WorldWideScience

Sample records for boron coatings deposited

  1. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  2. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  3. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  4. Ion-beam-deposited boron carbide coatings for the extreme ultraviolet.

    Science.gov (United States)

    Blumenstock, G M; Keski-Kuha, R A

    1994-09-01

    The normal-incidence reflectance of ion-beam-deposited boron carbide thin films has been evaluated in the extreme ultraviolet (EUV) spectral region. High-reflectance coatings have been produced with reflectances greater than 30% between 67 and 121.6 nm. This high reflectance makes ion-beam-deposited boron carbide an attractive coating for EUV applications.

  5. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  6. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzhinskiy, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  7. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-01

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400-1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  8. Boron carbide (B{sub 4}C) coating. Deposition and testing

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E.; Barsuk, V. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Buzhinsky, O. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Evsin, A.; Gordeev, A.; Grunin, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Klimov, N. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Kurnaev, V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mazul, I. [Federal State Unitary Interprise Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA Efremov), St-Peterburg (Russian Federation); Otroshchenko, V.; Putric, A. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-15

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B{sub 4}C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B{sub 4}C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B{sub 4}C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B{sub 4}C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  9. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li Junsheng, E-mail: charlesljs@163.com [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha, 410073 (China); Zhang Changrui; Li Bin [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha, 410073 (China)

    2011-06-15

    Boron nitride (BN) coatings were deposited on carbon fibers by chemical vapor deposition (CVD) using borazine as single source precursor. The deposited coatings were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The effect of temperatures on growth kinetics, morphology, composition and structure of the coatings was investigated. In the low temperature range of 900 deg. C-1000 deg. C, the growth rate increased with increasing temperature complying with Arrhenius law, and an apparent active energy of 72 kJ/mol was calculated. The coating surface was smooth and compact, and the coatings uniformly deposited on individual fibers of carbon fiber bundles. The growth was controlled by surface reaction. At 1000 deg. C, the deposition rate reached a maximum (2.5 {mu}m/h). At the same time, the limiting step of the growth translated to be mass-transportation. Above 1100 deg. C, the growth rate decreased drastically due to the occurrence of gas-phase nucleation. Moreover, the coating surface became loose and rough. Composition and structure examinations revealed that stoichiometric BN coatings with turbostratic structure were obtained below 1000 deg. C, while hexagonal BN coatings were deposited above 1100 deg. C. A penetration of carbon element from the fibers to the coatings was observed.

  10. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    Science.gov (United States)

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-01-30

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation.

  11. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  12. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  13. Boron deposition from fused salts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.L.

    1980-08-01

    A partial evaluation of the feasibility of a process to electrodeposit pure coherent coatings of elemental boron from molten fluorides has been performed. The deposit produced was powdery and acicular, unless the fluoride melt was purified to have very low oxygen concentration. When the oxygen activity was reduced in the melt by addition of crystalline elemental boron, dense, amorphous boron deposit was produced. The boron deposits produced had cracks but were otherwise pure and dense and ranged up to 0.35 mm thick. Information derived during this project suggests that similar deposits might be obtained crack-free up to 1.00 mm thick by process modifications and improvements.

  14. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition.

    Science.gov (United States)

    Quesada-González, Miguel; Boscher, Nicolas D; Carmalt, Claire J; Parkin, Ivan P

    2016-09-28

    The work presented here describes the preparation of transparent interstitial boron-doped TiO2 thin-films by atmospheric pressure chemical vapor deposition (APCVD). The interstitial boron-doping, on TiO2, proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), is shown to enhance the crystallinity and significantly improve the photocatalytic activity of the TiO2 films. The synthesis, highly suitable for a reel-to-reel process, has been carried out in one step.

  15. Plasma-Arc Deposited Elemental Boron Film for use as a Durable Nonstick Coating

    Science.gov (United States)

    2007-09-01

    It will be noted that these two samples were ones for which no surface cleaning, acid pickling , or treatment of the “swaged in oxide layer” was done...stages of the project, it was decided to try an idea to use titanium as the interlayer between boron and aluminum. Titanium is a light material that is...been overcome by acid pickling of the substrate and pulse-dc bias techniques. The Contractor Name: HY-Tech Research Corporation 16 Contract No

  16. Boronized steels with corundum-baddeleyite coatings

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes preparation and properties of anti-corrosion and anti-abrasive coatings from corundum-baddeleyite ceramics deposited on surface of low-carbon boronized steel S235JRH-1.0038 (EN 10025-1 by plasma spraying method. Adhesive interlayers Fe2B reaches bond strength of up to 20 MPa in the pull-off tests, the ZrO2 - Al2O3 - SiO2 coatings have a value of fracture adhesion of 4 - 6 MPa. Hardness of these ceramic coatings on steel is as high as 1 800 HV100 and its polarization resistance is 1 600 Ω/cm2 to 4 000 Ω/cm2.

  17. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  18. Electrospark deposition coatings

    Science.gov (United States)

    Sheely, W. F.

    1986-11-01

    Hard surfacing for wear resistant and low-friction coatings has been improved by means of advances in the computer controls in electronic circuitry of the electrospark deposition (ESD) process. coatings of nearly any electrically conductive metal alloy or cermet can be deposited on conductive materials. Thickness is usually two mils or less, but can be as high as 10 mils. ESD coatings can quadrupole cutting tool life.

  19. Clean diffusion coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Warnes, B.M.; Punola, D.C. [Howmet Thermatech Coatings, Whitehall, MI (United States)

    1997-10-01

    An experimental program was undertaken to identify diffusion coating impurities introduced by standard aluminizing processes and to evaluate the impact of those impurities on oxidation resistance of the resultant Pt aluminide coating. IN-738 tabs and foils were platinum-electroplated, and then aluminized using three different processes: high-activity pack cementation, high-activity CVD and low-activity CVD. The results suggest that aluminizing processes which involve aluminum bearing alloys in the coating retort with H{sub 2} or H{sub 2}/HCl gas at high temperature can contaminate the diffusion coating during deposition. CVD low-activity aluminizing (coating gas generated at low temperature outside the coating chamber from 99.999% Al) did not introduce any coating impurities. In addition, the data indicates that harmful impurities from the IN-738 substrate (sulfur, boron and tungsten) and the electroplating process (phosphorus) were removed from the coating during deposition. The CVD low-activity Pt aluminide coating was the `cleanest` in the study, and it exhibited the best high-temperature oxidation resistance of the coatings considered. It can be concluded that trace elements in diffusion coatings from the superalloy substrate and/or the aluminizing process can adversely effect the oxidation resistance of those coatings, and that CVD low-activity aluminizing yields cleaner coatings than other commercially available aluminizing techniques. (orig.) 10 refs.

  20. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  1. Methods of Boron-carbon Deposited Film Removal

    Science.gov (United States)

    Airapetov, A.; Terentiev, V.; Voituk, A.; Zakharov, A.

    Boron carbide was proposed as a material for in-situ renewable protecting coating for tungsten tiles of the ITER divertor. It is necessary to develop a method of gasification of boron-carbon film which deposits during B4C sputtering. In this paper the results of the first stage investigation of gasification methods of boron-carbon films are presented. Two gasification methods of films are investigated: interaction with the ozone-oxygen mixture and irradiation in plasma with the working gas composed of oxygen, ethanol, and, in some cases, helium. The gasification rate in the ozone-oxygen mixture at 250 °C for B/C films with different B/C ratio and carbon fiber composite (CFC), was measured. For B/C films the gasification rate decreased with increasing B/C ratio (from 45 nm/h at B/C=0.7 to 4 nm/h at B/C=2.1; for CFC - 15 μm/h). Films gasification rates were measured under ion irradiation from ethanol-oxygen-helium plasma at different temperatures, with different ion energies and different gas mixtures. The maximum obtained removal rate was near 230 nm/h in case of ethanol-oxygen plasma and at 150°C of the sample temperature.

  2. Influence of boron doping on mechanical and tribological properties in multilayer CVD-diamond coating systems

    Indian Academy of Sciences (India)

    SAJAD HUSSAIN DIN; M A SHAH; N A SHEIKH; K A NAJAR; K RAMASUBRAMANIAN; S BALAJI; M S RAMACHANDRA RAO

    2016-12-01

    Titanium alloy (Ti6Al4V) substrates were deposited with smooth multilayer coatings, by hot filament chemical vapour deposition technique. The effect of boron doping on lattice parameter, residual stresses, hardness and coefficient of friction in multilayer-diamond coating system was studied. The frictional behaviour of the coatings was studied using a ball-on-disc micro-tribometer by sliding the coated samples of titanium alloy (Ti6Al4V) substrates against alumina (Al$_2$O$_3$) balls, and increasing normal load from 1 to 10N. The average friction coefficient decreased from 0.36 to 0.29 for undoped multilayer-diamond coating system and from 0.33 to 0.18 for borondoped (BD) multilayer-diamond coating system. The average indentation depths for undoped and BD multilayerdiamond coating systems were found to be equal to $\\sim$58 and $\\sim$65 nm, respectively, and their hardness values were 60 and 55~GPa, respectively.

  3. Chemical vapor deposition coatings for oxidation protection of titanium alloys

    Science.gov (United States)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1991-01-01

    Results of an experimental investigation of the oxidation protection afforded to Ti-14Al-21Nb and Ti-14Al-23Nb-2V titanium aluminides and Ti-17Mo-3Al-3Nb titanium alloy by aluminum-boron-silicon and boron-silicon coatings are presented. These coatings are applied by a combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The former is for the application of aluminum, and the latter is for codeposition of boron and silicon. Coating thickness is in the range of 2 to 7 microns, and coating weights are 0.6 to 2.0 mg/sq cm. Oxidation testing was performed in air at temperatures to 1255 K in both static and hypersonic flow environments. The degree of oxidation protection provided by the coatings is determined from weight change measurements made during the testing and post test compositional analyses. Temperature-dependent total normal emittance data are also presented for four coating/substrate combinations. Both types of coatings provided excellent oxidation protection for the exposure conditions of this investigation. Total normal emittances were greater than 0.80 in all cases.

  4. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  5. Neutron beam monitor based on a boron-coated GEM

    Institute of Scientific and Technical Information of China (English)

    周健荣; 李仪; 孙志嘉; 刘贲; 王艳凤; 杨桂安; 周良; 许虹; 董静; 杨雷

    2011-01-01

    A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on

  6. Microstructural study of oxidation of carbon-rich amorphous boron carbide coating

    Institute of Scientific and Technical Information of China (English)

    Bin ZENG; Zu-de FENG; Si-wei LI; Yong-sheng LIU

    2008-01-01

    Carbon-rich amorphous boron carbide (BxC) coatings were annealed at 400℃, 700℃, 1000℃ and 1200℃ for 2 h in air atmosphere. The microstructure and composition of the as-deposited and annealed coat-ings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectro-scopy and energy dispersive X-ray spectroscopy (EDS). All of the post-anneal characterizations demonstrated the ability of carbon-rich BxC coatings to protect the graphite substrate against oxidation. Different oxidation modes of the coatings were found at low temperature (400℃), moderate temperature (700℃) and high temper-ature (1000℃ and 1200℃). Finally, the feasibility of the application of carbon-rich BxC instead of pyrolytic car-bon (PyC) as a fiber/matrix interlayer in ceramics-matrix composites (CMCs) is discussed here.

  7. Aggregation and deposition behavior of boron nanoparticles in porous media.

    Science.gov (United States)

    Liu, Xuyang; Wazne, Mahmoud; Christodoulatos, Christos; Jasinkiewicz, Kristin L

    2009-02-01

    New kinds of solid fuels and propellants comprised of nanomaterials are making their way into civilian and military applications yet the impact of their release on the environment remains largely unknown. One such material is nano boron, a promising solid fuel and propellant. The fate and transport of nano boron under various aquatic systems was investigated in aggregation and deposition experiments. Column experiments were performed to examine the effects of electrolyte concentration and flow velocity on the transport of boron nanoparticles under saturated conditions, whereas aggregation tests were conducted to assess the effects of electrolytes on the aggregation of the boron nanoparticles. Aggregation tests indicated the presence of different reaction-controlled and diffusion-controlled regimes and yielded critical coagulation concentrations (CCC) of 200 mM, 0.7 mM and 1.5 mM for NaCl, CaCl(2), and MgCl(2), respectively. Aggregation and deposition experimental data corresponded with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) model and the constant attachment efficiency filtration model, respectively. Theoretical calculations indicated that both the primary and secondary energy minima play important roles in the deposition of nano boron in sand columns.

  8. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren;

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  9. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  10. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-01

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  11. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  12. Deposition and Investigation of Hydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Safonov Aleksey

    2015-01-01

    Full Text Available The fluoropolymer coatings of different morphologies are deposited by the HWCVD (Hot Wire CVD method. The effect of activator filament temperature on the structure of fluoropolymer coating is shown. The results of studying the hydrophobic fluoropolymer coatings with different structures, deposited by the HWCVD method, are presented.

