WorldWideScience

Sample records for boron coatings deposited

  1. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  2. Research of boron conversion coating in neutron detector with boron deposited GEM

    International Nuclear Information System (INIS)

    Ye Di; Sun Zhijia; Zhou Jianrong; Wang Yanfeng; Yang Guian; Xu Hong; Chen Yuanbai; Xiao Yu; Diao Xungang

    2014-01-01

    GEM is a flourishing new gas detector and nowadays its technology become more mature. It has outstanding properties, such as excellent position resolution, high counting rate, radiation resistance, simple and flexible signal readout, can be large-area detector, wide application range. Detector with boron deposited GEM uses multilayer GEM with deposited boron film as neutron conversion carrier which reads out the information of neutron shot from the readout electrode with gas amplification from every GEM layer. The detector is high performance which can meet the demands of neutron detector of a new generation. Boron deposited neutron conversion electrode with boron deposited cathode and GEM included is the core part of the detector. As boron is a high-melting-point metalloid (> 2 000 ℃), electroplating and thermal evaporation are inappropriate ways. So finding a way to deposit boron on electrode which can meet the demands become a key technology in the development of neutron detector with boron deposited GEM. Compared with evaporation, sputtering has features such as low deposition temperature, high film purity, nice adhesive, thus is appropriate for our research. Magnetron sputtering is a improved way of sputtering which can get lower sputtering air pressure and higher target voltage, so that we can get better films. Through deposit process, the research uses magnetron sputtering to deposit pure boron film on copper electrode and GEM film. This method can get high quality, nice adhere, high purity, controllable uniformity, low cost film with high speed film formation. (authors)

  3. Effects of heat treatment on the microstructure of amorphous boron carbide coating deposited on graphite substrates by chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Siwei; Zeng Bin; Feng Zude; Liu Yongsheng; Yang Wenbin; Cheng Laifei; Zhang Litong

    2010-01-01

    A two-layer boron carbide coating is deposited on a graphite substrate by chemical vapor deposition from a CH 4 /BCl 3 /H 2 precursor mixture at a low temperature of 950 o C and a reduced pressure of 10 KPa. Coated substrates are annealed at 1600 o C, 1700 o C, 1800 o C, 1900 o C and 2000 o C in high purity argon for 2 h, respectively. Structural evolution of the coatings is explored by electron microscopy and spectroscopy. Results demonstrate that the as-deposited coating is composed of pyrolytic carbon and amorphous boron carbide. A composition gradient of B and C is induced in each deposition. After annealing, B 4 C crystallites precipitate out of the amorphous boron carbide and grow to several hundreds nanometers by receiving B and C from boron-doped pyrolytic carbon. Energy-dispersive spectroscopy proves that the crystallization is controlled by element diffusion activated by high temperature annealing, after that a larger concentration gradient of B and C is induced in the coating. Quantified Raman spectrum identifies a graphitization enhancement of pyrolytic carbon. Transmission electron microscopy exhibits an epitaxial growth of B 4 C at layer/layer interface of the annealed coatings. Mechanism concerning the structural evolution on the basis of the experimental results is proposed.

  4. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    Science.gov (United States)

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    Science.gov (United States)

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-05-01

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  7. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  8. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  9. Plasma-Arc Deposited Elemental Boron Film for use as a Durable Nonstick Coating

    National Research Council Canada - National Science Library

    Klepper, C. C

    2007-01-01

    Report developed under Small Business Innovation Research Contract. Under this Phase I SBIR contract, HY-Tech Research performed development of an abrasion resistant, non-stick coating for cookware used by the U.S. Army in the field...

  10. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  11. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  12. Variations in the microstructure of nickel-based alloy coatings with the metalloids boron and silicon as a function of deposition parameters in a dual beam ion system

    International Nuclear Information System (INIS)

    Panitz, J.K.G.

    1986-01-01

    We have deposited coatings using a dual beam ion source system with two different targets as sputtering sources; (i) a predominantly amorphous Ni/sub 63.5/Cr/sub 12.3/Fe/sub 3.5/Si/sub 7.9/B/sub 12.8/ foil and (ii) a crystalline Ni/sub 55.3/Cr/sub 16.9/Si/sub 7.2/B/sub 21.6/ slab from a casting. Amorphous coatings were produced by the foil for all conditions studied. The coatings that were deposited from the slab target that were less than 400 nm in thickness which were deposited at rates from 8--50 nm/min appeared to be amorphous. The thicker (>400 nm) coatings and the extremely low deposition rate (2 nm/min) coatings produced by the slab comprised both partially polycrystalline and amorphous material. All of the coatings studied exhibited inferior wear and erosion resistance properties compared to iron-based amorphous metal coatings containing Ti, C, or N, which have been studied by other groups. However, the corrosion resistance to 4 N HCl is good, ranging from less than 0.01 to 0.22 mm/yr as a function of deposition rate, concurrent ion bombardment conditions, and coating thickness

  13. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  14. Ion Deposited Carbon Coatings.

    Science.gov (United States)

    1983-07-01

    PAGE ("’hen Dita t,,I,, efl TABLE OF CONTENTS Section No. Title Page No. 1.0 OBJECTIVE 1 2.0 SCOPE 2 3.0 BACKGROUND 3 4.0 COATINGS DEPOSITION 4 4.1...scientific, ards of measure. The Committee, and Confer- technical, practical, and teaching purposes.ence voting members, are leading professional On the

  15. Deposition of Boron in Possible Evaporite Deposits in Gale Crate

    Science.gov (United States)

    Gasda, P. J.; Peets, E.; Lamm, S. N.; Rapin, W.; Lanza, N.; Frydenvang, J.; Clark, B. C.; Herkenhoff, K. E.; Bridges, J.; Schwenzer, S. P.; Haldeman, E. B.; Wiens, R. C.; Maurice, S.; Clegg, S. M.; Delapp, D.; Sanford, V.; Bodine, M. R.; McInroy, R.

    2017-12-01

    Boron has been previously detected in Gale crater using the ChemCam instrument on board the NASA Curiosity rover within calcium sulfate fracture fill hosted by lacustrine mudstone and eolian sandstone units. Recent results show that up to 300 ppm B is present in the upper sections of the lacustrine unit. Boron has been detected in both the groundwater-emplaced calcium sulfate fracture fill materials and bedding-parallel calcium sulfate layers. The widespread bedding-parallel calcium sulfate layers within the upper strata of the lacustrine bedrock that Curiosity has encountered recently could be interpreted as primary evaporite deposits. We have two hypotheses for the history of boron in Gale crater. In both hypotheses, borates were first deposited as lake water evaporated, depositing primary evaporates that were later re-dissolved by groundwater, which redistributed the boron into secondary evaporitic calcium sulfate fracture fill deposits. In the first scenario, Gale crater may have undergone a period of perennial lake formation during a drier period of martian history, depositing layers of evaporitic minerals (including borates) among lacustrine mudstone layers. In the second scenario, lake margins could have become periodically exposed during cyclic drops in lake level and subsequently desiccated. Evaporites were deposited and desiccation features were formed in lowstand deposits. Either hypothetical scenario of evaporite deposition would promote prebiotic chemical reactions via wet-dry cycles. Boron may be an important prebiotic element, and as such, its presence in ancient martian surface and groundwater provides evidence that important prebiotic chemical reactions could occur on Mars if organics were present. The presence of boron in ancient Gale crater groundwater also provides additional evidence that a habitable environment existed in the martian subsurface well after the expected disappearance of liquid water on the surface of Mars. We will report on the

  16. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  17. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, G [Department of Chemical Engineering, Middle East Technical Univ., Ankara (Turkey); Uslu, I; Tore, C; Tanker, E [Turkiye Atom Enerjisi Kurumu, Ankara (Turkey)

    1997-08-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs.

  18. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    International Nuclear Information System (INIS)

    Gunduz, G.; Uslu, I.; Tore, C.; Tanker, E.

    1997-01-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs

  19. boron nitride coating of uranium dioxide and uranium dioxide-gadolinium oxide fuels by chemical precipitation method

    International Nuclear Information System (INIS)

    Uslu, I.; Tanker, E.; Guenduez, G.

    1997-01-01

    In this research pure urania and urania-gadolinia (5 and 10 %) fuels were coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron tricloride BCl 3 ) and ammonia (NH 3 ) at 600 C.Boron tricloride and ammonia are carried to tubular furnace using hydrogen as carrier gas. The coated samples were sintered at 1600 K. The properties of the coated samples were observed using BET surface area analysis, infrared spectra (IR), X-Ray Diffraction and Scanning Electron Microscope (SEM) techniques

  20. Thick boron carbide coatings for protection of tokamak first wall and divertor

    International Nuclear Information System (INIS)

    Buzhinskij, O.I.; Semenets, Yu.M.

    1999-01-01

    A review of characteristics of various types of boron carbide coatings considered as candidate materials for protection of tokamak inner surfaces against high energy heat fluxes is presented. Such coatings are produced by various methods: chemical vapor deposition by means of chloride and fluoride techniques, gas conversion, plasma spray and reaction-sintering. Contrary to pure carbon materials, B 4 C has much lower chemical and high-temperature sputtering, is capable to oxygen gettering and lower hydrogen recycling. In contrast to thin boronization films, the thick coatings can resist high heat fluxes such as in tokamak divertors. Comparative analysis shows that coatings produced by the diffusion methods, such as fluoride CVD and gas conversion, are more resistent to heat loads, and one of the most promising candidates are the fluoride CVD coatings. (orig.)

  1. Corrosion Behavior of Titanium Based Ceramic Coatings Deposited on Steels

    OpenAIRE

    Ali, Rania

    2016-01-01

    Titanium based ceramic films are increasingly used as coating materials because of their high hardness, excellent wear resistance and superior corrosion resistance. Using electrochemical and spectroscopic techniques, the electrochemical properties of different coatings deposited on different steels under different conditions were examined in this study. Thin films of titanium nitride (TiN), titanium diboride (TiB2), and titanium boronitride with different boron concentrations (TiBN-1&2) w...

  2. Selection of boron based tribological hard coatings using multi-criteria decision making methods

    International Nuclear Information System (INIS)

    Çalışkan, Halil

    2013-01-01

    Highlights: • Boron based coating selection problem for cutting tools was solved. • EXPROM2, TOPSIS and VIKOR methods were used for ranking the alternative materials. • The best coatings for cutting tool were selected as TiBN and TiSiBN. • The ranking results are in good agreement with cutting test results in literature. - Abstract: Mechanical and tribological properties of hard coatings can be enhanced using boron as alloying element. Therefore, multicomponent nanostructured boron based hard coatings are deposited on cutting tools by different methods at different parameters. Different mechanical and tribological properties are obtained after deposition, and it is a difficult task to select the best coating material. In this paper, therefore, a systematic evaluation model was proposed to tackle the difficulty of the material selection with specific properties among a set of available alternatives. The alternatives consist of multicomponent nanostructured TiBN, TiCrBN, TiSiBN and TiAlSiBN coatings deposited by magnetron sputtering and ion implantation assisted magnetron sputtering at different parameters. The alternative coating materials were ranked by using three multi-criteria decision-making (MCDM) methods, i.e. EXPROM2 (preference ranking organization method for enrichment evaluation), TOPSIS (technique for order performance by similarity to ideal solution) and VIKOR (VIšekriterijumsko KOmpromisno Rangiranje), in order to determine the best coating material for cutting tools. Hardness (H), Young’s modulus (E), elastic recovery, friction coefficient, critical load, H/E and H 3 /E 2 ratios were considered as material selection criteria. In order to determine the importance weights of the evaluation criteria, a compromised weighting method, which composes of the analytic hierarchy process and Entropy methods, were used. The ranking results showed that TiBN and TiSiBN coatings deposited at given parameters are the best coatings for cutting tools

  3. Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes

    Science.gov (United States)

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Kopiec, Daniel; Moczała, Magdalena; Orłowska, Karolina; Sawczak, Mirosław; Gotszalk, Teodor

    2016-04-01

    Fabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. B-NCD films were deposited using microwave plasma assisted chemical vapour deposition method. The variation in B-NCD morphology, structure and optical parameters was particularly investigated. The use of truncated cone-shaped substrate holder enabled to grow thin fully encapsulated nanocrystalline diamond film with a thickness of approx. 60 nm and RMS roughness of 17 nm. Raman spectra present the typical boron-doped nanocrystalline diamond line recorded at 1148 cm-1. Moreover, the change in mechanical parameters of silicon cantilevers over-coated with boron-doped diamond films was investigated with laser vibrometer. The increase of resonance to frequency of over-coated cantilever is attributed to the change in spring constant caused by B-NCD coating. Topography and electrical parameters of boron-doped diamond films were investigated by tapping mode AFM and electrical mode of AFM-Kelvin probe force microscopy (KPFM). The crystallite-grain size was recorded at 153 and 238 nm for boron-doped film and undoped, respectively. Based on the contact potential difference data from the KPFM measurements, the work function of diamond layers was estimated. For the undoped diamond films, average CPD of 650 mV and for boron-doped layer 155 mV were achieved. Based on CPD values, the values of work functions were calculated as 4.65 and 5.15 eV for doped and undoped diamond film, respectively. Boron doping increases the carrier density and the conductivity of the material and, consequently, the Fermi level.

  4. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  5. Kinetics of chemical vapor deposition of boron on molybdenum

    International Nuclear Information System (INIS)

    Tanaka, W.; Nakaanishi, N.; Kato, E.

    1987-01-01

    Experimental rate data of chemical vapor deposition of boron by reduction of boron trichloride with hydrogen are analyzed to determine the reaction mechanism. The reaction orders with respect to the partial pressures of hydrogen and boron trichloride are one half and one third, respectively. It has been found that the outer layer of a deposited film is Mo/sub 2/B/sub 5/ and the inner layer is MoB by the use of X-ray diffraction and EPMA line analysis

  6. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E.C. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil)]. E-mail: erica@las.inpe.br; Diniz, A.V. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Trava-Airoldi, V.J. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Ferreira, N.G. [CTA-Divisao de Materiais, Sao Jose dos Campos, SP 12228-904 (Brazil)

    2005-08-01

    Doped diamond films have been deposited on carbon fibers (felt) obtained from polyacrylonitrile at different levels of boron doping. For a successful coating of the fibers, an ultrasonic pretreatment in a bath of diamond powder dissolved in hexane was required. Films were grown on both sample sides, simultaneously, by hot filament-assisted chemical vapour deposition technique at 750 deg. C from a 0.5% H{sub 2}/CH{sub 4} mixture at a total pressure of 6.5 x 10{sup 3} Pa. Boron was obtained from H{sub 2} forced to pass through a bubbler containing B{sub 2}O{sub 3} dissolved in methanol. The doping level studied corresponds to films with acceptor concentrations in the range of 6.5 x 10{sup 18} to 1.5 x 10{sup 21} cm{sup -} {sup 3}, obtained from Mott-Schottky plots. Scanning electron microscopy analyses evidenced fibers totally covered with high quality polycrystalline boron-doped diamond film, also confirmed by Raman spectroscopy spectra. Diamond electrodes grown on carbon fibers demonstrated similar electrochemical behavior obtained from films on Si substrate, for ferri/ferrocyanide redox couple as a function of boron content. The boron content influences electrochemical surface area. A lower boron concentration provides a higher growth rate that results in a higher surface area.

  7. Deposition and characterization of sputtered hexaboride coatings

    International Nuclear Information System (INIS)

    Waldhauser, W.

    1996-06-01

    Hexaborides of the rare-earth elements ReB 6 are potential materials for cathode applications since they combine properties such as low work function, good electrical conductivity, high melting point as well as low volatility at high temperatures. Due to their high hardness and colorations ranging from blue to purple these compounds are also considered for applications to coatings for decoration of consumer products. At present, either rods of sintered LaB 6 or single LaB 6 crystals are indirectly heated to induce emission. In this workboride coatings were deposited onto various substrates employing non-reactive magnetron sputtering from LaB 6 , CeB 6 , SmB 6 and YB 6 targets. Coatings deposited were examined using scanning electron microscopy, X-ray diffraction, electron probe microanalysis. Vickers microhardness, colorimeter and spectroscopic ellipsometry measurements. Electron emission characteristics of the coatings were studied by the thermionic emission and the contact potential method. After optimization of the sputtering parameters fine-columnar or partially amorphous films with atomic ratios of boron to metal in the order of 5 to 7.5 were obtained. The tendency to form the corresponding hexaboride phase decreases from LaB 6 , CeB 6 and SmB 6 to YB 6 . The work function was measured to be in the range of 2.6 to 3.3 eV. Vickers microhardness values lie between 1500 and 2000 HVO.01. LaB 6 coatings showed the most pronounced visual color impression corresponding to dark violet. The results obtained indicate that sputtered hexaboride films are well suited for decorative and thermionic applications. (author)

  8. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Peterson, P.L.; Winters, J.

    1992-01-01

    A system has been added to the DIII-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose f the boron film is to reduce the levels of impurity atoms in the DIII-D plasmas. Experiments following the application of the boron film in DIII-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime

  9. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Petersen, P.I.; Winter, J.

    1991-09-01

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  10. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    International Nuclear Information System (INIS)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-01-01

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion

  11. Electrophoretic deposition of boron-10 in neutron detectors electrodes

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Vieira, J.M.

    1990-01-01

    Process of boron-10 electrophoresis on large area of aluminum substrates was developed with the aim of using them in the construction of neutron detectors. After definition and optimization of the boron electrophoresis parameters, depositions of boron-10 on aluminum cylinders were performed and used as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. These prototypes were designed and builded at IPEN-CNEN-SP, and submited for characterization tests at IEA-R1 reactor, and they fulfil the technical specifications of the project. (author) [pt

  12. ICRF boronization. A new technique towards high efficiency wall coating for superconducting tokamak reactors

    International Nuclear Information System (INIS)

    Li Jiangang; Zhao Yan Ping; Gu Xue Mao

    1999-01-01

    A new technique for wall conditioning that will be especially useful for future larger superconducting tokamaks, such as ITER, has been successfully developed and encouraging results have been obtained. Solid carborane powder, which is non-toxic and non-explosive, was used. Pulsed RF plasma was produced by a non-Faraday shielding RF antenna with RF power of 10 kW. The ion temperature was about 2 keV with a toroidal magnetic field of 1.8 T and a pressure of 3x10 -1 Pa. Energetic ions broke up the carborane molecules, and the resulting boron ions struck and were deposited on the first wall. In comparison with glow discharge cleaning boronization, the B/C coating film shows higher adhesion, more uniformity and longer lifetime during plasma discharges. The plasma performance was improved after ICRF boronization. (author). Letter-to-the-editor

  13. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  14. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux; Depots electrophoretiques de bore sur plaques de duralumin destines a des mesures de flux de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Magnier, P; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    Preparation of boron thin film deposits of around 1 mg per cm{sup 2} on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  15. Kinetics of chemical vapor deposition of boron on molybdenum

    International Nuclear Information System (INIS)

    Tanaka, H.; Nakanishi, N.; Kato, E.

    1987-01-01

    Experimental rate data of chemical vapor deposition of boron by reduction of boron trichloride with hydrogen are analyzed to determine the reaction mechanism. The experiments were conducted at atmospheric pressure. The weight change of the sample was noted by means of a thermobalance. Molybdenum was used as the substrate. It has been found that the outer layer of the deposited film is Mo/sub 2/B/sub 5/ and the inner layer is MoB, and in the stational state of the reaction, the diffusion in the solid state is considered not to be rate controlling. When mass transport limitation was absent, the reaction orders with respect to boron trichloride and hydrogen were one third and one half, respectively. By comparing these orders with those obtained from Langmuir-Hinshelwood type equations, the rate controlling mechanism is identified to be the desorption of hydrogen chloride from the substrate

  16. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-09

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  17. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  18. Boronized steels with corundum-baddeleyite coatings

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Kolísko, J.; Bouška, P.; Brožek, Vlastimil; Kubatík, Tomáš František; Mastný, L.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 341-344 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : Bobororonized steel * corundum-baddeleyite coating * anti-corrosion properties * plasma spraying Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  19. Boronized steels with corundum-baddeleyite coatings

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Kolísko, J.; Bouška, P.; Brožek, Vlastimil; Kubatík, Tomáš František; Mastný, L.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 341-344 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : Bobororonized steel * corundum-baddeleyite coating * anti- corrosion properties * plasma spraying Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  20. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  1. X-ray diffraction of residual stresses in boron nitride coated on steel substrate

    International Nuclear Information System (INIS)

    Hamzah, E.; Ramdan, R.D.; Venkatesh, V.C.; Hamid, N.H.B.

    2002-01-01

    Cubic boron nitride (cBN) is a promising coating material for cutting tools especially for applications that have contact with ferrous metals. This is because of its extreme hardness, chemical stability at high temperature and inertness with ferrous metals. However applications of cBN as coating material has not been used extensively due to the poor adhesion between cBN and its substrate. High stress level in the film is considered to be the main factor for the delamination of cBN films after deposition. Thus the present research concentrates on residual stress analysis of cBN films by x-ray diffraction method. Fourier transform infra-red (FTIR) spectroscopy analysis was also performed on the samples to study the structure of the deposited films. Based on the present experimental results and previous literature study, a new theoretical model for cBN film growth was proposed. (Author)

  2. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  3. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  4. Method and apparatus for coating thin foil with a boron coating

    Science.gov (United States)

    Lacy, Jeffrey L.

    2018-01-16

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.

  5. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility.

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices.

  6. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  7. AUTOCATALYTIC REDUCTION AND CHARACTERISTICS OF BORON-CONTAINING COATINGS

    Directory of Open Access Journals (Sweden)

    V. Covaliov

    2013-06-01

    Full Text Available The research results of the plating conditions, chemical composition and properties of Ni-B coatings and Ni-Re-B, Ni-Mo-B and Ni-W-B alloys are given. It was shown that introduction of alloying elements (Re, Мо and W in the composition of Ni-containing coatings modifies the catalytic activity of the alloys’ surface, with regard to the parallel reactions of dimethylamino-borane (DMAB heterogeneous hydrolysis, Ni reduction and evolving of the molecular hydrogen. It was found that with the increase in concentration of alloying element, boron content in the coatings is decreased to the trace amounts. The effect of alloys composition on hydrogen evolving overvoltage was studied. Due to the low overvoltage of hydrogen evolving (HE on the alloy Ni-Re-B surface (11 at.% Re, it can be used as electrode for hydrogen generation from water in the electrolytic cell with novel design and improved technical-economic indicators.

  8. Functional Plasma-Deposited Coatings

    Directory of Open Access Journals (Sweden)

    Mykhaylo Pashechko

    2017-12-01

    Full Text Available The paper focuses on the problem of low adhesion of plasma sprayed coatings to the substrate. The subsequent laser treatment modes and their influence on the coating-substrate interface were studied. This allows to decrease the level of metstability of the coating, thus decreasing its hardness down to 11-12 GPa on the surface and to about 9 GPa on depth of 400 µm. The redistribution of alloying elements through solid and liquid diffusion improves mechanical properties and rises the adhesion up to 450 MPa after remelting and up to 90-110 MPa after laser-aided thermal cycling. At he same time, remelting of coating helps to decrease its porosity down to 1%. Obtained complex of properties also allows to improve wear resistance of coatings and to decrease friction factor.

  9. The vapour phase deposition of boron on titanium by the reaction between gaseous boron trichloride and titanium metal. Final report

    International Nuclear Information System (INIS)

    Cameron, D.J.; Shelton, R.A.J.

    1965-03-01

    The reaction, between boron trichloride vapour and titanium has been investigated in the temperature range 200 - 1350 deg. C. It has been found that an initial reaction leads to the formation of titanium tetrachloride and the deposition of boron on titanium, but that except for reactions between 900 and 1000 deg. C, the system is complicated by the formation of lower titanium chlorides due to secondary reactions between the titanium and titanium tetrachloride

  10. Tribo-mechanical and electrical properties of boron-containing coatings

    Science.gov (United States)

    Qian, Jincheng

    the nanoscale. Their tribo-mechanical, corrosion, and electrical properties are studied in relation to the composition and microstructure, aiming at enhancing their performance for multi-functional protective coating applications via microstructural design. First, B1-xCx (0 < x < 1) films with tailored tribo-mechanical properties were deposited by magnetron sputtering using one graphite and two boron targets. The hardness of the B1-xC x films was found to reach 25 GPa both for boron-rich and carbon-rich films, and the friction coefficient and wear rate can be adjusted from 0.66 to 0.13 and from 6.4x10-5 mm3/Nm to 1.3x10 -7 mm3/Nm, respectively, by changing the carbon content from 19 to 76 at.%. The hardness variation is closely related to the microstructure, and the low friction and wear rate of the B0.24C0.76 film are due to the high portion of an amorphous carbon phase. Moreover, application of the B0.81C0.19 film improves the corrosion resistance of the M2 steel substrate significantly, indicated by the decrease of the corrosion current by almost four orders of magnitude. Based on the optimization of the B1-xCx films, nanostructured Ti-B-C films with different compositions were deposited by adding titanium by simultaneously sputtering a titanium diboride target. We found that the film microstructure features TiB2 nanocrystallites embedded in an amorphous boron carbide matrix. The film hardness varies from 33 to 42 GPa with different titanium contents, which is related to the changes in microstructure, namely, the size and concentration of the TiB2 nanocrystallites. The friction coefficient and wear rate are in the ranges of 0.37-0.73 and of 3.3x10-6-5.7x10-5 mm3/Nm, respectively, which are affected by the mechanical properties and the surface chemical states of the films. By applying the Ti-B-C films, the corrosion resistance of the M2 steel substrate is significantly enhanced as documented by a reduction of the corrosion current density by two orders of magnitude

  11. Influence of boron oxide on protective properties of zinc coating on steel

    International Nuclear Information System (INIS)

    Alimov, V.I.; Berezin, A.V.

    1986-01-01

    The authors study the properties of zinc coating when boron oxide is added to the melt for galvanization. The authors found that a rise in the degree of initial deformation of the steel leads to the production of varying thickness of the zinc coating. The results show the favorable influence of small amounts of added boron oxide on the corrosion resistance of a zinc coating on cold-deformed high-carbon steel; this influence is also manifested in the case of deformation of the zinc coating itself

  12. Preparation and electrical properties of boron and boron phosphide films obtained by gas source molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sakamoto, T.; Fujita, T. [Yokohama National Univ. (Japan)

    1997-10-01

    Boron and boron phosphide films were prepared by gas source molecular beam deposition on sapphire crystal at various substrate temperatures up to 800{degrees}C using cracked B{sub 2}H{sub 6} (2% in H{sub 2}) at 300{degrees}C and cracked PH{sub 3} (20% in H{sub 2}) at 900{degrees}C. The substrate temperatures and gas flow rates of the reactant gases determined the film growth. The boron films with amorphous structure are p type. Increasing growth times lead to increasing mobilities and decreasing carrier concentrations. Boron phosphide film with maximum P/B ratio is obtained at a substrate temperature of 600{degrees}C, below and above which they become phosphorous deficient due to insufficient supply of phosphorus and thermal desorption of the phosphorus as P{sub 2}, respectively, but they are all n type conductors due to phosphorus vacancies.

  13. Novel composite cBN-TiN coating deposition method: structure and performance in metal cutting

    International Nuclear Information System (INIS)

    Russell, W.C.; Malshe, A.P.; Yedave, S.N.; Brown, W.D.

    2001-01-01

    Cubic boron nitride coatings are under development for a variety of applications but stabilization of the pure cBN form and adhesion of films deposited by PVD and ion-based methods has been difficult. An alternative method for depositing a composite cBN-TiN film has been developed for wear related applications. The coating is deposited in a two-stage process utilizing ESC (electrostatic spray coating) and CVI (chemical vapor infiltration). Fully dense films of cBN particles evenly dispersed in a continuous TiN matrix have been developed. Testing in metal cutting has shown an increase in tool life (turning - 4340 steel) of three to seven times, depending of machining parameters, in comparison with CVD deposited TiN films. (author)

  14. Deposition and characterization of aluminum magnesium boride thin film coatings

    Science.gov (United States)

    Tian, Yun

    Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (boride films, high vacuum level-as deposited AlMgB14 films also possess a low n-type electrical resistivity, which is a consequence of high carrier concentration and moderate carrier mobility. The operative electrical transport mechanism and doping behavior for high vacuum level-as deposited AlMgB14

  15. Antireflection coatings on plastics deposited by plasma ...

    Indian Academy of Sciences (India)

    Wintec

    Antireflection coatings (ARCs) are deposited on the surfaces of optical elements like spectacle lenses to increase light transmission and improve their performance. In the ophthalmic .... silica layer (Zajickova et al 1998, 2001; Benitez et al. 2000; Kuhr et al 2003 .... by the contact angle of a water drop on the surface. Due to its ...

  16. Urea route to coat inorganic nanowires, carbon fibers and nanotubes by boron nitride

    International Nuclear Information System (INIS)

    Gomathi, A.; Ramya Harika, M.; Rao, C.N.R.

    2008-01-01

    A simple route involving urea as the nitrogen source has been employed to carry out boron nitride coating on carbon fibers, multi-walled carbon nanotubes and inorganic nanowires. The process involves heating the carbon fibers and nanotubes or inorganic nanowires in a mixture of H 3 BO 3 and urea, followed by a heat treatment at 1000 deg. C in a N 2 atmosphere. We have been able to characterize the BN coating by transmission electron microscopy as well as X-ray photoelectron spectroscopy. The urea decomposition route affords a simple method to coat boron nitride on one-dimensional nanostructures

  17. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Kyung; Kim, Min Woo; Lee, Hyeon Keun [KAIST, Daejeon (Korea, Republic of); Choi, Doo Jin; Kim, Jun Kyu; Cho, Sung Hyuk [Younsei University, Seoul (Korea, Republic of)

    2008-03-15

    Both ZrC and SiC layers are crucial layers in TRISO coated fuel particles since they prevent diffusion of fission products and provide mechanical strength for the fuel particle. However, each layer has its own defects, so the purpose of this study is to complement such defects of these layers. In this study, we carried out thermodynamic simulations before actual experiments. With these simulation results, we deposited the ZrC layers on SiC/graphite substrates through CVD process. SiC films on graphite have different microstructures which are a hemispherical angular, domed top and faceted structure at different deposition temperature, respectively. According to the microstructures of SiC, preferred orientation, hardness and elastic modules of deposited ZrC layer were changed. TRISO particles. The fracture the SiC coating layer occurred by the tensile stress due to the traditional pressure vessel failure criteria. It is important to find fracture stress of SiC coating layer by the internal pressurization test method. The finite-element analysis was carried out to obtain the empirical equation of strength evaluation. By using this empirical equation, the mechanical properties of several types of SiC coating film with different microstructure and thicknesses will discussed.

  18. Deposition and Characterization of TRISO Coating Layers

    International Nuclear Information System (INIS)

    Kim, Do Kyung; Kim, Min Woo; Lee, Hyeon Keun; Choi, Doo Jin; Kim, Jun Kyu; Cho, Sung Hyuk

    2008-03-01

    Both ZrC and SiC layers are crucial layers in TRISO coated fuel particles since they prevent diffusion of fission products and provide mechanical strength for the fuel particle. However, each layer has its own defects, so the purpose of this study is to complement such defects of these layers. In this study, we carried out thermodynamic simulations before actual experiments. With these simulation results, we deposited the ZrC layers on SiC/graphite substrates through CVD process. SiC films on graphite have different microstructures which are a hemispherical angular, domed top and faceted structure at different deposition temperature, respectively. According to the microstructures of SiC, preferred orientation, hardness and elastic modules of deposited ZrC layer were changed. TRISO particles. The fracture the SiC coating layer occurred by the tensile stress due to the traditional pressure vessel failure criteria. It is important to find fracture stress of SiC coating layer by the internal pressurization test method. The finite-element analysis was carried out to obtain the empirical equation of strength evaluation. By using this empirical equation, the mechanical properties of several types of SiC coating film with different microstructure and thicknesses will discussed

  19. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  20. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  1. Differences in Nanosecond Laser Ablation and Deposition of Tungsten, Boron, and WB2/B Composite due to Optical Properties

    Directory of Open Access Journals (Sweden)

    Tomasz Moscicki

    2016-01-01

    Full Text Available The first attempt to the deposition of WB3 films using nanosecond Nd:YAG laser demonstrated that deposited coatings are superhard. However, they have very high roughness. The deposited films consisted mainly of droplets. Therefore, in the present work, the explanation of this phenomenon is conducted. The interaction of Nd:YAG nanosecond laser pulse with tungsten, boron, and WB2/B target during ablation is investigated. The studies show the fundamental differences in ablation of those materials. The ablation of tungsten is thermal and occurs due to only evaporation. In the same conditions, during ablation of boron, the phase explosion and/or fragmentation due to recoil pressure is observed. The deposited films have a significant contribution of big debris with irregular shape. In the case of WB2/B composite, ablation is significantly different. The ablation seems to be the detonation in the liquid phase. The deposition mechanism is related mainly to the mechanical transport of the target material in the form of droplets, while the gaseous phase plays marginal role. The main origin of differences is optical properties of studied materials. A method estimating phase explosion occurrence based on material data such as critical temperature, thermal diffusivity, and optical properties is shown. Moreover, the effect of laser wavelength on the ablation process and the quality of the deposited films is discussed.

  2. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Science.gov (United States)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  3. Power deposition in a cylindrical geometry using B-10 coatings

    International Nuclear Information System (INIS)

    Chung, A.K.; Prelas, M.A.

    1983-01-01

    The transport of charged particles produced by 10 B (n, α) Li and 235 U (n, νn) ff nuclear reactions in a two region cylindrical geometry is predicted. We employed a mean-range straight-flight approximation to calculate the power deposition by the charged particles in a gaseous medium. Our model demonstrated some features in a cylindrical experiment which were suspected but not proven. In the common slab model used by Guyot et al 1 and Romero 2 , the spatial distribution of power deposition is much flatter than it would be in a cylindrical model. A steeper gradient in the power deposition is expected in a cylindrical geometry than in a slab geometry. We also found that for a standard thickness of Boron-10 coating (1.73 μm) used in NPLs, the expected efficiency of a cylindrical geometry (7.5%) is much lower than the 12% efficiency predicted by the slab model. Indeed the use of slab geometry in modeling current NPL experimental devices is not accurate

  4. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    International Nuclear Information System (INIS)

    Hollis, Kendall J.; Pena, Maria I.

