WorldWideScience

Sample records for boron coatings deposited

  1. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  2. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  3. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  4. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-01

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400-1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  5. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzhinskiy, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  6. Boron carbide (B{sub 4}C) coating. Deposition and testing

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E.; Barsuk, V. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Buzhinsky, O. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Evsin, A.; Gordeev, A.; Grunin, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Klimov, N. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Kurnaev, V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mazul, I. [Federal State Unitary Interprise Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA Efremov), St-Peterburg (Russian Federation); Otroshchenko, V.; Putric, A. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-15

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B{sub 4}C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B{sub 4}C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B{sub 4}C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B{sub 4}C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  7. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  8. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  9. The improvement of wave-absorbing ability of silicon carbide fibers by depositing boron nitride coating

    Science.gov (United States)

    Ye, Fang; Zhang, Litong; Yin, Xiaowei; Liu, Yongsheng; Cheng, Laifei

    2013-04-01

    This work investigated electromagnetic wave (EMW) absorption and mechanical properties of silicon carbide (SiC) fibers with and without boron nitride (BN) coating by chemical vapor infiltration (CVI). The dielectric property and EM shielding effectiveness of SiC fiber bundles before and after being coated by BN were measured by wave guide method. The EM reflection coefficient of SiC fiber laminates with and without BN coating was determined by model calculation and NRL-arc method, respectively. Tensile properties of SiC fiber bundles with and without BN coating were tested at room temperature. Results show that SiC fibers with BN coating had a great improvement of EMW absorbing property because the composites achieved the impedance matching. BN with the low permittivity and dielectric loss contributed to the enhancive introduction and reduced reflection of EMW. The tensile strength and Weibull modulus of SiC fiber bundles coated by BN increased owing to the decrease of defects in SiC fibers and the protection of coating during loading.

  10. Deposition of Multicomponent Chromium Carbide Coatings Using a Non-Conventional Source of Chromium and Silicon with Micro-Additions of Boron

    OpenAIRE

    González Ruíz,Jesús Eduardo; Rodríguez Cristo,Alejandro; Paz Ramos,Adrian; Quintana Puchol,Rafael

    2017-01-01

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 oC for 4h. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectr...

  11. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  12. Plasma-Arc Deposited Elemental Boron Film for use as a Durable Nonstick Coating

    National Research Council Canada - National Science Library

    Klepper, C. C

    2007-01-01

    Report developed under Small Business Innovation Research Contract. Under this Phase I SBIR contract, HY-Tech Research performed development of an abrasion resistant, non-stick coating for cookware used by the U.S. Army in the field...

  13. Preparation and uses of amorphous boron carbide coated substrates

    Science.gov (United States)

    Riley, Robert E.; Newkirk, Lawrence R.; Valencia, Flavio A.

    1981-09-01

    Cloth is coated at a temperature below about 1000.degree. C. with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  14. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  15. Boron nitride - boron hybrid coating on uranium dioxide-gadolinium oxide fuel. Final report for the period 1 November 1996 - 1 November 1997

    International Nuclear Information System (INIS)

    Gunduz, G.

    1997-11-01

    The report describes work to develop laboratory-scale technology of the deposition of hybrid boron nitrate-metallic boron coating onto the surface of uranium dioxide ore uranium dioxide - gadolinia dioxide fuel pellets. Methods of chemical vapour deposition and plasma enhanced chemical vapour deposition were used in the Department of Chemical Engineering of the Middle East Technical University, Ankara, Turkey. An excellent adherence of boron onto the boron nitrate layer and boron nitrate layer onto the fuel pellet surface was demonstrated. Fine grain-type structure of boron coating and its excellent adherence are good indices for integrated fuel burnable absorber fuels

  16. Chemical vapor deposited boron carbide

    International Nuclear Information System (INIS)

    Mackinnon, I.D.R.; Smith, K.L.

    1987-01-01

    Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD) show that two basic types of whiskers are produced at low temperatures (between 1200 0 C and 1400 0 C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanisms

  17. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  18. Study on plasma sprayed boron carbide coating

    Science.gov (United States)

    Zeng, Yi; Lee, Soo W.; Ding, Chuanxian

    2002-03-01

    The microstructure, phase composition, and mechanical properties of boron carbide coatings formed by atmospheric plasma spraying (APS) are studied in the present work. The boron carbide coating with high microhardness and low porosity could be produced by APS. The decomposition of boron carbide powder during the plasma spray process would result in the formation of the BxC phase and an increase of the carbon phase, which is confirmed by transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction results.

  19. Equilibrium chemistry of boron deposition

    International Nuclear Information System (INIS)

    Walsh, P.N.

    1973-01-01

    Machine calculations of the equilibrium chemistry of the H 2 / BCl 3 /Ar system were used to calculate the degree of conversion of BCl 3 to solid B, at several temperatures and one atmosphere total pressure, for constant BCl 3 partial pressure and for constant H 2 /BCl 3 ratio. Combined equilibrium and mass transport calculations were used to deduce diffusion-limited reaction rates for experimental conditions employed in the kinetics study of Carlton, et al. (Second International Vapor Deposition Conference); this analysis confirms that the previous work did measure surface kinetics. Equilibrium calculations for the H 2 /BCl 3 /Cr system indicate that CrCl 2 volatility may be too high for this to be a practical method of forming chromium boride coatings. (U.S.)

  20. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  1. Deposition of Boron in Possible Evaporite Deposits in Gale Crate

    Science.gov (United States)

    Gasda, P. J.; Peets, E.; Lamm, S. N.; Rapin, W.; Lanza, N.; Frydenvang, J.; Clark, B. C.; Herkenhoff, K. E.; Bridges, J.; Schwenzer, S. P.; Haldeman, E. B.; Wiens, R. C.; Maurice, S.; Clegg, S. M.; Delapp, D.; Sanford, V.; Bodine, M. R.; McInroy, R.

    2017-12-01

    Boron has been previously detected in Gale crater using the ChemCam instrument on board the NASA Curiosity rover within calcium sulfate fracture fill hosted by lacustrine mudstone and eolian sandstone units. Recent results show that up to 300 ppm B is present in the upper sections of the lacustrine unit. Boron has been detected in both the groundwater-emplaced calcium sulfate fracture fill materials and bedding-parallel calcium sulfate layers. The widespread bedding-parallel calcium sulfate layers within the upper strata of the lacustrine bedrock that Curiosity has encountered recently could be interpreted as primary evaporite deposits. We have two hypotheses for the history of boron in Gale crater. In both hypotheses, borates were first deposited as lake water evaporated, depositing primary evaporates that were later re-dissolved by groundwater, which redistributed the boron into secondary evaporitic calcium sulfate fracture fill deposits. In the first scenario, Gale crater may have undergone a period of perennial lake formation during a drier period of martian history, depositing layers of evaporitic minerals (including borates) among lacustrine mudstone layers. In the second scenario, lake margins could have become periodically exposed during cyclic drops in lake level and subsequently desiccated. Evaporites were deposited and desiccation features were formed in lowstand deposits. Either hypothetical scenario of evaporite deposition would promote prebiotic chemical reactions via wet-dry cycles. Boron may be an important prebiotic element, and as such, its presence in ancient martian surface and groundwater provides evidence that important prebiotic chemical reactions could occur on Mars if organics were present. The presence of boron in ancient Gale crater groundwater also provides additional evidence that a habitable environment existed in the martian subsurface well after the expected disappearance of liquid water on the surface of Mars. We will report on the

  2. Boron carbide nanowires with uniform CNx coatings

    Science.gov (United States)

    Zhang, H. Z.; Wang, R. M.; You, L. P.; Yu, J.; Chen, H.; Yu, D. P.; Chen, Y.

    2007-01-01

    Boron carbide nanowires with uniform carbon nitride coating layers were synthesized on a silicon substrate using a simple thermal process. The structure and morphology of the as-synthesized nanowires were characterized using x-ray diffraction, scanning and transmission electron microscopy and electron energy loss spectroscopy. A correlation between the surface smoothness of the nanowire sidewalls and their lateral sizes has been observed and it is a consequence of the anisotropic formation of the coating layers. A growth mechanism is also proposed for these growth phenomena.

  3. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  4. Plasma-sprayed boron carbide coatings for first-wall protection

    Science.gov (United States)

    van der Laan, J. G.; Schnedecker, G.; van Osch, E. V.; Duwe, R.; Linke, J.

    1994-08-01

    Plasma-sprayed boron carbide coatings have been manufactured by different suppliers onto substrates of type 316L stainless steel. The coating thickness ranges from 0.3 to 2.0 mm. The larger thicknesses could only be achieved by application of an adaptive or gradient bond-layer between substrate and the boron carbide top coating. Measurements of the thermal diffusivity of coating materials are reported. Several high heat flux facilities have been used to study the thermal shock and erosion behaviour of the coated samples. A supporting numerical analysis of the thermal behaviour of the coating under normal and off-normal heat loads is presented, focussing on the differences between electron beam and laser beam tests due to volumetric energy deposition. Some aspects of the applicability of plasma sprayed B 4C coatings for first-wall protection in a next step device are discussed.

  5. Characteristics of deposited boron doping diamond on tungsten carbide insert by MPECVD

    Science.gov (United States)

    Kim, Jong Seok; Park, Yeong Min; Kim, Jeong Wan; Tulugan, Kelimu; Kim, Tae Gyu

    2015-03-01

    Diamond-coated cutting tools are used primarily for machining non-ferrous materials such as aluminum-silicon alloys, copper alloys, fiber-reinforced polymers, green ceramics and graphite. Because the tool life of cemented carbide cutting tool is greatly improved by diamond coating, and typically more than 10 times of the tool life is obtained. However, research of boron-doped diamond (BDD) coating tool has not been fully researched yet. In this study, we have succeeded to make boron-doped microcrystalline and nanocrystalline diamond-coated Co-cemented tungsten carbide (WC-Co) inserts. Microcrystalline BDD thin film is deposited on WC-Co insert by using microwave plasma enhanced chemical vapor deposition (MPECVD) method. Scanning electron microscope (SEM) and Raman spectroscopy are used to characterize the as-deposited diamond films.1,2

  6. The production, characterization, and neutronic performance of boron nitride coated uranium dioxide fuel

    International Nuclear Information System (INIS)

    Uslu, I.; Colak, U.; Tombakoglu, M.; Gunduz, G.

    1995-01-01

    The fuel pellets produced by sol-gel technique were coated with boron nitride (BN). This was achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. Mixing and chemical reaction take place at a temperature around 875 K. The coated samples were then sintered at 1600 K. Thermal reactor physics lattice-cell code WIMS-D/4 was used in the neutronic analysis of CANDU fuel bundle to observe the neutronic performance of the coated fuel. Three types of fuel were considered; fuel made of natural uranium, slightly enriched uranium (SEU, enrichment: 0.82 % U-235), and SEU with various BN coatings. The burnup calculations showed that feasible coating thickness is between 1 to 2 μm. (author)

  7. Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes

    Science.gov (United States)

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Kopiec, Daniel; Moczała, Magdalena; Orłowska, Karolina; Sawczak, Mirosław; Gotszalk, Teodor

    2016-04-01

    Fabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. B-NCD films were deposited using microwave plasma assisted chemical vapour deposition method. The variation in B-NCD morphology, structure and optical parameters was particularly investigated. The use of truncated cone-shaped substrate holder enabled to grow thin fully encapsulated nanocrystalline diamond film with a thickness of approx. 60 nm and RMS roughness of 17 nm. Raman spectra present the typical boron-doped nanocrystalline diamond line recorded at 1148 cm-1. Moreover, the change in mechanical parameters of silicon cantilevers over-coated with boron-doped diamond films was investigated with laser vibrometer. The increase of resonance to frequency of over-coated cantilever is attributed to the change in spring constant caused by B-NCD coating. Topography and electrical parameters of boron-doped diamond films were investigated by tapping mode AFM and electrical mode of AFM-Kelvin probe force microscopy (KPFM). The crystallite-grain size was recorded at 153 and 238 nm for boron-doped film and undoped, respectively. Based on the contact potential difference data from the KPFM measurements, the work function of diamond layers was estimated. For the undoped diamond films, average CPD of 650 mV and for boron-doped layer 155 mV were achieved. Based on CPD values, the values of work functions were calculated as 4.65 and 5.15 eV for doped and undoped diamond film, respectively. Boron doping increases the carrier density and the conductivity of the material and, consequently, the Fermi level.

  8. Kinetics of chemical vapor deposition of boron on molybdenum

    International Nuclear Information System (INIS)

    Tanaka, W.; Nakaanishi, N.; Kato, E.

    1987-01-01

    Experimental rate data of chemical vapor deposition of boron by reduction of boron trichloride with hydrogen are analyzed to determine the reaction mechanism. The reaction orders with respect to the partial pressures of hydrogen and boron trichloride are one half and one third, respectively. It has been found that the outer layer of a deposited film is Mo/sub 2/B/sub 5/ and the inner layer is MoB by the use of X-ray diffraction and EPMA line analysis

  9. Ion Deposited Carbon Coatings.

    Science.gov (United States)

    1983-07-01

    sample is included in Figure 5.5.3. After one minute exposure, there was no detectable change in the surface of the coating or the polycarbonate. After...surface de 1/600 000 square meter of a blackbody at the 1/600 000 rnitre carr-6 d’un corps noir L ha temperature of freezing platinum under a temp6rature

  10. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  11. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Petersen, P.I.; Winter, J.

    1991-09-01

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  12. Structure and characteristics of chromium steel coatings alloyed with boron carbide

    Science.gov (United States)

    Eremin, E. N.; Losev, A. S.; Borodikhin, S. A.; Matalasova, A. E.; Ponomarev, I. A.; Ivlev, K. E.

    2018-01-01

    This study explores the problems arising from the increase of wear resistance on the coatings of details of a wide range of applications, obtained by surfacing the Fe - Cr system with flux-cored wires. It has shown that insignificant wear resistance of such steel under conditions of metal friction against another metal is due to their relatively low hardness and the absence of strengthening phases. It also shows the effect of boron carbide on the structure and the characteristics of chromium steel obtained by the surfacing process. It was established that the use of high-chromium flux-cored wires alloyed with boron carbide aids the production of a deposited metal of a composite type, with a dispersed hardening based on chromium carboboride. The deposited metal with such structure has a high wear resistance and the hardness of 55 … 58 HRC and can be used for surfacing cladding the hardening, corrosion-resistant coatings.

  13. Boron coatings on graphite for fusion reactor applications

    International Nuclear Information System (INIS)

    Pierson, H.O.; Mullendore, A.W.

    1979-01-01

    This study is an experimental investigation of boron coatings on graphite and the preliminary determination of some of their physical and nuclear related properties. The boron was obtained by the decomposition of diborane in argon at 500 0 C and one atm. Adhesion to the graphite (POCO AXF-5Q) was good if a slightly abraded surface was provided. The boron was pseudo-amorphous, had high purity with no visually observable porosity and the fractured surface showed no growth features. It was very hard (VHN 25 = 2400 kg/mm 2 ) and had good resistance to hydrogen ion erosion and arcing. It may, therefore, be a suitable candidate for first wall and limiter coatings in tokamak fusion reactors

  14. Electrophoretic deposition of boron-10 in neutron detectors electrodes

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Vieira, J.M.

    1990-01-01

    Process of boron-10 electrophoresis on large area of aluminum substrates was developed with the aim of using them in the construction of neutron detectors. After definition and optimization of the boron electrophoresis parameters, depositions of boron-10 on aluminum cylinders were performed and used as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. These prototypes were designed and builded at IPEN-CNEN-SP, and submited for characterization tests at IEA-R1 reactor, and they fulfil the technical specifications of the project. (author) [pt

  15. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  16. ICRF boronization. A new technique towards high efficiency wall coating for superconducting tokamak reactors

    International Nuclear Information System (INIS)

    Li Jiangang; Zhao Yan Ping; Gu Xue Mao

    1999-01-01

    A new technique for wall conditioning that will be especially useful for future larger superconducting tokamaks, such as ITER, has been successfully developed and encouraging results have been obtained. Solid carborane powder, which is non-toxic and non-explosive, was used. Pulsed RF plasma was produced by a non-Faraday shielding RF antenna with RF power of 10 kW. The ion temperature was about 2 keV with a toroidal magnetic field of 1.8 T and a pressure of 3x10 -1 Pa. Energetic ions broke up the carborane molecules, and the resulting boron ions struck and were deposited on the first wall. In comparison with glow discharge cleaning boronization, the B/C coating film shows higher adhesion, more uniformity and longer lifetime during plasma discharges. The plasma performance was improved after ICRF boronization. (author). Letter-to-the-editor

  17. Preparation of pure boron coating film and its characterization by XPS and TDS

    Science.gov (United States)

    Oyaidzu, M.; Yoshikawa, A.; Kodama, H.; Oya, Y.; Sagara, A.; Noda, N.; Okuno, K.

    2005-05-01

    A PACVD apparatus was designed and fabricated at Shizuoka University in order to prepare high-pure boron coating films. In the present study, some parameters, especially feeding gas concentration, substrate temperature and CVD input power, have been optimized to prepare pure boron coating films. It was found that the purity of boron coating film was controlled by the decaborane concentration of feeding gas and substrate temperature during the PACVD process, and each optimized values were 0.4 and 473 K, respectively. The atomic composition of boron in the boron coating film under the optimized condition has been achieved to be 0.94.

  18. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux; Depots electrophoretiques de bore sur plaques de duralumin destines a des mesures de flux de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F.M.; Magnier, P.; Finck, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    Preparation of boron thin film deposits of around 1 mg per cm{sup 2} on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  19. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  20. Phase formation and microstructure of boron nitride thin layers deposited using Nd:YAG and KrF

    Czech Academy of Sciences Publication Activity Database

    Mroz, W.; Kosydar, R.; Jelínek, Miroslav; Kocourek, Tomáš; Major, B.

    2006-01-01

    Roč. 200, - (2006), s. 6438-6443 ISSN 0257-8972 Grant - others:Polish Ministry of Science and Informatization(PL) PBZ-KBN-100/T08/2003 Institutional research plan: CEZ:AV0Z10100522 Keywords : boron nitride * pulsed laser deposition * coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.559, year: 2006

  1. Kinetics of chemical vapor deposition of boron on molybdenum

    International Nuclear Information System (INIS)

    Tanaka, H.; Nakanishi, N.; Kato, E.

    1987-01-01

    Experimental rate data of chemical vapor deposition of boron by reduction of boron trichloride with hydrogen are analyzed to determine the reaction mechanism. The experiments were conducted at atmospheric pressure. The weight change of the sample was noted by means of a thermobalance. Molybdenum was used as the substrate. It has been found that the outer layer of the deposited film is Mo/sub 2/B/sub 5/ and the inner layer is MoB, and in the stational state of the reaction, the diffusion in the solid state is considered not to be rate controlling. When mass transport limitation was absent, the reaction orders with respect to boron trichloride and hydrogen were one third and one half, respectively. By comparing these orders with those obtained from Langmuir-Hinshelwood type equations, the rate controlling mechanism is identified to be the desorption of hydrogen chloride from the substrate

  2. Boronized steels with corundum-baddeleyite coatings

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Kolísko, J.; Bouška, P.; Brožek, Vlastimil; Kubatík, Tomáš František; Mastný, L.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 341-344 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : Bobororonized steel * corundum-baddeleyite coating * anti-corrosion properties * plasma spraying Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  3. Boronized steels with corundum-baddeleyite coatings

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Kolísko, J.; Bouška, P.; Brožek, Vlastimil; Kubatík, Tomáš František; Mastný, L.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 341-344 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : Bobororonized steel * corundum-baddeleyite coating * anti- corrosion properties * plasma spraying Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  4. Spray-Deposited Superconductor/Polymer Coatings

    Science.gov (United States)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  5. Boron carbide coatings for enhanced performance of radio-frequency antennas in magnetic fusion energy devices. Final report [SBIR[STTR] Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, C Christopher

    2002-02-25

    This DOE STTR program has produced a new technology for efficient deposition of dense boron carbide films. Such films can be used as protective coatings; they are resistant to most acids and compatible with high temperatures (over 2000{deg}C). This new technology is based on a vacuum arc discharge using boron carbide cathode as the solid feed material. This avoids the use of boron-based feedstock gases, most of which are toxic or explosive. It is superior to plasma-arc spraying, which makes low-density (porous) films and potentially more economical than magnetron sputtering, due to the low sputtering rate for boron carbide.

  6. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining.

    Science.gov (United States)

    Lei, Xuelin; Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming

    2013-07-25

    Thin boron doped diamond (BDD) film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co) micro drills by using the hot filament chemical vapor deposition (HFCVD) technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD) film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD) film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD) coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools.

  7. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    Directory of Open Access Journals (Sweden)

    Zhiming Zhang

    2013-07-01

    Full Text Available Thin boron doped diamond (BDD film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co micro drills by using the hot filament chemical vapor deposition (HFCVD technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools.

  8. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    Science.gov (United States)

    Lei, Xuelin; Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming

    2013-01-01

    Thin boron doped diamond (BDD) film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co) micro drills by using the hot filament chemical vapor deposition (HFCVD) technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD) film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD) film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD) coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools. PMID:28811426

  9. Antireflection coatings on plastics deposited by plasma ...

    Indian Academy of Sciences (India)

    Wintec

    exposure to energetic radiations, followed by deposition of a carbonyl hard coating by spin or dip coating processes, UV curing, etc. However, this .... trodes in a cylindrical glass deposition chamber, has been designed, fabricated and assembled in-house. RF power can be applied across the electrodes with a RF generator.

  10. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  11. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  12. Method and apparatus for coating thin foil with a boron coating

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey L.

    2018-01-16

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.

  13. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility.

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices.

  14. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  15. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma

    International Nuclear Information System (INIS)

    Franz, D.

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 o C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10 12 -10 1' 3 cm -3 . For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind of plasma. Diborane

  16. Functional Plasma-Deposited Coatings

    Directory of Open Access Journals (Sweden)

    Mykhaylo Pashechko

    2017-12-01

    Full Text Available The paper focuses on the problem of low adhesion of plasma sprayed coatings to the substrate. The subsequent laser treatment modes and their influence on the coating-substrate interface were studied. This allows to decrease the level of metstability of the coating, thus decreasing its hardness down to 11-12 GPa on the surface and to about 9 GPa on depth of 400 µm. The redistribution of alloying elements through solid and liquid diffusion improves mechanical properties and rises the adhesion up to 450 MPa after remelting and up to 90-110 MPa after laser-aided thermal cycling. At he same time, remelting of coating helps to decrease its porosity down to 1%. Obtained complex of properties also allows to improve wear resistance of coatings and to decrease friction factor.

  17. AUTOCATALYTIC REDUCTION AND CHARACTERISTICS OF BORON-CONTAINING COATINGS

    Directory of Open Access Journals (Sweden)

    V. Covaliov

    2013-06-01

    Full Text Available The research results of the plating conditions, chemical composition and properties of Ni-B coatings and Ni-Re-B, Ni-Mo-B and Ni-W-B alloys are given. It was shown that introduction of alloying elements (Re, Мо and W in the composition of Ni-containing coatings modifies the catalytic activity of the alloys’ surface, with regard to the parallel reactions of dimethylamino-borane (DMAB heterogeneous hydrolysis, Ni reduction and evolving of the molecular hydrogen. It was found that with the increase in concentration of alloying element, boron content in the coatings is decreased to the trace amounts. The effect of alloys composition on hydrogen evolving overvoltage was studied. Due to the low overvoltage of hydrogen evolving (HE on the alloy Ni-Re-B surface (11 at.% Re, it can be used as electrode for hydrogen generation from water in the electrolytic cell with novel design and improved technical-economic indicators.

  18. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  19. Initial Assessment of CSA Group Niobium Boron Based Coatings on 4340 Steel

    Science.gov (United States)

    2017-07-01

    for protection of high-strength steel . 15. SUBJECT TERMS Niobium-Boron Based Coatings; 4340 Steel ; CSA Group 16. SECURITY CLASSIFICATION OF: 17...Technical Report ARWSB-TR-17026 Initial Assessment of CSA Group Niobium-Boron Based Coatings on 4340 Steel C.P. Mulligan... Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) C.P. Mulligan 5d. PROJECT NUMBER

  20. Multi-phase structures of boron-doped copper tin sulfide nanoparticles synthesized by chemical bath deposition for optoelectronic devices

    Science.gov (United States)

    Rakspun, Jariya; Kantip, Nathakan; Vailikhit, Veeramol; Choopun, Supab; Tubtimtae, Auttasit

    2018-04-01

    We investigated the influence of boron doping on the structural, optical, and electrical properties of copper tin sulfide (CTS) nanoparticles coated on a WO3 surface and synthesized using chemical bath deposition. Boron doping at concentrations of 0.5, 1.0, 1.5, and 2.0 wt% was investigated. The X-ray diffraction pattern of CTS showed the presence of monoclinic Cu2Sn3S7, cubic Cu2SnS3, and orthorhombic Cu4SnS4. Boron doping influenced the preferred orientation of the nanoparticles for all phase structures and produced a lattice strain effect and changes in the dislocation density. Increasing the concentration of boron in CTS from 0.5 wt% to 2.0 wt% reduced the band gap for all phases of CTS from 1.46 to 1.29 eV and reduced the optical transmittance. Optical constants, such as the refractive index, extinction coefficient, and dissipation factor, were also obtained for B-doped CTS. The dispersion behavior of the refractive index was investigated in terms of a single oscillator model and the physical parameters were determined. Fourier transform infrared spectroscopy confirmed the successful synthesis of CTS nanoparticles. Cyclic voltammetry indicated that optimum boron doping (<1.5 wt% for all phases) resulted in desirable p-n junction behavior for optoelectronic applications.

  1. Novel composite cBN-TiN coating deposition method: structure and performance in metal cutting

    International Nuclear Information System (INIS)

    Russell, W.C.; Malshe, A.P.; Yedave, S.N.; Brown, W.D.

    2001-01-01

    Cubic boron nitride coatings are under development for a variety of applications but stabilization of the pure cBN form and adhesion of films deposited by PVD and ion-based methods has been difficult. An alternative method for depositing a composite cBN-TiN film has been developed for wear related applications. The coating is deposited in a two-stage process utilizing ESC (electrostatic spray coating) and CVI (chemical vapor infiltration). Fully dense films of cBN particles evenly dispersed in a continuous TiN matrix have been developed. Testing in metal cutting has shown an increase in tool life (turning - 4340 steel) of three to seven times, depending of machining parameters, in comparison with CVD deposited TiN films. (author)

  2. Pattern Dependency and Loading Effect of Pure-Boron-Layer Chemical-Vapor Deposition

    NARCIS (Netherlands)

    Mohammadi, V.; De Boer, W.B.; Scholtes, T.L.M.; Nanver, L.K.

    2012-01-01

    The pattern dependency of pure-boron (PureB) layer chemical-vapor Deposition (CVD) is studied with respect to the correlation between the deposition rate and features like loading effects, deposition parameters and deposition window sizes. It is shown experimentally that the oxide coverage ratio and

  3. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Kyung; Kim, Min Woo; Lee, Hyeon Keun [KAIST, Daejeon (Korea, Republic of); Choi, Doo Jin; Kim, Jun Kyu; Cho, Sung Hyuk [Younsei University, Seoul (Korea, Republic of)

    2008-03-15

    Both ZrC and SiC layers are crucial layers in TRISO coated fuel particles since they prevent diffusion of fission products and provide mechanical strength for the fuel particle. However, each layer has its own defects, so the purpose of this study is to complement such defects of these layers. In this study, we carried out thermodynamic simulations before actual experiments. With these simulation results, we deposited the ZrC layers on SiC/graphite substrates through CVD process. SiC films on graphite have different microstructures which are a hemispherical angular, domed top and faceted structure at different deposition temperature, respectively. According to the microstructures of SiC, preferred orientation, hardness and elastic modules of deposited ZrC layer were changed. TRISO particles. The fracture the SiC coating layer occurred by the tensile stress due to the traditional pressure vessel failure criteria. It is important to find fracture stress of SiC coating layer by the internal pressurization test method. The finite-element analysis was carried out to obtain the empirical equation of strength evaluation. By using this empirical equation, the mechanical properties of several types of SiC coating film with different microstructure and thicknesses will discussed.

  4. Investigation of Boron Thermal Diffusion from Atmospheric Pressure Chemical Vapor Deposited Boron Silicate Glass for N-Type Solar Cell Process Application

    Directory of Open Access Journals (Sweden)

    Ikuo Kurachi

    2016-01-01

    Full Text Available An atmospheric pressure chemical vapor deposition (AP-CVD system has been newly developed for boron silicate glass (BSG film deposition dedicating to solar cell manufacturing. Using the system, thermal boron diffusion from the BSG film is investigated and confirmed in terms of process stability for surface property before BSG deposition and BSG thickness. No degradation in carrier lifetime is also confirmed. A boron diffusion simulator has been newly developed and demonstrated for optimization of this process. Then, the boron thermal diffusion from AP-CVD BSG is considered to be the suitable method for N-type silicon solar cell manufacturing.

  5. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    OpenAIRE

    Lei, Xuelin; Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming

    2013-01-01

    Thin boron doped diamond (BDD) film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co) micro drills by using the hot filament chemical vapor deposition (HFCVD) technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD) film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive streng...

  6. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  7. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Zhou, Fei, E-mail: fzhou@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Gao, Song; Wu, Zhiwei; Wang, Qianzhi [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Chen, Kangmin [Center of Analysis, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhifeng; Li, Lawrence Kwok-Yan [Advanced Coatings Applied Research Laboratory, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-07-30

    Highlights: • Cr-B-N coatings were deposited via adjusting the CrB{sub 2} target current. • Cr-B-N nanocomposite coatings consisted of CrN nanograins and amorphous BN phase. • The hardness of Cr-B-N coating increased firstly, and then decreased with increasing CrB{sub 2} target current. • The frictional behavior of Cr-B-N coatings deposited at different CrB{sub 2} target currents was compared in deionized water. • In comparison to CrN coatings, Cr-B-N coatings exhibited superior tribological properties in water. - Abstract: Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB{sub 2} target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB{sub 2} target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB{sub 2} target current of 2 A, and then decreased gradually with further increasing the CrB{sub 2} target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  8. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H. [KAIST, Daejeon (Korea, Republic of)

    2007-03-15

    Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis.

  9. Deposition and Characterization of TRISO Coating Layers

    International Nuclear Information System (INIS)

    Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H.

    2007-03-01

    Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis

  10. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  11. Thermal Barrier Coatings Resistant to Glassy Deposits

    Science.gov (United States)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  12. Influence of high power density plasma irradiation on the boron carbide coating on tungsten

    Science.gov (United States)

    Begrambekov, L. B.; Grunin, A. V.; Puntakov, N. A.; Sadovskiy, Ya A.; Utkov, N. S.

    2017-05-01

    The paper considers an influence of T-10 tokamak plasma disruption on boron carbide (B4C) coating on tungsten. The power density of coating irradiation reached 100 MW/m2. The relief and composition of the boron carbide coating sample areas heated up to different temperature due to influence of disruption is determined. Conclusion is made that B4C does not change integrity, when heated to temperatures of up to 2000 K. Local melting was observed in areas heated up to 2500 K. In the range of 2500-3600 K most of the coating was melted and collected into droplets. Composition rate is reduced to B:C = 1:1. In all temperature ranges the coating remained continuous and provided protection of tungsten from direct plasma irradiation.

  13. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel.

    Science.gov (United States)

    Husain, Esam; Narayanan, Tharangattu N; Taha-Tijerina, Jose Jaime; Vinod, Soumya; Vajtai, Robert; Ajayan, Pulickel M

    2013-05-22

    Recently, two-dimensional, layered materials such as graphene and hexagonal boron nitride (h-BN) have been identified as interesting materials for a range of applications. Here, we demonstrate the corrosion prevention applications of h-BN in marine coatings. The performance of h-BN/polymer hybrid coatings, applied on stainless steel, were evaluated using electrochemical techniques in simulated seawater media [marine media]. h-BN/polymer coating shows an efficient corrosion protection with a low corrosion current density of 5.14 × 10(-8) A/cm(2) and corrosion rate of 1.19 × 10(-3) mm/year and it is attributed to the hydrofobic, inert and dielectric nature of boron nitride. The results indicated that the stainless steel with coatings exhibited improved corrosion resistance. Electrochemical impedance spectroscopy and potentiodynamic analysis were used to propose a mechanism for the increased corrosion resistance of h-BN coatings.

  14. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    Science.gov (United States)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  15. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.

  16. Thin boron phosphide coating as a corrosion-resistant layer

    Science.gov (United States)

    Not Available

    1982-08-25

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

  17. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  18. Electrochemical deposition of Ni–TiN nanocomposite coatings and ...

    Indian Academy of Sciences (India)

    s12034-016-1238-3. Electrochemical deposition of Ni–TiN nanocomposite coatings and the effect of sodium dodecyl sulphate surfactant on the coating properties. NAFISE PARHIZKAR1, ABOLGHASEM DOLATI1, ROYA AGHABABAZADEH2 and.

  19. Perennial soybean seeds coated with high doses of boron and zinc ...

    African Journals Online (AJOL)

    The objective of this work was to study combinations of high doses of boron (B) and zinc (Zn) in the recoating of perennial soybean seeds, in order to provide these nutrients to the future plants. The physical, physiological and nutritional characteristics of the coated seeds and initial development of plants in a greenhouse ...

  20. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  1. Boron carbide-based coatings on graphite for plasma facing components

    International Nuclear Information System (INIS)

    Valentine, P.G.; Trester, P.W.; Winter, J.; Linke, J.; Duwe, R.; Wallura, E.; Philipps, V.

    1994-01-01

    In the effort to evaluate boron-rich coatings as plasma facing surfaces in fusion devices, a new process for applying boron carbide (B 4 C) coatings to graphite was developed. The process entails eutectic melting of the carbon (C) substrate surface with a precursor layer of B 4 C particles. Adherent coatings were achieved which consisted of two layers: a surface layer and a graded penetration zone in the outer portion of the substrate. The surface-layer microstructure was multiphase and ranged from reaction-sintered structures of sintered B 4 C particles in an eutectic-formed matrix to that of hypereutectic carbon particles in a B 4 C-C eutectic matrix. Because of high surface energy, the coating generally developed a nonuniform thickness. Quantitative evaluations of the coating were performed with limiters in the TEXTOR fusion device and with coupons in electron beam tests. Test results revealed the following: good adherence of the coating even after remelting; and, during remelting, diagnostics detected a corresponding interaction of boron with the plasma

  2. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  3. High Energy Radial Deposition of Diamond-Like Carbon Coatings

    Directory of Open Access Journals (Sweden)

    Konrad Suschke

    2015-07-01

    Full Text Available Diamond-like carbon (DLC coatings were deposited with a new direct ion deposition system using a novel 360 degree ion source operating at acceleration voltage between 4 and 8 kV. Cross-sectional TEM images show that the coatings have a three layered structure which originates from changes in the deposition parameters taking into account ion source condition, ion current density, deposition angles, ion sputtering and ion source movement. Varying structural growth conditions can be achieved by tailoring the deposition parameters. The coatings show good promise for industrial use due to their high hardness, low friction and excellent adhesion to the surface of the samples.

  4. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  5. In situ synthesis of a large area boron nitride/graphene monolayer/boron nitride film by chemical vapor deposition

    Science.gov (United States)

    Wu, Qinke; Jang, Sung Kyu; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Lee, Young Hee; Lee, Sungjoo; Song, Young Jae

    2015-04-01

    We describe the successful in situ chemical vapor deposition synthesis of a graphene-based heterostructure in which a graphene monolayer is protected by top and bottom boron nitride films. The boron nitride film/graphene monolayer/boron nitride film (BGB) was found to be a mechanically robust and chemically inert heterostructure, from which the deleterious effects of mechanical transfer processes and unwanted chemical doping under air exposure were eliminated. The chemical compositions of each film layer were monitored ex situ using UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy, and the crystalline structures were confirmed using transmission electron microscopy and selected-area electron diffraction measurements. The performance of the devices fabricated using the BGB film was monitored over six months and did not display large changes in the mobility or the Dirac point, unlike the conventional graphene devices prepared on a SiO2 substrate. The in situ-grown BGB film properties suggest a novel approach to the fabrication of commercial-grade graphene-based electronic devices.We describe the successful in situ chemical vapor deposition synthesis of a graphene-based heterostructure in which a graphene monolayer is protected by top and bottom boron nitride films. The boron nitride film/graphene monolayer/boron nitride film (BGB) was found to be a mechanically robust and chemically inert heterostructure, from which the deleterious effects of mechanical transfer processes and unwanted chemical doping under air exposure were eliminated. The chemical compositions of each film layer were monitored ex situ using UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy, and the crystalline structures were confirmed using transmission electron microscopy and selected-area electron diffraction measurements. The performance of the devices fabricated using the BGB film was monitored over six months and did not display large changes in the

  6. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Science.gov (United States)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio; Chater, Richard J.; Cañamares, Maria Vega; Marco, José F.; Castillejo, Marta

    2015-02-01

    Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  7. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, O., E-mail: omar.jimenez.udg@gmail.com [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Audronis, M.; Leyland, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Flores, M.; Rodriguez, E. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Kanakis, K.; Matthews, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-09-30

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB{sub 2}/Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N{sub 2} reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  8. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    International Nuclear Information System (INIS)

    Jimenez, O.; Audronis, M.; Leyland, A.; Flores, M.; Rodriguez, E.; Kanakis, K.; Matthews, A.