  13. Chemical vapor deposition of mullite coatings

    Science.gov (United States)

    Sarin, Vinod; Mulpuri, Rao

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  14. Metallogenic Model and Prospecting Indicators of the Boron Deposits in East Liaoning Area

    Institute of Scientific and Technical Information of China (English)

    Qu Hongxiang; Zhang Guoren; Li Xiandong; Chen Shuliang; Yang Zhongzhu; Wang Zhongjiang

    2001-01-01

    The Paleoproterozoic boron deposits in east Liaoning occur in Mg- rich marble of Li' eryu Formation of Liaohe group. The mineralization was controlled by stratigraphic lithology. The volcano ~ sedimentation is the material base of ore-formation. Boron mainly derived from volcanic source. Boron in Li' eryu formation was activated and transferred by migmatization and then deposited into ore when metasomatism occurrs in Mg - rich marble. Structural deformation reconstructed the boron ore bodies. Meanwhile, ore - bearing hyd~othermal solution produced by structural deformation and remetasomated the host - ore rocks or filled in fissure of ore. Boron deposit is a stratabound deposit, which formed by migmatization and structural deformation mineralization.

  15. Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining

    Directory of Open Access Journals (Sweden)

    Zhiming Zhang

    2013-07-01

    Full Text Available Thin boron doped diamond (BDD film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co micro drills by using the hot filament chemical vapor deposition (HFCVD technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools.

  16. Improving hardness of electroless Ni-B coatings using optimized deposition conditions and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Oraon, B. [Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032 (India)], E-mail: b_oraon_65@yahoo.co.in; Majumdar, G. [Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032 (India); Ghosh, B. [Advanced Materials and Solar Photovoltaic Division, School of Energy Studies, Jadavpur University, Kolkata 700 032 (India)

    2008-07-01

    The alkaline borohydride-reduced bath has been used to deposit electroless nickel-boron (Ni-B) coatings on a pure (99.99%) copper substrate. The hardness of the Ni-B coatings has been improved using optimized deposition conditions and thereafter by annealing. The electroless Ni-B deposition per unit area has been considered as the response variable and response surface method (RSM) has been used to optimize the process parameters and the deposition per unit area. The electroless Ni-B coatings have again been formed at the optimized deposition conditions and the as-deposited coating hardness has been evaluated using an empirical model and regression analysis. It has been observed that there is a significant improvement in as-deposited coating hardness. The Ni-B coated specimens formed at optimized deposition conditions have also been annealed at different temperatures ranging from 100 deg. C to 500 deg. C. The hardness of the annealed specimens has been estimated for different annealing temperatures and has been observed that the coating hardness increases with annealing temperature and then further increase in annealing temperature reduces the coating hardness. The coating hardness becomes the highest for annealing temperature of about 300 deg. C. Both the as-deposited and annealed coating hardness have been observed to be significantly higher than that reported by many researchers for electroless Ni-B coatings.

  17. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, V. I., E-mail: VZubkovspb@mail.ru; Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas' ev, A. V. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Bogdanov, S. A.; Vikharev, A. L. [Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); Butler, J. E. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); National Museum of Natural History (NMNH), P.O. Box 37012 Smithsonian Inst., Washington, D.C. 20013-7012 (United States)

    2015-10-14

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  18. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  19. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Abstract Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices. PMID:28179961

  20. Tribological properties of boron nitride synthesized by ion beam deposition

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  1. Deposition and Coating Properties on CVD Tungsten

    Institute of Scientific and Technical Information of China (English)

    DU Ji-hong; LI Zheng-xiang; LIU Gao-jian; ZHOU Hui-Huang; CHUN liang

    2004-01-01

    Surface characterization and microstructure studies are performed on chemical vapor deposited (CVD) tungsten coating. There is about 2 μm thickness diffusion layer of tungsten in the molybdenum substrate. The thermal shock test shows tungsten coating has good adhesion with molybdenum substrate, but the elements of oxygen and carbon in the tungsten coating have the bad affection to the adhesion. The result of high-temperature diffusion experiment is the diffusion rate from molybdenum substrate to tungsten coating is faster.

  2. Science Letters:Development of supported boron-doping TiO2 catalysts by chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst.

  3. Morphology Analysis of Nickel-boron/ diamond Electroless Deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; ZHU Xuanmin; ZHOU Jian; OUYANG Shixi

    2008-01-01

    The influences of mass concentration of nickel chloride hexahydrate, sodium borohydride,ethylenediamine, pH value, bath temperature on deposition rate were studied with orthogonal experiments by a series of pre-treatments on micro-diamond particle, and the optimized parameters were obtained. Both the morphology and the composition of original diamond and the diamond with Ni-B coating were analyzed by SEM and XRD respectively. The SEM image shows that the spherical Ni-B particle is coated upon diamond.XRD pattern shows that the coating compositions are Ni and Ni2B.

  4. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  5. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  6. AUTOCATALYTIC REDUCTION AND CHARACTERISTICS OF BORON-CONTAINING COATINGS

    Directory of Open Access Journals (Sweden)

    V. Covaliov

    2013-06-01

    Full Text Available The research results of the plating conditions, chemical composition and properties of Ni-B coatings and Ni-Re-B, Ni-Mo-B and Ni-W-B alloys are given. It was shown that introduction of alloying elements (Re, Мо and W in the composition of Ni-containing coatings modifies the catalytic activity of the alloys’ surface, with regard to the parallel reactions of dimethylamino-borane (DMAB heterogeneous hydrolysis, Ni reduction and evolving of the molecular hydrogen. It was found that with the increase in concentration of alloying element, boron content in the coatings is decreased to the trace amounts. The effect of alloys composition on hydrogen evolving overvoltage was studied. Due to the low overvoltage of hydrogen evolving (HE on the alloy Ni-Re-B surface (11 at.% Re, it can be used as electrode for hydrogen generation from water in the electrolytic cell with novel design and improved technical-economic indicators.

  7. Chemical vapor deposition coating for micromachines

    Energy Technology Data Exchange (ETDEWEB)

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; SNIEGOWSKI,JEFFRY J.; DE BOER,MAARTEN P.; IRWIN,LAWRENCE W.; WALRAVEN,JEREMY A.; TANNER,DANELLE M.; DUGGER,MICHAEL T.

    2000-04-21

    Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

  8. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-11-01

    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  9. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  10. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Science.gov (United States)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  11. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Zhou, Fei, E-mail: fzhou@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Gao, Song; Wu, Zhiwei; Wang, Qianzhi [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Chen, Kangmin [Center of Analysis, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhifeng; Li, Lawrence Kwok-Yan [Advanced Coatings Applied Research Laboratory, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-07-30

    Highlights: • Cr-B-N coatings were deposited via adjusting the CrB{sub 2} target current. • Cr-B-N nanocomposite coatings consisted of CrN nanograins and amorphous BN phase. • The hardness of Cr-B-N coating increased firstly, and then decreased with increasing CrB{sub 2} target current. • The frictional behavior of Cr-B-N coatings deposited at different CrB{sub 2} target currents was compared in deionized water. • In comparison to CrN coatings, Cr-B-N coatings exhibited superior tribological properties in water. - Abstract: Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB{sub 2} target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB{sub 2} target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB{sub 2} target current of 2 A, and then decreased gradually with further increasing the CrB{sub 2} target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  12. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  13. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Science.gov (United States)

    Ficek, M.; Sobaszek, M.; Gnyba, M.; Ryl, J.; Gołuński, Ł.; Smietana, M.; Jasiński, J.; Caban, P.; Bogdanowicz, R.

    2016-11-01

    This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 1010 cm-2. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp3/sp2 ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0-2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  14. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    Science.gov (United States)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  15. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel.

    Science.gov (United States)

    Husain, Esam; Narayanan, Tharangattu N; Taha-Tijerina, Jose Jaime; Vinod, Soumya; Vajtai, Robert; Ajayan, Pulickel M

    2013-05-22

    Recently, two-dimensional, layered materials such as graphene and hexagonal boron nitride (h-BN) have been identified as interesting materials for a range of applications. Here, we demonstrate the corrosion prevention applications of h-BN in marine coatings. The performance of h-BN/polymer hybrid coatings, applied on stainless steel, were evaluated using electrochemical techniques in simulated seawater media [marine media]. h-BN/polymer coating shows an efficient corrosion protection with a low corrosion current density of 5.14 × 10(-8) A/cm(2) and corrosion rate of 1.19 × 10(-3) mm/year and it is attributed to the hydrofobic, inert and dielectric nature of boron nitride. The results indicated that the stainless steel with coatings exhibited improved corrosion resistance. Electrochemical impedance spectroscopy and potentiodynamic analysis were used to propose a mechanism for the increased corrosion resistance of h-BN coatings.

  16. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.

  17. Oleophobic optical coating deposited by magnetron PVD

    Science.gov (United States)

    Bernt, D.; Ponomarenko, V.; Pisarev, A.

    2016-09-01

    Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.

  18. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Kendall J [Los Alamos National Laboratory; Pena, Maria I [Los Alamos National Laboratory

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  19. Synthesis of one-dimensional boron-related nanostructures by chemical vapor deposition

    Science.gov (United States)

    Guo, Li

    Motivated by the extensive research on carbon nanotubes (CNTs), boron and its related nano-structures have attracted increasing interest for potential applications in nanodevices and nanotechnologies, due to their extraordinary properties. In this work, different types of B-related nanostructures were successfully grown on oxidized Si substrates with or without transition metal catalysts in CVD processes. The gas chemistry was monitored by in-situ mass-spectroscopy and optical emission spectroscopy. These helped to identify the gas reactive species during the deposition, creating thereby a controllable, optimum synthesis process and helping in identifying the growth mechanism. The boron nitride nanotubes (BNNTs) were successfully synthesized at the low substrate temperatures of 600-800°C by a microwave plasma CVD process, using diborane and ammonia as the gas precursors. The optimum growth conditions of BNNTs were investigated by varying the experimental parameters, such as catalyst film thickness, substrate temperature, diborane flow rate, and growth time. The dense and crystalline BNNT deposits were obtained on 1nm nickel (Ni) or cobalt (Co) thin film coated oxidized Si (111) at a temperature of 800°C, a pressure of 15 torr, microwave power of 800 W, diborane flow rate (5 vol.% in hydrogen) of 5 sccm, ammonia flow rate of 27.5 sccm, hydrogen flow rate of 10sccm, and a deposition time of 1 hour. These nanotubes were either self-assembled in bundles or as a single tube with a diameter less than 10 nm. Raman spectra together with electron diffraction pattern indicated a hexagonal crystalline structure for these BN nanostructures. A growth mechanism of BNNTs involving dissolution-supersaturation-precipitation of BN in the metal catalysts was proposed. It was shown that the growth of BN nanostructures strongly depended on the catalyst and its film thickness, which resulted in the selective growth of BNNTs on the patterned catalyst islands. Ni dots with the diameters

  20. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H. [KAIST, Daejeon (Korea, Republic of)

    2007-03-15

    Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis.

  1. Carbon, oxygen and boron isotopic studies of Huangbaishuwan witherite deposit at Ziyang and Wenyuhe witherite deposit at Zhushan

    Institute of Scientific and Technical Information of China (English)

    Lü; Zhicheng(吕志成); LIU; Congqiang(刘丛强); LIU; Jiajun(刘家军); ZHAO; Zhiqi(赵志琦)

    2003-01-01

    Being stratiform or stratoid, the Huangbaishuwan witherite deposit at Ziyang and the Wenyuhe witherite-barite deposit at Zhushan occur in the lower Lower Cambrian siliceous rocks and the orebodies are remarkably controlled by lithological character and petrography. Boron, carbon and oxygen isotopic studies of witherite, barytocalcite and calcite have shown that the carbon, involved in the formation of these minerals, was derived mainly from hydrocarbons and biogenetic gases resulting from degradation, polycondensation and dehydroxylation of bio-organic matter in sediments at the early stage of diagenesis; the boron was a mixture of boron in pore water and that released in the process of degradation of organic matter, with a minor amount of boron from cycling brines in the deep interior of the basin. Boron, carbon and oxygen isotopic studies unanimously demonstrated that witherite was precipitated in this sort of organic carbon-rich pore water medium during the early stage of diagenesis. Extensive occurrence of biodetritus and clastic texture in witherite ores strongly evidenced that Ba2+ was concentrated and settled down in the form of bio-barite on the seafloor as a result of biological processes, thereafter forming the initially enriched orebodies of barium deposits. Biological processes in seawater and early diagenesis in sediments are the major ore-forming mechanisms of witherite deposits in the region studied.

  2. Hexagonal Boron Nitride Nanosheets as High-Performance Binder-Free Fire-Resistant Wood Coatings.

    Science.gov (United States)

    Liu, Juanjuan; Kutty, Rajendrannair Govindan; Zheng, Qingshen; Eswariah, Varrla; Sreejith, Sivaramapanicker; Liu, Zheng

    2017-01-01

    Hexagonal boron nitride (h-BN) nanosheets are synthesized through a facile shear force liquid phase exfoliation method and their use as a binder-free oxidation and fire-resistant wood coating is demonstrated. Characterized by intrinsic low thermal diffusivity and thermal effusivity, h-BN nanosheet coatings show an excellent fire resistance and oxidation resistance up to 900 °C in air.