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  5. Mechanical properties of chemical vapor deposited coatings for fusion reactor application

    International Nuclear Information System (INIS)

    Mullendore, A.W.; Whitley, J.B.; Pierson, H.O.; Mattox, D.M.

    1980-01-01

    Chemical vapor deposited coatings of TiB 2 , TiC and boron on graphite substrates are being developed for application as limiter materials in magnetic confinement fusion reactors. In this application severe thermal shock conditions exist and to do effective thermo-mechanical modelling of the material response it is necessary to acquire elastic moduli, fracture strength and strain to fracture data for the coatings. Four point flexure tests have been conducted from room temperature to 2000 0 C on TiB 2 and boron coated graphite with coatings in tension and compression and the mechanical properties extracted from the load-deflection data. In addition, stress relaxation tests from 500 to 1150 0 C were performed on TiB 2 and TiC coated graphite beams to assess the low levels of plastic deformation which occur in these coatings. Significant differences have been observed between the effective mechanical properties of the coatings and literature values of the bulk properties

  6. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  7. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H. [KAIST, Daejeon (Korea, Republic of)

    2007-03-15

    Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis.

  8. Deposition and Characterization of TRISO Coating Layers

    International Nuclear Information System (INIS)

    Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H.

    2007-03-01

    Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis

  9. Thermal Barrier Coatings Resistant to Glassy Deposits

    Science.gov (United States)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  10. Feasibility study of Boron Nitride coating on Lithium-ion battery casing

    International Nuclear Information System (INIS)

    Saw, L.H.; Ye, Y.; Tay, A.A.O.

    2014-01-01

    Increasing in public awareness about global warming and exhaustion of energy resources has led to a flourishing electric vehicle industry that would help realize a zero-emission society. The thermal management of battery packs, which is an essential issue closely linked to a number of challenges for electric vehicles including cost, safety, reliability and lifetime, has been extensively studied. However, relatively little is known about the thermal effect of polymer insulation on the Lithium-ion battery casing. This study investigates the feasibility of replacing the polymer insulation with a Boron Nitride coating on the battery casing using the Taguchi experimental method. The effect of casing surface roughness, coating thickness and their interaction were examined using orthogonal array L 9 (3 4 ). Nominal the best is chosen for the optimization process to achieve optimum adhesion strength. In addition, the thermal improvements of the coating as compared to conventional polymer insulator on the battery are further investigated. - Highlights: • We studied the Boron Nitride coating on battery casing using Taguchi method. • We investigated the effect of surface roughness and coating thickness on adhesion strength. • We compared the effect of coating and polymer insulator in heat transfer. • The Boron Nitride coating could enhance the thermal management of the battery

  11. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  12. Dependence of reaction pressure on deposition and properties of boron-doped freestanding diamond films

    International Nuclear Information System (INIS)

    Li Liuan; Li Hongdong; Lue Xianyi; Cheng Shaoheng; Wang Qiliang; Ren Shiyuan; Liu Junwei; Zou Guangtian

    2010-01-01

    In this paper, we investigate the reaction pressure-dependent growth and properties of boron-doped freestanding diamond films, synthesized by hot filament chemical vapor deposition (HFCVD) at different boron-doping levels. With the decrease in pressure, the growth feature of the films varies from mixed [1 1 1] and [1 1 0] to dominated [1 1 1] texture. The low reaction pressure, as well as high boron-doping level, results in the increase (decrease) of carrier concentration (resistivity). The high concentration of atomic hydrogen in the ambient and preferable [1 1 1] growth, due to the low reaction pressure, is available for the enhancement of boron doping. The estimated residual stress increases with increase in the introducing boron level.

  13. Sputter deposition of wear-resistant coatings within the system Zr-B-N

    Energy Technology Data Exchange (ETDEWEB)

    Mitterer, C; Uebleis, A; Ebner, R [Inst. fuer Metallkunde und Werkstoffpruefung, Montanuniv., Leoben (Austria)

    1991-07-07

    Wear-resistant coatings of zirconium boride and zirconium boron nitride were deposited on steel and molybdenum substrates employing non-reactive as well as reactive d.c. magnetron sputtering using zirconium diboride targets. The characterization of the coatings was done by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results are discussed in connection with measured mechanical coating properties such as microhardness and adhesion. The optical properties of the coatings were determined using a CIE-L{sup *}a{sup *}b{sup *} colorimeter and specialized corrosion and abrasion tests. Non-reactive sputtering using ZrB{sub 2} targets results in the formation of coatings with a columnar structure and predominantly (001)-orientated ZrB{sub 2} crystals. Coatings deposited at low nitrogen flow rates exhibit very fine-grained or even fracture amorphous structures with a hexagonal Zr-B-N phase derived from the ZrB{sub 2} lattice. A further increase of the nitrogen flow leads to an amorphous film growth. The maximum Vickers microhardness of the coatings was found to be approximately 2300 HV 0.02. Zr-B and Zr-B-N coatings offer a wide range of interesting colours as well as good corrosion and wear resistance. (orig.).

  14. Perennial soybean seeds coated with high doses of boron and zinc ...

    African Journals Online (AJOL)

    The objective of this work was to study combinations of high doses of boron (B) and zinc (Zn) in the recoating of perennial soybean seeds, in order to provide these nutrients to the future plants. The physical, physiological and nutritional characteristics of the coated seeds and initial development of plants in a greenhouse ...

  15. CVD boron nitride infiltration of fibrous structures: properties of low temprature deposits

    International Nuclear Information System (INIS)

    Gebhardt, J.J.

    1973-01-01

    The pyrolytic infiltration of boron nitride and silica fibrous structures with boron nitride was investigated using the thermal decomposition of B-trichloroborazole (TCB) to provide the matrix surrounding felted and 4-directional braided constructions. The deposition precursor was generated on a continuous basis by the reaction between boron trichloride and ammonium chloride in a fixed bed reactor under conditions of total conversion of the trichloride: 3BCl 3 + 3NH 4 Cl = B 3 N 3 H 3 Cl 3 + 9HCl. Deposition rates in boron nitride felt specimens varied between 8 and 28 μm/h, depending on the distance from the exterior surface at the minimum deposition temperature used (1100 0 C ). Infiltration of 4-directional silica braids was poorer because of clogging of the fiber bundle surfaces and access paths to voids in the weave. Deposits prepared at 1100 0 C and above were stable to moisture and consisted of glassy transparent materials which had no discernible x-ray diffraction pattern. Heat treatment of low temperature deposits in nitrogen at 1800 0 C caused significant growth of the crystallites and the emergence of x-ray patterns characteristic of hexagonal boron nitride. Heat treatment in vacuum caused changes in the infrared spectrum which could be correlated with mass analyses of the gases evolved. Loss of hydrogen with amines predominated to about 1500 0 C above which point the loss of nitrogen became significant. (14 figures) (U.S.)

  16. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  17. Influence of boron concentration on growth characteristic and electro-catalytic performance of boron-doped diamond electrodes prepared by direct current plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Feng Yujie; Lv Jiangwei; Liu Junfeng; Gao Na; Peng Hongyan; Chen Yuqiang

    2011-01-01

    A series of boron-doped diamond (BDD) electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) with different compositions of CH 4 /H 2 /B(OCH 3 ) 3 gas mixture. A maximum growth rate of 0.65 mg cm -2 h -1 was obtained with CH 4 /H 2 /B(OCH 3 ) 3 radio of 4/190/10 and this growth condition was also a turning point for discharge plasma stability which arose from the addition of B(OCH 3 ) 3 that changed electron energy distribution and influenced the plasma reaction. The surface coating structure and electro-catalytic performance of the BDD electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Hall test, and electrochemical measurement and electro-catalytic oxidation in phenol solution. It is suggested that the boron doping level and the thermal stress in the films are the main factors affecting the electro-catalytic characteristics of the electrodes. Low boron doping level with CH 4 /H 2 /B(OCH 3 ) 3 ratio of 4/199/1 decreased the films electrical conductivity and its electro-catalytic activity. When the carrier concentration in the films reached around 10 20 cm -3 with CH 4 /H 2 /B(OCH 3 ) 3 ratio over a range of 4/195/5-4/185/15, the thermal stress in the films was the key reason that influenced the electro-catalytic activity of the electrodes for its effect on diamond lattice expansion. Therefore, the BDD electrode with modest CH 4 /H 2 /B(OCH 3 ) 3 ratio of 4/190/10 possessed the best phenol removal efficiency.

  18. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  19. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, O., E-mail: omar.jimenez.udg@gmail.com [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Audronis, M.; Leyland, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Flores, M.; Rodriguez, E. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Kanakis, K.; Matthews, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-09-30

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB{sub 2}/Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N{sub 2} reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  20. Thermodynamic approach to the conditions of chemical deposition of boron by contact with an inert substrate

    International Nuclear Information System (INIS)

    Thebault, J.; Naslain, R.; Hagenmuller, P.; Bernard, C.

    1978-01-01

    The optimum conditions for the synthesis of boron by chemical vapour deposition (CVD) from BCl 3 -H 2 or BBr 3 -H 2 mixtures onto an inert substrate (boron or boronized metals) have been studied by a thermodynamic approach. This approach, which postulates that states close to equilibrium are reached in the vicinity of the hot substrate, is based on the minimization of the total Gibbs free energy of the system. Between 1200 and 1900 K and under a total pressure of 1 atm, the hydrogen reduction of BCl 3 can lead to two types of by-products: BHCl 2 at all temperatures, and BCl 2 or BCl subhalides at high temperatures; BHCl 2 is the main product of the reduction at the lowest temperatures. The hydrogen reduction of BCl 3 is never complete for the conditions commonly used for the synthesis of boron. The amount of by-products and of BBr 3 which must be recycled can be minimized by utilizing BCl 3 -H 2 mixtures rich in hydrogen. The amount of boron deposited exhibits a maximum for a temperature close to 1700 K. Similar results have been obtained for BBr 3 . However, between 1000 and 1500 K and under a total pressure of 1 atm the amount of by-products (BHBr 2 and BBr 2 ) is smaller than in the case of BCl 3 . The boron yield from the reduction of BBr 3 is higher than that from BCl 3 and the percentage of boron halide which must be recycled is lower in the case of BBr 3 . Thus, BBr 3 appears to be a better source than BCl 3 for the CVD of boron. (Auth.)

  1. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  2. Cubic boron nitride coatings for innovative applications; Schichten aus kubischem Bornitrid (cBN) fuer innovative Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Keunecke, M.; Bewilogua, K. [Fraunhofer Inst. fuer Schicht- und Oberflaechentechnik (Germany)

    2001-08-01

    Coatings of cubic boron nitride (cBN), the second hardest of all known materials, were prepared using a sputter process. A new coating design, based on a special B-C-N layer system, allows to deposit thick (> 2 {mu}m) cBN films, however so far only on silicon substrates. The properties of the coatings are quite similar to those of bulk cBN. Promising experiments were performed with respect to a transfer of this application relevant layer system to cemented carbide and steel substrates. First measurements of the mechanical and tribological properties confirmed the outstanding properties and the high potential of such cBN based coating systems. (orig.) [German] Schichten aus kubischem Bornitrid (cBN), dem nach Diamant zweithaertesten aller bekannten Materialien, wurden mit einem Sputter-Prozess hergestellt. Ein neuartiger Schichtaufbau, der auf einem speziellen B-C-N-Schichtsystem basiert, ermoeglicht die Abscheidung von cBN-Schichten mit ueber 2 {mu}m Dicke, allerdings bisher nur auf Siliciumsubstraten. Die Eigenschaften der Schichten sind denen von massivem cBN sehr aehnlich. Es wurden vielversprechende Experimente zur Uebertragung dieses fuer Werkzeugbeschichtungen und vielfaeltige andere Anwendungen interessanten Schichtsystems auf Werkzeugsubstrate durchgefuehrt. Erste Untersuchungen der mechanisch-tribologischen Eigenschaften der auf Hartmetall- und Stahlsubstraten abgeschiedenen Schichten belegen das aussergewoehnlich hohe Potential der cBN-basierten Schichtsysteme. (orig.)

  3. Electrolytic deposition and corrosion resistance of Zn–Ni coatings

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  4. Tool wear of (Ti, Al) N-coated polycrystalline cubic boron nitride compact in cutting of hardened steel

    Science.gov (United States)

    Wada, Tadahiro; Hanyu, Hiroyuki

    2017-11-01

    Polycrystalline cubic boron nitride compact (cBN) is effective tool material for cutting hardened steel. In addition to coated high speed steel and coated cemented carbide that has long been used for cutting materials, more recently, coated cBN has also been used. In this study, to verify the effectiveness of the (Ti,Al)N-coated cBN, which is formed on the substrate of cBN by the physical vapor deposition method, the hardened steel was turned with the (Ti,Al)N-coated cBN tool at a cutting speed of 3.33, 5.00 m/s, a feed rate of 0.3 mm/rev and a depth of cut of 0.1 mm. Furthermore, the uncoated cBN, which was the substrate of the (Ti,Al)N-coated, was also used. The tool wear of the cBN tools was experimentally investigated. The following results were obtained: (1) The contact area between the rake face and the chip of the (Ti,.Al)N-coated cBN tool was smaller than that of the uncoated cBN tool. (2) The tool wear of the (Ti,Al)N-coated cBN was smaller than that of uncoated cBN. (3) The wear progress of the (Ti,Al)N-coated cBN with the main element phase of the TiCN-Al, was slower than that of the (Ti,Al)N-coated cBN with the main element phase of the TiN-Al. (4) In the case of the high cutting speed of 5.00 m/s, the tool wear of the (Ti,Al)N-coated cBN was also smaller than that of uncoated cBN. The above results clarify that the (Ti,Al)N-coated cBN can be used as a tool material in high feed cutting of hardened steel.

  5. Colloidal spray method for low cost thin coating deposition

    Science.gov (United States)

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2002-01-01

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  6. Corrosion behaviour of layers obtained by nitrogen implantation into boron films deposited onto iron substrates

    International Nuclear Information System (INIS)

    Marchetti, F.; Fedrizzi, L.; Giacomozzi, F.; Guzman, L.; Borgese, A.

    1985-01-01

    The electrochemical behaviour and corrosion resistance of boron films deposited onto Armco iron after bombardment with 100 keV N + ions were determined in various test solutions. The changes in the electrochemical parameters give evidence of lower anodic dissolution rates for the treated samples. Scanning electron microscopy and Auger analysis of the corroded surfaces confirm the presence of protective layers. (Auth.)

  7. Determination and optimization of the ζ potential in boron electrophoretic deposition on aluminium substrates

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Pino, E.S.

    1991-05-01

    In this work we present an introduction of the electrophoretic process followed by a detailed experimental treatment of the technique used in the determination and optimization of the ζ-potential, mainly as a function of the electrolyte concentration, in a high purity boron electrophoretics deposition on aluminium substrates used as electrodes in neutron detectors. (author)

  8. Microstructure of vapor deposited coatings on curved substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-09-15

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.

  9. Microstructure of vapor deposited coatings on curved substrates

    International Nuclear Information System (INIS)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G.

    2015-01-01

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness

  10. Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels

    International Nuclear Information System (INIS)

    Ji, Chang Wook; Lee, Hyun Ju; Kim, Yang Do; Jo, Il Guk; Choi, Il Dong; Park, Yeong Do

    2014-01-01

    Aluminum-silicon-based and zinc-based metallic coatings have been widely used for hot-stamped boron steel in automotive applications. In this study, resistance spot weldability was explored by investigating the effects of the properties of metallic coating layers on heat development and nugget growth during resistance spot welding. In the case of the aluminum-silicon-coated hot-stamped boron steel, the intermetallic coating transformed into a liquid film that covered the faying interface. A wide, weldable current range was obtained with slow heat development because of low contact resistance and large current passage. In the case of the zinc-coated hot-stamped boron steel, a buildup of liquid and vapor formation under large vapor pressure was observed at the faying interface because of the high contact resistance and low vaporization temperature of the intermetallic layers. With rapid heat development, the current passage was narrow because of the limited continuous layer at the faying interface. A more significant change in nugget growth was observed in the zinc coated hot-stamped boron steel than in the aluminum-silicon-coated hot-stamped boron steel.

  11. Protective silicon coating for nanodiamonds using atomic layer deposition

    International Nuclear Information System (INIS)

    Lu, J.; Wang, Y.H.; Zang, J.B.; Li, Y.N.

    2007-01-01

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH 4 ). The coating was performed by sequential reaction of SiH 4 saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability

  12. Protective silicon coating for nanodiamonds using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Wang, Y.H. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zang, J.B. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China) and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)]. E-mail: diamondzjb@163.com; Li, Y.N. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)

    2007-01-30

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH{sub 4}). The coating was performed by sequential reaction of SiH{sub 4} saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability.

  13. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao; Shen Ji

    2011-01-01

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  14. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China); Shen Ji, E-mail: shenji@ustc.edu.c [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2011-02-15

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  15. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  16. Physically vapor deposited coatings on tools: performance and wear phenomena

    International Nuclear Information System (INIS)

    Koenig, W.; Fritsch, R.; Kammermeier, D.

    1991-01-01

    Coatings produced by physical vapor deposition (PVD) enhance the performance of tools for a broad variety of production processes. In addition to TiN, nowadays (Ti,Al)N and Ti(C,N) coated tools are available. This gives the opportunity to compare the performance of different coatings under identical machining conditions and to evaluate causes and phenomena of wear. TiN, (Ti,Al)N and Ti(C,N) coatings on high speed steel (HSS) show different performances in milling and turning of heat treated steel. The thermal and frictional properties of the coating materials affect the structure, the thickness and the flow of the chips, the contact area on the rake face and the tool life. Model tests show the influence of internal cooling and the thermal conductivity of coated HSS inserts. TiN and (Ti,Zr)N PVD coatings on cemented carbides were examined in interrupted turning and in milling of heat treated steel. Experimental results show a significant influence of typical time-temperature cycles of PVD and chemical vapor deposition (CVD) coating processes on the physical data and on the performance of the substrates. PVD coatings increase tool life, especially towards lower cutting speeds into ranges which cannot be applied with CVD coatings. The reason for this is the superior toughness of the PVD coated carbide. The combination of tough, micrograin carbide and PVD coating even enables broaching of case hardened sliding gears at a cutting speed of 66 m min -1 . (orig.)

  17. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  18. Improvement in energy release properties of boron-based propellant by oxidant coating

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Daolun; Liu, Jianzhong, E-mail: jzliu@zju.edu.cn; Chen, Binghong; Zhou, Junhu; Cen, Kefa

    2016-08-20

    Highlights: • NH{sub 4}ClO{sub 4}, KNO{sub 3}, KClO{sub 4} and HMX coated B were used to prepare propellant samples. • FTIR, XRD and SEM were used for the microstructure analysis of the prepared B. • Thermal oxidation and combustion characteristics of the propellants were studied. • HMX coating was the most beneficial to the energy release of the samples. - Abstract: The energy release properties of a propellant can be improved by coating boron (B) particles with oxidants. In the study, B was coated with four different oxidants, namely, NH{sub 4}ClO{sub 4}, KNO{sub 3}, LiClO{sub 4}, and cyclotetramethylenetetranitramine (HMX), and the corresponding propellant samples were prepared. First, the structural and morphological analyses of the pretreated B were carried out. Then, the thermal analysis and laser ignition experiments of the propellant samples were carried out. Coating with NH{sub 4}ClO{sub 4} showed a better performance than mechanical mixing with the same component. Coating with KNO{sub 3} efficiently improved the ignition characteristics of the samples. Coating with LiClO{sub 4} was the most beneficial in reducing the degree of difficulty of B oxidation. Coating with HMX was the most beneficial in the heat release of the samples. The KNO{sub 3}-coated sample had a very high combustion intensity in the beginning, but then it rapidly became weak. Large amounts of sparks were ejected during the combustion of the LiClO{sub 4}-coated sample. The HMX-coated sample had the longest self-sustaining combustion time (4332 ms) and the highest average combustion temperature (1163.92 °C).

  19. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  20. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  1. Development of new type boron-coating proportional counter and its experimental investigation and simulation calculation

    International Nuclear Information System (INIS)

    Zhang Zixia; Wei Zhiyong; Fang Meihua; Qiang Peng; Zhu Li; Chen Guoyun

    2015-01-01

    Three materials wherein suitable proportion of isotope enriched 10 B powder, 1, 2-ethylene dichloride and formvar resin were blended to make 10 B neutron sensitive coating by oneself. A new type proportional counter that coated with 10 B neutron sensitive coating was made. Furthermore, in order to increase the character and quality of the neutron detector, a set of 14 annulus epoxy sheets which were sided with 10 B film were placed in the tube. A series performance tests were done by 241 Am-Be neutron source. The tests of 3.7 × 10 9 Bq 211 Am-Be neutron source show that the plateau length of detector is 150 V from 750 V to 900 V, while the plateau slope is 8.2%/100 V. When the working voltage is 800 V, the count rate of new type boron-coating proportional counter is 50 s -1 . The level of sensitivity is 0.71 cm 2 . Compared with the detector only coated with 10 B film in the inner walls of detector, neutron sensitivity area of the new detector increases to 3.15 times. The results show that the plateau length increases from 80 V to 150 V, and the plateau slope is improved from 12.4%/100 V to 7.58%/100 V, while the neutron sensitivity increases to 2.63 times. Using Geant4 software based on Monte Carlo method, this paper presented the response and detection efficiency of new type boron-coating proportional counter, which was covered with φ55 mm × 250 mm cylinder high density polyethylene moderator material. The simulation results of Geant4 are in agreement with the results of 241 Am-Be neutron source experiment. It shows the reliability of simulation application. (authors)

  2. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  3. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Borisova, A.; Borisov, Y.; Shavlovsky, E.; Mits, I.; Castermans, L.; Jongbloed, R.

    2001-01-01

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 o C. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  4. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    Science.gov (United States)

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  5. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    International Nuclear Information System (INIS)

    Hsiao, W.T.; Su, C.Y.; Huang, T.S.; Liao, W.H.

    2013-01-01

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C

  6. Boron nitride protective coating of beryllium window surfaces

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1991-12-01

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment

  7. Boron-coated straws as a replacement for {sup 3}He-based neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey L., E-mail: jlacy@proportionaltech.com [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States); Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B. [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States)

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of {sup 3}He gas. It is estimated that the annual demand of {sup 3}He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on {sup 3}He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of {sup 10}B-enriched boron carbide ({sup 10}B{sub 4}C). In addition to the high abundance of boron on Earth and low cost of {sup 10}B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional {sup 3}He-based detectors, and alternate technologies such as {sup 10}BF{sub 3} tubes and {sup 10}B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed {sup 3}He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter {sup 3}He tube, 187 cm long, pressurized to 3 atm.

  8. Boron-coated straws as a replacement for 3He-based neutron detectors

    International Nuclear Information System (INIS)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-01-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3 He gas. It is estimated that the annual demand of 3 He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3 He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10 B-enriched boron carbide ( 10 B 4 C). In addition to the high abundance of boron on Earth and low cost of 10 B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3 He-based detectors, and alternate technologies such as 10 BF 3 tubes and 10 B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3 He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3 He tube, 187 cm long, pressurized to 3 atm.

  9. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  10. Structure And Properties Of PVD Coatings Deposited On Cermets

    Directory of Open Access Journals (Sweden)

    Żukowska L.

    2015-06-01

    Full Text Available The main aim of the research is the investigation of the structure and properties of single-layer and gradient coatings of the type (Ti,AlN and Ti(C,N deposited by physical vapour deposition technology (PVD on the cermets substrate.

  11. Coating material innovation in conjunction with optimized deposition technologies

    International Nuclear Information System (INIS)

    Stolze, M.; Leitner, K.

    2009-01-01

    Concentrating on physical vapour deposition methods several examples of recently developed coating materials for optical applications were studied for film deposition with optimized coating technologies: mixed evaporation materials for ion assisted deposition with modern plasma ion sources, planar metal and oxide sputter targets for Direct Current (DC) and Mid-Frequency (MF) pulsed sputter deposition and planar and rotatable sputter targets of transparent conductive oxides (TCO) for large-area sputter deposition. Films from specially designed titania based mixed evaporation materials deposited with new plasma ion sources and possible operation with pure oxygen showed extended ranges of the ratio between refractive index and structural film stress, hence there is an increased potential for the reduction of the total coating stress in High-Low alternating stacks and for coating plastics. DC and MF-pulsed sputtering of niobium metal and suboxide targets for optical coatings yielded essential benefits of the suboxide targets in a range of practical coating conditions (for absent in-situ post-oxidation ability): higher refractive index and deposition rate, better reproducibility and easier process control, and the potential for co-deposition of several targets. Technological progress in the manufacture of rotatable indium tin oxide (ITO) targets with regard to higher wall-thickness and density was shown to be reflected in higher material stock and coater up-time, economical deposition rates and stable process behaviour. Both for the rotatable ITO targets and higher-dense aluminum-doped zinc oxide (AZO) planar targets values of film transmittance and resistivity were in the range of the best values industrially achieved for films from the respective planar targets. The results for the rotatable ITO and planar AZO targets point to equally optimized process and film properties for the optimized rotatable AZO targets currently in testing

  12. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    International Nuclear Information System (INIS)

    Hu, Jianwei; Croft, Stephen; McElroy, Robert Dennis

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non- 3 He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235 U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  13. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non-3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  14. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  15. Deposition of copper coatings in a magnetron with liquid target

    Energy Technology Data Exchange (ETDEWEB)

    Tumarkin, A. V., E-mail: sanyahrustal@mail.ru; Kaziev, A. V.; Kolodko, D. V.; Pisarev, A. A.; Kharkov, M. M.; Khodachenko, G. V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Copper coatings were deposited on monocrystalline Si substrates using a magnetron discharge with a liquid cathode in the metal vapour plasma. During the deposition, the bias voltage in the range from 0 V to–400 V was applied to the substrate. The prepared films were investigated by a scanning electron microscope, and their adhesive properties were studied using a scratch tester. It was demonstrated that the adhesion of the deposited films strongly depends on the bias voltage and varies in a wide range.

  16. Chemically vapor deposited coatings for multibarrier containment of nuclear wastes

    International Nuclear Information System (INIS)

    Rusin, J.M.; Shade, J.W.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Chemical vapor deposition (CVD) was selected as a feasible method to coat ceramic cores, since the technology has previously been demonstrated for high-temperature gas-cooled reactor (HTGR) fuel particles. CVD coatings, including SiC, PyC (pyrolytic carbon), SiO 2 , and Al 2 O 3 were studied. This paper will discuss the development and characterization of PyC and Al 2 O 3 CVD coatings on supercalcine cores. Coatings were applied to 2 mm particles in either fluidized or vibrating beds. The PyC coating was deposited in a fluidized bed with ZrO 2 diluent from C 2 H 2 at temperatures between 1100 and 1200 0 C. The Al 2 O 3 coatings were deposited in a vibrated bed by a two-stage process to minimize loss of PyC during the overcoating operation. This process involved applying 10 μm of Al 2 O 3 using water vapor hydrolysis of AlCl 3 and then switching to the more surface-controlled hydrolysis via the H 2 + CO 2 reaction (3CO 2 + 3H 2 + 2AlCl 3 = Al 2 O 3 + 6HCl + 3CO). Typically, 50 to 80 μm Al 2 O 3 coatings were applied over 30 to 40 μm PyC coatings. The coatings were evaluated by metallographic examination, PyC oxidation tests, and leach resistance. After air oxidation for 100 hours at 750 0 C, the duplex PyC/Al 2 O 3 coated particles exhibited a weight loss of 0.01 percent. Leach resistance is being determined for temperatures from 50 to 150 0 C in various solutions. Typical results are given for selected ions. The leach resistance of supercalcine cores is significantly improved by the application of PyC and/or Al 2 O 3 coatings

  17. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  18. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    Science.gov (United States)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2017-06-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of tourmaline and gold suggests that the gold precipitated from the same boron-rich source as tourmaline.

  19. Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Glavin, Nicholas R. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Jespersen, Michael L. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 (United States); Check, Michael H. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); Hu, Jianjun [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 (United States); Hilton, Al M. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); Wyle Laboratories, Dayton, OH 45433 (United States); Fisher, Timothy S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, Andrey A. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States)

    2014-12-01

    Pulsed laser deposition (PLD) has been investigated as a technique for synthesis of ultra-thin, few-layer hexagonal boron nitride (h-BN) thin films on crystalline highly ordered pyrolytic graphite (HOPG) and sapphire (0001) substrates. The plasma-based processing technique allows for increased excitations of deposited atoms due to background nitrogen gas collisional ionizations and extended resonance time of the energetic species presence at the condensation surface. These processes permit growth of thin, polycrystalline h-BN at 700 °C, a much lower temperature than that required by traditional growth methods. Analysis of the as-deposited films reveals epitaxial-like growth on the nearly lattice matched HOPG substrate, resulting in a polycrystalline h-BN film, and amorphous BN (a-BN) on the sapphire substrates, both with thicknesses of 1.5–2 nm. Stoichiometric films with boron-to-nitrogen ratios of unity were achieved by adjusting the background pressure within the deposition chamber and distance between the target and substrate. The reduction in deposition temperature and formation of stoichiometric, large-area h-BN films by PLD provide a process that is easily scaled-up for two-dimensional dielectric material synthesis and also present a possibility to produce very thin and uniform a-BN. - Highlights: • PLD was used to synthesize boron nitride thin films on HOPG and sapphire substrates. • Lattice matched substrate allowed for formation of polycrystalline h-BN. • Nitrogen gas pressure directly controlled film chemistry and structure. • Technique allows for ultrathin, uniform films at reduced processing temperatures.

  20. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    Science.gov (United States)

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  2. Chemical vapor deposition of hexagonal boron nitride films in the reduced pressure

    International Nuclear Information System (INIS)

    Choi, B.J.

    1999-01-01

    Hexagonal boron nitride (h-BN) films were deposited onto a graphite substrate in reduced pressure by reacting ammonia and boron tribromide at 800--1,200 C. The growth rate of h-BN films was dependent on the substrate temperature and the total pressures. The growth rate increased with increasing the substrate temperature at the pressure of 2 kPa, while it showed a maximum value at the pressures of 4 and 8 kPa. The temperature at which the maximum growth rate occurs decreased with increasing total pressure. With increasing the substrate temperature and total pressure, the apparent grain size increased and the surface morphology showed a rough, cauliflower-like structure

  3. Boron erosion and carbon deposition due to simultaneous bombardment with deuterium and carbon ions in plasmas

    International Nuclear Information System (INIS)

    Ohya, K.; Kawata, J.; Wienhold, P.; Karduck, P.; Rubel, M.; Seggern, J. von

    1999-01-01

    Erosion of boron out of a thin film exposed to deuterium edge plasmas and the simultaneous carbon deposition have been investigated in the tokamak TEXTOR-94 and simulated by means of a dynamic Monte Carlo code. The calculated results are compared with some observations (colorimetry, spectroscopy and AES) during and after the exposures. The implantation of carbon impurities strongly changes the effective boron sputtering yield of the film, which results into a lowering of the film erosion and a formation of thick carbon deposits. A strong decrease in the observed BII line emission around a surface location far from the plasma edge can be explained by a carbon deposition on the film. The calculated carbon depth profiles in the film, depending on the distance of the exposed surface from the plasma edge, are in reasonable agreement with measurements by AES after the exposures. Although simultaneous surface erosion and carbon deposition can be simulated, the calculated erosion rate is larger, by a factor of 2, than the observations by colorimetry at the early stage of the exposure

  4. Plasma deposition of cubic boron nitride films from non-toxic material at low temperatures

    International Nuclear Information System (INIS)

    Karim, M.Z.; Cameron, D.C.; Murphy, M.J.; Hashmi, M.S.J.

    1991-01-01

    Boron nitride has become the focus of a considerable amount of interest because of its properties which relate closely to those of carbon. In particular, the cubic nitride phase has extreme hardness and very high thermal conductivity similar to the properties of diamond. The conventional methods of synthesis use the highly toxic and inflammable gas diborane (B 2 H 6 ) as the reactant material. A study has been made of the deposition of thin films of boron nitride (BN) using non-toxic material by the plasma-assisted chemical vapour deposition technique. The source material was borane-ammonia (BH 3 -NH 3 ) which is a crystalline solid at room temperature with a high vapour pressure. The BH 3 -NH 3 vapour was decomposed in a 13.56 MHz nitrogen plasma coupled either inductively or capacitively with the system. The composition of the films was assessed by measuring their IR absorption when deposited on silicon and KBr substrates. The hexagonal (graphitic) and cubic (diamond-like) allotropes can be distinguished by their characteristic absorption bands which occur at 1365 and 780 cm -1 (hexagonal) and 1070 cm -1 (cubic). We have deposited BN films consisting of a mixture of hexagonal and cubic phases; the relative content of the cubic phase was found to be directly dependent on r.f. power and substrate bias. (orig.)

  5. Control of Crud and Boron Deposition for AOA Prevention

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Choi, B. S.; Na, J. W.

    2010-07-01

    Ο Understand effects of water chemistry variables on AOA and investigate AOA mechanism Ο Mitigate AOA in terms of water chemistry control AOA(Axial Offset Anomaly) has been reported in many PWR plants in the world, including Korea, especially in the plants of higher burn-up and longer cycle operation or power up-rate. A test loop has been designed and made by KAERI, in order to investigate and mitigate AOA problems in Korea. This project included the study of hydrodynamic simulation and the modeling about AOA. The analysis of radioactive crud was performed to investigate of NPPs primary water chemical effect on AOA and to reduce the radioactive dose rate. The present primary water chemistry guideline of EPRI is to operate NPPs with AOA in the condition of initial 3.5 ppm Li and pH 7.1. However, the tests in this project indicate that the amount of deposit on fuel cladding can be reduced when an appropriate water chemistry strategy is applied. High pH water chemistry in the beginning of operation is recommended based on the results of this project

  6. Deposition of selenium coatings on beryllium foils. Revision 1

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-01-01

    A technique for preparing selenium films on 50.8 micrometers thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. A water-cooled enclosure was used to minimize contamination of the vacuum system and to reduce the exposure of personnel to toxic and obnoxious materials. Profilometry measurements of the coatings indicated selenium thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 micrometers. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable deposition controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV

  7. Antireflection coatings on plastics deposited by plasma ...

    Indian Academy of Sciences (India)

    In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses ... Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. ... Bulletin of Materials Science | News.