    2015-01-01

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB 2 /Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N 2 reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  9. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  10. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  11. Electrolytic deposition and corrosion resistance of Zn–Ni coatings

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  12. Corrosion behaviour of layers obtained by nitrogen implantation into boron films deposited onto iron substrates

    International Nuclear Information System (INIS)

    Marchetti, F.; Fedrizzi, L.; Giacomozzi, F.; Guzman, L.; Borgese, A.

    1985-01-01

    The electrochemical behaviour and corrosion resistance of boron films deposited onto Armco iron after bombardment with 100 keV N + ions were determined in various test solutions. The changes in the electrochemical parameters give evidence of lower anodic dissolution rates for the treated samples. Scanning electron microscopy and Auger analysis of the corroded surfaces confirm the presence of protective layers. (Auth.)

  13. Determination and optimization of the ζ potential in boron electrophoretic deposition on aluminium substrates

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Pino, E.S.

    1991-05-01

    In this work we present an introduction of the electrophoretic process followed by a detailed experimental treatment of the technique used in the determination and optimization of the ζ-potential, mainly as a function of the electrolyte concentration, in a high purity boron electrophoretics deposition on aluminium substrates used as electrodes in neutron detectors. (author)

  14. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper

    DEFF Research Database (Denmark)

    Kidambi, Piran R.; Blume, Raoul; Kling, Jens

    2014-01-01

    Using a combination of complementary in situ X-ray photoelectron spectroscopy and X-ray diffraction, we study the fundamental mechanisms underlying the chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) on polycrystalline Cu. The nucleation and growth of h-BN layers is found to occ...

  15. Properties of boron-carbon-nitrogen ternary thin films synthesized by pulsed laser deposition

    Science.gov (United States)

    Ren, ZhongMin; Lu, Yongfeng; Mai, ZhiHong; Cheong, B. A.; Chow, S. K.; Wang, Jian P.; Chong, Tow Chong

    1999-07-01

    Boron-Carbon-Nitride BxCyNz thin films were deposited by excimer laser ablation of boron carbide under nitrogen ion-beam bombardment. Thin films were deposited in the intersection of the ablated B-C plasma and nitrogen ion beam on the silicon substrates. The laser pulse energy was selected in the range of 30-100 mJ with pulse duration of 23 ns. The electronic and compositional properties of the deposited thin films were analyzed by x-ray photoelectron spectroscope, Raman and IR spectroscope, scanning tunneling microscopy and ellipsometry measurements. The influence of the ion beam bombardment on the optical, electrical and electronic properties of the deposited thin films was studied.

  16. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites

    Science.gov (United States)

    Palmer, M.R.; Slack, J.F.

    1989-01-01

    Boron isotope ratios (11B/10B) have been measured on 60 tourmaline separates from over 40 massive sulfide deposits and tourmalinites from a variety of geologic and tectonic settings. The coverage of these localities is global (5 continents) and includes the giant ore bodies at Kidd Creek and Sullivan (Canada), Broken Hill (Australia), and Ducktown (USA). Overall, the tourmalines display a wide range in ??11B values from -22.8 to +18.3??? Possible controls over the boron isotopic composition of the tourmalines include: 1) composition of the boron source, 2) regional metamorphism, 3) water/rock ratios, 4) seawater entrainment, 5) temperature of formation, and 6) secular variations in seawater ??11B. The most significant control appears to be the composition of the boron source, particularly the nature of footwall lithologies; variations in water/ rock ratios and seawater entrainment are of secondary importance. The boron isotope values seem especially sensitive to the presence of evaporites (marine and non-marine) and carbonates in source rocks to the massive sulfide deposits and tourmalinites. ?? 1989 Springer-Verlag.

  17. Protective silicon coating for nanodiamonds using atomic layer deposition

    International Nuclear Information System (INIS)

    Lu, J.; Wang, Y.H.; Zang, J.B.; Li, Y.N.

    2007-01-01

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH 4 ). The coating was performed by sequential reaction of SiH 4 saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability

  18. Coating of titanium implants with boron nitride by RF-magnetron ...

    Indian Academy of Sciences (India)

    Coating of titanium implants with boron nitride by RF-magnetron sputtering. CEREN GÖKMENO ˘GLU1,∗, NURDAN ÖZMERIÇ2, GAYE ÇAKAL3, NIHAN DÖKMETAS4,. CANSU ERGENE4 and BILGIN KAFTANO ˘GLU4. 1Department of Periodontology, Faculty of Dentistry, Ordu University, Güzelyalı Bulvarı 52100, Ordu, ...

  19. Mechanical behavior enhancement of defective graphene sheet employing boron nitride coating via atomistic study

    Science.gov (United States)

    Setoodeh, A. R.; Badjian, H.

    2017-12-01

    The most stable form of boron nitride polymorph naming hexagonal boron nitride sheet has recently been widely concerned like graphite due to its interesting features such as electrical insulation and high thermal conductivity. In this study, the molecular dynamic simulations are implemented to investigate the mechanical properties of single-layer graphene sheets under tensile and compressive loadings in the absence and presence of boron–nitride coating layers. In this introduced hybrid nanostructure, the benefit of combining both individual interesting features of graphene and boron–nitride sheets such as exceptional mechanical and electrical properties can be simultaneously achieved for future potential application in nano devices. The influences of chiral indices, boundary conditions and presence of mono-atomic vacancy defects as well as coating dimension on the mechanical behavior of the resulted hybrid structure are reported. The interatomic forces between the atoms are modeled by employing the AIREBO and Tersoff–Brenner potentials for carbon–carbon and boron–nitrogen atoms in each layer, respectively. Furthermore, the van der Waal interlayer forces of carbon–boron and carbon–nitrogen are estimated by the Lennard–Jones potential field. Besides the potential improvement in electrical and physical properties of the nanostructure, it is demonstrated that the buckling load capacity of the fully coated graphene sheet with 3% concentration of mono-atomic vacancy defects noticeably enhances by amounts of 24.1%.

  20. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao; Shen Ji

    2011-01-01

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  1. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China); Shen Ji, E-mail: shenji@ustc.edu.c [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2011-02-15

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  2. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  3. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Chunyuan; Dong, Qi; Tulugan, Kelimu; Park, Yeong Min; More, Mahendra A; Kim, Jaeho; Kim, Tae Gyu

    2016-02-01

    In this research, catalyst-free vertically aligned boron doped carbon nanowalls films were fabricated on silicon (100) substrates by MPECVD using feeding gases CH4, H2 and B2H6 (diluted with H2 to 5% vol) as precursors. The substrates were pre-seeded with nanodiamond colloid. The fabricated CNWs films were characterized by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The data obtained from SEM confirms that the CNWs films have different density and wall thickness. From Raman spectrum, a G peak around 1588 cm(-1) and a D band peak at 1362 cm(-1) were observed, which indicates a successful fabrication of CNWs films. The EDX spectrum of boron doped CNWs film shows the existence of boron and carbon. Furthermore, field emission properties of boron doped carbon nanowalls films were measured and field enhancement factor was calculated using Fowler-Nordheim plot. The result indicates that boron doped CNWs films could be potential electron emitting materials.

  4. Physically vapor deposited coatings on tools: performance and wear phenomena

    International Nuclear Information System (INIS)

    Koenig, W.; Fritsch, R.; Kammermeier, D.

    1991-01-01

    Coatings produced by physical vapor deposition (PVD) enhance the performance of tools for a broad variety of production processes. In addition to TiN, nowadays (Ti,Al)N and Ti(C,N) coated tools are available. This gives the opportunity to compare the performance of different coatings under identical machining conditions and to evaluate causes and phenomena of wear. TiN, (Ti,Al)N and Ti(C,N) coatings on high speed steel (HSS) show different performances in milling and turning of heat treated steel. The thermal and frictional properties of the coating materials affect the structure, the thickness and the flow of the chips, the contact area on the rake face and the tool life. Model tests show the influence of internal cooling and the thermal conductivity of coated HSS inserts. TiN and (Ti,Zr)N PVD coatings on cemented carbides were examined in interrupted turning and in milling of heat treated steel. Experimental results show a significant influence of typical time-temperature cycles of PVD and chemical vapor deposition (CVD) coating processes on the physical data and on the performance of the substrates. PVD coatings increase tool life, especially towards lower cutting speeds into ranges which cannot be applied with CVD coatings. The reason for this is the superior toughness of the PVD coated carbide. The combination of tough, micrograin carbide and PVD coating even enables broaching of case hardened sliding gears at a cutting speed of 66 m min -1 . (orig.)

  5. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  6. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  7. Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride

    Science.gov (United States)

    Rice, Anthony; Allerman, Andrew; Crawford, Mary; Beechem, Thomas; Ohta, Taisuke; Spataru, Catalin; Figiel, Jeffrey; Smith, Michael

    2018-03-01

    The use of metal-organic chemical vapor deposition at high temperature is investigated as a means to produce epitaxial hexagonal boron nitride (hBN) at the wafer scale. Several categories of hBN films were found to exist based upon precursor flows and deposition temperature. Low, intermediate, and high NH3 flow regimes were found to lead to fundamentally different deposition behaviors. The low NH3 flow regimes yielded discolored films of boron sub-nitride. The intermediate NH3 flow regime yielded stoichiometric films that could be deposited as thick films. The high NH3 flow regime yielded self-limited deposition with thicknesses limited to a few mono-layers. A Langmuir-Hinshelwood mechanism is proposed to explain the onset of self-limited behavior for the high NH3 flow regime. Photoluminescence characterization determined that the intermediate and high NH3 flow regimes could be further divided into low and high temperature behaviors with a boundary at 1500 °C. Films deposited with both high NH3 flow and high temperature exhibited room temperature free exciton emission at 210 nm and 215.9 nm.

  8. Microstructure of WC/C coatings deposited on steel substrates

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Carvalho, N.J.M.; Brebbia, CA

    2001-01-01

    Electron microscopy, including scanning (SEM), transmission (TEM) and high-resolution (HRTEM) were employed to characterise slightly different tungsten carbide/carbon coatings deposited onto steel substrates. Complementary techniques, such as X-ray diffraction (XRD), Auger electron spectroscopy

  9. Improvement in energy release properties of boron-based propellant by oxidant coating

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Daolun; Liu, Jianzhong, E-mail: jzliu@zju.edu.cn; Chen, Binghong; Zhou, Junhu; Cen, Kefa

    2016-08-20

    Highlights: • NH{sub 4}ClO{sub 4}, KNO{sub 3}, KClO{sub 4} and HMX coated B were used to prepare propellant samples. • FTIR, XRD and SEM were used for the microstructure analysis of the prepared B. • Thermal oxidation and combustion characteristics of the propellants were studied. • HMX coating was the most beneficial to the energy release of the samples. - Abstract: The energy release properties of a propellant can be improved by coating boron (B) particles with oxidants. In the study, B was coated with four different oxidants, namely, NH{sub 4}ClO{sub 4}, KNO{sub 3}, LiClO{sub 4}, and cyclotetramethylenetetranitramine (HMX), and the corresponding propellant samples were prepared. First, the structural and morphological analyses of the pretreated B were carried out. Then, the thermal analysis and laser ignition experiments of the propellant samples were carried out. Coating with NH{sub 4}ClO{sub 4} showed a better performance than mechanical mixing with the same component. Coating with KNO{sub 3} efficiently improved the ignition characteristics of the samples. Coating with LiClO{sub 4} was the most beneficial in reducing the degree of difficulty of B oxidation. Coating with HMX was the most beneficial in the heat release of the samples. The KNO{sub 3}-coated sample had a very high combustion intensity in the beginning, but then it rapidly became weak. Large amounts of sparks were ejected during the combustion of the LiClO{sub 4}-coated sample. The HMX-coated sample had the longest self-sustaining combustion time (4332 ms) and the highest average combustion temperature (1163.92 °C).

  10. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Administrator

    are meas- ured, and are compared with that of metallic cadmium coating. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition of deposited coatings were studied using a scanning electron microscope (JEOL JSM-6480) with EDS attachment.

  11. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  12. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu, E-mail: lfchen@xmu.edu.cn

    2016-09-30

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiC{sub f}/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  13. Cracking and interfacial debonding of the Al–Si coating in hot stamping of pre-coated boron steel

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Zhong-Xiang; Wang, Kai; Zhang, Yi-Sheng [College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhu, Bin, E-mail: zhubin26@gmail.com [College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-15

    Highlights: • Cracking failure of the Al–Si coating in hot stamping process was investigated. • Microcracks initiated inside the coating during the austenitization. • Microcrack initiation in the hot deformation correlated to the Fe–Al intermetallics. • Macrocracks extended along the Mode I path led to the coating break into segments. • Macrocracks growth followed Mode II path resulted in the interfacial debonding. - Abstract: This study is focused on the mechanisms of cracks initiation, propagation and interfacial debonding of the Al–Si coating in hot stamping of the pre-coated boron steel. The investigation was performed isothermally at three deformation temperatures (700, 750, 800 °C) at a strain rate of 0.1/s. Cracking and interfacial debonding of the coating were observed with optical and scanning electron microscope, to reveal the damage evolution under applied tensile strains. Microstructures and phase inside the coating before and after austenitization were determined by energy dispersive spectroscopy and X-ray diffraction. The results indicate that austenitization led to micro-cracks and Kirkendall voids initiation inside the Al–Si coating because of thermal loading, and the cracks were arrested by α-Fe diffusion layer. When the coating on substrate system was submitted to the uniaxial tensile test, the surface coating exhibited multiple cracking normal to the tensile direction. The Kirkendall voids seemed to promote the macro-crack growth through the diffusion layer. The macro-cracks followed a Mode I path, leading to the coating deteriorates to cracked segments. The macro-cracks then continued to propagate following a Mode II path that along the diffusion layer/substrate interface because of shear stress transferred from the deformed substrate, resulting in the interfacial debonding of the coating segments. The crack density firstly increased with the increasing tensile strain and then reached saturation. Decreasing deformation

  14. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, W.T. [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China); Su, C.Y., E-mail: cysu@ntut.edu.tw [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan (China); Huang, T.S. [China Steel Corporation, Kaohsiung, Taiwan (China); Liao, W.H. [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China); Nano Technology Laboratory, Department of Materials Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2013-05-15

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C.

  15. Synthesis of Few-Layer, Large Area Hexagonal-Boron Nitride by Pulsed Laser Deposition (POSTPRINT)

    Science.gov (United States)

    2014-09-01

    electrons, and minimal sites for adsorbed surface impurities [7]. The use of exfoliated h BN as a substrate dielectric material in graphene devices has...by annealing at 1000 °C [16]. This also includes recent reports on the direct CVD growth of h BN on the surface of epitaxial graphene with an ammonia...AFRL-RX-WP-JA-2015-0050 SYNTHESIS OF FEW-LAYER, LARGE AREA HEXAGONAL-BORON NITRIDE BY PULSED LASER DEPOSITION (POSTPRINT) Nicholas R Glavin

  16. Structure And Properties Of PVD Coatings Deposited On Cermets

    Directory of Open Access Journals (Sweden)

    Żukowska L.

    2015-06-01

    Full Text Available The main aim of the research is the investigation of the structure and properties of single-layer and gradient coatings of the type (Ti,AlN and Ti(C,N deposited by physical vapour deposition technology (PVD on the cermets substrate.

  17. Electrochemical deposition of Ni–TiN nanocomposite coatings and ...

    Indian Academy of Sciences (India)

    The effects of deposition current density, electrolyte agitation speed and the number of particles in the solution on the amount of incorporated particles in the coating process were investigated. The optimum deposition current density of 4 A dm − 2 and agitation speed of 450 rpm were obtained. The effect of sodium dodecyl ...

  18. Electrochemical deposition of mineralized BSA/collagen coating.

    Science.gov (United States)

    Zhuang, Junjun; Lin, Jun; Li, Juan; Wang, Huiming; Cheng, Kui; Weng, Wenjian

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170-0.173mg/cm(2), enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Deposition of boron on fuel rod surface under sub-cooled boiling conditions-An approach toward understanding AOA occurrence

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Asakura, Yamato; Suzuki, Hiroaki

    2011-01-01

    Highlights: → AOA is one of key issues for maintaining stable PWR operation. → AOA is caused by boron accumulation on fuel rods under sub-cooled boiling. → Unstable depositing boron was seldom measured on fuel rods. → MED model was originally developed for crud deposition on boiling surface. → Amount of boron on fuel rod can be evaluated with MED model. - Abstract: In PWR primary coolant, it has been assumed that Li and B ions deposited on fuel rod surface under sub-cooled boiling conditions and they changed their chemical forms by chemical reaction with nickel iron oxides on the fuel surface. Accumulated boron on the fuel led to axial offset anomaly (AOA). In the present paper, the amount of boron deposited on the fuel surface was evaluated from two directions. The first calculated the amount with the extended micro-layer evaporation and dry-out (MED) model and the other estimated it from the viewpoint of reactor reactivity (neutron economy calculation). The MED model, which was developed for predicting iron crud deposition on the boiling surface of BWR fuel rods, was extended for application to metallic ion deposition, and modified to evaluate deposition of crud and metallic ions on sub-cooled boiling surface. Processes of growth and collapse of bubbles were calculated to determine the time from bubble generation to collapse and total evaporation volume and deposition amount of boron and metallic ions and their oxides on the fuel rod surface for a bubble. Finally chemical reaction rates of boron and metallic ions were calculated in the deposits. From the evaluation, it was concluded that: (i) the calculated deposition amount of boron on the fuel rod surface, which was four or forty times larger than measured amounts of boron and nickel oxides compounds, was seldom measured in the fuel deposits due to its high release rate; (ii) its hideout return during the reactor shutdown period was seldom observed due to its high concentration in the primary coolant

  20. Enhancement and retardation of thermal boron diffusion in silicon from atmospheric pressure chemical vapor deposited boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2014-03-01

    Thermal boron diffusion into silicon from boron silicate glass (BSG) prepared by atmospheric pressure CVD (AP-CVD) has been investigated in terms of the BSG boron concentration dependence on diffusion mechanism for N-type solar cell applications. With thermal diffusion at 950 °C in N2 for 20 min, the sheet resistance of the boron-diffused layer decreases with BSG boron concentration up to approximately 4 × 1021 cm-3 at which a boron-rich layer (BRL) is formed at the surface. However, the resistance increases with BSG boron concentration when the BSG boron concentration is higher than 4 × 1021 cm-3. It is also confirmed that the diffusion depth decreases with increasing BSG boron concentration within this BSG concentration region. To clarify this mechanism, the BSG boron concentration dependence on boron diffusivity has also been studied. From extracted diffusivities, the anomalous diffusion can be explained by silicon interstitials formed owing to kick-out by diffused boron atoms and by silicon interstitial generation-degradation due to BRL formation.

  1. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    International Nuclear Information System (INIS)

    Dowling, D P; Law, V J; Ardhaoui, M; Stallard, C; Maher, S; Keenan, A

    2016-01-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV–VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer. (paper)

  2. Boron-coated straws as a replacement for {sup 3}He-based neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey L., E-mail: jlacy@proportionaltech.com [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States); Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B. [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States)

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of {sup 3}He gas. It is estimated that the annual demand of {sup 3}He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on {sup 3}He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of {sup 10}B-enriched boron carbide ({sup 10}B{sub 4}C). In addition to the high abundance of boron on Earth and low cost of {sup 10}B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional {sup 3}He-based detectors, and alternate technologies such as {sup 10}BF{sub 3} tubes and {sup 10}B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed {sup 3}He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter {sup 3}He tube, 187 cm long, pressurized to 3 atm.

  3. Boron-coated straws as a replacement for 3He-based neutron detectors

    International Nuclear Information System (INIS)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-01-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3 He gas. It is estimated that the annual demand of 3 He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3 He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10 B-enriched boron carbide ( 10 B 4 C). In addition to the high abundance of boron on Earth and low cost of 10 B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3 He-based detectors, and alternate technologies such as 10 BF 3 tubes and 10 B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3 He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3 He tube, 187 cm long, pressurized to 3 atm.

  4. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  5. Highly conductive boron-doped hydrogenated microcrystalline silicon films obtained by hot wire deposition

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W. [IEF5-Photovoltaik, Forschungszentrum Juelich (Germany); Malibu GmbH and Co. KG, Bielefeld (Germany); Carius, R.; Einsele, F.; Lennartz, D.; Niessen, L.; Pennartz, F. [IEF5-Photovoltaik, Forschungszentrum Juelich (Germany)

    2010-04-15

    The growth of highly conductive boron doped microcrystalline silicon by the hot wire method was studied. Various series of films were deposited to investigate the influence of the deposition parameters on conductivity, crystallinity and (void-related) microstructure. Maximum (room temperature) conductivities > 200 S/cm with carrier mobilities > 2.5 cm{sup 2}/Vs were achieved. While a high crystallinity is the major requirement for achieving high conductivities, the microstructure is also of influence. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Boron nitride protective coating of beryllium window surfaces

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1991-12-01

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment

  7. Methyldichloroborane evidenced as an intermediate in the chemical vapour deposition synthesis of boron carbide.

    Science.gov (United States)

    Reinisch, G; Patel, S; Chollon, G; Leyssale, J-M; Alotta, D; Bertrand, N; Vignoles, G L

    2011-09-01

    The most recent ceramic-matrix composites (CMC) considered for long-life applications as thermostructural parts in aerospace propulsion contain, among others, boron-rich phases like boron carbide. This compound is prepared by thermal Chemical Vapour Infiltration (CVI), starting from precursors like boron halides and hydrocarbons. We present a study aiming at a precise knowledge of the gas-phase composition in a hot-zone LPCVD reactor fed with BCl3, CH4 and H2, which combines experimental and theoretical approaches. This work has brought strong evidences of the presence of Methydichloroborane (MDB, BCl2CH3) in the process. It is demonstrated that this intermediate, the presence of which had never been formally proved before, appears for processing temperatures slightly lower than the deposition temperature of boron carbide. The study features quantum chemical computations, which provide several pieces of information like thermochemical and kinetic data, as well as vibration and rotation frequencies, reaction kinetics computations, and experimental gas-phase characterization of several species by FTIR, for several processing parameter sets. The main results are presented, and the place of MDB in the reaction scheme is discussed.

  8. Chemically vapor deposited coatings for multibarrier containment of nuclear wastes

    International Nuclear Information System (INIS)

    Rusin, J.M.; Shade, J.W.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Chemical vapor deposition (CVD) was selected as a feasible method to coat ceramic cores, since the technology has previously been demonstrated for high-temperature gas-cooled reactor (HTGR) fuel particles. CVD coatings, including SiC, PyC (pyrolytic carbon), SiO 2 , and Al 2 O 3 were studied. This paper will discuss the development and characterization of PyC and Al 2 O 3 CVD coatings on supercalcine cores. Coatings were applied to 2 mm particles in either fluidized or vibrating beds. The PyC coating was deposited in a fluidized bed with ZrO 2 diluent from C 2 H 2 at temperatures between 1100 and 1200 0 C. The Al 2 O 3 coatings were deposited in a vibrated bed by a two-stage process to minimize loss of PyC during the overcoating operation. This process involved applying 10 μm of Al 2 O 3 using water vapor hydrolysis of AlCl 3 and then switching to the more surface-controlled hydrolysis via the H 2 + CO 2 reaction (3CO 2 + 3H 2 + 2AlCl 3 = Al 2 O 3 + 6HCl + 3CO). Typically, 50 to 80 μm Al 2 O 3 coatings were applied over 30 to 40 μm PyC coatings. The coatings were evaluated by metallographic examination, PyC oxidation tests, and leach resistance. After air oxidation for 100 hours at 750 0 C, the duplex PyC/Al 2 O 3 coated particles exhibited a weight loss of 0.01 percent. Leach resistance is being determined for temperatures from 50 to 150 0 C in various solutions. Typical results are given for selected ions. The leach resistance of supercalcine cores is significantly improved by the application of PyC and/or Al 2 O 3 coatings

  9. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    International Nuclear Information System (INIS)

    Hu, Jianwei; Croft, Stephen; McElroy, Robert Dennis

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non- 3 He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235 U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  10. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non-3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  11. Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition

    International Nuclear Information System (INIS)

    Glavin, Nicholas R.; Jespersen, Michael L.; Check, Michael H.; Hu, Jianjun; Hilton, Al M.; Fisher, Timothy S.; Voevodin, Andrey A.

    2014-01-01

    Pulsed laser deposition (PLD) has been investigated as a technique for synthesis of ultra-thin, few-layer hexagonal boron nitride (h-BN) thin films on crystalline highly ordered pyrolytic graphite (HOPG) and sapphire (0001) substrates. The plasma-based processing technique allows for increased excitations of deposited atoms due to background nitrogen gas collisional ionizations and extended resonance time of the energetic species presence at the condensation surface. These processes permit growth of thin, polycrystalline h-BN at 700 °C, a much lower temperature than that required by traditional growth methods. Analysis of the as-deposited films reveals epitaxial-like growth on the nearly lattice matched HOPG substrate, resulting in a polycrystalline h-BN film, and amorphous BN (a-BN) on the sapphire substrates, both with thicknesses of 1.5–2 nm. Stoichiometric films with boron-to-nitrogen ratios of unity were achieved by adjusting the background pressure within the deposition chamber and distance between the target and substrate. The reduction in deposition temperature and formation of stoichiometric, large-area h-BN films by PLD provide a process that is easily scaled-up for two-dimensional dielectric material synthesis and also present a possibility to produce very thin and uniform a-BN. - Highlights: • PLD was used to synthesize boron nitride thin films on HOPG and sapphire substrates. • Lattice matched substrate allowed for formation of polycrystalline h-BN. • Nitrogen gas pressure directly controlled film chemistry and structure. • Technique allows for ultrathin, uniform films at reduced processing temperatures

  12. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  13. Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada

    Science.gov (United States)

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1999-01-01

    We report here the results of 54 boron isotope analyses of tourmaline associated with the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia, Canada. The ??11B values range from -11.1 to -2.9???, which is almost as great as the range found worldwide in tourmalines from 33 massive sulfide deposits and tourmalinites in dominantly clastic metasedimentary terranes. The major control on the overall ??11B values of the Sullivan tourmalinites is the boron source. Potential controls over the large range of the data also include: (1) differences in formation temperatures of the tourmalinites, (2) different stages of tourmaline formation, (3) variations in the proportions of dissolved boron incorporated into the tourmaline (Rayleigh fractionation), (4) seawater entrainment, and (5) post-depositional metamorphism. The boron isotope data at Sullivan are consistent with boron derivation from leaching of footwall clastic sediments. However, the great abundance of tourmaline in the Sullivan deposit suggests that the local clastic sediments were not the sole source of boron, and we argue that non-marine evaporites, buried deep below the orebody, are the most viable source of this additional boron. It is likely that some of the variation in tourmaline ??11B values reflect mixing of boron from these two sources. Comparison of the potential effects of these controls with geologic and other geochemical evidence suggests that major causes for the wide range of ??11B values measured at Sullivan are seawater entrainment and Rayleigh fractionation, although in places, post-depositional alteration and thermal metamorphism were important in determining ??11B values of some of the recrystallized tourmalinites.

  14. Deposition of selenium coatings on beryllium foils. Revision 1

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-01-01

    A technique for preparing selenium films on 50.8 micrometers thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. A water-cooled enclosure was used to minimize contamination of the vacuum system and to reduce the exposure of personnel to toxic and obnoxious materials. Profilometry measurements of the coatings indicated selenium thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 micrometers. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable deposition controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV

  15. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source....... This configuration enables a gentle treatment of sensitive materials like low-density polyethylene foils and biodegradable materials. SiOx coatings deposited in the novel setup were compared with other state of the art plasma coatings and were found to possess equally good or better barrier properties. The barrier...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  16. Collimated Magnetron Sputter Deposition for Mirror Coatings

    DEFF Research Database (Denmark)

    Vickery, A.; Cooper-Jensen, Carsten P.; Christensen, Finn Erland

    2008-01-01

    At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence that a collimat......At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence...... that a collimation of the sputtered particles is an efficient way to suppress the interfacial roughness of the produced multilayer. We present two different types of collimation optimized for the production of low roughness curved mirrors and flat mirrors, respectively....

  17. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  18. Polyamic acid coating of microspheres by oriented thermal vapor deposition

    International Nuclear Information System (INIS)

    Huang Yong; Zhang Zhanwen; Liu Yiyang; Li Bo; Chen Shufen; Qi Xiaobo

    2011-01-01

    In this paper, a study on the oriented thermal vapor deposition device which is used for coating microspheres with polyamic acid (PAA) is developed. Influences of the processing of monomer material and the adjusting of heating process on the deposition rate are discussed. Two different monomers are poured into two evaporators and evaporated independently, the deposition rate and film thickness are measured via two film thickness measuring probes with the crystal vibration. Space position and symmetry of sample pan, two probes and the oriented tube tip are adjusted so that two monomers' deposition ratio approximates to stoichiometric ratio. High quality coating of PAA on poly-alpha-methylstyrene microsphere is acquired by intermittent piezoelectricity vibration or striking which accompanies rotating of the sample pan. (authors)

  19. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Science.gov (United States)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  20. Influence of boron doping on mechanical and tribological properties ...

    Indian Academy of Sciences (India)

    Titanium alloy (Ti6Al4V) substrates were deposited with smooth multilayer coatings, by hot filament chemical vapour deposition technique. The effect of boron doping on lattice parameter, residual stresses, hardness and coefficient of friction in multilayer-diamond coating system was studied. The frictional behaviour of the ...

  1. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  2. Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    Abstract. The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, ...

  3. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Administrator

    trochemical corrosion resistance were carried out in the 5% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the ground of these research, the possibility of deposition of Zn–. Ni coatings contained 24–26% at. Ni was exhibited. It was stated, that surface morphology, chemical ...

  4. Multilayer Optical Coating Fabrication By Ion Beam Sputter Deposition

    Science.gov (United States)

    Becker, Juergen; Scheuer, Volker

    1989-02-01

    Ion Beam Sputter Deposition (IBSD) was proven to be a useful technique for producing high performance optical coatings. However, compared to other deposition techniques, several problems remain to be solved, such as low deposition rates, small areas with homogeneous deposition rate and the problem of contamination. In the work described here, a cubic vacuum chamber has been equipped with a commercially available ion beam source, a triple stage target holder and a rotating substrate holder. The primary interest was to get a reasonable deposition rate over a sufficiently large area. Single layers of SiO2, Ta205 and TiO2 and multilayers of Si02/Ta205 were produced. Contaminants in the films were analyzed by various techniques mainly by Total-Reflection X-ray Fluorescence (TXRF). Optical properties of the coatings were investigated to study the influence of the contaminants on the performance of the optical coatings. The optical properties were characterized by the refractive index, the absorption coefficient and the scattering behaviour. Scattering losses were measured by means of Total Integrated Scattering (TIS) and Angle Resolved Scattering (ARS). The damage threshold against high-power laser pulses of 1.06 pm was determined.

  5. Simulation of the optical coating deposition

    Science.gov (United States)

    Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander

    2018-04-01

    A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.

  6. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles

    Science.gov (United States)

    Gittard, Shaun D.; Miller, Philip R.; Jin, Chunming; Martin, Timothy N.; Boehm, Ryan D.; Chisholm, Bret J.; Stafslien, Shane J.; Daniels, Justin W.; Cilz, Nicholas; Monteiro-Riviere, Nancy A.; Nasir, Adnan; Narayan, Roger J.

    2011-06-01

    Microneedles are small-scale needle-like projections that may be used for transdermal delivery of pharmacologic agents, including protein-containing and nucleic acid-containing agents. Commercial translation of polymeric microneedles would benefit from the use of facile and cost effective fabrication methods. In this study, visible light dynamic mask microstereolithography, a rapid prototyping technique that utilizes digital light projection for selective polymerization of a liquid resin, was used for fabrication of solid microneedle array structures out of an acrylate-based polymer. Pulsed laser deposition was used to deposit silver and zinc oxide coatings on the surfaces of the visible light dynamic mask microstereolithography-fabricated microneedle array structures. Agar diffusion studies were used to demonstrate the antimicrobial activity of the coated microneedle array structures. This study indicates that light-based technologies, including visible light dynamic mask microstereolithography and pulsed laser deposition, may be used to fabricate microneedles with antimicrobial properties for treatment of local skin infections.

  7. Chemical solution deposition: a path towards low cost coated conductors

    International Nuclear Information System (INIS)

    Obradors, X; Puig, T; Pomar, A; Sandiumenge, F; Pinol, S; Mestres, N; Castano, O; Coll, M; Cavallaro, A; Palau, A; Gazquez, J; Gonzalez, J C; Gutierrez, J; Roma, N; Ricart, S; Moreto, J M; Rossell, M D; Tendeloo, G van

    2004-01-01

    The achievement of low cost deposition techniques for high critical current YBa 2 Cu 3 O 7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa 2 Cu 3 O 7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

  8. Deposition of tantalum carbide coatings on graphite by laser interactions

    Science.gov (United States)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  9. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  10. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Mingjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Jia; Liu, Shuan [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhang, Guangan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji, E-mail: qjxue@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-03-01

    Highlights: • Hexagonal boron nitride nanosheets were well dispersed by using water-soluble carboxylated aniline trimer as dispersant. • The best corrosion performance of waterborne epoxy coatings was achieved with the addition of 1 wt% h-BN. • The decrease of the pores and defects of coating matrix inhibits the diffusion and water absorption of corrosive medium in the coating. - Abstract: Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT{sup −}) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT{sup −}, as proved by Raman and UV–vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 10{sup 6} Ω cm{sup 2}) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  11. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  12. Performance of a Boron-Coated-Straw-Based HLNCC for International Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Angela T. [ORNL; Croft, Stephen [ORNL; McElroy, Robert Dennis [ORNL; Sun, Liang [Proportional Technologies Inc.; Hayward, Jason P. [ORNL

    2017-08-01

    3He gas has been used in various scientific and security applications for decades, but it is now in short supply. Alternatives to 3He detectors are currently being integrated and tested in neutron coincidence counter designs, of a type which are widely used in nuclear safeguards for nuclear materials assay. A boron-coated-straw-based design, similar to the High-Level Neutron Coincidence Counter-II, was built by Proportional Technologies Inc., and has been tested by the Oak Ridge National Laboratory (ORNL) at both the JRC in Ispra and ORNL. Characterization measurements, along with nondestructive assays of various plutonium samples, have been conducted to determine the performance of this coincidence counter replacement in comparison with other similar counters. This paper presents results of these measurements.

  13. Superhydrophobic coating deposited directly on aluminum

    International Nuclear Information System (INIS)

    Escobar, Ana M.; Llorca-Isern, Nuria

    2014-01-01

    This study develops an alternative method for enhancing superhydrophobicity on aluminum surfaces with an amphiphilic reagent such as the dodecanoic acid. The goal is to induce superhydrophobicity directly through a simple process on pure (99.9 wt%) commercial aluminum. The initial surface activation leading to the formation of the superhydrophobic coating is studied using confocal microscopy. Superhydrophobic behavior is analyzed by contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highest contact angle (approaching 153°) was obtained after forming hierarchical structures with a particular roughness obtained by grinding and polishing microgrooves on the aluminum surface together with the simultaneous action of HCl and dodecanoic acid. The results also showed that after immersion in the ethanol-acidic-fatty acid solutions, they reacted chemically through the action of the fatty acid, on the aluminum surface. The mechanism is analyzed by TOF-SIMS and XPS in order to determine the molecules involved in the reaction. The TOF-SIMS analysis revealed that the metal and its oxides seem to be necessary, and that free-aluminum is anchored to the fatty acid molecules and to the alumina molecules present in the medium. Consequently, both metallic aluminum and aluminum oxides are necessary in order to form the compound responsible for superhydrophobicity.

  14. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  15. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO₂ Composite Coatings on Stainless Steel (316L) Substrates.

    Science.gov (United States)

    Raddaha, Namir S; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A; Boccaccini, Aldo R

    2014-03-04

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO₂) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO₂ in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO₂ particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO₂ and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO₂ and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  16. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L Substrates

    Directory of Open Access Journals (Sweden)

    Namir S. Raddaha

    2014-03-01

    Full Text Available This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN and chitosan/h-BN/titania (TiO2 composites on SS316L substrates using electrophoretic deposition (EPD for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  17. Roll-to-roll vacuum deposition of barrier coatings

    CERN Document Server

    Bishop, Charles A

    2015-01-01

    It is intended that the book will be a practical guide to provide any reader with the basic information to help them understand what is necessary in order to produce a good barrier coated web or to improve the quality of any existing barrier product. After providing an introduction, where the terminology is outlined and some of the science is given (keeping the mathematics to a minimum), including barrier testing methods, the vacuum deposition process will be described. In theory a thin layer of metal or glass-like material should be enough to convert any polymer film into a perfect barrier material. The reality is that all barrier coatings have their performance limited by the defects in the coating. This book looks at the whole process from the source materials through to the post deposition handling of the coated material. This holistic view of the vacuum coating process provides a description of the common sources of defects and includes the possible methods of limiting the defects. This enables readers...