  3. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  4. Cytotoxicity of Boron-Doped Nanocrystalline Diamond Films Prepared by Microwave Plasma Chemical Vapor Deposition

    Science.gov (United States)

    Liu, Dan; Gou, Li; Ran, Junguo; Zhu, Hong; Zhang, Xiang

    2015-07-01

    Boron-doped nanocrystalline diamond (NCD) exhibits extraordinary mechanical properties and chemical stability, making it highly suitable for biomedical applications. For implant materials, the impact of boron-doped NCD films on the character of cell growth (i.e., adhesion, proliferation) is very important. Boron-doped NCD films with resistivity of 10-2 Ω·cm were grown on Si substrates by the microwave plasma chemical vapor deposition (MPCVD) process with H2 bubbled B2O3. The crystal structure, diamond character, surface morphology, and surface roughness of the boron-doped NCD films were analyzed using different characterization methods, such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The contact potential difference and possible boron distribution within the film were studied with a scanning kelvin force microscope (SKFM). The cytotoxicity of films was studied by in vitro tests, including fluorescence microscopy, SEM and MTT assay. Results indicated that the surface roughness value of NCD films was 56.6 nm and boron was probably accumulated at the boundaries between diamond agglomerates. MG-63 cells adhered well and exhibited a significant growth on the surface of films, suggesting that the boron-doped NCD films were non-toxic to cells. supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (University of Electronic Science and Technology of China) (No. KFJJ201313)

  5. High speed titanium coating by Supersonic Laser Deposition

    OpenAIRE

    LUPOI, ROCCO

    2011-01-01

    PUBLISHED The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology f or the deposition of t itanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating , known as Supersonic Laser Deposition (SLD). M et...

  6. Characterisation of sputter deposited niobium and boron interlayer in the copper-diamond system.

    Science.gov (United States)

    Hell, J; Chirtoc, M; Eisenmenger-Sittner, C; Hutter, H; Kornfeind, N; Kijamnajsuk, P; Kitzmantel, M; Neubauer, E; Zellhofer, K

    2012-09-15

    In most metal matrix composites (MMCs) interfaces are decisive but hard to manipulate. Especially copper-carbon composites can exhibit excellent mechanical and thermal properties only if the Cu/C interface is modified by an optimised interlayer. Due to the excellent thermal conductivity and mechanical stability of diamond this form of carbon is preferred as reinforcement in heat sink materials (copper-diamond composite) which are often subjected to severe thermal and mechanical loads. In the present case niobium and boron interlayers of various thicknesses were deposited on diamond and vitreous carbon substrates by magnetron sputter deposition. After the coverage of all samples by a copper film, a part of the samples was subjected to heat treatment for 30 min at 800 °C under high vacuum (HV) to simulate the thermal conditions during the production of the composite material by uniaxial hot pressing. De-wetting during heat treatment leads to the formation of holes or humps in the Cu coating. This effect was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A comparison of time-of-flight secondary ion mass spectroscopy (TOF SIMS) profiles of heat treated samples with those of as deposited ones showed the influence of interdiffusion during the heating process. Diffusion behaviour and chemical composition of the interface were also studied by cross sectional transmission electron microscopy (X-TEM) investigations using focused ion beam (FIB) cut samples. The thermal contact resistance (TCR) of the interface was calculated from results obtained from modulated infrared radiometry (IR). Thin interlayers suppressed de-wetting most effectively and consequently the TCR at the Cu-diamond interface was found to decrease. Therefore they are promising candidates for optimising the Cu-diamond interface.

  7. Deposition and tribological behaviour of sputtered carbon hard coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.; Camino, D.; Jones, A.H.S.; Teer, D.G. [Teer Coatings Ltd., Hartlebury (United Kingdom)

    2000-02-21

    The exceptional tribological properties of low deposition temperature sputtered carbon coatings (Graphit-iC coatings) have been recently reported. This paper describes the latest development of these coatings and particularly how, by an optimisation of the deposition parameters, it has been possible to obtain relative soft to very hard coatings with extremely low specific wear rates. The coatings have been deposited in a closed field unbalanced magnetron sputter ion plating (CFUBMSIP) installation. By applying the appropriate conditions of deposition, carbon coatings with hardness from 1500 to 4000 HV can be routinely deposited. Preliminary analytical results are presented in order to characterise such hard coatings: high-resolution transmission electron microscopy, scanning electron microscopy and X-ray diffraction analysis are some of the different techniques used for this work. Finally, a number of the applications are reported with tribological test results. (orig.)

  8. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition.

    Science.gov (United States)

    Kim, Ki Kang; Hsu, Allen; Jia, Xiaoting; Kim, Soo Min; Shi, Yumeng; Hofmann, Mario; Nezich, Daniel; Rodriguez-Nieva, Joaquin F; Dresselhaus, Mildred; Palacios, Tomas; Kong, Jing

    2012-01-11

    Hexagonal boron nitride (h-BN) is very attractive for many applications, particularly, as protective coating, dielectric layer/substrate, transparent membrane, or deep ultraviolet emitter. In this work, we carried out a detailed investigation of h-BN synthesis on Cu substrate using chemical vapor deposition (CVD) with two heating zones under low pressure (LP). Previous atmospheric pressure (AP) CVD syntheses were only able to obtain few layer h-BN without a good control on the number of layers. In contrast, under LPCVD growth, monolayer h-BN was synthesized and time-dependent growth was investigated. It was also observed that the morphology of the Cu surface affects the location and density of the h-BN nucleation. Ammonia borane is used as a BN precursor, which is easily accessible and more stable under ambient conditions than borazine. The h-BN films are characterized by atomic force microscopy, transmission electron microscopy, and electron energy loss spectroscopy analyses. Our results suggest that the growth here occurs via surface-mediated growth, which is similar to graphene growth on Cu under low pressure. These atomically thin layers are particularly attractive for use as atomic membranes or dielectric layers/substrates for graphene devices.

  9. Accelerated electrospark deposition and the wear behavior of coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P.Z.; Pan, G.S.; Zhou, Y.; Qu, J.X.; Shao, H.S. [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

    1997-12-01

    Electrospark deposition (ESD) is a coating process that is featured by low heat input to the substrate. Low coating efficiency and other limitations influence its wider application. The present paper introduces newly designed ESD equipment, by which a higher coating rate can be reached. The relationship among coating thickness, surface roughness, and process parameters such as pulse energy, pulse frequency, and deposition time are presented. Electrospark deposition coating by the new equipment on AISI 1045 steel (with WC-8% Co as electrode) increases the wear resistance by 5 to 8 times. The micromechanism is investigated by scanning electron microscopy observation.

  10. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  11. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  12. Metallogenic Chronology of Boron Deposits in the Eastern Liaoning Paleoproterozoic Rift Zone

    Institute of Scientific and Technical Information of China (English)

    LU Yuanfa; CHEN Yuchuan; LI Huaqing; XUE Chunji; CHEN Fuwen

    2005-01-01

    Lead isotopic analytic data of 30 ores gathered from the Zhuanmiao boron deposit, Wengquangou boron (iron) deposit and its Dongtaizi Ore Member constitute three isochrons, the corresponding ages of which are 1902±12 Ma,1852±9 Ma and 1917±48 Ma. Lead isotopic analyses of marble from the Xiquegou Member of the Qingchenzi orefield yield a Pb-Pb isochron age of 1844±27 Ma. 40Ar-39Ar quick neutron activation dating of phlogopites and microclines coexisting with ore minerals in the Wengquangou boron (iron) and Zhuanmiao boron deposits shows that: (1) the phlogopite from the Wengquangou has a plateau age of 1923±1.5 Ma and an isochron age of 1924±2.5 Ma; (2) the microcline from the Wengquangou has the plateau age of 1407±5.4 Ma and 220±12 Ma and an isochron age of 1403±19Ma; (3) the phlogopites from the Zhuanmiao yield a plateau age 1918±1.3 Ma and an isochron age of 1918±2.9 Ma; (4) the microclines from the Zhuanmiao yield the plateau age of 1420±16 Ma and 250±8 Ma and an isochron age of 1425±19 Ma and 269±16 Ma. These ages indicate that the eastern Liaoning area happened around 1900 Ma, an important tectonomagmatic event, which is consistent with the worldwide Mid-Proterozoic tectonomagmatic event. During this period, the Proterozoic Liaohe Group was folded and underwent strong normal metamorphism, and the (hydrothermal)sedimentary boron deposits (or source beds) formed earlier were strongly superimposed by mineralization, resulting in enrichment of boron; later regional geological processes made little contribution to the formation of the boron deposits.Lead isotopic components show that the U-Pb and Th-Pb isotopic system reached homogenization in the ores whereas only the U-Pb isotopic system reached homogenization in the marble from the Xiquegou district, which indicates that the boron deposits superimposed in the studied area endured a relatively strong process of hydrothermal migmatization during the end phase of early Proterozoic metamorphism.

  13. Electrochemical deposition of mineralized BSA/collagen coating.

    Science.gov (United States)

    Zhuang, Junjun; Lin, Jun; Li, Juan; Wang, Huiming; Cheng, Kui; Weng, Wenjian

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170-0.173mg/cm(2), enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold).

  14. High Energy Radial Deposition of Diamond-Like Carbon Coatings

    Directory of Open Access Journals (Sweden)

    Konrad Suschke

    2015-07-01

    Full Text Available Diamond-like carbon (DLC coatings were deposited with a new direct ion deposition system using a novel 360 degree ion source operating at acceleration voltage between 4 and 8 kV. Cross-sectional TEM images show that the coatings have a three layered structure which originates from changes in the deposition parameters taking into account ion source condition, ion current density, deposition angles, ion sputtering and ion source movement. Varying structural growth conditions can be achieved by tailoring the deposition parameters. The coatings show good promise for industrial use due to their high hardness, low friction and excellent adhesion to the surface of the samples.

  15. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  16. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, O., E-mail: omar.jimenez.udg@gmail.com [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Audronis, M.; Leyland, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Flores, M.; Rodriguez, E. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Kanakis, K.; Matthews, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-09-30

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB{sub 2}/Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N{sub 2} reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  17. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper

    DEFF Research Database (Denmark)

    Kidambi, Piran R.; Blume, Raoul; Kling, Jens

    2014-01-01

    Using a combination of complementary in situ X-ray photoelectron spectroscopy and X-ray diffraction, we study the fundamental mechanisms underlying the chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) on polycrystalline Cu. The nucleation and growth of h-BN layers is found to occ...

  18. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.

  19. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  20. Synthesis and oxidation behavior of boron-substituted carbon powders by hot filament chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Boron-substituted carbon powder, BxC1-x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared BxC1-x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10―20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize ap-proximately at 620℃ and has a higher oxidation resistance than carbon.

  1. Protective silicon coating for nanodiamonds using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Wang, Y.H. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zang, J.B. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China) and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)]. E-mail: diamondzjb@163.com; Li, Y.N. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)

    2007-01-30

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH{sub 4}). The coating was performed by sequential reaction of SiH{sub 4} saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability.

  2. Coating of calcium phosphate on biometallic materials by electrophoretic deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    Although biometallic materials have been used as bone implant materials for a long time, they are still detected as foreign bodies by human immune system. Calcium phosphate coating, especially hydroxyapatite(HA)coating attracts special attention due to its good biocompatibility. Being one of the effective methods used to deposit HA coating onto the metallic implant, the electrophoretic deposition(EPD) was reviewed in detail, including the process of EPD, the advantages and disadvantages, the important processing factors and the microstructure and mechanical properties of the coating. Research results on the processing and the coating show potential application of EPD process to the biomedical materials surface modification. In addition, the nanoparticulate HA coating as a new trend in HA coating was also introduced.

  3. Bismuth coatings deposited by the pulsed dc sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M. F.; Olaya, J. J.; Alfonso, J. E., E-mail: jealfonsoo@unal.edu.co [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Ciencia de Materiales y Superficies, Carrera 45 No. 26-85, Edif. Uriel Gutierrez, Bogota D. C. (Colombia)

    2013-08-01

    In this work we present the results obtained from the deposition of nano-structured bismuth coatings through Dc pulsed unbalanced magnetron sputtering. The coatings were grown on two substrates: silicon and AISI steel 316 L. The microstructure of the Bi coatings grown on silicon and the corrosion resistance of the Bi coatings grown on AISI steel were evaluated. The microstructure was evaluated by X-ray diffraction and the corrosion resistance was characterized by means of polarization potentiodynamic and electrochemical impedance spectroscopy. Finally the morphology of the coatings was evaluated through scanning electronic microscopy. The X-ray diffraction analysis indicates that the coatings are polycrystalline; the corrosion resistance tests indicate that the films with better corrosion resistance were deposited at 40 khz. Scanning electron microscopy micrographs show that the coatings are grown as granular form. (Author)

  4. Silicon Carbide/Boron Nitride Dual In-Line Coating of Silicon Carbide Fiber Tows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will demonstrate monolayer and dual layer coating of SiC fiber by leveraging Laser Chemical Vapor Deposition techniques developed by Free...