  8. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Administrator

    Electrodeposition of the Ni and Zn–Ni coatings was carried out using galvanic unit MAG (IMP-BUD 5,. Poland). Deposited coatings were subjected to a passivation treatment of 10 s duration in the following solution (con- centration in g dm. –3. ): K2Cr2O7 – 70, H2SO4 – 8. The XRD patterns were measured using the Philips.

  9. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    International Nuclear Information System (INIS)

    Pang Xin; Zhitomirsky, Igor

    2007-01-01

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 μm. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates

  10. Deposition and characterization of sputtered hexaboride coatings; Abscheidung und Charakterisierung aufgestaeubter Hexaboridschichten

    Energy Technology Data Exchange (ETDEWEB)

    Waldhauser, W

    1996-06-01

    Hexaborides of the rare-earth elements ReB{sub 6} are potential materials for cathode applications since they combine properties such as low work function, good electrical conductivity, high melting point as well as low volatility at high temperatures. Due to their high hardness and colorations ranging from blue to purple these compounds are also considered for applications to coatings for decoration of consumer products. At present, either rods of sintered LaB{sub 6} or single LaB{sub 6} crystals are indirectly heated to induce emission. In this workboride coatings were deposited onto various substrates employing non-reactive magnetron sputtering from LaB{sub 6}, CeB{sub 6}, SmB{sub 6} and YB{sub 6} targets. Coatings deposited were examined using scanning electron microscopy, X-ray diffraction, electron probe microanalysis. Vickers microhardness, colorimeter and spectroscopic ellipsometry measurements. Electron emission characteristics of the coatings were studied by the thermionic emission and the contact potential method. After optimization of the sputtering parameters fine-columnar or partially amorphous films with atomic ratios of boron to metal in the order of 5 to 7.5 were obtained. The tendency to form the corresponding hexaboride phase decreases from LaB{sub 6}, CeB{sub 6} and SmB{sub 6} to YB{sub 6}. The work function was measured to be in the range of 2.6 to 3.3 eV. Vickers microhardness values lie between 1500 and 2000 HVO.01. LaB{sub 6} coatings showed the most pronounced visual color impression corresponding to dark violet. The results obtained indicate that sputtered hexaboride films are well suited for decorative and thermionic applications. (author)

  11. The thermodynamic approach to boron chemical vapour deposition based on a computer minimization of the total Gibbs free energy

    International Nuclear Information System (INIS)

    Naslain, R.; Thebault, J.; Hagenmuller, P.; Bernard, C.

    1979-01-01

    A thermodynamic approach based on the minimization of the total Gibbs free energy of the system is used to study the chemical vapour deposition (CVD) of boron from BCl 3 -H 2 or BBr 3 -H 2 mixtures on various types of substrates (at 1000 < T< 1900 K and 1 atm). In this approach it is assumed that states close to equilibrium are reached in the boron CVD apparatus. (Auth.)

  12. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  13. Study on the Microstructure and Electrical Properties of Boron and Sulfur Codoped Diamond Films Deposited Using Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2014-01-01

    Full Text Available The atomic-scale microstructure and electron emission properties of boron and sulfur (denoted as B-S codoped diamond films grown on high-temperature and high-pressure (HTHP diamond and Si substrates were investigated using atom force microscopy (AFM, scanning tunneling microscopy (STM, secondary ion mass spectroscopy (SIMS, and current imaging tunneling spectroscopy (CITS measurement techniques. The films grown on Si consisted of large grains with secondary nucleation, whereas those on HTHP diamond are composed of well-developed polycrystalline facets with an average size of 10–50 nm. SIMS analyses confirmed that sulfur was successfully introduced into diamond films, and a small amount of boron facilitated sulfur incorporation into diamond. Large tunneling currents were observed at some grain boundaries, and the emission character was better at the grain boundaries than that at the center of the crystal. The films grown on HTHP diamond substrates were much more perfect with higher quality than the films deposited on Si substrates. The local I-V characteristics for films deposited on Si or HTHP diamond substrates indicate n-type conduction.

  14. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    Science.gov (United States)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  15. Solution precursor plasma deposition of nanostructured ZnO coatings

    International Nuclear Information System (INIS)

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2011-01-01

    Highlights: → The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. → It is highly capable of developing tailorable nanostructures. → This technique can be employed to spray the coatings on any kind of substrates including polymers. → The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance (∼65-80%) and reflectivity (∼65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 mΩ cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  16. Solution precursor plasma deposition of nanostructured ZnO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Raghavender [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Guduru, Ramesh K., E-mail: rkguduru@umich.edu [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Mohanty, Pravansu S. [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States)

    2011-08-15

    Highlights: {yields} The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. {yields} It is highly capable of developing tailorable nanostructures. {yields} This technique can be employed to spray the coatings on any kind of substrates including polymers. {yields} The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance ({approx}65-80%) and reflectivity ({approx}65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 m{Omega} cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  17. Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    Abstract. The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, ...

  18. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Mingjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Jia; Liu, Shuan [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhang, Guangan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji, E-mail: qjxue@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-03-01

    Highlights: • Hexagonal boron nitride nanosheets were well dispersed by using water-soluble carboxylated aniline trimer as dispersant. • The best corrosion performance of waterborne epoxy coatings was achieved with the addition of 1 wt% h-BN. • The decrease of the pores and defects of coating matrix inhibits the diffusion and water absorption of corrosive medium in the coating. - Abstract: Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT{sup −}) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT{sup −}, as proved by Raman and UV–vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 10{sup 6} Ω cm{sup 2}) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  19. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  20. Performance of a Boron-Coated-Straw-Based HLNCC for International Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Angela T. [ORNL; Croft, Stephen [ORNL; McElroy, Robert Dennis [ORNL; Sun, Liang [Proportional Technologies Inc.; Hayward, Jason P. [ORNL

    2017-08-01

    3He gas has been used in various scientific and security applications for decades, but it is now in short supply. Alternatives to 3He detectors are currently being integrated and tested in neutron coincidence counter designs, of a type which are widely used in nuclear safeguards for nuclear materials assay. A boron-coated-straw-based design, similar to the High-Level Neutron Coincidence Counter-II, was built by Proportional Technologies Inc., and has been tested by the Oak Ridge National Laboratory (ORNL) at both the JRC in Ispra and ORNL. Characterization measurements, along with nondestructive assays of various plutonium samples, have been conducted to determine the performance of this coincidence counter replacement in comparison with other similar counters. This paper presents results of these measurements.

  1. Deposition and Characterization of HVOF Thermal Sprayed Functionally Graded Coatings Deposited onto a Lightweight Material

    Science.gov (United States)

    Hasan, M.; Stokes, J.; Looney, L.; Hashmi, M. S. J.

    2009-02-01

    There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.

  2. Simulation of the optical coating deposition

    Science.gov (United States)

    Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander

    2018-04-01

    A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.

  3. Chemical solution deposition: a path towards low cost coated conductors

    International Nuclear Information System (INIS)

    Obradors, X; Puig, T; Pomar, A; Sandiumenge, F; Pinol, S; Mestres, N; Castano, O; Coll, M; Cavallaro, A; Palau, A; Gazquez, J; Gonzalez, J C; Gutierrez, J; Roma, N; Ricart, S; Moreto, J M; Rossell, M D; Tendeloo, G van

    2004-01-01

    The achievement of low cost deposition techniques for high critical current YBa 2 Cu 3 O 7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa 2 Cu 3 O 7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

  4. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles

    Science.gov (United States)

    Gittard, Shaun D.; Miller, Philip R.; Jin, Chunming; Martin, Timothy N.; Boehm, Ryan D.; Chisholm, Bret J.; Stafslien, Shane J.; Daniels, Justin W.; Cilz, Nicholas; Monteiro-Riviere, Nancy A.; Nasir, Adnan; Narayan, Roger J.

    2011-06-01

    Microneedles are small-scale needle-like projections that may be used for transdermal delivery of pharmacologic agents, including protein-containing and nucleic acid-containing agents. Commercial translation of polymeric microneedles would benefit from the use of facile and cost effective fabrication methods. In this study, visible light dynamic mask microstereolithography, a rapid prototyping technique that utilizes digital light projection for selective polymerization of a liquid resin, was used for fabrication of solid microneedle array structures out of an acrylate-based polymer. Pulsed laser deposition was used to deposit silver and zinc oxide coatings on the surfaces of the visible light dynamic mask microstereolithography-fabricated microneedle array structures. Agar diffusion studies were used to demonstrate the antimicrobial activity of the coated microneedle array structures. This study indicates that light-based technologies, including visible light dynamic mask microstereolithography and pulsed laser deposition, may be used to fabricate microneedles with antimicrobial properties for treatment of local skin infections.

  5. Mechanical stability and adhesion of ceramic coatings deposited on steels

    International Nuclear Information System (INIS)

    Ignat, M.; Armann, A.; Moberg, L.; Sibieude, F.

    1991-01-01

    This paper presents the results of two sorts of deformation experiment performed on coating/substrate systems. The coating/substrate systems were constituted by coatings of titanium nitride and chromium carbide, deposited in both cases on steel substrates. The formation experiments were cyclic bending tests on macroscopic samples with chromium carbide coatings, and straining experiments performed in a scanning electron microscope on samples with titanium nitride coatings. By the analysis of our experimental results we develop an attempt to correlate the mechanical stability of the systems with the interfacial adhesion, by taking into account the internal residual stresses as an adhesion parameter. For the samples with chromium carbide coatings, the evolution of internal stresses is detected from X-ray diffractometry and discussed in terms of the observed induced damaging mechanisms, in the cyclic tests. For the samples with titanium nitride coatings, we discussed the adhesion from the microstructural observations and from the critical parameters determined during the in-situ straining experiments. (orig.)

  6. Deposition of tantalum carbide coatings on graphite by laser interactions

    Science.gov (United States)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  7. FTIR and electrical characterization of a-Si:H layers deposited by PECVD at different boron ratios

    Energy Technology Data Exchange (ETDEWEB)

    Orduna-Diaz, A., E-mail: abdu@susu.inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Trevino-Palacios, C.G. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Rojas-Lopez, M.; Delgado-Macuil, R.; Gayou, V.L. [Centro de Investigacion en Biotecnologia Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72197 (Mexico); Torres-Jacome, A. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico)

    2010-10-25

    Hydrogenated amorphous silicon (a-Si:H) has found applications in flat panel displays, photovoltaic solar cell and recently has been employed in boron doped microbolometer array. We have performed electrical and structural characterizations of a-Si:H layers prepared by plasma enhanced chemical vapor deposition (PECVD) method at 540 K on glass substrates at different diborane (B{sub 2}H{sub 6}) flow ratios (500, 250, 150 and 50 sccm). Fourier transform infrared spectroscopy (FTIR) measurements obtained by specular reflectance sampling mode, show Si-Si, B-O, Si-H, and Si-O vibrational modes (611, 1300, 2100 and 1100 cm{sup -1} respectively) with different strengths which are associated to hydrogen and boron content. The current-voltage curves show that at 250 sccm flow of boron the material shows the lowest resistivity, but for the 150 sccm boron flow it is obtained the highest temperature coefficient of resistance (TCR).

  8. Laser deposition of carbide-reinforced coatings

    International Nuclear Information System (INIS)

    Cerri, W.; Martinella, R.; Mor, G.P.; Bianchi, P.; D'Angelo, D.

    1991-01-01

    CO 2 laser cladding with blown powder presents many advantages: fusion bonding with the substrate with low dilution, metallurgical continuity in the metallic matrix, high solidification rates, ease of automation, and reduced environmental contamination. In the present paper, laser cladding experimental results using families of carbides (tungsten and titanium) mixed with metallic alloys are reported. As substrates, low alloy construction steel (AISI 4140) (austenitic stainless steel) samples have been utilized, depending on the particular carbide reinforcement application. The coating layers obtained have been characterized by metallurgical examination. They show low dilution, absence of cracks, and high abrasion resistance. The WC samples, obtained with different carbide sizes and percentages, have been characterized with dry and rubber wheel abrasion tests and the specimen behaviour has been compared with the behaviour of materials used for similar applications. The abrasion resistance proved to be better than that of other widely used hardfacing materials and the powder morphology have a non-negligible influence on the tribological properties. (orig.)

  9. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating – A molecular dynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Badjian, H.; Setoodeh, A.R., E-mail: setoodeh@sutech.ac.ir

    2017-02-15

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  10. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  11. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  12. Roll-to-roll vacuum deposition of barrier coatings

    CERN Document Server

    Bishop, Charles A

    2015-01-01

    It is intended that the book will be a practical guide to provide any reader with the basic information to help them understand what is necessary in order to produce a good barrier coated web or to improve the quality of any existing barrier product. After providing an introduction, where the terminology is outlined and some of the science is given (keeping the mathematics to a minimum), including barrier testing methods, the vacuum deposition process will be described. In theory a thin layer of metal or glass-like material should be enough to convert any polymer film into a perfect barrier material. The reality is that all barrier coatings have their performance limited by the defects in the coating. This book looks at the whole process from the source materials through to the post deposition handling of the coated material. This holistic view of the vacuum coating process provides a description of the common sources of defects and includes the possible methods of limiting the defects. This enables readers...

  13. Laser deposition of coatings for aeronautical and industrials turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Teleginski, V. [Instituto Federal de Sao Paulo (IFSP), SP (Brazil); Silva, S.A.; Riva, R.; Vasconcelos, G. [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil); Silva Pita, G.R. [Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Yamin, L.S. [Escola Tecnica Everardo Passos (ETEP), Sao Jose dos Campos, DP (Brazil)

    2016-07-01

    Full text: Zirconium-based ceramic materials are widely employed as Thermal Barrier Coatings (TBC), due to its excellent wear and corrosion resistance at high temperatures. The application of TBC includes aeronautical and industrials turbine blades. The working conditions include oxidizing environments and temperatures above 1000°C. The zirconium-based ceramics are developed in such a way that the microstructural control is possible through the control of chemical composition, fabrication route and, thermal treatment. The present paper proposes a laser route to deposit the TBC coating, where the microstructural control is a function of power density and interaction time between the laser beam and the material. The main objective of this work is to study the influence of the CO2 laser beam (Synrad Evolution 125) parameters: power density and interaction time, on the deposition process of yttria-stabilized zirconia (YSZ) powders on NiCrAlY/AISI 316L substrates. The resulting coating surface and interface were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results indicate that is possible to match laser parameters of scanning speed and intensity to produce homogenous coatings. The X-Ray analyses show that the obtained ceramic coating has reduced number of phases, with prevalence of tetragonal phase.(author)

  14. Reduced-pressure chemical vapor deposition of boron-doped Si and Ge layers

    International Nuclear Information System (INIS)

    Bogumilowicz, Y.; Hartmann, J.M.

    2014-01-01

    We have studied the in-situ boron (B) doping of germanium (Ge) and silicon (Si) in Reduced Pressure-Chemical Vapor Deposition. Three growth temperatures have been investigated for the B-doping of Ge: 400, 600 and 750 °C at a constant growth pressure of 13300 Pa (i.e. 100 Torr). The B concentration in the Ge:B epilayer increases linearly with the diborane concentration in the gaseous phase. Single-crystalline Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. For the in-situ B doping of Si at 850 °C, two dichlorosilane mass flow ratios (MFR) have been assessed: F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0025 and F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0113 at a growth pressure of 2660 Pa (i.e. 20 Torr). Linear boron incorporation with the diborane concentration in the gas phase has been observed and doping levels in-between 3.5 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. We almost kept the same ratio of B versus Si atoms in the gas phase and in the Si epilayer. By contrast, roughly half of the B atoms present in the gas phase were incorporated in the Ge:B layers irrespective of the growth temperature. X-Ray Diffraction (XRD) allowed us to extract from the angular position of the Ge:B layer diffraction peak the substitutional B concentration. Values close to the B concentrations obtained by 4-probe resistivity measurements were obtained. Ge:B layers were smooth (< 1 m root mean square roughness associated with 20 × 20 μm 2 Atomic Force Microscopy images). Only for high F[B 2 H 6 ]/F[GeH 4 ] MFR (3.2 10 −3 ) did the Ge:B layers became rough; they were however still mono-crystalline (XRD). Above this MFR value, Ge:B layers became polycrystalline. - Highlights: • Boron doping of germanium and silicon in Reduced Pressure-Chemical Vapor Deposition • Linear boron incorporation in Ge:B and Si:B with the diborane flow • Single-crystal Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 • Single-crystal Si

  15. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    Science.gov (United States)

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and

  16. Advances in the electro-spark deposition coating process

    International Nuclear Information System (INIS)

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors

  17. DEPOSITION AND PROPERTY CHARACTERISATION OF TaN COATINGS DEPOSITED WITH DIFFERENT NITROGEN CONTENTS

    Directory of Open Access Journals (Sweden)

    Gilberto Bejarano Gaitán

    Full Text Available This study focused on the study of the influence of nitrogen content on the microstructure, chemical composition, mechanical and tribological properties of TaN coatings deposited on 420 stainless steel and silicon samples (100 using the magnetron sputtering technique. For the deposition of the TaN coatings an argon/nitrogen atmosphere was used, varying the nitrogen flux between 12% and 25%. For the coating characterization, scanning electron microscopy, energydispersive X-ray spectroscopy, atomic force microscopy, X-ray diffraction (XRD, micro-Raman spectroscopy, a microhardness tester, and a ball on disc tribometer were used. A refining of the columnar structure of the coatings, accompanied by a decrease in their thickness with the increased nitrogen content was observed. Initially, fcc-TaN (111 cubic phase growth was observed; this phase was changed to the fcc-TaN (200 above N2 12%. For contents greater than N2 18%, another nitrogen-rich phase was formed and the system tended towards amorphicity, particularly for a coating with N2 25% content. The TaN-1sample deposited with N2 12% in the gas mixture presented the highest micro-hardness value with 21.3GPa and the lowest friction coefficient and wear rate with 0.02 and 1.82x10-7 (mm³/Nm, respectively. From the obtained results, an important relationship between the microstructural, mechanical and tribological properties of the coated samples and their nitrogen content was observed.

  18. Post-deposition treatments of plasma-sprayed YBaCuO coatings deposited on nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dube, D; Lambert, P; Arsenault, B; Champagne, B [National Research Council of Canada, Boucherville, PQ (Canada)

    1990-12-15

    As-sprayed YBaCuO coatings do not exhibit superconductivity because of the non-equilibrium solidification conditions of molten particles on the substrate and to the deposit's loss of oxygen. Therefore post-deposition treatments are required to restore the superconductivity. In this study, post-deposition treatments were carried out on thick YBaCuO coatings (200 {mu}m) deposited on cold nickel substrates to modify their microstructure, to restore the oxygen content and to improve their superconducting properties. These treatments consist in heating the coatings at various temperatures above 950deg C followed by controlled solidification cycles. The effect of these treatments on the microstructure of the coatings was assessed and the interaction between the coatings and the nickel substrate was also examined. Solidification cycles including a low cooling rate near the non-congruent melting temperature of YBa{sub 2}Cu{sub 3}O{sub x} and involving a temperature gradient were carried out to create a texture. (orig.).

  19. Optimization of the Deposition Parameters of HVOF FeMnCrSi+Ni+B Thermally Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Gustavo Bavaresco Sucharski

    2015-06-01

    Full Text Available AbstractHVOF thermal spray process produces coatings with low porosity and low oxide content, as well as high substrate adhesion. Small variations on the parameters of the HVOF process can generate coatings with different characteristics and properties, which also is chemical composition depended of the alloy. FeMnCrSi alloy is a cavitation resistant class of material with a great potential for HVOF deposition use. The main goal of this article is to study the influence of some HVOF parameters deposition, as standoff distance, powder feed rate and carrier gas pressure on three different alloys. FeMnCrSi experimental alloys with some variations in nickel and boron content were studied. Taguchi experimental design with L9 orthogonal array was used in this work. Porosity, oxide content, tensile adhesion strength and microhardness of the coatings were evaluated. The results indicated that all factors have significant influence on these properties. Chemical composition of the alloys was the most important factor, followed by the carrier gas pressure, standoff distance and powder feed rate. The addition of Ni, produces coatings with lower levels of oxide content and porosity. An experiment with improved parameters was conducted, and a great improvement on the coating properties was observed.

  20. 2.4. The kinetics of hydrochloric-acid decomposition of calcined concentrate of boron raw material of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to kinetics of hydrochloric-acid decomposition of calcined concentrate of boron raw material of Ak-Arkhar Deposit. The experimental data of dependence of hydrochloric-acid decomposition of calcined boron raw material for boron oxide extraction on temperature (20-80 deg C) and process duration (15-60 min) were considered. It was defined that at temperature increasing the boron oxide extraction from borosilicate raw material increases from 24.1 till 86.8%. The constants of decomposition rate of boron raw material were calculated.

  1. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    Energy Technology Data Exchange (ETDEWEB)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken [Nanotechnology Centre for PVD Research, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Santana, Antonio [Ionbond AG Olten, Industriestrasse 211, CH-4600 Olten (Switzerland)

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  2. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals

    KAUST Repository

    Zhong, Bo; Liu, Wei; Yu, Yuanlie; Xia, Long; Zhang, Jiulin; Chai, Zhenfei; Wen, Guangwu

    2017-01-01

    We report herein the synthesis of a novel hexagonal boron nitride nanocrystal/graphite nanoflake (h-BNNC/GNF) composite through a wet-chemistry coating of graphite nanoflakes and subsequent in-situ thermal treatment process. The characterization results of X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrum, and X-ray photoelectron spectroscopy demonstrate that h-BNNCs with diameter of tens of nanometers are highly crystallized and anchored on the surfaces of graphite nanoflakes without obvious aggregation. The minimum reflection loss (RL) value of the h-BNNC/GNF based absorbers could reach −32.38dB (>99.99% attenuation) with the absorber thickness of 2.0mm. This result is superior to the other graphite based and some dielectric loss microwave absorption materials recently reported. Moreover, the frequency range where the RL is less than −10dB is 3.49-17.28GHz with the corresponding thickness of 5.0 to 1.5mm. This reveals a better electromagnetic microwave absorption performance of h-BNNC/GNFs from the X-band to the Ku-band. The remarkable enhancement of the electromagnetic microwave absorption properties of h-BNNC/GNFs can be assigned to the increase of multiple scattering, interface polarization as well as the improvement of the electromagnetic impedance matching of graphite nanoflakes after being coated with h-BNNCs.

  3. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals

    KAUST Repository

    Zhong, Bo

    2017-05-31

    We report herein the synthesis of a novel hexagonal boron nitride nanocrystal/graphite nanoflake (h-BNNC/GNF) composite through a wet-chemistry coating of graphite nanoflakes and subsequent in-situ thermal treatment process. The characterization results of X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrum, and X-ray photoelectron spectroscopy demonstrate that h-BNNCs with diameter of tens of nanometers are highly crystallized and anchored on the surfaces of graphite nanoflakes without obvious aggregation. The minimum reflection loss (RL) value of the h-BNNC/GNF based absorbers could reach −32.38dB (>99.99% attenuation) with the absorber thickness of 2.0mm. This result is superior to the other graphite based and some dielectric loss microwave absorption materials recently reported. Moreover, the frequency range where the RL is less than −10dB is 3.49-17.28GHz with the corresponding thickness of 5.0 to 1.5mm. This reveals a better electromagnetic microwave absorption performance of h-BNNC/GNFs from the X-band to the Ku-band. The remarkable enhancement of the electromagnetic microwave absorption properties of h-BNNC/GNFs can be assigned to the increase of multiple scattering, interface polarization as well as the improvement of the electromagnetic impedance matching of graphite nanoflakes after being coated with h-BNNCs.

  4. Preparation of fiber reinforced titanium diboride and boron carbide composite bodies

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Riley, R.E.; Sheinberg, H.; Valencia, F.A.; Wallace, T.C.

    1979-01-01

    A process is described for uniformly infiltrating woven carbon cloth with either titanium diboride or boron carbide at reduced pressure (15 to 25 torr). The effects of deposition temperature on the uniformity of penetration and on coating rate are described for temperatures from 750 to 1000 0 C and deposit loadings from 20 to 43 vol. %. For the boron carbides, boron composition is discussed and evidence is presented suggesting that propene is the dominant rate controlling reactant

  5. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  6. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings.

    Science.gov (United States)

    Lu, Xiang; Li, Kai; Xie, Youtao; Huang, Liping; Zheng, Xuebin

    2016-11-01

    In recent years, CaSiO 3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO 3 ceramic (Ca 11 Si 4 B 2 O 22 , B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO 3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca 11 Si 4 B 2 O 22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.

  7. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  8. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Science.gov (United States)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  9. Vibration atomic layer deposition for conformal nanoparticle coating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suk Won; Woo Kim, Jun; Jong Choi, Hyung; Hyung Shim, Joon, E-mail: shimm@korea.ac.kr [School of Mechanical Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-01-15

    A vibration atomic layer deposition reactor was developed for fabricating a conformal thin-film coating on nanosize particles. In this study, atomic layer deposition of 10–15-nm-thick Al{sub 2}O{sub 3} films was conducted on a high-surface-area acetylene black powder with particle diameters of 200–250 nm. Intense vibration during the deposition resulted in the effective separation of particles, overcoming the interparticle agglomeration force and enabling effective diffusion of the precursor into the powder chunk; this phenomenon led to the formation of a conformal film coating on the nanopowder particles. It was also confirmed that the atomic layer deposition Al{sub 2}O{sub 3} films initially grew on the high-surface-area acetylene black powder particles as discrete islands, presumably because chemisorption of the precursor and water occurred only on a few sites on the high-surface-area acetylene black powder surface. Relatively sluggish growth of the films during the initial atomic layer deposition cycles was identified from composition analysis.

  10. Synthesis of mullite coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.P.; Auger, M.; Sarin, V.K. [Boston Univ., MA (United States)

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  11. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    Energy Technology Data Exchange (ETDEWEB)

    Strąkowska, Paulina [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Beutner, René [Max Bergmann Center, Technische Universität Dresden (Germany); Gnyba, Marcin [Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Zielinski, Andrzej [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Scharnweber, Dieter, E-mail: Dieter.Scharnweber@tu-dresden.de [Max Bergmann Center, Technische Universität Dresden (Germany)

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  12. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    International Nuclear Information System (INIS)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-01-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  13. Plasma deposition of antimicrobial coating on organic polymer

    Science.gov (United States)

    Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech

    2013-02-01

    Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  14. Influence of deposition parameters on morphological properties of biomedical calcium phosphate coatings prepared using electrostatic spray deposition

    International Nuclear Information System (INIS)

    Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Schoonman, J.; Jansen, J.A.

    2005-01-01

    In order to deposit biomedical calcium phosphate (CaP) coatings with a defined surface morphology, the electrostatic spray deposition (ESD) technique was used since this technique offers the possibility to deposit ceramic coatings with a variety of surface morphologies. A scanning electron microscopical study was performed in order to investigate the influence of several deposition parameters on the final morphology of the deposited coatings. The chemical characteristics of the coatings were studied by means of X-ray diffraction and Fourier-transform infrared spectroscopy. Regarding the chemical coating properties, the results showed that the coatings can be described as crystalline carbonate apatite coatings, a crystal phase which is similar to the mineral phase of bone and teeth. The morphology of CaP coatings, deposited using the ESD technique, was strongly dependent on the deposition parameters. By changing the nozzle-to-substrate distance, the precursor liquid flow rate and the deposition temperature, coating morphologies were deposited, which varied from dense to highly porous, reticular morphologies. The formation of various morphologies was the result of an equilibrium between the relative rates of CaP solute precipitation/reaction, solvent evaporation and droplet spreading onto the substrate surface

  15. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Limat, Meriadec; El Roustom, Bahaa [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland); Jotterand, Henri [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Physics of the Complex Matter, CH-1015 Lausanne (Switzerland); Foti, Gyoergy [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)], E-mail: gyorgy.foti@epfl.ch; Comninellis, Christos [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)

    2009-03-30

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate.

  16. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Limat, Meriadec; El Roustom, Bahaa; Jotterand, Henri; Foti, Gyoergy; Comninellis, Christos

    2009-01-01

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate

  17. Silver doped hydroxyapatite coatings by sacrificial anode deposition under magnetic field.

    Science.gov (United States)

    Swain, S; Rautray, T R

    2017-09-13

    Uniform distribution of silver (Ag) in the hydroxyapatite (HA) coated Ti surface has been a concern for which an attempt has been made to dope Ag in HA coating with and without magnetic field. Cathodic deposition technique was employed to coat Ag incorporated hydroxyapatite coating using a sacrificial silver anode method by using NdFeB bar magnets producing 12 Tesla magnetic field. While uniform deposition of Ag was observed in the coatings under magnetic field, dense coating was evident in the coating without magnetic field conditions. Uniformly distributed Ag incorporated HA in the present study has potential to fight microorganism while providing osseoconduction properties of the composite coating.

  18. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    Science.gov (United States)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  19. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2018-04-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  20. Effect of Boron on Microstructure and Microhardness Properties of Mo-Si-B Based Coatings Produced Via TIG Process

    Directory of Open Access Journals (Sweden)

    Islak S.

    2016-09-01

    Full Text Available In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo–Si–B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the microstructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.

  1. RESEARCH OF PROCESS OF AN ALLOYING OF THE FUSED COATINGS RECEIVED FROM THE SUPERFICIAL ALLOYED WIRE BY BORON WITH IN ADDITIONALLY APPLIED ELECTROPLATED COATING OF CHROME AND COPPER

    Directory of Open Access Journals (Sweden)

    V. A. Stefanovich

    2015-01-01

    Full Text Available Researches on distribution of chrome and copper in the fused coating received from the superficial alloyed wire by boron with in additionally applied electroplated coating of chrome and copper were executed. The structure of the fused coating consists of dendrites on which borders the boride eutectic is located. It is established that the content of chrome in dendrites is 1,5– 1,6 times less than in the borid; distribution of copper on structure is uniformed. Coefficients of digestion of chrome and copper at an argon-arc welding from a wire electrode with electroplated coating are established. The assimilation coefficient for chrome is equal to 0,9–1,0; for copper – 0,6–0,75.

  2. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    Science.gov (United States)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  3. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shoudong; Yang Hengxiu; Li Jinlong; Huang Feng [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China); Song Zhenlun, E-mail: songzhenlun@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-04-15

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar{sup +} ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar{sup +} ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  4. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    Science.gov (United States)

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  5. Deposition of aluminum coatings on bio-composite laminates

    Science.gov (United States)

    Boccarusso, L.; Viscusi, A.; Durante, M.; Astarita, A.; De Fazio, D.; Sansone, R.; Caraviello, A.; Carrino, L.

    2018-05-01

    As a result of the increasing environmental awareness, the concern for environmental sustainability and the growing global waste problem, the interest of bio-composites materials is growing rapidly in the last years in order to use them in various engineering fields. Tremendous advantages and opportunities are associated with the use of these materials. On the other hand, some issues are related to the superficial properties of the bio-laminates, in particular the wear properties, the flame resistance and the aesthetic appearance have to be improved in order to extend the application fields of these materials. Aiming to these goals this paper deals with the study of the deposition of aluminum coating through cold spray process on hemp/PLA bio-composites manufactured by using the compression molding technique. Therefore, SEM observations, roughness analyses, bending tests, pin on disk and scratch tests were carried out in order to study the feasibility of the process and to investigate on the properties of the coated samples. The experimental results proved that when the process parameters of the deposition process are properly set, no damages are induced in the composite panel and that the aluminum coating, under specific load conditions, resulted to be able to protect the substrate.

  6. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage.

    Science.gov (United States)

    Liu, Yuxin; Liu, Ping; Wu, Dongqing; Huang, Yanshan; Tang, Yanping; Su, Yuezeng; Zhang, Fan; Feng, Xinliang

    2015-03-27

    Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron-doped, carbon-coated SnO2 /graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core-shell architecture and B-doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium-ion batteries with a highly stable capacity of 1165 mA h g(-1) at 0.1 A g(-1) after 360 cycles and an excellent rate capability of 600 mA h g(-1) at 3.2 A g(-1), and thus outperforms most of the previously reported SnO2-based anode materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  8. Thermal barrier coatings of rare earth materials deposited by electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin, E-mail: he_limin@yahoo.co [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Chen Xiaolong; Zhao Yu [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Cao Xueqiang, E-mail: xcao@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-10-15

    Thermal barrier coatings (TBCs) have very important applications in gas turbines for higher thermal efficiency and protection of components at high temperature. TBCs of rare earth materials such as lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}, LZ), lanthanum cerate (La{sub 2}Ce{sub 2}O{sub 7}, LC), lanthanum cerium zirconate (La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}, LZ7C3) were prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, cross-sectional morphology and cyclic oxidation behavior of these coatings were studied. These coatings have partially deviated from their original compositions due to the different evaporation rates of oxides, and the deviation could be reduced by properly controlling the deposition condition. A double ceramic layer-thermal barrier coatings (DCL-TBCs) of LZ7C3 and LC could also be deposited with a single LZ7C3 ingot by properly controlling the deposition energy. LaAlO{sub 3} is formed due to the chemical reaction between LC and Al{sub 2}O{sub 3} in the thermally grown oxide (TGO) layer. The failure of DCL-TBCs is a result of the sintering-induced of LZ7C3 coating and the chemical incompatibility of LC and TGO. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL-TBCs are an important development direction of TBCs.

  9. Influence of deposition rate on the properties of tin coatings deposited on tool steels using arc method

    International Nuclear Information System (INIS)

    Akhtar, P.; Abbas, M.

    2007-01-01

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapour deposition method. The study concentrated on cathodic arc physical vapour deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MD's) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester and pin-on-disc machine, were used to analyze and quantify the following properties and parameters, surface morphology, thickness, hardness, adhesion and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MD's produced during the etching stage, protruded through the thin film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 macro m showed the most stable trend of COF versus sliding distance. (author)

  10. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  11. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  12. The study of Zn–Co alloy coatings electrochemically deposited by pulse current

    Directory of Open Access Journals (Sweden)

    Tomić Milorad V.