  18. Laser deposition of coatings for aeronautical and industrials turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Teleginski, V. [Instituto Federal de Sao Paulo (IFSP), SP (Brazil); Silva, S.A.; Riva, R.; Vasconcelos, G. [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil); Silva Pita, G.R. [Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Yamin, L.S. [Escola Tecnica Everardo Passos (ETEP), Sao Jose dos Campos, DP (Brazil)

    2016-07-01

    Full text: Zirconium-based ceramic materials are widely employed as Thermal Barrier Coatings (TBC), due to its excellent wear and corrosion resistance at high temperatures. The application of TBC includes aeronautical and industrials turbine blades. The working conditions include oxidizing environments and temperatures above 1000°C. The zirconium-based ceramics are developed in such a way that the microstructural control is possible through the control of chemical composition, fabrication route and, thermal treatment. The present paper proposes a laser route to deposit the TBC coating, where the microstructural control is a function of power density and interaction time between the laser beam and the material. The main objective of this work is to study the influence of the CO2 laser beam (Synrad Evolution 125) parameters: power density and interaction time, on the deposition process of yttria-stabilized zirconia (YSZ) powders on NiCrAlY/AISI 316L substrates. The resulting coating surface and interface were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results indicate that is possible to match laser parameters of scanning speed and intensity to produce homogenous coatings. The X-Ray analyses show that the obtained ceramic coating has reduced number of phases, with prevalence of tetragonal phase.(author)

  19. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  20. Stress measurement and stress relaxation during magnetron sputter deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Abendroth, B.; Gago, R.; Kolitsch, A.; Moeller, W.

    2004-01-01

    Dynamic in situ analysis of stress and film thickness provide fast and more physical information on growth and stress evolution in cBN layers than integrating (ex situ) methods. Especially, features of the layered structure of boron nitride films, like the evolution of instantaneous stress and growth rates during deposition can be resolved by in situ methods. This work is concerned with dynamic in-situ stress measurement by means of cantilever bending during magnetron sputter deposition of cBN thin films. Laser deflection in combination with in situ ellipsometry is used to determine the instantaneous stress of the films. The results show in agreement with results that were obtained previously from ion beam assisted deposition (IBAD), that the hBN and cBN layers exhibit different levels of stress under constant deposition conditions. The stress increases from less than -4 GPa to very high values (-10 GPa) after the coalescence of the cBN nuclei. Therefore, it is possible to establish the point of cBN nucleation instantly. A simultaneous medium energy ion bombardment is used for stress relaxation during film deposition. A modified substrate bias voltage, combining negative high and low voltage pulses, is used to enable an ion bombardment of the growing film with energies up to 8 keV. In this way, cBN films with a stress as low as -1.7 GPa could be produced without destroying the sp 3 -bonds significantly

  1. Advances in the electro-spark deposition coating process

    International Nuclear Information System (INIS)

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors

  2. Reduced-pressure chemical vapor deposition of boron-doped Si and Ge layers

    International Nuclear Information System (INIS)

    Bogumilowicz, Y.; Hartmann, J.M.

    2014-01-01

    We have studied the in-situ boron (B) doping of germanium (Ge) and silicon (Si) in Reduced Pressure-Chemical Vapor Deposition. Three growth temperatures have been investigated for the B-doping of Ge: 400, 600 and 750 °C at a constant growth pressure of 13300 Pa (i.e. 100 Torr). The B concentration in the Ge:B epilayer increases linearly with the diborane concentration in the gaseous phase. Single-crystalline Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. For the in-situ B doping of Si at 850 °C, two dichlorosilane mass flow ratios (MFR) have been assessed: F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0025 and F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0113 at a growth pressure of 2660 Pa (i.e. 20 Torr). Linear boron incorporation with the diborane concentration in the gas phase has been observed and doping levels in-between 3.5 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. We almost kept the same ratio of B versus Si atoms in the gas phase and in the Si epilayer. By contrast, roughly half of the B atoms present in the gas phase were incorporated in the Ge:B layers irrespective of the growth temperature. X-Ray Diffraction (XRD) allowed us to extract from the angular position of the Ge:B layer diffraction peak the substitutional B concentration. Values close to the B concentrations obtained by 4-probe resistivity measurements were obtained. Ge:B layers were smooth (< 1 m root mean square roughness associated with 20 × 20 μm 2 Atomic Force Microscopy images). Only for high F[B 2 H 6 ]/F[GeH 4 ] MFR (3.2 10 −3 ) did the Ge:B layers became rough; they were however still mono-crystalline (XRD). Above this MFR value, Ge:B layers became polycrystalline. - Highlights: • Boron doping of germanium and silicon in Reduced Pressure-Chemical Vapor Deposition • Linear boron incorporation in Ge:B and Si:B with the diborane flow • Single-crystal Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 • Single-crystal Si

  3. Growth of Boron-Rich Nanowires by Chemical Vapor Deposition (CVD

    Directory of Open Access Journals (Sweden)

    H. J. Kleebe

    2006-11-01

    Full Text Available B-rich nanowires are grown on Ni coated oxidized Si(111 substrate using diborane as the gas precursor in a CVD process at 20 torr and 900C∘. These nanowires have diameters around 20–100 nanometers and lengths up to microns. Icosahedron B12 is shown to be the basic building unit forming the amorphous B-rich nanowires as characterized by EDAX, XRD, XPS, and Raman spectroscopies. The gas chemistry at low [B2H6]/ [N2] ratio is monitored by the in situ mass spectroscopy, which identified N2 as an inert carrier gas leading to formation of the B-rich compounds. A nucleation controlled growth mechanism is proposed to explain the rugged nanowire growth of boron. The role of the Ni catalyst in the synthesis of the B-rich nanostructures is also discussed.

  4. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating – A molecular dynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Badjian, H.; Setoodeh, A.R., E-mail: setoodeh@sutech.ac.ir

    2017-02-15

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  5. Corrosion Resistance of Copper Coatings Deposited by Cold Spraying

    Science.gov (United States)

    Winnicki, M.; Baszczuk, A.; Jasiorski, M.; Małachowska, A.

    2017-12-01

    In the article, a study of corrosion resistance of copper and copper-based cermet (Cu+Al2O3 and Cu+SiC) coatings deposited onto aluminum alloy substrate using the low-pressure cold spraying method is presented. The samples were subjected to two different corrosion tests at room temperature: (1) Kesternich test and (2) a cyclic salt spray test. The selected tests were allowed to simulate service conditions typical for urban, industrial and marine environment. Examination of corroded samples included analysis changes on the coating surface and in the microstructure. The physicochemical tests were carried out using x-ray diffraction to define corrosion products. Moreover, microhardness and electrical conductivity measurements were conducted to estimate mechanical and physical properties of the coatings after corrosion tests. XRD analysis clearly showed that regardless of corrosion conditions, for all samples cuprite (Cu2O) was the main product. However, in the case of Cu+Al2O3 cermet coating, chlorine- and sulfate-containing phases such as Cu2Cl(OH)3 (paracetamite) and Cu3(SO4)(OH)4 (antlerite) were also recorded. This observation gives better understanding of the lowest microstructure changes observed for Cu+Al2O3 coating after the corrosion tests. This is also a justification for the lowest decrease in electrical conductivity registered after the corrosion tests for this coating.

  6. Modification of material properties and coating deposition using plasma jet

    International Nuclear Information System (INIS)

    Pogrebnjak, A.D.; Rusimov, Sh.M.

    2006-01-01

    Full text: Using X-ray structure analysis (XRD), scanning electron microscopy (SEM) with micro-analysis, measurements of friction wear and micro-hardness, we studied surface melting effects of powder coatings AN-35, which appeared as a result of action of concentrated energy flows (pulsed plasma flows). Plasma detonation deposition of a powder on a stainless steel substrate were accompanied by formation of an alloyed surface structure, which basic element was α(hcp) and β(fcc) cobalt. A temperature diapason chosen for coating formation (according to the XRD analysis) provided the formation of intermetallic compounds of cobalt and chromium of Co x Cr y type. Pulsed-plasma surface melting of powder coatings also induced doping of the near surface layer by molybdenum atoms. We found that chosen methods of analysis and surface treatment regimes provided essentially decreased wear, as well as increased microhardness and nano hardness of the irradiated surfaces. It was demonstrated that a resulting increase in servicing characteristics was related to the processes of phase transformations occurring in the powder when it had been in a high temperature plasma-detonation flow as a result of pulsed plasma surface doping by molybdenum atoms, redistribution of the coating elements, appearance of micro- and nano-grain structure, as well as decreased coating porosity induced by thermal annealing by concentrated energy flows. New experimental results on the structure and the elemental and phase composition of hybrid coatings, which were deposited on a substrate of AISI 321 stainless steel using a combination of plasma detonation, vacuum arc and subsequent High-Current Electron Beam (HCEB) treatment, are presented. We found that an increase in energy density intensified mass-transfer processes and resulted in changes in aluminum oxide phase composition (γ→α and β→α). Also we observed the formation of a nano-crystalline structure in Al 2 O 3 coatings. Electron beam

  7. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  8. Atmospheric pressure chemical vapour deposition of boron doped titanium dioxide for photocatalytic water reduction and oxidation.

    Science.gov (United States)

    Carmichael, Penelope; Hazafy, David; Bhachu, Davinder S; Mills, Andrew; Darr, Jawwad A; Parkin, Ivan P

    2013-10-21

    Boron-doped titanium dioxide (B-TiO2) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO2 at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm(-2). Hydrogen production rates of B-TiO2 at 24 μL cm(-2) h(-1) far exceeded undoped TiO2 at 2.6 μL cm(-2) h(-1). The B-TiO2 samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent.

  9. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  10. Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer

    International Nuclear Information System (INIS)

    Lee, Jong Hoon; Kim, Sun Hye; Cho, Doo Ho; Kim, Se Chang; Baek, Seung Guk; Lee, Jong Gu; Choi, Jae-Boong; Seok, Chang Sung; Kim, Moon Ki; Koo, Ja Choon; Lim, Byeong Soo; Kang, Junmo

    2012-01-01

    Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

  11. Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hoon; Kim, Sun Hye; Cho, Doo Ho; Kim, Se Chang; Baek, Seung Guk; Lee, Jong Gu; Choi, Jae-Boong; Seok, Chang Sung; Kim, Moon Ki; Koo, Ja Choon; Lim, Byeong Soo [Sungkyunkwan University, Suwon (Korea, Republic of); Kang, Junmo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-03-15

    Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

  12. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    Energy Technology Data Exchange (ETDEWEB)

    Strąkowska, Paulina [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Beutner, René [Max Bergmann Center, Technische Universität Dresden (Germany); Gnyba, Marcin [Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Zielinski, Andrzej [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Scharnweber, Dieter, E-mail: Dieter.Scharnweber@tu-dresden.de [Max Bergmann Center, Technische Universität Dresden (Germany)

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  13. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    International Nuclear Information System (INIS)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-01-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  14. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals

    KAUST Repository

    Zhong, Bo

    2017-05-31

    We report herein the synthesis of a novel hexagonal boron nitride nanocrystal/graphite nanoflake (h-BNNC/GNF) composite through a wet-chemistry coating of graphite nanoflakes and subsequent in-situ thermal treatment process. The characterization results of X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrum, and X-ray photoelectron spectroscopy demonstrate that h-BNNCs with diameter of tens of nanometers are highly crystallized and anchored on the surfaces of graphite nanoflakes without obvious aggregation. The minimum reflection loss (RL) value of the h-BNNC/GNF based absorbers could reach −32.38dB (>99.99% attenuation) with the absorber thickness of 2.0mm. This result is superior to the other graphite based and some dielectric loss microwave absorption materials recently reported. Moreover, the frequency range where the RL is less than −10dB is 3.49-17.28GHz with the corresponding thickness of 5.0 to 1.5mm. This reveals a better electromagnetic microwave absorption performance of h-BNNC/GNFs from the X-band to the Ku-band. The remarkable enhancement of the electromagnetic microwave absorption properties of h-BNNC/GNFs can be assigned to the increase of multiple scattering, interface polarization as well as the improvement of the electromagnetic impedance matching of graphite nanoflakes after being coated with h-BNNCs.

  15. Chemical Vapor Deposition of ?-Boron Layers on Silicon for Controlled Nanometer-Deep p+n Junction Formation

    NARCIS (Netherlands)

    Sarubbi, F.; Scholtes, T.L.M.; Nanver, L.K.

    2009-01-01

    Nanometer-thick amorphous boron (?-B) layers were formed on (100) Si during exposure to diborane (B2H6) in a chemical vapor deposition (CVD) system, either at atmospheric or reduced pressures, at temperatures down to 500°C. The dependence of the growth mechanism on processing parameters was

  16. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings.

    Science.gov (United States)

    Lu, Xiang; Li, Kai; Xie, Youtao; Huang, Liping; Zheng, Xuebin

    2016-11-01

    In recent years, CaSiO 3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO 3 ceramic (Ca 11 Si 4 B 2 O 22 , B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO 3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca 11 Si 4 B 2 O 22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.

  17. Silver doped hydroxyapatite coatings by sacrificial anode deposition under magnetic field.

    Science.gov (United States)

    Swain, S; Rautray, T R

    2017-09-13

    Uniform distribution of silver (Ag) in the hydroxyapatite (HA) coated Ti surface has been a concern for which an attempt has been made to dope Ag in HA coating with and without magnetic field. Cathodic deposition technique was employed to coat Ag incorporated hydroxyapatite coating using a sacrificial silver anode method by using NdFeB bar magnets producing 12 Tesla magnetic field. While uniform deposition of Ag was observed in the coatings under magnetic field, dense coating was evident in the coating without magnetic field conditions. Uniformly distributed Ag incorporated HA in the present study has potential to fight microorganism while providing osseoconduction properties of the composite coating.

  18. Analysis of Properties of Hard Coatings and Wear Resistance of Chemical Vapour Deposition (PVD Coated Technology

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2015-01-01

    Full Text Available Modern coating methods are having become an important part of industry. Wear resistance, durability, toughness (breakage resistance and hot hardness (high hardness and chemical stability at high temperature are the four main technological properties necessary for durability and long life time. These proprieties are for productivity, economy and ecology very important point. This resource deals with the analysis of properties of hard coatings and wear resistance of chemical vapour deposition (PVD coated technology. It focuses on the preparation, execution and evaluation of test coatings on the front ball-milling cutters. Examination of these characteristic properties may give into an insight to the reason why some systems show excellent wear characteristic.

  19. Few-atomic-layered boron carbonitride nanosheets prepared by chemical vapor deposition.

    Science.gov (United States)

    Qin, Li; Yu, Jie; Kuang, Shengyong; Xiao, Chang; Bai, Xuedong

    2012-01-07

    Few-atomic-layered boron carbonitride (BCN) nanosheets have been grown on Si substrate by microwave plasma chemical vapor deposition from a gas mixture of CH(4)-N(2)-H(2)-BF(3). The grown BCN nanosheets are oriented with their base planes perpendicular to the substrate surface. Ultrathin BCN nanosheets with thickness from 2 to a few atomic layers account for a considerable portion of the products, although many of them have more than 10 layers. Photoluminescence is measured for the BCN nanosheets and intense emission at 3.27 eV with very weak defect-related emission is observed for the nanosheets with the composition of B(0.38)C(0.27)N(0.35). The present BCN nanosheets are promising for applications in nanoelectronics, catalyst supports, gas adsorption, etc.

  20. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2018-04-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  1. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2017-07-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  2. Direct deposition of cubic boron nitride films on tungsten carbide-cobalt.

    Science.gov (United States)

    Teii, Kungen; Matsumoto, Seiichiro

    2012-10-24

    Thick cubic boron nitride (cBN) films in micrometer-scale are deposited on tungsten carbide-cobalt (WC-Co) substrates without adhesion interlayers by inductively coupled plasma-enhanced chemical vapor deposition (ICP-CVD) using the chemistry of fluorine. The residual film stress is reduced because of very low ion-impact energies (a few eV to ∼25 eV) controlled by the plasma sheath potential. Two types of substrate pretreatment are used successively; the removal of surface Co binder using an acid solution suppresses the catalytic effect of Co and triggers cBN formation, and the surface roughening using mechanical scratching and hydrogen plasma etching increases both the in-depth cBN fraction and deposition rate. The substrate surface condition is evaluated by the wettability of the probe liquids with different polarities and quantified by the apparent surface free energy calculated from the contact angle. The surface roughening enhances the compatibility in energy between the cBN and substrate, which are bridged by the interfacial sp(2)-bonded hexagonal BN buffer layer, and then, the cBN overlayer is nucleated and evolved easier.

  3. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  4. Microstructure-property relationships of chemically vapor deposited zirconia fiber coating for environmentally durable silicon carbide/silicon carbide composites

    Science.gov (United States)

    Li, Hao

    In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating, which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 ( t-ZrO2) to monoclinic ZrO2 (m-ZrO 2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. It appeared that a low oxygen partial pressure in the CVD reactor chamber was essential for the nucleation of t-ZrO2 and therefore was responsible for the delamination behavior. With this understanding of the weak interface mechanism, minicomposite specimens containing various ZrO2 fiber coating morphologies were fabricated and tested. A fractographic analysis showed that in-situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 coating. We determined that an optimum microstructure of the ZrO2 coating should contain a predelaminated interface surrounded by a dense outer layer. The outer layer was needed to protect the fiber from degradation during the subsequent SiC matrix infiltration procedure. A preliminary tensile stress-rupture study indicated that the ZrO2 coating exhibited promising performance in terms of providing the weak interface behavior and maintaining the thermal and oxidative stability at elevated temperatures.

  5. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    Science.gov (United States)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  6. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shoudong; Yang Hengxiu; Li Jinlong; Huang Feng [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China); Song Zhenlun, E-mail: songzhenlun@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-04-15

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar{sup +} ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar{sup +} ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  7. Effect of Boron on Microstructure and Microhardness Properties of Mo-Si-B Based Coatings Produced Via TIG Process

    Directory of Open Access Journals (Sweden)

    Islak S.

    2016-09-01

    Full Text Available In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo–Si–B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the microstructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.

  8. RESEARCH OF PROCESS OF AN ALLOYING OF THE FUSED COATINGS RECEIVED FROM THE SUPERFICIAL ALLOYED WIRE BY BORON WITH IN ADDITIONALLY APPLIED ELECTROPLATED COATING OF CHROME AND COPPER

    Directory of Open Access Journals (Sweden)

    V. A. Stefanovich

    2015-01-01

    Full Text Available Researches on distribution of chrome and copper in the fused coating received from the superficial alloyed wire by boron with in additionally applied electroplated coating of chrome and copper were executed. The structure of the fused coating consists of dendrites on which borders the boride eutectic is located. It is established that the content of chrome in dendrites is 1,5– 1,6 times less than in the borid; distribution of copper on structure is uniformed. Coefficients of digestion of chrome and copper at an argon-arc welding from a wire electrode with electroplated coating are established. The assimilation coefficient for chrome is equal to 0,9–1,0; for copper – 0,6–0,75.

  9. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  10. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    Science.gov (United States)

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  11. Chemical vapor deposited silica coatings for solar mirror protection

    Science.gov (United States)

    Gulino, Daniel A.; Dever, Therese M.; Banholzer, William F.

    1988-01-01

    A variety of techniques is available to apply protective coatings to oxidation susceptible spacecraft components, and each has associated advantages and disadvantages. Film applications by means of chemical vapor deposition (CVD) has the advantage of being able to be applied conformally to objects of irregular shape. For this reason, a study was made of the oxygen plasma durability of thin film (less than 5000 A) silicon dioxide coatings applied by CVD. In these experiments, such coatings were applied to silver mirrors, which are strongly subject to oxidation, and which are proposed for use on the space station solar dynamic power system. Results indicate that such coatings can provide adequate protection without affecting the reflectance of the mirror. Scanning electron micrographs indicated that oxidation of the silver layer did occur at stress crack locations, but this did not affect the measured solar reflectances. Oxidation of the silver did not proceed beyond the immediate location of the crack. Such stress cracks did not occur in thinner silica films, and hence such films would be desirable for this application.

  12. Metal coatings prepared by organometallic chemical vapour deposition (OMCVD)

    Energy Technology Data Exchange (ETDEWEB)

    Wochnowski, Joern; Heck, Juergen [Institute of Inorganic and Applied Chemistry, Hamburg (Germany); Goellnitz, Thimo [Institute of Inorganic and Applied Chemistry, Hamburg (Germany); Institute of Applied Physics, University of Hamburg (Germany); Hoffmann, Germar; Wiesendanger, Roland [Institute of Applied Physics, University of Hamburg (Germany)

    2008-07-01

    In microtechnology, the coating of temperature-sensitive substrates with high melting-point materials is challenging. The use of volatile organometallic compounds can be an answer to solve this ambitious task. We developed an experimental set-up for the deposition of elements, oxides, and functional composites in glass hollowware by means of OMCVD. With the first experimental set-up, the thermally induced decomposition of numerous elementorganic and metallorganic precursors has been tested for the deposition of catalytic or optic materials. Here, we present experimental data of the thermal deposition of different metals as tungsten on a glass surface. We used Atomic Force Microscopy as one standard analytical surface method to obtain structural and morphological information of the deposited metal layers. We discuss the preparation and the analytics of the prepared surfaces. With the objective to bring the deposition temperature of W(CO){sub 6} further down to room temperature, we developed a new photolytic OMCVD set-up. We demonstrate and discuss the realization of our experimental setup.

  13. Morphology, Composition, and Bioactivity of Strontium-Doped Brushite Coatings Deposited on Titanium Implants via Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yongqiang Liang

    2014-06-01

    Full Text Available Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials.

  14. The study of Zn–Co alloy coatings electrochemically deposited by pulse current

    Directory of Open Access Journals (Sweden)

    Tomić Milorad V.

    2012-01-01

    Full Text Available The electrochemical deposition by pulse current of Zn-Co alloy coatings on steel was examined, with the aim to find out whether pulse plating could produce alloys that could offer a better corrosion protection. The influence of on-time and the average current density on the cathodic current efficiency, coating morphology, surface roughness and corrosion stability in 3% NaCl was examined. At the same Ton/Toff ratio the current efficiency was insignificantly smaller for deposition at higher average current density. It was shown that, depending on the on-time, pulse plating could produce more homogenous alloy coatings with finer morphology, as compared to deposits obtained by direct current. The surface roughness was the greatest for Zn-Co alloy coatings deposited with direct current, as compared with alloy coatings deposited with pulse current, for both examined average current densities. It was also shown that Zn-Co alloy coatings deposited by pulse current could increase the corrosion stability of Zn-Co alloy coatings on steel. Namely, alloy coatings deposited with pulse current showed higher corrosion stability, as compared with alloy coatings deposited with direct current, for almost all examined cathodic times, Ton. Alloy coatings deposited at higher average current density showed greater corrosion stability as compared with coatings deposited by pulse current at smaller average current density. It was shown that deposits obtained with pulse current and cathodic time of 10 ms had the poorest corrosion stability, for both investigated average deposition current density. Among all investigated alloy coatings the highest corrosion stability was obtained for Zn-Co alloy coatings deposited with pulsed current at higher average current density (jav = 4 A dm-2.

  15. Experimental study of boron-coated straws with a neutron source

    Science.gov (United States)

    Xie, Zhaoyang; Zhou, Jianrong; Song, Yushou; Lacy, Jeffrey L.; Sun, Liang; Sun, Zhijia; Hu, Bitao; Chen, Yuanbo

    2018-04-01

    Multiple types of high quality neutron detectors are proposed for the first phase of the China Spallation Neutron Source (CSNS), which will be commissioned in 2018. Considering the shortage of 3He supply, a detector module composed of 49 boron-coated straws (BCS) was developed by Proportional Technologies Inc. (PTI). Each straw has a length of 1000 mm and a diameter of 7.5 mm. Seven straws are tightly packed in a tube, and seven tubes are organized in a row to form a detector module. The charge division method is used for longitudinal positioning. A specific readout system was utilized to output the signal and simultaneously encode each straw. The performance of this detector module was studied using a moderated 252Cf source at the Institute of High Energy Physics (IHEP). The signal amplitude spectrum indicates its n-gamma discrimination capability. Despite the complex readout method, a longitudinal resolution of FWHM=6.1 ± 0.5 mm was obtained. The three-dimensional positioning ability qualifies this BCS detector module as a promising detector for small angle neutron scattering.

  16. Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition.

    Science.gov (United States)

    Weber, Matthieu; Koonkaew, Boonprakrong; Balme, Sebastien; Utke, Ivo; Picaud, Fabien; Iatsunskyi, Igor; Coy, Emerson; Miele, Philippe; Bechelany, Mikhael

    2017-05-17

    In this work, we report the design and the fine-tuning of boron nitride single nanopore and nanoporous membranes by atomic layer deposition (ALD). First, we developed an ALD process based on the use of BBr 3 and NH 3 as precursors in order to synthesize BN thin films. The deposited films were characterized in terms of thickness, composition, and microstructure. Next, we used the newly developed process to grow BN films on anodic aluminum oxide nanoporous templates, demonstrating the conformality benefit of BN prepared by ALD, and its scalability for the manufacturing of membranes. For the first time, the ALD process was then used to tune the diameter of fabricated single transmembrane nanopores by adjusting the BN thickness and to enable studies of the fundamental aspects of ionic transport on a single nanopore. At pH = 7, we estimated a surface charge density of 0.16 C·m -2 without slip and 0.07 C·m -2 considering a reasonable slip length of 3 nm. Molecular dynamics simulations performed with experimental conditions confirmed the conductivities and the sign of surface charges measured. The high ion transport results obtained and the ability to fine-tune nanoporous membranes by such a scalable method pave the way toward applications such as ionic separation, energy harvesting, and ultrafiltration devices.

  17. A study of the deposition process of multilayer coatings on the inner tube surface with the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lozovan, A.A., E-mail: loz-plasma@ya.ru; Alexandrova, S.S.; Mishnev, M.A.; Prishepov, S.V.

    2014-02-15

    Highlights: • Submitted laser bench for coatings, deposited on the inner surfaces of tubes by PLD. • Sprayed multilayered Ti/TiN coatings on the inner surfaces of tubes of small diameter. • We study this of coatings by method RBS and X-ray fluorescence spectroscopy (TXRF). • Shown a significant mixing of the layers thickness of 90 μm. -- Abstract: The multilayer Ti/TiN/Ti coatings (consisting of nano-scale layers) on the inner surface of stainless steel tubes of small diameter were studied. The coatings were deposited by using the pulsed laser deposition (PLD) technique (in the reactive and non-reactive deposition modes). The coatings were analyzed using the X-ray fluorescence analysis with total external reflection (TXRF) and the Rutherford backscattering spectroscopy (RBS). It was found that the deposition of multilayer Ti/TiN/Ti coatings leads to the essential mixing of coating layers due to sputtering of coatings with fast atoms and ions from the laser plume and the evaporation of the coating under the laser radiation reflected from the target surface.

  18. ZnS/Diamond Composite Coatings for Infrared Transmission Applications Formed by the Aerosol Deposition Method

    OpenAIRE

    Johnson, Scooter D.; Kub, Fritz J.; Eddy Jr, Charles R.

    2013-01-01

    The deposition of nano-crystalline ZnS/diamond composite protective coatings on silicon, sapphire, and ZnS substrates, as a preliminary step to coating infrared transparent ZnS substrates from powder mixtures by the aerosol deposition method is presented. Advantages of the aerosol deposition method include the ability to form dense, nanocrystalline films up to hundreds of microns thick at room temperature and at a high deposition rate on a variety of substrates. Deposition is achieved by crea...

  19. Silicon Carbide/Boron Nitride Dual In-Line Coating of Silicon Carbide Fiber Tows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will demonstrate monolayer and dual layer coating of SiC fiber by leveraging Laser Chemical Vapor Deposition techniques developed by Free...

  20. Processing and Deposition of Nanocrystalline Oxide Composites for Thermal Barrier Coatings

    National Research Council Canada - National Science Library

    Ying, Jackie

    2000-01-01

    .... Electrophoretic deposition was used to coat the nanocomposite powders onto nickel substrates. The effect of alumina content, powder calcination temperature, and film thickness on the thermal stability of zirconia-based coatings was examined...

  1. Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content

    OpenAIRE

    Zhaozhi Liu; Feng Xu; Junhua Xu; Xiaolong Tang; Ying Liu; Dunwen Zuo

    2015-01-01

    Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cu...

  2. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  3. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    Science.gov (United States)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  4. Boron doped nanostructure ZnO films deposited by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Seniye, E-mail: seniyek@ogu.edu.tr; Ozbas, Omer

    2015-02-15

    Highlights: • Nanostructure undoped and boron doped ZnO films were deposited by USP technique. • Influences of doping on the surface and optical properties of the ZnO films were investigated. • XRD spectra of the films exhibited a variation in crystalline quality depending on the B content. - Abstract: ZnO is an II–VI compound semiconductor with a wide direct band gap of 3.3 eV at room temperature. Doped with group III elements (B, Al or Ga), it becomes an attractive candidate to replace tin oxide (SnO{sub 2}) or indium tin oxide (ITO) as transparent conducting electrodes in solar cell devices and flat panel display due to competitive electrical and optical properties. In this work, ZnO and boron doped ZnO (ZnO:B) films have been deposited onto glass substrates at 350 ± 5 °C by a cost-efficient ultrasonic spray pyrolysis technique. The optical, structural, morphological and electrical properties of nanostructure undoped and ZnO:B films have been investigated. Electrical resistivity of films has been analyzed by four-probe technique. Optical properties and thicknesses of the films have been examined in the wavelength range 1200–1600 nm by using spectroscopic ellipsometry (SE) measurements. The optical constants (refractive index (n) and extinction coefficient (k)) and the thicknesses of the films have been fitted according to Cauchy model. The optical method has been used to determine the band gap value of the films. Transmission spectra have been taken by UV spectrophotometer. It is found that both ZnO and ZnO:B films have high average optical transmission (≥80%). X-ray diffraction (XRD) patterns indicate that the obtained ZnO has a hexagonal wurtzite type structure. The morphological properties of the films were studied by atomic force microscopy (AFM). The surface morphology of the nanostructure films is found to depend on the concentration of B. As a result, ZnO:B films are promising contender for their potential use as transparent window layer and

  5. Glassy Carbon Coating Deposited on Hybrid Structure of Composite Materials

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available This paper presents a method of production metal matrix composites with aluminum oxide foam covered by glassy carbon layer used as reinforcement. The glassy carbon coating was formed for decreasing of friction coefficient and reducing the wear. In first step of technology liquid glassy carbon precursor is on ceramic foam deposited, subsequently cured and carbonated at elevated temperature. In this way ceramic foam is covered with glassy carbon coating with thickness of 2-8 μm. It provides desirable amount of glassy carbon in the structure of the material. In the next step, porous spheres with carbon coating are infiltrated by liquid matrix of Al-Cu-Mg alloy. Thereby, equable distribution of glassy carbon in composite volume is achieved. Moreover, typical problems for composites reinforced by particles like sedimentation, agglomeration and clustering of particles are avoided. Tribological characteristics during friction in air versus cast iron as a counterpart were made. Produced composites with glassy carbon layer are characterised by friction coefficient between 0.08-0.20, thus meeting the typical conditions for solid lubricants.

  6. Interface behavior of tungsten coating on stainless steel by electro spark deposition

    Directory of Open Access Journals (Sweden)

    Wang Yuangang

    2015-01-01

    Full Text Available A new method of electro spark deposition method was put forward, which was based on the theory of electro spark deposition by changing the polarity in the liquid. Tungsten coating layers was produced on surface of Stainless Steel by electro spark deposition. The micro hardness, microstructure, chemical composition and phases of the coating layer were examined by means of hardness test, scanning electron microscopy (SEM and energy dispersive spectrometer (EDS analysis. The results showed that there was tungsten coating in the surface, which was discontinuous. Microhardness of the coating layer was about 3 times more than that of the substrate. The combination between coating layer and substrate was metallurgical bond.

  7. Evaluation of Hydrogen Cracking in Weld Metal Deposited using Cellulosic-Coated Electrodes

    Science.gov (United States)

    2009-06-16

    Cellulosic-coated electrodes (primarily AWS EXX10-type) are traditionally used for "stovepipe" welding of pipelines because they are well suited for deposition of pipeline girth welds and are capable of high deposition rates when welding downhill. De...

  8. In-situ boron doping of chemical-bath deposited CdS thin films

    International Nuclear Information System (INIS)

    Khallaf, Hani; Park, S.; Schulte, Alfons; Chai, Guangyu; Lupan, Oleg; Chow, Lee; Heinrich, Helge

    2009-01-01

    In-situ boron doping of CdS using chemical-bath deposition (CBD) is reported. The effect of B doping on optical properties, as well as electrical properties, crystal structure, chemistry, and morphology of CdS films is studied. We present a successful approach towards B doping of CdS using CBD, where a resistivity as low as 1.7 x 10 -2 Ωcm and a carrier density as high as 1.91 x 10 19 cm -3 were achieved. The bandgap of B-doped films was found to slightly decrease as the[B]/[Cd] ratio in the solution increases. X-ray diffraction studies showed B 3+ ions likely enter the lattice substitutionally. A phase transition, due to annealing, as well as induced lattice defects, due to B doping, were detected by micro-Raman spectroscopy and transmission electron microscopy. The chemistry and morphology of films were unaffected by B doping. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel

    Science.gov (United States)

    Veit, R.; Hofmann, H.; Kolleck, R.; Sikora, S.

    2011-01-01

    Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating. In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.

  10. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  11. Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique.

    Science.gov (United States)

    Barry, J N; Cowley, A; McNally, P J; Dowling, D P

    2014-03-01

    Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (alloy substrates. This study addresses the suitability of the CoBlast technique for the deposition of HA coatings on a number of alternative metal alloys utilized in the fabrication of orthopedic devices. In addition to titanium grade 5, both cobalt chromium and stainless steel 316 were investigated. In this study, HA coatings were deposited using both the CoBlast and the plasma sprayed techniques, and the resultant HA coating and substrate properties were evaluated and compared. The CoBlast-deposited HA coatings were found to present similar surface morphologies, interfacial properties, and composition irrespective of the substrate alloy type. Coating thickness however displayed some variation with the substrate alloy, ranging from 2.0 to 3.0 μm. This perhaps is associated with the electronegativity of the metal alloys. The APS-treated samples exhibited evidence of both coating, and significantly, substrate phase alterations for two metal alloys; titanium grade 5 and cobalt chrome. Conversely, the CoBlast-processed samples exhibited no phase changes in the substrates after depositions. The APS alterations were attributed to the brief, but high-intensity temperatures experienced during processing. Copyright © 2013 Wiley Periodicals, Inc.

  12. High efficient vacuum arc plant for coating deposition

    International Nuclear Information System (INIS)

    Aksenov, I.I.; Belous, V.A.

    2008-01-01

    A number of progressive technical solutions are used in the 'Bulat-9' machine designed for vacuum arc coating deposition. The features of the machine are: a dome shaped working chamber that allows to 'wash' its inner surfaces with hot nitrogen or argon gas; a system of automatic loading/unloading of articles to be treated into the chamber through its bottom; shielding of the inner surfaces of the chamber by heated panels; improved vacuum arc plasma sources including filtered one; four ported power supply for the vacuum arc discharges; LC oscillatory circuits suppressing microarcs on the substrate; the system of automatic control of a working process. The said technical features cause the apparatus originality and novelty preserved up to-day

  13. Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Nitin Padture

    2011-12-31

    Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

  14. Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-I{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2017-06-01

    Highlights: • The transformation paths of (Ti + I{sub 2}) powder to Ti coating is: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}) → Ti. • Uniform coating was obtained on SiC fiber, but it contained Si and C elements. • Deposition rate of the coating increased with the increase of temperature. • Deposition thickness increased with time and achieved the maximum at 90 min. - Abstract: Titanium coating was prepared on SiC fiber using titanium-iodine (Ti-I{sub 2}) mixture by hot-wall chemical vapor deposition. Thermodynamic analysis and experimental observation were carried out in this work. The thermodynamic analysis of the reactions in the Ti-I{sub 2} system indicates that Ti and I{sub 2} raw powder materials transform to titanium coating as follows: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}), and (TiI{sub 2}, TiI{sub 3}) → Ti. In theory, the conversions of TiI{sub 3} and TiI{sub 2} reach the maximum when Ti:I{sub 2} is 1:1.5, while in actual experiment that reached the maximum when Ti:I{sub 2} was 1:2, as there existed the waste of I{sub 2} due to sublimation. Typical deposited coating is relatively flat and uniform. However, as SiC is prone to react with Ti at high temperatures, the obtained coating contained some Si and C elements except for Ti. So the coating was not a pure Ti coating but contained some carbides and silicides. Deposition rate of the coating increased with the increase of temperature. The deposited thickness increased with the increase of heat preservation time, and achieved the maximum thickness at 90 min.

  15. Thiol-modified gold-coated glass as an efficient hydrophobic substrate for drop coating deposition Raman (DCDR) technique

    Czech Academy of Sciences Publication Activity Database

    Kočišová, E.; Procházka, M.; Šípová, Hana

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1394-1396 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : thiol-modified Au-coated glass * drop coating deposition Raman * liposome Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.969, year: 2016

  16. A comparative machining study of diamond-coated tools made by ...

    Indian Academy of Sciences (India)

    The successful implementation of diamond coatings also expedited similar research in the deposition of cubic boron nitride. This paper presents superhard coating tools, with emphasis on diamond-coated WC–Co tools, the corresponding deposition of technologies and the foreseen metal-cutting applications.

  17. Properties of DLC coatings deposited by dc and dc with superimposed pulsed vacuum arc

    International Nuclear Information System (INIS)

    Zavaleyev, V.; Walkowicz, J.; Aksyonov, D.S.; Luchaninov, A.A.; Reshetnyak, E.N.; Strel'nitskij, V.E.