  5. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Science.gov (United States)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu

    2016-09-01

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiCf/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  6. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu, E-mail: lfchen@xmu.edu.cn

    2016-09-30

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiC{sub f}/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  7. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    Science.gov (United States)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  8. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    Science.gov (United States)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  9. Antireflection coatings on plastics deposited by plasma polymerization process

    Indian Academy of Sciences (India)

    K M K Srivatsa; M Bera; A Basu; T K Bhattacharya

    2008-08-01

    Antireflection coatings (ARCs) are deposited on the surfaces of optical elements like spectacle lenses to increase light transmission and improve their performance. In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses due to several advantageous features. However, the deposition of ARCs on plastic lenses is a challenging task, because the plastic surface needs treatment for adhesion improvement and surface hardening before depositing the ARC. This surface treatment is usually done in a multi-stage process—exposure to energetic radiations, followed by deposition of a carbonyl hard coating by spin or dip coating processes, UV curing, etc. However, this treatment can also be done by plasma processes. Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. The energetic ions in plasma processes provide similar effects as in ion assisted physical deposition processes to produce hard coatings, without requiring sophisticated ion sources. The plasma polymerization process is more economical than ion-assisted physical vapour deposition processes as regards equipment and source materials and is more cost-effective, enabling the surface treatment and deposition of the ARC in the same deposition system in a single run by varying the system parameters at each step. Since published results of the plasma polymerization processes developed abroad are rather sketchy and the techniques are mostly veiled in commercial secrecy, innovative and indigenous plasma-based techniques have been developed in this work for depositing the complete ARCs on plastic substrates.

  10. Functionalized hexagonal boron nitride nano-coatings for protection of transparent plastics

    Science.gov (United States)

    Van Tran, Thu; Usta, Aybala; Asmatulu, Ramazan

    2016-04-01

    Nanocoating is the result of a coating application of nanomaterials to build a consistent network of molecules in a paint to protect the surfaces of various materials and devices. Hexagonal Boron Nitride (h-BN) is in two dimensional form with excellent thermal, mechanical and chemical properties. These BN nanocoatings are also a thermally insulating material for heat management. After adding functionalized h-BNs into paints or other coatings, they will absorb the harmful UV part of sunlight and prevent coating against the environmental degradations. The impacts of the environmental factors on the coatings can be substantially eliminated. In the present study, h-BNs were modified with [2-(2-Aminoethylamino) propyl] trimethoxysilane and uniformly dispersed into the polyurethane coatings with different amounts, such as 0.1, 0.2, 0.4, and 0.8wt% to increase hardness and water resistance, and decrease the UV degradation level of coatings and transparent plastics. The prepared samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis Spectroscopy, Scanning Electron Microscope (SEM), Water Contact Angle, and Differential Scanning Calorimeter (DSC). The test results showed that the nanocoatings with functionalized h-BN provided excellent physical and chemical behaviors against the UV and other physical degradations on the substrates.

  11. Methyldichloroborane evidenced as an intermediate in the chemical vapour deposition synthesis of boron carbide.

    Science.gov (United States)

    Reinisch, G; Patel, S; Chollon, G; Leyssale, J-M; Alotta, D; Bertrand, N; Vignoles, G L

    2011-09-01

    The most recent ceramic-matrix composites (CMC) considered for long-life applications as thermostructural parts in aerospace propulsion contain, among others, boron-rich phases like boron carbide. This compound is prepared by thermal Chemical Vapour Infiltration (CVI), starting from precursors like boron halides and hydrocarbons. We present a study aiming at a precise knowledge of the gas-phase composition in a hot-zone LPCVD reactor fed with BCl3, CH4 and H2, which combines experimental and theoretical approaches. This work has brought strong evidences of the presence of Methydichloroborane (MDB, BCl2CH3) in the process. It is demonstrated that this intermediate, the presence of which had never been formally proved before, appears for processing temperatures slightly lower than the deposition temperature of boron carbide. The study features quantum chemical computations, which provide several pieces of information like thermochemical and kinetic data, as well as vibration and rotation frequencies, reaction kinetics computations, and experimental gas-phase characterization of several species by FTIR, for several processing parameter sets. The main results are presented, and the place of MDB in the reaction scheme is discussed.

  12. Adherent apatite coating on titanium substrate using chemical deposition.

    Science.gov (United States)

    Rohanizadeh, R; LeGeros, R Z; Harsono, M; Bendavid, A

    2005-03-15

    Plasma-sprayed "HA" coatings on commercial orthopedic and dental implants consist of mixtures of calcium phosphate phases, predominantly a crystalline calcium phosphate phase, hydroxyapatite (HA) and an amorphous calcium phosphate (ACP) with varying HA/ACP ratios. Alternatives to the plasma-spray method are being explored because of some of its disadvantages. The purpose of this study was to deposit an adherent apatite coating on titanium substrate using a two-step method. First, titanium substrates were immersed in acidic solution of calcium phosphate resulting in the deposition of a monetite (CaHPO4) coating. Second, the monetite crystals were transformed to apatite by hydrolysis in NaOH solution. Composition and morphology of the initial and final coatings were identified using X-ray diffraction (XRD), Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (EDS). The final coating was porous and the apatite crystals were agglomerated and followed the outline of the large monetite crystals. EDS revealed the presence of calcium and phosphorous elements on the titanium substrate after removing the coating using tensile or scratching tests. The average tensile bond of the coating was 5.2 MPa and cohesion failures were observed more frequently than adhesion failures. The coating adhesion measured using scratch test with a 200-microm-radius stylus was 13.1N. Images from the scratch tracks demonstrated that the coating materials were squashed without fracturing inside and/or at the border of the tracks until the failure point of the coating. In conclusion, this study showed the potential of a chemical deposition method for depositing a coating consisting of either monetite or apatite. This method has the advantage of producing a coating with homogenous composition on even implants of complex geometry or porosity. This method involves low temperatures and, therefore, can allow the incorporation of growth factors or biogenic molecules.

  13. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  14. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Pradip, E-mail: pradipcha@gmail.com [Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai – 400076 (India); Singh, Arvind, E-mail: arvindsingh1884@gmail.com [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai – 400085 (India); Topkar, Anita, E-mail: anita.topkar@gmail.com [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai – 400085 (India); Dusane, Rajiv, E-mail: rodusane@iitb.ac.in [Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai – 400076 (India)

    2015-04-11

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and {sup 10}B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 µm and 0.5 µm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  15. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    Science.gov (United States)

    Chaudhari, Pradip; Singh, Arvind; Topkar, Anita; Dusane, Rajiv

    2015-04-01

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and 10B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 μm and 0.5 μm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  16. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    Science.gov (United States)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2016-11-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (<0.8 atoms per formula unit (apfu)) of all tourmaline samples suggest that they precipitated from reduced, low-salinity fluids. Based on the similar chemical and boron isotope composition and the Re-Os age of molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of

  17. A boron-coated ionization chamber for ultra-cold neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, D.J., E-mail: dsalvat@indiana.edu [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Morris, C.L.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Adamek, E.R. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Bacon, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Hickerson, K.P. [California Institute of Technology, Pasadena, CA 91125 (United States); Hoagland, J.; Holley, A.T. [North Carolina State University, Raleigh, NC 27695 (United States); Liu, C.-Y. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Makela, M.; Ramsey, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Reid, A. [North Carolina State University, Raleigh, NC 27695 (United States); Rios, R. [Idaho State University, Pocatello, ID 83209 (United States); Saunders, A.; Sjue, S.K.L. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); VornDick, B.; Young, A.R. [North Carolina State University, Raleigh, NC 27695 (United States)

    2012-11-01

    The design and performance of a boron-coated ionization chamber for the detection of ultra-cold neutrons (UCN) are presented. We detect UCN from the solid deuterium-based UCN source at the Los Alamos Neutron Science Center. Our results indicate comparable efficiency to {sup 3}He ionization chambers and proportional counters currently used at the UCN source. In addition, the ion chamber is used to detect thermal neutrons; a comparison of the thermal neutron and UCN pulse-height spectra indicates that UCN mostly capture near the layer surface.

  18. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    Science.gov (United States)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  19. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non-3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  20. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, W.T. [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China); Su, C.Y., E-mail: cysu@ntut.edu.tw [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan (China); Huang, T.S. [China Steel Corporation, Kaohsiung, Taiwan (China); Liao, W.H. [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China); Nano Technology Laboratory, Department of Materials Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2013-05-15

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C.

  1. Structure And Properties Of PVD Coatings Deposited On Cermets

    Directory of Open Access Journals (Sweden)

    Żukowska L.

    2015-06-01

    Full Text Available The main aim of the research is the investigation of the structure and properties of single-layer and gradient coatings of the type (Ti,AlN and Ti(C,N deposited by physical vapour deposition technology (PVD on the cermets substrate.

  2. Electro-spark deposited coatings for protection of materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The coating is fused (metallurgically bonded) to the substrate with such a low total heat input that the bulk substrate material remains at or near ambient temperature. Rapid solidification of the deposit typically results in an extremely fine-grained deposit that may be amorphous for some materials. Nearly any electrically conductive metal, alloy or cermet can be applied to metallic substrates. The ESD process allows multi-layer coatings to be built-up using different materials to create graded structures or surface compositions that would be difficult to achieve by other means. A series of iron-aluminide coatings based on Fe{sub 3}Al and FeAl in combination with refractory metal diffusion-barrier coatings and supplementary additions of other elements are in corrosion testing at ANL. The most recent FeAl coatings are showing a factor of three better corrosion performance than the best previous coatings. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, major new applications in gas turbine engines and steam turbine blade coatings, and in military, medical, metal-working, and recreational equipment applications.

  3. Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada

    Science.gov (United States)

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1999-01-01

    We report here the results of 54 boron isotope analyses of tourmaline associated with the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia, Canada. The ??11B values range from -11.1 to -2.9???, which is almost as great as the range found worldwide in tourmalines from 33 massive sulfide deposits and tourmalinites in dominantly clastic metasedimentary terranes. The major control on the overall ??11B values of the Sullivan tourmalinites is the boron source. Potential controls over the large range of the data also include: (1) differences in formation temperatures of the tourmalinites, (2) different stages of tourmaline formation, (3) variations in the proportions of dissolved boron incorporated into the tourmaline (Rayleigh fractionation), (4) seawater entrainment, and (5) post-depositional metamorphism. The boron isotope data at Sullivan are consistent with boron derivation from leaching of footwall clastic sediments. However, the great abundance of tourmaline in the Sullivan deposit suggests that the local clastic sediments were not the sole source of boron, and we argue that non-marine evaporites, buried deep below the orebody, are the most viable source of this additional boron. It is likely that some of the variation in tourmaline ??11B values reflect mixing of boron from these two sources. Comparison of the potential effects of these controls with geologic and other geochemical evidence suggests that major causes for the wide range of ??11B values measured at Sullivan are seawater entrainment and Rayleigh fractionation, although in places, post-depositional alteration and thermal metamorphism were important in determining ??11B values of some of the recrystallized tourmalinites.

  4. Electro-Spark Deposited Coatings for Replacement of Chrome Electroplating

    Science.gov (United States)

    2005-06-01

    Wear and Corrosion: the Electrospark Deposition Process", published in Proceedings, American Electroplaters and Surface Finishers Society, Jan. 2002. 6...Johnson, R.N., " ElectroSpark Deposition : Principals and Applications", Society of Vacuum Coaters 45th Annual Technical Conference Proceedings, Apr...AD AD-E403 050 Contractor Report ARAET-CR-05002 ELECTRO-SPARK DEPOSITED COATINGS FOR REPLACEMENT OF CHROME PLATING R. N. Johnson J. A. Bailey Pacific

  5. Deposition of copper coatings in a magnetron with liquid target

    Energy Technology Data Exchange (ETDEWEB)

    Tumarkin, A. V., E-mail: sanyahrustal@mail.ru; Kaziev, A. V.; Kolodko, D. V.; Pisarev, A. A.; Kharkov, M. M.; Khodachenko, G. V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Copper coatings were deposited on monocrystalline Si substrates using a magnetron discharge with a liquid cathode in the metal vapour plasma. During the deposition, the bias voltage in the range from 0 V to–400 V was applied to the substrate. The prepared films were investigated by a scanning electron microscope, and their adhesive properties were studied using a scratch tester. It was demonstrated that the adhesion of the deposited films strongly depends on the bias voltage and varies in a wide range.

  6. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    Science.gov (United States)

    Dowling, D. P.; Maher, S.; Law, V. J.; Ardhaoui, M.; Stallard, C.; Keenan, A.

    2016-09-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV-VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer.

  7. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition.

    Science.gov (United States)

    Wang, Haolin; Zhang, Xingwang; Meng, Junhua; Yin, Zhigang; Liu, Xin; Zhao, Yajuan; Zhang, Liuqi

    2015-04-01

    Ion beam sputtering deposition (IBSD) is used to synthesize high quality few-layer hexagonal boron nitride (h-BN) on copper foils. Compared to the conventional chemical vapor deposition, the IBSD technique avoids the use of unconventional precursors and is much easier to control, which should be very useful for the large-scale production of h-BN in the future.