    2012-01-01

    Full Text Available The electrochemical deposition by pulse current of Zn-Co alloy coatings on steel was examined, with the aim to find out whether pulse plating could produce alloys that could offer a better corrosion protection. The influence of on-time and the average current density on the cathodic current efficiency, coating morphology, surface roughness and corrosion stability in 3% NaCl was examined. At the same Ton/Toff ratio the current efficiency was insignificantly smaller for deposition at higher average current density. It was shown that, depending on the on-time, pulse plating could produce more homogenous alloy coatings with finer morphology, as compared to deposits obtained by direct current. The surface roughness was the greatest for Zn-Co alloy coatings deposited with direct current, as compared with alloy coatings deposited with pulse current, for both examined average current densities. It was also shown that Zn-Co alloy coatings deposited by pulse current could increase the corrosion stability of Zn-Co alloy coatings on steel. Namely, alloy coatings deposited with pulse current showed higher corrosion stability, as compared with alloy coatings deposited with direct current, for almost all examined cathodic times, Ton. Alloy coatings deposited at higher average current density showed greater corrosion stability as compared with coatings deposited by pulse current at smaller average current density. It was shown that deposits obtained with pulse current and cathodic time of 10 ms had the poorest corrosion stability, for both investigated average deposition current density. Among all investigated alloy coatings the highest corrosion stability was obtained for Zn-Co alloy coatings deposited with pulsed current at higher average current density (jav = 4 A dm-2.

  13. Magnetic field effects on coating deposition rate and surface morphology coatings using magnetron sputtering

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Huang, Wesley

    2010-01-01

    Chromium nitride coatings exhibit superior hardness, excellent wear and oxidation resistance, and are widely applied in the die and mold industries. The aim of this study was to investigate magnetic field effects on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering. Four types of magnetic field configurations, including the magnetron sputtering system, SNSN, SNNN, and intermediate magnetron modification, are discussed in this paper. SKD11 cold work die steel and a silicon (100) chip were used as substrates in the chromium nitride depositions. The process parameters, such as target current, substrate bias, and the distance between the substrate and target, are at fixed conditions, except for the magnetic arrangement type. The experimental results showed that the deposition rates of the four types of magnetic field configurations were 1.06, 1.38, 1.67 and 1.26 µm h −1 , respectively. In these cases, the SNNN type performs more than 58% faster than the unbalanced magnetron configuration does for the deposition rate. The surface morphology of chromium nitride films was also examined by SEM and is discussed in this paper

  14. Zircon coatings deposited by electrophoresis on steel 316L

    International Nuclear Information System (INIS)

    Espitia C, I.; Contreras G, M.E.; Bartolo P, P.; Pena, J.L.; Reyes G, J.; Martinez, L.

    2005-01-01

    The present research involved zirconia coatings prepared using electrophoretic deposition (EPD) on 316l stainless steel, via hydrolysis of ZrOCI 2 aqueous solution. Initially, a first zirconia thin film was obtained and treated at 400 C for consolidation. Then a second zirconia film was deposited to obtain a homogeneous and fully covered 316l stainless steel plate. The XPS analyses show that on the first zirconia film, the elements Fe, Cr, O and Zr are present. In this first film the compounds Cr 2 O 3 , Fe 2 O 3 and ZrO 2 are formed. While in the second film only the Zr and O are observed so that the surface is formed by ZrO 2 . (Author)

  15. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  16. Boron doped nanostructure ZnO films deposited by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Seniye, E-mail: seniyek@ogu.edu.tr; Ozbas, Omer

    2015-02-15

    Highlights: • Nanostructure undoped and boron doped ZnO films were deposited by USP technique. • Influences of doping on the surface and optical properties of the ZnO films were investigated. • XRD spectra of the films exhibited a variation in crystalline quality depending on the B content. - Abstract: ZnO is an II–VI compound semiconductor with a wide direct band gap of 3.3 eV at room temperature. Doped with group III elements (B, Al or Ga), it becomes an attractive candidate to replace tin oxide (SnO{sub 2}) or indium tin oxide (ITO) as transparent conducting electrodes in solar cell devices and flat panel display due to competitive electrical and optical properties. In this work, ZnO and boron doped ZnO (ZnO:B) films have been deposited onto glass substrates at 350 ± 5 °C by a cost-efficient ultrasonic spray pyrolysis technique. The optical, structural, morphological and electrical properties of nanostructure undoped and ZnO:B films have been investigated. Electrical resistivity of films has been analyzed by four-probe technique. Optical properties and thicknesses of the films have been examined in the wavelength range 1200–1600 nm by using spectroscopic ellipsometry (SE) measurements. The optical constants (refractive index (n) and extinction coefficient (k)) and the thicknesses of the films have been fitted according to Cauchy model. The optical method has been used to determine the band gap value of the films. Transmission spectra have been taken by UV spectrophotometer. It is found that both ZnO and ZnO:B films have high average optical transmission (≥80%). X-ray diffraction (XRD) patterns indicate that the obtained ZnO has a hexagonal wurtzite type structure. The morphological properties of the films were studied by atomic force microscopy (AFM). The surface morphology of the nanostructure films is found to depend on the concentration of B. As a result, ZnO:B films are promising contender for their potential use as transparent window layer and

  17. Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.

    Science.gov (United States)

    Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P

    2018-04-04

    Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.

  18. Deposition and characterization of single magnetron deposited Fe:SnO{sub x} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kormunda, Martin, E-mail: martin.kormunda@ujep.cz [J.E. Purkinje University, Faculty of Science, Department of Physics, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Fischer, Daniel; Hertwig, Andreas; Beck, Uwe [BAM Federal Institute for Materials Research and Testing, Division 6 4 Surface Technologies, Unter den Eichen 44-46, 12203 Berlin (Germany); Sebik, Matej; Pavlik, Jaroslav [J.E. Purkinje University, Faculty of Science, Department of Physics, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Esser, Norbert [Leibniz-Institut für Analytische Wissenschaften — ISAS e.V., Department Berlin, Schwarzschildstr. 12, 12489 Berlin (Germany)

    2015-11-30

    Coatings deposited by magnetron co-sputtering from a single RF magnetron with a ceramic SnO{sub 2} target with iron inset in argon plasma were studied. The mass spectra of the process identified Sn{sup +} and SnO{sup +} species as the dominant species sputtered from the target, but no SnO{sub 2}{sup +} species were detected. The dominant positive ions in argon plasma are Ar{sup +} species. The only detected negative ions were O{sup −}. Sputtered neutral tin related species were not detected. Iron related species were also not detected because their concentration is below the detection limit. The concentration of iron dopant in the tin oxide coatings was controlled by the RF bias applied on the substrate holder while the discharge pressure also has some influence. The iron concentration was in the range from 0.9 at.% up to 19 at.% increasing with the substrate bias while the sheet resistivity decreases. The stoichiometry ratio of O/(Sn + Fe) in the coatings increased from 1.7 up to 2 in dependence on the substrate bias from floating bias (− 5 V) up to − 120 V of RF self-bias, respectively. The tin in the coatings was mainly bonded in Sn{sup 4+} state and iron was mainly in Fe{sup 2+} state when other tin bonding states were detected only in a small amounts. Iron bonding states in contrary to elemental compositions of the coatings were not influenced by the RF bias applied on the substrate. The coatings showed high transparency in the visible spectral range. However, an increased metallic behavior could be detected by using a higher RF bias for the deposition. The X-ray diffraction patterns and electron microscopy pictures made on the coatings confirmed the presence of an amorphous phase. - Highlights: • RF magnetron sputtering of SnO{sub 2} target with Fe inset in argon investigated by mass spectrometry • Optical properties of Fe doped SnO{sub x} coatings characterized • Analyses of overlapped XPS peaks at a spectrum from Fe doped SnO{sub x} coatings

  19. Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel

    International Nuclear Information System (INIS)

    Veit, R.; Kolleck, R.; Hofmann, H.; Sikora, S.

    2011-01-01

    Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating.In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.

  20. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition

    Directory of Open Access Journals (Sweden)

    Fang Luo

    2015-03-01

    Full Text Available Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.

  1. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  2. Atomic layer deposition of boron-containing films using B{sub 2}F{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mane, Anil U., E-mail: amane@anl.gov; Elam, Jeffrey W. [Argonne National Laboratory, Argonne, Illinois 60126 (United States); Goldberg, Alexander; Halls, Mathew D. [Schrödinger, Inc., San Diego, California 92122 (United States); Seidel, Thomas E. [Seitek50, Palm Coast, Florida 32135 (United States); Current, Michael I. [Current Scientific, San Jose, California 95124 (United States); Despres, Joseph; Byl, Oleg; Tang, Ying; Sweeney, Joseph [Entegris, Danbury, Connecticut 06810 (United States)

    2016-01-15

    Ultrathin and conformal boron-containing atomic layer deposition (ALD) films could be used as a shallow dopant source for advanced transistor structures in microelectronics manufacturing. With this application in mind, diboron tetrafluoride (B{sub 2}F{sub 4}) was explored as an ALD precursor for the deposition of boron containing films. Density functional theory simulations for nucleation on silicon (100) surfaces indicated better reactivity of B{sub 2}F{sub 4} in comparison to BF{sub 3}. Quartz crystal microbalance experiments exhibited growth using either B{sub 2}F{sub 4}-H{sub 2}O for B{sub 2}O{sub 3} ALD, or B{sub 2}F{sub 4}-disilane (Si{sub 2}H{sub 6}) for B ALD, but in both cases, the initial growth per cycle was quite low (≤0.2 Å/cycle) and decreased to near zero growth after 8–30 ALD cycles. However, alternating between B{sub 2}F{sub 4}-H{sub 2}O and trimethyl aluminum (TMA)-H{sub 2}O ALD cycles resulted in sustained growth at ∼0.65 Å/cycle, suggesting that the dense –OH surface termination produced by the TMA-H{sub 2}O combination enhances the uptake of B{sub 2}F{sub 4} precursor. The resultant boron containing films were analyzed for composition by x-ray photoelectron spectroscopy, and capacitance measurements indicated an insulating characteristic. Finally, diffused boron profiles less than 100 Å were obtained after rapid thermal anneal of the boron containing ALD film.

  3. In-situ boron doping of chemical-bath deposited CdS thin films

    International Nuclear Information System (INIS)

    Khallaf, Hani; Park, S.; Schulte, Alfons; Chai, Guangyu; Lupan, Oleg; Chow, Lee; Heinrich, Helge

    2009-01-01

    In-situ boron doping of CdS using chemical-bath deposition (CBD) is reported. The effect of B doping on optical properties, as well as electrical properties, crystal structure, chemistry, and morphology of CdS films is studied. We present a successful approach towards B doping of CdS using CBD, where a resistivity as low as 1.7 x 10 -2 Ωcm and a carrier density as high as 1.91 x 10 19 cm -3 were achieved. The bandgap of B-doped films was found to slightly decrease as the[B]/[Cd] ratio in the solution increases. X-ray diffraction studies showed B 3+ ions likely enter the lattice substitutionally. A phase transition, due to annealing, as well as induced lattice defects, due to B doping, were detected by micro-Raman spectroscopy and transmission electron microscopy. The chemistry and morphology of films were unaffected by B doping. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Preparation of calcium-doped boron nitride by pulsed laser deposition

    International Nuclear Information System (INIS)

    Anzai, Atsushi; Fuchigami, Masayo; Yamanaka, Shoji; Inumaru, Kei

    2012-01-01

    Highlights: ► Ca-doped boron nitride was prepared by pulsed laser deposition. ► The films do not have long range order structure in terms of XRD. ► But the films had short-range order structure of h-BN sheets. ► Ca-free films had the same optical band gap as crystalline bulk h-BN (5.8 eV.) ► Ca-doping brought about decreases of the optical band gap by ca. 0.4 eV. -- Abstract: Calcium-doped BN thin films Ca x BN y (x = 0.05–0.1, y = 0.7–0.9) were grown on α-Al 2 O 3 (0 0 1) substrates by pulsed laser deposition (PLD) using h-BN and Ca 3 N 2 disks as the targets under nitrogen radical irradiation. Infrared ATR spectra demonstrated the formation of short range ordered structure of BN hexagonal sheets, while X-ray diffraction gave no peak indicating the absence of long-range order structure in the films. It was notable that Ca-doped film had 5.45–5.55 eV of optical band gap, while the band gap of Ca-free films was 5.80–5.85 eV. This change in the band gap is ascribed to interaction of Ca with the BN sheets; first principle calculations on h-BN structure indicated that variation of inter-plane distance between the BN layers did not affect the band gap. This study highlights that PLD could prepare BN having short-range structure of h-BN sheets and being doped with electropositive cation which varies the optical band gap of the films.

  5. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß , Sigrid; Subhani, Tayyab; Yi Kang, Min; Okudaira, Kenji; Ventura, Isaac Aguilar; Boccaccini, Aldo R.

    2012-01-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles

  6. Evaluation of Hydrogen Cracking in Weld Metal Deposited using Cellulosic-Coated Electrodes

    Science.gov (United States)

    2009-06-16

    Cellulosic-coated electrodes (primarily AWS EXX10-type) are traditionally used for "stovepipe" welding of pipelines because they are well suited for deposition of pipeline girth welds and are capable of high deposition rates when welding downhill. De...

  7. Rhodium coated mirrors deposited by magnetron sputtering for fusion applications

    International Nuclear Information System (INIS)

    Marot, L.; De Temmerman, G.; Oelhafen, P.; Covarel, G.; Litnovsky, A.

    2007-01-01

    Metallic mirrors will be essential components of all optical spectroscopy and imaging systems for ITER plasma diagnostics. Any change in the mirror performance, in particular, its reflectivity, due to erosion of the surface by charge exchange neutrals or deposition of impurities will influence the quality and reliability of the detected signals. Due to its high reflectivity in the visible wavelength range and its low sputtering yield, rhodium appears as an attractive material for first mirrors in ITER. However, the very high price of the raw material calls for using it in the form of a film deposited onto metallic substrates. The development of a reliable technique for the preparation of high reflectivity rhodium films is therefore of the highest importance. Rhodium layers with thicknesses of up to 2 μm were produced on different substrates of interest (Mo, stainless steel, Cu) by magnetron sputtering. Produced films exhibit a low roughness and crystallite size of about 10 nm with a dense columnar structure. No impurities were detected on the surface after deposition. Scratch tests demonstrate that adhesion properties increase with substrate hardness. Detailed optical characterizations of Rh-coated mirrors as well as results of erosion tests performed both under laboratory conditions and in the TEXTOR tokamak are presented in this paper

  8. Corrosion processes of physical vapor deposition-coated metallic implants.

    Science.gov (United States)

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  9. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  10. High efficient vacuum arc plant for coating deposition

    International Nuclear Information System (INIS)

    Aksenov, I.I.; Belous, V.A.

    2008-01-01

    A number of progressive technical solutions are used in the 'Bulat-9' machine designed for vacuum arc coating deposition. The features of the machine are: a dome shaped working chamber that allows to 'wash' its inner surfaces with hot nitrogen or argon gas; a system of automatic loading/unloading of articles to be treated into the chamber through its bottom; shielding of the inner surfaces of the chamber by heated panels; improved vacuum arc plasma sources including filtered one; four ported power supply for the vacuum arc discharges; LC oscillatory circuits suppressing microarcs on the substrate; the system of automatic control of a working process. The said technical features cause the apparatus originality and novelty preserved up to-day

  11. Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Nitin Padture

    2011-12-31

    Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

  12. Thiol-modified gold-coated glass as an efficient hydrophobic substrate for drop coating deposition Raman (DCDR) technique

    Czech Academy of Sciences Publication Activity Database

    Kočišová, E.; Procházka, M.; Šípová, Hana

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1394-1396 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : thiol-modified Au-coated glass * drop coating deposition Raman * liposome Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.969, year: 2016

  13. Preparation of rutile TiO(2) coating by thermal chemical vapor deposition for anticoking applications.

    Science.gov (United States)

    Tang, Shiyun; Wang, Jianli; Zhu, Quan; Chen, Yaoqiang; Li, Xiangyuan

    2014-10-08

    To inhibit the metal catalytic coking and improve the oxidation resistance of TiN coating, rutile TiO2 coating has been directly designed as an efficient anticoking coating for n-hexane pyrolysis. TiO2 coatings were prepared on the inner surface of SS304 tubes by a thermal CVD method under varied temperatures from 650 to 900 °C. The rutile TiO2 coating was obtained by annealing the as-deposited TiO2 coating, which is an alternative route for the deposition of rutile TiO2 coating. The morphology, elemental and phase composition of TiO2 coatings were characterized by SEM, EDX and XRD, respectively. The results show that deposition temperature of TiO2 coatings has a strong effect on the morphology and thickness of as-deposited TiO2 coatings. Fe, Cr and Ni at.% of the substrate gradually changes to 0 when the temperature is increased to 800 °C. The thickness of TiO2 coating is more than 6 μm and uniform by metalloscopy, and the films have a nonstoichiometric composition of Ti3O8 when the deposition temperature is above 800 °C. The anticoking tests show that the TiO2 coating at a deposition temperature of 800 °C is sufficiently thick to cover the cracks and gaps on the surface of blank substrate and cut off the catalytic coke growth effect of the metal substrate. The anticoking ratio of TiO2 coating corresponding to each 5 cm segments is above 65% and the average anticoking ratio of TiO2 coating is up to 76%. Thus, the TiO2 coating can provide a very good protective layer to prevent the substrate from severe coking efficiently.

  14. Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-I{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2017-06-01

    Highlights: • The transformation paths of (Ti + I{sub 2}) powder to Ti coating is: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}) → Ti. • Uniform coating was obtained on SiC fiber, but it contained Si and C elements. • Deposition rate of the coating increased with the increase of temperature. • Deposition thickness increased with time and achieved the maximum at 90 min. - Abstract: Titanium coating was prepared on SiC fiber using titanium-iodine (Ti-I{sub 2}) mixture by hot-wall chemical vapor deposition. Thermodynamic analysis and experimental observation were carried out in this work. The thermodynamic analysis of the reactions in the Ti-I{sub 2} system indicates that Ti and I{sub 2} raw powder materials transform to titanium coating as follows: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}), and (TiI{sub 2}, TiI{sub 3}) → Ti. In theory, the conversions of TiI{sub 3} and TiI{sub 2} reach the maximum when Ti:I{sub 2} is 1:1.5, while in actual experiment that reached the maximum when Ti:I{sub 2} was 1:2, as there existed the waste of I{sub 2} due to sublimation. Typical deposited coating is relatively flat and uniform. However, as SiC is prone to react with Ti at high temperatures, the obtained coating contained some Si and C elements except for Ti. So the coating was not a pure Ti coating but contained some carbides and silicides. Deposition rate of the coating increased with the increase of temperature. The deposited thickness increased with the increase of heat preservation time, and achieved the maximum thickness at 90 min.

  15. A comparative machining study of diamond-coated tools made by ...

    Indian Academy of Sciences (India)

    The successful implementation of diamond coatings also expedited similar research in the deposition of cubic boron nitride. This paper presents superhard coating tools, with emphasis on diamond-coated WC–Co tools, the corresponding deposition of technologies and the foreseen metal-cutting applications.

  16. Boron isotopic composition of tertiary borate deposits in the Puna Plateau of the Central Andes, NW Argentina

    International Nuclear Information System (INIS)

    Kasemann, Simone; Franz, Gerhard; Viramonte, Jose G.; Alonso, Ricardo N.

    1998-01-01

    Full text: The most important borate deposits in South America are concentrated in the Central Andes. The Neogene deposits are located in the Puna Plateau of N W Argentina. These continental deposits are stratiform in the tectonically deformed Tertiary rocks. The largest borate accumulations Tincalayu, Sijes and Loma Blanca are part of the Late Miocene Sijes Formation, composed by different evaporitic and clastic units. In the main borate units of each location different phases of borates dominate. In Tincalayu the mayor mineral is borax with minor amounts of kernite and other rare borate minerals (ameginite, rivadavite, etc.). The principal minerals in Loma Blanca are borax with minor ulexite and inyoite. In the two main units of Sijes hydroboracite and colemanite are the major minerals; inyoite and ulexite appear subordinately. The deposition of the borates is due to a strong evaporation in playa lakes, which were fed by boron bearing thermal fluids (Alonso and Viramonte 1990). From Loma Blanca we determined δ 11 B values of ulexite (- 6.3 %0), inyoite (-12.7 %0) and terrugite (-16.2 %0); and from Tincalayu the δ 11 B values of borax (-10.5 %0), tincal (-12.2 %0) kernite (-11.7 %0) and inderite (-15.4 %0). The borates of Sijes are hydroboracite (-16.8 %0 to -17.2 %0), ulexite (-22.4 %0) and inyoite (-28.5 %0 to -29.6 %0). In order to get information about the δ 11 B values and pH of a boron solution we analysed the thermal spring of Antuco. It has a δ 11 B of -12.5%0 at a pH of 7.9. The presently forming ulexite deposit has a δ 11 B of -22.4%0. Borates within one depositional unit show a decreasing δ 11 B value sequence from the Na-Borates to the Ca-Borates related to the boron coordination of the minerals (Oi et al. 1989). The difference in the δ 11 B values excludes the precipitation in equilibrium from solutions with constant pH. According to results from previous work on Neogene borates (Turkey, USA) we interpret the borate succession due to

  17. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  18. Properties of DLC coatings deposited by dc and dc with superimposed pulsed vacuum arc

    International Nuclear Information System (INIS)

    Zavaleyev, V.; Walkowicz, J.; Aksyonov, D.S.; Luchaninov, A.A.; Reshetnyak, E.N.; Strel'nitskij, V.E.

    2014-01-01

    Comparative studies of the structure, mechanical and tribological properties of DLC coatings deposited in DC and DC with superimposed high current pulse modes of operation vacuum-arc plasma source with the graphite cathode are presented. Imposition the pulses of high current on DC vacuum-arc discharge allows both increase the deposition rate of DLC coating and reduce the residual compressive stress in the coatings what promotes substantial improvement the adhesion to the substrate. Effect of vacuum arc plasma filtration with Venetian blind filter on the deposition rate and tribological characteristics of the coatings analyzed.

  19. Study of ion implantation in grown layers of multilayer coatings under ion-plasma vacuum deposition

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Erokhin, A.L.

    1993-01-01

    The model of ion implantation into growing layers of a multilayer coating produced with vacuum ion-plasma deposition was developed. The model takes into account a possibility for ions to pass through the growing layer and alloys to find the distribution of implanted atoms over the coating thickness. The experimental vitrification of the model was carried out on deposition of Ti and TiN coatings

  20. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  1. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres

    International Nuclear Information System (INIS)

    Jiao, Yan; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2013-01-01

    Hydroxyapatite (HA) and HA coated microcarriers for cell culture and delivery have attracted more attention recently, owing to the rapid progress in the field of tissue engineering. In this research, a dense and uniform HA coating with the thickness of about 2 μm was successfully deposited on hollow glass microspheres (HGM) by biomimetic process. The influences of SBF concentration, immersion time, solid/liquid ratio and activation of HGM on the deposition rate and coating characteristics were discussed. X-ray diffraction (XRD) and Fourier transform infrared spectrum (FTIR) analyses revealed that the deposited HA is poorly crystalline. The thickness of HA coating showed almost no increase after immersion in 1.5SBF for more than 15 days with the solid/liquid ratio of 1:150. At the same time, SBF concentration, solid/liquid ratio and activation treatment played vital roles in the formation of HA coating on HGM. This poorly crystallized HA coated HGM could have potential use as microcarrier for cell culture. Highlights: • HA coatings were deposited on hollow glass microspheres by biomimetic process. • The obtained HA coating was poorly crystalline and carbonated. • The influencing factors of deposition rate and coating characteristics were studied. • The thickness of HA coating showed almost no increase after immersion for 15 days

  2. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  3. Effect of negative bias on TiAlSiN coating deposited on nitrided Zircaloy-4

    Science.gov (United States)

    Jun, Zhou; Zhendong, Feng; Xiangfang, Fan; Yanhong, Liu; Huanlin, Li

    2018-01-01

    TiAlSiN coatings were deposited on the nitrided Zircaloy-4 by multi-arc ion plating at -100 V, -200 V and -300 V. In this study, the high temperature oxidation behavior of coatings was tested by a box-type resistance furnace in air for 3 h at 800 °C; the macro-morphology of coatings was observed and analyzed by a zoom-stereo microscope; the micro-morphology of coatings was analyzed by a scanning electron microscopy (SEM), and the chemical elements of samples were analyzed by an energy dispersive spectroscopy(EDS); the adhesion strength of the coating to the substrate was measured by an automatic scratch tester; and the phases of coatings were analyzed by an X-ray diffractometer(XRD). Results show that the coating deposited at -100 V shows better high temperature oxidation resistance behavior, at the same time, Al elements contained in the coating is of the highest amount, meanwhile, the adhesion strength of the coating to the substrate is the highest, which is 33N. As the bias increases, high temperature oxidation resistance behavior of the coating weakens first and then increases, the amount of large particles on the surface of the coating increases first and then decreases whereas the density of the coating decreases first and then increases, and adhesion strength of the coating to the substrate increases first and then weakens. The coating's quality is relatively poor when the bias is -200 V.

  4. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells ons biomimetically and electrolytically deposited calcium phosphate coatings

    NARCIS (Netherlands)

    Wang, J.; de Boer, Jan; de Groot, K.

    2009-01-01

    Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the

  5. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  6. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    International Nuclear Information System (INIS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-01-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants

  7. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  8. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

    Science.gov (United States)

    Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G.

    2013-10-01

    Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel's resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

  9. Development of the process of boron electrophoresis deposition on aluminum substate to be used in the construction of neutron detectors

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.

    1989-11-01

    Process of baron electrophoresis depositon on large areas of aluminum substrates was developed with the aim of using them in the construction of neutron detectors. After definition and optimization of the boron electrophoresis parameters, depositions of 10 B on aluminium cylinders were performed and used as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. Prototypers of ionization chambers were designed, built and assembled at the Departinent for Engineering and Industry Application (TE) of the Instituto de Pesquisas Energeticas e Nucleares (IPEN), and submited for characterization tests at IEA-R1 reactor. They fully met the technical specifications of the projects. (author) [pt

  10. Development of coatings for ultrasonic additive manufacturing sonotrode using laser direct metal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Niyanth S, Niyanth [ORNL; Dehoff, Ryan R [ORNL; Jordan, Brian H [ORNL; Babu, Sudarsanam Suresh [ORNL

    2016-10-01

    ORNL partnered with Fabrisonic, LLC to develop galling resistant hard facing coatings on sonotrodes used to fabricate 3D printed materials using ultrasonic additive manufacturing. The development and deployment of a coated sonotrode is expected to push the existing state of the art to facilitate the solidstate additive manufacturing of hard steels and titanium alloys. To this effect a structurally amorphous stainless steel material and cobalt chrome material were deposited on the sonotrode material. Both the deposits showed good adhesion to the substrate. The coatings made using the structurally amorphous steel materials showed cracking during the initial trials and cracking was eliminated by deposition on a preheated substrate. Both the coatings show hardness in excess of 600 HVN. Thus the phase 1 of this project has been used to identify suitable materials to use to coat the sonotrode. Despite the fact that successful deposits were obtained, the coatings need to be evaluated by performing detailed galling tests at various temperatures. In addition field tests are also necessary to test the stability of these coatings in a high cycle ultrasonic vibration mode. If awarded, phase 2 of the project would be used to optimize the composition of the deposit material to maximize galling resistance. The industrial partner would then use the coated sonotrode to fabricate builds made of austenitic stainless steel to test the viability of using a coated sonotrode.

  11. Electrochemically deposited Cu{sub 2}O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Mavrokefalos, Christos K. [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Hasan, Maksudul, E-mail: maksudul.hasan@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Rohan, James F. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Compton, Richard G. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, England (United Kingdom); Foord, John S., E-mail: john.foord@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom)

    2017-06-30

    Highlights: • Fabrication of low-cost photocathode by electrochemical method is described. • Boron-doped diamond is presented as catalyst support. • NiO nanoparticles on Cu{sub 2}O surface enhances photocurrent and electrode stability. • Synergy of metallic interaction between Cu and Ni leads to high efficiency. - Abstract: Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu{sub 2}O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu{sub 2}O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu{sub 2}O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu{sub 2}O/BDD showed a much higher current density (−0.33 mA/cm{sup 2}) and photoconversion efficiency (0.28%) compared to the unmodified Cu{sub 2}O/BDD electrode, which are only −0.12 mA/cm{sup 2} and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu{sub 2}O surface is a crucial parameter in this regard.

  12. Progress Toward Meeting NIF Specifications for Vapor Deposited Polyimide Ablator Coatings

    International Nuclear Information System (INIS)

    Letts, Stephan A.; Anthamatten, Mitchell; Buckley, Steven R.; Fearon, Evelyn; Nissen, April E.H.; Cook, Robert C.

    2004-01-01

    We are developing an evaporative coating technique for deposition of thick polyimide (PI) ablator layers on ICF targets. The PI coating technique utilizes stoichiometrically controlled fluxes from two Knudsen cell evaporators containing a dianhydride and a diamine to deposit a polyamic acid (PAA) coating. Heating the PAA coating to 300 deg. C converts the PAA coating to a polyimide. Coated shells are rough due to particles on the substrate mandrels and from damage to the coating caused by the agitation used to achieve a uniform coating. We have developed a smoothing process that exposes an initially rough PAA coated shell to solvent vapor using gas levitation. We found that after smoothing the coatings developed a number of wide (low-mode) defects. We have identified two major contributors to low-mode roughness: surface hydrolysis, and deformation during drying/curing. By minimizing air exposure prior to vapor smoothing, avoiding excess solvent sorption during vapor smoothing, and using slow drying we are able to deposit and vapor smooth coatings 160 μm thick with a surface roughness less than 20 nm RMS

  13. Microstructural development in physical vapour-deposited partially stabilized zirconia thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y. H. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Biederman, R.R. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Sisson, R.D. Jr. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States))

    1994-10-01

    The effects of processing parameters of physical vapour deposition on the microstructure of partially stabilized zirconia (PSZ) thermal barrier coatings have been experimentally investigated. Emphasis has been placed on the crystallographic texture of the PSZ coatings and the microstructure of the top surface of the PSZ coatings as well as the metal-ceramic interface. The variations in the deposition chamber temperature, substrate thickness, substrate rotation and vapour incidence angle resulted in the observation of significant differences in the crystallographic texture and microstructure of the PSZ coatings. ((orig.))

  14. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Jang, S. H.; Hwang, D. Y.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-09-15

    Carbon coating approach is used to prepare carbon-doped MgB{sub 2} bulk samples using low-cost naphthalene (C{sub 10}H{sub 8}) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at 120 degrees C and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with carbon. As compared to un-doped MgB{sub 2}, a systematic enhancement in Jc(H) properties with increasing carbon doping level was observed for naphthalene-derived C-doped MgB{sub 2} samples. The substantial enhancement in Jc is most likely due to the incorporation of C into MgB{sub 2} lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

  15. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings

    International Nuclear Information System (INIS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2013-01-01

    Highlights: ► Both normal and anomalous deposition can be realized by changing bath temperature. ► The Ni content in Zn–Ni alloy deposit increases sharply as temperature reach 60 °C. ► The abrupt change in coating composition is caused by the shift of cathodic potential. ► The deposition temperature has great effect on microstructure of Zn–Ni alloy deposit. -- Abstract: Zinc–nickel alloy coatings were electrodeposited on carbon steel substrates from the ammonium chloride bath at different temperatures. The composition, phase structure and morphology of these coatings were analyzed by energy dispersive spectrometer, X-ray diffractometer and scanning electron microscopy respectively. Chronopotentiometry and potentiostatic methods were also employed to analyze the possible causes of the composition and structure changes induced by deposition temperature. It has been shown that both normal and anomalous co-deposition of zinc and nickel could be realized by changing deposition temperature under galvanostatic conditions. The abrupt changes in the composition and phase structure of the zinc–nickel alloy coatings were observed when deposition temperature reached 60 °C. The sharply decrease of current efficiency for zinc–nickel co-deposition was also observed when deposition temperature is higher than 40 °C. Analysis of the partial current densities showed that the decrease of current efficiency with the rise of deposition temperature was due to the enhancement of the hydrogen evolution. It was also confirmed that the ennoblement of cathodic potential was the cause for the increase of nickel content in zinc–nickel alloy coatings as a result of deposition temperature rise. The good zinc–nickel alloy coatings with compact morphology and single γ phase could be obtained when the deposition temperature was fixed at 30–40 °C

  16. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yansheng [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tu, Rong, E-mail: turong@whut.edu.cn [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Goto, Takashi [Institute for Materials Research, Tohoku University, Aoba-ku, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  17. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  18. Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chen, X.L.; Xu, B.H.; Xue, J.M.; Zhao, Y.; Wei, C.C.; Sun, J.; Wang, Y.; Zhang, X.D.; Geng, X.H.

    2007-01-01

    Boron-doped zinc oxide (ZnO:B) films were grown by metal organic chemical vapor deposition using diethylzinc (DEZn), and H 2 O as reactant gases and diborane (B 2 H 6 ) as an n-type dopant gas. The structural, electrical and optical properties of ZnO films doped at different B 2 H 6 flow rates were investigated. X-ray diffraction spectra and scanning electron microscopy images indicate that boron-doping plays an important role on the microstructure of ZnO films, which induced textured morphology. With optimized conditions, low sheet resistance (∼ 30 Ω/□), high transparency (> 85% in the visible light and infrared range) and high mobility (17.8 cm 2 V -1 s -1 ) were obtained for 700-nm ZnO:B films deposited on 20 cm x 20 cm glass substrates at the temperature of 443 K. After long-term exposure in air, the ZnO:B films also showed a better electrical stability than the un-doped samples. With the application of ZnO:B/Al back contacts, the short circuit current density was effectively enhanced by about 3 mA/cm 2 for a small area a-Si:H cell and a high efficiency of 9.1% was obtained for a large-area (20 cm x 20 cm) a-Si solar module

  19. INKJET PRINTING OF ALUMOOXIDE SOL FOR DEPOSITION OF ANTIREFLECTING COATINGS

    Directory of Open Access Journals (Sweden)

    E. A. Eremeeva

    2017-01-01

    Full Text Available Subject of Research. This work describes for the first time the formation of antireflective coating on the base of boehmite phase of AlOOH with low refractive index (1.35 by inkjet printing on the nonporous substrate. This method gives the possibility to increase the contrast of colorful interfering images by 32% obtaining by inkjet printing of titanium dioxide sol. The usage of this technology enables to obtain patterns with wide viewing angle and makes them highly stable. Methods. Traditional sol-gel method with peptizing agents and heating for 90oC was applied for sol synthesis. Then the mixture was under sonic treatment for the obtaining of viscous sol. The viscosity was determined by Brookfield HA/HB viscometer, and the surface tension by Kyowa DY-700 tensiometer. Aluminum oxide ink was deposited on polished slides (26×76 mm2, Paul Marienfeld, Germany, over titanium oxide layer. To print titania ink, we use a desktop office printer Canon Pixma IP 2840 and Dimatix DMP-2831. The thickness of an inkjet AlOOH layer after drying in the air and removal of the solvents did not exceed 150 nm with an RI not less than 1.35 in the entire visible range. Results. The stable colloidal ink was obtained for the first time on the base of aluminum oxide matrix with neutral pH. The rheology was regulated by controlling parameters of sol-gel method in the system of aqueous titanium dioxide sol and by adding ethanol that affects the charge of double electrical layer of disperse phase. The controllable coalesce of drops enables to apply antireflection coating within the thickness accuracy of 10 nm. The morphology of particles and the topology of printed structures were analyzed by optical, scanning electron and atomic-force microscopes. Practical Relevance. We have proposed the approach to obtain colorful, interference patterns using two types of high refractive inks with different refractive indexes. The inkjet printing method opens new opportunities for

  20. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper

    DEFF Research Database (Denmark)

    Kidambi, Piran R.; Blume, Raoul; Kling, Jens

    2014-01-01

    processing, and that this negatively affects the stability of h-BN on the catalyst. For extended air exposure Cu oxidation is observed, and upon re-heating in vacuum an oxygen-mediated disintegration of the h-BN film via volatile boron oxides occurs. Importantly, this disintegration is catalyst mediated, i...