    2014-01-01

    Comparative studies of the structure, mechanical and tribological properties of DLC coatings deposited in DC and DC with superimposed high current pulse modes of operation vacuum-arc plasma source with the graphite cathode are presented. Imposition the pulses of high current on DC vacuum-arc discharge allows both increase the deposition rate of DLC coating and reduce the residual compressive stress in the coatings what promotes substantial improvement the adhesion to the substrate. Effect of vacuum arc plasma filtration with Venetian blind filter on the deposition rate and tribological characteristics of the coatings analyzed.

  18. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  19. Effects of nano-sized boron nitride (BN) reinforcement in expandable graphite based in-tumescent fire retardant coating

    Science.gov (United States)

    Zulkurnain, E. S.; Ahmad, F.; Gillani, Q. F.

    2016-08-01

    The purpose of in-tumescent fire retardant coating (IFRC) is to protect substrate from fire attack by limiting heat transfer. A range of coating formulations have been prepared using Bisphenol A epoxy resin BE-188 and polyamide solidifier H-2310 as two-part binder, ammonium polyphosphate (APP) as acid source, melamine (MEL) as the blowing agent, expandable graphite (EG) as carbon source and nano-boron nitride (BN) as inorganic nano filler. The filler was used to improve the performances of the APP-EG-MEL coating. The effects of nano-BN on the char morphology and thermal degradation were investigated by fire test, thermo gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X- ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). The results showed that by substituting or reinforcing of 4% weight percentage of nano-BN, residual weight of the char increases by 23.82% compared to APP-EG-MEL coating without filler. Higher carbon content was obtained in the char and a more compact char was produced. The results indicated that nano-BN could be used as a filler to improve thermal stability of the APP-EG-MEL coating.

  20. Boron isotopic composition of tertiary borate deposits in the Puna Plateau of the Central Andes, NW Argentina

    International Nuclear Information System (INIS)

    Kasemann, Simone; Franz, Gerhard; Viramonte, Jose G.; Alonso, Ricardo N.

    1998-01-01

    Full text: The most important borate deposits in South America are concentrated in the Central Andes. The Neogene deposits are located in the Puna Plateau of N W Argentina. These continental deposits are stratiform in the tectonically deformed Tertiary rocks. The largest borate accumulations Tincalayu, Sijes and Loma Blanca are part of the Late Miocene Sijes Formation, composed by different evaporitic and clastic units. In the main borate units of each location different phases of borates dominate. In Tincalayu the mayor mineral is borax with minor amounts of kernite and other rare borate minerals (ameginite, rivadavite, etc.). The principal minerals in Loma Blanca are borax with minor ulexite and inyoite. In the two main units of Sijes hydroboracite and colemanite are the major minerals; inyoite and ulexite appear subordinately. The deposition of the borates is due to a strong evaporation in playa lakes, which were fed by boron bearing thermal fluids (Alonso and Viramonte 1990). From Loma Blanca we determined δ 11 B values of ulexite (- 6.3 %0), inyoite (-12.7 %0) and terrugite (-16.2 %0); and from Tincalayu the δ 11 B values of borax (-10.5 %0), tincal (-12.2 %0) kernite (-11.7 %0) and inderite (-15.4 %0). The borates of Sijes are hydroboracite (-16.8 %0 to -17.2 %0), ulexite (-22.4 %0) and inyoite (-28.5 %0 to -29.6 %0). In order to get information about the δ 11 B values and pH of a boron solution we analysed the thermal spring of Antuco. It has a δ 11 B of -12.5%0 at a pH of 7.9. The presently forming ulexite deposit has a δ 11 B of -22.4%0. Borates within one depositional unit show a decreasing δ 11 B value sequence from the Na-Borates to the Ca-Borates related to the boron coordination of the minerals (Oi et al. 1989). The difference in the δ 11 B values excludes the precipitation in equilibrium from solutions with constant pH. According to results from previous work on Neogene borates (Turkey, USA) we interpret the borate succession due to

  1. Study of ion implantation in grown layers of multilayer coatings under ion-plasma vacuum deposition

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Erokhin, A.L.

    1993-01-01

    The model of ion implantation into growing layers of a multilayer coating produced with vacuum ion-plasma deposition was developed. The model takes into account a possibility for ions to pass through the growing layer and alloys to find the distribution of implanted atoms over the coating thickness. The experimental vitrification of the model was carried out on deposition of Ti and TiN coatings

  2. Ultraclean and large-area monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition.

    Science.gov (United States)

    Wen, Yao; Shang, Xunzhong; Dong, Ji; Xu, Kai; He, Jun; Jiang, Chao

    2015-07-10

    Atomically thin hexagonal boron nitride (h-BN) has been demonstrated to be an excellent dielectric layer as well as an ideal van der Waals epitaxial substrate for fabrication of two-dimensional (2D) atomic layers and their vertical heterostructures. Although many groups have obtained large-scale monolayer h-BN through low pressure chemical vapor deposition (LPCVD), it is still a challenge to grow clean monolayers without the reduction of domain size. Here we report the synthesis of large-area (4 × 2 cm(2)) high quality monolayer h-BN with an ultraclean and unbroken surface on copper foil by using LPCVD. A detailed investigation of the key factors affecting growth and transfer of the monolayer was carried out in order to eliminate the adverse effects of impurity particles. Furthermore, an optimized transfer approach allowed the nondestructive and clean transfer of the monolayer from copper foil onto an arbitrary substrate, including a flexible substrate, under mild conditions. Atomic force microscopy indicated that the root-mean-square (RMS) roughness of the monolayer h-BN on SiO2 was less than 0.269 nm for areas with fewer wrinkles. Selective area electron diffraction analysis of the h-BN revealed a pattern of hexagonal diffraction spots, which unambiguously demonstrated its highly crystalline character. Our work paves the way toward the use of ultraclean and large-area monolayer h-BN as the dielectric layer in the fabrication of high performance electronic and optoelectronic devices for novel 2D atomic layer materials.

  3. Ultraclean and large-area monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition

    Science.gov (United States)

    Wen, Yao; Shang, Xunzhong; Dong, Ji; Xu, Kai; He, Jun; Jiang, Chao

    2015-07-01

    Atomically thin hexagonal boron nitride (h-BN) has been demonstrated to be an excellent dielectric layer as well as an ideal van der Waals epitaxial substrate for fabrication of two-dimensional (2D) atomic layers and their vertical heterostructures. Although many groups have obtained large-scale monolayer h-BN through low pressure chemical vapor deposition (LPCVD), it is still a challenge to grow clean monolayers without the reduction of domain size. Here we report the synthesis of large-area (4 × 2 cm2) high quality monolayer h-BN with an ultraclean and unbroken surface on copper foil by using LPCVD. A detailed investigation of the key factors affecting growth and transfer of the monolayer was carried out in order to eliminate the adverse effects of impurity particles. Furthermore, an optimized transfer approach allowed the nondestructive and clean transfer of the monolayer from copper foil onto an arbitrary substrate, including a flexible substrate, under mild conditions. Atomic force microscopy indicated that the root-mean-square (RMS) roughness of the monolayer h-BN on SiO2 was less than 0.269 nm for areas with fewer wrinkles. Selective area electron diffraction analysis of the h-BN revealed a pattern of hexagonal diffraction spots, which unambiguously demonstrated its highly crystalline character. Our work paves the way toward the use of ultraclean and large-area monolayer h-BN as the dielectric layer in the fabrication of high performance electronic and optoelectronic devices for novel 2D atomic layer materials.

  4. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres

    International Nuclear Information System (INIS)

    Jiao, Yan; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2013-01-01

    Hydroxyapatite (HA) and HA coated microcarriers for cell culture and delivery have attracted more attention recently, owing to the rapid progress in the field of tissue engineering. In this research, a dense and uniform HA coating with the thickness of about 2 μm was successfully deposited on hollow glass microspheres (HGM) by biomimetic process. The influences of SBF concentration, immersion time, solid/liquid ratio and activation of HGM on the deposition rate and coating characteristics were discussed. X-ray diffraction (XRD) and Fourier transform infrared spectrum (FTIR) analyses revealed that the deposited HA is poorly crystalline. The thickness of HA coating showed almost no increase after immersion in 1.5SBF for more than 15 days with the solid/liquid ratio of 1:150. At the same time, SBF concentration, solid/liquid ratio and activation treatment played vital roles in the formation of HA coating on HGM. This poorly crystallized HA coated HGM could have potential use as microcarrier for cell culture. Highlights: • HA coatings were deposited on hollow glass microspheres by biomimetic process. • The obtained HA coating was poorly crystalline and carbonated. • The influencing factors of deposition rate and coating characteristics were studied. • The thickness of HA coating showed almost no increase after immersion for 15 days

  5. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    Science.gov (United States)

    Nowak, G.; Störmer, M.; Becker, H.-W.; Horstmann, C.; Kampmann, R.; Höche, D.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Lorenz, U.; Hall-Wilton, R.; Müller, M.; Schreyer, A.

    2015-01-01

    Due to the present shortage of 3He and the associated tremendous increase of its price, the supply of large neutron detection systems with 3He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid 10B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area 10B4C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The 10B4C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical 10B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black 3He-monitor. Thus, these converter coatings contribute to the development of 3He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative 3He-free converter elements available for large area neutron detection systems.

  6. Photo-induced site-specific nitridation of plasma-deposited B 10C 2H x films: A new pathway toward post-deposition doping of semiconducting boron carbides

    Science.gov (United States)

    Behera, Swayambhu; Wilks, Justin; Dowben, Peter A.; Driver, M. Sky; Caruso, A. N.; Kelber, Jeffry A.

    2010-10-01

    We show that dopant impurities can be introduced in a controlled, site-specific manner into pre-deposited semiconducting boron carbide films. B―N bond formation has been characterized by X-ray photoelectron spectroscopy for semiconducting B 10C 2H x films exposed to vacuum ultraviolet photons in the presence of NH 3. Core level photoemission data indicate that B―NH 2 bonds are formed at B sites bonded to other boron atoms (B―B), and not at boron atoms adjacent to carbon atoms (B―C) or at carbon atom sites. Nitridation obeys diffusion-limited kinetics. These results indicate that dopant species can be introduced in a controlled, site-specific manner into pre-deposited boron carbide films, as opposed to currently required dopant incorporation during the deposition process.

  7. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  8. Effect of negative bias on TiAlSiN coating deposited on nitrided Zircaloy-4

    Science.gov (United States)

    Jun, Zhou; Zhendong, Feng; Xiangfang, Fan; Yanhong, Liu; Huanlin, Li

    2018-01-01

    TiAlSiN coatings were deposited on the nitrided Zircaloy-4 by multi-arc ion plating at -100 V, -200 V and -300 V. In this study, the high temperature oxidation behavior of coatings was tested by a box-type resistance furnace in air for 3 h at 800 °C; the macro-morphology of coatings was observed and analyzed by a zoom-stereo microscope; the micro-morphology of coatings was analyzed by a scanning electron microscopy (SEM), and the chemical elements of samples were analyzed by an energy dispersive spectroscopy(EDS); the adhesion strength of the coating to the substrate was measured by an automatic scratch tester; and the phases of coatings were analyzed by an X-ray diffractometer(XRD). Results show that the coating deposited at -100 V shows better high temperature oxidation resistance behavior, at the same time, Al elements contained in the coating is of the highest amount, meanwhile, the adhesion strength of the coating to the substrate is the highest, which is 33N. As the bias increases, high temperature oxidation resistance behavior of the coating weakens first and then increases, the amount of large particles on the surface of the coating increases first and then decreases whereas the density of the coating decreases first and then increases, and adhesion strength of the coating to the substrate increases first and then weakens. The coating's quality is relatively poor when the bias is -200 V.

  9. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  10. Development of a simple technique for the coating of monolithic silica with pristine boron nitride nanotubes (BNNTs): HPLC chromatographic applications.

    Science.gov (United States)

    Guillaume, Yves Claude; André, Claire

    2017-03-01

    In this paper, a novel and very simple homogeneous coating of a monolithic silica HPLC support using pristine boron nitride nanotubes (BNNTs) was d0.escribed. The chromatographic support was coated with BNNTs in a non covalent way to preserve the nanotube structure. A solution of BNNTs dispersed in dimethylacetamide (DMAc) was pumped through the column at a flow-rate of 0.3mL/min for 24h at room temperature. Strong interaction between amino groups and the BNNT surfaces induces the adsorption of the BNNTs on the silica, while the stable solvation in DMAc hampers further adsorption of the tubes. The excellent stability of the non covalent BNNT-coating on the monolithic silica in view of application for HPLC was also demonstrated. It was shown that this novel stationary phase was efficient for the HPLC isocratic or gradient mode separation of molecules of different structure such as phenol derivatives, alkylbenzene or doping agents (steroids). As well, this simple technique of BNNT immobilization offers new perspectives for the BNNT-coating on the surfaces of a wide range of solid substrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  12. Development of coatings for ultrasonic additive manufacturing sonotrode using laser direct metal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Niyanth S, Niyanth [ORNL; Dehoff, Ryan R [ORNL; Jordan, Brian H [ORNL; Babu, Sudarsanam Suresh [ORNL

    2016-10-01

    ORNL partnered with Fabrisonic, LLC to develop galling resistant hard facing coatings on sonotrodes used to fabricate 3D printed materials using ultrasonic additive manufacturing. The development and deployment of a coated sonotrode is expected to push the existing state of the art to facilitate the solidstate additive manufacturing of hard steels and titanium alloys. To this effect a structurally amorphous stainless steel material and cobalt chrome material were deposited on the sonotrode material. Both the deposits showed good adhesion to the substrate. The coatings made using the structurally amorphous steel materials showed cracking during the initial trials and cracking was eliminated by deposition on a preheated substrate. Both the coatings show hardness in excess of 600 HVN. Thus the phase 1 of this project has been used to identify suitable materials to use to coat the sonotrode. Despite the fact that successful deposits were obtained, the coatings need to be evaluated by performing detailed galling tests at various temperatures. In addition field tests are also necessary to test the stability of these coatings in a high cycle ultrasonic vibration mode. If awarded, phase 2 of the project would be used to optimize the composition of the deposit material to maximize galling resistance. The industrial partner would then use the coated sonotrode to fabricate builds made of austenitic stainless steel to test the viability of using a coated sonotrode.

  13. Low-Energy Plasma Spray (LEPS) Deposition of Hydroxyapatite/Poly-ɛ-Caprolactone Biocomposite Coatings

    Science.gov (United States)

    Garcia-Alonso, Diana; Parco, Maria; Stokes, Joseph; Looney, Lisa

    2012-01-01

    Thermal spraying is widely employed to deposit hydroxyapatite (HA) and HA-based biocomposites on hip and dental implants. For thick HA coatings (>150 μm), problems are generally associated with the build-up of residual stresses and lack of control of coating crystallinity. HA/polymer composite coatings are especially interesting to improve the pure HA coatings' mechanical properties. For instance, the polymer may help in releasing the residual stresses in the thick HA coatings. In addition, the selection of a bioresorbable polymer may enhance the coatings' biological behavior. However, there are major challenges associated with spraying ceramic and polymeric materials together because of their very different thermal properties. In this study, pure HA and HA/poly-ɛ-caprolactone (PCL) thick coatings were deposited without significant thermal degradation by low-energy plasma spraying (LEPS). PCL has never been processed by thermal spraying, and its processing is a major achievement of this study. The influence of selected process parameters on microstructure, composition, and mechanical properties of HA and HA/PCL coatings was studied using statistical design of experiments (DOE). The HA deposition rate was significantly increased by the addition of PCL. The average porosity of biocomposite coatings was slightly increased, while retaining or even improving in some cases their fracture toughness and microhardness. Surface roughness of biocomposites was enhanced compared with HA pure coatings. Cell culture experiments showed that murine osteoblast-like cells attach and proliferate well on HA/PCL biocomposite deposits.

  14. Development of the process of boron electrophoresis deposition on aluminum substate to be used in the construction of neutron detectors

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.

    1989-11-01

    Process of baron electrophoresis depositon on large areas of aluminum substrates was developed with the aim of using them in the construction of neutron detectors. After definition and optimization of the boron electrophoresis parameters, depositions of 10 B on aluminium cylinders were performed and used as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. Prototypers of ionization chambers were designed, built and assembled at the Departinent for Engineering and Industry Application (TE) of the Instituto de Pesquisas Energeticas e Nucleares (IPEN), and submited for characterization tests at IEA-R1 reactor. They fully met the technical specifications of the projects. (author) [pt

  15. Electrochemically deposited Cu{sub 2}O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Mavrokefalos, Christos K. [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Hasan, Maksudul, E-mail: maksudul.hasan@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Rohan, James F. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Compton, Richard G. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, England (United Kingdom); Foord, John S., E-mail: john.foord@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom)

    2017-06-30

    Highlights: • Fabrication of low-cost photocathode by electrochemical method is described. • Boron-doped diamond is presented as catalyst support. • NiO nanoparticles on Cu{sub 2}O surface enhances photocurrent and electrode stability. • Synergy of metallic interaction between Cu and Ni leads to high efficiency. - Abstract: Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu{sub 2}O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu{sub 2}O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu{sub 2}O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu{sub 2}O/BDD showed a much higher current density (−0.33 mA/cm{sup 2}) and photoconversion efficiency (0.28%) compared to the unmodified Cu{sub 2}O/BDD electrode, which are only −0.12 mA/cm{sup 2} and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu{sub 2}O surface is a crucial parameter in this regard.

  16. Progress Toward Meeting NIF Specifications for Vapor Deposited Polyimide Ablator Coatings

    International Nuclear Information System (INIS)

    Letts, Stephan A.; Anthamatten, Mitchell; Buckley, Steven R.; Fearon, Evelyn; Nissen, April E.H.; Cook, Robert C.

    2004-01-01

    We are developing an evaporative coating technique for deposition of thick polyimide (PI) ablator layers on ICF targets. The PI coating technique utilizes stoichiometrically controlled fluxes from two Knudsen cell evaporators containing a dianhydride and a diamine to deposit a polyamic acid (PAA) coating. Heating the PAA coating to 300 deg. C converts the PAA coating to a polyimide. Coated shells are rough due to particles on the substrate mandrels and from damage to the coating caused by the agitation used to achieve a uniform coating. We have developed a smoothing process that exposes an initially rough PAA coated shell to solvent vapor using gas levitation. We found that after smoothing the coatings developed a number of wide (low-mode) defects. We have identified two major contributors to low-mode roughness: surface hydrolysis, and deformation during drying/curing. By minimizing air exposure prior to vapor smoothing, avoiding excess solvent sorption during vapor smoothing, and using slow drying we are able to deposit and vapor smooth coatings 160 μm thick with a surface roughness less than 20 nm RMS

  17. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    Science.gov (United States)

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review.

  18. Microstructural Characterization and Wear Properties of Fe-Based Amorphous-Crystalline Coating Deposited by Twin Wire Arc Spraying

    Directory of Open Access Journals (Sweden)

    Ana Arizmendi-Morquecho

    2014-01-01

    Full Text Available Twin wire arc spraying (TWAS was used to produce an amorphous crystalline Fe-based coating on AISI 1018 steel substrate using a commercial powder (140MXC in order to improve microhardness and wear properties. The microstructures of coating were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM as well as the powder precursor. Analysis in the coating showed the formation of an amorphous matrix with boron and tungsten carbides randomly dispersed. At high amplifications were identified boron carbides at interface boron carbide/amorphous matrix by TEM. This kind of carbides growth can be attributed to partial crystallization by heterogeneous nucleation. These interfaces have not been reported in the literature by thermal spraying process. The measurements of average microhardness on amorphous matrix and boron carbides were 9.1 and 23.85 GPa, respectively. By contrast, the microhardness values of unmelted boron carbide in the amorphous phase were higher than in the substrate, approaching 2.14 GPa. The relative wear resistance of coating was 5.6 times that of substrate. These results indicate that the twin wire arc spraying is a promising technique to prepare amorphous crystalline coatings.

  19. In-situ formation of multiphase deposited thermal barrier coatings

    Science.gov (United States)

    Subramanian, Ramesh

    2004-01-13

    A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

  20. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings

    International Nuclear Information System (INIS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2013-01-01

    Highlights: ► Both normal and anomalous deposition can be realized by changing bath temperature. ► The Ni content in Zn–Ni alloy deposit increases sharply as temperature reach 60 °C. ► The abrupt change in coating composition is caused by the shift of cathodic potential. ► The deposition temperature has great effect on microstructure of Zn–Ni alloy deposit. -- Abstract: Zinc–nickel alloy coatings were electrodeposited on carbon steel substrates from the ammonium chloride bath at different temperatures. The composition, phase structure and morphology of these coatings were analyzed by energy dispersive spectrometer, X-ray diffractometer and scanning electron microscopy respectively. Chronopotentiometry and potentiostatic methods were also employed to analyze the possible causes of the composition and structure changes induced by deposition temperature. It has been shown that both normal and anomalous co-deposition of zinc and nickel could be realized by changing deposition temperature under galvanostatic conditions. The abrupt changes in the composition and phase structure of the zinc–nickel alloy coatings were observed when deposition temperature reached 60 °C. The sharply decrease of current efficiency for zinc–nickel co-deposition was also observed when deposition temperature is higher than 40 °C. Analysis of the partial current densities showed that the decrease of current efficiency with the rise of deposition temperature was due to the enhancement of the hydrogen evolution. It was also confirmed that the ennoblement of cathodic potential was the cause for the increase of nickel content in zinc–nickel alloy coatings as a result of deposition temperature rise. The good zinc–nickel alloy coatings with compact morphology and single γ phase could be obtained when the deposition temperature was fixed at 30–40 °C

  1. Methods of producing continuous boron carbide fibers

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  2. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yansheng [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tu, Rong, E-mail: turong@whut.edu.cn [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Goto, Takashi [Institute for Materials Research, Tohoku University, Aoba-ku, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  3. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  4. Long period gratings coated with hafnium oxide by plasma-enhanced atomic layer deposition for refractive index measurements.

    Science.gov (United States)

    Melo, Luis; Burton, Geoff; Kubik, Philip; Wild, Peter

    2016-04-04

    Long period gratings (LPGs) are coated with hafnium oxide using plasma-enhanced atomic layer deposition (PEALD) to increase the sensitivity of these devices to the refractive index of the surrounding medium. PEALD allows deposition at low temperatures which reduces thermal degradation of UV-written LPGs. Depositions targeting three different coating thicknesses are investigated: 30 nm, 50 nm and 70 nm. Coating thickness measurements taken by scanning electron microscopy of the optical fibers confirm deposition of uniform coatings. The performance of the coated LPGs shows that deposition of hafnium oxide on LPGs induces two-step transition behavior of the cladding modes.

  5. INKJET PRINTING OF ALUMOOXIDE SOL FOR DEPOSITION OF ANTIREFLECTING COATINGS

    Directory of Open Access Journals (Sweden)

    E. A. Eremeeva

    2017-01-01

    Full Text Available Subject of Research. This work describes for the first time the formation of antireflective coating on the base of boehmite phase of AlOOH with low refractive index (1.35 by inkjet printing on the nonporous substrate. This method gives the possibility to increase the contrast of colorful interfering images by 32% obtaining by inkjet printing of titanium dioxide sol. The usage of this technology enables to obtain patterns with wide viewing angle and makes them highly stable. Methods. Traditional sol-gel method with peptizing agents and heating for 90oC was applied for sol synthesis. Then the mixture was under sonic treatment for the obtaining of viscous sol. The viscosity was determined by Brookfield HA/HB viscometer, and the surface tension by Kyowa DY-700 tensiometer. Aluminum oxide ink was deposited on polished slides (26×76 mm2, Paul Marienfeld, Germany, over titanium oxide layer. To print titania ink, we use a desktop office printer Canon Pixma IP 2840 and Dimatix DMP-2831. The thickness of an inkjet AlOOH layer after drying in the air and removal of the solvents did not exceed 150 nm with an RI not less than 1.35 in the entire visible range. Results. The stable colloidal ink was obtained for the first time on the base of aluminum oxide matrix with neutral pH. The rheology was regulated by controlling parameters of sol-gel method in the system of aqueous titanium dioxide sol and by adding ethanol that affects the charge of double electrical layer of disperse phase. The controllable coalesce of drops enables to apply antireflection coating within the thickness accuracy of 10 nm. The morphology of particles and the topology of printed structures were analyzed by optical, scanning electron and atomic-force microscopes. Practical Relevance. We have proposed the approach to obtain colorful, interference patterns using two types of high refractive inks with different refractive indexes. The inkjet printing method opens new opportunities for

  6. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Jang, S. H.; Hwang, D. Y.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-09-15

    Carbon coating approach is used to prepare carbon-doped MgB{sub 2} bulk samples using low-cost naphthalene (C{sub 10}H{sub 8}) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at 120 degrees C and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with carbon. As compared to un-doped MgB{sub 2}, a systematic enhancement in Jc(H) properties with increasing carbon doping level was observed for naphthalene-derived C-doped MgB{sub 2} samples. The substantial enhancement in Jc is most likely due to the incorporation of C into MgB{sub 2} lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

  7. Deposition, microstructure, and properties of nanocrystalline Ti(C,O,N) coatings

    Science.gov (United States)

    Ruppi, S.; Larsson, A.

    2003-01-01

    Chemical vapor deposition of Ti(C,N) coatings from the TiCl4- CH3CN- N2-H2 system on cemented carbide substrates was studied. The morphology and grain size of the coatings were modified using carbon monoxide (CO). Transmission electron microscopy confirmed that grain refinement of the Ti(C,N) coatings could be obtained by means of CO doping and nanocrystalline coatings were obtained at CO levels exceeding 6%. CO doping resulted in the incorporation of oxygen in the structure, but no segregation of oxygen to grain boundaries was observed. The coatings appeared to be of homogeneous composition even at the highest CO levels. Both improved coating hardness and surface quality were obtained with decreasing grain size. However, the coatings exhibited clearly lower crater wear resistance in the nanograined region. This was explained by an increased tendency for grain-boundary sliding in the nanocrystalline coatings leading to more pronounced plastic deformation.

  8. Influence of thickness on the properties of hydroxyapatite coatings deposited by KrF laser ablation.

    Science.gov (United States)

    Fernandez-Pradas, J M; Clèries, L; Martinez, E; Sardin, G; Esteve, J; Morenza, J L

    2001-08-01

    The growth of hydroxyapatite coatings obtained by KrF excimer laser ablation and their adhesion to a titanium alloy substrate were studied by producing coatings with thicknesses ranging from 170 nm up to 1.5 microm, as a result of different deposition times. The morphology of the coatings consists of grain-like particles and also droplets. During growth the grain-like particles grow in size, partially masking the droplets, and a columnar structure is developed. The thinnest film is mainly composed of amorphous calcium phosphate. The coating 350nm thick already contains hydroxyapatite, whereas thicker coatings present some alpha tricalcium phosphate in addition to hydroxyapatite. The resulting coating to substrate adhesion was evaluated through the scratch test technique. Coatings fail under the scratch test by spallating laterally from the diamond tip and the failure load increases as thickness decreases, until not adhesive but cohesive failure for the thinnest coating is observed.

  9. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  10. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  11. Characterization of Environmental Stability of Pulsed Laser Deposited Oxide Ceramic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, THADM

    2004-03-02

    A systematic investigation of candidate hydrogen permeation materials applied to a substrate using Pulsed Laser Deposition has been performed. The investigation focused on application of leading permeation-resistant materials types (oxide, carbides, and metals) on a stainless steel substrate. and evaluation of the stability of the applied coatings. Type 304L stainless steel substrates were coated with aluminum oxide, chromium oxide, and aluminum. Characterization of the coating-substrate system adhesion was performed using scratch adhesion testing and microindentation. Coating stability and environmental susceptibility were evaluated for two conditions-air at 350 degrees Celsius and Ar-H2 at 350 degrees Celsius for up to 100 hours. Results from this study have shown the pulsed laser deposition process to be an extremely versatile technology that is capable of producing a sound coating/substrate system for a wide variety of coating materials.

  12. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  13. Atomic layer deposition-A novel method for the ultrathin coating of minitablets.

    Science.gov (United States)

    Hautala, Jaana; Kääriäinen, Tommi; Hoppu, Pekka; Kemell, Marianna; Heinämäki, Jyrki; Cameron, David; George, Steven; Juppo, Anne Mari

    2017-10-05

    We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO 2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit ® E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO 2 nanolayers decreased the mechanical strength, and accelerated the in vitro disintegration of minitablets. Unlike previous studies, the studied levels of TiO 2 nanolayers on tablets were also inadequate for effective taste masking. In summary, ALD permits a simple and rapid method for the ultrathin coating (nanolayering) of minitablets, and provides nanoscale-range TiO 2 coatings on porous minitablets. More research, however, is needed to clarify its potential in tablet taste masking applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Functionalization and Area-Selective Deposition of Magnetic Carbon-Coated Iron Nanoparticles from Solution

    Directory of Open Access Journals (Sweden)

    Erika Widenkvist

    2011-01-01

    Full Text Available A route to area-selective deposition of carbon-coated iron nanoparticles, involving chemical modification of the surface of the particles, is described. Partial oxidative etching of the coating introduces carboxylic groups, which then are esterified. The functionalized particles can be selectively deposited on the Si areas of Si/SiO2 substrates by a simple dipping procedure. Nanoparticles and nanoassemblies have been analyzed using SEM, TEM, and XPS.

  15. Deposition of Coatings for Raising the Wear Resistance of Friction Surfaces of Spherical Sliding Bearings

    Science.gov (United States)

    Gorlenko, A. O.; Davydov, S. V.

    2018-01-01

    The process of finishing plasma hardening with deposition of a multilayer amorphous coating of the Si - O - C - N system is considered as applied to hardening of the friction surfaces of spherical sliding bearings. The microrelief, the submicrorelief, and the tribological characteristics of the deposited wear-resistant antifriction amorphous coating, which are responsible for the elevated wear resistance of spherical sliding bearings, are investigated.

  16. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    OpenAIRE

    Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo

    2014-01-01

    Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulate...

  17. Advanced TiC/a-C: H nanocomposite coatings deposited by magnetron sputtering

    OpenAIRE

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing substrate bias or carbon content. Micro-cracks induced by nanoindentation or wear tests readily propagate through the column boundaries whereas the coatings without a columnar inicrostructure exhibit s...

  18. Additive manufactured Ti6Al4V scaffolds with the RF- magnetron sputter deposited hydroxyapatite coating

    International Nuclear Information System (INIS)

    Chudinova, E; Surmeneva, M; Surmenev, R; Koptioug, A; Scoglund, P

    2016-01-01

    Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds. (paper)

  19. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; de Hosson, J.T.M.

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack

  20. High Temperature Oxidation Property of SiC Coating Layer Fabricated by Aerosol Deposition Process

    Directory of Open Access Journals (Sweden)

    Ham G.-S.

    2017-06-01

    Full Text Available This study investigated the high temperature oxidation property of SiC coated layer fabricated by aerosol deposition process. SiC coated layer could be successfully manufactured by using pure SiC powders and aerosol deposition on the Zr based alloy in an optimal process condition. The thickness of manufactured SiC coated layer was measured about 5 μm, and coating layer represented high density structure. SiC coated layer consisted of α-SiC and β-SiC phases, the same as the initial powder. The initial powder was shown to have been crushed to the extent and was deposited in the form of extremely fine particles. To examine the high temperature oxidation properties, oxidized weight gain was obtained for one hour at 1000°C by using TGA. The SiC coated layer showed superior oxidation resistance property than that of Zr alloy (substrate. The high temperature oxidation mechanism of SiC coated layer on Zr alloy was suggested. And then, the application of aerosol deposited SiC coated layer was also discussed.

  1. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    NARCIS (Netherlands)

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the

  2. Advanced TiC/a-C : H nanocomposite coatings deposited by magnetron sputtering

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing

  3. Initial bacterial deposition on bare and zeolite-coated aluminum alloy and stainless steel.

    Science.gov (United States)

    Chen, Gexin; Beving, Derek E; Bedi, Rajwant S; Yan, Yushan S; Walker, Sharon L

    2009-02-03

    In this study, the impact of zeolite thin film coatings on bacterial deposition and "biofouling" of surfaces has been investigated in an aqueous environment. The synthesis of two types of zeolite coatings, ZSM-5 coated on aluminum alloy and zeolite A coated on stainless steel, and the characterization of the coated and bare metal surfaces are described. The extent of cell deposition onto the bare and zeolite-coated aluminum alloy and stainless steel surfaces is investigated in a parallel plate flow chamber system under a laminar flow conditions. The initial rates of bacterial transfer to the various surfaces are compared by utilizing a marine bacterium, Halomonas pacifica g, under a range of ionic strength conditions. H. pacifica g deposited onto bare metal surfaces to a greater extent as compared with cells deposited onto the zeolite coatings. The surface properties found to have the most notable effect on attachment are the electrokinetic and hydrophobicity properties of the metal and zeolite-coated surfaces. These results suggest that a combination of two chemical mechanisms-hydrophobic and electrostatic interactions-contribute to the antifouling nature of the zeolite surface. Additional observations on the relative role of the hydrodynamic and physical phenomena are also discussed.

  4. Microstructural characterization of Co-based coating deposited by low power pulse laser cladding

    NARCIS (Netherlands)

    Farnia, A.; Ghaini, F. Malek; Ocelik, V.; De Hosson, J. Th. M.

    A detailed microstructural study of Stellite 6 coating deposited on a low carbon ferritic steel substrate using preplaced powder method and low power Nd:YAG pulse laser is performed. The grain structure and solidification texture of the coating are investigated by orientation imaging microscopy

  5. Sintering of MnCo2O4 coatings prepared by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bobruk, M.; Molin, Sebastian; Chen, Ming

    2018-01-01

    Sintering of MnCo2O4 coatings prepared by electrophoretic deposition on steel substrates has been studied in air and in reducing-oxidizing atmosphere. Effect of temperature and pO2 on the resulting coating density was evaluated from scanning electron microscopy images of polished cross sections...

  6. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system.

    Science.gov (United States)

    Dembele, Amidou; Rahman, Mahfujur; Reid, Ian; Twomey, Barry; MacElroy, J M Don; Dowling, Denis P

    2011-10-01

    The objective of this study is to investigate the influence of alcohol addition on the incorporation of metal oxide nanoparticles into nm thick siloxane coatings. Titanium oxide (TiO2) nanoparticles with diameters of 30-80 nm were incorporated into an atmospheric plasma deposited tetramethylorthosilicate (TMOS) siloxane coating. The TMOS/TiO2 coating was deposited using the atmospheric plasma jet system known as PlasmaStream. In this system the liquid precursor/nanoparticle mixture is nebulised into the plasma. It was observed that prior to being nebulised the TiO2 particles agglomerated and settled over time in the TMOS/TiO2 mixture. In order to obtain a more stable nanoparticle/TMOS suspension the addition of the alcohols methanol, octanol and pentanol to this mixture was investigated. The addition of each of these alcohols was found to stabilise the nanoparticle suspension. The effect of the alcohol was therefore assessed with respect to the properties of the deposited coatings. It was observed that coatings deposited from TMOS/TiO2, with and without the addition of methanol were broadly similar. In contrast the coatings deposited with octanol and pentanol addition to the TMOS/TiO2 mixture were significantly thicker, for a given set of deposition parameters and were also more homogeneous. This would indicate that the alcohol precursor was incorporated into the plasma polymerised siloxane. The incorporation of the organic functionality from the alcohols was confirmed from FTIR spectra of the coatings. The difference in behaviour with alcohol type is likely to be due to the lower boiling point of methanol (65 degrees C), which is lower than the maximum plasma temperature measured at the jet orifice (77 degrees C). This temperature is significantly lower than the 196 degrees C and 136 degrees C boiling points of octanol and pentanol respectively. The friction of the coatings was determined using the Pin-on-disc technique. The more organic coatings deposited with

  7. Thick CrN/NbN multilayer coating deposited by cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano Avelar; Tschiptschin, Andre Paulo; Souza, Roberto Martins, E-mail: antschip@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Lima, Nelson Batista de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-01-15

    The production of tribological nanoscale multilayer CrN/NbN coatings up to 6 μm thick by Sputtering/HIPIMS has been reported in literature. However, high demanding applications, such as internal combustion engine parts, need thicker coatings (>30 μm). The production of such parts by sputtering would be economically restrictive due to low deposition rates. In this work, nanoscale multilayer CrN/NbN coatings were produced in a high-deposition rate, industrial-size, Cathodic Arc Physical Vapor Deposition (ARC-PVD) chamber, containing three cathodes in alternate positions (Cr/ Nb/Cr). Four 30 μm thick NbN/CrN multilayer coatings with different periodicities (20, 10, 7.5 and 4 nm) were produced. The coatings were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The multilayer coating system was composed of alternate cubic rock salt CrN and NbN layers, coherently strained due to lattice mismatch. The film grew with columnar morphology through the entire stratified structure. The periodicities adopted were maintained throughout the entire coating. The 20 nm periodicity coating showed separate NbN and CrN peaks in the XRD patterns, while for the lower periodicity (≤10nm) coatings, just one intermediate lattice (d-spacing) was detected. An almost linear increase of hardness with decreasing bilayer period indicates that interfacial effects can dominate the hardening mechanisms. (author)

  8. Deposition parameters to improve the fouling-release properties of thin siloxane coatings prepared by PACVD

    Science.gov (United States)

    Akesso, Laurent; Navabpour, Parnia; Teer, Dennis; Pettitt, Michala E.; Callow, Maureen E.; Liu, Chen; Su, Xueju; Wang, Su; Zhao, Qi; Donik, Crtomir; Kocijan, Aleksandra; Jenko, Monika; Callow, James A.