  8. Characterization and photocatalytic activity of boron-doped TiO2 thin films prepared by liquid phase deposition technique

    Indian Academy of Sciences (India)

    Noor Shahina Begum; H M Farveez Ahmed; O M Hussain

    2008-10-01

    Boron doped TiO2 thin films have been successfully deposited on glass substrate and silicon wafer at 30°C from an aqueous solution of ammonium hexa-fluoro titanate and boron trifluoride by liquid phase deposition technique. The boric acid was used as an – scavenger. The resultant films were characterized by XRD, EDAX, UV and microstructures by SEM. The result shows the deposited film to be amorphous which becomes crystalline between 400 and 500°C. The EDAX and XRD data confirm the existence of boron atom in TiO2 matrix and a small peak corresponding to rutile phase was also found. Boron doped TiO2 thin films can be used as photocatalyst for the photodegradation of chlorobenzene which is a great environmental hazard. It was found that chlorobenzene undergoes degradation efficiently in presence of boron doped TiO2 thin films by exposing its aqueous solution to visible light. The photocatalytic activity increases with increase in the concentration of boron.

  9. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru; Chuchkova, Lyubov V., E-mail: twitty-kun@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation)

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  10. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Science.gov (United States)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  11. Study on the Microstructure and Electrical Properties of Boron and Sulfur Codoped Diamond Films Deposited Using Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2014-01-01

    Full Text Available The atomic-scale microstructure and electron emission properties of boron and sulfur (denoted as B-S codoped diamond films grown on high-temperature and high-pressure (HTHP diamond and Si substrates were investigated using atom force microscopy (AFM, scanning tunneling microscopy (STM, secondary ion mass spectroscopy (SIMS, and current imaging tunneling spectroscopy (CITS measurement techniques. The films grown on Si consisted of large grains with secondary nucleation, whereas those on HTHP diamond are composed of well-developed polycrystalline facets with an average size of 10–50 nm. SIMS analyses confirmed that sulfur was successfully introduced into diamond films, and a small amount of boron facilitated sulfur incorporation into diamond. Large tunneling currents were observed at some grain boundaries, and the emission character was better at the grain boundaries than that at the center of the crystal. The films grown on HTHP diamond substrates were much more perfect with higher quality than the films deposited on Si substrates. The local I-V characteristics for films deposited on Si or HTHP diamond substrates indicate n-type conduction.

  12. Plasma Processes : Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    D S Patil; K Ramachandran; N Venkatramani; M Pandey; R D'Cunha

    2000-11-01

    The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu–Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼ 95% sp3 bonded carbon in the films. The films are uniform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.

  13. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  14. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source....... This configuration enables a gentle treatment of sensitive materials like low-density polyethylene foils and biodegradable materials. SiOx coatings deposited in the novel setup were compared with other state of the art plasma coatings and were found to possess equally good or better barrier properties. The barrier...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  15. Investigation of thin titanium carbonitride coatings deposited onto stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Timothy; Lin, Jia-Ming [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Pirolli, Laurent; Coquilleau, Laurent; Luharuka, Rajesh [Schlumberger Technology Corporation, 150 Gillingham Lane, MD-3, Sugarland, TX 77478 (United States); Teplyakov, Andrew V., E-mail: andrewt@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

    2012-11-01

    Titanium carbonitride (TiCN) coatings are commonly used in a variety of applications, from microelectronics to high-performance cutting tools. The TiCN coatings grown by chemical vapor deposition are especially attractive because this technique provides a very high degree of control during the procedure. A gas-phase deposition utilizing an organometallic precursor molecule, tetrakis-dimethylamino-titanium was used to grow thin TiCN coatings onto 4140 series steel prepared and cleaned in vacuum. A highly controlled conformal filling was achieved by the deposition performed onto a sputter-cleaned steel surface held at 600 K. The film of the overall Ti:C:N composition of 1:1:1 was produced, as demonstrated by Auger electron spectroscopy. In air, these coatings are oxidized but maintain their uniformity, as demonstrated by time-of-flight secondary ion mass spectrometry. The chemical state of the elements in the coatings was investigated by the X-ray photoelectron spectroscopy and the morphology of the films produced was investigated by atomic force microscopy. Finally, the initial mechanical testing of the films was performed by comparing Young's modulus to that of the underlying steel. - Highlights: Black-Right-Pointing-Pointer TiCN film was deposited by chemical vapor deposition onto a steel substrate. Black-Right-Pointing-Pointer The film is comprised of Ti, C, and N and is partially oxidized. Black-Right-Pointing-Pointer The depth-profiling studies confirmed that the film is uniform in thickness. Black-Right-Pointing-Pointer Microscopy investigation showed a sharp interface between the coating and substrate. Black-Right-Pointing-Pointer The topography of coated and uncoated samples is very different.

  16. Multilayer Coating Formation at the Deposition from Plasma

    OpenAIRE

    Shanin, Sergei Aleksandrovich; Knyazeva, Anna Georgievna

    2016-01-01

    The numerical experiment was carried out for the process of the coating composition formation during deposition from plasma. The chemical reactions between elements are taken into account. The nonuniform composition of the coating is determined by various transfer processes, including diffusion under stress action. To find the stress field the equilibrium problem was solved numerically because all physical and mechanical properties depend on composition. Stress field has been also obtained no...

  17. Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong; LI Fei; HE Bo; WANG Jun; SUN Bao-de

    2007-01-01

    Nanostructured yttria partially stabilized zirconia coatings were deposited by air plasma spraying with reconstituted nanosized powder. The microstructures and phase compositions of the powder and the as-sprayed nanostructured coatings were characterized by transmission electron microscopy(TEM), scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results demonstrate that the microstructure of as-sprayed nanostructured zirconia coating exhibits a unique tri-modal distribution including the initial nanostructure of the powder, equiaxed grains and columnar grains. Air plasma sprayed nanostructured zirconia coatings consist of only the nontransformable tetragonal phase, though the reconstituted nanostructured powder shows the presence of the monoclinic, the tetragonal and the cubic phases. The mean grain size of the coating is about 42 nm.

  18. Collimated Magnetron Sputter Deposition for Mirror Coatings

    DEFF Research Database (Denmark)

    Vickery, A.; Cooper-Jensen, Carsten P.; Christensen, Finn Erland

    2008-01-01

    At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence that a collimat......At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence...... that a collimation of the sputtered particles is an efficient way to suppress the interfacial roughness of the produced multilayer. We present two different types of collimation optimized for the production of low roughness curved mirrors and flat mirrors, respectively....

  19. Deposition of Nano-Scaled Coatings Using Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    D H Jung; B Park; J J Lee

    2004-01-01

    Nano-scaled Ti-B-N coatings could be produced by inductively coupled plasma (ICP) assisted magnetron spurtering. The properties and microstructure of the coating can be changed drastically by applying ICP to conventional magnetron sputtering. In this work, an internal type rf ICP process is used. The core of this technology is the efficient production and control of self-depositing ions and reactive gas ions by an induced electric field. Ti-B-N coatings were prepared by using a TiB2 target and a gas mixture of N2 and Ar at 200 ℃ and a pressure of 60 mTorr. In addition to ICP, the effect of the substrate bias voltage on the structure and properties of the coating was investigated. By applying ICP and a bias voltage to the substrate the hardness of the Ti-B-N coating is increased by more than 75 GPa, as a result of enhanced ionization in the plasma. The Ti-B-N coating, which has the highest hardness, shows the best surface uniformity and a very dense structure with a grain size of 3 nm. This sample also shows a high crystallinity compared to the coating prepared using other deposition parameters.

  20. Sol-gel deposited electrochromic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, N.; Lampert, C.M.

    1995-06-01

    Electrochromic devices have increasing application in display devices, switchable mirrors and smart windows. A variety of vacuum deposition technologies have been used to make electrochromic devices. The sol- gel process offers an alternative approach to the synthesis of optical quality and low cost electrochromic device layers. This study summarizes the developments in sol-gel deposited electrochromic films. The sol-gel process involves the formation of oxide networks upon hydrolysis-condensation of alkoxide precursors. In this study we cover the sol-gel deposited oxides of WO[sub 3], V[sub 2]O[sub 5], TiO[sub 2], Nb[sub 2]O[sub 5], and NiO[sub x].

  1. Effect of nitrogen on deposition and field emission properties of boron-doped micro-and nano-crystalline diamond films

    Institute of Scientific and Technical Information of China (English)

    L.A. Li; S.H. Cheng; H.D. Li; Q. Yu; J.W. Liu; X.Y. Lv

    2010-01-01

    In this paper, we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition. The diamond films consisting of micro-grains (nano-grains) were realized with low (high) boron source flow rate during the growth processes. The transition of micro-grains to nano-grains is speculated to be strongly (weekly) related with the boron (nitrogen) flow rate. The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate. The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples, which are related to the combined phase composition, boron doping level and texture structure. There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.

  2. FTIR and electrical characterization of a-Si:H layers deposited by PECVD at different boron ratios

    Energy Technology Data Exchange (ETDEWEB)

    Orduna-Diaz, A., E-mail: abdu@susu.inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Trevino-Palacios, C.G. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico); Rojas-Lopez, M.; Delgado-Macuil, R.; Gayou, V.L. [Centro de Investigacion en Biotecnologia Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72197 (Mexico); Torres-Jacome, A. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840 (Mexico)

    2010-10-25

    Hydrogenated amorphous silicon (a-Si:H) has found applications in flat panel displays, photovoltaic solar cell and recently has been employed in boron doped microbolometer array. We have performed electrical and structural characterizations of a-Si:H layers prepared by plasma enhanced chemical vapor deposition (PECVD) method at 540 K on glass substrates at different diborane (B{sub 2}H{sub 6}) flow ratios (500, 250, 150 and 50 sccm). Fourier transform infrared spectroscopy (FTIR) measurements obtained by specular reflectance sampling mode, show Si-Si, B-O, Si-H, and Si-O vibrational modes (611, 1300, 2100 and 1100 cm{sup -1} respectively) with different strengths which are associated to hydrogen and boron content. The current-voltage curves show that at 250 sccm flow of boron the material shows the lowest resistivity, but for the 150 sccm boron flow it is obtained the highest temperature coefficient of resistance (TCR).

  3. AC electrophoretic deposition of organic-inorganic composite coatings.

    Science.gov (United States)

    Yoshioka, T; Chávez-Valdez, A; Roether, J A; Schubert, D W; Boccaccini, A R

    2013-02-15

    Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials.

  4. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  5. Plasma spray deposition of graded metal-ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. (Inst. of Tech. and Reliability of Structures, Czechoslovak Academy of Sciences, Plzen (Czechoslovakia)); Fiala, J. (Central Research Inst., Plzen (Czechoslovakia))

    1992-05-20

    Plasma spraying of graded coatings is described and the metal-ceramic interface of the graded intermediate zone is analysed in terms of a simple physical model. Special attention is devoted to the dominant deposition parameters, powder characteristics and the injector configuration for powder feeding, which play a fundamental role in graded coating deposition with controlled formation of a metal-ceramic intermediate zone. On the basis of a knowledge of these parameters, a new and original formula for the coefficient of homogeneity for simultaneous deposition of metal and ceramic particles at the same spot on the substrate is derived. Furthermore, very interesting topotactical relations are described for the metal-ceramic interface of the graded zone. Various techniques of structural analysis (X-ray diffraction, scanning electron microscopy, optical microscopy) and simple thermodynamic calculations allow a new interpretation to be given of the bonding between the metal and ceramic components. The cohesion of graded metal-ceramic coatings is predicted to be higher than that of ceramic coatings with a metallic bond layer. The results are illustrated by a NiCr-ZrO{sub 2}(MgO) graded coating. (orig.).

  6. Initiated chemical vapor deposition of antimicrobial polymer coatings.

    Science.gov (United States)

    Martin, T P; Kooi, S E; Chang, S H; Sedransk, K L; Gleason, K K

    2007-02-01

    The vapor phase deposition of polymeric antimicrobial coatings is reported. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers on fragile substrates. For this work, finished nylon fabric is coated by iCVD with no affect on the color or feel of the fabric. Infrared characterization confirms the polymer structure. Coatings of poly(dimethylaminomethyl styrene) of up to 540 microg/cm2 were deposited on the fabric. The antimicrobial properties were tested using standard method ASTM E2149-01. A coating of 40 microg/cm2 of fabric was found to be very effective against gram-negative Escherichia coli, with over a 99.99%, or 4 log, kill in just 2 min continuing to over a 99.9999%, or 6 log, reduction in viable bacteria in 60 min. A coating of 120 microg/cm2 was most effective against the gram-positive Bacillus subtilis. Further tests confirmed that the iCVD polymer did not leach off the fabric.

  7. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating - A molecular dynamic study

    Science.gov (United States)

    Badjian, H.; Setoodeh, A. R.

    2017-02-01

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  8. Hemocompatibility of DLC coatings synthesized by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ion beam-assisted diamond-like carbon (DLC) coatings have beenused for growing the human platelet, fibrinogen, and albumin in the control environment in order to assess their hemocompatibility. The hard carbon films were prepared on polymethylmethacrylate (PMMA) at room temperature using ion beam assisted deposition (IBAD). Raman spectroscopic analysis proved that the carbon films on PMMA are diamond-like with a higher fraction of sp\\+3 bonds in the structure of mixed sp\\+2+sp\\+3 bonding. The blood protein adsorption tests showed that DLC coatings can adsorb more albumin and are slightly more fibrinogen than the PMMA chosen as a control sample. The platelets adhered on DLC coatings were reduced significantly in number. These results indicate good hemocompatibility of DLC coatings.