  1. Use of B{sub 2}O{sub 3} films grown by plasma-assisted atomic layer deposition for shallow boron doping in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kalkofen, Bodo, E-mail: bodo.kalkofen@ovgu.de; Amusan, Akinwumi A.; Bukhari, Muhammad S. K.; Burte, Edmund P. [Institute of Micro and Sensor Systems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Garke, Bernd [Institute for Experimental Physics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Lisker, Marco [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Gargouri, Hassan [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2015-05-15

    Plasma-assisted atomic layer deposition (PALD) was carried for growing thin boron oxide films onto silicon aiming at the formation of dopant sources for shallow boron doping of silicon by rapid thermal annealing (RTA). A remote capacitively coupled plasma source powered by GaN microwave oscillators was used for generating oxygen plasma in the PALD process with tris(dimethylamido)borane as boron containing precursor. ALD type growth was obtained; growth per cycle was highest with 0.13 nm at room temperature and decreased with higher temperature. The as-deposited films were highly unstable in ambient air and could be protected by capping with in-situ PALD grown antimony oxide films. After 16 weeks of storage in air, degradation of the film stack was observed in an electron microscope. The instability of the boron oxide, caused by moisture uptake, suggests the application of this film for testing moisture barrier properties of capping materials particularly for those grown by ALD. Boron doping of silicon was demonstrated using the uncapped PALD B{sub 2}O{sub 3} films for RTA processes without exposing them to air. The boron concentration in the silicon could be varied depending on the source layer thickness for very thin films, which favors the application of ALD for semiconductor doping processes.

  2. Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Reiners, G. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Griepentrog, M. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    1995-12-01

    An increasing use of magnesium-based light-metal alloys for various industrial applications was predicted in different technological studies. Companies in different branches have developed machine parts made of magnesium alloys (e.g. cars, car engines, sewing and knitting machines). Hence, this work was started to evaluate the ability of hard coatings obtained by physical vapour deposition (PVD) in combination with coatings obtained by electrochemical deposition to protect magnesium alloys against wear and corrosion. TiN hard coatings were deposited onto magnesium alloys by unbalanced magnetron sputter deposition. A bipolar pulsed d.c. bias voltage was used to limit substrate temperatures to 180 C during deposition without considerable loss of microhardness and adhesion. Adhesion, hardness and load-carrying capacity of TiN coatings deposited directly onto magnesium alloys are compared with the corresponding values of TiN coatings deposited onto substrates which had been coated electroless with an Ni-P alloy interlayer prior to the PVD. (orig.)

  3. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  4. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  5. RF magnetron-sputtered coatings deposited from biphasic calcium phosphate targets for biomedical implant applications

    Directory of Open Access Journals (Sweden)

    K.A. Prosolov

    2017-09-01

    Full Text Available Bioactive calcium phosphate coatings were deposited by radio-frequency magnetron sputtering from biphasic targets of hydroxyapatite and tricalcium phosphate, sintered at different mass % ratios. According to Raman scattering and X-ray diffraction data, the deposited hydroxyapatite coatings have a disordered structure. High-temperature treatment of the coatings in air leads to a transformation of the quasi-amorphous structure into a crystalline one. A correlation has been observed between the increase in the Ca content in the coatings and a subsequent decrease in Ca in the biphasic targets after a series of deposition processes. It was proposed that the addition of tricalcium phosphate to the targets would led to a finer coating's surface topography with the average size of 78 nm for the structural elements.

  6. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-01-01

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  7. Superior critical current density obtained in MgB_2 bulks via employing carbon-coated boron and minor Cu addition

    International Nuclear Information System (INIS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-01-01

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB_2 grain connectivity, leading to higher J_c at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J_c. - Abstract: High performance Cu doped MgB_2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB_2 grains, as well as a high level of homogeneous carbon doping in the MgB_2 samples, which significantly enhance the J_c in both Cu doped and undoped bulks compared to MgB_2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB_2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J_c) at self fields and low fields (the best values are 7 × 10"5 A/cm"2 at self fields, and 1 × 10"5 A/cm"2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J_c at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB_2 bulks or wires with excellent J_c on an industrial scale.

  8. Superior critical current density obtained in MgB{sub 2} bulks via employing carbon-coated boron and minor Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Junming; Liu, Yongchang [State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Ma, Zongqing, E-mail: mzq0320@163.com [State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, Squires Way, North Wollongong, NSW 2500 (Australia); Shahriar Al Hossain, M. [Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, Squires Way, North Wollongong, NSW 2500 (Australia); Xin, Ying; Jin, Jianxun [Tianjin University – Futong Group Research Center of Applied Superconductivity, Tianjin University, Tianjin 300072 (China)

    2016-09-15

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB{sub 2} grain connectivity, leading to higher J{sub c} at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J{sub c}. - Abstract: High performance Cu doped MgB{sub 2} bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB{sub 2} grains, as well as a high level of homogeneous carbon doping in the MgB{sub 2} samples, which significantly enhance the J{sub c} in both Cu doped and undoped bulks compared to MgB{sub 2} bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB{sub 2} grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J{sub c}) at self fields and low fields (the best values are 7 × 10{sup 5} A/cm{sup 2} at self fields, and 1 × 10{sup 5} A/cm{sup 2} at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J{sub c} at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB{sub 2} bulks or wires with excellent J{sub c} on an industrial scale.

  9. CrAlN coatings deposited by cathodic arc evaporation at different substrate bias

    International Nuclear Information System (INIS)

    Romero, J.; Gomez, M.A.; Esteve, J.; Montala, F.; Carreras, L.; Grifol, M.; Lousa, A.

    2006-01-01

    CrAlN is a good candidate as an alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on hardened steel substrates by cathodic arc evaporation (CAE) from chromium-aluminum targets in a reactive nitrogen atmosphere at negative substrate bias between - 50 and - 400 V. The negative substrate bias has important effects on the deposition growth rate and crystalline structure. All our coatings presented hardness higher than conventional CrN coatings. The friction coefficient against alumina and tungsten carbide balls was around 0.6. The sliding wear coefficient of the CrAlN coatings was very low while an important wear was observed in the balls before a measurable wear were produced in the coatings. This effect was more pronounced as the negative substrate bias was increased

  10. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  11. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  12. Segregation and Microstructure in the Fusion zones of Laser joints of Al-10%Si coated Boron Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Min-Suck [Hyundai Hysco Co., Ltd, Ulsan (Korea, Republic of); Kang, Chung-Yun [Pusan National University, Busan (Korea, Republic of)

    2016-01-15

    During laser welding of Al-10 wt%Si coated boron steel, which is used in the automotive industry, Al and Si, which are elements of the coated layer, are diluted in the fusion zone; then, the concentration of Al and Si is distributed randomly. The segregation can be roughly classified into two types. The first forms along the fusion boundary in a long comet shape in the depth direction of the fusion zone. The Al concentration of this comet shape is Fe3(Al, Si)and the material is composed of a single phase. This segregation phase is formed at the same time as the melting of the base metal and the diluting of the coated layer of Fe(Al, Si), without reaction of the molten metal. Then, a static dissolution reaction of the diluted coated layer occurs, scarcely stirring the molten metal; the concentration of Al and Si is reduced to 1/2. The second type of segregation is formed by martensite and bainte in the fusion zone of the segregated zone; the composition of Al is 1.28⁓0.48 wt%. Considering the results of the analysis of the Fe(Si,C, Mn,Cr)-xwt%Al quasi binary phase diagram, performed using Thermo-Calc, segregated zones are solidified in the form “L→L+α→γ”. Also, and as a result, it was found that the phase transformation from γ under-cooling results in the solid phase, which undergoes bainite transformation and is transformed to martensite.

  13. Segregation and Microstructure in the Fusion zones of Laser joints of Al-10%Si coated Boron Steel

    International Nuclear Information System (INIS)

    Kwon, Min-Suck; Kang, Chung-Yun

    2016-01-01

    During laser welding of Al-10 wt%Si coated boron steel, which is used in the automotive industry, Al and Si, which are elements of the coated layer, are diluted in the fusion zone; then, the concentration of Al and Si is distributed randomly. The segregation can be roughly classified into two types. The first forms along the fusion boundary in a long comet shape in the depth direction of the fusion zone. The Al concentration of this comet shape is Fe3(Al, Si)and the material is composed of a single phase. This segregation phase is formed at the same time as the melting of the base metal and the diluting of the coated layer of Fe(Al, Si), without reaction of the molten metal. Then, a static dissolution reaction of the diluted coated layer occurs, scarcely stirring the molten metal; the concentration of Al and Si is reduced to 1/2. The second type of segregation is formed by martensite and bainte in the fusion zone of the segregated zone; the composition of Al is 1.28⁓0.48 wt%. Considering the results of the analysis of the Fe(Si,C, Mn,Cr)-xwt%Al quasi binary phase diagram, performed using Thermo-Calc, segregated zones are solidified in the form “L→L+α→γ”. Also, and as a result, it was found that the phase transformation from γ under-cooling results in the solid phase, which undergoes bainite transformation and is transformed to martensite.

  14. Atomic layer deposition-A novel method for the ultrathin coating of minitablets.

    Science.gov (United States)

    Hautala, Jaana; Kääriäinen, Tommi; Hoppu, Pekka; Kemell, Marianna; Heinämäki, Jyrki; Cameron, David; George, Steven; Juppo, Anne Mari

    2017-10-05

    We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO 2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit ® E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO 2 nanolayers decreased the mechanical strength, and accelerated the in vitro disintegration of minitablets. Unlike previous studies, the studied levels of TiO 2 nanolayers on tablets were also inadequate for effective taste masking. In summary, ALD permits a simple and rapid method for the ultrathin coating (nanolayering) of minitablets, and provides nanoscale-range TiO 2 coatings on porous minitablets. More research, however, is needed to clarify its potential in tablet taste masking applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  16. Influence of the deposition geometry on the microstructure of sputter-deposited V-Al-C-N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Darma, Susan; Krause, Baerbel; Doyle, Stephen; Mangold, Stefan; Baumbach, Tilo [ISS, Karlsruher Institut fuer Technologie (Germany); Ulrich, Sven; Stueber, Michael [IAM-AWP, Karlsruher Institut fuer Technologie (Germany)

    2012-07-01

    Multi-element hard coating materials such as V-Al-C-N are of great interest for many technological applications. Their mechanical properties depend on the composition and microstructure of the coating. In order to determine the optimum composition and deposition conditions of these complex materials, many samples are required. One powerful tool for reducing the number of experiments is based on the so-called combinatorial approach for thin film deposition: many different thin film samples can be realized simultaneously, exploiting the deposition gradient resulting from codeposition of several materials. We will present an X-ray diffraction study of the influence of the deposition geometry on the microstructure of V-Al-C-N coatings. The films were deposited by reactive RF magnetron sputtering from a segmented target composed of AlN and VC. Synchrotron radiation measurements where performed at the beamline PDIFF at ANKA. Significant texture changes were observed which can be attributed to the deposition geometry, as verified by calculations of the flux distribution. We conclude that codeposition can accelerate significantly the screening of new materials, under the condition that the desired property is not significantly influenced by the microstructural changes due to the deposition geometry.

  17. Additive manufactured Ti6Al4V scaffolds with the RF- magnetron sputter deposited hydroxyapatite coating

    International Nuclear Information System (INIS)

    Chudinova, E; Surmeneva, M; Surmenev, R; Koptioug, A; Scoglund, P

    2016-01-01

    Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds. (paper)

  18. Advanced TiC/a-C: H nanocomposite coatings deposited by magnetron sputtering

    OpenAIRE

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing substrate bias or carbon content. Micro-cracks induced by nanoindentation or wear tests readily propagate through the column boundaries whereas the coatings without a columnar inicrostructure exhibit s...

  19. Sintering of MnCo2O4 coatings prepared by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bobruk, M.; Molin, Sebastian; Chen, Ming

    2018-01-01

    Sintering of MnCo2O4 coatings prepared by electrophoretic deposition on steel substrates has been studied in air and in reducing-oxidizing atmosphere. Effect of temperature and pO2 on the resulting coating density was evaluated from scanning electron microscopy images of polished cross sections...

  20. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    NARCIS (Netherlands)

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the

  1. Advanced TiC/a-C : H nanocomposite coatings deposited by magnetron sputtering

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing

  2. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; de Hosson, J.T.M.

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack

  3. Large area IBAD deposition of Zn-alloys in the coil coating mode

    International Nuclear Information System (INIS)

    Wolf, G.K.; Preiss, G.; Muenz, R.; Guzman, L.

    2001-01-01

    In the last years many studies on IBAD coatings on metals and insulators for wear reduction and corrosion protection have been published. However the IBAD deposition of larger areas (>10 x 10 cm) is still a major problem. Therefore we have developed a coil coater running inside the IBAD deposition chamber and allowing very flexible deposition modes. Single layers, multilayers and alloys can be deposited under ion bombardment on substrates up to 30 by 40 cm or on metal and polymer strips 30 cm wide. A number of examples dealing with Zn-alloy coatings on low alloy steel are reported: pure Zn-coatings were compared with Zn/Ti-alloys Zn/Cr-alloys and Zn/Mn-alloys. In some cases also multilayers of the different metals were studied in the static and dynamic operation mode. The coatings had a thickness of 2-8 μm and their corrosion behaviour was investigated by salt spray tests. The microstructure of the coatings was studied by electron microscopy and EDX-depth profiling. The behaviour of the coating/substrate system is discussed in comparison with 'state-of-the-art' Zn-coatings produced by electrogalvanizing. Generally speaking the performance of the optimized coatings was as good as or better than the electrogalvanized standard

  4. Thick CrN/NbN multilayer coating deposited by cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano Avelar; Tschiptschin, Andre Paulo; Souza, Roberto Martins, E-mail: antschip@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Lima, Nelson Batista de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-01-15

    The production of tribological nanoscale multilayer CrN/NbN coatings up to 6 μm thick by Sputtering/HIPIMS has been reported in literature. However, high demanding applications, such as internal combustion engine parts, need thicker coatings (>30 μm). The production of such parts by sputtering would be economically restrictive due to low deposition rates. In this work, nanoscale multilayer CrN/NbN coatings were produced in a high-deposition rate, industrial-size, Cathodic Arc Physical Vapor Deposition (ARC-PVD) chamber, containing three cathodes in alternate positions (Cr/ Nb/Cr). Four 30 μm thick NbN/CrN multilayer coatings with different periodicities (20, 10, 7.5 and 4 nm) were produced. The coatings were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The multilayer coating system was composed of alternate cubic rock salt CrN and NbN layers, coherently strained due to lattice mismatch. The film grew with columnar morphology through the entire stratified structure. The periodicities adopted were maintained throughout the entire coating. The 20 nm periodicity coating showed separate NbN and CrN peaks in the XRD patterns, while for the lower periodicity (≤10nm) coatings, just one intermediate lattice (d-spacing) was detected. An almost linear increase of hardness with decreasing bilayer period indicates that interfacial effects can dominate the hardening mechanisms. (author)

  5. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Sanja Erakovic

    2014-07-01

    Full Text Available Hydroxyapatite (HAP is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC.

  6. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system.

    Science.gov (United States)

    Dembele, Amidou; Rahman, Mahfujur; Reid, Ian; Twomey, Barry; MacElroy, J M Don; Dowling, Denis P

    2011-10-01

    The objective of this study is to investigate the influence of alcohol addition on the incorporation of metal oxide nanoparticles into nm thick siloxane coatings. Titanium oxide (TiO2) nanoparticles with diameters of 30-80 nm were incorporated into an atmospheric plasma deposited tetramethylorthosilicate (TMOS) siloxane coating. The TMOS/TiO2 coating was deposited using the atmospheric plasma jet system known as PlasmaStream. In this system the liquid precursor/nanoparticle mixture is nebulised into the plasma. It was observed that prior to being nebulised the TiO2 particles agglomerated and settled over time in the TMOS/TiO2 mixture. In order to obtain a more stable nanoparticle/TMOS suspension the addition of the alcohols methanol, octanol and pentanol to this mixture was investigated. The addition of each of these alcohols was found to stabilise the nanoparticle suspension. The effect of the alcohol was therefore assessed with respect to the properties of the deposited coatings. It was observed that coatings deposited from TMOS/TiO2, with and without the addition of methanol were broadly similar. In contrast the coatings deposited with octanol and pentanol addition to the TMOS/TiO2 mixture were significantly thicker, for a given set of deposition parameters and were also more homogeneous. This would indicate that the alcohol precursor was incorporated into the plasma polymerised siloxane. The incorporation of the organic functionality from the alcohols was confirmed from FTIR spectra of the coatings. The difference in behaviour with alcohol type is likely to be due to the lower boiling point of methanol (65 degrees C), which is lower than the maximum plasma temperature measured at the jet orifice (77 degrees C). This temperature is significantly lower than the 196 degrees C and 136 degrees C boiling points of octanol and pentanol respectively. The friction of the coatings was determined using the Pin-on-disc technique. The more organic coatings deposited with

  7. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  8. Boron-Doped Diamond (BDD) Coatings Protect Underlying Silicon in Aqueous Acidic Media–Application to the Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Halima, A.F.; Rana, U.A.; MacFarlane, D.R.

    2014-01-01

    Abstract: Silicon has potential application as a functional semiconductor electrode in proposed solar water splitting cells. It is abundant and has excellent photovoltaic attributes, however it is extremely susceptible to corrosion, even in the dark, resulting in the formation of an electrochemically passive oxide upon interaction with aqueous media. This work investigates the potential for conductive, inert and transparent boron doped diamond (BDD) coatings to protect p-type Silicon (p-Si). The stability and electrochemical performance of p-Si and p-Si|BDD were investigated using voltammetric techniques in 1 M H 2 SO 4 , before and after long-term exposure to the acidic medium (up to 280 hours) under no applied potential bias. Unprotected Si degraded very rapidly whilst BDD was shown to protect the underlying Si, as evident from I-V curves that indicated no increased resistance across the Si-diamond interface. Furthermore, BDD supported facile proton reduction at significantly lower onset potential for the hydrogen evolution reaction (up to -500 mV vs. SCE) compared with bare Si cathode (-850 mV vs. SCE). The activity of the BDD electrode/electrolyte interface was further improved by coating with platinum catalyst particles, to produce a p-Si|BDD|Pt strucure, which reduced the HER onset to nearly zero overpotential. Tafel analysis indicated that desirable electrochemical activity and stability were achieved for p-Si|BDD|Pt, making this a promising electrode for application in water splitting cells

  9. Deposition parameters to improve the fouling-release properties of thin siloxane coatings prepared by PACVD

    International Nuclear Information System (INIS)

    Akesso, Laurent; Navabpour, Parnia; Teer, Dennis; Pettitt, Michala E.; Callow, Maureen E.; Liu Chen; Su Xueju; Wang Su; Zhao Qi; Donik, Crtomir; Kocijan, Aleksandra; Jenko, Monika; Callow, James A.

    2009-01-01

    A range of SiO x -like coatings was deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD. The effect of varying deposition parameters, specifically ion cleaning time and HMDSO/O 2 ratios, on the coating properties and antifouling performance was investigated. At low HMDSO/O 2 ratios, the resulting coatings were close to SiO 2 . Carbon content in the bulk of the coatings increased with increasing HMDSO/O 2 ratio. Coatings deposited at high HMDSO/O 2 ratios and with the longest cleaning time (30 min), elevated the relative carbon content to 25 atomic %. Surface energies (22-43 mJ/m) were correlated with the degree of surface oxidation and hydrocarbon content. With the exception of the most polar coatings the apolar component of the surface energy (γ LW ) was the dominant component. In the most hydrophilic coatings, the Lewis base component of the surface energy (γ - ) was dominant. Significantly improved antifouling performance was detected with the most reduced coatings deposited using the extended ion cleaning times. For both, the removal of sporelings of the marine green alga, Ulvalinza and the initial adhesion of the freshwater bacterium, Pseudomonas fluorescens, there was a strong, positive correlation between strength of attachment and ion cleaning time. Increased ion cleaning time will elevate the deposition temperature, increasing decomposition rates and thus the crosslinking of the polymer. Increased cross-linking may render these coatings less permeable to penetration and mechanical interlocking by the adhesive polymers used by these organisms, thus reducing their adhesion. Films with improved biological performance have potential for use as coatings in the control of biofouling in applications such as heat exchangers, where thin films are important for effective thermal transfer, or optical windows where transparency is important.

  10. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  11. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  12. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  13. Fabrication and characterization of Ni-YSZ anode functional coatings by electron beam physical vapor deposition

    International Nuclear Information System (INIS)

    Meng, B.; Sun, Y.; He, X.D.; Peng, J.H.

    2009-01-01

    Two kinds of NiO-YSZ (yttria-stabilized zirconia) coatings, respectively with uniform and gradient distributions of NiO content along the coating thickness direction, were prepared by electron beam physical vapor deposition (EB-PVD) via adjusting electron beam currents. Then uniform and graded Ni-YSZ coatings were obtained from corresponding NiO-YSZ coatings after a reduction treatment. For uniform Ni-YSZ coating, the composition and porosity distributions along the coating thickness were uniform. The specific surface area and total pore volume for this coating could reach up to 4.330 m 2 g -1 and 0.0346 cm 3 g -1 respectively. The area specific resistance (ASR) of this coating kept increasing with the rise in temperature and an ASR of 2.1 x 10 -5 Ω cm 2 was obtained at 600 o C. For graded Ni-YSZ coating, a gradient in Ni content and porosity was realized along the coating thickness. A high porosity of up to 33% was achieved in the part of the coating close to the substrate, while a low porosity of 10% was obtained in the part close to coating surface.

  14. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  15. Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); Patil, Sandip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Kim, Tae-Gyu [Department of Nano System and Process Engineering, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongnam, Pusan 627-706 (Korea, Republic of); Yonekura, Daisuke [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Joag, Dilip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.jp [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan)

    2011-01-01

    Boron doped diamond films were synthesized on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) technique. The effect of B{sub 2}O{sub 3} concentration varied from 1000 to 5000 ppm on the field emission characteristics was examined. The surface morphology and quality of films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. The surface morphology obtained by SEM showed variation from facetted microcrystal covered with nanometric grains to cauliflower of nanocrystalline diamond (NCD) particles with increasing B{sub 2}O{sub 3} concentration. The Raman spectra confirm the formation of NCD films. The field emission properties of NCD films were observed to improve upon increasing boron concentration. The values of the onset field and threshold field are observed to be as low as 0.36 and 0.08 V/{mu}m, respectively. The field emission current stability investigated at the preset value of {approx}1 {mu}A is observed to be good, in each case. The enhanced field emission properties are attributed to the better electrical conductivity coupled with the nanometric features of the diamond films.

  16. High quality aluminide and thermal barrier coatings deposition for new and service exposed parts by CVD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza, F.; Tuohy, C.; Whelan, L.; Kennedy, A.D. [SIFCO Turbine Components, Carrigtwohill, Cork (Ireland)

    2004-07-01

    In this work, the performance of CVD aluminide coatings is compared to that of coatings deposited by the classical pack cementation technique using standard SIFCO procedures. The CVD coatings always seem to behave better upon exposure to isothermal and cyclic oxidation conditions. This is explained by a longer term stability of CVD coatings, with higher Al amounts in the diffusion zone and less refractory element precipitation in the additive layer. The qualities of Pt/Al coatings by out-of-pack and CVD are also compared as a previous step for further thermal barrier coating deposition. As an example, YSZ thermal barrier coatings are deposited by MO-CVD on Pt/Al CVD bond coats rendering adherent and thick coatings around the surface of turbine blades. This process under development does not require complex manipulation of the component to be coated. (orig.)

  17. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  18. Bone response adjacent to calcium phosphate electrostatic spray deposition coated implants: an experimental study in goats.

    NARCIS (Netherlands)

    Manders, P.J.D.; Wolke, J.G.C.; Jansen, J.A.

    2006-01-01

    BACKGROUND: A new technique to deposit calcium phosphate (CaP) coatings onto titanium substrates has been developed recently. This electrostatic spray deposition (ESD) technique seems to be very promising. It appears to have clinical advantages such as an inexpensive and simple set-up, high

  19. Novel GIMS technique for deposition of colored Ti/TiO₂ coatings on industrial scale

    Directory of Open Access Journals (Sweden)

    Zdunek Krzysztof

    2016-03-01

    Full Text Available The aim of the present paper has been to verify the effectiveness and usefulness of a novel deposition process named GIMS (Gas Injection Magnetron Sputtering used for the flrst time for deposition of Ti/TiO₂ coatings on large area glass Substrates covered in the condition of industrial scale production. The Ti/TiO₂ coatings were deposited in an industrial System utilizing a set of linear magnetrons with the length of 2400 mm each for covering the 2000 × 3000 mm glasses. Taking into account the speciflc course of the GIMS (multipoint gas injection along the magnetron length and the scale of the industrial facility, the optical coating uniformity was the most important goal to check. The experiments on Ti/TiO₂ coatings deposited by the use of GIMS were conducted on Substrates in the form of glass plates located at the key points along the magnetrons and intentionally non-heated during any stage of the process. Measurements of the coatings properties showed that the thickness and optical uniformity of the 150 nm thick coatings deposited by GIMS in the industrial facility (the thickness differences on the large plates with 2000 mm width did not exceed 20 nm is fully acceptable form the point of view of expected applications e.g. for architectural glazing.

  20. Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hackl, Gerrit; Gerhard, Helmut; Popovska, Nadejda

    2006-01-01

    Carbon short fiber bundles with a length of 6 mm were uniformly coated using specially designed, continuous chemical vapor deposition (CVD) equipment. Thin layers of titanium nitride, silicon nitride (SiC) and pyrolytic carbon (pyC) were deposited onto several kilograms of short fibers in this large scale CVD reactor. Thermo-gravimetric analyses and scanning electron microscopy investigations revealed layer thicknesses between 20 and 100 nm on the fibers. Raman spectra of pyC coated fibers show a change of structural order depending on the CVD process parameters. For the fibers coated with SiC, Raman investigations showed a deposition of amorphous SiC. The coated carbon short fibers will be applied as reinforcing material in composites with ceramic and metallic matrices

  1. Long length coated conductor fabrication by inclined substrate deposition and evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Prusseit, W [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Hoffmann, C [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Nemetschek, R [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Sigl, G [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Handke, J [THEVA Duennschichttechnik GmbH, Rote-Kreuz-Str. 8, 85737 Ismaning (Germany); Luemkemann, A [Technical University Munich, James- Franck-Str. 1, 85748 Garching (Germany); Kinder, H [Technical University Munich, James- Franck-Str. 1, 85748 Garching (Germany)

    2006-06-01

    The commercial development of coated conductors is rapidly progressing. As a result we present an economic route to produce second generation HTS tape from the initial substrate preparation to the final metal coating. The most important and technically challenging steps are the deposition of an oriented buffer layer and the superconductor film in a reel-to-reel configuration. New evaporation techniques have been developed to enable reliable, high rate tape coating. Highly oriented MgO - buffer layers are realized by inclined substrate deposition (ISD) and DyBCO is deposited by simple e-gun evaporation yielding critical currents beyond 200 A/cm. Coated conductors have been fabricated up to 40 m length and are currently tested in a variety of applications.

  2. Nickel coating on high strength low alloy steel by pulse current deposition

    Science.gov (United States)

    Nigam, S.; Patel, S. K.; Mahapatra, S. S.; Sharma, N.; Ghosh, K. S.

    2015-02-01

    Nickel is a silvery-white metal mostly used to enhance the value, utility, and lifespan of industrial equipment and components by protecting them from corrosion. Nickel is commonly used in the chemical and food processing industries to prevent iron from contamination. Since the properties of nickel can be controlled and varied over broad ranges, nickel plating finds numerous applications in industries. In the present investigation, pulse current electro-deposition technique has been used to deposit nickel on a high strength low alloy (HSLA) steel substrate.Coating of nickel is confirmed by X-ray diffraction (XRD) and EDAX analysis. Optical microscopy and SEM is used to assess the coating characteristics. Electrochemical polarization study has been carried out to study the corrosion behaviour of nickel coating and the polarisation curves have revealed that current density used during pulse electro-deposition plays a vital role on characteristics of nickel coating.

  3. The effect of number of nano structural coating containing Ti and Ru created by electro deposition

    Science.gov (United States)

    Ardi, Simin; Asl, Shahin Khamene; Hoseini, Mirghasem; Pouladvand, Iman

    2018-01-01

    TiO2 and RuO2 have many applications in the field of photocataliysis, environmental protection, high charge storage capacity devices and etc. Electro deposition offers advantages such as rigid control of film thickness, uniformity and deposition rate. Electro deposition of RuO2-TiO2 coatings on Ti substrates was performed via hydrolysis by electro generated based of TiCl4 and RuCl3 salts dissolved in mixed methyl alcohol-water solvent in presence of hydrogen peroxide for one, three and six layer. The obtained coatings have been heated in electric furnace at 500 ˚C. Results show that coating with six layers on Ti substrate is the useful coating

  4. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    International Nuclear Information System (INIS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-01-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate

  5. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Science.gov (United States)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  6. Fluidized bed deposition and evaluation of silicon carbide coatings on microspheres

    International Nuclear Information System (INIS)

    Federer, J.I.

    1977-01-01

    The fuel element for the HTGR is an array of closely packed fuel microspheres in a carbonaceous matrix. A coating of dense silicon carbide (SiC), along with pyrocarbon layers, is deposited on the fueled microspheres to serve as a barrier against diffusion of fission products. The microspheres are coated with silicon carbide in a fluidized bed by reaction of methyltrichlorosilane (CH 3 SiCl 3 or MTS) and hydrogen at elevated temperatures. The principal variables of coating temperature and reactant gas composition (H 2 /MTS ratio) have been correlated with coating rate, morphology, stoichiometry, microstructure, and density. The optimum temperature for depositing highly dense coatings is in the range 1475 to 1675 0 C. Lower temperatures result in silicon-rich deposits, while higher temperatures may cause unacceptable porosity. The optimum H 2 /MTS ratio for highly dense coatings is 20 or more (approximately 5% MTS or less). The amount of grown-in porosity increases as the H 2 /MTS ratio decreases below 20. The requirement that the H 2 /MTS ratio be about 20 or more imposes a practical restraint on coating rate, since increasing the total flow rate would eventually expel microspheres from the coating tube. Evaluation of stoichiometry, morphology, and microstructure support the above mentioned optimum conditions of temperature and reactant gas composition. 18 figures, 3 tables

  7. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  8. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    International Nuclear Information System (INIS)

    Deng, Min-Jen; Tsai, Du-Cheng; Ho, Wen-Hsien; Li, Ching-Fei; Shieu, Fuh-Sheng

    2013-01-01

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO 4 solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  9. WC-Co coatings deposited by the electro-thermal chemical spray method

    Energy Technology Data Exchange (ETDEWEB)

    Zhitomirsky, V.N. [Tel Aviv Univ. (Israel). Faculty of Engineering; Wald, S.; Rabani, L.; Zoler, D. [Propulsion Physics Division, SOREQ NRC, 81800, Yavne (Israel); Factor, M.; Roman, I. [School of Applied Sciences, The Hebrew University, 91904, Jerusalem (Israel); Cuperman, S.; Bruma, C. [School of Physics and Astronomy, Tel-Aviv University, 69978, Tel-Aviv (Israel)

    2000-10-02

    A novel thermal spray technology - an electro-thermal chemical spray (ETCS) for producing hard coatings is presented. The experimental coating apparatus consists of a machine gun barrel, a cartridge containing the coating material in powder form, a solid propellant, and a plasma ignition system. The plasma ignition system produces plasma in pulsed mode to ignite the solid propellant. On ignition, the drag force exerted by the combustion gases accelerates the powder particles towards the substrate. Using the ETCS technique, the process of single-shot WC-Co coating deposition on stainless steel substrate was studied. The influence of process parameters (plasma energy, mass of the solid propellant and the coated powder, distance between the gun muzzle and the substrate) on the coating structure and some of its properties were investigated. It was shown that ECTS technique effectively deposited the WC-Co coating with deposition thicknesses of 100-200 {mu}m per shot, while deposition yield of {proportional_to}70% was attained. The WC-Co coatings consisted of carbide particles distributed in amorphous matrix. The powder particle velocity was found to depend on the solid propellant mass and was weakly dependent on the plasma energy, while the particle processing temperature was strongly dependent on the plasma energy and almost independent of the solid propellant mass. Whilst increasing the solid propellant mass from 5 to 7 g, the deposition rate and yield correspondingly increased. When increasing the plasma energy, the temperature of the powder particles increased, the average carbide particle size decreased and their shape became more rounded. The deposition yield and microhardness at first increased and then achieved saturation by increasing the plasma energy. (orig.)