    2009-04-01

    A range of SiO x-like coatings was deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD. The effect of varying deposition parameters, specifically ion cleaning time and HMDSO/O 2 ratios, on the coating properties and antifouling performance was investigated. At low HMDSO/O 2 ratios, the resulting coatings were close to SiO 2. Carbon content in the bulk of the coatings increased with increasing HMDSO/O 2 ratio. Coatings deposited at high HMDSO/O 2 ratios and with the longest cleaning time (30 min), elevated the relative carbon content to 25 atomic %. Surface energies (22-43 mJ/m) were correlated with the degree of surface oxidation and hydrocarbon content. With the exception of the most polar coatings the apolar component of the surface energy ( γLW) was the dominant component. In the most hydrophilic coatings, the Lewis base component of the surface energy ( γ-) was dominant. Significantly improved antifouling performance was detected with the most reduced coatings deposited using the extended ion cleaning times. For both, the removal of sporelings of the marine green alga, Ulvalinza and the initial adhesion of the freshwater bacterium, Pseudomonas fluorescens, there was a strong, positive correlation between strength of attachment and ion cleaning time. Increased ion cleaning time will elevate the deposition temperature, increasing decomposition rates and thus the crosslinking of the polymer. Increased cross-linking may render these coatings less permeable to penetration and mechanical interlocking by the adhesive polymers used by these organisms, thus reducing their adhesion. Films with improved biological performance have potential for use as coatings in the control of biofouling in applications such as heat exchangers, where thin films are important for effective thermal transfer, or optical windows where transparency is important.

  9. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  10. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2017-01-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  11. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  12. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  13. Influence of modified carbon substrate on boron doped ultrananocrystalline diamond deposition

    Science.gov (United States)

    Sizuka Oishi, Silvia; Mieko Silva, Lilian; Cocchieri Botelho, Edson; Cerqueira Rezende, Mirabel; Alves Cairo, Carlos Alberto; Gomes Ferreira, Neidenêi

    2018-02-01

    Boron doped ultrananocrystalline diamond (B-UNCD) growth was studied on modified reticulated vitreous carbon (RVC) produced from poly(furfuryl alcohol) (PFA) resin with sodium hydroxide additions at two different heat treatment temperatures. The different amounts of NaOH in PFA (up to reaching pH values of around 3, 5, 7, and 9) aimed to neutralize the acid catalyst and to increase the PFA storage life. Besides, this procedure was responsible for increasing the oxygen content of RVC samples. Thus, the effect of carbon and oxygen coming from the substrates in addition to their different graphitization indexes on diamond morphology, grain size, preferential growth and boron doping level were investigated by FEG-SEM, x-ray diffraction and Raman spectroscopy. Therefore, B-UNCD films were successfully grown on RVC with pH values of 3, 5, 7, and 9 heat treated at 1000 and 1700 °C. Nonetheless, the higher oxygen amount during B-UNCD growth for samples with pH 7 and 9 heat treated at 1000 °C was responsible for the RVC surface etching and the decrease in the boron concentration of such samples. The cross section images showed that B-UNCD infiltrated at around 0.9 mm in depth of RVC samples while carbon nanowalls were observed mainly on RVC samples heat treated at 1000 °C for all pH range studied.

  14. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  15. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  16. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects...

  17. Effect of boron on enhancing infrared emissivity of Ni-Cr system coating

    Science.gov (United States)

    Li, Yongjia; Ouyang, Taoyuan; Wang, Xiaohuan; Li, Shuhao; Mao, Jiawei; Cheng, Xudong

    2018-03-01

    High infrared emissivity coating possesses great value in practical application, whether in the military or civilian areas. In this study, B-NiCr precursor powder containing NiO, Cr2O3 and ZrB2 was calcined at 1300 °C and then used to prepare a high infrared emissivity B-NiCr coating via atmospheric plasma spraying. A large number of test methods were employed to analyze the powder and coating, including TG-DSC, XRD, FE-SEM, infrared spectrometer and so on. The result of infrared emissivity measurement indicates that the coating possesses maximum infrared emissivity of 0.908 at 1000 °C while the infrared emissivity is 0.901 after thermal shock test. Comparing with NiCr coating, Ni2CrO2(BO3) formed during calcination may be the main factor to improve the infrared emissivity of B-NiCr coating. The B-NiCr coating possesses good thermal shock resistance and can withstand 50 times thermal shock at least without falling off, from 800 °C to room temperature.

  18. Novel GIMS technique for deposition of colored Ti/TiO₂ coatings on industrial scale

    Directory of Open Access Journals (Sweden)

    Zdunek Krzysztof

    2016-03-01

    Full Text Available The aim of the present paper has been to verify the effectiveness and usefulness of a novel deposition process named GIMS (Gas Injection Magnetron Sputtering used for the flrst time for deposition of Ti/TiO₂ coatings on large area glass Substrates covered in the condition of industrial scale production. The Ti/TiO₂ coatings were deposited in an industrial System utilizing a set of linear magnetrons with the length of 2400 mm each for covering the 2000 × 3000 mm glasses. Taking into account the speciflc course of the GIMS (multipoint gas injection along the magnetron length and the scale of the industrial facility, the optical coating uniformity was the most important goal to check. The experiments on Ti/TiO₂ coatings deposited by the use of GIMS were conducted on Substrates in the form of glass plates located at the key points along the magnetrons and intentionally non-heated during any stage of the process. Measurements of the coatings properties showed that the thickness and optical uniformity of the 150 nm thick coatings deposited by GIMS in the industrial facility (the thickness differences on the large plates with 2000 mm width did not exceed 20 nm is fully acceptable form the point of view of expected applications e.g. for architectural glazing.

  19. Electro-spark deposition: A technique for producing wear resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, G.L. (Washington State Univ., Pullman, WA (USA)); Johnson, R.N. (Westinghouse Hanford Co., Richland, WA (USA))

    1984-12-01

    Electro-spark deposition (ESD) is a coating process using short duration, high current electrical pulses to deposit an electrode material on a metallic substrate. A principal attribute of the process is its ability to apply metallurgically bonded coatings with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. A review of the process is briefly given, then current research using WC-TiC and Cr{sub 3}C{sub 2} electrodes to deposit coatings on Type 316 stainless steel and other substrates is presented. The ESD carbide coatings were found to be exceptionally hard, wear-resistant and spalling-resistant in high-stress rubbing tests. Several applications for nuclear reactor components are described. 17 refs., 18 figs., 1 tab.

  20. The effect of number of nano structural coating containing Ti and Ru created by electro deposition

    Science.gov (United States)

    Ardi, Simin; Asl, Shahin Khamene; Hoseini, Mirghasem; Pouladvand, Iman

    2018-01-01

    TiO2 and RuO2 have many applications in the field of photocataliysis, environmental protection, high charge storage capacity devices and etc. Electro deposition offers advantages such as rigid control of film thickness, uniformity and deposition rate. Electro deposition of RuO2-TiO2 coatings on Ti substrates was performed via hydrolysis by electro generated based of TiCl4 and RuCl3 salts dissolved in mixed methyl alcohol-water solvent in presence of hydrogen peroxide for one, three and six layer. The obtained coatings have been heated in electric furnace at 500 ˚C. Results show that coating with six layers on Ti substrate is the useful coating

  1. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Cheng, Yan, E-mail: chengyan@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Yufeng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Xi, Tingfei [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, Shicheng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing 100081 (China)

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  2. Nickel coating on high strength low alloy steel by pulse current deposition

    Science.gov (United States)

    Nigam, S.; Patel, S. K.; Mahapatra, S. S.; Sharma, N.; Ghosh, K. S.

    2015-02-01

    Nickel is a silvery-white metal mostly used to enhance the value, utility, and lifespan of industrial equipment and components by protecting them from corrosion. Nickel is commonly used in the chemical and food processing industries to prevent iron from contamination. Since the properties of nickel can be controlled and varied over broad ranges, nickel plating finds numerous applications in industries. In the present investigation, pulse current electro-deposition technique has been used to deposit nickel on a high strength low alloy (HSLA) steel substrate.Coating of nickel is confirmed by X-ray diffraction (XRD) and EDAX analysis. Optical microscopy and SEM is used to assess the coating characteristics. Electrochemical polarization study has been carried out to study the corrosion behaviour of nickel coating and the polarisation curves have revealed that current density used during pulse electro-deposition plays a vital role on characteristics of nickel coating.

  3. Fluidized bed deposition and evaluation of silicon carbide coatings on microspheres

    International Nuclear Information System (INIS)

    Federer, J.I.

    1977-01-01

    The fuel element for the HTGR is an array of closely packed fuel microspheres in a carbonaceous matrix. A coating of dense silicon carbide (SiC), along with pyrocarbon layers, is deposited on the fueled microspheres to serve as a barrier against diffusion of fission products. The microspheres are coated with silicon carbide in a fluidized bed by reaction of methyltrichlorosilane (CH 3 SiCl 3 or MTS) and hydrogen at elevated temperatures. The principal variables of coating temperature and reactant gas composition (H 2 /MTS ratio) have been correlated with coating rate, morphology, stoichiometry, microstructure, and density. The optimum temperature for depositing highly dense coatings is in the range 1475 to 1675 0 C. Lower temperatures result in silicon-rich deposits, while higher temperatures may cause unacceptable porosity. The optimum H 2 /MTS ratio for highly dense coatings is 20 or more (approximately 5% MTS or less). The amount of grown-in porosity increases as the H 2 /MTS ratio decreases below 20. The requirement that the H 2 /MTS ratio be about 20 or more imposes a practical restraint on coating rate, since increasing the total flow rate would eventually expel microspheres from the coating tube. Evaluation of stoichiometry, morphology, and microstructure support the above mentioned optimum conditions of temperature and reactant gas composition. 18 figures, 3 tables

  4. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  5. A Study of Deposition Coatings Formed by Electroformed Metallic Materials

    OpenAIRE

    Hayashi, Shoji; Sugiyama, Shuta; Shimura, Kojiro; Tobayama, Go; Togashi, Toshio

    2016-01-01

    Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface ...

  6. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Blanda, Giuseppe [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Piazza, Salvatore; Sunseri, Carmelo [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Inguanta, Rosalinda, E-mail: rosalinda.inguanta@unipa.it [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO{sub 4}·H{sub 2}O; HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO{sub 3}){sub 2}·4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  7. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  8. Composition and structure-property relationships of chromium-diboride/molybdenum-disulphide PVD nanocomposite hard coatings deposited by pulsed magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Audronis, M.; Leyland, A.; Matthews, A. [The University of Sheffield, Department of Engineering Materials, Sheffield (United Kingdom); Kelly, P.J. [Manchester Metropolitan University, Surface Engineering Group, Manchester (United Kingdom)

    2008-04-15

    The composition and structure-property relationships of physical vapour deposited coatings containing mixtures of CrB{sub 2} and MoS{sub 2} are reported. The coatings were produced by pulsed magnetron sputtering of loosely-packed powder targets formed from a blend of chromium and boron powders, alloyed with 12.8, 18.9 and 24.0 atom percent MoS{sub 2}. Results of coating characterisation (by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy and nanoindentation measurement of hardness and elastic modulus) revealed that increasing amounts of MoS{sub 2} produced the following effects: frustration of crystallisation and phase separation; a decrease in average grain sizes (from {proportional_to}5.5 to {proportional_to}4.3 nm) and a decrease in coating hardness (from {proportional_to}15 to {proportional_to}10 GPa). Scratch testing also showed that the load-bearing capability of coatings was altered; coatings possessing an intermediate concentration of MoS{sub 2} exhibited the best behaviour with no failure observed in mechanical testing, due to an optimal nanocomposite structure. The corrosion resistance (investigated by potentiodynamic polarisation tests) however tended to improve as more MoS{sub 2} was introduced. An investigation of the effects of generating an amorphous structure by adding Ti and C into Cr-B-MoS{sub 2} coatings revealed improved corrosion behaviour, which significantly exceeded that of uncoated stainless steel and CrB{sub 2}-coated samples. (orig.)

  9. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition.

    Science.gov (United States)

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2011-04-06

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices.

  10. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  11. Electrophoretic deposition of double-layer HA/Al composite coating on NiTi.

    Science.gov (United States)

    Karimi, Esmaeil; Khalil-Allafi, Jafar; Khalili, Vida

    2016-01-01

    In order to improve the bioactivity of NiTi alloys, which are being known as the suitable materials for biomedical applications, numerous NiTi disks were electrophoretically coated by hetero-coagulated hydroxyapatite/aluminum composite coatings in three main voltages from suspensions with different Al concentrations. In this paper, the amount of Ni ions release and bioactivity of prepared samples as well as bonding strength of the coating to substrate were investigated. The surface characterization of the coating by XRD, EDX, SEM, and FTIR showed that HA particles bonded by Al particles. It caused the formation of a free crack coating on NiTi disks. Moreover, the bonding strength of HA/Al coatings to NiTi substrate were improved by two times as compared to that of the pure HA coatings. Immersing of coated samples in SBF for 1 week showed that apatite formation ability was improved on HA/Al composite coating and Ni ions release from the surface of composite coating decreased. These results induce the appropriate bioactivity and biocompatibility of the deposited HA/Al composite coatings on NiTi disks. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High-rate deposition of optical coatings by closed-field magnetron sputtering

    Science.gov (United States)

    Gibson, D. R.; Brinkley, I.; Waddell, E. M.; Walls, J. M.

    2005-09-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in a wide range of optical applications. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to <+/-1% is accomplished simply using time. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. The CFM configuration also allows plasma treatment of surfaces prior to deposition, allowing optimisation of coating adhesion to substrates such as plastics. This paper presents data on optical, durability and environmental properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process for a range of optical applications are described.

  13. Boron profiles in doped amorphous-silicon solar cells formed by plasma ion deposition

    International Nuclear Information System (INIS)

    Stoddart, C.T.H.; Hunt, C.P.; Coleman, J.H.

    1979-01-01

    Amorphous silicon p-n junction solar cells of large area (100 cm 2 ) and having a quantum efficiency approaching 100% in the blue region have been prepared by plasma ion-plating, the p layer being formed from diborane and silane gases in a cathode glow-discharge. Surface secondary ion mass spectrometry combined with ion beam etching was found to be a very sensitive method with high in-depth resolution for obtaining the initial boron-silicon profile of the solar cell p-n junction. (author)

  14. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition.

    Science.gov (United States)

    Boies, Adam M; Roberts, Jeffrey T; Girshick, Steven L; Zhang, Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO2) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 degrees C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10(7) particles cm(-3).

  15. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  16. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

    International Nuclear Information System (INIS)

    Boies, Adam M; Girshick, Steven L; Roberts, Jeffrey T; Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-01-01

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO 2 ) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO 2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO 2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 0 C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10 7 particles cm -3 .

  17. Operation and Applications of the Boron Cathodic Arc Ion Source

    International Nuclear Information System (INIS)

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-01-01

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  18. Comparison of the influence of boron and aluminium doping on the material properties of electrochemically deposited ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Calnan, Sonya [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Riedel, Wiebke; Gledhill, Sophie [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Stannowski, Bernd [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Lux-Steiner, Martha Ch. [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Schlatmann, Rutger [Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Fachbereich 1 Ingenieurwissenschaften I, University of Applied Science (HTW) Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin (Germany)

    2015-11-02

    The effect of varying the boron and aluminium content of the starting electrolyte for extrinsically doped ZnO films grown on SnO{sub 2}:F substrates by electrochemical deposition was investigated. The ZnO:B film surface was characterized by grains with mainly hexagonal faces exposed while the exposed faces of the ZnO:Al grains were rectangular. Whereas a B{sup 3+}/Zn{sup 2+} ratio of up to 10 at.% in the electrolyte had no significant effect on the crystalline structure of the ZnO films, an Al{sup 3+}/Zn{sup 2+} ratio above 0.25 at.% increased the disorder in the crystalline structure. All the boron doped films exhibit a strong E{sub 2}-high Raman mode related to wurtzite ZnO structure but this peak was much weaker for ZnO:Al and diminished with increasing Al incorporation in the films. Exposing the films to ultra-violet light reduced their effective sheet resistance from values beyond measurement range to values between 40 and 5000 kΩ/sq for film thicknesses of 200–550 nm. Inspection of the optical spectra near the bandgap edge and the plasma edge in the mid infrared range, showed that the Al-doping resulted in a higher carrier concentration ~ 10{sup 20} cm{sup −3} than B-doping. X-ray electron spectroscopy showed that the dopant efficiency was limited by the absence of dopant atoms near the surface of all the ZnO:B films and of the lightly doped ZnO:Al and, by the formation of aluminium oxide at the surface of the more highly doped ZnO:Al films. - Highlights: • Crystalline ZnO grown by electrochemical deposition. • Comparison of influence of H{sub 3}BO{sub 3} and Al(NO{sub 3}){sub 3} as dopant sources. • Different ZnO crystalline orientation for Al and boron doping. • Film surface chemical composition suppressed electrical conductivity.

  19. Radio frequency magnetron sputtering deposition of calcium phosphate coatings: Monte Carlo simulations of the deposition process and depositions through an aperture

    Science.gov (United States)

    Feddes, B.; Wolke, J. G. C.; Jansen, J. A.; Vredenberg, A. M.

    2003-01-01

    Radio frequency magnetron sputtering deposited calcium phosphate (CaP) coatings can be applied to improve the biological performance of medical implants. However, the deposition process is rather complex. Particle ejection from the sputtering target, particle collisions with the background gas, charge state of the sputtered particles, and resputtering of the deposited film all influence the composition and structure of the film. In this work we study the deposition process of the coatings by performing depositions through an aperture. Thus an image of the sputtering target is obtained. In order to interpret these images, the deposition process is simulated using a Monte Carlo computer simulation. We found that the experimental images obtained at different gas pressures are well predicted by the simulations. The calcium and phosphorus are proven to be ejected as neutrals from the target. The particle ejection distribution could not unambiguously be derived. This was partially because the image is distorted due to resputtering of the deposited film. The resputtering is the result of bombardment by energetic argon from the plasma, or energetic negative oxygen from the target. Phosphorus is preferentially resputtered from the film. In conclusion, we found that depositions with an aperture in combination with Monte Carlo simulations are a powerful combination to study and better understand the deposition process.

  20. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  1. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine-Grained Titanium Substrate: Structure Analysis

    Directory of Open Access Journals (Sweden)

    Konstantin A. Prosolov

    2018-02-01

    Full Text Available Nanocrystalline Zn-substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross-section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn-substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8-nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P–O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn-substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  2. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes.

    Science.gov (United States)

    Chen, Qiang; de Larraya, Uxua Pérez; Garmendia, Nere; Lasheras-Zubiate, María; Cordero-Arias, Luis; Virtanen, Sannakaisa; Boccaccini, Aldo R

    2014-06-01

    This study presents the electrophoretic deposition (EPD) of cellulose nanocrystals (CNs) and CNs-based alginate composite coatings for biomedical applications. The mechanism of anodic deposition of CNs and co-deposition of CNs/alginate composites was analyzed based on the results of zeta-potential, Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analyses. The capability of the EPD technique for manipulating the orientation of CNs and for the preparation of multilayer CNs coatings was demonstrated. The nanotopographic surface roughness and hydrophilicity of the deposited coatings were measured and discussed. Electrochemical testing demonstrated that a significant degree of corrosion protection of stainless steel could be achieved when CNs-containing coatings were present. Additionally, the one-step EPD-based processing of free-standing CNs/alginate membranes was demonstrated confirming the versatility of EPD to fabricate free-standing membrane structures compared to a layer-by-layer deposition technique. CNs and CNs/alginate nanocomposite coatings produced by EPD are potential candidates for biomedical, cell technology and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Diamond coating deposition by synergy of thermal and laser methods-A problem revisited

    International Nuclear Information System (INIS)

    Ristic, Gordana S.; Trtica, Milan S.; Bogdanov, Zarko D.; Romcevic, Nebojsa Z.; Miljanic, Scepan S.

    2007-01-01

    Diamond coatings were deposited by synergy of the hot filament CVD method and the pulse TEA CO 2 laser, in spectroactive and spectroinactive diamond precursor atmospheres. Resulting diamond coatings are interpreted relying on evidence of scanning electron microscopy as well as microRaman spectroscopy. Thermal synergy component (hot filament) possesses an activating agent for diamond deposition, and contributes significantly to quality and extent of diamond deposition. Laser synergy component comprises a solid surface modification as well as the spectroactive gaseous atmosphere modification. Surface modification consists in changes of the diamond coating being deposited and, at the same time, in changes of the substrate surface structure. Laser modification of the spectroactive diamond precursor atmosphere means specific consumption of the precursor, which enables to skip the deposition on a defined substrate location. The resulting process of diamond coating elimination from certain, desired locations using the CO 2 laser might contribute to tailoring diamond coatings for particular applications. Additionally, the substrate laser modification could be optimized by choice of a proper spectroactive precursor concentration, or by a laser radiation multiple pass through an absorbing medium

  4. Acid formic effect in zinc coatings obtained by galvanostatic deposition

    International Nuclear Information System (INIS)

    Lopes, C.; David, M.; Souza, E.C.

    2016-01-01

    Zinc deposits obtained from electrodeposition is widely used for the purpose of protecting steel substrates from corrosion. They are generally added to Zn deposition bath many additives for improving certain characteristics of the deposit. As far as is known there is no information in literature about the effect of formic acid in corrosion resistance of a Zn deposit. Because it is an acid additive, it has the use of cyclohexylamine, in order for the electrolytic bath continue with a pH equal to the one used commercially, around 5. The main goal of this study is analyze the effect of the formic acid addition in the corrosion resistance of an Zn electrodeposition obtained by galvanostatic deposition. The results obtained by performance tests, cyclic voltammetry and X-ray diffraction showed that the formic acid addition may be promising in combating the corrosion of materials. (author)

  5. Improved Thermal Performance of Diamond-Copper Composites with Boron Carbide Coating

    Science.gov (United States)

    Hu, Haibo; Kong, Jian

    2013-11-01

    B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10-6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.

  6. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2018-02-01

    Full Text Available In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,AlN deposited by physical vapor deposition (PVD have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC and one central rotating cathode (CERC. The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  7. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Science.gov (United States)

    Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Matos Martins, Marcelo

    2018-01-01

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds. PMID:29495620

  8. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    Science.gov (United States)

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  9. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  10. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    Science.gov (United States)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  11. Failure mechanisms of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Science.gov (United States)

    Vaidyanathan, Krishnakumar

    Thermal barrier coatings (TBCs) allow operation of structural components, such as turbine blades and vanes in industrial and aircraft gas engines, at temperatures close to the substrate melting temperatures. They consist of four different layers; a high strength creep-resistant nickel-based superalloy substrate, an oxidation resistant bond coat (BC), a low thermal conductivity ceramic topcoat and a thermally grown oxide (TGO), that is predominantly alpha-Al 2O3, that forms between the BC and the TBC. Compressive stresses (3--5 GPa) that are generated in the thin TGO (0.25--8 mum) due to the mismatch in thermal coefficient of expansion between the TGO and BC play a critical role in the failure of these coatings. In this study, the failure mechanisms of a commercial yttria-stabilized zirconia (7YSZ) electron beam-physical vapor deposited (EB-PVD) coating on platinum aluminide (beta-(Ni,Pt)Al) bond coat have been identified. Two distinct mechanisms have been found responsible for the observed damage initiation and progression at the TGO/bond coat interface. The first mechanism leads to localized debonding at TGO/bond coat interface due to increased out-of-plane tensile stress, along bond coat features that manifest themselves as ridges. The second mechanism causes cavity formation at the TGO/bond coat interface, driven by cyclic plasticity of the bond coat. It has been found that the debonding at the TGO/bond coat interface due to the first mechanism is solely life determining. The final failure occurs by crack extension along either the TGO/bond coat interface or the TGO/YSZ interface or a combination of both, leading to large scale buckling. Based on these mechanisms, it is demonstrated that the bond coat grain size and the aspect ratio of the ridges have a profound influence on spallation lives of the coating. The removal of these ridges by fine polishing prior to TBC deposition led to a four-fold improvement in life. The failure mechanism identified for the

  12. DC switch power supply for vacuum-arc coatings deposition

    International Nuclear Information System (INIS)

    Zalesskij, D.Yu.; Volkov, Yu.Ya.; Vasil'ev, V.V.; Kozhushko, V.V.; Luchaninov, A.A.; Strel'nitskij, V.E.

    2008-01-01

    Special DC Switch Power Supply for vacuum-arc deposition was developed and tested in the mode of depositing Al and AlN films. Maximum output power was 6 kW, maximum output current - 120 A, open-circuit voltage - 150 V. The Power Supply allows to adjust and stabilize output current in a wide range. Testing of the Power Supply revealed an advantages over the standard 'Bulat-6' power supply, especially for deposition of non-conductive AlN films.

  13. Abrasion resistance of alloy coatings deposited by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Lescoffit, A.-E.; Teboul, B.; Neufuss, Karel; Voleník, Karel

    2009-01-01

    Roč. 54, č. 2 (2009), s. 113-126 ISSN 0001-7043 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * alloy coatings * slurry abrasion * hardness and microhardness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  14. lectrolytic deposition of lithium into calcium phosphate coatings

    NARCIS (Netherlands)

    Wang, J.; de Groot, K.; van Blitterswijk, Clemens; de Boer, Jan

    2009-01-01

    Objectives: Lithium ions stimulate the Wnt signaling pathway and the authors previously demonstrated that lithium enhances the proliferation of tissue cultured human mesenchymal stem cells. The aim of this study was to prepare and characterize a calcium phosphate/lithium coating by means of

  15. Deposition of protective coatings in rf organosilicon discharges

    Czech Academy of Sciences Publication Activity Database

    Zajíčková, L.; Buršíková, V.; Kučerová, Z.; Franta, D.; Dvořák, P.; Šmíd, R.; Peřina, Vratislav; Macková, Anna

    2007-01-01

    Roč. 16, č. 1 (2007), s. 123-132 ISSN 0963-0252 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : organosilicon discharges, hardness and elastic modulus, protectove coating s Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.120, year: 2007

  16. Characterization of Tungsten Carbide coatings deposited on AISI 1020 steel

    International Nuclear Information System (INIS)

    Santos, A; Gonzalez, C; Ramirez, Z Y

    2017-01-01

    In order to determine the variation in the mechanical properties of AISI 1020 standardized steel, heat treated by a quenching and tempering process and with a Tungsten Carbide coating, was performed a microstructural and chemical characterization of the coating material through electron microscopy scanning and X-ray energy dispersive spectroscopy. The steel received a heat treatment of quenching performed by heating to 850°C, followed by cooling in water and tempering at a temperature of 450°C with air cooling. Tests of a) microhardness with a Wilson-Wolpert Tukon 2100B micro durometer and b) resistance to adhesive and abrasive wear following the ASTM G99-05 “Standard test method for wear testing with a pin-on-disk machine” and ASTM G65-04 “standard test method for measuring abrasion using dry sand and rubber Wheel” standards respectively. The results show that the microhardness of the steel do not vary with the load used to perform the test; in addition, the heat treatment of quenching and tempering improves by 5.5% the property while the coating increase it by 124.2%. Regarding the abrasive wear resistance, it is observed that the amount of material lost increases linearly with the distance covered. It was determined that the heat treatment decreased on average by 17.5% the volume of released material during the tests while the coating recued it by 66.7%. The amount volume of material lost during the adhesive wear tests increases linearly with the distance covered while the heat treatment decreased on average by 10.5% the volume of released material during the trial and the coating reduced it by 66.5%. (paper)

  17. Anodisation of sputter deposited aluminium–titanium coatings: Effect of microstructure on optical characteristics

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Junker-Holst, Andreas; Vestergaard Nielsen, Daniel

    2014-01-01

    Magnetron sputtered coatings of aluminium containing up to 18 wt.% titanium were deposited on aluminium substrates to study the effect of microstructure on the optical appearance of the anodised layer. The microstructure and morphology were studied using transmission electron microscopy (TEM), X......-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipitation of Al3Ti phases. The reflectance of the anodised surfaces...... decreasedwith titaniumcontent in the as-deposited, and heat-treated states, and after anodisation of the as-deposited coatings. Specimens turned grey or blackwhen anodising after heat treatment. Partially anodised Al3Ti phaseswere found in the anodised layer, and the interface between substrate and anodised...

  18. Effect of thermally deposited siloxane-methacrylate coating on bonding to glass fibre posts.

    Science.gov (United States)

    Silva, F P; Faria-E-Silva, A L; Moraes, R R; Ogliari, A O; Reis, G R; Oliveira, A R F; Menezes, M S

    2018-01-01

    To evaluate the alterations promoted by a thermally deposited siloxane-methacrylate coating on the surface of glass fibre posts and their effect on the bond strength of resin-core materials to the posts. Fibre post surfaces were treated with experimental thermally deposited siloxane-methacrylate coatings or clinically available treatments (i.e. hydrogen peroxide and methylene chloride); nontreated posts were used as controls. The contact angles formed between the post surface and the water/adhesive were measured with a tensiometer. Scanning electron microscopy and electron dispersive spectroscopy were used to examine the topographies and chemical changes in the post surfaces following treatment. Surface roughness was evaluated with laser interferometry. Core resin was bonded to the fibre posts, and microtensile bond strength testing was subsequently performed. The data were individually submitted to anova and Tukey's tests (α = 0.05). The water contact angle was reduced significantly (P coating. All treatments significantly increased the adhesive contact angle (P ≤ 0.016) compared to the control as well as the surface roughness (P ≤ 0.006) and the amount of Si on post surfaces. Greater percentages of Si were observed for the thermally deposited coating. The bond strength to the posts was significantly improved by the thermally deposited coating (P treatments did not differ from the control. Treating the surface of glass fibre posts with a thermally deposited siloxane-methacrylate coating improved the bond strength to resin-based materials. The coating could be performed by manufacturers of glass fibre posts in order to reduce the number of clinical steps required for luting posts into root canals. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Chemical vapour deposition of optical coatings onto small scale complex optical components

    Science.gov (United States)

    Hitchman, M. L.; Gibson, D. R.; Manookian, W.; Waddell, E. M.

    2005-09-01

    In this paper we describe how optical coatings can be deposited uniformly with a high precision and reproducibility on 3-dimensional substrates, such as spherical lenses, by CVD. We present results that will highlight some specific advantages of CVD over the traditionally used methods of e-beam evaporation and magnetron sputtering and we will show that CVD has tremendous potential for enhancing the quality of optical coatings and for making cost savings.

  20. HARDNESS AND DIMENSIONS OF STEELS WITH HARD COATINGS PRODUCED BY CHEMICAL VAPOUR DEPOSITION AT MEDIUM TEMPERATURES

    OpenAIRE

    Ruppert, W.

    1989-01-01

    Chemical Vapour Deposition (CVD) of hard coatings onto steels requires thorough controlling of dimensions and hardness. Dimensional and hardness problems depend on the metallurgical properties of the base and the heat treatments which are applied to the steel before and at the application of CVD. Some information on the control of the dimensions and the hardness of high-carbon high-chromium tool steels which have to be coated with hard compounds by CVD at high temperatures (HTCVD) was already...

  1. Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties.

    Science.gov (United States)

    Karbowniczek, Joanna; Cordero-Arias, Luis; Virtanen, Sannakaisa; Misra, Superb K; Valsami-Jones, Eugenia; Tuchscherr, Lorena; Rutkowski, Bogdan; Górecki, Kamil; Bała, Piotr; Czyrska-Filemonowicz, Aleksandra; Boccaccini, Aldo R

    2017-08-01

    To address one of the serious problems associated with permanent implants, namely bacterial infections, novel organic/inorganic coatings containing zinc oxide nanoparticles (nZnO) are proposed. Coatings were obtained by electrophoretic deposition (EPD) on stainless steel 316L. Different deposition conditions namely: deposition times in the range 60-300s and applied voltage in the range 5-30V as well as developing a layered coating approach were studied. Antibacterial tests against gram-positive Staphylococcus aureus and gram-negative Salmonella enteric bacteria confirmed the activity of nZnO to prevent bacterial growth. Coatings composition and morphology were analyzed by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Moreover, the corrosion resistance was analyzed by evaluation of the polarization curves in DMEM at 37°C, and it was found that coatings containing nZnO increased the corrosion resistance compared to the bare substrate. Considering all results, the newly developed coatings represent a suitable alternative for the surface modification of metallic implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nano-structured yttria-stabilized zirconia coating by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maleki-Ghaleh, H., E-mail: H_Maleki@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Rekabeslami, M. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shakeri, M.S. [Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Siadati, M.H. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Javidi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Talebian, S.H. [Faculty of Petroleum Engineering, Universiti Technologi Petronas, Perak (Malaysia); Aghajani, H. [Department of Materials Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-09-01

    The most important role of thermal barrier coatings is to reduce the temperature of the substrate in high temperature applications. Nanoparticle zirconia might be a suitable choice for improving the efficiency of thermal barrier coatings. Nanostructured coatings have lower thermal conduction, higher thermal expansion and lower dimensional variations at higher temperatures in comparison with the microstructured coatings. Electrophoretic deposition has been preferred for thermal barrier coatings due to its simplicity, controllability and low cost. In the present study, three different suspensions of ZrO{sub 2}–8 wt%Y{sub 2}O{sub 3} (40 nm) made with ethanol, acetone and acetyl acetone were used. Electrophoretic deposition was conducted at a fixed voltage of 60 V for 120 s on aluminized Inconel 738-LC, and then heat treated at 1100{sup o}C for 4 h in air atmosphere. The coating morphology and elemental distribution were studied using scanning electron microscopy. It was observed that suspension media have an important effect on the quality of the final product. Acetyl acetone showed better dispersion of particles than the other two media. Consequently, deposition from acetyl acetone resulted in uniform and crack-free layers while those from ethanol and acetone were completely non-uniform due to agglomeration and low viscosity, respectively.

  3. ELECTROPHORETICALLY DEPOSITED NANOSIZED HYDROXYAPATITE COATINGS ON 316LVM STAINLESS STEEL FOR ORTHOPAEDIC IMPLANTS

    Directory of Open Access Journals (Sweden)

    MARIJA MIHAILOVIĆ

    2011-03-01

    Full Text Available Hydroxyapatite is a widely used bioceramic material in implant coatings research because of its bioactive behavior when being deposited onto the metallic implant and compatibility with the human bones composition. The coating of nanosized hydroxyapatite was electrophoretically deposited on a blasted surface of stainless steel 316LVM samples at constant voltage, for different deposition times and subsequently sintered in both, vacuum and argon atmosphere, at 1040 and 1000 °C, respectively. Although sintering temperatures needed to achieve highly dense coatings can cause HAp coating phase changes, the possibility to obtain a bioactive coating on 316LVM substrate, without the coatings phase changes due to the nature of the used stoichiometric nanostructured hydroxyapatite is presented in this work. The thermal stability of the used HAp powder was assessed by DTA-TG analyses over the temperature range of 23-1000 C, i.e., at the or nearby experimental sintering temperature. The microstructure characterization was accomplished using SEM, while phase composition was determined using XRD.

  4. ZnS/diamond composite coatings for infrared transmission applications formed by the aerosol deposition method

    Science.gov (United States)

    Johnson, Scooter D.; Kub, Fritz J.; Eddy, Charles R.

    2013-06-01

    The deposition of nano-crystalline ZnS/diamond composite protective coatings on silicon, sapphire, and ZnS substrates, as a preliminary step to coating infrared transparent ZnS substrates from powder mixtures by the aerosol deposition method is presented. Advantages of the aerosol deposition method include the ability to form dense, nanocrystalline lms up to hundreds of microns thick at room temperature and at a high deposition rate on a variety of substrates. Deposition is achieved by creating a pressure gradient that accelerates micrometer- scale particles in an aerosol to high velocity. Upon impact with the target substrate the particles fracture and embed. Continued deposition forms the thick compacted lm. Deposition from an aerosolized mixture of ZnS and diamond powders onto all targets results in linear trend from apparent sputter erosion of the substrate at 100% diamond to formation of a lm with increasing fractions of ZnS. The crossover from abrasion to lm formation on sapphire occurs above about 50% ZnS and a mixture of 90% ZnS and 10% diamond forms a well-adhered lm of about 0.7 μm thickness at a rate of 0.14 μm/min. Resulting lms are characterized by scanning electron microscopy, pro lometry, infrared transmission spectroscopy, and x-ray photoemission spectroscopy. These initial lms mark progress toward the future goal of coating ZnS substrates for abrasion resistance.

  5. Tribological and thermal stability study of nanoporous amorphous boron carbide films prepared by pulsed plasma chemical vapor deposition

    Science.gov (United States)

    Liza, Shahira; Ohtake, Naoto; Akasaka, Hiroki; Munoz-Guijosa, Juan M.