  9. Chemical and boron isotopic compositions of tourmaline from the Paleoproterozoic Houxianyu borate deposit, NE China: Implications for the origin of borate deposit

    Science.gov (United States)

    Yan, Xue-long; Chen, Bin

    2014-11-01

    The Houxianyu borate deposit in northeastern China is one of the largest boron sources of China, hosted mainly in the Paleoproterozoic meta-volcanic and sedimentary rocks (known as the Liaohe Group) that are characterized by high boron concentrations. The borate ore-body has intimate spatial relationship with the Mg-rich carbonates/silicates of the Group, with fine-grained gneisses (meta-felsic volcanic rocks) as main country rocks. The presence of abundant tourmalinites and tourmaline-rich quartz veins in the borate orebody provides an opportunity to study the origin of boron, the nature of ore-forming fluids, and possible mineralization mechanism. We report the chemical and boron isotopic compositions of tourmalines from the tourmaline-rich rocks in the borate deposit and from the tourmaline-bearing fine-grained gneisses. Tourmalines from the fine-grained gneisses are chemically homogeneous, showing relatively high Fe and Na and low Mg, with δ11B values in a narrow range from +1.22‰ to +2.63‰. Tourmalines from the tourmaline-rich rocks, however, commonly show compositional zoning, with an irregular detrital core and a euhedral overgrowth, and have significantly higher Mg, REE (and more pronounced positive Eu anomalies), V (229-1852 ppm) and Sr (208-1191 ppm) than those from the fine-grained gneisses. They show varied B isotope values ranging from +4.51‰ to +12.43‰, which plot intermediate between those of the terrigenous sediments and arc rocks with low boron isotope values (as represented by the δ11B = +1.22‰ to +2.63‰ of the fine-grained gneisses of this study) and those of marine carbonates and evaporates with high boron isotope values. In addition, the rim of the zoned tourmaline shows notably higher Mg, Ti, V, Sn, and Pb, and REE (particularly LREEs), but lower Fe, Co, Cr, Ni, Zn, Mn, and lower δ11B values than the core. These data suggest that (1) the sources of boron of the borate ore-body are mainly the Paleoproterozoic meta-volcanic and

  10. Deposition of tantalum carbide coatings on graphite by laser interactions

    Science.gov (United States)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  11. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L Substrates

    Directory of Open Access Journals (Sweden)

    Namir S. Raddaha

    2014-03-01

    Full Text Available This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN and chitosan/h-BN/titania (TiO2 composites on SS316L substrates using electrophoretic deposition (EPD for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  12. Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings.

    Science.gov (United States)

    Parra, Carolina; Montero-Silva, Francisco; Henríquez, Ricardo; Flores, Marcos; Garín, Carolina; Ramírez, Cristian; Moreno, Macarena; Correa, Jonathan; Seeger, Michael; Häberle, Patricio

    2015-04-01

    Understanding biological interaction with graphene and hexagonal-boron nitride (h-BN) membranes has become essential for the incorporation of these unique materials in contact with living organisms. Previous reports show contradictions regarding the bacterial interaction with graphene sheets on metals. Here, we present a comprehensive study of the interaction of bacteria with copper substrates coated with single-layer graphene and h-BN. Our results demonstrate that such graphitic coatings substantially suppress interaction between bacteria and underlying Cu substrates, acting as an effective barrier to prevent physical contact. Bacteria do not "feel" the strong antibacterial effect of Cu, and the substrate does not suffer biocorrosion due to bacteria contact. Effectiveness of these systems as barriers can be understood in terms of graphene and h-BN impermeability to transfer Cu(2+) ions, even when graphene and h-BN domain boundary defects are present. Our results seem to indicate that as-grown graphene and h-BN films could successfully protect metals, preventing their corrosion in biological and medical applications.

  13. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  14. Roll-to-roll vacuum deposition of barrier coatings

    CERN Document Server

    Bishop, Charles A

    2015-01-01

    It is intended that the book will be a practical guide to provide any reader with the basic information to help them understand what is necessary in order to produce a good barrier coated web or to improve the quality of any existing barrier product. After providing an introduction, where the terminology is outlined and some of the science is given (keeping the mathematics to a minimum), including barrier testing methods, the vacuum deposition process will be described. In theory a thin layer of metal or glass-like material should be enough to convert any polymer film into a perfect barrier material. The reality is that all barrier coatings have their performance limited by the defects in the coating. This book looks at the whole process from the source materials through to the post deposition handling of the coated material. This holistic view of the vacuum coating process provides a description of the common sources of defects and includes the possible methods of limiting the defects. This enables readers...

  15. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    Science.gov (United States)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  16. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Science.gov (United States)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  17. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    Energy Technology Data Exchange (ETDEWEB)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken [Nanotechnology Centre for PVD Research, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Santana, Antonio [Ionbond AG Olten, Industriestrasse 211, CH-4600 Olten (Switzerland)

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  18. Lithium Nitride Synthesized by in situ Lithium Deposition and Ion Implantation for Boron Neutron Capture Therapy

    Science.gov (United States)

    Ishitama, Shintaro; Baba, Yuji; Fujii, Ryo; Nakamura, Masaru; Imahori, Yoshio

    Li3N synthesis on Li deposition layer was conducted without H2O and O2 by in situ lithium deposition in high vacuum chamber of 10-6 Pa and ion implantation techniques and the thermo-chemical stability of the Li3N/Li/Cu tri-layered target for Boron Neutron Capture Therapy (BNCT) under laser heating and air exposure was characterized by X-ray photoelectron spectroscopy (XPS). Following conclusions were derived; (1) Li3N/Li/Cu tri-layered target with very low oxide and carbon contamination was synthesized by in situ lithium vacuum deposition and N2+ ion implantation without H2O and O2 additions, (2) The starting temperature of evaporation of Li3N/Li/Cu tri-layered target increased by 120K compared to that of the Li/Cu target and (3) Remarkable oxidation and carbon contamination were observed on the surface of Li3N/Li/Cu after air exposure and these contaminated compositions was not removed by Ar+ heavy sputtering.

  19. SaOS-2 cell response to macro-porous boron-incorporated TiO2 coating prepared by micro-arc oxidation on titanium.

    Science.gov (United States)

    Huang, Qianli; Elkhooly, Tarek A; Liu, Xujie; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO2 coating (B-TiO2 coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO2 coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO2 coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO2 coating. The spreading of SaOS-2 cells on B-TiO2 coating was faster than that on TiO2 coating. The proliferation rate of SaOS-2 cells cultured on B-TiO2 decreased after 5days of culture compared to that on TiO2 coating. SaOS-2 cells cultured on B-TiO2 coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO2 coating. The present findings suggest that B-TiO2 coating is a promising candidate surface for orthopedic implants.

  20. Synthesis of mullite coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.P.; Auger, M.; Sarin, V.K. [Boston Univ., MA (United States)

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  1. Atmospheric Plasma Deposition of Diamond-like Carbon Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ladwig, Angela

    2008-01-23

    There is great demand for thin functional coatings in the semiconductor, optics, electronics, medical, automotive and aerospace industries [1-13]. As fabricated components become smaller and more complex, the properties of the materials’ surface take on greater importance. Thin coatings play a key role in tailoring surfaces to give them the desired hardness, wear resistance, chemical inertness, and electrical characteristics. Diamond-like carbon (DLC) coatings possess an array of desirable properties, including outstanding abrasion and wear resistance, chemical inertness, hardness, a low coefficient of friction and exceptionally high dielectric strength [14-22]. Diamond-like carbon is considered to be an amorphous material, containing a mixture of sp2 and sp3 bonded carbon. Based on the percentage of sp3 carbon and the hydrogen content, four different types of DLC coatings have been identified: tetrahedral carbon (ta-C), hydrogenated amorphous carbon (a-C:H) hard, a-C:H soft, and hydrogenated tetrahedral carbon (ta-C:H) [20,24,25]. Possessing the highest hardness of 80 GPa, ta-C possesses an sp3 carbon content of 80 to 88u%, and no appreciable hydrogen content whereas a-C:H soft possesses a hardness of less than 10 GPa, contains an sp3 carbon content of 60% and a hydrogen content between 30 to 50%. Methods used to deposit DLC coatings include ion beam deposition, cathodic arc spray, pulsed laser ablation, argon ion sputtering, and plasma-enhanced chemical vapor deposition [73-83]. Researchers contend that several advantages exist when depositing DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of

  2. Chemical vapor deposition coating of fibers using microwave application

    Science.gov (United States)

    Barmatz, Martin B. (Inventor); Hoover, Gordon (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    Chemical vapor deposition coating is carried out in a cylindrical cavity. The fibers are heated by a microwave source that is uses a TM0N0 mode, where O is an integer, and produces a field that depends substantially only on radius. The fibers are observed to determine their heating, and their position can be adjusted. Once the fibers are uniformly heated, a CVD reagent is added to process the fibers.

  3. Plasma deposition of antimicrobial coating on organic polymer

    Science.gov (United States)

    Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech

    2013-02-01

    Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  4. Surface parameters modification by multilayer coatings deposition for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zykova, A [Institute of Surface Engineering, 4 Zalutinskaya Str., Kharkov (Ukraine); Safonov, V [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaja Str., 61108 Kharkov (Ukraine); Virva, O; Luk' yanchenko, V [Institute of Spine and Joint Pathologies, 80 Pushkinskaya Str., 61024 Kharkov (Ukraine); Walkowich, J; Rogowska, R [Institute for Sustainable Technologies, National Research Institute, 6/10 K. Pulaskiego Str., Radom (Poland); Yakovin, S [Department of Physical Technologies, Kharkov National University, 31 Kurchatov Ave., Kharkov (Ukraine)], E-mail: zykov@bi.com.ua

    2008-05-01

    Studies are presented of the surface parameters of various multilayer coatings, namely, TiN, CrN, (Ti, Cr)N, TiN/TiC{sub 10}N{sub 90}, TiN/TiC{sub 20}N{sub 80} deposited by means of Arc-PVD on stainless steel (1H18N9), as well as of the same coatings with an additional Al{sub 2}O{sub 3} film deposited by reactive magnetron sputtering (RMS). The surface thickness, roughness and topography are estimated. Other parameters, such as the surface free energy (SFE) and fractional polarity are determined by means of the Wu and the Owens-Wendt-Rabel-Kaelble methods. Experiments are carried out on the in vitro cell/material interaction (in a fibroblasts culture) in order to determine the materials biomedical response. The results show some correlation between the surface properties and cell adhesion. The best biological response parameters (cell number, proliferation function, morphology) are obtained in the case of coatings with the highest values of the polar part component of the SFE and the fractional polarity, such as TiN, TiN/TiC{sub 10}N{sub 90} and oxide coatings.

  5. Effect of Boron on Microstructure and Microhardness Properties of Mo-Si-B Based Coatings Produced Via TIG Process

    Directory of Open Access Journals (Sweden)

    Islak S.

    2016-09-01

    Full Text Available In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo–Si–B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the microstructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.

  6. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    Science.gov (United States)

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  7. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    Science.gov (United States)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  8. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  9. Property improvement of pulsed laser deposited boron carbide films by pulse shortening

    Energy Technology Data Exchange (ETDEWEB)

    Csako, T. [Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary); Budai, J. [Department of Optics and Quantum Electronics, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary); Szoerenyi, T. [Research Group on Laser Physics of the Hungarian Academy of Sciences, University of Szeged, P.O. Box 406, H-6701 Szeged (Hungary)]. E-mail: t.szorenyi@physx.u-szeged.hu

    2006-04-30

    Growth characteristics and surface morphology of boron carbide films fabricated by ablating a B{sub 4}C target in high vacuum with a traditional KrF excimer laser and a high brightness hybrid dye/excimer laser system emitting at the same wavelength while delivering 700 fs pulses are compared. The ultrashort pulse processing is highly effective. Energy densities between 0.25 and 2 J cm{sup -2} result in apparent growth rates ranging from 0.017 to 0.085 nm/pulse. Ablation with nanosecond pulses of one order of magnitude higher energy densities yields smaller growth rates, the figures increase from 0.002 to 0.016 nm/pulse within the 2-14.3 J cm{sup -2} fluence window. 2D thickness maps derived from variable angle spectroscopic ellipsometry reveal that, when ablating with sub-ps pulses, the spot size rather than the energy density determines both the deposition rate and the angular distribution of film material. Pulse shortening leads to significant improvement in surface morphology, as well. While droplets with number densities ranging from 1 x 10{sup 4} to 7 x 10{sup 4} mm{sup -2} deteriorate the surface of the films deposited by the KrF excimer laser, sub-ps pulses produce practically droplet-free films. The absence of droplets has also a beneficial effect on the stoichiometry and homogeneity of the films fabricated by ultrashort pulses.