  10. Cobalt coatings: deposition on a nickel substrate and electrocatalytic activity for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, L. (Inst. de Recherche d' Hydro-Quebec (IREQ), Varennes, Quebec (Canada))

    1992-02-01

    The deposition of cobalt on a nickel substrate in 30 wt% KOH aqueous solution containing dissolved cobalt was investigated. The effect of the applied cathodic current density (i{sub a}) and the dissolved-cobalt concentration in the electrolyte on the deposition rate suggests that the rate-determining step is the diffusion of the dissolved cobalt in the solution. The faradic efficiency of the cobalt deposition reaction and the coating morphology are linked to i{sub a}, while the evolution rate of both oxygen and hydrogen in 30 wt% KOH at 70degC is dependent on the coating morphology. (orig.).

  11. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  12. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  13. Optimized plasma-deposited fluorocarbon coating for dry release and passivation of thin SU-8 cantilevers

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Häfliger, Daniel; Boisen, Anja

    2008-01-01

    during fluorocarbon deposition, the surface free energy of the coating can be tuned to allow for uniform wetting during spin coating of arbitrary thin SU-8 films. Further, they define an optimal pressure regime for the release of thin polymer structures at high yield. They demonstrate the successful......Plasma-deposited fluorocarbon coatings are introduced as a convenient method for the dry release of polymer structures. In this method, the passivation process in a deep reactive ion etch reactor was used to deposit hydrophobic fluorocarbon films. Standard photolithography with the negative epoxy......-based photoresist SU-8 was used to fabricate polymer structures such as cantilevers and membranes on top of the nonadhesive release layer. The authors identify the plasma density as the main parameter determining the surface properties of the deposited fluorocarbon films. They show that by modifying the pressure...

  14. Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.

    Science.gov (United States)

    Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang

    2017-09-13

    Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al 2 O 3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.

  15. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Blanda, Giuseppe [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Piazza, Salvatore; Sunseri, Carmelo [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Inguanta, Rosalinda, E-mail: rosalinda.inguanta@unipa.it [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO{sub 4}·H{sub 2}O; HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO{sub 3}){sub 2}·4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  16. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    International Nuclear Information System (INIS)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-01-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO_4·H_2O; HA, Ca_1_0(PO_4)_6(OH)_2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO_3)_2·4H_2O and NH_4H_2PO_4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  17. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  18. Boron profiles in doped amorphous-silicon solar cells formed by plasma ion deposition

    International Nuclear Information System (INIS)

    Stoddart, C.T.H.; Hunt, C.P.; Coleman, J.H.

    1979-01-01

    Amorphous silicon p-n junction solar cells of large area (100 cm 2 ) and having a quantum efficiency approaching 100% in the blue region have been prepared by plasma ion-plating, the p layer being formed from diborane and silane gases in a cathode glow-discharge. Surface secondary ion mass spectrometry combined with ion beam etching was found to be a very sensitive method with high in-depth resolution for obtaining the initial boron-silicon profile of the solar cell p-n junction. (author)

  19. Operation and Applications of the Boron Cathodic Arc Ion Source

    International Nuclear Information System (INIS)

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-01-01

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  20. Comparison of the influence of boron and aluminium doping on the material properties of electrochemically deposited ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Calnan, Sonya [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Riedel, Wiebke; Gledhill, Sophie [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Stannowski, Bernd [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Lux-Steiner, Martha Ch. [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Schlatmann, Rutger [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich 1 Ingenieurwissenschaften I, University of Applied Science (HTW) Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin (Germany)

    2015-11-02

    The effect of varying the boron and aluminium content of the starting electrolyte for extrinsically doped ZnO films grown on SnO{sub 2}:F substrates by electrochemical deposition was investigated. The ZnO:B film surface was characterized by grains with mainly hexagonal faces exposed while the exposed faces of the ZnO:Al grains were rectangular. Whereas a B{sup 3+}/Zn{sup 2+} ratio of up to 10 at.% in the electrolyte had no significant effect on the crystalline structure of the ZnO films, an Al{sup 3+}/Zn{sup 2+} ratio above 0.25 at.% increased the disorder in the crystalline structure. All the boron doped films exhibit a strong E{sub 2}-high Raman mode related to wurtzite ZnO structure but this peak was much weaker for ZnO:Al and diminished with increasing Al incorporation in the films. Exposing the films to ultra-violet light reduced their effective sheet resistance from values beyond measurement range to values between 40 and 5000 kΩ/sq for film thicknesses of 200–550 nm. Inspection of the optical spectra near the bandgap edge and the plasma edge in the mid infrared range, showed that the Al-doping resulted in a higher carrier concentration ~ 10{sup 20} cm{sup −3} than B-doping. X-ray electron spectroscopy showed that the dopant efficiency was limited by the absence of dopant atoms near the surface of all the ZnO:B films and of the lightly doped ZnO:Al and, by the formation of aluminium oxide at the surface of the more highly doped ZnO:Al films. - Highlights: • Crystalline ZnO grown by electrochemical deposition. • Comparison of influence of H{sub 3}BO{sub 3} and Al(NO{sub 3}){sub 3} as dopant sources. • Different ZnO crystalline orientation for Al and boron doping. • Film surface chemical composition suppressed electrical conductivity.

  1. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  2. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

    International Nuclear Information System (INIS)

    Boies, Adam M; Girshick, Steven L; Roberts, Jeffrey T; Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-01-01

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO 2 ) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO 2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO 2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 0 C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10 7 particles cm -3 .

  3. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  4. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    Science.gov (United States)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  5. Vapor deposition on doublet airfoil substrates: Control of coating thickness and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-11-15

    Gas jet assisted vapor deposition processes for depositing coatings are conducted at higher pressures than conventional physical vapor deposition methods, and have shown promise for coating complex shaped substrates including those with non-line-of-sight (NLS) regions on their surface. These regions typically receive vapor atoms at a lower rate and with a wider incident angular distribution than substrate regions in line-of-sight (LS) of the vapor source. To investigate the coating of such substrates, the thickness and microstructure variation along the inner (curved) surfaces of a model doublet airfoil containing both LS and NLS regions has been investigated. Results from atomistic simulations and experiments confirm that the coating's thickness is thinner in flux-shadowed regions than in other regions for all the coating processes investigated. They also indicated that the coatings columnar microstructure and pore volume fraction vary with surface location through the LS to NLS transition zone. A substrate rotation strategy for optimizing the thickness over the entire doublet airfoil surface was investigated, and led to the identification of a process that resulted in only small variation of coating thickness, columnar growth angle, and pore volume fraction on all doublet airfoil surfaces.

  6. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine-Grained Titanium Substrate: Structure Analysis

    Directory of Open Access Journals (Sweden)

    Konstantin A. Prosolov

    2018-02-01

    Full Text Available Nanocrystalline Zn-substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross-section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn-substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8-nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P–O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn-substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  7. Coating and functionalization of high density ion track structures by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mättö, Laura [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111 (Hungary); MTA-BME Technical Analytical Research Group, Szent Gellért tér 4, Budapest H-1111 (Hungary); Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Ritala, Mikko; Leskelä, Markku [Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland)

    2016-10-01

    In this study flexible TiO{sub 2} coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO{sub 2} films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti({sup i}OPr){sub 4} and water as precursors at 250 °C. The TiO{sub 2} films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils. - Highlights: • Porous Kapton membranes were obtained by ion track technology and chemical etching. • TiO{sub 2} films were deposited by ALD into the pores of the Kapton membranes. • TiO{sub 2} nanotube array was prepared by removing the polymer core. • MCP structures were obtained from the coated membranes. • Electron multiplication was achieved using the ALD-coated Kapton foils.

  8. Perennial soybean seeds coated with high doses of boron and zinc

    African Journals Online (AJOL)

    Lucas

    2016-09-14

    Sep 14, 2016 ... hot-air blower was switched on at the temperature of 40ºC for 2 min. As stuffing .... not a significant difference in this variable (p<0.05) between ... water content of the seeds after they are coated, and in. Figure 3 it is .... Germ ination / Em ergence (%. ) Germination. Dead seeds. Soaked seeds. Emergence a b.

  9. Diamond coating deposition by synergy of thermal and laser methods-A problem revisited

    International Nuclear Information System (INIS)

    Ristic, Gordana S.; Trtica, Milan S.; Bogdanov, Zarko D.; Romcevic, Nebojsa Z.; Miljanic, Scepan S.

    2007-01-01

    Diamond coatings were deposited by synergy of the hot filament CVD method and the pulse TEA CO 2 laser, in spectroactive and spectroinactive diamond precursor atmospheres. Resulting diamond coatings are interpreted relying on evidence of scanning electron microscopy as well as microRaman spectroscopy. Thermal synergy component (hot filament) possesses an activating agent for diamond deposition, and contributes significantly to quality and extent of diamond deposition. Laser synergy component comprises a solid surface modification as well as the spectroactive gaseous atmosphere modification. Surface modification consists in changes of the diamond coating being deposited and, at the same time, in changes of the substrate surface structure. Laser modification of the spectroactive diamond precursor atmosphere means specific consumption of the precursor, which enables to skip the deposition on a defined substrate location. The resulting process of diamond coating elimination from certain, desired locations using the CO 2 laser might contribute to tailoring diamond coatings for particular applications. Additionally, the substrate laser modification could be optimized by choice of a proper spectroactive precursor concentration, or by a laser radiation multiple pass through an absorbing medium

  10. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    Science.gov (United States)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.

  11. Electrodeposited tungsten-nickel-boron: A replacement for hexavalent chromium

    International Nuclear Information System (INIS)

    Steffani, C.; Meltzer, M.

    1995-04-01

    Chromium, deposited from acidic solutions of its hexavalent ion, has been the rule for wear resistant, corrosion resistant coatings for many years. Although chromium coatings are durable, the plating process generates air emissions, effluent rinse waters, and process solutions that are toxic, suspected carcinogens, and a risk to human health and the environment. Tungsten-nickel-boron (W-Ni-B) alloy deposition is a potential substitute for hexavalent chrome. It has excellent wear, corrosion, and mechanical properties and also may be less of an environmental risk. This study examines the electroplating process and deposit properties of W-Ni-B and compares them with those of hexavalent chrome

  12. Acid formic effect in zinc coatings obtained by galvanostatic deposition

    International Nuclear Information System (INIS)

    Lopes, C.; David, M.; Souza, E.C.

    2016-01-01

    Zinc deposits obtained from electrodeposition is widely used for the purpose of protecting steel substrates from corrosion. They are generally added to Zn deposition bath many additives for improving certain characteristics of the deposit. As far as is known there is no information in literature about the effect of formic acid in corrosion resistance of a Zn deposit. Because it is an acid additive, it has the use of cyclohexylamine, in order for the electrolytic bath continue with a pH equal to the one used commercially, around 5. The main goal of this study is analyze the effect of the formic acid addition in the corrosion resistance of an Zn electrodeposition obtained by galvanostatic deposition. The results obtained by performance tests, cyclic voltammetry and X-ray diffraction showed that the formic acid addition may be promising in combating the corrosion of materials. (author)

  13. High-rate and ultralong cycle-life LiFePO_4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Jinpeng; Wang, Youlan

    2016-01-01

    Highlights: • B-doped carbon decorated LiFePO_4 has been fabricated for the first time. • The LiFePO_4@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO_4@C. • The LiFePO_4@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO_4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO_4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO_4@B_0_._4-C can reach 164.1 mAh g"−"1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g"−"1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g"−"1 and can be maintained at 124.5 mAh g"−"1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO_4@B-C composite for high-performance lithium-ion batteries.

  14. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  15. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  16. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2018-02-01

    Full Text Available In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,AlN deposited by physical vapor deposition (PVD have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC and one central rotating cathode (CERC. The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  17. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    Science.gov (United States)

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  18. The atmospheric chemical vapour deposition of coatings on glass

    International Nuclear Information System (INIS)

    Sanderson, Kevin David

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In 2 O 3 films with a resistivity of 1.1 - 3x10 -3 Ω cm were obtained with ln(thd) 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstructure is discussed. Control over the preferred orientation growth of ITO has been achieved by the addition of acetate species during film growth. Insitu infra-red spectroscopy has been used to identify the gas phase species and identify the species responsible for the film modification. ITO films with a resistivities of 1.5 - 4x10 -4 Ω cm have been achieved. The deposition of titanium nitride by the APCVD of Ti(NMe 2 ) 4 and a mixture of Ti(NMe 2 ) 4 and ammonia is reported. Contamination of the films and pro-reaction between the precursors in the gas phase is discussed, and the synthesis of new precursors for the deposition of titanium nitride is reported. New precursors have been synthesised under anaerobic conditions and characterised by infra-red spectroscopy, 1 H and 13 C NMR, mass spectrometry, thermal gravemetric analysis and three by single crystal X-ray diffraction. Deposition of titanium nitride utilising two new precursors is reported. (author)

  19. Thermal spray deposition and evaluation of low-Z coatings

    International Nuclear Information System (INIS)

    Seals, R.D.; Swindeman, C.J.; White, R.L.

    1996-01-01

    Thermally sprayed low-Z coatings of B 4 C on Al substrates were investigated as candidate materials for first-wall reactor protective surfaces. Comparisons were made to thermally sprayed coatings of B, MgAl 2 O 4 , Al 2 O 3 , and composites. Graded bond layers were applied to mitigate coefficient of thermal expansion mismatch. Microstructures, thermal diffusivity before and after thermal shock loading, steel ball impact resistance, CO 2 pellet cleaning and erosion tolerance, phase content, stoichiometry by Rutherford backscattering spectroscopy, and relative tensile strengths were measured

  20. Stress Analysis in Polymeric Coating Layer Deposited on Rigid Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Soon Lee [Korea University of Technology and Education, School of Mechatronics Engineering, Chonan (Korea, Republic of)

    2015-08-15

    This paper presents an analysis of thermal stress induced along the interface between a polymeric coating layer and a steel substrate as a result of uniform temperature change. The epoxy layer is assumed to be a linear viscoelastic material and to be theromorheologically simple. The viscoelastic boundary element method is employed to investigate the behavior of interface stresses. The numerical results exhibit relaxation of interface stresses and large stress gradients, which are observed in the vicinity of the free surface. Since the exceedingly large stresses cannot be borne by the polymeric coating layer, local cracking or delamination can occur at the interface corner.

  1. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    Science.gov (United States)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  2. DC switch power supply for vacuum-arc coatings deposition

    International Nuclear Information System (INIS)

    Zalesskij, D.Yu.; Volkov, Yu.Ya.; Vasil'ev, V.V.; Kozhushko, V.V.; Luchaninov, A.A.; Strel'nitskij, V.E.

    2008-01-01

    Special DC Switch Power Supply for vacuum-arc deposition was developed and tested in the mode of depositing Al and AlN films. Maximum output power was 6 kW, maximum output current - 120 A, open-circuit voltage - 150 V. The Power Supply allows to adjust and stabilize output current in a wide range. Testing of the Power Supply revealed an advantages over the standard 'Bulat-6' power supply, especially for deposition of non-conductive AlN films.

  3. Coloration of metallic and/or ceramic surfaces obtained by atomic layer deposited nano-coatings

    International Nuclear Information System (INIS)

    Guzman, L.; Vettoruzzo, F.; Laidani, N.

    2016-01-01

    By depositing single layer coatings by means of physical vapor techniques, tailoring of their coloration is generally complex because a given color can be obtained only by very high composition control. Physical vapor deposition (PVD) processes are expensive and cannot be easily used for obtaining conformal coating on three-dimensional objects. Moreover PVD coatings exhibit intrinsic defects (columnar structures, pores) that affect their functional properties and applications such as barrier layers. Atomic layer deposition (ALD) technology delivers conformal coatings on different materials with very low defectiveness. A straightforward coloration can be obtained by a combination of two types of layers with different refraction index, deposited to high thickness precision. Computer simulation studies were performed to design the thickness and architecture of multilayer structures, to a total thickness of approximately 100 nm, suitable to modify the typical coloration of some materials, without altering their other physical and chemical properties. The most promising nano-layered structures were then deposited by ALD and tested with regard to their optical properties. Their total thicknesses were specified in such a way to be technically feasible and compatible with future industrial production. The materials employed in this study to build the optical coatings, are two oxides (Al_2O_3, TiO_2) deposited at 120 °C and two nitrides (AlN, TiN), which need a deposition temperature of 400 °C. The possibility of using such modern deposition technology for esthetic and decorative purposes, while maintaining the functional properties, opens perspectives of industrial applications. - Highlights: • Computer simulation is done to design multilayers made of Al_2O_3, TiO_2, AlN, and TiN. • Total thickness (< 120 nm) is specified to be compatible with industrial production. • The most promising nano-layered structures are then produced and optically tested. • An

  4. Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Nima Meyer

    2018-01-01

    Full Text Available This study investigated the electrophoretic deposition (EPD of the natural polymer zein combined with bioactive glass (BG particles. Through the deposition of various BG compositions, namely 45S5 BG and Cu-doped BG, this work sought to demonstrate the ability of the films to potentiate the formation of hydroxyapatite (HA in contact with simulated body fluid (SBF. Following incubation in SBF, the physical and chemical surface properties of the EPD films were evaluated using different characterization techniques. The formation of HA at the surface of the coatings following immersion in SBF was confirmed using Fourier transform infrared spectroscopy (FTIR. The results demonstrated HA formation in all coatings after seven days of immersion in SBF. Coating morphology and degradation of the zein films were characterized using environmental scanning electron microscopy (ESEM. The results confirmed EPD as a very convenient room temperature technique for production of ion releasing, bioactive, and antibacterial coatings for potential application in orthopedics.

  5. Electroreduction of CO{sub 2} using copper-deposited on boron-doped diamond (BDD)

    Energy Technology Data Exchange (ETDEWEB)

    Panglipur, Hanum Sekar; Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Keio University (Japan); Wibowo, Rahmat

    2016-04-19

    Electroreduction of CO{sub 2} was studied at copper-modified boron-doped diamond (Cu-BDD) electrodes as the working electrode. The Cu-BDD electrodes were prepared by electrochemical reduction with various concentrations of CuSO{sub 4} solutions. FE-SEM was utilized to characterize the electrodes. At Cu-BDD electrodes, a reduction peak at around -1.2 V (vs Ag/AgCl) attributtable to CO{sub 2} reductions could be observed by cyclic voltammetry technique of CO{sub 2} bubbled in water containing 0.1M NaCl. Accordingly, electroreduction of CO{sub 2} was conducted at -1.2 V (vs Ag/AgCl) using amperometry technique. The chemical products of the electroreduction analyzed by using HPLC showed the formation of formaldehyde, formic acid, and acetic acid at Cu-BDD electrodes.

  6. Deposition of protective coatings in rf organosilicon discharges

    Czech Academy of Sciences Publication Activity Database

    Zajíčková, L.; Buršíková, V.; Kučerová, Z.; Franta, D.; Dvořák, P.; Šmíd, R.; Peřina, Vratislav; Macková, Anna

    2007-01-01

    Roč. 16, č. 1 (2007), s. 123-132 ISSN 0963-0252 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : organosilicon discharges, hardness and elastic modulus, protectove coating s Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.120, year: 2007

  7. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    International Nuclear Information System (INIS)

    Baig, M N; Khalid, F A

    2014-01-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate and coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD and optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating

  8. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  9. Carbon nanotubes and nanofibers synthesized by CVD on nickel coatings deposited with a vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, M. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); DQIAQF-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); Giuliani, L. [INFIP, CONICET, Dep. de Fisica, FCEyN-UBA, Cdad. Univ. Pab.1, (1428), Buenos Aires (Argentina); Candal, R.J. [INQUIMAE-FCEyN-UBA, Cdad. Universitaria Pab.2, (1428), Buenos Aires (Argentina); Lamas, D.G. [CINSO, CITEFA, CONICET, J.B. de La Salle 4397, (1603) V.Martelli, Buenos Aires (Argentina); Caso, A. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); Rubiolo, G. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); UAM-CNEA, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Grondona, D. [INFIP, CONICET, Dep. de Fisica, FCEyN-UBA, Cdad. Univ. Pab.1, (1428), Buenos Aires (Argentina); Goyanes, S. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); Marquez, A., E-mail: amarquez@df.uba.a [INFIP, CONICET, Dep. de Fisica, FCEyN-UBA, Cdad. Univ. Pab.1, (1428), Buenos Aires (Argentina)

    2010-04-16

    Nanotubes and nanofibers were grown on Ni coatings deposited by plasma generated with a pulsed vacuum arc on silicon wafers using three different bias conditions: at floating potential (approximately +30 V respect to the grounded cathode); at ground potential; and at -60 V. An atomic force microscopy study showed that the Ni film morphology was affected by the bias condition of the substrate. The morphology of carbonaceous species depended on Ni-films characteristics. FE-SEM and TEM analyses have shown that nanofibers growth was favoured on Ni coatings deposited at -60 V whereas nanotubes grew mainly on Ni coatings obtained at floating and ground potentials. Hence, this new method to produce the precursor can be optimized to obtain nanotubes or nanofibers varying the substrate bias for the Ni deposition.

  10. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    International Nuclear Information System (INIS)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto; Gouvêa dos Santos, Raquel; Barros de Sousa, Edésia Martins

    2013-01-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG) 1000 , and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed

  11. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  12. Diamond like carbon coatings deposited by microwave plasma CVD ...

    Indian Academy of Sciences (India)

    WINTEC

    photoelectron spectroscopy (XPS) and spectroscopic ellipsometry techniques for estimating sp. 3. /sp. 2 ratio. ... ion beam deposition (Savvidas 1986), pulsed laser deposi- ... carrier gas (10 sccm) by passing 150 watts of microwave power.

  13. Electrochemically assisted co-deposition of calcium phosphate/collagen coatings on carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xueni [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Hu Tao [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Li Hejun, E-mail: lihejun@nwpu.edu.cn [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Chen Mengdi; Cao Sheng; Zhang Leilei [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Hou Xianghui [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-02-01

    Calcium phosphate (CaP)/collagen coatings were prepared on the surface of carbon/carbon (C/C) composites by electrochemically assisted co-deposition technique. The effects of collagen concentration in the electrolyte on morphology, structure and composition of the coatings were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The adhesive strength of the coatings was also evaluated by scratch tests and tensile bond tests. It was demonstrated that the coatings of three-dimensional collagen network structure was formed on the C/C composites from the electrolyte containing collagen. The surface of the collagen network was covered by uniform CaP aggregates. The coatings were actually composites of CaP and collagen. Hydroxyapatite (HA) was a favorable composition in the coatings with the increase of the collagen concentration in the electrolyte. The formed collagen network increased the cohesive and adhesive strength of the coatings. The adhesive strength between the coatings and substrates increased as the collagen concentration in the electrolyte increased. The coatings prepared at the collagen concentration of 500 mg/L in the electrolyte were not scraped off until the applied load reached 32.0 {+-} 2.2 N and the average tensile adhesive strength of the coatings was 4.83 {+-} 0.71 MPa. After C/C coated with composite coatings (500 mg/L) being immersed in a 10{sup -3} M Ca (OH){sub 2} solution at 30-33 deg. C for 96 h, nano-structured HA/collagen coatings similar to the natural human bone were obtained on the C/C.

  14. Multiscale modeling, simulations, and experiments of coating growth on nanofibers. Part II. Deposition

    International Nuclear Information System (INIS)

    Buldum, A.; Clemons, C.B.; Dill, L.H.; Kreider, K.L.; Young, G.W.; Zheng, X.; Evans, E.A.; Zhang, G.; Hariharan, S.I.

    2005-01-01

    This work is Part II of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin-film materials using plasma-enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with aluminum materials under different operating conditions to observe changes in the coating morphology. This procedure begins with the sputtering of the coating material from a target. Part I [J. Appl. Phys. 98, 044303 (2005)] focused on the sputtering aspect and transport of the sputtered material through the reactor. That reactor level model determines the concentration field of the coating material. This field serves as input into the present species transport and deposition model for the region surrounding an individual nanofiber. The interrelationships among processing factors for the transport and deposition are investigated here from a detailed modeling approach that includes the salient physical and chemical phenomena. Solution strategies that couple continuum and atomistic models are used. At the continuum scale, transport dynamics near the nanofiber are described. At the atomic level, molecular dynamics (MD) simulations are used to study the deposition and sputtering mechanisms at the coating surface. Ion kinetic energies and fluxes are passed from the continuum sheath model to the MD simulations. These simulations calculate sputtering and sticking probabilities that in turn are used to calculate parameters for the continuum transport model. The continuum transport model leads to the definition of an evolution equation for the coating-free surface. This equation is solved using boundary perturbation and level set methods to determine the coating morphology as a function of operating conditions

  15. Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process

    Science.gov (United States)

    Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.

    2017-09-01

    Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.

  16. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  17. Nano-structured yttria-stabilized zirconia coating by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maleki-Ghaleh, H., E-mail: H_Maleki@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Rekabeslami, M. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shakeri, M.S. [Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Siadati, M.H. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Javidi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Talebian, S.H. [Faculty of Petroleum Engineering, Universiti Technologi Petronas, Perak (Malaysia); Aghajani, H. [Department of Materials Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-09-01

    The most important role of thermal barrier coatings is to reduce the temperature of the substrate in high temperature applications. Nanoparticle zirconia might be a suitable choice for improving the efficiency of thermal barrier coatings. Nanostructured coatings have lower thermal conduction, higher thermal expansion and lower dimensional variations at higher temperatures in comparison with the microstructured coatings. Electrophoretic deposition has been preferred for thermal barrier coatings due to its simplicity, controllability and low cost. In the present study, three different suspensions of ZrO{sub 2}–8 wt%Y{sub 2}O{sub 3} (40 nm) made with ethanol, acetone and acetyl acetone were used. Electrophoretic deposition was conducted at a fixed voltage of 60 V for 120 s on aluminized Inconel 738-LC, and then heat treated at 1100{sup o}C for 4 h in air atmosphere. The coating morphology and elemental distribution were studied using scanning electron microscopy. It was observed that suspension media have an important effect on the quality of the final product. Acetyl acetone showed better dispersion of particles than the other two media. Consequently, deposition from acetyl acetone resulted in uniform and crack-free layers while those from ethanol and acetone were completely non-uniform due to agglomeration and low viscosity, respectively.

  18. Friction and wear of TiCN coatings deposited by filtered arc

    International Nuclear Information System (INIS)

    Huang, S.W.; Ng, K.; Samandi, M.

    1998-01-01

    A series of macroparticle-free TiN, TiCN and TiC coatings were deposited on 316 austenitic stainless steel using a titanium target in a filtered arc deposition system and reactive mixtures of CH4 and N2 gases. The microhardness of the coatings were measured by using an Ultra Microhardness Indentation System (UMIS-2000). The wear and friction of the coatings were assessed under controlled test conditions in a pin-on-disc tribometer. The results show a significant increase in microhardness and wear resistance as the CH4 :N2 gas flow rate ratio is increased. At lower load (14N), all coatings exhibited low friction and wear. At higher load (25N), the higher carbon content TiCN and TiC coatings showed a much lower friction and wear compared to TiN and low carbon TiCN. The topographical examination of coatings and worn surfaces established that the self-lubricating effect of the carbonaceous particles condensed from the plasma during the deposition was primarily responsible for the low friction and wear regime. (authors)

  19. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    Science.gov (United States)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  1. Electrophoretic Deposition as a New Bioactive Glass Coating Process for Orthodontic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Kyotaro Kawaguchi

    2017-11-01

    Full Text Available This study investigated the surface modification of orthodontic stainless steel using electrophoretic deposition (EPD of bioactive glass (BG. The BG coatings were characterized by spectrophotometry, scanning electron microscopy with energy dispersive X-ray spectrometry, and X-ray diffraction. The frictional properties were investigated using a progressive load scratch test. The remineralization ability of the etched dental enamel was studied according to the time-dependent mechanical properties of the enamel using a nano-indentation test. The EPD process using alternating current produced higher values in both reflectance and lightness. Additionally, the BG coating was thinner than that prepared using direct current, and was completely amorphous. All of the BG coatings displayed good interfacial adhesion, and Si and O were the major components. Most BG-coated specimens produced slightly higher frictional forces compared with non-coated specimens. The hardness and elastic modulus of etched enamel specimens immersed with most BG-coated specimens recovered significantly with increasing immersion time compared with the non-coated specimen, and significant acid-neutralization was observed for the BG-coated specimens. The surface modification technique using EPD and BG coating on orthodontic stainless steel may assist the development of new non-cytotoxic orthodontic metallic appliances having satisfactory appearance and remineralization ability.

  2. Comparative assessment of the microhardness and plastic degradation mechanism of deposited modulated coatings on mild steel

    Science.gov (United States)

    Fayomi, O. S. I.; Anawe, P. A. L.; Inegbenebor, A. O.; Udoye, N. E.

    2018-05-01

    Zinc based coatings modified with aluminium and tin inclusions were electrodeposited in chloride zinc sulfate electrolytes containing a metallic powder of titanium. It was found that presence of these particulates is suitable to obtain ZnAlSn-Ti composites coating that could help increase the microhardnesss characteristics and wear properties. The hardness and wear properties of the deposited coatings were examined with diamond base micro-hardness tester and CETR reciprocating sliding tester respectively. The structural properties were examined with the help of scanning electron microscope. It was observed that structural coating surface impact on the hardness propagation with increases from 33.4 to 299 kgf mm-2 (HVN40), and shows a considerably higher wear resistance from 2.351g/min to 0.002g/min. It is obvious that plastic deformation of the working steel structure is dependent on protective coating and the concentration of the individual particulate.

  3. Investigation on the corrosion behavior of physical vapor deposition coated high speed steel

    Directory of Open Access Journals (Sweden)

    R Ravi Raja Malarvannan

    2015-08-01

    Full Text Available This work emphasizes on the influence of the TiN and AlCrN coatings fabricated on high speed steel form tool using physical vapor deposition technique. The surface microstructure of the coatings was studied using scanning electron microscope. Hardness and corrosion studies were also performed using Vickers hardness test and salt spray testing, respectively. The salt spray test results suggested that the bilayer coated (TiN- bottom layer and AlCrN- top layer substrate has undergone less amount of corrosion, and this is attributed to the dense microstructure. In addition to the above, the influence of the above coatings on the machining performance of the high speed steel was also evaluated and compared with that of the uncoated material and the results suggested that the bilayered coating has undergone very low weight loss when compared with that of the uncoated substrate depicting enhanced wear resistance.

  4. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    International Nuclear Information System (INIS)

    Tsai, Ming-Tzu; Chang, Yin-Yu; Huang, Heng-Li; Hsu, Jui-Ting; Chen, Ya-Chi; Wu, Aaron Yu-Jen

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO 2 layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO 2 , ZnO, and Ti(Zn)O 2 coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO 2 coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO 2 coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O 2 coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO 2 and Ti(Zn)O 2 coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO 2 and Ti(Zn)O 2 coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O 2 coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO 2 , Ti(Zn)O 2 and ZnO coatings were deposited by cathodic arc evaporation. ► Zn may incorporated with Ti to form Zn-doped TiO 2 .

  5. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    Science.gov (United States)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  6. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    OpenAIRE

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    2007-01-01

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the coating and the substrate, the macro-stresses were found to be compressive and to decrease in magnitude with increasing processing speed. The origin of the macro- and micro-stresses is discussed. T...

  7. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    Science.gov (United States)

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  8. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Huang, Heng-Li; Hsu, Jui-Ting [School of Dentistry, College of Medicine China Medical University, Taichung 404, Taiwan (China); Chen, Ya-Chi [Department of Materials Science and Engineering, Mingdao University, Changhua 523, Taiwan (China); Wu, Aaron Yu-Jen [Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan (China)

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO{sub 2} layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO{sub 2}, ZnO, and Ti(Zn)O{sub 2} coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO{sub 2} coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO{sub 2} coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O{sub 2} coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO{sub 2} and Ti(Zn)O{sub 2} coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO{sub 2} and Ti(Zn)O{sub 2} coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O{sub 2} coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO{sub 2}, Ti(Zn)O{sub 2} and ZnO coatings were deposited by cathodic arc

  9. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.; Chrissafis, K.

    2008-01-01

    Flame spraying is a widely used technique for depositing a great variety of materials in order to enforce the mechanical or the anticorrosion characteristics of the substrate. Its high rate application is due to the rapidity of the process, its effectiveness and its low cost. In this work, flame-sprayed Al coatings are deposited on low carbon steels in order to enhance their anticorrosion performance. The main adhesion mechanism of the coating is mechanical anchorage, which can provide the necessary protection to steel used in several industrial and constructive applications. To evaluate the corrosion resistance of the coating, the as-coated samples are subjected in a salt spray chamber and in elevated temperature environments. The examination and characterization of the corroded samples is done by scanning electron microscopy and X-ray diffraction analysis. The as-formed coatings are extremely rough and have a lamellic homogeneous morphology. It is also found that Al coatings provide better protection in marine atmospheres, while at elevated temperatures a thick oxide layer is formed, which can delaminate after long oxidation periods due to its low adherence to the underlying coating, thus eliminating the substrate protection

  10. In Situ Synthesis and Characterization of Fe-Based Metallic Glass Coatings by Electrospark Deposition Technique

    Science.gov (United States)

    Burkov, Alexander A.; Pyachin, S. A.; Ermakov, M. A.; Syuy, A. V.

    2017-02-01

    Crystalline FeWMoCrBC electrode materials were prepared by conventional powder metallurgy. Metallic glass (MG) coatings were produced by electrospark deposition onto AISI 1035 steel in argon atmosphere. X-ray diffraction and scanning electron microscopy verified the amorphous structure of the as-deposited coatings. The coatings have a thickness of about 40 microns and a uniform structure. The results of dry sliding wear tests against high-speed steel demonstrated that Fe-based MG coatings had a lower friction coefficient and more than twice the wear resistance for 20 km sliding distance with respect to AISI 1035 steel. High-temperature oxidation treatment of the metal glass coatings at 1073 K in air for 12 h revealed that the oxidation resistance of the best coating was 36 times higher than that for bare AISI 1035 steel. These findings are expected to broaden the applications of electrospark Fe-based MG as highly protective and anticorrosive coatings for mild steel.

  11. Electrochemical behaviour of silica basic hybrid coatings deposited on stainless steel by dipping and EPD

    International Nuclear Information System (INIS)

    Castro, Y.; Duran, A.; Damborenea, J.J.; Conde, A.