    2015-06-01

    In this work, the thermal stability and the oxidation and tribological behavior of nanoporous a-BC:H films are studied and compared with those in conventional diamond-like carbon (DLC) films. a-BC:H films were deposited by pulsed plasma chemical vapor deposition using B(CH3)3 gas as the boron source. A DLC interlayer was used to prevent the a-BC:H film delamination produced by oxidation. Thermal stability of a-BC:H films, with no delamination signs after annealing at 500 °C for 1 h, is better than that of the DLC films, which completely disappeared under the same conditions. Tribological test results indicate that the a-BC:H films, even with lower nanoindentation hardness than the DLC films, show an excellent boundary oil lubricated behavior, with lower friction coefficient and reduce the wear rate of counter materials than those on the DLC film. The good materials properties such as low modulus of elasticity and the formation of micropores from the original nanopores during boundary regimes explain this better performance. Results show that porous a-BC:H films may be an alternative for segmented DLC films in applications where severe tribological conditions and complex shapes exist, so surface patterning is unfeasible.

  6. Tribological and thermal stability study of nanoporous amorphous boron carbide films prepared by pulsed plasma chemical vapor deposition.

    Science.gov (United States)

    Liza, Shahira; Ohtake, Naoto; Akasaka, Hiroki; Munoz-Guijosa, Juan M

    2015-06-01

    In this work, the thermal stability and the oxidation and tribological behavior of nanoporous a -BC:H films are studied and compared with those in conventional diamond-like carbon (DLC) films. a -BC:H films were deposited by pulsed plasma chemical vapor deposition using B(CH 3 ) 3 gas as the boron source. A DLC interlayer was used to prevent the a -BC:H film delamination produced by oxidation. Thermal stability of a -BC:H films, with no delamination signs after annealing at 500 °C for 1 h, is better than that of the DLC films, which completely disappeared under the same conditions. Tribological test results indicate that the a -BC:H films, even with lower nanoindentation hardness than the DLC films, show an excellent boundary oil lubricated behavior, with lower friction coefficient and reduce the wear rate of counter materials than those on the DLC film. The good materials properties such as low modulus of elasticity and the formation of micropores from the original nanopores during boundary regimes explain this better performance. Results show that porous a -BC:H films may be an alternative for segmented DLC films in applications where severe tribological conditions and complex shapes exist, so surface patterning is unfeasible.

  7. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  8. Investigation on the corrosion behavior of physical vapor deposition coated high speed steel

    Directory of Open Access Journals (Sweden)

    R Ravi Raja Malarvannan

    2015-08-01

    Full Text Available This work emphasizes on the influence of the TiN and AlCrN coatings fabricated on high speed steel form tool using physical vapor deposition technique. The surface microstructure of the coatings was studied using scanning electron microscope. Hardness and corrosion studies were also performed using Vickers hardness test and salt spray testing, respectively. The salt spray test results suggested that the bilayer coated (TiN- bottom layer and AlCrN- top layer substrate has undergone less amount of corrosion, and this is attributed to the dense microstructure. In addition to the above, the influence of the above coatings on the machining performance of the high speed steel was also evaluated and compared with that of the uncoated material and the results suggested that the bilayered coating has undergone very low weight loss when compared with that of the uncoated substrate depicting enhanced wear resistance.

  9. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara

    2014-01-01

    The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al–Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result...... in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550°C for 4 h in order...... to evolve Al–Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acidat 18°C with an intention to study the effect of anodizing on the Al–Zr based precipitates in the coating.Detailed microstructural characterization of the coating and anodized layer...

  10. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    International Nuclear Information System (INIS)

    Tsai, Ming-Tzu; Chang, Yin-Yu; Huang, Heng-Li; Hsu, Jui-Ting; Chen, Ya-Chi; Wu, Aaron Yu-Jen

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO 2 layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO 2 , ZnO, and Ti(Zn)O 2 coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO 2 coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO 2 coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O 2 coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO 2 and Ti(Zn)O 2 coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO 2 and Ti(Zn)O 2 coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O 2 coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO 2 , Ti(Zn)O 2 and ZnO coatings were deposited by cathodic arc evaporation. ► Zn may incorporated with Ti to form Zn-doped TiO 2 .

  11. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Huang, Heng-Li; Hsu, Jui-Ting [School of Dentistry, College of Medicine China Medical University, Taichung 404, Taiwan (China); Chen, Ya-Chi [Department of Materials Science and Engineering, Mingdao University, Changhua 523, Taiwan (China); Wu, Aaron Yu-Jen [Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan (China)

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO{sub 2} layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO{sub 2}, ZnO, and Ti(Zn)O{sub 2} coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO{sub 2} coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO{sub 2} coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O{sub 2} coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO{sub 2} and Ti(Zn)O{sub 2} coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO{sub 2} and Ti(Zn)O{sub 2} coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O{sub 2} coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO{sub 2}, Ti(Zn)O{sub 2} and ZnO coatings were deposited by cathodic arc

  12. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    Science.gov (United States)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  13. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    OpenAIRE

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    2007-01-01

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the coating and the substrate, the macro-stresses were found to be compressive and to decrease in magnitude with increasing processing speed. The origin of the macro- and micro-stresses is discussed. T...

  14. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    Science.gov (United States)

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  15. Electrochemical behaviour of silica basic hybrid coatings deposited on stainless steel by dipping and EPD

    International Nuclear Information System (INIS)

    Castro, Y.; Duran, A.; Damborenea, J.J.; Conde, A.

    2008-01-01

    The aim of this work is the characterisation of the corrosion behaviour of stainless steel (AISI 304) substrates coated by dipping and electrophoretic deposition (EPD) from a sol-gel basic sol. Particulate silica sols (labelled NaSi) were prepared by basic catalysis from ethyltriethoxysilane (TEOS), methyltriethoxysilane (MTES) and sodium hydroxide. Coatings between 2 and 10 μm were prepared by using concentrated and diluted sols by dipping and EPD process and the corrosion behaviour of the coated substrates were studied through potentiodynamic and impedance spectroscopy measurements (EIS). Potentiodynamic studies of coatings produced by dipping reveal a strong dependence of the protective properties with the concentration of the sol. This behaviour was confirmed by EIS showing that only the coatings obtained from concentrated sol present enough protective properties. On the contrary, EPD coatings prepared from diluted NaSi sol showed an excellent corrosion resistance, maintaining a pure capacitive behaviour for long periods of immersion. EPD deposition is thus proposed as a good alternative method for obtaining thicker and denser coatings with good protective properties from dilute and stable sols

  16. Ion assisted deposition of refractory oxide thin film coatings for improved optical and structural properties

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Bhattacharyya, D.; Das, N.C.

    1999-03-01

    Ion assisted deposition technique (IAD) has emerged as a powerful tool to control the optical and structural properties of thin film coatings. Keeping in view the complexity of the interaction of ions with the films being deposited, sophisticated ion sources have been developed that cater to the need of modern optical coatings with stringent spectral and environmental specifications. In the present work, the results of ion assisted deposition (IAD) of two commonly used refractory oxides, namely TiO 2 and ZrO 2 , using cold cathode ion source (CC-102R) are presented. Through successive feedback and calibration techniques, various ion beams as well as deposition parameters have been optimized to achieve the best optical and structural film properties in the prevalent deposition geometry of the coating system. It has been possible to eliminate the unwanted optical and structural inhomogeneities from these films using and optimized set of process parameters. Interference modulated spectrophotometric and phase modulated ellipsometric techniques have been very successfully utilized to analyze the optical and structural parameters of the films. Several precision multilayer coatings have been developed and are being used for laser and spectroscopic applications. (author)

  17. PREPARING OF THE CHAMELEON COATING BY THE ION JET DEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Jakub Skocdopole

    2017-07-01

    Full Text Available Preparation of chameleon coatings using an Ionized Jet Deposition (IJD technique is reported in the present paper. IJD is a new flexible method for thin film deposition developed by Noivion, Srl. The chameleon coatings are thin films characterised by a distinct change of their tribological properties according to the external conditions. The deposited films of SiC and TiN materials were examined by the Raman spectroscopy, SEM and XPS. The results of the Raman spectroscopy have proved an amorphous structure of SiC films. The data from XPS on TiN films have shown that the films are heavily oxidized, but also prove that the films are composed of TiN and pure Ti. The SEM provided information about the size of grains and particles constituting the deposited films, which is important for tribological properties of the films. Deposition of the chameleon coating is very complex problem and IJD could be ideal method for preparation of this coating.

  18. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  19. XPS, SIMS and FTIR-ATR characterization of boronized graphite from the thermonuclear plasma device RFX-mod

    International Nuclear Information System (INIS)

    Ghezzi, F.; Laguardia, L.; Caniello, R.; Canton, A.; Dal Bello, S.; Rais, B.; Anderle, M.

    2015-01-01

    Highlights: • XPS, ATR and SIMS characterization of samples from the first wall of RFX-mod device. • Amorphous hydrogenated boron carbide plus other carbon type bonds. • Results suggest to increase the number of electrode used for boronization. - Abstract: In this paper the characterization of a thin (tens of nanometers) boron layer on fine grain polycrystalline graphite substrate is presented. The boron film is used as conditioning technique for the full graphite wall of the Reversed Field eXperiment–modified (RFX-mod) experiment, a device for the magnetic confinement of plasmas of thermonuclear interest. Aim of the present analysis is to enlighten the chemical structure of the film, the trapping mechanism that makes it a getter for oxygen and hydrogen and the reason of its loss of effectiveness after exposure to about 100 s of hydrogen plasma. X-ray Photoelectron Spectroscopy (XPS), Secondary Ions Mass Spectrometry (SIMS) and Fourier Transform Infra Red spectroscopy in combination with the Attenuated Total Reflectance (FTIR-ATR) were used to obtain the structure and the chemical composition of graphitic samples as coated or coated and subsequently exposed to hydrogen plasma after boron deposition. The boron layers on the only coated samples were found to be amorphous hydrogenated boron carbide plus a variety of bonds like B-B, B-H, B-O, B-OH, C-C, C-H, C-O, C-OH. Both the thickness and the homogeneity of the layers were found to depend on the distance of the sample from the anode during the deposition. The samples contained oxygen along the layer thickness, at level of 5%, bound to boron. The gettering action of the boron is therefore already active during the deposition itself. The exposure to plasma caused erosion of the boron film and higher content of H and O bound to boron throughout the whole thickness. The interaction of the B layer with plasma is therefore a bulk phenomenon.

  20. Analysis of sub-bandgap losses in TiO2 coating deposited via single and dual ion beam deposition

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Hlubuček, Jiří; Horodyská, Petra; Budasz, Jiří; Václavík, Jan

    2017-01-01

    Roč. 626, March (2017), s. 60-65 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Ion beam deposition * Titanium dioxide * Optical coating * Sub-bandgap losses * Urbach tail Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.879, year: 2016 http://www.sciencedirect.com/science/article/pii/S0040609017301256

  1. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    International Nuclear Information System (INIS)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto; Gouvêa dos Santos, Raquel; Barros de Sousa, Edésia Martins

    2013-01-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG) 1000 , and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed

  2. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  3. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  4. Diamond like carbon coatings deposited by microwave plasma CVD ...

    Indian Academy of Sciences (India)

    WINTEC

    Diamond-like carbon (DLC) films were deposited by microwave assisted chemical vapour deposi- tion system using d.c. bias voltage ... Diamond like carbon films; microwave assisted CVD; X-ray photoelectron spectroscopy; spectro- scopic ellipsometry. 1. .... The electrical resistivity of these films was higher than 200 MΩ ...

  5. The emissivity of W coatings deposited on carbon materials for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Ruset, C., E-mail: ruset@infim.ro [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Zastrow, K.-D.; Matthews, G. [Culham Centre for Fusion Energy (CCFE), Culham Science Centre, Abingdon (United Kingdom); Courtois, X.; Bucalossi, J. [IRFM, CEA Cadarache, F-13108 SAINT PAUL LEZ DURANCE (France); Likonen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-01-15

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  6. Synergistic effect between nano-ceramic lubricating additives and electroless deposited Ni-W-P coating

    Science.gov (United States)

    Chen, Min; Cheng, Wushan; Zhao, Zuxin; Huang, Xiaobo

    2013-01-01

    The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.

  7. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Science.gov (United States)

    Sun, Ningbo; Zhang, Yingchun; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-01

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na2WO4-WO3 molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  8. The emissivity of W coatings deposited on carbon materials for fusion applications

    International Nuclear Information System (INIS)

    Ruset, C.; Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V.; Zastrow, K.-D.; Matthews, G.; Courtois, X.; Bucalossi, J.; Likonen, J.

    2017-01-01

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  9. Deposition of multilayer optical coatings using closed-field magnetron sputtering

    Science.gov (United States)

    Gibson, D. R.; Brinkley, I.; Hall, G. W.; Waddell, E. M.; Walls, J. M.

    2006-08-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in display technologies. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to < +/-1% is accomplished simply using time, although optical monitoring can be used for more demanding applications. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. This paper presents data on optical properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, narrowband filters as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process are described.

  10. Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride

    Science.gov (United States)

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene. PMID:25156685

  11. Electrochemical grafting of boron-doped single-crystalline chemical vapor deposition diamond with nitrophenyl molecules.

    Science.gov (United States)

    Uetsuka, Hiroshi; Shin, Dongchan; Tokuda, Norio; Saeki, Kazuhiko; Nebel, Christoph E

    2007-03-13

    The growth of covalently bonded nitrophenyl layers on atomically smooth boron-doped single-crystalline diamond surfaces is characterized using cyclic voltammetric attachment and constant-potential grafting by electrochemical reduction of aryl diazonium salts. We apply atomic force microscopy (AFM) in contact mode to remove phenyl layers and measure phenyl layer thicknesses by oscillatory AFM. Angle-resolved X-ray photoelectron spectroscopy is applied to reveal the bonding arrangement of phenyl molecules, and transient current measurements during the grafting are used to investigate the dynamics of chemical bonding. Nitrophenyl groups at an initial stage of attachment grow three-dimensional (3D), forming layers of varying heights and densities. Layer thicknesses of up to 80 A are detected for cyclic voltammetry attachment after five cycles, whereas the layer becomes denser and only about 25 A thick in the case of constant-potential attachment. No monomolecular closed layer can be detected. The data are discussed taking into account established growth models. Redox systems such as Fe(CN)63-/4- and Ru(NH3)62+/3+ are used to probe the electrochemical barrier properties of nitrophenyl groups grafted onto diamond.

  12. The development of the process of electrophoresis deposition of the boron on aluminium substrate to be used in the construction of neutron detectors

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de.

    1988-01-01

    The development in the country of autonomous nuclear technology made it necessary to construct radiation detectors to substitute the imported ones among others the boron lined neutron detectors. For this reason was developed the process of boron electrophoresis deposition on aluminium substrate of large area for use in the construction of these neutron detectors. After the definition and optimization of the parameters involved in the process, depositions of 10 B were made on cylinders to be used after wards as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. Prototype of ionization were designed, builted and mounted in the department of Application for Engineering and Industry (TE) of Nuclear Energy Research Institute (IPEN) belonging to the National Atomic Energy Comission (CNEN). Submited to caracterization tests at IPEN's IEA-RL reactor, they satisfied fully the technical especifications of the project. (author) [pt

  13. Effects of boron addition on a-Si90Ge10:H films obtained by low frequency plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Perez, Arllene M; Renero, Francisco J; Zuniga, Carlos; Torres, Alfonso; Santiago, Cesar

    2005-01-01

    Optical, structural and electric properties of (a-(Si 90 Ge 10 ) 1-y B y :H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10 -3 to 10 1 Ω -1 cm -1 when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV

  14. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  15. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß, Sigrid

    2012-03-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles and PEEK microparticles for EPD were prepared in ethanol. PEEK-TiO 2 composite coatings were optimized using suspensions containing 6wt% PEEK-TiO 2 in ethanol with a 3:1 ratio of PEEK to TiO 2 in weight and by applying a potential difference of 30 V for 1 minute. A heat-treatment process of the optimized PEEK-TiO 2 composite coatings was erformed at 335°C for 30 minutes with a heating rate of 10°Cmin -1 to densify the deposits. The EPD coatings were microstructurally evaluated by scanning electron microscopy (SEM). It was demonstrated that EPD is a convenient and rapid method to fabricate PEEK/TiO 2 coatings on stainless steel which are interesting for biomedical applications. © (2012) Trans Tech Publications, Switzerland.

  16. Nanocomposite Coatings Codeposited with Nanoparticles Using Aerosol-Assisted Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Xianghui Hou

    2013-01-01

    Full Text Available Incorporating nanoscale materials into suitable matrices is an effective route to produce nanocomposites with unique properties for practical applications. Due to the flexibility in precursor atomization and delivery, aerosol-assisted chemical vapour deposition (AACVD process is a promising way to synthesize desired nanocomposite coatings incorporating with preformed nanoscale materials. The presence of nanoscale materials in AACVD process would significantly influence deposition mechanism and thus affect microstructure and properties of the nanocomposites. In the present work, inorganic fullerene-like tungsten disulfide (IF-WS2 has been codeposited with Cr2O3 coatings using AACVD. In order to understand the codeposition process for the nanocomposite coatings, chemical reactions of the precursor and the deposition mechanism have been studied. The correlation between microstructure of the nanocomposite coatings and the codeposition mechanism in the AACVD process has been investigated. The heterogeneous reaction on the surface of IF-WS2 nanoparticles, before reaching the substrate surface, is the key feature of the codeposition in the AACVD process. The agglomeration of nanoparticles in the nanocomposite coatings is also discussed.

  17. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers

    Science.gov (United States)

    2016-01-01

    We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411

  18. Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Ho [School of Medicine, China Medical University, Taichung, 404 Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin, Taiwan (China); Huang, Heng-Li [School of Dentistry, China Medical University, Taichung, Taiwan (China); Kao, Ho-Yi [Department of Materials Science and Engineering, Mingdao University, Changhua, Taiwan (China)

    2011-12-30

    Titanium (Ti)-based materials have been used for dental/orthopedic implants due to their excellent biological compatibility, superior mechanical strength and high corrosion resistance. The osseointegration of Ti implants is related to their composition and surface treatment. Better biocompatibility and anti-bacterial performances of Ti implant are beneficial for the osseointegration and for avoiding the infection after implantation surgery. In this study, nanocomposite ZrCN/amorphous carbon (a-C) coatings with different carbon contents were deposited on a bio-grade pure Ti implant material. A cathodic-arc evaporation system with plasma enhanced duct equipment was used for the deposition of ZrCN/a-C coatings. Reactive gas (N{sub 2}) and C{sub 2}H{sub 2} activated by the zirconium plasma in the evaporation process were used to deposit the ZrCN/a-C coatings. To verify the susceptibility of implant surface to bacterial adhesion, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), one of the major pathogen frequently found in the dental implant-associated infections, was chosen for in vitro anti-bacterial analyses. In addition, the biocompatibility of human gingival fibroblast (HGF) cells on coatings was also evaluated by a cell proliferation assay. The results suggested that the ZrCN/a-C coatings with carbon content higher than 12.7 at.% can improve antibacterial performance with excellent HGF cell compatibility as well.

  19. Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants

    International Nuclear Information System (INIS)

    Lai, Chih-Ho; Chang, Yin-Yu; Huang, Heng-Li; Kao, Ho-Yi

    2011-01-01

    Titanium (Ti)-based materials have been used for dental/orthopedic implants due to their excellent biological compatibility, superior mechanical strength and high corrosion resistance. The osseointegration of Ti implants is related to their composition and surface treatment. Better biocompatibility and anti-bacterial performances of Ti implant are beneficial for the osseointegration and for avoiding the infection after implantation surgery. In this study, nanocomposite ZrCN/amorphous carbon (a-C) coatings with different carbon contents were deposited on a bio-grade pure Ti implant material. A cathodic-arc evaporation system with plasma enhanced duct equipment was used for the deposition of ZrCN/a-C coatings. Reactive gas (N 2 ) and C 2 H 2 activated by the zirconium plasma in the evaporation process were used to deposit the ZrCN/a-C coatings. To verify the susceptibility of implant surface to bacterial adhesion, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), one of the major pathogen frequently found in the dental implant-associated infections, was chosen for in vitro anti-bacterial analyses. In addition, the biocompatibility of human gingival fibroblast (HGF) cells on coatings was also evaluated by a cell proliferation assay. The results suggested that the ZrCN/a-C coatings with carbon content higher than 12.7 at.% can improve antibacterial performance with excellent HGF cell compatibility as well.

  20. Microstructural Evolution of (Ti,W,CrB2 Coatings Deposited on Steel Substrates during Annealing

    Directory of Open Access Journals (Sweden)

    Aleksandra Newirkowez

    2014-05-01

    Full Text Available The topic of the present experiments are transition metal diboride coatings of composition (Ti0.49W0.51B2 and (Ti0.44W0.30Cr0.26B2. The coatings were deposited on steel substrates using dc magnetron sputtering. We investigated how annealing in argon at elevated temperatures modifies microstructure. The as-deposited films are amorphous. Annealing between 700 and 1100 °C results in the formation of nano-crystalline precipitates with average grain diameters of about 10–50 nm. A TiC phase (Fm-3m; a ≈ 4.3 Å is observed as the dominating precipitate phase. In addition, small amounts (10%–20% of a Cr23C6 phase (Fm-3m; a ≈ 10.6 Å are observed. In contrast to literature data on the same coatings deposited on silicon substrates, the formation of boride precipitate phases is strongly suppressed here. From investigations with X-ray diffractometry, electron microscopy and secondary ion mass spectrometry we conclude that the nanostructure of the coatings is formed by reactive phase formation of the boride coating with the carbon containing steel substrate.

  1. Prospects of chemically deposited CoS-CU2S coatings for solar ...

    African Journals Online (AJOL)

    Moreover, the coating of the glass substrates with a thin layer of CoS prior to Cu2S film deposition was found to improve the mechanical stability of the Cu2S thin films, offering the choice of different shades of colours for the same integrated transmittance in the visible region in solar control applications. The possibility ...

  2. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth ...

    Indian Academy of Sciences (India)

    Optimal configuration, represented as (Zn–Co)2.0/4.0/300 was found to exhibit ∼ 89 times better corrosion resistance compared to monolithic (Zn–Co)3.0 alloy deposited for same time, from same bath. The better corrosion resistance of CMMA coatings was attributed to changed interfacial dielectric properties, evidenced by ...

  3. The electrochemical deposition of tin-nickel alloys and the corrosion properties of the coating

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Møller, Per

    2005-01-01

    The electrodeposition of tin/nickel (65/35 wt%) is a unique coating process because of the deposition of an intermetallic phase of nickel and tin, which cannot be formed by any pyrometallurgical process. From thermodynamic calculations it can be shown that intermetallic phases can be formed throu...

  4. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    Science.gov (United States)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  5. Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available Diamond-based antireflective (AR coatings were fabricated using a spin coating of diamond suspension at room temperature as nucleation enhancement procedure and microwave plasma enhanced chemical vapour deposition. Various working pressures were used to investigate their effect on the optical characterization of the as-deposited diamond films. Scanning electron microscopy (SEM and atomic forced microscopy (AFM were employed to analyze the surface properties of the diamond films. Raman spectra and transmission electron microscopy (TEM also were used for analysis of the microstructure of the films. The results showed that working pressure had a significant effect on thickness, surface roughness, and wettability of the as-deposited diamond films. Deposited under 35 Torr or working pressure, the film possessed a low surface roughness of 13.8 nm and fine diamond grain sizes of 35 nm. Reflectance measurements of the films also were carried out using UV-Vis spectrometer and revealed a low reflectance value of the diamond films. The achievement demonstrated feasibility of the proposed spin-coating procedure for large scale production and thus opens up a prospect application of diamond film as an AR coating in industrial optoelectronic device.

  6. Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition

    International Nuclear Information System (INIS)

    Liang Jun; Wang Peng; Hu Litian; Hao Jingcheng

    2007-01-01

    The combined microarc oxidation (MAO) and filtered cathode arc deposition process was used to deposit duplex MAO/DLC coating on AM60B magnesium alloy. The microstructure and composition of the resulting duplex coating were analyzed by Raman spectroscopy, X-ray photoelectron spectroscope (XPS) and scanning electron microscope (SEM). The tribological behaviors of the duplex coating were studied by ball-on-disk friction testing. It is found that the Ti-doped DLC thin film could be successfully deposited onto the polished MAO coating. The duplex MAO/DLC coating exhibits a better tribological property than the DLC or MAO monolayer on Mg alloy substrate, owing to the MAO coating served as an intermediate layer provides improved load support for the soft Mg alloy substrate and the DLC top coating exhibits low friction coefficient

  7. Influence of relative humidity during coating on polymer deposition and film formation.

    Science.gov (United States)

    Macchi, Elena; Felton, Linda A

    2016-08-20

    The influence of relative humidity in the pan during coating on polymer deposition and film formation was investigated. Four tablet substrates, differing in hydrophobicity, porosity, and surface roughness, were prepared and coated with Eudragit(®) RS/RL 30 D (8:2 ratio). The spray rate and atomization air pressure were varied to create two distinct micro-environmental conditions in the coating pan. PyroButton data logging devices placed directly in the pan were found to more accurately reflect the relative humidity to which tablets were exposed in comparison to measurements taken at the exhaust. Polymer deposition was shown to be influenced by the properties of the substrate, rather than the processing conditions used during coating, with higher polymer weight gains observed for the more porous tablets. Differences in the film-tablet interface and in the release performance of the coated products, however, were attributed to both the relative humidity in the pan and tablet porosity. Overall, this study demonstrated that a more humid coating process (86% vs 67%) promoted surface dissolution and physical mixing of the tablet ingredients with the forming film and the extent of this phenomenon was dependent on the tablet porosity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Structure and corrosion properties of Cr coating deposited on aerospace bearing steel

    Science.gov (United States)

    Wang, Fangfang; Zhang, Fengxiang; Zheng, Lijing; Zhang, Hu

    2017-11-01

    The corrosion protection of chromium coating deposited on aerospace bearing steels by using the Filtered Cathodic Vacuum Arc deposition- Metal Evaporation Vacuum Arc duplex technique (MEVVA-FCVA) had been investigated. The protection efficiency of chromium coating on different substrate materials had also been evaluated. The chromium coating was mainly composed of nanocrystallineα-Cr in a range of 50-200 nm. The orientation distributions of α-Cr film on substrates with different composition had a certain difference to each other. Electrochemical experimental results indicated that the chromium coating significantly improved the corrosion resistance of experimental bearing steels in 3.5% NaCl solution. The protective efficiency of chromium films were all over 98%. The corrosion resistance of chromium coating was influenced by the chemical composition of substrate material. The chromium coatings on higher Cr-containing substrate displayed lower corrosion current density and more positive corrosion potential. The increase of passive film thickness and the formation of a mass of chromium oxide and hydroxide on the surface are responsible for the improved corrosion properties.

  9. Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions

    Science.gov (United States)

    Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong

    2018-02-01

    High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.

  10. Sealing of hard CrN and DLC coatings with atomic layer deposition.

    Science.gov (United States)

    Härkönen, Emma; Kolev, Ivan; Díaz, Belén; Swiatowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe; Fenker, Martin; Toth, Lajos; Radnoczi, György; Vehkamäki, Marko; Ritala, Mikko

    2014-02-12

    Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes.

  11. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    Energy Technology Data Exchange (ETDEWEB)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A [Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ovsianikov, A; Chichkov, B N [Laser Zentrum Hannover, Hollerithallee 8, 30419 Hannover (Germany); Stafslien, S; Chisholm, B, E-mail: roger_narayan@msn.co [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States)

    2009-12-15

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  12. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    International Nuclear Information System (INIS)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A; Ovsianikov, A; Chichkov, B N; Stafslien, S; Chisholm, B

    2009-01-01

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  13. Chemical vapor deposition of aluminide coatings on iron, nickel and superalloys

    International Nuclear Information System (INIS)

    John, John T.; De, P.K.; Dubey, Vivekanand; Srinivasa, Raman

    2009-08-01

    Aluminide coatings are a class of intermetallic coatings applied on nickel and cobalt base superalloys and steels to protect them from different forms of environmental degradation at high temperatures. In this report a CVD system that can produce the aluminide coatings on iron, nickel and nickel base alloys has been described and the result of chemical vapor deposition of aluminide coatings on iron specimens, their characterization, and property evaluation have been presented. The CVD system consists of an AlCl 3 bath, a stainless steel retort as a hot-wall reacto, cold traps and vacuum system. Aluminium chloride vapor was carried in a stream of hydrogen gas at a flow rate of 150 SCCM (standard cubic centimeter per minute) into the CVD reactor maintained in the temperature range of 1173 - 1373 K and at a pressure of 1.33 kPa (10 Torr). Aluminum deposition takes place from aluminium subchlorides produced by reaction between AlCl 3 and pure aluminum kept in the CVD reactor. The aluminum diffuses into the iron samples and iron aluminide phases are formed at the surface. The coatings were shining bright and showed good adherence to the substrate. The coatings consisted of FeAl phase over a wide range of experimental conditions. The growth kinetics of the coating followed a parabolic rate law and the mean activation energy was 212 ±16 kJ/mol. Optical microscopic studies on the transverse section of the coating showed that the aluminide coating on iron consisted of two layers. The top layer had a thickness in the range of 20-50 μm, and the under layer had thickness ranging from 35 to 250 μm depending on coating temperature in two hours. The thickness of the aluminide layer increased with coating duration and temperature. Electron microprobe studies (EPMA) showed that the aluminum concentration decreased steadily as distance from the surface increased. TEM studies showed that the outer most layer had a B2 order (of the FeAl phase), which extended even into the under

  14. Multi objective optimization of wear resistant TiAlN and TiN coatings deposite by PVD techniques

    OpenAIRE

    A. Zarychta; J. Ratajski; Ł. Szparaga

    2011-01-01

    Purpose: The goal of this paper is to determine, the optimal layer thickness of deposited coatings, in respect of thermal strain and stresses.Design/methodology/approach: For physical modelling purposes Cr, TiN and TiAlN layers were treated as a continuous medium, so the physical phenomena, occurring in the coating, are modelled based on a classical theory of stiffness. Computer model of the object (coating + substrate) describing strains and thermal stresses states in layers, after deposit...

  15. Microstructure and Corrosion Resistance of Aluminium and Copper Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2016-12-01

    Full Text Available The paper presents the study of microstructure and corrosion resistance of composite coatings (Al+Al2O3 and Cu+Al2O3 deposited by Low Pressure Cold Spraying method (LPCS. The atmospheric corrosion resistance was examined by subjecting the samples to cyclic salt spray and Kesternich test chambers, with NaCl and SO2 atmospheres, respectively. The selected tests allowed reflecting the actual working conditions of the coatings. The analysis showed very satisfactory results for copper coatings. After eighteen cycles, with a total time of 432 hours, the samples show little signs of corrosion. Due to their greater susceptibility to chloride ions, aluminium coatings have significant corrosion losses.

  16. Substrate temperature dependence of microcrystallinity in plasma-deposited, boron-doped hydrogenated silicon alloys

    International Nuclear Information System (INIS)

    Rajeswaran, G.; Kampas, F.J.; Vanier, P.E.; Sabatini, R.L.; Tafto, J.

    1983-01-01

    The glow-discharge decomposition of silane diluted in hydrogen using diborane as a dopant results in the deposition of p-type microcrystalline silicon films at relatively low temperatures. The conductivity of these films is critically dependent on the substrate temperature when the ratio of silane flow rate to total gas flow rate is 1%. Electron micrographs show that highly conducting films contain numerous clusters of 2.5-nm crystallites that are embedded in an amorphous medium

  17. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Science.gov (United States)

    Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.

    2015-11-01

    Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  18. Optical and microstructural properties of Au alloyed Al–O sputter deposited coatings

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, N.M., E-mail: nuno.figueiredo@dem.uc.pt [SEG-CEMUC, Department of Mechanical Engineering, University of Coimbra (Portugal); Vaz, F.; Cunha, L. [Center of Physics, University of Minho (Portugal); Pei, Y.T.; De Hosson, J.T.M. [Materials Innovation Institute M2i, Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen (Netherlands); Cavaleiro, A. [SEG-CEMUC, Department of Mechanical Engineering, University of Coimbra (Portugal)

    2016-01-01

    This research is focused on the microstructure and optical properties of an Al–O dielectric matrix incorporated with increasing Au contents up to 11 at.%. For the as-deposited coatings, the Au atoms appear to be alloyed into the amorphous oxide matrix, although a small fraction of Au atoms can also be incorporated in the form of very small nanoparticles (< 1–2 nm). Precipitation of Au nanoparticles was found in the coatings after annealing at increasing temperatures. Au clustering in the dielectric matrix was able to promote the surface plasmon resonance (SPR) effect, a desirable effect for applications in decorative and sensors fields. - Highlights: • Au-Al{sub 2}O{sub 3} nanocomposites with Au contents between 0 and 11 at.% were deposited by reactive co-sputtering. • For the as-deposited coatings, the Au atoms appear to be alloyed into the amorphous oxide matrix. • Precipitation of Au nanoparticles was found in the coatings after annealing at increasing temperatures. • Surface Plasmon Resonance effect was noted only after thermal annealing at 500 °C.

  19. Recent Advances in the Deposition of Diamond Coatings on Co-Cemented Tungsten Carbides

    Directory of Open Access Journals (Sweden)

    R. Polini

    2012-01-01

    Full Text Available Co-cemented tungsten carbides, namely, hard metals are largely used to manufacture high wear resistant components in several manufacturing segments. Coating hard metals with superhard materials like diamond is of utmost interest as it can further extend their useful lifespan. The deposition of diamond coatings onto WC-Co can be extremely complicated as a result of poor adhesion. This can be essentially ascribed to (i the mismatch in thermal expansion coefficients between diamond and WC-Co, at the typical high temperatures inside the chemical vapour deposition (CVD chamber, generates large residual stresses at the interface; (ii the role of surface Co inside the WC-Co matrix during diamond CVD, which promotes carbon dissolution and diffusion. The present investigation reviews the techniques by which Co-cemented tungsten carbides can be treated to make them prone to receive diamond coatings by CVD. Further, it proposes interesting ecofriendly and sustainable alternatives to further improve the diamond deposition process as well as the overall performance of the coated hard metals.

  20. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  1. Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Clem, Paul Gilbert; Siegal, Michael P.; Holesinger, Terry A. (Los Alamos National Laboratory, Los Alamos, NM); Voigt, James A.; Richardson, Jacob J.; Dawley, Jeffrey Todd

    2004-11-01

    A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.

  2. Bovine serum albumin adsorption to iron-oxide coated sands can change microsphere deposition mechanisms.

    Science.gov (United States)

    Flynn, Raymond M; Yang, Xinyao; Hofmann, Thilo; von der Kammer, Frank

    2012-03-06

    Particulate colloids often occur together with proteins in sewage-impacted water. Using Bovine Serum Albumin (BSA) as a surrogate for protein in sewage, column experiments investigating the capacity of iron-oxide coated sands to remove latex microspheres from water revealed that microsphere attenuation mechanisms depended on antecedent BSA coverage. Dual pulse experiment (DPE) results suggested that where all BSA was adsorbed, subsequent multiple pore volume microsphere breakthrough curves reflected progressively reduced colloid deposition rates with increasing adsorbed BSA content. Modeling colloid responses suggested adsorption of 1 μg BSA generated the same response as blockage by between 7.1 × 10(8) and 2.3 × 10(9) deposited microspheres. By contrast, microsphere responses in DPEs where BSA coverage of the deposition sites approached/reached saturation revealed the coated sand maintained a finite capacity to attenuate microspheres, even when incapable of further BSA adsorption. Subsequent microsphere breakthrough curves demonstrated the matrix's colloid attenuation capacity progressively increased with continued microsphere deposition. Experimental findings suggested BSA adsorption on the sand surface approaching/reaching saturation generated attractive deposition sites for colloids, which became progressively more attractive with further colloid deposition (filter ripening). Results demonstrate that adsorption of a single type of protein may either enhance or inhibit colloid mobility in saturated porous media.

  3. Optimizing the vacuum plasma spray deposition of metal, ceramic, and cermet coatings using designed experiments

    Science.gov (United States)

    Kingswell, R.; Scott, K. T.; Wassell, L. L.

    1993-06-01

    The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.

  4. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  5. Bioactivity response of Ta1-xOx coatings deposited by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Almeida Alves, C.F.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft–hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar + O 2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. - Highlights: • Ta 1-x O x coatings were deposited by reactive DC magnetron sputtering. • Amorphous oxide phases were achieved with higher oxygen amounts. • Contact angles progressively diminished, with increasing oxygen content. • Ta oxide surface

  6. Electrophoretic Deposition of α-Fe2O3/Chitosan Nanocomposite Coatings for Functional and Biomedical Applications.

    Science.gov (United States)

    Cabanas-Polo, S; Distaso, M; Peukert, W; Boccaccini, A R

    2015-12-01

    Promising composite coatings based on hematite (α-Fe2O3) mesocrystals of size 110 nm and chitosan (CHT) molecules for different biotechnological applications have been successfully obtained by electrophoretic deposition (EPD). Homogeneous and reproducible coatings have been obtained by studying and controlling the chemical interactions between both phases (α-Fe2O3 and CHT). A voltage of 25 V and a deposition time of 5 min were chosen as best deposition conditions, which resulted in highly homogeneous coatings with well-distributed α-Fe2O3 particles. According to TGA measurements, the content of α-Fe2O3 and chitosan in the final composite coating were found to be 74 and 26 wt%, respectively. The presence of both phases in the composite coating was determined by XRD analysis and the coatings microstructure was observed by SEM.