  10. Optical properties of hexagonal boron nitride thin films deposited by radio frequency bias magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    Deng Jin-Xiang; Zhang Xiao-Kang; Yao Qian; Wang Xu-Yang; Chen Guang-Hua; He De-Yan

    2009-01-01

    The optical properties of hexagonal boron nitride (h-BN) thin films were studied in this paper. The films were characterized by Fourier transform infrared spectroscopy,UV-visible transmittance and reflection spectra,h-BN thin films with a wide optical band gap Eg (5.86 eV for the as-deposited film and 5.97 eV for the annealed film) approaching h-BN single crystal were successfully prepared by radio frequency (RF) bias magnetron sputtering and post-deposition annealing at 970 K. The optical absorption behaviour of h-BN films accords with the typical optical absorption characteristics of amorphous materials when fitting is made by the Urbach tail model. The annealed film shows satisfactory structure stability. However,high temperature still has a significant effect on the optical absorption properties,refractive index n,and optical conductivity σ of h-BN thin films. The blue-shift of the optical absorption edge and the increase of Eg probably result from stress relaxation in the film under high temperatures. In addition,it is found that the refractive index clearly exhibits different trends in the visible and ultraviolet regions. Previous calculational results of optical conductivity of h-BN films are confirmed in our experimental results.

  11. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice

    Science.gov (United States)

    Liu, Bo; Qi, Wei; Tian, Longlong; Li, Zhan; Miao, Guoying; An, Wenzhen; Liu, Dan; Lin, Jing; Zhang, Xiaoyong; Wu, Wangsuo

    2015-12-01

    The boron nitride (BN) nanoparticles, as the structural analogues of graphene, are the potential biomedicine materials because of the excellent biocompatibility, but their solubility and biosafety are the biggest obstacle for the clinic application. Here, we first synthesized the highly soluble BN nanoparticles coated by PEG (BN-PEG) with smaller size (~10 nm), then studied their biodistribution in vivo through radioisotope (Tc99mO4 -) labeling, and the results showed that BN-PEG nanoparticles mainly accumulated in the liver, lung, and spleen with the less uptake by the brain. Moreover, the pathological changes induced by BN-PEG could be significantly observed in the sections of the liver, lung, spleen, and heart, which can be also supported by the test of biochemical indexes in serum. More importantly, we first observed the biodistribution of BN-PEG in the heart tissues with high toxicity, which would give a warning about the cardiovascular disease, and provide some opportunities for the drug delivery and treatment.

  12. Experimental Study of Boron-coated Straws with a Neutron Source

    CERN Document Server

    Xie, Zhaoyang; Sun, Liang; Song, Yushou; Sun, Zhijia; Hu, Bitao; Chen, Yuanbo

    2016-01-01

    Different types of high quality neutron detectors are proposed for China Spallation Neutron Source (CSNS), phase one of which is going to be commissioned in 2018. Considering the issue of 3He supply, a detector module composed of 49 boron-coated straws (BCS) was developed by Proportional technologies Inc. (PTI). Each straw has a length of 1000 mm and diameter of 7.5 mm. Seven straws are packed compactly in a tube, and the tubes are organized in one row to form a detector module. The charge division method is used for longitudinal positioning. A specific readout system was utilized to output the signal and synchronously to encode each straw. The performances of this detector module were studied using a moderated 252Cf source at Institute of High Energy Physics (IHEP). The spectrum result indicates good n-gamma discrimination. Benefitting from the tricky readout a longitudinal resolution of 6.1/pm 0.5 mm was obtained. The three dimensional positioning ability qualifies this BCS detector module to be a promising...

  13. Corrosion behavior of NiCrBSi coatings deposited by HVOF spraying

    Institute of Scientific and Technical Information of China (English)

    赵卫民; 王勇; 吴开源; 薛锦

    2003-01-01

    The corrosion resistance of NiCrBSi coating deposited on steel substrate by HVOF was examined using electrochemical tests and immersion tests so as to offer an experimental basis to expand a promising applied field of HVOF in aqueous medium, comparing with those of coatings deposited by oxyacetylene flame spraying and flame cladding. The results show that the general corrosion rate of HVOF sprayed coatings is quite bigger than that of clad coatings, but it is less sensitive to local corrosion. There is less and smaller porosity in the coatings deposited by HVOF than that in flame sprayed coatings. The effects of porosity on the corrosion current density was indistinctive, but the existence of large amount of defects in the coatings damaged the cohesion of the coatings, causing the metallic particles drop off from the coatings under the influence of corrosive medium. Improving the quality and reducing the porosity of coatings is the key to get the coatings with high corrosion resistance.

  14. Deposition of wear-resistant steel surfaces by the plasma rotating electrode coating process

    Science.gov (United States)

    Kim, Michael Robert

    A high-deposition rate thermal spray method was investigated for the purpose of coating aluminum cylinder bores with a wear resistant surface. This method, the plasma rotating electrode coating system (PROTEC) utilized transferred-arc melting of a rapidly rotating consumable electrode to create a droplet stream via centrifugal atomization. A cylindrical substrate was placed around the rotating rod, in the flight path of the droplets, to deposit a coating onto the internal surface of the cylinder. Selected coatings of 1045 steel deposited by the PROTEC coating method exhibited lower wear loss in lubricated sliding than wire-arc sprayed carbon steel coatings and gray cast iron. Splat cohesion was shown to be a significant factor in the wear resistance of PROTEC coatings. The relationship between deposition enthalpy and cooling rate of the coating was found to have the greatest effect on coating microstructure, and the coating cohesion. The most rapidly solidified coatings showed inferior splat cohesion in comparison to coatings that cooled more slowly. The increase in splat cohesion with decreased cooling rate was accompanied by the formation of a directionally oriented coating microstructure, likely formed during cellular solidification of the coating. A model describing the thermal state of the deposition process was used to predict the deposition conditions that would result in a cellular structure, and the level of splat cohesion required to produce a wear resistant coating.

  15. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Science.gov (United States)

    Mao, Shoudong; Yang, Hengxiu; Li, Jinlong; Huang, Feng; Song, Zhenlun

    2011-04-01

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar+ ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar+ ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  16. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent

    Science.gov (United States)

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-01

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  17. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    Science.gov (United States)

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  18. Raman microscopic studies of PVD deposited hard ceramic coatings

    CERN Document Server

    Constable, C P

    2000-01-01

    GPa were deposited onto SS and HSS substrates. Subsequent Raman measurements found a correlation coefficient of 0.996 between Raman band position and stress (determined via XRD methods). In addition, there was also a similar correlation coefficient observed between hardness and Raman shift (cm sup - sup 1). The application of mechanical stresses on a TiAICrN coating via a stress rig was investigated and tensile and compressive shifts were observed. stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved successful. This was then expanded to real wear situatio...

  19. Chemical vapor deposited silica coatings for solar mirror protection

    Science.gov (United States)

    Gulino, Daniel A.; Dever, Therese M.; Banholzer, William F.

    1988-01-01

    A variety of techniques is available to apply protective coatings to oxidation susceptible spacecraft components, and each has associated advantages and disadvantages. Film applications by means of chemical vapor deposition (CVD) has the advantage of being able to be applied conformally to objects of irregular shape. For this reason, a study was made of the oxygen plasma durability of thin film (less than 5000 A) silicon dioxide coatings applied by CVD. In these experiments, such coatings were applied to silver mirrors, which are strongly subject to oxidation, and which are proposed for use on the space station solar dynamic power system. Results indicate that such coatings can provide adequate protection without affecting the reflectance of the mirror. Scanning electron micrographs indicated that oxidation of the silver layer did occur at stress crack locations, but this did not affect the measured solar reflectances. Oxidation of the silver did not proceed beyond the immediate location of the crack. Such stress cracks did not occur in thinner silica films, and hence such films would be desirable for this application.

  20. Morphology, composition, and bioactivity of strontium-doped brushite coatings deposited on titanium implants via electrochemical deposition.

    Science.gov (United States)

    Liang, Yongqiang; Li, Haoyan; Xu, Jiang; Li, Xin; Qi, Mengchun; Hu, Min

    2014-06-04

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials.

  1. Morphology, Composition, and Bioactivity of Strontium-Doped Brushite Coatings Deposited on Titanium Implants via Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yongqiang Liang

    2014-06-01

    Full Text Available Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials.

  2. The study of Zn–Co alloy coatings electrochemically deposited by pulse current

    Directory of Open Access Journals (Sweden)

    Tomić Milorad V.

    2012-01-01

    Full Text Available The electrochemical deposition by pulse current of Zn-Co alloy coatings on steel was examined, with the aim to find out whether pulse plating could produce alloys that could offer a better corrosion protection. The influence of on-time and the average current density on the cathodic current efficiency, coating morphology, surface roughness and corrosion stability in 3% NaCl was examined. At the same Ton/Toff ratio the current efficiency was insignificantly smaller for deposition at higher average current density. It was shown that, depending on the on-time, pulse plating could produce more homogenous alloy coatings with finer morphology, as compared to deposits obtained by direct current. The surface roughness was the greatest for Zn-Co alloy coatings deposited with direct current, as compared with alloy coatings deposited with pulse current, for both examined average current densities. It was also shown that Zn-Co alloy coatings deposited by pulse current could increase the corrosion stability of Zn-Co alloy coatings on steel. Namely, alloy coatings deposited with pulse current showed higher corrosion stability, as compared with alloy coatings deposited with direct current, for almost all examined cathodic times, Ton. Alloy coatings deposited at higher average current density showed greater corrosion stability as compared with coatings deposited by pulse current at smaller average current density. It was shown that deposits obtained with pulse current and cathodic time of 10 ms had the poorest corrosion stability, for both investigated average deposition current density. Among all investigated alloy coatings the highest corrosion stability was obtained for Zn-Co alloy coatings deposited with pulsed current at higher average current density (jav = 4 A dm-2.

  3. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, M.J.; Gonzalez, T.; Daza, L. [Dpto. Energia, CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Mendoza, L.; Cassir, M. [Instituto de Catalisis y Petroleoquimica (CSIC), Campus Cantoblanco, 28049 Madrid (Spain)

    2006-10-06

    Cobalt oxide was deposited on porous nickel by an electrodeposition technique as precursor of a novel MCFC cathode. The behavior of this cathode in molten (Li{sub 0.52}Na{sub 0.48}){sub 2}CO{sub 3} eutectics at 650{sup o}C under an atmosphere of CO{sub 2}:air (30:70) was studied before and after 50h of exposure by different techniques. Before the exposure, the deposit of cobalt corresponded to a Co{sub 3}O{sub 4} thin layer of. This crystalline structure was identified by XRD and Raman spectroscopy. After its exposure in the eutectic melt a loss of cobalt was observed by XRD, Raman spectroscopy, XPS, EDS and ICP-AES. The change in the Co{sub 3}O{sub 4} structure into lithium-cobalt-nickel oxide (LiCo{sub 1-y}Ni{sub y}O{sub 2}) was observed by Raman spectroscopy. The SEM micrographs for Co{sub 3}O{sub 4}-coated porous nickel showed different angular shapes with respect to porous Ni. The nickel solubility for the coated porous nickel, measured by ICP-AES, decreased with respect to uncoated nickel. The Co{sub 3}O{sub 4}-coated porous nickel cathode showed, after its immersion in the molten carbonate melt, a similar porosity but a higher pore size. LiCo{sub 1-y}Ni{sub y}O{sub 2}-coated NiO offers interesting features which combine the properties of nickel, lithium and cobalt in molten carbonate. This could be a promising novel MCFC cathode material. (author)

  4. Morphology, Composition, and Bioactivity of Strontium-Doped Brushite Coatings Deposited on Titanium Implants via Electrochemical Deposition

    OpenAIRE

    2014-01-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and...

  5. Atomic layer deposition of boron-containing films using B{sub 2}F{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mane, Anil U., E-mail: amane@anl.gov; Elam, Jeffrey W. [Argonne National Laboratory, Argonne, Illinois 60126 (United States); Goldberg, Alexander; Halls, Mathew D. [Schrödinger, Inc., San Diego, California 92122 (United States); Seidel, Thomas E. [Seitek50, Palm Coast, Florida 32135 (United States); Current, Michael I. [Current Scientific, San Jose, California 95124 (United States); Despres, Joseph; Byl, Oleg; Tang, Ying; Sweeney, Joseph [Entegris, Danbury, Connecticut 06810 (United States)

    2016-01-15

    Ultrathin and conformal boron-containing atomic layer deposition (ALD) films could be used as a shallow dopant source for advanced transistor structures in microelectronics manufacturing. With this application in mind, diboron tetrafluoride (B{sub 2}F{sub 4}) was explored as an ALD precursor for the deposition of boron containing films. Density functional theory simulations for nucleation on silicon (100) surfaces indicated better reactivity of B{sub 2}F{sub 4} in comparison to BF{sub 3}. Quartz crystal microbalance experiments exhibited growth using either B{sub 2}F{sub 4}-H{sub 2}O for B{sub 2}O{sub 3} ALD, or B{sub 2}F{sub 4}-disilane (Si{sub 2}H{sub 6}) for B ALD, but in both cases, the initial growth per cycle was quite low (≤0.2 Å/cycle) and decreased to near zero growth after 8–30 ALD cycles. However, alternating between B{sub 2}F{sub 4}-H{sub 2}O and trimethyl aluminum (TMA)-H{sub 2}O ALD cycles resulted in sustained growth at ∼0.65 Å/cycle, suggesting that the dense –OH surface termination produced by the TMA-H{sub 2}O combination enhances the uptake of B{sub 2}F{sub 4} precursor. The resultant boron containing films were analyzed for composition by x-ray photoelectron spectroscopy, and capacitance measurements indicated an insulating characteristic. Finally, diffused boron profiles less than 100 Å were obtained after rapid thermal anneal of the boron containing ALD film.

