated significant suppression of tumour growth. An orthotopic tumour growth model was also utilized and further confirmed the in vivo anti-cancer efficacy of BN spheres. Moreover, the administration of hollow BN spheres with paclitaxel leads to synergetic effects in the suppression of tumour growth. The work demonstrates that hollow BN spheres may function as a new agent for prostate cancer treatment.

  15. Recrystallization and grain growth of nanocomposite Ti-B-N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, P.H.; Willmann, H.; Mitterer, C

    2003-09-01

    Nanocomposite Ti-B-N coatings with different chemical composition were prepared by non-reactive co-sputtering of a segmented TiN-TiB{sub 2} target. The coatings investigated are primarily composed of nanocrystalline TiN and TiB{sub 2} phases. Increasing boron content results in a decreasing grain size from approximately 6 to 2 nm. During a thermal treatment of such coatings solely recovery and recrystallization with subsequent grain growth would appear, since the two phases are in thermodynamic equilibrium. Differential scanning calorimetry (DSC) and X-ray diffraction analysis were used to investigate the recrystallization behavior and subsequent grain growth of the nanocomposite Ti-B-N coatings. On heating the coating samples, which were removed chemically from their low alloyed steel substrates, an exothermal peak appeared during the DSC measurements indicating grain growth. From the onset temperature of this peak the recrystallization temperature was found which increases with increasing boron content from 1032 to 1070 deg. C. Activation energies for grain growth are obtained from Kissinger plots and yield values decreasing from 7.9 to 4.4 eV with increasing boron content. After heat treatment up to 1400 deg. C during the DSC measurements the coatings showed grain sizes within the range of 15-30 nm. It was found that the highest recrystallization temperature does not imply the highest activation energy for grain growth.

  16. Relationship Between Soil Boron Adsorption Kinetics and Rape Plant Boron Response

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; PIMEIMEI; 等

    1997-01-01

    The boron adsorption kinetic experiment in soil by means a flow displacement technique showed that the kinetic data could be described with some mathematic equations.The average values of the coorealtion coefficeint for zero-order,first-order,parabolic diffusion ,Elovich,power function and eponential equations were 0.957,0.982,0.981,0.984,0.981 and 0.902 ,respectively,The correlation between adsorbed boron or its other expression form and time were the highest for first-order ,parabloic diffusion Elovich,and pwer function equations,the second for the zeroorder equation,and the tlowest for the exponential equation.The parabloic diffusion equation fitted well the expermiental results,with the least standard error among the six kinetic equation,showing that the monvemetn of boron from soil solution to soil colloid surface may be controlled by boron diffusion speed.The boron content of rape seedling obtained from soil cultvation was correlated with the rate constants of the kinetic equations.The constants of first-order ,parabloic diffusion,and exponential equaitions were significanlty correlated with the boron content of the crop of NPK treatment at a 95% probaility level ,with correation coeffecients being 0.686,0.691 and 0.64 and 0.641,respectively.In the case of zero-order equation,it Was significant at 99% probability level(r=0.736),These results showed that the adsorption kinetic constants of soil boron were closely related with the rape plant response to boron.

  17. Boron film thickness determination to develop a low cost neutron using Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Priscila; Raele, Marcus P.; Yoriyaz, Helio; Siqueira, Paulo de T.D.; Zahn, Guilherme S.; Genezini, Frederico A., E-mail: fredzini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Neutron measurement is important for safety and security of workers at nuclear facilities. As neutron is an uncharged particle, for its detection is necessary to use a converter material that interacts with the neutron and produce a charged particle, which is easy to detect. One of the converter candidates is natural boron composed by about 20% of Boron-10, which capture a low energy neutron ejecting an energetic alpha particle and a lithium ion. A neutron detector can be developed applying a boron thin film over a silicon photodiode, which is charged particle sensitive. For this reason is important to determine the optimal film thickness. We have used an empirical solution for the boron film thickness evaluation; furthermore we developed, using Monte Carlo method (MCNP6), a model to simulate the alpha particles propagation through the detector. Our goal was to ensure the best production and transference of alpha particles to silicon region. The film thickness ranged between 0 to 5.5 μm, the neutron energy was also varied. The optimal thickness value will be used to develop a prototype of a low cost neutron detector. (author)

  18. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  19. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Ozkan Emre, E-mail: ozdemir@psu.edu; Avramova, Maria N., E-mail: mna109@psu.edu

    2014-10-15

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis.