  7. Structure and mechanical properties of Ti-Si-C coatings deposited by magnetron sputtering

    International Nuclear Information System (INIS)

    Koutzaki, S.H.; Krzanowski, J.E.; Nainaparampril, J.J.

    2001-01-01

    Nanostructured coatings consisting of mixed carbide phases can provide a potential means to developing superhard coatings. Heterogeneous nanostructured coatings can be obtained by either deposition of multilayer structures or by depositing film compositions that undergo a natural phase separation due to thermodynamic immiscibility. In the present work, we have taken the latter approach, and deposited films by radio frequency cosputtering from dual carbide targets. We have examined a number of ternary carbide systems, and here we report the results obtained on Ti-Si-C films with a nominal (Ti 1-x Si x )C stoichiometry and with x≤0.31. It was found that the nanoindentation hardness increased with Si content, and the maximum hardness achieved was nearly twice that of sputter-deposited TiC. We further analyzed these films using high-resolution transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction. Since cubic SiC has an x-ray pattern almost identical to that of TiC, the extent of phase separation could not be determined by that method. However, XRD did demonstrate a general disordering of the films with increasing SiC content. In addition, a mottled structure was observed in high-resolution TEM images of the Si-containing films, confirming microstructural effects due to the Si additions

  8. Superhydrophobic photocatalytic PTFE – Titania coatings deposited by reactive pDC magnetron sputtering from a blended powder target

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com; Kelly, Peter J.; West, Glen T.

    2017-04-01

    The production of photocatalytic coatings with superhydrophobic properties, as opposed to the conventional hydrophilic properties, is desirable for the prevention of adhesion of contaminants to photocatalytic surfaces with subsequent deterioration of photocatalytic properties. In this work polytetrafluoroethylene (PTFE) – TiO{sub 2} composite thin films were deposited using a novel method of reactive pulsed direct current (pDC) magnetron sputtering of a blended PTFE – titanium oxide powder target. The surface characteristics and photocatalytic properties of the deposited composite coatings were studied. The as-deposited coatings were annealed at 523 K in air and analysed with Raman spectroscopy, optical profilometry and scanning electron microscopy. Hydrophobicity was assessed though measurements of water contact angles, and photocatalytic properties were studied via methylene blue dye degradation under UV irradiation. It was found that variations of gas flow and, hence, process pressures allowed deposition of samples combining superhydrophobicity with stable photocatalytic efficiency under UV light irradiation. Reversible wettability behaviour was observed with the alternation of light-dark cycles. - Highlights: • PTFE-TiO{sub 2} coatings were deposited by pDC reactive magnetron sputtering. • Blended powder target was used for coatings deposition. • Deposited coatings combined superhydrophobic and photocatalytic properties. • Under UV irradiation coatings exhibited reversible wettability.

  9. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  10. The protection of alloys against high temperature sulphidation by SiO@#2@#-coatings deposited by MOCVD

    NARCIS (Netherlands)

    Hofman, R.; Hofman, R.; Westheim, J.G.F.; Westheim, J.G.F.; Fransen, T.; Gellings, P.J.

    1992-01-01

    Silica coatings have been deposited on various alloys by MOCVD (Metal Organic Chemical Vapor Deposition) to protect them against high temperature corrosion in coal gasification environments. DiAcetoxyDitertiaryButoxySilane (DADBS) has been used as a metal organic precursor at deposition temperatures

  11. Ion-Bombardment of X-Ray Multilayer Coatings - Comparison of Ion Etching and Ion Assisted Deposition

    NARCIS (Netherlands)

    Puik, E. J.; van der Wiel, M. J.; Zeijlemaker, H.; Verhoeven, J.

    1991-01-01

    The effects of two forms of ion bombardment treatment on the reflectivity of multilayer X-ray coatings were compared: ion etching of the metal layers, taking place after deposition, and ion bombardment during deposition, the so-called ion assisted deposition. The ion beam was an Ar+ beam of 200 eV,

  12. Cubic and hexagonal boron-nitride (c-BN/h-BN) thin films deposited in situ by r.f. magnetron sputtering

    Science.gov (United States)

    Caicedo, J. M.; Bejarano, G.; Zambrano, G.; Baca, E.; Morán, O.; Prieto, P.

    2005-07-01

    Cubic boron-nitride (c-BN)/hexagonal boron nitride (h-BN) thin films were grown in situ on (100) oriented silicon substrates by r.f. (13.56 MHz) magnetron sputtering technique. In order to obtain the highest fraction of the c-BN phase, a negative d.c bias voltage, varying from 0 to -200 V was applied to the substrate during deposition. Another set of boron nitride thin films was deposited in situ on (100) oriented silicon substrates under r.f. bias voltage. The substrate holder was biased from 0 to -350 V by connecting such to an auxiliary r.f. generator (operated at 13.56 MHz). Films were characterized by Fourier Transformed Infrared Spectroscopy (FTIR) and Atomic Force Microscope (AFM). Well-defined peaks at 787 cm-1, 1100 cm-1 and 1387 cm-1, corresponding to the 2Au (out-plane bending of B-N-B bond) h-BN vibration mode, the F2 (stretching) c-BN Transversal Optical (TO) mode and the E1u (in-plane stretching of B-N bond) vibration mode of the h-BN, respectively, were observed in the FTIR spectra. A maximal fraction of the c-BN phase close to 85% was obtained under a bias voltage of -150 V at substrate temperature of 300 °C and a total pressure of 4 × 10-2 mbar.

  13. Corrosion resistance of tungsten carbide based cermet coatings deposited by High Velocity Oxy-Fuel spray process

    Energy Technology Data Exchange (ETDEWEB)

    Aw, Poh Koon [Singapore Institute of Manufacturing Technology (Singapore)], E-mail: pkaw@SIMTech.a-star.edu.sg; Tan, Annie Lai Kuan [Singapore Institute of Manufacturing Technology (Singapore); Tan, Tai Phong [Hamilton Sundstrand Pacific Aerospace Pte Ltd (Singapore); Qiu, Jianhai [School of Materials Science and Engineering, Nanyang Technological University (Singapore)

    2008-06-30

    WC-17Ni and WC-17Co coatings were deposited on mild steel and stainless steel substrates by High Velocity Oxy-Fuel (HVOF) spray process. WC-17Ni and WC-17Co coatings were obtained by the spray process and the porosity of these coatings was measured. Polarization and electrochemical impedance spectroscopy (EIS) were performed on both uncoated substrates and coated samples immersed in 3% NaCl solution. WC-17Ni coating with a lower porosity, serve as a better barrier and effectively prevented corrosion attack when it was deposited on mild steel substrate. The nickel binder in the WC-17Ni coating was found to have a better corrosion resistance than the cobalt binder in the WC-17Co coating.

  14. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)

    Science.gov (United States)

    Igumenov, I. K.; Aksenov, A. N.

    2017-12-01

    Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.

  15. SiO{sub 2} coating of silver nanoparticles by photoinduced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Boies, Adam M; Girshick, Steven L [Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 (United States); Roberts, Jeffrey T [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane, E-mail: jtrob@umn.ed, E-mail: slg@umn.ed [Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO{sub 2}) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO{sub 2} precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO{sub 2} coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 {sup 0}C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10{sup 7} particles cm{sup -3}.

  16. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    Science.gov (United States)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  17. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Bogota Colombia (Colombia); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico)], E-mail: muhl@servidor.unam.mx

    2008-10-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN{sub x} films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N{sub 2} ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV{sub 0.025}. While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV{sub 0.025}. The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics.

  18. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    International Nuclear Information System (INIS)

    Olaya, J.J.; Rodil, S.E.; Muhl, S.

    2008-01-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN x films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N 2 ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV 0.025 . While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV 0.025 . The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics

  19. Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools

    International Nuclear Information System (INIS)

    Sein, H; Ahmed, W; Rego, C A; Jones, A N; Amar, M; Jackson, M; Polini, R

    2003-01-01

    Diamond coatings on Co cemented tungsten carbide (WC-Co) hard metal tools are widely used for cutting non-ferrous metals. It is difficult to deposit diamond onto cutting tools, which generally have a complex geometry, using a single step growth process. This paper focuses on the deposition of polycrystalline diamond films onto dental tools, which possess 3D complex or cylindrical shape, employing a novel single step chemical vapour deposition (CVD) growth process. The diamond deposition is carried out in a hot filament chemical vapour deposition (HFCVD) reactor with a modified filament arrangement. The filament is mounted vertically with the drill held concentrically in between the filament coils, as opposed to the commonly used horizontal arrangement. This is a simple and inexpensive filament arrangement. In addition, the problems associated with adhesion of diamond films on WC-Co substrates are amplified in dental tools due to the very sharp edges and unpredictable cutting forces. The presence of Co, used as a binder in hard metals, generally causes poor adhesion. The amount of metallic Co on the surface can be reduced using a two step pre-treatment employing Murakami etching followed by an acid treatment. Diamond films are examined in terms of their growth rate, morphology, adhesion and cutting efficiency. We found that in the diamond coated dental tool the wear rate was reduced by a factor of three as compared to the uncoated tool

  20. Mechanistic Study on the Degradation of Thermal Barrier Coatings Induced by Volcanic Ash Deposition

    Science.gov (United States)

    Arai, Masayuki

    2017-08-01

    Thermal stress generated on thermal barrier coatings (TBCs) by volcanic ash (VA) deposition was assessed measuring the tip deflection of a multilayered beam structure as a function of temperature. The TBC in this study was deposited onto the surface of a blade utilized in a land-based gas turbine which is composed of 8 wt.%Y2O3-ZrO2/CoNiCrAlY on a Ni-based superalloy. The VA-deposited TBC sample was heated at 1453 K, and the effect of VA deposition on TBC delamination was examined in comparison with a TBC sample without VA deposition as a reference. On the basis of the VA attack damage mechanism which was investigated via the tip deflection measurement and a comprehensive microstructure examination, a damage-coupled constitutive model was proposed. The proposed model was based on the infiltration of the molten VA inside pores and phase transformations of yttria -tabilized zirconia in the TBC system. The numerical analysis results, which were simulated utilizing the finite element code installing the developed constitutive model, showed us that VA attack on the TBC sample induced near-interfacial cracks because of a significant increasing in the coating stress.

  1. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  2. Effect of self-bias on the elemental composition and neutron absorption of boron carbide films deposited by RF plasma enhanced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Bute, A., E-mail: butearundhati@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jagannath, E-mail: ssai@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kar, R., E-mail: rajibkar@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Chopade, S.S., E-mail: supriyagindalkar@rediffmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Desai, S.S., E-mail: ssdesai@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Deo, M.N., E-mail: mndeo@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Rao, Pritty, E-mail: praocccm@rediffmail.com [The National Centre for Compositional Characterization of Materials, Hyderabad (India); Chand, N., E-mail: naresh@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kumar, S., E-mail: sanjivcccm@rediffmail.com [The National Centre for Compositional Characterization of Materials, Hyderabad (India); Singh, K., E-mail: singhkw@barc.gov.in [Fusion Reactor Material Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patil, D.S., E-mail: dspatil@iitb.ac.in [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Sinha, S., E-mail: ssinha@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-10-01

    Boron carbide films are increasingly being investigated for their application in new generation neutron detectors. It is implemented as conversion layer for neutrons and emerging as a potential alternative to {sup 3}He based detectors. This work reports synthesis of boron carbide (B{sub x}C) films from ortho-carborane (o-C{sub 2}B{sub 10}H{sub 12}) by radio frequency (RF) plasma enhanced chemical vapour deposition (PECVD) technique. Dependence of chemical composition, stoichiometry and total macroscopic cross section (Σ{sub t}) has been studied as a function of self-bias on the substrate, varied in the range −75 V to −175 V. Films were characterized by 3D optical profilometry, X-ray photoelectron spectroscopy (XPS), proton elastic backscattering spectrometry (p-EBS), Fourier transform infra-red spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM). Characterization results show noticeable change in the bulk as well as surface chemical composition, surface morphology and film stoichiometry with self-bias. Neutron transmission measurements exhibit increase in Σ{sub t} from 170.47 cm{sup −1} for −75 V film to 273.38 cm{sup −1} for −175 V film with self-bias. - Highlights: • Boron carbide films were deposited by RF PECVD, varying substrate RF self-bias. • B/C ratio increased with decreasing RF self-bias leading to boron rich B{sub x}C films. • Total macroscopic cross section for neutrons Σ{sub t} is found to increase with self-bias. • Higher bias caused rise in oxygen impurity in films and decrease in film stability.

  3. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  4. Wet and dry atmospheric deposition on TiO2 coated glass

    International Nuclear Information System (INIS)

    Chabas, Anne; Gentaz, Lucile; Lombardo, Tiziana; Sinegre, Romain; Falcone, Roberto; Verita, Marco; Cachier, Helene

    2010-01-01

    To prevent the soiling of glass window used in the built environment, the use TiO 2 coated products appears an important application matter. To test the cleaning efficiency and the sustainability of self-cleaning glass, a field experiment was conducted under real life condition, on a site representative of the background urban pollution. Samples of float glass, used as reference, and commercialized TiO 2 coated glasses were exposed to dry and wet atmospheric deposition during two years. The crossed optical, chemical and microscopic evaluations performed, after withdrawal, allowed highlighting a sensible difference between the reference and the self-cleaning substrate in terms of accumulation, nature, abundance and geometry of the deposit. This experiment conducted in real site emphasized on the efficacy of self-cleaning glass to reduce the maintenance cost. - This paper evaluates the self-cleaning glass efficiency highlighting its ability to prevent soiling and to be used as a mean of remediation.

  5. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2017-12-27

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  6. Standard specification for pyrolytic and vacuum deposition coatings on flat glass

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers the optical and aesthetic quality requirements for coatings applied to glass for use in building glazing. 1.2 The coatings covered are applied to the glass using either pyrolytic or vacuum (sputtering) deposition methods and are typically applied to control solar heat gain, energy performance, comfort level, and condensation and enhance the aesthetic of the building. 1.3 This specification addresses blemishes related to the coating only. It does not address glass blemishes, applied ceramic frits, and organic films. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

  7. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Tillocher, Thomas; Dussart, Rémi [Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Boufnichel, Mohamed [STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, 37071 Tours Cedex 2 (France); and others

    2017-01-30

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  8. An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

    2010-04-01

    Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

  9. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    International Nuclear Information System (INIS)

    Vital, Alexane; Vayer, Marylène; Tillocher, Thomas; Dussart, Rémi; Boufnichel, Mohamed

    2017-01-01

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  10. Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    He, Daihua, E-mail: hedh21@163.com [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Liu, Ping; Liu, Xinkuan; Ma, Fengcang; Chen, Xiaohong; Li, Wei [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Du, Jiandi; Wang, Pu [School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Zhao, Jun [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai, 200050 (China)

    2016-07-05

    The hydrothermal electrochemical method was used to deposit hydroxyapatite coating on Ti6Al4V. In order to improve the bonding strength between the coating and substrate, the substrates were modified by 8 M NaOH solution before the deposition. The effects of immersing time on the substrate, on the hydroxyapatite coating, and on the bonding strength were studied. X-Ray Diffraction, Scanning Electron Microscope, Fourier Transform Infrared Spectroscopy and Drop Shape Analysis Method were applied. And the crystallinity of hydroxyapatite coating was calculated. The results show that immersing treatment effects the phase compositions, the microstructure and the wettability of the substrate surface. A porous, three-dimensional network structure is formed on the Ti6Al4V surface through the NaOH immersion. The pore size and depth increase with the increase of immersing time from 12 to 48 h. The surface microstructure of Ti6Al4V with 60 h′ immersion time was different from the others. The modification treatment can improve the bonding strength between hydroxyapatite coating and the substrate obviously. The value of the bonding strength with the substrate immersed for 48 h is larger than those of the others. A bone-like apatite layer forms on the coating after 3 days of soaking in SBF, implying with good bioactivity of the hydroxyapatite coatings deposited by the method. The surface characteristics of the sample immersed with 48 h are more conductive to the deposition of hydroxyapatite and to the improvement of the bonding strength. The formation mechanism of hydroxyapatite coating deposited by hydrothermal electrochemical method was discussed. - Highlights: • Immerse Ti6Al4V alloy with NaOH solution for different immersing time. • We deposit hydroxyapatite coating by hydrothermal electrochemical method. • We examine changes of composition, microstructure, bonding strength and bioactivity of the hydroxyapatite coating. • 48 h is the optimal immersing time. • We

  11. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    Directory of Open Access Journals (Sweden)

    Alan Vitrey

    2017-02-01

    Full Text Available The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range.

  12. Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Faure Joel

    2013-11-01

    Full Text Available In this work, the 45S5 bioactive glass has been prepared by the sol-gel process using an organic acid catalyst instead of nitric acid usually used. The physico-chemical and structural characterizations confirmed and validated the elemental composition of the resulting glass. In addition, the 45S5 bioactive glass powder thus obtained was successfully used to elaborate by electrophoretic deposition a prosthetic coating on titanium alloy Ti6Al4V.

  13. Microstructural and mechanical characterizations of a novel HVOF-sprayed WC-Co coating deposited from electroless Ni–P coated WC-12Co powders

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M., E-mail: majid_jafari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Iranian Surface Research and Engineering Centre, Isfahan 84155-337 (Iran, Islamic Republic of); Enayati, M.H.; Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Iranian Surface Research and Engineering Centre, Isfahan 84155-337 (Iran, Islamic Republic of); Nahvi, S.M. [Iranian Surface Research and Engineering Centre, Isfahan 84155-337 (Iran, Islamic Republic of); Park, C.G. [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2013-08-20

    In this research, a novel WC-Co coating was deposited from electroless Ni–P coated WC-12Co powders using high velocity oxygen fuel (HVOF) process. Toward this purpose, an electroless Ni–P plating process was used to develop a uniform Ni–P layer on the surface of WC-12Co powders. The obtained Ni–P coated powders were then used as HVOF feedstock material. Microstructural characteristics of the Ni–P coated WC-12Co powders and the resultant coating, which is denoted as Ni–P modified coating, were investigated using X-ray diffractometry (XRD) and high resolution field emission scanning electron microscopy (HR FE SEM). The micro-hardness, elastic modulus and fracture toughness measurements were executed to evaluate the mechanical properties of the Ni–P modified coating. For comparison, the same experiments were performed on two conventional HVOF sprayed WC-12Co and WC-17Co coatings. The Ni–P modified WC-12Co coating showed a dense structure with extremely low porosity of ∼0.3% which was much lower than that of WC-12Co and WC-17Co coatings. Besides, it was observed that the Ni–P modified coating has undergone negligible decarburization of 2.6% as compared to conventional WC-12Co and WC-17Co coatings with that of 16.3 and 17.6%. The Ni–P modified coating showed the maximum hardness of ∼11.45 GPa, while lower hardness values of 10.98 and 10.59 GPa were measured for the WC-12Co and WC-17Co coatings. The fracture toughness of Ni–P modified WC-12Co coating was found to be 9.86 MPa m{sup 1/2}, indicating 71.2 and 61.1% increase in comparison with WC-12Co and WC-17Co coatings, respectively.

  14. Thermochemical hydrogen sensor based on Pt-coated nanofiber catalyst deposited on pyramidally textured thermoelectric film

    Science.gov (United States)

    Kim, Seil; Song, Yoseb; Lee, Young-In; Choa, Yong-Ho

    2017-09-01

    The hydrogen gas-sensing performance has been systemically investigated of a new type of thermochemical hydrogen (TCH) sensor, composed of pyramidally textured thermoelectric (TE) film and catalytic Pt-coated nanofibers (NFs) deposited over the TE film. The TE film was composed of stoichiometric Bi2Te3, synthesized by means of cost-effective electrochemical deposition onto a textured silicon wafer. The resulting pyramidally textured TE film played a critical role in maximizing hydrogen gas flow around the overlying Pt NFs, which were synthesized by means of electrospinning followed by sputtering and acted as a heating catalyst. The optimal temperature increase of the Pt NFs was determined by means of optimizations of the electrospinning and sputtering durations. The output voltage signal of the optimized TCH sensor based on Pt NFs was 17.5 times higher than that of a Pt thin film coated directly onto the pyramidal TE material by using the same sputtering duration, under the fixed conditions of 3 vol% H2 in air at room temperature. This observation can be explained by the increased surface area of (111) planes accessible on the Pt-coated NFs. The best response time and recovery time observed for the optimized TCH sensor based on Pt-coated NFs were respectively 17 and 2 s under the same conditions. We believe that this type of TCH sensor can be widely used for supersensitive hydrogen gas detection by employing small-size Pt NFs and various chalcogenide thin films with high thermoelectric performance.

  15. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  16. Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Wu Jinbao; Chang, J.-J.; Li, M.-Y.; Leu, M.-S.; Li, A.-K.

    2007-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been deposited on Si(100) and stainless steel substrates by cathodic vacuum arc plasma deposition with pulse voltage. Adherent deposits on silicon can be obtained through applying gradient Ti/TiC/DLC layers. A pulse bias of - 100 V was applied to the substrate in order to obtain a denser structure of DLC coating approximately 1 μm thick. The microstructure and hardness value of DLC films were analyzed by using X-ray photoelectron spectroscopy and nano-indenter. The experimental results show that the duty cycle strongly influenced the hardness and sp 3 content of the DLC coatings. We observed that when the duty cycle was raised from 2.5% to 12.5%, the hardness increased from 26 GPa to 49 GPa, and the sp 3 fraction of the DLC films measured by XPS increased from 39% to 50.8 % as well. But at constant duty cycle, say 12.5%, the hardness is dropped from 49 to 14 GPa in proportion to the increase of residual gas pressure from 3 x 10 -3 Pa to 1 Pa. As the residual gas pressure increased, collisional phenomenon will decrease the energy of the ions. Ions with low energy make more graphitic carbon links and result in a low hardness value

  17. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  18. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The suggestion of droplets generation prevention method of CNx coating by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yagi, Yuji; Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu; Fuwa, Yoshio; Manabe, Kazuyoshi

    2013-01-01

    It has been reported that the carbon nitride (CNx) coating was the super-low friction in which friction coefficient was less than 0.01, and it attracts attention as a high wear resistance and low friction material. When synthesizing a CNx coating with Ion Beam Assisted Deposition (IBAD) method, it was clear that the small asperities called droplets was generated onto the CNx coating surface with increasing thickness, and these droplets generated high friction. Therefore, it is necessary to clarify droplets generation mechanism to reduce droplets. To establish optimal coating conditions for controlling droplets were clarified by paying attention to the energy of an electron beam and the shape of a carbon target. First of all, 300 nm thickness CNx coatings were synthesized with five different filament current densities to clarify the relationship between the filament current density and droplet heights. Secondly, the effect of carbon target shape on droplets generation was confirmed with normal and processed carbon target. Finally, friction coefficient of these surfaces was measured by friction tests under PAO lubrication. (author)

  20. The effects of deposition parameters on surface morphology and crystallographic orientation of electroless Ni-B coatings

    Science.gov (United States)

    Bulbul, Ferhat

    2011-02-01

    Electroless Ni-B coatings were deposited on AISI 304 stainless steels by electroless deposition method, which was performed for nine different test conditions at various levels of temperature, concentration of NaBH4, concentration of NiCl2, and time, using the Taguchi L9(34) experimental method. The effects of deposition parameters on the crystallographic orientation of electroless Ni-B coatings were investigated using SEM and XRD equipment. SEM analysis revealed that the Ni-B coatings developed six types (pea-like, maize-like, primary nodular, blackberry-like or grapes-like, broccoli-like, and cauliflower-like) of morphological structures depending on the deposition parameters. XRD results also showed that these structures exhibited different levels of amorphous character. The concentration of NaBH4 had the most dominant effect on the morphological and crystallographic development of electroless Ni-B coatings.

  1. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca{sup 2+}, PO{sub 4}{sup 3−} and SiO{sub 3}{sup 2−} ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO{sub 4}{sup 4−} groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO{sub 4}{sup 4−} groups in the Si-HA coating.

  2. Characterization and oxidation behavior of NiCoCrAlY coating fabricated by electrophoretic deposition and vacuum heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiming, E-mail: li-zhiming@hotmail.com [College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Qian Shiqiang, E-mail: qshiqiang@163.com [College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Wang Wei [College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2011-03-01

    Electrophoretic deposition (EPD) was showed to be a feasible and convenient method to fabricate NiCoCrAlY coatings on nickel based supperalloys. The microstructure and composition of the NiCoCrAlY coatings after vacuum heat treatment were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). Isothermal-oxidation test was performed at 1100 deg. C in static air for 100 h. The results show that the major phases in electrophoretic deposited and vacuum heat treated NiCoCrAlY coating are {gamma}-Ni and {gamma}'-Ni{sub 3}Al phases, also there is an extremely small quantity of Al{sub 2}O{sub 3} in the coating. Composition fluctuations occur in the coating and a certain amount of titanium diffuse from the superalloy substrate to the top of the coating during vacuum heat treatment. The oxidation test results exhibit that the oxidation kinetics of this coating has two typical stages. The protective oxide layer is mainly formed in the initial linear growth stage and then the oxide layer hinders further oxidation of the coating in the subsequent parabolic growth stage. The coating can effectively protect the superalloy substrate from oxidation. A certain amount of rutile TiO{sub 2} is formed in the coating during oxidation and it is adverse to the oxidation resistance of the coating.

  3. Properties of amorphous SiC coatings deposited on WC-Co substrates

    Directory of Open Access Journals (Sweden)

    A.K. Costa

    2003-01-01

    Full Text Available In this work, silicon carbide films were deposited onto tungsten carbide from a sintered SiC target on a r.f. magnetron sputtering system. Based on previous results about the influence of r.f. power and argon pressure upon the properties of films deposited on silicon substrates, suitable conditions were chosen to produce high quality films on WC-Co pieces. Deposition parameters were chosen in order to obtain high deposition rates (about 30 nm/min at 400 W rf power and acceptable residual stresses (1.5 GPa. Argon pressure affects the energy of particles so that films with higher hardness (30 GPa were obtained at low pressures (0.05 Pa. Wear rates of the coated pieces against a chromium steel ball in a diamond suspension medium were found to be about half of the uncoated ones. Hardness and wear resistance measurements were done also in thermally annealed (200-800 °C samples revealing the effectiveness of SiC coatings to protect tool material against severe mechanical degradation resulting of high temperature (above 500 °C oxidation.

  4. Effect of structure and deposition technology on tribological properties of DLC coatings alloyed with VIA group metals

    Science.gov (United States)

    Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.

    2016-07-01

    The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).

  5. Features of copper coatings growth at high-rate deposition using magnetron sputtering systems with a liquid metal target

    Czech Academy of Sciences Publication Activity Database

    Bleykher, G.A.; Borduleva, A.O.; Yuryeva, A.V.; Krivobokov, V.P.; Lančok, Ján; Bulíř, Jiří; Drahokoupil, Jan; Klimša, Ladislav; Kopeček, Jaromír; Fekete, Ladislav; Čtvrtlík, Radim; Tomáštík, Jan

    2017-01-01

    Roč. 324, Sep (2017), s. 111-120 ISSN 0257-8972 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : magnetron sputtering * evaporation * high-rate coating deposition * coating properties * Cu coatings Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.589, year: 2016

  6. The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings

    NARCIS (Netherlands)

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    2011-01-01

    Shorter processing time has given impetus to laser cladding technology and therefore in this research the AISI 431 martensitic stainless steel coatings are laser deposited at high cladding speeds, i.e. up to 117 mm/s. The analysis of phase constitution and functional properties of the coatings are

  7. Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.

    Science.gov (United States)

    Berni, M; Lopomo, N; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Visani, A; Pavan, P; Russo, A; Marcacci, M

    2016-05-01

    One of the most important issues leading to the failure of total joint arthroplasty is related to the wear of the plastic components, which are generally made of ultra high molecular weight polyethylene (UHMWPE). Therefore, the reduction of joint wear represents one of the main challenges the research in orthopedics is called to address nowadays. Surface treatments and coatings have been recognized as innovative methods to improve tribological properties, also in the orthopedic field. This work investigated the possibility to realize hard ceramic coatings on the metal component of a prosthesis, by means of Pulsed Plasma Deposition, in order to reduce friction and wear in the standard coupling against UHMWPE. Ti6Al4V substrates were coated with a 2 μm thick yttria-stabilized zirconia (YSZ) layer. The mechanical properties of the YSZ coatings were assessed by nanoindentation tests performed on flat Ti6Al4V substrates. Tribological performance was evaluated using a ball-on-disk tribometer in dry and lubricated (i.e. with fetal bovine serum) highly-stressing conditions, up to an overall distance of 10 km. Tribology was characterized in terms of coefficient of friction (CoF) and wear rate of the UHMWPE disk. After testing, specimens were analyzed through optical microscopy and SEM images, in order to check the wear degradation mechanisms. Progressive loading scratch tests were also performed in dry and wet conditions to determine the effects of the environment on the adhesion of the coating. Our results supported the beneficial effect of YSZ coating on metal components. In particular, the proposed solution significantly reduced UHMWPE wear rate and friction. At 10 km of sliding distance, a wear rate reduction of about 18% in dry configuration and of 4% in presence of serum, was obtained by the coated group compared to the uncoated group. As far as friction in dry condition is concerned, the coating allowed to maintain low CoF values until the end of the tests, with an

  8. Electrochemical Deposition of Nanostructured Conducting Polymer Coatings on Neural Prosthetic Devices

    Science.gov (United States)

    Yang, Junyan; Martin, David

    2003-03-01

    Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry

  9. Synthesizing the Nanocrytalline Cobalt-Iron Coating Through The Electrodeposition Process With Different Time Deposition

    Science.gov (United States)

    Rozlin Nik Masdek, Nik; Sorfian Hafiz Mansor, Mohd; Salleh, Zuraidah; Hyie, Koay Mei

    2018-03-01

    In the engineering world, electrodeposition or electroplating has become the most popular method of surface coating in improving corrosion behavior and mechanical properties of material. Therefore in this study, CoFe nanoparticle protective coating has been synthesized on the mild steel washer using electrodeposition method. The electrodeposition was conducted in the acidic environment with the pH value range from 1 to 2 with the controlled temperature of 50°C. The influence of deposition time (30, 60, 90 minutes) towards characteristic and properties such as particle size, surface morphology, corrosion behavior, and microhardness were studied in this investigation. Several results can be obtained by doing this experiment and testing. First, the surface morphology of Cobalt Iron (CoFe) on the electrodeposited mild steel washer are obtained. In addition, the microhardness of the mild steel washer due to the different deposition time are determined. Next, the observation on the difference in the grain size of CoFe that has been electrodeposited on the mild steel plate is made. Last but not least, the corrosion behavior was investigated. CoFe nanoparticles deposited for 30 minutes produced the smallest particle size and the highest microhardness of 86.17 and 236.84 HV respectively. The CoFe nanoparticles also exhibit the slowest corrosion rate at 30 minutes as compared to others. The crystalline size also increases when the time deposition is increased. The sample with 30 minute depositon time indicate the smallest crystalline size which is 15nm. The decrement of deposition time plays an important role in synthesizing CoFe nanoparticles with good corrosion resistance and microhardness. CoFe nanoparticles obtained at 30 minutes shows high corrosion resistance compared to others. In a nutshell, it was observed that the decrement of deposition time improved mechanical and corrosion properties of CoFe nanoparticles.

  10. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  11. Evaluation of tribological wear and corrosion in coatings of diamalloy 4060NS deposited by thermal spray

    Science.gov (United States)

    Acuña R, S. M.; Moreno T, C. M.; Espinosa C, E. J.

    2017-12-01

    Surface engineering seeks the development of new techniques to improve the performance and life of components of machines or industrial facilities, always looking for low costs and the least possible environmental damage. Thermal projection is one of the techniques that is based on the projection of particles of compounds and alloys on properly prepared and heated substrates, these particles are driven by a stream of air passing through an oxyacetylene flame which gives the energy to the process; These coatings give the possibility to improve the properties of the materials or the maintenance of components to maximize the availability of service. In order to reduce the damage caused by wear and corrosion of a low carbon AISI 1020 steel, they were coated with a metal based alloy, studying the effect of the cobalt-chromium-silicon-tungsten carbide alloy coating (DIAMALLLOY 4060 NS). The coating was deposited with two different pressures in the gases supplied to the torch, obtaining two flames and working three thicknesses of coating that oscillate between 100-500μm, according to the number of deposited layers, making use of a projection gun Castolin Eutectic. Powder and substrate characterization was performed using X-Ray Diffraction (XRD) techniques, X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), spark emission spectroscopy and metallographic analysis. The results confirm the chemical nature and structure of the powder of the alloy and the substrate to be used, in addition, the thermal stability of the system was verified. The evaluation of the adhesion of the deposited layers was carried out by the implementation of pull-off tests according to ASTM D4541, in order to determine the type of failure that is presented. Mechanical wear was determined using a MT/60/NI microtest tribometer while electrochemical tests were performed using a suitable experimental unit for this purpose, confirming that the substrate exhibits lower wear levels when coated with

  12. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition.

    Science.gov (United States)

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  13. Multilayer Ti-Cr-N Coatings Produced by the Vacuum-Arc Deposition

    International Nuclear Information System (INIS)

    Kunchenko, Yu.V.; Kunchenko, V.V.; Neklyudov, I.M.; Kartmazov, G.N.; Andreev, A.A.

    2007-01-01

    A possibility is demonstrated for nanolayer TiN x /CrN x coating formation by the method of vacuum-arc deposition on the substrate, which being rotated around the 'Bulat'-type chamber axis intercepts sequentially the plasma flows generated by three evaporators. The model for calculating the coating deposition rate (thickness) was used to determine the geometrical parameters that provide the formation of layer structures in the nanometer range. The variations of phase-structure characteristics, compression microstresses (σ) microhardness (H v ) of the coating formed have been investigated as functions of nitrogen pressure (P N =0.001...1.0 Pa), bias voltage (U=-100...-300 V) and condensation temperature (T C =330...750 degree C) at focusing magnetic field strength H F =0; 35 and 100 Oe. The mentioned field strengths were responsible for the ion current densities (j∼5,8...10 and ≥15 mA/cm 2 ). A nonmonotonic behaviour of H v as a function of condensation temperature and of vacuum annealing temperature has been established. The maximum H v values (∼35...37 GPa) were observed in the 450...500 degree C range

  14. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    International Nuclear Information System (INIS)

    Cooper, Ian Richard; Pollini, Mauro; Paladini, Federica

    2016-01-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection. - Highlights: • Silver nanocoatings were deposited on urinary catheters. • Both luminal and outer surface were successfully treated. • The treated devices demonstrated were effective against different microorganisms. • The antibacterial potential of the devices was assessed.

  15. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  16. Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yersak, Alexander S.; Sharma, Kashish; Wallas, Jasmine M.; Dameron, Arrelaine A.; Li, Xuemin; Yang, Yongan; Hurst, Katherine E.; Ban, Chunmei; Tenent, Robert C.; George, Steven M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309

    2018-01-01

    Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALD were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery

  17. Nanomechanical properties of TiCN and TiCN/Ti coatings on Ti prepared by Filtered Arc Deposition

    International Nuclear Information System (INIS)

    Sun, Yong; Lu, Cheng; Yu, Hailiang; Kiet Tieu, A.; Su, Lihong; Zhao, Yue; Zhu, Hongtao; Kong, Charlie

    2015-01-01

    Monolayer TiCN and multilayer TiCN/Ti coatings were deposited on the surface of Ti using the Filtered Arc Deposition System (FADS). Nanoindentation tests were performed on both coatings. The multilayer TiCN/Ti coating exhibited better ductility than the monolayer TiCN coating. The lattice constants of the coatings were characterized by X-ray diffraction. Transmission Electron Microscopy (TEM) was used to investigate the fracture behavior of the coatings. Inter-columnar, inclined and lateral cracks were found to be the dominant crack modes in the monolayer TiCN coatings while small bending crack and radial crack were the dominant crack modes in the multilayer TiCN/Ti coatings. The Finite Element Method (FEM) was used to simulate the indentation process. It was found that the Ti interlayer in the multilayer TiCN/Ti coating could efficiently suppress the fracture, which is responsible for the improved ductility of the multilayer TiCN/Ti coating

  18. Nanomechanical properties of TiCN and TiCN/Ti coatings on Ti prepared by Filtered Arc Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Yu, Hailiang [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); School of Mechanical Engineering, Shenyang University, Shenyang 110044 (China); Kiet Tieu, A.; Su, Lihong; Zhao, Yue; Zhu, Hongtao [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Kong, Charlie [Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-02-11

    Monolayer TiCN and multilayer TiCN/Ti coatings were deposited on the surface of Ti using the Filtered Arc Deposition System (FADS). Nanoindentation tests were performed on both coatings. The multilayer TiCN/Ti coating exhibited better ductility than the monolayer TiCN coating. The lattice constants of the coatings were characterized by X-ray diffraction. Transmission Electron Microscopy (TEM) was used to investigate the fracture behavior of the coatings. Inter-columnar, inclined and lateral cracks were found to be the dominant crack modes in the monolayer TiCN coatings while small bending crack and radial crack were the dominant crack modes in the multilayer TiCN/Ti coatings. The Finite Element Method (FEM) was used to simulate the indentation process. It was found that the Ti interlayer in the multilayer TiCN/Ti coating could efficiently suppress the fracture, which is responsible for the improved ductility of the multilayer TiCN/Ti coating.