    2008-01-01

    The aim of this work is the characterisation of the corrosion behaviour of stainless steel (AISI 304) substrates coated by dipping and electrophoretic deposition (EPD) from a sol-gel basic sol. Particulate silica sols (labelled NaSi) were prepared by basic catalysis from ethyltriethoxysilane (TEOS), methyltriethoxysilane (MTES) and sodium hydroxide. Coatings between 2 and 10 μm were prepared by using concentrated and diluted sols by dipping and EPD process and the corrosion behaviour of the coated substrates were studied through potentiodynamic and impedance spectroscopy measurements (EIS). Potentiodynamic studies of coatings produced by dipping reveal a strong dependence of the protective properties with the concentration of the sol. This behaviour was confirmed by EIS showing that only the coatings obtained from concentrated sol present enough protective properties. On the contrary, EPD coatings prepared from diluted NaSi sol showed an excellent corrosion resistance, maintaining a pure capacitive behaviour for long periods of immersion. EPD deposition is thus proposed as a good alternative method for obtaining thicker and denser coatings with good protective properties from dilute and stable sols

  12. Ion assisted deposition of refractory oxide thin film coatings for improved optical and structural properties

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Bhattacharyya, D.; Das, N.C.

    1999-03-01

    Ion assisted deposition technique (IAD) has emerged as a powerful tool to control the optical and structural properties of thin film coatings. Keeping in view the complexity of the interaction of ions with the films being deposited, sophisticated ion sources have been developed that cater to the need of modern optical coatings with stringent spectral and environmental specifications. In the present work, the results of ion assisted deposition (IAD) of two commonly used refractory oxides, namely TiO 2 and ZrO 2 , using cold cathode ion source (CC-102R) are presented. Through successive feedback and calibration techniques, various ion beams as well as deposition parameters have been optimized to achieve the best optical and structural film properties in the prevalent deposition geometry of the coating system. It has been possible to eliminate the unwanted optical and structural inhomogeneities from these films using and optimized set of process parameters. Interference modulated spectrophotometric and phase modulated ellipsometric techniques have been very successfully utilized to analyze the optical and structural parameters of the films. Several precision multilayer coatings have been developed and are being used for laser and spectroscopic applications. (author)

  13. PREPARING OF THE CHAMELEON COATING BY THE ION JET DEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Jakub Skocdopole

    2017-07-01

    Full Text Available Preparation of chameleon coatings using an Ionized Jet Deposition (IJD technique is reported in the present paper. IJD is a new flexible method for thin film deposition developed by Noivion, Srl. The chameleon coatings are thin films characterised by a distinct change of their tribological properties according to the external conditions. The deposited films of SiC and TiN materials were examined by the Raman spectroscopy, SEM and XPS. The results of the Raman spectroscopy have proved an amorphous structure of SiC films. The data from XPS on TiN films have shown that the films are heavily oxidized, but also prove that the films are composed of TiN and pure Ti. The SEM provided information about the size of grains and particles constituting the deposited films, which is important for tribological properties of the films. Deposition of the chameleon coating is very complex problem and IJD could be ideal method for preparation of this coating.

  14. Analysis of sub-bandgap losses in TiO2 coating deposited via single and dual ion beam deposition

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Hlubuček, Jiří; Horodyská, Petra; Budasz, Jiří; Václavík, Jan

    2017-01-01

    Roč. 626, March (2017), s. 60-65 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Ion beam deposition * Titanium dioxide * Optical coating * Sub-bandgap losses * Urbach tail Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.879, year: 2016 http://www.sciencedirect.com/science/article/pii/S0040609017301256

  15. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    International Nuclear Information System (INIS)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-01-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  16. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  17. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Tan, C.W., E-mail: tanchengwen@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Yu, X.D. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Nie, Z.H. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Ma, H.L. [China Astronaut Research and Training Center, Beijing 100094 (China); Cai, H.N. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-12-15

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl{sub 6} as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10{sup 6} to 10{sup 7} (counts/cm{sup 2}) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  18. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    International Nuclear Information System (INIS)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z.; Tan, C.W.; Yu, X.D.; Nie, Z.H.; Ma, H.L.; Cai, H.N.

    2016-01-01

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl 6 as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10 6 to 10 7 (counts/cm 2 ) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  19. Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride

    Science.gov (United States)

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene. PMID:25156685

  20. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    Science.gov (United States)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  1. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ningbo; Zhang, Yingchun, E-mail: zycustb@163.com; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-15

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  2. The emissivity of W coatings deposited on carbon materials for fusion applications

    International Nuclear Information System (INIS)

    Ruset, C.; Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V.; Zastrow, K.-D.; Matthews, G.; Courtois, X.; Bucalossi, J.; Likonen, J.

    2017-01-01

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  3. The emissivity of W coatings deposited on carbon materials for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Ruset, C., E-mail: ruset@infim.ro [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Zastrow, K.-D.; Matthews, G. [Culham Centre for Fusion Energy (CCFE), Culham Science Centre, Abingdon (United Kingdom); Courtois, X.; Bucalossi, J. [IRFM, CEA Cadarache, F-13108 SAINT PAUL LEZ DURANCE (France); Likonen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-01-15

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  4. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition.

    Science.gov (United States)

    Zhang, Jie; Wen, Zhaohui; Zhao, Meng; Li, Guozhong; Dai, Changsong

    2016-01-01

    CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effects of boron addition on a-Si90Ge10:H films obtained by low frequency plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Perez, Arllene M; Renero, Francisco J; Zuniga, Carlos; Torres, Alfonso; Santiago, Cesar

    2005-01-01

    Optical, structural and electric properties of (a-(Si 90 Ge 10 ) 1-y B y :H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10 -3 to 10 1 Ω -1 cm -1 when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV

  6. The development of the process of electrophoresis deposition of the boron on aluminium substrate to be used in the construction of neutron detectors

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de.

    1988-01-01

    The development in the country of autonomous nuclear technology made it necessary to construct radiation detectors to substitute the imported ones among others the boron lined neutron detectors. For this reason was developed the process of boron electrophoresis deposition on aluminium substrate of large area for use in the construction of these neutron detectors. After the definition and optimization of the parameters involved in the process, depositions of 10 B were made on cylinders to be used after wards as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. Prototype of ionization were designed, builted and mounted in the department of Application for Engineering and Industry (TE) of Nuclear Energy Research Institute (IPEN) belonging to the National Atomic Energy Comission (CNEN). Submited to caracterization tests at IPEN's IEA-RL reactor, they satisfied fully the technical especifications of the project. (author) [pt

  7. Adhesion Strength of TiN Coatings at Various Ion Etching Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    Science.gov (United States)

    Ali, Mubarak; Hamzah, Esah; Ali, Nouman

    Titanium nitride (TiN) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium (Ti) and chromium (Cr) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. The coatings deposited with Cr ion etching showed poor adhesion compared with the coatings deposited with Ti ion etching. Scratch test measurements showed that the coating deposited with titanium ion etching for 16 min is the most stable coating and maintained even at the critical load of 66 N. The curve obtained via penetration depth along the scratch trace is linear in the case of HSS, whereas is slightly flexible in the case of D2 tool steel. The coatings deposited on HSS exhibit better adhesion compared with those on D2 tool steel.

  8. Initial Assessment of CSA Group Niobium Boron Based Coatings on 4340 Steel

    Science.gov (United States)

    2017-07-01

    1       2.3.   ASTM  Adhesion Testing...Model  Leptoskop 2040) on each coated plate. A minimum of five (5) measurements were taken on each side of  each plate.  2.3. ASTM  Adhesion Testing...Adhesion testing was conducted in accordance with  ASTM  B571, “Standard Practice for Qualitative  Adhesion Testing of Metallic Coatings”, using Method

  9. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Pharmaceutical Research Institute in Heilongjiang Province, Jiamusi University, Jiamusi 154007 (China); Wen, Zhaohui, E-mail: wenzhaohui1968@163.com [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhao, Meng [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Guozhong, E-mail: hydlgz1962@163.com [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-01

    CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. - Highlights: • CaP/chitosan/CNTs coating on AZ91D was prepared. • The addition of CNTs could improve the performance of CaP/chitosan coating. • A new method of loading gentamicin by EPD was proposed.

  10. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    International Nuclear Information System (INIS)

    Peters, A.M.; He, X.M.; Trkula, M.; Nastasi, M.

    2001-01-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6 ] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700 deg. C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8x10 -6 mm 3 /Nm and contact angles ranged from 156 deg. to 127 deg

  11. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  12. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    Science.gov (United States)

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  13. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß, Sigrid

    2012-03-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles and PEEK microparticles for EPD were prepared in ethanol. PEEK-TiO 2 composite coatings were optimized using suspensions containing 6wt% PEEK-TiO 2 in ethanol with a 3:1 ratio of PEEK to TiO 2 in weight and by applying a potential difference of 30 V for 1 minute. A heat-treatment process of the optimized PEEK-TiO 2 composite coatings was erformed at 335°C for 30 minutes with a heating rate of 10°Cmin -1 to densify the deposits. The EPD coatings were microstructurally evaluated by scanning electron microscopy (SEM). It was demonstrated that EPD is a convenient and rapid method to fabricate PEEK/TiO 2 coatings on stainless steel which are interesting for biomedical applications. © (2012) Trans Tech Publications, Switzerland.

  14. Synthesis of Few-Layer, Large Area Hexagonal-Boron Nitride by Pulsed Laser Deposition (POSTPRINT)

    Science.gov (United States)

    2014-09-01

    invention that may relate to them. This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and...ered with a shutter. Depositions were performed in nitrogen background gas, where pressure was controlled by a butterfly valve to preset values within

  15. Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition

    International Nuclear Information System (INIS)

    Liang Jun; Wang Peng; Hu Litian; Hao Jingcheng

    2007-01-01

    The combined microarc oxidation (MAO) and filtered cathode arc deposition process was used to deposit duplex MAO/DLC coating on AM60B magnesium alloy. The microstructure and composition of the resulting duplex coating were analyzed by Raman spectroscopy, X-ray photoelectron spectroscope (XPS) and scanning electron microscope (SEM). The tribological behaviors of the duplex coating were studied by ball-on-disk friction testing. It is found that the Ti-doped DLC thin film could be successfully deposited onto the polished MAO coating. The duplex MAO/DLC coating exhibits a better tribological property than the DLC or MAO monolayer on Mg alloy substrate, owing to the MAO coating served as an intermediate layer provides improved load support for the soft Mg alloy substrate and the DLC top coating exhibits low friction coefficient

  16. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    Science.gov (United States)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  17. Effect of elevated substrate temperature deposition on the mechanical losses in tantala thin film coatings

    Science.gov (United States)

    Vajente, G.; Birney, R.; Ananyeva, A.; Angelova, S.; Asselin, R.; Baloukas, B.; Bassiri, R.; Billingsley, G.; Fejer, M. M.; Gibson, D.; Godbout, L. J.; Gustafson, E.; Heptonstall, A.; Hough, J.; MacFoy, S.; Markosyan, A.; Martin, I. W.; Martinu, L.; Murray, P. G.; Penn, S.; Roorda, S.; Rowan, S.; Schiettekatte, F.; Shink, R.; Torrie, C.; Vine, D.; Reid, S.; Adhikari, R. X.

    2018-04-01

    Brownian thermal noise in dielectric multilayer coatings limits the sensitivity of current and future interferometric gravitational wave detectors. In this work we explore the possibility of improving the mechanical losses of tantala, often used as the high refractive index material, by depositing it on a substrate held at elevated temperature. Promising results have been previously obtained with this technique when applied to amorphous silicon. We show that depositing tantala on a hot substrate reduced the mechanical losses of the as-deposited coating, but subsequent thermal treatments had a larger impact, as they reduced the losses to levels previously reported in the literature. We also show that the reduction in mechanical loss correlates with increased medium range order in the atomic structure of the coatings using x-ray diffraction and Raman spectroscopy. Finally, a discussion is included on our results, which shows that the elevated temperature deposition of pure tantala coatings does not appear to reduce mechanical loss in a similar way to that reported in the literature for amorphous silicon; and we suggest possible future research directions.

  18. Prospects of chemically deposited CoS-CU2S coatings for solar ...

    African Journals Online (AJOL)

    The thin films of Cu2S deposited on CoS-precoated glass substrates from chemical baths and annealed at 100oC were found to have desirable solar control characteristics superior to commercial tinted glass and magnetron sputtered multilayer metallic solar control coatings. These include: transmission spectra in the ...

  19. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  20. The electrochemical deposition of tin-nickel alloys and the corrosion properties of the coating

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Møller, Per

    2005-01-01

    The electrodeposition of tin/nickel (65/35 wt%) is a unique coating process because of the deposition of an intermetallic phase of nickel and tin, which cannot be formed by any pyrometallurgical process. From thermodynamic calculations it can be shown that intermetallic phases can be formed throu...

  1. Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available Diamond-based antireflective (AR coatings were fabricated using a spin coating of diamond suspension at room temperature as nucleation enhancement procedure and microwave plasma enhanced chemical vapour deposition. Various working pressures were used to investigate their effect on the optical characterization of the as-deposited diamond films. Scanning electron microscopy (SEM and atomic forced microscopy (AFM were employed to analyze the surface properties of the diamond films. Raman spectra and transmission electron microscopy (TEM also were used for analysis of the microstructure of the films. The results showed that working pressure had a significant effect on thickness, surface roughness, and wettability of the as-deposited diamond films. Deposited under 35 Torr or working pressure, the film possessed a low surface roughness of 13.8 nm and fine diamond grain sizes of 35 nm. Reflectance measurements of the films also were carried out using UV-Vis spectrometer and revealed a low reflectance value of the diamond films. The achievement demonstrated feasibility of the proposed spin-coating procedure for large scale production and thus opens up a prospect application of diamond film as an AR coating in industrial optoelectronic device.

  2. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    Science.gov (United States)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  3. Structure and corrosion properties of Cr coating deposited on aerospace bearing steel

    Science.gov (United States)

    Wang, Fangfang; Zhang, Fengxiang; Zheng, Lijing; Zhang, Hu

    2017-11-01

    The corrosion protection of chromium coating deposited on aerospace bearing steels by using the Filtered Cathodic Vacuum Arc deposition- Metal Evaporation Vacuum Arc duplex technique (MEVVA-FCVA) had been investigated. The protection efficiency of chromium coating on different substrate materials had also been evaluated. The chromium coating was mainly composed of nanocrystallineα-Cr in a range of 50-200 nm. The orientation distributions of α-Cr film on substrates with different composition had a certain difference to each other. Electrochemical experimental results indicated that the chromium coating significantly improved the corrosion resistance of experimental bearing steels in 3.5% NaCl solution. The protective efficiency of chromium films were all over 98%. The corrosion resistance of chromium coating was influenced by the chemical composition of substrate material. The chromium coatings on higher Cr-containing substrate displayed lower corrosion current density and more positive corrosion potential. The increase of passive film thickness and the formation of a mass of chromium oxide and hydroxide on the surface are responsible for the improved corrosion properties.

  4. Sealing of hard CrN and DLC coatings with atomic layer deposition.

    Science.gov (United States)

    Härkönen, Emma; Kolev, Ivan; Díaz, Belén; Swiatowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe; Fenker, Martin; Toth, Lajos; Radnoczi, György; Vehkamäki, Marko; Ritala, Mikko

    2014-02-12

    Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes.

  5. Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions

    Science.gov (United States)

    Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong

    2018-02-01

    High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.

  6. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  7. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    Energy Technology Data Exchange (ETDEWEB)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A [Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ovsianikov, A; Chichkov, B N [Laser Zentrum Hannover, Hollerithallee 8, 30419 Hannover (Germany); Stafslien, S; Chisholm, B, E-mail: roger_narayan@msn.co [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States)

    2009-12-15

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  8. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    International Nuclear Information System (INIS)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A; Ovsianikov, A; Chichkov, B N; Stafslien, S; Chisholm, B

    2009-01-01

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  9. Chemical vapor deposition of aluminide coatings on iron, nickel and superalloys

    International Nuclear Information System (INIS)

    John, John T.; De, P.K.; Dubey, Vivekanand; Srinivasa, Raman

    2009-08-01

    Aluminide coatings are a class of intermetallic coatings applied on nickel and cobalt base superalloys and steels to protect them from different forms of environmental degradation at high temperatures. In this report a CVD system that can produce the aluminide coatings on iron, nickel and nickel base alloys has been described and the result of chemical vapor deposition of aluminide coatings on iron specimens, their characterization, and property evaluation have been presented. The CVD system consists of an AlCl 3 bath, a stainless steel retort as a hot-wall reacto, cold traps and vacuum system. Aluminium chloride vapor was carried in a stream of hydrogen gas at a flow rate of 150 SCCM (standard cubic centimeter per minute) into the CVD reactor maintained in the temperature range of 1173 - 1373 K and at a pressure of 1.33 kPa (10 Torr). Aluminum deposition takes place from aluminium subchlorides produced by reaction between AlCl 3 and pure aluminum kept in the CVD reactor. The aluminum diffuses into the iron samples and iron aluminide phases are formed at the surface. The coatings were shining bright and showed good adherence to the substrate. The coatings consisted of FeAl phase over a wide range of experimental conditions. The growth kinetics of the coating followed a parabolic rate law and the mean activation energy was 212 ±16 kJ/mol. Optical microscopic studies on the transverse section of the coating showed that the aluminide coating on iron consisted of two layers. The top layer had a thickness in the range of 20-50 μm, and the under layer had thickness ranging from 35 to 250 μm depending on coating temperature in two hours. The thickness of the aluminide layer increased with coating duration and temperature. Electron microprobe studies (EPMA) showed that the aluminum concentration decreased steadily as distance from the surface increased. TEM studies showed that the outer most layer had a B2 order (of the FeAl phase), which extended even into the under

  10. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    Science.gov (United States)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  11. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    Science.gov (United States)

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  12. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  13. Phase evolution and thermal properties of yttria-stabilized hafnia nano-coatings deposited on alumina

    Science.gov (United States)

    Rubio, Ernesto Javier

    High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results

  14. Substrate temperature dependence of microcrystallinity in plasma-deposited, boron-doped hydrogenated silicon alloys

    International Nuclear Information System (INIS)

    Rajeswaran, G.; Kampas, F.J.; Vanier, P.E.; Sabatini, R.L.; Tafto, J.

    1983-01-01

    The glow-discharge decomposition of silane diluted in hydrogen using diborane as a dopant results in the deposition of p-type microcrystalline silicon films at relatively low temperatures. The conductivity of these films is critically dependent on the substrate temperature when the ratio of silane flow rate to total gas flow rate is 1%. Electron micrographs show that highly conducting films contain numerous clusters of 2.5-nm crystallites that are embedded in an amorphous medium

  15. Sol gel coatings doped with Ce ions deposited on industrial applications metals

    International Nuclear Information System (INIS)

    Pepe, A; Aparicio, M; Duran, A; Cere, S

    2004-01-01

    Compounds that contain chromates as corrosion inhibitors are widely used. Since these compounds are highly toxic, enormous efforts are being made to replace them. The lanthanides, especially cerium, have the right properties for this substitution. Different substrates can be protected by a variety of coatings. The sol-gel derived films can be deposited on different metals or alloys to increase their resistance to corrosion or to modify their surface properties by doped with different substances that can increase their protective strength, by combining the barrier capacity of the hybrid coating with the inhibitory properties of the cerium. This work presents the conditions for obtaining soles doped with cerium III and IV salts at room temperature and humidity. The parameters are also described for obtaining coatings by free immersion-extraction of fissures and pores on metallic substrates (stainless steel AISI 304). The behavior with corrosion of the coated samples was characterized with electrochemical tests (CW)

  16. Correlation of splat state with deposition characteristics of cold sprayed niobium coatings

    International Nuclear Information System (INIS)

    Kumar, S.; Ramakrishna, M.; Chavan, N.M.; Joshi, S.V.

    2017-01-01

    The cold spray technique has a great potential to deposit refractory metals for a variety of potential applications. Cold spraying of different metals have been addressed comprehensively to understand the deposition characteristics of the coatings. Since there is no available data on the deposition characteristics of cold sprayed Niobium, impact behavior of splats at different deposition conditions were simulated and numerically analyzed using Finite Element Modeling (FEM) and correlated with the experimental observations that highlight the role of the velocity and temperature of the particle upon impact on the bonding features. The increase in temperature of the splat drastically reduces the flow stress at the interface leading to best inter-splat bonding state. The synergistic effect of the temperature and the velocity leads to the formation of very dense, defect free niobium coating associated with deformation localization including interface melting. Formation of nanocrystalline grains at the inter-splat boundary was confirmed through TEM and compared with the FEM findings. Finally, understanding the deformation and deposition behavior of refractory metal such as niobium will be helpful to engineer the coatings for potential applications. - Graphical abstract: ▪

  17. Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells

    Science.gov (United States)

    Keremidarska, M.; Radeva, E.; Eleršič, K.; Iglič, A.; Pramatarova, L.; Krasteva, N.

    2014-12-01

    The successful osseointegration of a bone implant is greatly dependent on its ability to support cellular adhesion and functions. Deposition of thin composite coatings onto the implant surface is a promising approach to improve interactions with cells without compromising implant bulk properties. In this work, we have developed composite coatings, based on hexamethyldisiloxane (HMDS) and detonation nanodiamond (DND) particles and have studied adhesion, growth and function of osteoblast-like MG-63 cells. PPHMDS/DND composites are of interest for orthopedics because they combine superior mechanical properties and good biocompatibility of DND with high adherence of HMDS to different substrata including glass, metals and plastics. We have used two approaches of the implementation of DND particles into a polymer matrix: pre-mixture of both components followed by plasma polymerization and layer-by-layer deposition of HMDS and DND particles and found that the deposition approach affects significantly the surface properties of the resulting layers and cell behaviour. The composite, prepared by subsequent deposition of monomer and DND particles was hydrophilic, with a rougher surface and MG-63 cells demonstrated better spreading, growth and function compared to the other composite which was hydrophobic with a smooth surface similarly to unmodified polymer. Thus, by varying the deposition approach, different PPHMDS/DND composite coatings, enhancing or inhibiting osteoblast adhesion and functions, can be obtained. In addition, the effect of fibronectin pre-adsorption was studied and was found to increase greatly MG-63 cell spreading.

  18. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Hassan, M A; Ghani, S A C; Buyong, Z

    2016-04-01

    New promising techniques for depositing biocompatible hydroxyapatite-based coatings on biocompatible metal substrates for biomedical applications have continuously been exploited for more than two decades. Currently, various experimental deposition processes have been employed. In this review, the two most frequently used deposition processes will be discussed: a sol-gel dip coating and an electrochemical deposition. This study deliberates the surface morphologies and chemical composition, mechanical performance and biological responses of sol-gel dip coating as well as the electrochemical deposition for two different sample conditions, with and without coating. The review shows that sol-gel dip coatings and electrochemical deposition were able to obtain the uniform and homogeneous coating thickness and high adherent biocompatible coatings even in complex shapes. It has been accepted that both coating techniques improve bone strength and initial osseointegration rate. The main advantages and limitations of those techniques of hydroxyapatite-based coatings are presented. Furthermore, the most significant challenges and critical issues are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Iridium Coating Deposited by Double Glow Plasma Technique — Effect of Glow Plasma on Structure of Coating at Single Substrate Edge

    International Nuclear Information System (INIS)

    Wu Wangping; Chen Zhaofeng; Liu Yong

    2012-01-01

    Double glow plasma technique has a high deposition rate for preparing iridium coating. However, the glow plasma can influence the structure of the coating at the single substrate edge. In this study, the iridium coating was prepared by double glow plasma on the surface of single niobium substrate. The microstructure of iridium coating at the substrate edge was observed by scanning electron microscopy. The composition of the coating was confirmed by energy dispersive spectroscopy and X-ray diffraction. There was a boundary between the coating and the substrate edge. The covered area for the iridium coating at the substrate edge became fewer and fewer from the inner area to the outer flange-area. The bamboo sprout-like particles on the surface of the substrate edge were composed of elemental niobium. The substrate edge was composed of the Nb coating and there was a transition zone between the Ir coating and the Nb coating. The interesting phenomenon of the substrate edge could be attributed to the effects of the bias voltages and the plasma cloud in the deposition chamber. The substrate edge effect could be mitigated or eliminated by adding lots of small niobium plates around the substrate in a deposition process. (plasma technology)

  20. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  1. Formation of titanium diboride coatings during the anodic polarization of titanium in a chloride melt with a low boron oxide content

    Science.gov (United States)

    Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.

    2015-02-01

    The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.

  2. Characterization of Fe-based alloy coating deposited by supersonic plasma spraying

    International Nuclear Information System (INIS)

    Piao, Zhong-yu; Xu, Bin-shi; Wang, Hai-dou; Wen, Dong-hui

    2013-01-01

    Highlights: • Fe-based coating exhibited few oxides, high density and bond strength. • Amorphous/nanocrystalline phases were found in the coating. • Formation mechanism of excellent coating was investigated. -- Abstract: The objective of the present study is to characterize the Fe-based alloy coating deposited by the supersonic plasma spraying process. The condition of the melting particles was in situ monitored. The microstructure of the coating was examined by scanning electron microscope and high resolution transmission electron microscope. The phase composition was examined by X-ray diffraction. The microhardness and porosity were also measured, respectively. Results show the prepared coatings have excellent properties, such as few oxides, high microhardness and a low porosity amount. At the same time, a mass of amorphous/nanocrystalline phases was found in the coating. The mechanism of the formation of amorphous/nanocrystalline phases was investigated. The appropriate material composition of spraying material and flash set process of plasma spraying are the key factors. Moreover, the mechanism for oxidation resistance is also investigated, where the separation between melting metal and oxygen by the formation of SiO 2 films is the key factor

  3. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Science.gov (United States)

    Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.

    2015-11-01

    Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  4. Boron mediation on the growth of Ge quantum dots on Si (1 0 0) by ultra high vacuum chemical vapor deposition system

    International Nuclear Information System (INIS)

    Chen, P.S.; Pei, Z.; Peng, Y.H.; Lee, S.W.; Tsai, M.-J.

    2004-01-01

    Self-assembled Ge quantum dots (QDs) with boron mediation are grown on Si (1 0 0) by an industrial hot wall ultra-high-vacuum chemical vapor deposition (UHV/CVD) system with different growth temperatures and dopant gas flow rates. Diborane (B 2 H 6 ) gas is applied as a surfactant on the Si (1 0 0) prior to the growth of Ge QDs. Small dome and pyramid shaped Ge QDs are observed after boron treatment as compared to the hut shaped Ge cluster without boron pre-treatment at 525 and 550 deg. C. The Ge QDs have a typical base width and height of about 30 and 6 nm, respectively, and the density is about 2.5x10 10 cm -2 for the growth temperature of 525 deg. C. Through weakening the Si-H bond during the epitaxy growth and changing the stress field on the surface of the Si (1 0 0) buffer, boron mediation can modify the growth mode of Ge QDs. When the growth temperature is low (525-550 deg. C), the former factor is dominate, as the growth temperature is raised (600 deg. C), the latter parameter may play an important role on the formation of Ge QDs. Optical transition from Ge QDs is demonstrated from photoluminescence (PL) spectra. Furthermore, multifold Ge/Si layers are also carried out to enhance the PL intensity with first Ge layer treated by B 2 H 6 and avoid the generation of threading dislocations

  5. Deposition and modification of tantalum carbide coatings on graphite by laser interactions

    International Nuclear Information System (INIS)

    Veligdan, J.; Branch, D.; Vanier, P.E.; Barletta, R.E.

    1992-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 degrees C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing, involved the use of a CO 2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl 5 gas near the substrate. Results of preliminary experiments using these techniques are described

  6. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  7. Arc-discharge and magnetron sputtering combined equipment for nanocomposite coating deposition

    International Nuclear Information System (INIS)

    Koval, N.N.; Borisov, D.P.; Savostikov, V.M.

    2005-01-01

    It is known that characteristics of nanocomposite coatings produced by reactive magnetron sputtering undergo an essential influence on the following parameters such as original component composition of targets being sputtered, as well as abundance ratio of such components in the coatings deposited, relative content of inert and reactionary gases in a gas mixture used and a value of operating pressure in a chamber, substrate temperature, and a value of substrate bias potential, determining energy of ionized atoms, ionized atoms flow density, i.e. ion current density on a substrate. The multifactor character of production process of nanocomposite coatings with certain physical and mechanical properties demands a purposeful and complex control on all above-mentioned parameters. To solve such a problem, an arc-discharge and magnetron sputtering combined equipment including a vacuum chamber of approximately ∼ 0.5 m 3 with a built-in low-pressure plasma generator made on the basis of non-self-sustained discharge with a thermal cathode and a planar magnetron combined with two sputtered targets has been created. Construction of such a complex set-up provides both an autonomous mode of operation and simultaneous operation of an arc plasma generator and magnetron sputtering system. Magnetron sputtering of either one or two targets simultaneously is provided as well. An arc plasma generator enables ions current density control on a substrate in a wide range due to discharge current varying from 1 to 100 A. Energy of ions is also being controlled in a wide range by a negative bias potential from 0 to 1000 V applied to a substrate. The wide control range of gas plasma density of a arc discharge of approximately 10 9 -10 11 cm -3 and high uniformity of its distribution over the total volume of an operating chamber (about 15% error with regard to the mean value) provides a purposeful and simultaneous control either of magnetron discharge characteristics (operating pressure of

  8. Protective and decorative coatings produced by ion-plasma deposition

    International Nuclear Information System (INIS)

    Radjabov, T.D.; Kamardin, A.I.; Pulatov, S.U.

    1996-01-01

    Vacuum device is worked out for the vacuum low temperature deposition of protective and decorative films and studied technical regimes of obtaining such films to target from the metal,plastics, ceramic and glass with thickness up to 10 mkm and square 1 m 2 /cycle. Vacuum device provide possibility to create films by means of magnetron with pressure 100-10 1 Pa to different targets and to conduct preliminary treatment of them by argon ion beam with 3-4 keV energy for the cleaning of surface. Protective films of Chrome, Titanium, Nitride of Titanium and stainless steel have shown high adhesion properties up to 300-400 kgs/sm and ensure stable protection of surface from air and chemical corrosion. Obtained films has good decorative and colour characteristics. (author). 2 figs

  9. Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.

    Science.gov (United States)

    Hong, Jinkee; Kang, Sang Wook

    2011-09-01

    We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.

  10. Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca-P electrolyte system

    Energy Technology Data Exchange (ETDEWEB)

    Hu Ren [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, CNRS Laboratoire International Associe XiamENS, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Department of Biology, College of Life Science, Xiamen University, Xiamen, Fujian 361005 (China); Lin Changjian, E-mail: cjlin@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, CNRS Laboratoire International Associe XiamENS, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Shi Haiyan; Wang Hui [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, CNRS Laboratoire International Associe XiamENS, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2009-06-15

    In this work, the electrochemical deposition behavior of calcium phosphate coating from an aqueous electrolyte containing very dilute calcium and phosphorus species (Ca-P) was studied. The effects of three process parameters, i.e. temperature, current density and duration, were systematically investigated and the underlying mechanism was thoroughly analyzed. It was observed that the coating is mainly composed of hydroxyapatite (HA) in a wide range of temperature and current densities. The temperature had a significant effect on the deposition velocity. An apparent activation energy of 174.9 kJ mol{sup -1} was subsequently derived, indicating the mass-transfer control mechanism for the coating formation. The current density was identified to be an important parameter for structure controllability. The results of DR-FTIR/Raman spectroscopic studies of the initial deposition phase strongly suggested that the HA coating was instantaneously and directly precipitated on the substrate; neither induction period nor precursor was detected in this dilute Ca-P electrolyte system. Finally, a phase diagram of the Ca-P electrolyte system was constructed, which offered a thermodynamic reason for the direct single-phase HA precipitation observed only in this system, but not in conventional concentrated systems.

  11. Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca-P electrolyte system

    International Nuclear Information System (INIS)

    Hu Ren; Lin Changjian; Shi Haiyan; Wang Hui

    2009-01-01

    In this work, the electrochemical deposition behavior of calcium phosphate coating from an aqueous electrolyte containing very dilute calcium and phosphorus species (Ca-P) was studied. The effects of three process parameters, i.e. temperature, current density and duration, were systematically investigated and the underlying mechanism was thoroughly analyzed. It was observed that the coating is mainly composed of hydroxyapatite (HA) in a wide range of temperature and current densities. The temperature had a significant effect on the deposition velocity. An apparent activation energy of 174.9 kJ mol -1 was subsequently derived, indicating the mass-transfer control mechanism for the coating formation. The current density was identified to be an important parameter for structure controllability. The results of DR-FTIR/Raman spectroscopic studies of the initial deposition phase strongly suggested that the HA coating was instantaneously and directly precipitated on the substrate; neither induction period nor precursor was detected in this dilute Ca-P electrolyte system. Finally, a phase diagram of the Ca-P electrolyte system was constructed, which offered a thermodynamic reason for the direct single-phase HA precipitation observed only in this system, but not in conventional concentrated systems.

  12. Recent Advances in the Deposition of Diamond Coatings on Co-Cemented Tungsten Carbides

    Directory of Open Access Journals (Sweden)

    R. Polini

    2012-01-01

    Full Text Available Co-cemented tungsten carbides, namely, hard metals are largely used to manufacture high wear resistant components in several manufacturing segments. Coating hard metals with superhard materials like diamond is of utmost interest as it can further extend their useful lifespan. The deposition of diamond coatings onto WC-Co can be extremely complicated as a result of poor adhesion. This can be essentially ascribed to (i the mismatch in thermal expansion coefficients between diamond and WC-Co, at the typical high temperatures inside the chemical vapour deposition (CVD chamber, generates large residual stresses at the interface; (ii the role of surface Co inside the WC-Co matrix during diamond CVD, which promotes carbon dissolution and diffusion. The present investigation reviews the techniques by which Co-cemented tungsten carbides can be treated to make them prone to receive diamond coatings by CVD. Further, it proposes interesting ecofriendly and sustainable alternatives to further improve the diamond deposition process as well as the overall performance of the coated hard metals.