  20. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT)

    Science.gov (United States)

    Jung, Joo-Young; Yoon, Do-Kun; Lee, Heui Chang; Lu, Bo; Suh, Tae Suk

    2016-09-01

    We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT). Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0) simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR) thickness, BUR location, and boron concentration) with differing proton beam energy (60-90 MeV). We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60-70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  1. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  2. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT

    Directory of Open Access Journals (Sweden)

    Joo-Young Jung

    2016-09-01

    Full Text Available We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT. Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0 simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR thickness, BUR location, and boron concentration with differing proton beam energy (60–90 MeV. We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60–70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  3. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  4. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...... and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real......-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials....

  5. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    Science.gov (United States)

    Galbiati, M.; Stoot, A. C.; MacKenzie, D. M. A.; Bøggild, P.; Camilli, L.

    2017-01-01

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  6. A Soluble Dynamic Complex Strategy for the Solution-Processed Fabrication of Organic Thin-Film Transistors of a Boron-Containing Polycyclic Aromatic Hydrocarbon.

    Science.gov (United States)

    Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro

    2016-09-19

    The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics.

  7. Substitution reactions at boron atoms in metallacarboranes

    Energy Technology Data Exchange (ETDEWEB)

    Bregadze, Vladimir I; Timofeev, Sergei V; Sivaev, Igor B; Lobanova, Irina A [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-05-31

    Data on substitution reactions at boron atoms in 10-12-vertex metallacarboranes, which are of fundamental and applied significance, are generalised. The possible mechanisms of substitution reactions and the influence of the metal fragment on substitution positions in the polyhedron are discussed.

  8. Catalytic Asymmetric Synthesis of Phosphine Boronates.

    Science.gov (United States)

    Hornillos, Valentín; Vila, Carlos; Otten, Edwin; Feringa, Ben L

    2015-06-26

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of α,β-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good yields and high enantiomeric excess. The synthetic utility of the products is demonstrated through stereospecific transformations into multifunctional optically active compounds.

  9. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  10. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  11. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  12. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  13. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  14. Pechmann Reaction Promoted by Boron Trifluoride Dihydrate

    Directory of Open Access Journals (Sweden)

    J. Mezger

    2005-08-01

    Full Text Available The Pechmann reaction of substituted phenols 1a-e with methyl acetoacetate (2 can be activated by boron trifluoride dihydrate (3 to give the corresponding 4-methyl- coumarin derivatives 4a-e in excellent yield (98-99 %.

  15. Investigating the Boron Requirement of Plants.

    Science.gov (United States)

    Bohnsack, Charles W.

    1991-01-01

    This article describes a simple and rapid method for using summer squash to investigate born deficiency in plants. Author asserts that students are likely to feel challenged by laboratory exercises and projects that focus on the role boron plays in plant growth because it is an unresolved problem in biology. (PR)

  16. Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear

    Science.gov (United States)

    Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.

    2013-05-01

    A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.

  17. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf;

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre......-incubated with boron nanoparticles for 12 hours, were injected subcutaneously into C57BL16J mice. The tumour sites were exposed to different doses of neutron radiation one, four, or eight days after tumour cell inoculation. Results: When the tumour site was irradiated with thermal neutrons one day after injection......, tumour growth was delayed and the treated mice survived longer than untreated controls (median survival time 20 days (N=8) compared with 10 days (N=7) for untreated mice). Conclusion: Boron nanoparticles significantly delay the growth of an aggressive B16-OVA tumour in vivo by boron neutron capture...

  18. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  19. Structure and corrosion properties of PVD Cr-N coatings

    CERN Document Server

    Liu, C; Ziegele, H; Leyland, A; Matthews, A

    2002-01-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating 'permeable' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, t...

  20. Performance of chromium nitride based coatings under plastic processing conditions

    OpenAIRE

    Cunha, l.; Andritschky, M.; Pischow, K.; Wang, Z.(Institute of High Energy Physics, Beijing, China); Zarychta, A.; Miranda, A. S.; A.M. Cunha

    2000-01-01

    Chromium nitride based coatings were produced in the form of monolithic and multilayer coatings, by DC and RF reactive magnetron sputtering. These coatings were deposited onto stainless steel and tool steel substrates. Chromium nitride coatings have;proved to be wear and corrosion resistant. The combination of these characteristics was necessary to protect surfaces during plastic processing. In order to select the best coatings, some mechanical and tribological tests were performed. Har...