  19. High-Temperature Oxidation and Smelt Deposit Corrosion of Ni-Cr-Ti Arc-Sprayed Coatings

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-08-01

    High Cr content Ni-Cr-Ti arc-sprayed coatings have been extensively applied to mitigate corrosion in black liquor recovery boilers in the pulp and paper industry. In a previous article, the effects of key spray parameters on the coating's microstructure and its composition were investigated. Three coating microstructures were selected from that previous study to produce a dense, oxidized coating (coating A), a porous, low oxide content coating (coating B), and an optimized coating (coating C) for corrosion testing. Isothermal oxidation trials were performed in air at 550 and 900 °C for 30 days. Additional trials were performed under industrial smelt deposits at 400 and 800 °C for 30 days. The effect of the variation in coating microstructure on the oxidation and smelt's corrosion response was investigated through the characterization of the surface corrosion products, and the internal coating microstructural developments with time at high temperature. The effect of long-term, high-temperature exposure on the interaction between the coating and substrate was characterized, and the mechanism of interdiffusion was discussed.

  20. Improved critical current densities of bulk MgB.sub.2./sub. using carbon-coated amorphous boron

    Czech Academy of Sciences Publication Activity Database

    Muralidhar, M.; Higuchi, M.; Jirsa, Miloš; Diko, P.; Kokal, I.; Murakami, M.

    2017-01-01

    Roč. 27, č. 4 (2017), s. 1-4, č. článku 6201104. ISSN 1051-8223 Institutional support: RVO:68378271 Keywords : carbon-encapsulated boron * critical current density * flux pinning * micro-structure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.092, year: 2015

  1. Preparation of Ti species coating hydrotalcite by chemical vapor deposition for photodegradation of azo dye.

    Science.gov (United States)

    Xiao, Gaofei; Zeng, HongYan; Xu, Sheng; Chen, ChaoRong; Zhao, Quan; Liu, XiaoJun

    2017-10-01

    TiO 2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve its photocatalytic activity, the Ti-coating MgAl hydrotalcite (Ti-MgAl-LDH) was prepared by chemical vapor deposition (CVD) method. Response surface method (RSM) was employed to evaluate the effect of Ti species coating parameters on the photocatalytic activity, which was found to be affected by the furnace temperature, N 2 flow rate and influx time of precursor gas. Application of RSM successfully increased the photocatalytic efficiency of the Ti-MgAl-LDH in methylene blue photodegradation under UV irradiation, leading to improved economy of the process. According to the results from X-ray diffraction, scanning electron microscopy, Brunner-Emmet-Teller and Barrett-Joyner-Hallender, thermogravimetric and differential thermal analysis, UV-vis diffuse reflectance spectra analyses, the Ti species (TiO 2 or/and Ti 4+ ) were successfully coated on the MgAl-LDH matrix. The Ti species on the surface of the Ti-MgAl-LDH lead to a higher photocatalytic performance than commercial TiO 2 -P25. The results suggested that CVD method provided a new approach for the industrial preparation of Ti-coating MgAl-LDH material with good photocatalytic performances. Copyright © 2017. Published by Elsevier B.V.

  2. Atomic Layer Deposited Coatings on Nanowires for High Temperature Water Corrosion Protection.

    Science.gov (United States)

    Yersak, Alexander S; Lewis, Ryan J; Liew, Li-Anne; Wen, Rongfu; Yang, Ronggui; Lee, Yung-Cheng

    2016-11-30

    Two-phase liquid-cooling technologies incorporating micro/nanostructured copper or silicon surfaces have been established as a promising thermal management solution to keep up with the increasing power demands of high power electronics. However, the reliability of nanometer-scale features of copper and silicon in these devices has not been well investigated. In this work, accelerated corrosion testing reveals that copper nanowires are not immune to corrosion in deaerated pure hot water. To solve this problem, we investigate atomic layer deposition (ALD) TiO 2 coatings grown at 150 and 175 °C. We measured no difference in coating thickness for a duration of 12 days. Using a core/shell approach, we grow ALD TiO 2 /Al 2 O 3 protective coatings on copper nanowires and demonstrate a preservation of nanoengineered copper features. These studies have identified a critical reliability problem of nanoscale copper and silicon surfaces in deaerated, pure, hot water and have successfully demonstrated a reliable solution using ALD TiO 2 /Al 2 O 3 protective coatings.

  3. TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Devia, D.M. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Caldas (Colombia); Laboratorio de Materiales, Universidad Nacional de Colombia Sede Medellin, Sede Medellin, Antioquia (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Caldas (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Caldas (Colombia); Tschiptschin, A.P. [Escola Politecnica da Universidade de Sao Paulo, Depto. de Engenharia Metalurgica e de Materiais, Sao Paulo, SP (Brazil); Velez, J.M. [Laboratorio de Materiales, Universidad Nacional de Colombia Sede Medellin, Sede Medellin, Antioquia (Colombia)

    2011-05-01

    TiAlN films were deposited on AISI O1 tool steel using a triode magnetron sputtering system. The bias voltage effect on the composition, thickness, crystallography, microstructure, hardness and adhesion strength was investigated. The coatings thickness and elemental composition analyses were carried out using scanning electron microscopy (SEM) together with energy dispersive X-ray (EDS). The re-sputtering effect due to the high-energy ions bombardment on the film surface influenced the coatings thickness. The films crystallography was investigated using X-ray diffraction characterization. The X-ray diffraction (XRD) data show that TiAlN coatings were crystallized in the cubic NaCl B1 structure, with orientations in the {l_brace}1 1 1{r_brace}, {l_brace}2 0 0{r_brace} {l_brace}2 2 0{r_brace} and {l_brace}3 1 1{r_brace} crystallographic planes. The surface morphology (roughness and grain size) of TiAlN coatings was investigated by atomic force microscopy (AFM). By increasing the substrate bias voltage from -40 to -150 V, hardness decreased from 32 GPa to 19 GPa. Scratch tester was used for measuring the critical loads and for measuring the adhesion.

  4. Spectroscopic studies of electrophoretically deposited hybrid HAp/CNT coatings on titanium.

    Science.gov (United States)

    Długoń, E; Niemiec, W; Frączek-Szczypta, A; Jeleń, P; Sitarz, M; Błażewicz, M

    2014-12-10

    Carbon nanotubes deposited on the surface of the metal can be used in a wide variety of applications for modern medicine including: sensors and sensor array devices, electrodes for neural system stimulation, scaffolds for improved healing process for bone defects. Additionally it is debated if deposited on the surface of e.g. endoprosthesis, CNT coating can significantly increase the strength of the tissue/bone joint and stimulate a fast integration of the implant and the tissue. The aim of this paper is the analysis of the electrophoretically deposited nanocomposite coating made of hydroxyapatite nanoparticles and carbon nanotubes on the surface of titanium. The paper concentrates on the analysis of the layer's structure and its bioactivity properties. The nanocomposite films were investigated using Raman Spectroscopy as well as AFM and SEM microscopy. The measurements were conducted at every stage of layer preparation and after bioactivity test. Bioactivity was evaluated by in vitro test in Simulated Body Fluid (SBF, 37°C, for 30days). It was shown that hybrid HAp/CNT layers are very attractive materials for modification of the surface of metallic orthopedic implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Coating and selective deposition of nanofilm on silicone rubber for cell adhesion and growth.

    Science.gov (United States)

    Ai, Hua; Lvov, Yuri M; Mills, David K; Jennings, Merilyn; Alexander, Jonathan S; Jones, Steven A

    2003-01-01

    A recently developed method for surface modification, layer-by-layer (LbL) assembly, has been applied to silicone, and its ability to encourage endothelial cell growth and control cell growth patterns has been examined. The surfaces studied consisted of a precursor, with alternating cationic polyethyleneimine (PEI) and anionic sodium polystyrene sulfonate (PSS) layers followed by alternating gelatin and poly-D-lysine (PDL) layers. Film growth increased linearly with the number of layers. Each PSS/PEI bilayer was 3 nm thick, and each gelatin/PDL bilayer was 5 nm thick. All layers were more hydrophilic than the unmodified silicone rubber surface, as determined from contact angle measurements. The contact angle was primarily dictated by the outermost layer. Of the coatings studied, gelatin was the most hydrophilic. A film of (PSS/PEI)4/(gelatin/PDL)4/ gelatin was highly favorable for cell adhesion and growth, in contrast to films of (PSS/PEI)8 or (PSS/PEI)8/PSS. Cell growth patterns were successfully controlled by selective deposition of microspheres on silicone rubber, using microcontact printing with a silicone stamp. Cell adhesion was confined to the region of microsphere deposition. These results demonstrate that the LbL self-assembly technique provides a general approach to coat and selectively deposit films with nanometer thickness on silicone rubber. Furthermore, they show that this method is a viable technique for controlling cellular adhesion and growth.

  6. Deposition of DLC Film on Stainless Steel Substrates Coated by Nickel Using PECVD Method.

    Science.gov (United States)

    Khalaj, Zahra; Ghoranneviss, Mahmood; Vaghri, Elnaz; Saghaleini, Amir; Diudea, Mircea V

    2012-06-01

    Research on diamond-like carbon (DLC) films has been devoted to find both optimized conditions and characteristics of the deposited films on various substrates. In the present work, we investigate the quality of the DLC films grown on stainless steel substrates using different thickness of the nickel nanoparticle layers on the surface. Nickel nanoparticles were sputtered on the stainless steel substrates at 200 °C by a DC-sputtering system to make a good adherence between DLC coating and steel substrates. Atomic Force Microscopy was used to characterize the surface roughness and distribution function of the nickel nanoparticles on the substrate surface. Diamond like carbon films were deposited on stainless steel substrates coated by nickel using pure acetylene and C2H2/H2 with 15% flow ratio by DC-Plasma Enhanced Chemical Vapor Deposition (PECVD) systems. Microstructural analysis by Raman spectroscopy showed a low intensity ratio ID/IG for DLC films by increasing the Ni layer thickness on the stainless steel substrates. Fourier Transforms Infrared spectroscopy (FTIR) evidenced the peaks attributed to C-H bending and stretching vibration modes in the range of 1300-1700 cm-1 and 2700-3100 cm-1, respectively, in good agreement with the Raman spectroscopy and confirmed the DLC growth in all samples.

  7. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  8. Cubic and hexagonal boron-nitride (c-BN/h-BN) thin films deposited in situ by r.f. magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.M.; Zambrano, G.; Baca, E.; Moran, O.; Prieto, P. [Departamento de Fisica, Universidad del Valle, A.A. 25360 Cali (Colombia); Bejarano, G. [Laboratorio de Recubrimientos Duros, CDT-ASTIN SENA, Cali (Colombia)

    2005-07-01

    Cubic boron-nitride (c-BN)/hexagonal boron nitride (h-BN) thin films were grown in situ on (100) oriented silicon substrates by r.f. (13.56 MHz) magnetron sputtering technique. In order to obtain the highest fraction of the c-BN phase, a negative d.c bias voltage, varying from 0 to -200 V was applied to the substrate during deposition. Another set of boron nitride thin films was deposited in situ on (100) oriented silicon substrates under r.f. bias voltage. The substrate holder was biased from 0 to -350 V by connecting such to an auxiliary r.f. generator (operated at 13.56 MHz). Films were characterized by Fourier Transformed Infrared Spectroscopy (FTIR) and Atomic Force Microscope (AFM). Well-defined peaks at 787 cm{sup -1}, 1100 cm{sup -1} and 1387 cm{sup -1}, corresponding to the 2{sub Au} (out-plane bending of B-N-B bond) h-BN vibration mode, the F2 (stretching) c-BN Transversal Optical (TO) mode and the E{sub 1u} (in-plane stretching of B-N bond) vibration mode of the h-BN, respectively, were observed in the FTIR spectra. A maximal fraction of the c-BN phase close to 85% was obtained under a bias voltage of -150 V at substrate temperature of 300 C and a total pressure of 4 x 10{sup -2} mbar. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  10. Application of Taguchi Method to the Optimization of a-C:H Coatings Deposited Using Ion Beam Assisted Physical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    W. H. Kao

    2015-02-01

    Full Text Available The Taguchi design method is used to optimize the adhesion, hardness, and wear resistance properties of a-C:H coatings deposited on AISI M2 steel substrates using the ion beam assisted physical vapor deposition method. The adhesion strength of the coatings is evaluated by means of scratch tests, while the hardness is measured using a nanoindentation tester. Finally, the wear resistance is evaluated by performing cyclic ball-on-disc wear tests. The Taguchi experimental results show that the optimal deposition parameters are as follows: a substrate bias voltage of 90 V, an ion beam voltage of 1 kV, an acetylene flow rate of 21 sccm, and a working distance of 7 cm. Given these optimal processing conditions, the a-C:H coating has a critical load of 99.8 N, a hardness of 25.5 GPa, and a wear rate of 0.4 × 10−6 mm3/Nm.

  11. Vibration-Assisted Convective Deposition of Binary Suspensions for Structured Coatings

    Science.gov (United States)

    Kaewpetch, Thitiporn

    There are many applications for thin films of ordered particles including membranes, microlens arrays, and structure-color coatings. Convective deposition, a process that uses evaporation-driven flow in a thin liquid film to order particles, is a relatively fast and scalable method of making such films. Recently, it was shown that using lateral vibration in the direction of coating can enhance this process. This work focuses on depositing well-ordered monolayers of a binary suspension of microspheres and nanoparticles to understand the effect of the process parameters on the final distribution of particles. In order to investigate the deposited morphology of binary suspensions, various concentrations of nanoparticles were deposited on the substrate at 50 Hz frequency and a range of vibration amplitudes. The result was for all concentrations, the deposition rate and the range of speed for monolayers tend to increase with amplitude of vibration. The overall quality of the thin films is more uniform; the stripes are rarely seen. However, areas exist where microspheres were not surrounded by nanoparticles, and this inhomogeneity increases with higher amplitude vibration. To analyze the non-uniformity of deposition, samples were imaged using confocal laser scanning microscopy and particle-level image analysis. The particle coverage, the intensity of segregation, the distribution of number of nearest neighbored particles of microsphere and local area of particles were characterized. At low amplitude, the nanoparticle coverage is higher and has small deviation over large sample areas. As expected, each microsphere on average has 6 nearest neighbored (NN) particles and a relatively uniform local area distribution for uniform, well-ordered particle coatings. On the other hand, when the coverage has many defects due to vibration, the average number of NN particles tends to decrease which can also be described by the a decrease in the distribution of local areas. Even though

  12. Tungsten-coated nano-boron carbide as a non-noble metal bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions in alkaline media.

    Science.gov (United States)

    Zhang, Yan; Wang, Yanhui; Han, Chan; Jia, Shaopei; Zhou, Shuyu; Zang, Jianbing

    2017-12-14

    Herein, tungsten-coated nano-boron carbide (W-WB 4 -WC x /B 4 C) particles were prepared by heating a mixture of B 4 C and W powder using a spark plasma coating (SPC) method. During the discharge treatment process, metal W in the mixture is activated and reacts with B 4 C to form WC x , WB 4 , and graphite nanoribbons. The oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance of W-WB 4 -WC x /B 4 C is tested in an alkaline solution, and the results show that the W-WB 4 -WC x /B 4 C composite electrocatalyst exhibits a low overpotential of 0.36 V at 10 mA cm -2 for the OER, a small overpotential of -0.19 V (j = 10 mA cm -2 ) for the HER, as well as good stability. The significantly enhanced electrocatalytic performance of the W-WB 4 -WC x /B 4 C composites is attributed to their unique structure, in which WC x and WB 4 not only improve the catalytic activity for the OER and HER, but also effectively anchor the W coating on the substrate.

  13. Chemical vapor deposition of highly adherent diamond coatings onto co-cemented tungsten carbides irradiated by high power diode laser.

    Science.gov (United States)

    Barletta, M; Rubino, G; Valle, R; Polini, R

    2012-02-01

    The present investigation deals with the definition of a new eco-friendly alternative to pretreat Co-cemented tungsten carbide (WC-Co) substrates before diamond deposition by hot filament chemical vapor deposition (HFCVD). In particular, WC-5.8 wt %Co substrates were submitted to a thermal treatment by a continuous wave-high power diode laser to reduce surface Co concentration and promote the reconstruction of the WC grains. Laser pretreatments were performed both in N(2) and Ar atmosphere to prevent substrate oxidation. Diamond coatings were deposited onto the laser pretreated substrates by HFCVD. For comparative purpose, diamond coatings were also deposited on WC-5.8 wt %Co substrates chemically etched by the well-known two-step pretreatment employing Murakami's reagent and Caro's acid. Surface morphology, microstructure, and chemical composition of the WC-5.8 wt %Co substrates after the different pretreatments and the deposition of diamond coatings were assessed by surface profiler, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. Wear performance of the diamond coatings was checked by dry sliding linear reciprocating tribological tests. The worn volume of the diamond coatings deposited on the laser pretreated substrates was always found lower than the one measured on the chemically etched substrates, with the N(2) atmosphere being particularly promising.

  14. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Montelongo, J., E-mail: jacobo.hernandez@uam.es [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gallach, D.; Naveas, N.; Torres-Costa, V. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Climent-Font, A. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Madrid 28049 (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 (Spain); Manso-Silvan, M. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  15. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  16. Development of Nitride Coating Using Atomic Layer Deposition for Low-Enriched Uranium Fuel Powder

    Science.gov (United States)

    Bhattacharya, Sumit

    High-performance research reactors require fuel that operates at high specific power and can withstand high fission density, but at relatively low temperatures. The design of the research reactor fuels is done for efficient heat emission, and consists of assemblies of thin-plates cladding made from aluminum alloy. The low-enriched fuels (LEU) were developed for replacing high-enriched fuels (HEU) for these reactors necessitates a significantly increased uranium density in the fuel to counterbalance the decrease in enrichment. One of the most promising new fuel candidate is U-Mo alloy, in a U-Mo/Al dispersion fuel form, due to its high uranium loading as well as excellent irradiation resistance performance, is being developed extensively to convert from HEU fuel to LEU fuel for high-performance research reactors. However, the formation of an interaction layer (IL) between U-Mo particles and the Al matrix, and the associated pore formation, under high heat flux and high burnup conditions, degrade the irradiation performance of the U-Mo/Al dispersion fuel. From the recent tests results accumulated from the surface engineering of low enriched uranium fuel (SELENIUM) and MIR reactor displayed that a surface barrier coating like physical vapor deposited (PVD) zirconium nitride (ZrN) can significantly reduce the interaction layer. The barrier coating performed well at low burn up but above a fluence rate of 5x 1021 ions/cm2 the swelling reappeared due to formation interaction layer. With this result in mind the objective of this research was to develop an ultrathin ZrN coating over particulate uranium-molybdenum nuclear fuel using a modified savannah 200 atomic layer deposition (ALD) system. This is done in support of the US Department of Energy's (DOE) effort to slow down the interaction at fluence rate and reach higher burn up for high power research reactor. The low-pressure Savannah 200 ALD system is modified to be designed as a batch powder coating system using the

  17. Aluminum-silicon coatings on austenitic stainless steel (AISI 304 and 317 deposited by chemical vapor deposition in a fluidized bed

    Directory of Open Access Journals (Sweden)

    José Luddey Marulanda Arevalo

    2014-05-01

    Full Text Available Aluminum-silicon coatings were deposited onto stainless steels AISI 304 and AISI 317. The deposition was performed at 540°C with a ratio of active gases HCl/H2 of 1/15.3; argon was used as a carrier gas. The bed of the FBR-CVD process consisted of 2.5 g aluminum powder, 7.5 g silicon powder and 90 g alumina. After the coatings were deposited, each sample was given a heat treatment to improve its mechanical properties and oxidation behavior by diffusing the alloying elements. Thermodynamic simulation was performed with Thermo-Calc software to investigate the composition of the deposited material. The coated and uncoated specimens were exposed to temperatures of 750ºC in an atmosphere where the vapor was transported to the samples using a flow of N2 of 40 ml/min and 100% water vapor (H2O. The coated specimens gained little weight during the thousand hours of exposure and will thus guard against a corrosive attack compared to the uncoated substrates. In addition, the coated stainless steels show an oxidation rate with a logarithmic trend while the uncoated steel oxidation rate showed a linear trend.

  18. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits

    International Nuclear Information System (INIS)

    Piedras, P.; Arganis J, C. R.

    2014-10-01

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  19. All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization.

    Science.gov (United States)

    Wilbrandt, Steffen; Stenzel, Olaf; Kaiser, Norbert

    2010-09-13

    A new all-oxide design for broadband antireflection coatings with significantly reduced impact of deposition errors to the final reflectance is presented. Computational manufacturing including re-optimization during deposition has been used in the design work to account for maximum insensibility of the design with respect to deposition errors typical for plasma ion assisted deposition PIAD. Repeated deposition runs with the deducted monitoring and re-optimization strategy verify the validity of the simulations and the stability of the derived design solution.

  20. Magnetron deposition of metal-ceramic protective coatings on glasses of windows of space vehicles

    OpenAIRE

    Sergeev, Viktor Petrovich; Panin, Viktor Evgenyevich; Psakhie, Sergey Grigorievich; Chernyavskii, Alexandr; Svechkin, Valerii; Khristenko, Yurii; Kalashnikov, Mark Petrovich; Voronov, Andrei

    2014-01-01

    Transparent refractory metal-ceramic nanocomposite coatings with a high coefficient of elasticrecovery and microhardness on the basis of Ni/Si-Al-N are formed on a glass substrate by the pulse magnetron deposition method. The structure-phase states were investigated by TEM, SEM. It was established that the first layer consists of Ni nanograins with a fcc crystalline lattice, the second layer is two-phase: 5-10 nm nanocrystallites of the AlN phase with the hcp crystalline lattice in amorphous ...

  1. Preparation of nitrilotriacetic acid/Co2+-linked, silica/boron-coated magnetite nanoparticles for purification of 6 x histidine-tagged proteins.

    Science.gov (United States)

    Liao, Yiqun; Cheng, Yangjian; Li, Qingge

    2007-03-02

    In this report, we describe the preparation of novel nitrilotriacetic acid/Co2+-linked, silica/boron-coated magnetite nanoparticles for purification of 6 x His-tagged proteins. The nanoparticles were approximately 200 nm in size and were stable against hydrochloric acid and had negligible non-specific binding for protein. Elimination of non-specific binding by nucleic acids was readily achieved by digestion of samples with DNase and RNase. The modified nanoparticles were used to purify two model proteins: one had a C-terminal 6 x His tag, and the other had an internal 6 x His tag. Both proteins were purified within one hour into single band purity on sodium dodecyl sulfate-polyacrylamide electrophoresis gel.

  2. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    Science.gov (United States)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-02-01

    Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution.

  3. Study of RF PACVD diamond like carbon coatings deposited at low bias for vacuum applications

    Science.gov (United States)

    Vercammen, K.; Meneve, J.; Dekempeneer, E.; Roberts, E. W.; Eiden, M. J.

    2001-09-01

    Currently, sputtered molybdenum disulphide (MoS2) is an established coating for space applications. However, when operated in air, molybdenum disulphide loses much of its lubricating power, thus preventing in-air ground testing. In this work, the tribological properties in vacuum, dry N2 and air of a-C:H films produced by radio frequency plasma assisted chemical vapour deposition (RF PACVD) were studied in order to assess their potential for applications in space. We demonstrated that diamond-like carbon (DLC) films deposited at low bias voltage show lubricating capacity under vacuum conditions. However, the shorter lifetime of the DLC films as compared to MoS2 under vacuum is considered as an important limiting factor.

  4. Self-optimized metal coatings for fiber plasmonics by electroless deposition.

    Science.gov (United States)

    Bialiayeu, A; Caucheteur, C; Ahamad, N; Ianoul, A; Albert, J

    2011-09-26

    We present a novel method to prepare optimized metal coatings for infrared Surface Plasmon Resonance (SPR) sensors by electroless plating. We show that Tilted Fiber Bragg grating sensors can be used to monitor in real-time the growth of gold nano-films up to 70 nm in thickness and to stop the deposition of the gold at a thickness that maximizes the SPR (near 55 nm for sensors operating in the near infrared at wavelengths around 1550 nm). The deposited films are highly uniform around the fiber circumference and in spite of some nanoscale roughness (RMS surface roughness of 5.17 nm) the underlying gratings show high quality SPR responses in water. © 2011 Optical Society of America

  5. Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharifalhoseini, Zahra [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Entezari, Mohammad H., E-mail: entezari@um.ac.ir [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of)

    2015-10-01

    Graphical abstract: Enhancement of the corrosion protection of electroless Ni–P layer by ZnO nanoparticles deposition and the comparison with the classical and sonochemical Ni–P coatings. - Highlights: • Unique effects of ultrasound were investigated on the anticorrosive performance of electroless Ni–P coating. • Sonoynthesis of ZnO NPs and its deposition were performed on the surface of Ni–P coating. • ZnO as an anticorrosive has a critical role in the multifunctional surfaces. • Electrochemical properties of all fabricated samples were compared with each other. - Abstract: Ni–P coatings were deposited through electroless nickel plating in the presence and absence of ultrasound. The simultaneous synthesis of ZnO nanoparticle and its deposition under ultrasound were also carried out on the surface of Ni–P layer prepared by the classical method. The morphology of the surfaces and the chemical composition were determined by scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS), respectively. Electrochemical techniques were applied for the corrosion behavior studies. The Ni–P layer deposited by ultrasound showed a higher anticorrosive property than the layer deposited by the classical method. The ZnO nanoparticles deposited on the surface of Ni–P layer significantly improved the corrosion resistance.

  6. Synthesis of Highly Conductive, Uniformly Silver-Coated Carbon Nanofibers by Electroless Deposition.

    Science.gov (United States)

    Cauchy, Xavier; Klemberg-Sapieha, Jolanta-Ewa; Therriault, Daniel

    2017-08-30

    Noble-metal-coated carbon-based nanoparticles, when used as electrically conductive fillers, have the potential to provide excellent conductivity without the high weight and cost normally associated with metals such as silver and gold. To this effect, many attempts were made to deposit uniform metallic layers on core nanoparticles with an emphasis on silver for its high conductivity. The results so far were disheartening with the metal morphology being better described as a decoration than a coating with small effects on the electrical conductivity of the bulk particles. We tackled in this work the specific problem of electroless deposition of silver on carbon nanofibers (CNFs) with the investigation of every step of the process. We performed X-ray photoelectron spectroscopy (XPS), transmission and scanning electron microscopy (TEM, SEM), zeta potential, and electrical conductivity measurements to identify a repeatable, reliable set of parameters allowing for a uniform and fully connected silver deposition on the surface of the CNFs. The bulk particles' specific electrical conductivity (conductivity per unit mass) undergoes a more than 10-fold increase during the deposition, reaching 2500 S·cm 2 /g, which indicates that the added metal mass participates efficiently to the conduction network. The particles keep their high aspect ratio through the process, which enables a percolated conduction network at very low volume loadings in a composite. No byproducts are produced during the reaction so the particles do not have to be sorted or purified and can be used as produced after the short ∼15 min reaction time. The particles might be an interesting replacement to conventional fillers in isotropic conductive adhesives, as a conductive network is obtained at a much lower loading. They might also serve as electrically conductive fillers in composites where a high conductivity is needed, such as lightning strike protection systems, or as high surface area silver

  7. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure

    Science.gov (United States)

    Wallenhorst, L.; Gurău, L.; Gellerich, A.; Militz, H.; Ohms, G.; Viöl, W.

    2018-03-01

    In this study, artificial ageing of beech wood coated with Zn/ZnO particles by means of a cold plasma spraying process as well as coating systems including a Zn/ZnO layer and additional conventional sealings were examined. As ascertained by colour measurements, the particle coatings significantly decreased UV light-induced discolouration. Even though no significant colour changes were observed for particle-coated and alkyd-sealed samples, ATR-FTIR measurements revealed photocatalytic degradation of the alkyd matrix. In contrast, the polyurethane sealing appeared to be stabilised by the Zn/ZnO coating. Furthermore, morphologic properties of the pure particle coatings were studied by SEM and roughness measurements. SEM measurements confirmed a melting and solidifying process during deposition.

  8. The Tribological Behaviors of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition

    Science.gov (United States)

    Wang, Song; Liao, Zhenhua; Liu, Yuhong; Liu, Weiqiang

    2015-11-01

    Three thin films (DLC, a-C, and TiN) were performed on Ti6Al4V by chemical vapor deposition. Carbon ion implantation was pretreated for DLC and a-C films while Ti transition layer was pretreated for TiN film to strengthen the bonding strength. X-ray diffraction, Raman measurement, nano-hardness and nano-scratch tester, and cross-section etching by FIB method were used to analyze film characteristics. Tribological behaviors of these coatings were studied by articulation with both ZrO2 and UHMWPE balls using ball-on-disk sliding. The thickness values reached ~0.46, ~0.33, and ~1.67 μm for DLC, a-C, and TiN film, respectively. Nano-hardness of the coatings compared with that of untreated and bonding strength (critical load in nano-scratch test) values of composite coatings compared with that of monolayer film all increased significantly, respectively. Under destructive test (ZrO2 ball conterface) in bovine serum lubrication, TiN coating revealed the best wear resistance while DLC showed the worst. Film failure was mainly attributed to the plowing by hard ZrO2 ball characterized by abrasive and adhesive wear. Under normal test (UHMWPE ball conterface), all coatings showed significant improvement in wear resistance both in dry sliding and bovine serum lubrication. Both DLC and a-C films showed less surface damage than TiN film due to the self-lubricating phenomenon in dry sliding. TiN film showed the largest friction coefficient both in destructive and normal tests, devoting to the big TiN grains thus leading to much rougher surface and then a higher value. The self-lubricating film formed on DLC and a-C coating could also decrease their friction coefficients. The results indicated that three coatings revealed different wear mechanisms, and thick DLC or a-C film was more promising in application in lower stress conditions such as artificial cervical disk.

  9. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  10. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  11. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2013-01-01

    Full Text Available ZnO colloidal nanoparticles were synthesized, the average size of these nanoparticles is around 25 nm with hexagonal form. It was noted that stabilization depends directly on the purifying process; in this work we do not change the nature of the solution as a difference from Meulekamp's method, and we do not use any alkanes to remove the byproducts; only a centrifuge to remove those ones was used, thereby the stabilization increases up to 24 days. It is observed from the results that only three times of washing is enough to prevent the rapid aging process. The effect of annealing process on the composition, size, and geometrical shape of ZnO nanoparticles was studied in order to know whether the annealing process affects the crystallization and growth of the nanoparticles. After the synthesis, the colloidal nanoparticles were deposited by spin coating technique showing that the formed nanoparticles have no uniformly deposition pattern. But is possible to deposit those ones in glass substrates. A possible deposition process of the nanoparticles is proposed.

  12. Deposition and Characterization of Hermetic, Biocompatible Thin Film Coatings for Implantable, Electrically Active Devices

    Science.gov (United States)

    Sweitzer, Robyn K.

    Retinal prostheses may be used to support patients suffering from Age-related macular degeneration or retinitis pigmentosa. A hermetic encapsulation of the poly(imide )-based prosthesis is important in order to prevent the leakage of water and ions into the electric circuitry embedded in the poly(imide) matrix. The deposition of amorphous aluminum oxide (by sputtering) and diamond like carbon (by pulsed laser ablation and vacuum arc vapor deposition) were studied for the application in retinal prostheses. The resulting thin films were characterized for composition, thickness, adhesion and smoothness by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy, profilometry and light microscopy. Electrical stability was evaluated and found to be good. The as-deposited films prevented incursion of salinated fluids into the implant over two (2) three month trials soaking in normal saline at body temperature, Biocompatibility was tested in vivo by implanting coated specimen subretinally in the eye of Yucatan pigs. While amorphous aluminum oxide is more readily deposited with sufficient adhesion quality, biocompatibility studies showed a superior behavior of diamond-like carbon. Amorphous aluminum oxide had more adverse effects and caused more severe damage to the retinal tissue.

  13. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Wallenhorst, L.M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  14. Morphological, structural and optical properties of ZnO thin films deposited by dip coating method

    Energy Technology Data Exchange (ETDEWEB)

    Marouf, Sara; Beniaiche, Abdelkrim; Guessas, Hocine, E-mail: aziziamor@yahoo.fr [Laboratoire des Systemes Photoniques et Optiques Non Lineaires, Institut d' Optique et Mecanique de Precision, Universite Ferhat Abbas-Setif 1, Setif (Algeria); Azizi, Amor [Laboratoire de Chimie, Ingenierie Moleculaire et Nanostructures, Universite Ferhat Abbas-Setif 1, Setif (Algeria)

    2017-01-15

    Zinc oxide (ZnO) thin films were deposited on glass substrate by dip coating technique. The effects of sol aging time on the deposition of ZnO films was studied by using the field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and optical transmission techniques. The morphology of the films strongly depends on preparation route and deposition technique. It is noteworthy that films deposited from the freshly prepared solution feature indistinct characteristics; had relatively poor crystalline quality and low optical transmittance in the visible region. The increase in sol aging time resulted in a gradual improvement in crystallinity (in terms of peak sharpness and peak intensity) of the hexagonal phase for all diffraction peaks. Effect of sol aging on optical transparency is quite obvious through increased transmission with prolonged sol aging time. Interestingly, 72-168 h sol aging time was found to be optimal to achieve smooth surface morphology, good crystallinity and high optical transmittance which were attributed to an ideal stability of solution. These findings present a better-defined and more versatile procedure for production of clean ZnO sols of readily adjustable nanocrystalline size. (author)

  15. Relative importance of acid coating on ice nuclei in the deposition and contact modes for wintertime Arctic clouds and radiation

    Science.gov (United States)

    Girard, Eric; Sokhandan Asl, Niloofar

    2014-01-01

    Aerosols emitted from volcanic activities and polluted mid-latitudes regions are efficiently transported over the Arctic during winter by the large-scale atmospheric circulation. These aerosols are highly acidic. The acid coating on ice nuclei, which are present among these aerosols, alters their ability to nucleate ice crystals. In this research, the effect of acid coating on deposition and contact ice nuclei on the Arctic cloud and radiation is evaluated for January 2007 using a regional climate model. Results show that the suppression of contact freezing by acid coating on ice nuclei leads to small changes of the cloud microstructure and has no significant effect on the cloud radiative forcing (CRF) at the top of the atmosphere when compared with the effect of the alteration of deposition ice nucleation by acid coating on deposition ice nuclei. There is a negative feedback by which the suppression of contact freezing leads to an increase of the ice crystal nucleation rate by deposition ice nucleation. As a result, the suppression of contact freezing leads to an increase of the cloud ice crystal concentration. Changes in the cloud liquid and ice water contents remain small and the CRF is not significantly modified. The alteration of deposition ice nucleation by acid coating on ice nuclei is dominant over the alteration of contact freezing.

  16. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  17. Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Kristin Pfeiffer

    2017-08-01

    Full Text Available Antireflection (AR coatings are indispensable in numerous optical applications and are increasingly demanded on highly curved optical components. In this work, optical thin films of SiO2, Al2O3, TiO2 and Ta2O5 were prepared by atomic layer deposition (ALD, which is based on self-limiting surface reactions leading to a uniform film thickness on arbitrarily shaped surfaces. Al2O3/TiO2/SiO2 and Al2O3/Ta2O5/SiO2 AR coatings were successfully applied in the 400–750 nm and 400–700 nm spectral range, respectively. Less than 0.6% reflectance with an average of 0.3% has been measured on a fused silica hemispherical (half-ball lens with 4 mm diameter along the entire lens surface at 0° angle of incidence. The reflectance on a large B270 aspherical lens with height of 25 mm and diameter of 50 mm decreased to less than 1% with an average reflectance < 0.3%. The results demonstrate that ALD is a promising technology for deposition of uniform optical layers on strongly curved lenses without complex in situ thickness monitoring.

  18. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition.

    Science.gov (United States)

    Cui, W; Beniash, E; Gawalt, E; Xu, Z; Sfeir, C

    2013-11-01

    Degradable metals have been suggested as biomaterials with revolutionary potential for bone-related therapies. Of these candidate metals, magnesium alloys appear to be particularly attractive candidates because of their non-toxicity and outstanding mechanical properties. Despite their having been widely studied as orthopedic implants for bone replacement/regeneration, their undesirably rapid corrosion rate under physiological conditions has limited their actual clinical application. This study reports the use of a novel biomimetic peptide coating for Mg alloys to improve the alloy corrosion resistance. A 3DSS biomimetic peptide is designed based on the highly acidic, bioactive bone and dentin extracellular matrix protein, phosphophoryn. Surface characterization techniques (scanning electron microscopy, energy dispersive X-ray spectroscopy and diffuse-reflectance infrared spectroscopy) confirmed the feasibility of coating the biomimetic 3DSS peptide onto Mg alloy AZ31B. The 3DSS peptide was also used as a template for calcium phosphate deposition on the surface of the alloy. The 3DSS biomimetic peptide coating presented a protective role of AZ31B in both hydrogen evolution and electrochemical corrosion tests. Copyright © 2013. Published by Elsevier Ltd.

  19. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB Technique

    Directory of Open Access Journals (Sweden)

    Gabriele Baiocco

    2018-01-01

    Full Text Available Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less, and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  20. Al₂O₃ Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB) Technique.

    Science.gov (United States)

    Baiocco, Gabriele; Rubino, Gianluca; Tagliaferri, Vincenzo; Ucciardello, Nadia

    2018-01-09

    Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less), and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al₂O₃ film on a magnesium alloy realized by the fluidized bed (FB) technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al₂O₃ coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.