  13. Biocompatibility of Titania Nanotube Coatings Enriched with Silver Nanograins by Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Piotr Piszczek

    2017-09-01

    Full Text Available Bioactivity investigations of titania nanotube (TNT coatings enriched with silver nanograins (TNT/Ag have been carried out. TNT/Ag nanocomposite materials were produced by combining the electrochemical anodization and chemical vapor deposition methods. Fabricated coatings were characterized by scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. The release effect of silver ions from TNT/Ag composites immersed in bodily fluids, has been studied using inductively coupled plasma mass spectrometry (ICP-MS. The metabolic activity assay (MTT was applied to determine the L929 murine fibroblasts adhesion and proliferation on the surface of TNT/Ag coatings. Moreover, the results of immunoassays (using peripheral blood mononuclear cells—PBMCs isolated from rats allowed the estimation of the immunological activity of TNT/Ag surface materials. Antibacterial activity of TNT/Ag coatings with different morphological and structural features was estimated against two Staphylococcus aureus strains (ATCC 29213 and H9. The TNT/Ag nanocomposite layers produced revealed a good biocompatibility promoting the fibroblast adhesion and proliferation. A desirable anti-biofilm activity against the S. aureus reference strain was mainly noticed for these TiO2 nanotube coatings, which contain dispersed Ag nanograins deposited on their surface.

  14. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  15. Coloration of metallic and/or ceramic surfaces obtained by atomic layer deposited nano-coatings

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, L., E-mail: luisg47@gmail.com [Fondazione Bruno Kessler (FBK), Centro Materiali e Microsistemi, Functional Materials & Photonic Structures Unit, via Sommarive 18, 38123 Trento (Italy); Vettoruzzo, F. [Ronda High Tech, via Vegri 83, 36010 Zane’, Vicenza (Italy); Laidani, N. [Fondazione Bruno Kessler (FBK), Centro Materiali e Microsistemi, Functional Materials & Photonic Structures Unit, via Sommarive 18, 38123 Trento (Italy)

    2016-02-29

    By depositing single layer coatings by means of physical vapor techniques, tailoring of their coloration is generally complex because a given color can be obtained only by very high composition control. Physical vapor deposition (PVD) processes are expensive and cannot be easily used for obtaining conformal coating on three-dimensional objects. Moreover PVD coatings exhibit intrinsic defects (columnar structures, pores) that affect their functional properties and applications such as barrier layers. Atomic layer deposition (ALD) technology delivers conformal coatings on different materials with very low defectiveness. A straightforward coloration can be obtained by a combination of two types of layers with different refraction index, deposited to high thickness precision. Computer simulation studies were performed to design the thickness and architecture of multilayer structures, to a total thickness of approximately 100 nm, suitable to modify the typical coloration of some materials, without altering their other physical and chemical properties. The most promising nano-layered structures were then deposited by ALD and tested with regard to their optical properties. Their total thicknesses were specified in such a way to be technically feasible and compatible with future industrial production. The materials employed in this study to build the optical coatings, are two oxides (Al{sub 2}O{sub 3}, TiO{sub 2}) deposited at 120 °C and two nitrides (AlN, TiN), which need a deposition temperature of 400 °C. The possibility of using such modern deposition technology for esthetic and decorative purposes, while maintaining the functional properties, opens perspectives of industrial applications. - Highlights: • Computer simulation is done to design multilayers made of Al{sub 2}O{sub 3}, TiO{sub 2}, AlN, and TiN. • Total thickness (< 120 nm) is specified to be compatible with industrial production. • The most promising nano-layered structures are then produced and

  16. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  17. Bioactivity response of Ta_1_-_xO_x coatings deposited by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Almeida Alves, C.F.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft–hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar + O_2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. - Highlights: • Ta_1_-_xO_x coatings were deposited by reactive DC magnetron sputtering. • Amorphous oxide phases were achieved with higher oxygen amounts. • Contact angles progressively diminished, with increasing oxygen content. • Ta oxide surface

  18. Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Clem, Paul Gilbert; Siegal, Michael P.; Holesinger, Terry A. (Los Alamos National Laboratory, Los Alamos, NM); Voigt, James A.; Richardson, Jacob J.; Dawley, Jeffrey Todd

    2004-11-01

    A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.

  19. Study of deposition rae coating of Ag thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Ghanati, M.; Zendehnam, A.

    2003-01-01

    Exact knowledge about deposition rate and its distribution and variation of them with respect to coating parameters (Gas pressure, Distance, discharge current,..) is very vital. In this experimental research coating of Ag thin films by magnetron sputtering have been carried out over Ar pressure range of 10 -2 -10 -1 mbar, and discharge current up to 1000 m.A, and distance between glass substrates to silver target (Cathode) was changed from 5 to 15 cm. The obtained results have been investigated by help of computer curve fitting, and these studies show a very good agreement for the conditions used in this work

  20. Anodisation of sputter deposited aluminium–titanium coatings: Effect of microstructure on optical characteristics

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Junker-Holst, Andreas; Vestergaard Nielsen, Daniel

    2014-01-01

    Magnetron sputtered coatings of aluminium containing up to 18 wt.% titanium were deposited on aluminium substrates to study the effect of microstructure on the optical appearance of the anodised layer. The microstructure and morphology were studied using transmission electron microscopy (TEM), X......-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipitation of Al3Ti phases. The reflectance of the anodised surfaces...

  1. Structure and mechanical properties of Ti-Si-C coatings deposited by magnetron sputtering

    International Nuclear Information System (INIS)

    Koutzaki, S.H.; Krzanowski, J.E.; Nainaparampril, J.J.

    2001-01-01

    Nanostructured coatings consisting of mixed carbide phases can provide a potential means to developing superhard coatings. Heterogeneous nanostructured coatings can be obtained by either deposition of multilayer structures or by depositing film compositions that undergo a natural phase separation due to thermodynamic immiscibility. In the present work, we have taken the latter approach, and deposited films by radio frequency cosputtering from dual carbide targets. We have examined a number of ternary carbide systems, and here we report the results obtained on Ti-Si-C films with a nominal (Ti 1-x Si x )C stoichiometry and with x≤0.31. It was found that the nanoindentation hardness increased with Si content, and the maximum hardness achieved was nearly twice that of sputter-deposited TiC. We further analyzed these films using high-resolution transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction. Since cubic SiC has an x-ray pattern almost identical to that of TiC, the extent of phase separation could not be determined by that method. However, XRD did demonstrate a general disordering of the films with increasing SiC content. In addition, a mottled structure was observed in high-resolution TEM images of the Si-containing films, confirming microstructural effects due to the Si additions

  2. Superhydrophobic photocatalytic PTFE – Titania coatings deposited by reactive pDC magnetron sputtering from a blended powder target

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com; Kelly, Peter J.; West, Glen T.

    2017-04-01

    The production of photocatalytic coatings with superhydrophobic properties, as opposed to the conventional hydrophilic properties, is desirable for the prevention of adhesion of contaminants to photocatalytic surfaces with subsequent deterioration of photocatalytic properties. In this work polytetrafluoroethylene (PTFE) – TiO{sub 2} composite thin films were deposited using a novel method of reactive pulsed direct current (pDC) magnetron sputtering of a blended PTFE – titanium oxide powder target. The surface characteristics and photocatalytic properties of the deposited composite coatings were studied. The as-deposited coatings were annealed at 523 K in air and analysed with Raman spectroscopy, optical profilometry and scanning electron microscopy. Hydrophobicity was assessed though measurements of water contact angles, and photocatalytic properties were studied via methylene blue dye degradation under UV irradiation. It was found that variations of gas flow and, hence, process pressures allowed deposition of samples combining superhydrophobicity with stable photocatalytic efficiency under UV light irradiation. Reversible wettability behaviour was observed with the alternation of light-dark cycles. - Highlights: • PTFE-TiO{sub 2} coatings were deposited by pDC reactive magnetron sputtering. • Blended powder target was used for coatings deposition. • Deposited coatings combined superhydrophobic and photocatalytic properties. • Under UV irradiation coatings exhibited reversible wettability.

  3. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  4. High strain amount in recessed junctions induced by selectively deposited boron-doped SiGe layers

    Energy Technology Data Exchange (ETDEWEB)

    Radamson, H.H. [School of Information and Communication Technology, KTH (Royal Institute of Technology) Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)], E-mail: rad@kth.se; Kolahdouz, M.; Ghandi, R.; Ostling, M. [School of Information and Communication Technology, KTH (Royal Institute of Technology) Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)

    2008-12-05

    This work presents the selective epitaxial growth (SEG) of Si{sub 1-x}Ge{sub x} (x = 0.15-0.315) layers with high amount of boron (1 x 10{sup 20}-1 x 10{sup 21} cm{sup -3}) in recessed or unprocessed (elevated) openings for source/drain applications in CMOS has been studied. The influence of the growth rate and strain on boron incorporation has been studied. A focus has been made on the strain distribution and boron incorporation in SEG of SiGe layers.

  5. High strain amount in recessed junctions induced by selectively deposited boron-doped SiGe layers

    International Nuclear Information System (INIS)

    Radamson, H.H.; Kolahdouz, M.; Ghandi, R.; Ostling, M.

    2008-01-01

    This work presents the selective epitaxial growth (SEG) of Si 1-x Ge x (x = 0.15-0.315) layers with high amount of boron (1 x 10 20 -1 x 10 21 cm -3 ) in recessed or unprocessed (elevated) openings for source/drain applications in CMOS has been studied. The influence of the growth rate and strain on boron incorporation has been studied. A focus has been made on the strain distribution and boron incorporation in SEG of SiGe layers

  6. Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2016-05-25

    Increasing attention has been paid on preparation methods for resistive-type gas sensors based on semiconductor metal oxides. In this work, tungsten oxide (WO{sub 3}) coatings were prepared on alumina substrates and used as gas sensitive layers. The coatings were deposited by atmospheric plasma spray using powder, solution precursor, or a combination of both. Tungsten oxide powder through a powder port and ammonium tungstate aqueous solution through a liquid port were injected into plasma stream respectively or together to deposit WO{sub 3} coatings. Phase structures in the coatings were characterized by X-ray diffraction analyzer. The field-emission scanning electron microscopy images confirmed that the coatings were in microstructure, nanostructure or micro-nanostructure. The sensing properties of the sensors based on the coatings exposed to 1 ppm nitrogen dioxide gas were characterized in a home-made instrument. Sensing properties of the coatings were compared and discussed. The influences of gas humidity and working temperature on the sensor responses were further studied. - Highlights: • Porous gas sensitive coatings were deposited by plasma spray using powder and solution precursor. • Crystallized WO{sub 3} were obtained through hybrid plasma spray plus a pre-conditioned step. • Plasma power had an important influence on coating microstructure. • The particle size of atmospheric plasma-sprayed microstructured coating was stable. • Solution precursor plasma-sprayed WO{sub 3} coatings had nanostructure and showed good responses to 1 ppm NO{sub 2}.

  7. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)

    Science.gov (United States)

    Igumenov, I. K.; Aksenov, A. N.

    2017-12-01

    Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.

  8. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.

    Science.gov (United States)

    Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C

    2005-07-28

    Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.

  9. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    Science.gov (United States)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  10. SiO{sub 2} coating of silver nanoparticles by photoinduced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Boies, Adam M; Girshick, Steven L [Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 (United States); Roberts, Jeffrey T [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane, E-mail: jtrob@umn.ed, E-mail: slg@umn.ed [Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO{sub 2}) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO{sub 2} precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO{sub 2} coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 {sup 0}C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10{sup 7} particles cm{sup -3}.

  11. Chemical vapor deposition growth of boron-carbon-nitrogen layers from methylamine borane thermolysis products

    Science.gov (United States)

    Leardini, Fabrice; Flores, Eduardo; Galvis E, Andrés R.; Ferrer, Isabel J.; Ramón Ares, José; Sánchez, Carlos; Molina, Pablo; van der Meulen, Herko P.; Gómez Navarro, Cristina; López Polin, Guillermo; Urbanos, Fernando J.; Granados, Daniel; García-García, F. Javier; Demirci, Umit B.; Yot, Pascal G.; Mastrangelo, Filippo; Grazia Betti, Maria; Mariani, Carlo

    2018-01-01

    This work investigates the growth of B-C-N layers by chemical vapor deposition using methylamine borane (MeAB) as the single-source precursor. MeAB has been synthesized and characterized, paying particular attention to the analysis of its thermolysis products, which are the gaseous precursors for B-C-N growth. Samples have been grown on Cu foils and transferred onto different substrates for their morphological, structural, chemical, electronic and optical characterizations. The results of these characterizations indicate a segregation of h-BN and graphene-like (Gr) domains. However, there is an important presence of B and N interactions with C at the Gr borders, and of C interacting at the h-BN-edges, respectively, in the obtained nano-layers. In particular, there is a significant presence of C-N bonds, at Gr/h-BN borders and in the form of N doping of Gr domains. The overall B:C:N contents in the layers is close to 1:3:1.5. A careful analysis of the optical bandgap determination of the obtained B-C-N layers is presented, discussed and compared with previous seminal works with samples of similar composition.

  12. High arsenic and boron concentrations in groundwaters related to mining activity in the Bigadic borate deposits (Western Turkey)

    International Nuclear Information System (INIS)

    Gemici, Unsal; Tarcan, Gueltekin; Helvaci, Cahit; Somay, A. Melis

    2008-01-01

    This study documents the environmental impacts of borate mines in Bigadic district, which are the largest colemanite and ulexite deposits in the world. Borate-bearing formations have affected the concentrations of some contaminants in groundwater. Groundwater quality is directly related to the borate zones in the mines as a result of water-rock interaction processes. Calcium is the dominant cation and waters are Ca-SO 4 and HCO 3 type in the mine (Tuelue borate mine) from which colemanite is produced. However in the Simav and Acep Borate Mines, ulexite and colemanite minerals are produced and waters from these open pit mines are Na-HCO 3 -SO 4 types. High SO 4 concentrations (reaching 519 mg/L) might be explained by the existence of anhydrite, gypsum and celestite minerals in the borate zone. Groundwater from tuff and borate strata showed relatively low pH values (7-8) compared to surface and mine waters (>8). EC values ranged from 270 to 2850 μS/cm. Boron and As were the two important contaminants determined in the groundwaters around the Bigadic borate mines. Arsenic is the major pollutant and it ranged from 33 to 911 μg/L in the groundwater samples. The concentrations of B in the study area ranged from 0.05 to 391 mg/L. The highest B concentrations were detected at the mine areas. The extension of the borate zones in the aquifer systems is the essential factor in the enrichment of B and As, and some major and trace elements in groundwaters are directly related to the leaching of the host rock which are mainly composed of tuffs and limestones. According to drinking water standards, all of the samples exceed the tolerance limit for As. Copper, Mn, Zn and Li values are enriched but do not exceed the drinking water standards. Sulfate, Al and Fe concentrations are above the drinking water standard for the groundwater samples

  13. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects......Cobalt oxide films were grown by Pulsed Injection Metal Organic Chemical Vapour Deposition (PI-MOCVD) using Co(acac)(3) (acac=acetylacetonate) precursor dissolved in toluene. The structure, morphology and growth rate of the layers deposited on silicon substrates were studied as a function......, to be used in Intermediate Temperature Solid Oxide Fuel Cells. (C) 2004 Elsevier B.V. All rights reserved....

  14. Influence of substrate geometry on ion-plasma coating deposition process

    International Nuclear Information System (INIS)

    Khoroshikh, V.M.; Leonov, S.A.; Belous, V.A.

    2008-01-01

    Influence of substrate geometry on the feature of Ti vacuum arc plasma streams condensation process in presence of N 2 or Ar in a discharge ambient were investigated. Character of gas pressure and substrate potential influence on deposition rate is conditioned the competitive processes of condensation and sputtering, and also presence of double electric layer on a border plasma-substrate. Influence of potential on deposition rate especially strongly shows up for cylindrical substrates of small size. For such substrates it was found substantial (approximately in 4 times) growth of deposition rate at the increasing of negative potential from 100 to 700 V when nitrogen pressure is ∼0,3...2,5 Pa. Possibility of droplet-free coating deposition the substrate backs and in discharge ambient, being outside area of cathode direct visibility is shown

  15. Synthesis of LSM films deposited by dip-coating on YSZ substrate

    International Nuclear Information System (INIS)

    Conceicao, Leandro da; Souza, Mariana M.V.M.; Ribeiro, Nielson F.P.

    2010-01-01

    The dip-coating process was used to deposit films of La 0.7 Sr 0. 3MnO 3 (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 μm, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  16. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  17. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    International Nuclear Information System (INIS)

    Olaya, J.J.; Rodil, S.E.; Muhl, S.

    2008-01-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN x films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N 2 ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV 0.025 . While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV 0.025 . The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics

  18. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Bogota Colombia (Colombia); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico)], E-mail: muhl@servidor.unam.mx

    2008-10-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN{sub x} films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N{sub 2} ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV{sub 0.025}. While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV{sub 0.025}. The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics.

  19. Development of an inductively coupled impulse sputtering source for coating deposition

    Science.gov (United States)

    Loch, Daniel Alexander Llewellyn

    In recent years, highly ionised pulsed plasma processes have had a great impact on improving the coating performance of various applications, such as for cutting tools and ITO coatings, allowing for a longer service life and improved defect densities. These improvements stem from the higher ionisation degree of the sputtered material in these processes and with this the possibility of controlling the flux of sputtered material, allowing the regulation of the hardness and density of coatings and the ability to sputter onto complex contoured substrates. The development of Inductively Coupled Impulse Sputtering (ICIS) is aimed at the potential of utilising the advantages of highly ionised plasma for the sputtering of ferromagnetic material. In traditional magnetron based sputter processes ferromagnetic materials would shunt the magnetic field of the magnetron, thus reducing the sputter yield and ionisation efficiency. By generating the plasma within a high power pulsed radio frequency (RF) driven coil in front of the cathode, it is possible to remove the need for a magnetron by applying a high voltage pulsed direct current to the cathode attracting argon ions from the plasma to initiate sputtering. This is the first time that ICIS technology has been deployed in a sputter coating system. To study the characteristics of ICIS, current and voltage waveforms have been measured to examine the effect of increasing RF-power. Plasma analysis has been conducted by optical emission spectroscopy to investigate the excitation mechanisms and the emission intensity. These are correlated to the set RF-power by modelling assumptions based on electron collisions. Mass spectroscopy is used to measure the plasma potential and ion energy distribution function. Pure copper, titanium and nickel coatings have been deposited on silicon with high aspect ratio via to measure the deposition rate and characterise the microstructure. For titanium and nickel the emission modelling results are in

  20. Laser deposition of SmCo thin film and coating on different substrates

    International Nuclear Information System (INIS)

    Allocca, L; Bonavolonta, C; Valentino, M; Giardini, A; Lopizzo, T; Morone, A; Verrastro, M F; Viggiano, V

    2008-01-01

    Thin films and coatings of permanent magnetic materials are very important for different electronic and micromechanical applications. This paper deals with the fabrication, using pulsed laser deposition (PLD) technique, of good quality magnetic SmCo thin films on polycarbonate, steel, silicon and amorphous quartz substrates, for low cost electronic applications like radio frequency identification (RFID) antennas and electromechanical devices for fuel feeding control in the automotive. X-ray fluorescence and magnetic scanning measurements using giant magneto-resistive (GMR) sensors have been performed to study the functional magnetic properties of the deposited thin films.

  1. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties

    International Nuclear Information System (INIS)

    Gourlaouen, V.; Schnedecker, G.; Boncoeur, M.; Lejus, A.M.; Collongues, R.

    1993-01-01

    Yttrium oxide coatings were obtained by plasma spray. Structural investigations on these deposits show that, due to the drastic conditions of this technique, a minor monoclinic B phase is formed in the neighborhood of the major cubic C form. The authors discuss here the influence of different plasma spray parameters on the amount of the B phase formed. They describe also the main properties of Y 2 O 3 B and C phases in these deposits such as structural characteristics, thermal stability and mechanical behavior

  2. Physical chemistry of WC-12 %Co coatings deposited by thermal spraying at different standoff distances

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Muhammad; Ahmed, Furqan; Anwar, Muhammad Yousaf; Ali, Liaqat; Ajmal, Muhammad [Univ. of Engineering and Technology, Metallurgical and Materials Engineering, Lahore (Pakistan); Khan, Aamer Nusair [Institute of Industrial and Control System, Rawalpindi (Pakistan)

    2015-09-15

    In the present research, WC-12 %Co cermet coatings were deposited on AISI-321 stainless steel substrate using air plasma spraying. During the deposition process, the standoff distance was varied from 80 to 130 mm with 10 mm increments. Other parameters such as current, voltage, time, carrier gas flow rate and powder feed rate etc. were kept constant. The objective was to study the effects of spraying distance on the microstructure of as-sprayed coatings. The microscopic analyses revealed that the band of spraying distance ranging from 90 to 100 mm was the threshold distance for optimum results, provided that all the other spraying parameters were kept constant. In this range of threshold distance, minimum percentages of porosity and defects were observed. Further, the formation of different phases, at six spraying distances, was studied using X-ray diffraction, and the phase analysis was correlated with hardness results.

  3. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  4. Wet and dry atmospheric deposition on TiO2 coated glass

    International Nuclear Information System (INIS)

    Chabas, Anne; Gentaz, Lucile; Lombardo, Tiziana; Sinegre, Romain; Falcone, Roberto; Verita, Marco; Cachier, Helene

    2010-01-01

    To prevent the soiling of glass window used in the built environment, the use TiO 2 coated products appears an important application matter. To test the cleaning efficiency and the sustainability of self-cleaning glass, a field experiment was conducted under real life condition, on a site representative of the background urban pollution. Samples of float glass, used as reference, and commercialized TiO 2 coated glasses were exposed to dry and wet atmospheric deposition during two years. The crossed optical, chemical and microscopic evaluations performed, after withdrawal, allowed highlighting a sensible difference between the reference and the self-cleaning substrate in terms of accumulation, nature, abundance and geometry of the deposit. This experiment conducted in real site emphasized on the efficacy of self-cleaning glass to reduce the maintenance cost. - This paper evaluates the self-cleaning glass efficiency highlighting its ability to prevent soiling and to be used as a mean of remediation.

  5. Structural and mechanical properties of hydroxyapatite coatings formed by ion-beam assisted deposition

    Science.gov (United States)

    Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.; Donkov, N.; Ghaemi, M. H.; Szkodo, M.; Antoszkiewicz, M.; Szyfelbain, M.; Czaban, A.

    2018-03-01

    The ion-beam assisted deposition (IBAD) is an advanced method capable of producing crystalline coatings at low temperatures. We determined the characteristics of hydroxyapatite Ca10(PO4)6(OH)2 target and coatings formed by IBAD using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX). The composition of the coatings’ cross-section and surface was close to those of the target. The XPS spectra showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p3/2), and O 1s levels are related to the hydroxyapatite phase. The coatings demonstrate an optimal H/E ratio, and a good resistance to scratch tests.

  6. Effect of gas ratio on tribological properties of sputter deposited TiN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chavda, Mahesh R., E-mail: maheshchavda1990@gmail.com [Department of Mechanical Engineering, Dr. Jivraj Mehta Institute of Technology, Mogar-388340 (India); Chauhan, Kamlesh V.; Rawal, Sushant K., E-mail: sushantrawal.me@charusat.ac.in [CHAMOS Matrusanstha Department of Mechanical Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science and Technology (CHARUSAT), Changa-388421 (India)

    2016-05-06

    Titanium nitride (TiN) coatings were deposited on Si, corning glass, pins of mild steel (MS, ϕ3mm), aluminium (Al, ϕ4mm) and brass (ϕ6mm) substratesby DC magnetron sputtering. The argon and nitrogen (Ar:N{sub 2})gas ratio was precisely controlled by Mass Flow Controller (MFC) and was varied systematically at diffract values of 10:10,12:08, 16:04 and 18:02sccm. The structural properties of TiN coatings were characterized by X-ray diffraction (XRD) and its surface topography was studied using field emission scanning electron microscopy (FE-SEM). The tribological properties of TiN coatings were investigated using pin-on-disc tribometer.

  7. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Science.gov (United States)

    Wolak, M. A.; Tan, T.; Krick, A.; Johnson, E.; Hambe, M.; Chen, Ke; Xi, X. X.

    2014-01-01

    We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD). To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB2 films on these substrates showed uniformly good superconducting properties including Tc of 37-40 K, residual resistivity ratio of up to 14, and root-mean-square roughness Rq of 20-30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB2 by the HPCVD technique, an important step towards superconducting rf cavities with MgB2 coating.

  8. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    M. A. Wolak

    2014-01-01

    Full Text Available We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD. To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB_{2} films on these substrates showed uniformly good superconducting properties including T_{c} of 37–40 K, residual resistivity ratio of up to 14, and root-mean-square roughness R_{q} of 20–30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB_{2} by the HPCVD technique, an important step towards superconducting rf cavities with MgB_{2} coating.

  9. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  10. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara

    2014-01-01

    The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al–Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result...... in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550°C for 4 h in order...... parameters and their influence on the interaction of light is investigated and the results in general are applicable to discolouration of anodized layer on recycled aluminium alloys due to intermetallics. © 2014 Elsevier B.V. All rights reserved....

  11. An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

    2010-04-01

    Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

  12. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Tillocher, Thomas; Dussart, Rémi [Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Boufnichel, Mohamed [STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, 37071 Tours Cedex 2 (France); and others

    2017-01-30

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  13. Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V

    International Nuclear Information System (INIS)

    He, Daihua; Liu, Ping; Liu, Xinkuan; Ma, Fengcang; Chen, Xiaohong; Li, Wei; Du, Jiandi; Wang, Pu; Zhao, Jun

    2016-01-01

    The hydrothermal electrochemical method was used to deposit hydroxyapatite coating on Ti6Al4V. In order to improve the bonding strength between the coating and substrate, the substrates were modified by 8 M NaOH solution before the deposition. The effects of immersing time on the substrate, on the hydroxyapatite coating, and on the bonding strength were studied. X-Ray Diffraction, Scanning Electron Microscope, Fourier Transform Infrared Spectroscopy and Drop Shape Analysis Method were applied. And the crystallinity of hydroxyapatite coating was calculated. The results show that immersing treatment effects the phase compositions, the microstructure and the wettability of the substrate surface. A porous, three-dimensional network structure is formed on the Ti6Al4V surface through the NaOH immersion. The pore size and depth increase with the increase of immersing time from 12 to 48 h. The surface microstructure of Ti6Al4V with 60 h′ immersion time was different from the others. The modification treatment can improve the bonding strength between hydroxyapatite coating and the substrate obviously. The value of the bonding strength with the substrate immersed for 48 h is larger than those of the others. A bone-like apatite layer forms on the coating after 3 days of soaking in SBF, implying with good bioactivity of the hydroxyapatite coatings deposited by the method. The surface characteristics of the sample immersed with 48 h are more conductive to the deposition of hydroxyapatite and to the improvement of the bonding strength. The formation mechanism of hydroxyapatite coating deposited by hydrothermal electrochemical method was discussed. - Highlights: • Immerse Ti6Al4V alloy with NaOH solution for different immersing time. • We deposit hydroxyapatite coating by hydrothermal electrochemical method. • We examine changes of composition, microstructure, bonding strength and bioactivity of the hydroxyapatite coating. • 48 h is the optimal immersing time. • We

  14. Cold spray deposition of Ti{sub 2}AlC coatings for improved nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Benjamin R. [University of Wisconsin, Madison, WI (United States); Garcia-Diaz, Brenda L. [Savannah River National Laboratory, Aiken, SC (United States); Hauch, Benjamin [University of Wisconsin, Madison, WI (United States); Olson, Luke C.; Sindelar, Robert L. [Savannah River National Laboratory, Aiken, SC (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [University of Wisconsin, Madison, WI (United States)

    2015-11-15

    Coatings of Ti{sub 2}AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings ∼90 μm in thickness using powder particles of <20 μm. X-ray diffraction analysis showed the phase-content of the deposited coatings to be identical to the powders indicating that no phase transformation or oxidation had occurred during the coating deposition process. The coating exhibited a high hardness of about 800 H{sub K} and pin-on-disk wear tests using abrasive ruby ball counter-surface showed the wear resistance of the coating to be significantly superior to the Zry-4 substrate. Scratch tests revealed the coatings to be well-adhered to the Zry-4 substrate. Such mechanical integrity is required for claddings from the standpoint of fretting wear resistance and resisting wear handling and insertion. Air oxidation tests at 700 °C and simulated LOCA tests at 1005 °C in steam environment showed the coatings to be significantly more oxidation resistant compared to Zry-4 suggesting that such coatings can potentially provide accident tolerance to nuclear fuel cladding. - Highlights: • Deposited Ti{sub 2}AlC coatings on Zircaloy-4 substrates with a low pressure powder spray process, also known as cold spray. • Coatings have high hardness and wear resistance for both damage resistance during rod insertion and fretting wear resistance. • The oxidation resistance of Ti{sub 2}AlC coated Zircaloy-4 at 700 °C and 1005 °C was significantly superior to uncoated Zircaloy. • Cold spray of Ti{sub 2}AlC demonstrates considerable promise as a near-term solution for accident tolerant Zr-alloy fuel claddings.

  15. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    Directory of Open Access Journals (Sweden)

    Alan Vitrey

    2017-02-01

    Full Text Available The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range.

  16. Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Faure Joel

    2013-11-01

    Full Text Available In this work, the 45S5 bioactive glass has been prepared by the sol-gel process using an organic acid catalyst instead of nitric acid usually used. The physico-chemical and structural characterizations confirmed and validated the elemental composition of the resulting glass. In addition, the 45S5 bioactive glass powder thus obtained was successfully used to elaborate by electrophoretic deposition a prosthetic coating on titanium alloy Ti6Al4V.

  17. Electrophoretic Deposition as a New Bioactive Glass Coating Process for Orthodontic Stainless Steel

    OpenAIRE

    Kyotaro Kawaguchi; Masahiro Iijima; Kazuhiko Endo; Itaru Mizoguchi

    2017-01-01

    This study investigated the surface modification of orthodontic stainless steel using electrophoretic deposition (EPD) of bioactive glass (BG). The BG coatings were characterized by spectrophotometry, scanning electron microscopy with energy dispersive X-ray spectrometry, and X-ray diffraction. The frictional properties were investigated using a progressive load scratch test. The remineralization ability of the etched dental enamel was studied according to the time-dependent mechanical proper...

  18. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  19. Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Wu Jinbao; Chang, J.-J.; Li, M.-Y.; Leu, M.-S.; Li, A.-K.

    2007-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been deposited on Si(100) and stainless steel substrates by cathodic vacuum arc plasma deposition with pulse voltage. Adherent deposits on silicon can be obtained through applying gradient Ti/TiC/DLC layers. A pulse bias of - 100 V was applied to the substrate in order to obtain a denser structure of DLC coating approximately 1 μm thick. The microstructure and hardness value of DLC films were analyzed by using X-ray photoelectron spectroscopy and nano-indenter. The experimental results show that the duty cycle strongly influenced the hardness and sp 3 content of the DLC coatings. We observed that when the duty cycle was raised from 2.5% to 12.5%, the hardness increased from 26 GPa to 49 GPa, and the sp 3 fraction of the DLC films measured by XPS increased from 39% to 50.8 % as well. But at constant duty cycle, say 12.5%, the hardness is dropped from 49 to 14 GPa in proportion to the increase of residual gas pressure from 3 x 10 -3 Pa to 1 Pa. As the residual gas pressure increased, collisional phenomenon will decrease the energy of the ions. Ions with low energy make more graphitic carbon links and result in a low hardness value

  20. Protective coating of inner surface of steel tubes via vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maile, K.; Roos, E.; Lyutovich, A.; Boese, J.; Itskov, M. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA); Ashurov, Kh.; Mirkarimov, A.; Kazantsev, S.; Kadirov, Kh. [Uzbek Academy of Science, Tashkent (Uzbekistan). Arifov Inst. of Electronics

    2010-07-01

    The Vacuum Arc Deposition (VAD) technique based on sputtering a chosen electrode material and its deposition via plasma allows highly-productive technology for creating a wide class of protecting coatings on complex structures. In this work, VAD was applied as a method for the protection of the inner surface of tubes for power-plant boilers against steam oxidation. For this aim, a source cathode of an alloy with high chromium and nickel content was employed in two different VAD treatment systems: a horizontal vacuum chamber (MPA) and a vertical system where the work-piece of the tubes to be protected served as a vacuum changer (Arifov Institute of Electronics). Surface coating with variation of deposition parameters and layer thickness was performed. Characterisation of coated tubes has shown that the method realised in this work allows attainment of material transfer from the cathode to the inner surface with nearly equal chemical composition. It was demonstrated that the initial martensitic structure of the tubes was kept after the vacuum-arc treatment which can provide for both the high mechanical robustness and the corrosion-resistance of the final material. (orig.)

  1. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    Science.gov (United States)

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Finite element modelling of stress development during deposition of ion assisted coatings

    International Nuclear Information System (INIS)

    Ward, D.J.; Arnell, R.D.

    2002-01-01

    Ion assisted physical vapour deposited (IAPVD) films typically have a high state of residual stress. This residual stress comprises two components: a thermal stress, which forms as the system cools to room temperature; and an intrinsic stress which is caused by the processes of deposition. Much work has been published on the tribology and mechanical behaviour of surface coatings without consideration of the residual stress. It was therefore considered desirable to develop a finite element (FE) simulation to be used either as a precursor to any realistic mechanical study of the behaviour of such surface coatings, or to be used as a tool to study the effects of varying the deposition parameters. Previous experimental work has shown that the residual stress is related to deposition parameters, such as incident ion and atom fluxes and energies, and recent molecular dynamics studies have indicated that trapped inert gas species may play a major role in the mechanism for creation of the intrinsic stress. The FE simulation assumes that the processes of ion bombardment and material deposition are consecutive, but as the analysis time step tends to zero this assumption approximates the simultaneity of the processes. Suitable mathematical descriptions are employed in the bombarded region of the growing coating to simulate the macroscopic effects of the microscopic atomic collision phenomena and diffusion processes. Two finite element simulations are presented. The first is based on an analytical model, which has gained popular acceptance and this was presented in a previous year at this conference. The second builds on this to simulate wider aspects of known behaviour and is presented in this follow-up paper. The predicted trends of mean stress and its distribution are similar to those observed in published experimental work

  3. Synthesis and Deposition of TiC-Fe Coatings by Oxygen-acetylene Flame Spraying

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simpler and more convenient method for producing wear-resistant, TiC-reinforced coatings were investigated in this study. It consists of the simultaneous synthesis and deposition of TiC-Fe materials by oxyacetylene flame spraying.Solid reagents bound together to form a single particle are injected into the flame stream where an in-situ reaction occurs. The reaction products are propelled onto a substrate to form a coating