  6. Properties of Boron-dopedμc-Ge:H Films Deposited by Hot-wire CVD

    Institute of Scientific and Technical Information of China (English)

    HUANG Haibin; SHEN Honglie; WU Tianru; LU Linfeng; TANG Zhengxia; SHEN Jiancang

    2015-01-01

    Boron-doped hydrogenated microcrystalline Germanium (μc-Ge:H)fi lms were deposited by hot-wire CVD. H2 diluted GeH4 and B2H6 were used as precursors and the substrate temperature was kept at 300ć. The properties of the samples were analyzed by XRD, Raman spectroscopy, Fourier transform infrared spectrometer and Hall Effect measurement with Van der Pauw method. It is found that thefi lms are partially crystallized, with crystalline fractions larger than 45% and grain sizes smaller than 50 nm. The B-doping can enhance the crystallization but reduce the grain sizes, and also enhance the preferential growth of Ge (220). The conductivity of thefi lms increases and tends to be saturated with increasingdiborane-to-germane ratio . All the Hall mobilities of the samples are larger than 3.8 cm2·V-1·s-1. A high conductivity of 41.3Ω-1ίcm-1 is gained at=6.7%.

  7. Cathodic electrophoretic deposition ofα-Fe2O3 coating

    Institute of Scientific and Technical Information of China (English)

    马莉; 常通; 李小斌; 李志友; 张斗; 周科朝

    2015-01-01

    Submicroα-Fe2O3 coatings were formed using electrophoretic deposition (EPD) technique in aqueous media. The zeta potentials of differentα-Fe2O3 suspensions with different additives were measured as a function of pH to identify the optimum suspension condition for deposition. Electrophoretic depositions ofα-Fe2O3 coatings under different applied electric fields and deposition time were studied and the effects of applied voltages and deposition time on deposition rates and thicknesses were investigated. The particle packing densities of the deposits at various applied voltages and deposition time were also analyzed by a scanning electron microscope (SEM). The results show that crack-freeα-Fe2O3 coatings with uniform microstructure and good adherence to the nickel substrates are successfully obtained. Electrophoretic depositedα-Fe2O3 coating from aqueous suspension is a feasible, low-cost and environmental friendly method.

  8. Interface behavior of tungsten coating on stainless steel by electro spark deposition

    Directory of Open Access Journals (Sweden)

    Wang Yuangang

    2015-01-01

    Full Text Available A new method of electro spark deposition method was put forward, which was based on the theory of electro spark deposition by changing the polarity in the liquid. Tungsten coating layers was produced on surface of Stainless Steel by electro spark deposition. The micro hardness, microstructure, chemical composition and phases of the coating layer were examined by means of hardness test, scanning electron microscopy (SEM and energy dispersive spectrometer (EDS analysis. The results showed that there was tungsten coating in the surface, which was discontinuous. Microhardness of the coating layer was about 3 times more than that of the substrate. The combination between coating layer and substrate was metallurgical bond.

  9. Synthesis of thin films in boron-carbon-nitrogen ternary system by microwave plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Kukreja, Ratandeep Singh

    The Boron Carbon Nitorgen (B-C-N) ternary system includes materials with exceptional properties such as wide band gap, excellent thermal conductivity, high bulk modulus, extreme hardness and transparency in the optical and UV range that find application in most fields ranging from micro-electronics, bio-sensors, and cutting tools to materials for space age technology. Interesting materials that belong to the B-C-N ternary system include Carbon nano-tubes, Boron Carbide, Boron Carbon Nitride (B-CN), hexagonal Boron Nitride ( h-BN), cubic Boron Nitride (c-BN), Diamond and beta Carbon Nitride (beta-C3N4). Synthesis of these materials requires precisely controlled and energetically favorable conditions. Chemical vapor deposition is widely used technique for deposition of thin films of ceramics, metals and metal-organic compounds. Microwave plasma enhanced chemical vapor deposition (MPECVD) is especially interesting because of its ability to deposit materials that are meta-stable under the deposition conditions, for e.g. diamond. In the present study, attempt has been made to synthesize beta-carbon nitride (beta-C3N4) and cubic-Boron Nitride (c-BN) thin films by MPECVD. Also included is the investigation of dependence of residual stress and thermal conductivity of the diamond thin films, deposited by MPECVD, on substrate pre-treatment and deposition temperature. Si incorporated CNx thin films are synthesized and characterized while attempting to deposit beta-C3N4 thin films on Si substrates using Methane (CH4), Nitrogen (N2), and Hydrogen (H2). It is shown that the composition and morphology of Si incorporated CNx thin film can be tailored by controlling the sequence of introduction of the precursor gases in the plasma chamber. Greater than 100mum size hexagonal crystals of N-Si-C are deposited when Nitrogen precursor is introduced first while agglomerates of nano-meter range graphitic needles of C-Si-N are deposited when Carbon precursor is introduced first in the

  10. Mechanisms of spallation of electron beam physical vapor deposited thermal barrier coatings with and without platinum aluminide bond coat ridges

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, K.; Gell, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Metallurgy; Jordan, E. [Dept. Mechanical Engineering, University of Connecticut, CT-06269, Storrs (United States)

    2000-11-01

    Grain boundary ridges, that form on the surface of platinum aluminide [(Ni,Pt)Al] bond coats prior to the deposition of the yttria stabilized zirconia ceramic layer by the electron beam physical vapor deposition (EB-PVD) process, were shown to be the sites for spallation damage initiation in (Ni,Pt)Al/EB-PVD thermal barrier coatings. When these ridges are removed prior to deposition of the ceramic layer, a 3 x life improvement is achieved. This study compares the spallation mechanisms in specimens with and without bond coat ridges, in order to explain the improvement in spallation life. (orig.)

  11. Study of preparation of BG/HA gradient coating on titanium alloy by electrophoretic deposition method

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ming; HAN Qing-rong; LI Shi-pu; XU Chuan-bo

    2001-01-01

    In this paper, a gradient bioactive coating made from modified bioglass (BG) and hydroxyapatite (HA) was prepared by electrophoretic deposition method(EPD)on the surface of titanium alloy. Strong bonding between the matrix and BG/HA gradient coating was got by sintering. Crystal composition of the coating was analyzed by XRD. The characteristics of surface and cross section of the coating were observed by SEM. Adhesive strength of the coating was tested by pull method. The optimizing technological parameters were determined.

  12. Comparison of the surface morphologies of boron carbide coatings prepared by bouncing agitation and rolling agitation%跳动及滚动激励制备的碳化硼涂层表面形貌的对比

    Institute of Scientific and Technical Information of China (English)

    王自磊; 廖志君; 陶勇; 于小河; 林涛; 伍登学; 卢铁城

    2011-01-01

    Boron carbide(B4C) coatings are deposited on the glass and steel mandrels using two agitation methods, rolling agitation and bouncing agitation, by electron beam evaporation.Various surface morphologies of the coatings are investigated through the scanning electron microscope.It is found that the surface deposited by rolling agitation has fewer cracks and better compactness, and the particles grow better than that deposited by bouncing agitation.From a comparison of two kinds of B4C coatings, one can find that rolling agitation has more advantages than bouncing agitation in fabricating boron carbide coatings.%利用电子束蒸发技术蒸发碳化硼,通过弹跳激励和滚动激励两种方案来随机滚动小球,从而分别在玻璃和钢球心轴上制备了碳化硼涂层.采用扫描电子显微镜对涂层表面形貌进行了分析.同采用弹跳激励制备的涂层相比,在用滚动激励制备的涂层表面不存在裂纹和微粒脱落现象,其微粒生长的更大,相互接合的更致密.经对比证明,在制备碳化硼涂层上,滚动激励装置优于跳动激励装置.

  13. Preparation and properties of boron carbide film using pulsed laser deposition%碳化硼薄膜的激光法制备及性能

    Institute of Scientific and Technical Information of China (English)

    王淑云; 陆益敏; 刘旭; 黄国俊; 郭延龙; 万强; 田方涛

    2013-01-01

    采用KrF准分子激光器,在Si,Ge光学衬底上制备了碳化硼薄膜,研究了不同激光能量、靶材与衬底距离、衬底负偏压等条件对薄膜性能的影响.利用傅里叶变换红外光谱仪(FT IR)和纳米压痕仪,并依据光学薄膜测试的通用标准,对样品的光学透过率、纳米硬度及膜层与衬底的结合性能进行了测试.结果表明:Si,Ge衬底单面镀碳化硼薄膜后最高透过率提高10%以上,纳米硬度提高到未镀膜的3倍以上,且膜层与衬底有较好的结合性能,表明制备的碳化硼薄膜可对光学材料起到较好的增透保护作用.%Boron carbide films were deposited on Si and Ge substrates using KrF eximer laser. Influences of laser energy, distance between the target and substrate, and bias voltage were studied. A Fourier transform infrared spectroscope and a nano-indenter were used to test the optical transmission and hardness of the samples. Furthermore, the adhesion performance of the film and substrate was tested according to the common criterion of optical films. The largest transmission of Si and Ge advanced 10% after only one surface of substrates was coated by boron carbide films. The nano-hardness of the coated substrates reached more than 3 times that of the uncoated substrates and the adhesion was also satisfactory. The results show that boron carbide films are useful as anti-reflective and protective films for optical substrates.

  14. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  15. Zirconium influence on microstructure of aluminide coatings deposited on nickel substrate by CVD method

    Indian Academy of Sciences (India)

    Jolanta Romanowska; Maryana Zagula-Yavorska; Jan Sieniawski

    2013-11-01

    Influence of Zr on the microstructure and phase characteristics of aluminide diffusion coatings deposited on the nickel substrate has been investigated in this study. The coatings with and without zirconium were deposited by CVD method. The cross-section chemical composition investigations revealed that during the coatings formation, there is an inward aluminum diffusion and outward nickel diffusion in both types of coatings (with and without zirconium), whereas zirconium is located far below the coating surface, at a depth of ∼17 m, between -NiAl phase and '-Ni3Al phase. XRD examinations showed that -NiAl, -NiAl and '-Ni3Al were the main components of the deposited coatings. -NiAl phase is on the surface of the coatings, whereas -NiAl and '-Ni3Al form deeper parts of the coatings. Zirconium is dissolved in NiAl on the border between -NiAl and '-Ni3Al.

  16. Diamond-like carbon and ceramic materials as protective coatings grown by pulsed laser deposition

    OpenAIRE

    Perera Mercado, Yibran Argenis

    2004-01-01

    A rather large number of nitride, carbide, and oxide thin films are used as hard and wear-resistant coatings, for optical, corrosive, and refractory applications that are of crucial importance. Additional requirements place even more stringent conditions on the deposition processes. The properties of coatings deposited by pulsed laser deposition are determined by the deposition parameters, the composition of the PLD plasma and its ionization states, the substrate conditions, etc.. In this way...

  17. Boron doped nanostructure ZnO films deposited by ultrasonic spray pyrolysis

    Science.gov (United States)

    Karakaya, Seniye; Ozbas, Omer

    2015-02-01

    ZnO is an II-VI compound semiconductor with a wide direct band gap of 3.3 eV at room temperature. Doped with group III elements (B, Al or Ga), it becomes an attractive candidate to replace tin oxide (SnO2) or indium tin oxide (ITO) as transparent conducting electrodes in solar cell devices and flat panel display due to competitive electrical and optical properties. In this work, ZnO and boron doped ZnO (ZnO:B) films have been deposited onto glass substrates at 350 ± 5 °C by a cost-efficient ultrasonic spray pyrolysis technique. The optical, structural, morphological and electrical properties of nanostructure undoped and ZnO:B films have been investigated. Electrical resistivity of films has been analyzed by four-probe technique. Optical properties and thicknesses of the films have been examined in the wavelength range 1200-1600 nm by using spectroscopic ellipsometry (SE) measurements. The optical constants (refractive index (n) and extinction coefficient (k)) and the thicknesses of the films have been fitted according to Cauchy model. The optical method has been used to determine the band gap value of the films. Transmission spectra have been taken by UV spectrophotometer. It is found that both ZnO and ZnO:B films have high average optical transmission (≥80%). X-ray diffraction (XRD) patterns indicate that the obtained ZnO has a hexagonal wurtzite type structure. The morphological properties of the films were studied by atomic force microscopy (AFM). The surface morphology of the nanostructure films is found to depend on the concentration of B. As a result, ZnO:B films are promising contender for their potential use as transparent window layer and electrodes in solar cells.

  18. Microstructures and Key Properties of Mechanically Deposited Zn-Al Coatings

    Institute of Scientific and Technical Information of China (English)

    WANG Shengmin; HE Mingyi; ZHAO Xiaojun; PENG Zenghua; LIU Li

    2009-01-01

    Zn-Al coatings can provide protection to exposed steel parts in most environments. For this reason, the investigation of Zn-Al coatings become very popular in recent years. In order to study the microstructures and properties of mechanically deposited Zn-Al coating, zinc powders and aluminum powders were used to deposit Zn-Al coating by mechanical plating. The microstructures, phase constitutes and compositions of the coating were observed and analyzed with optical microscopy (OM), scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray energy-dispersive spectroscopy(EDS). The results of observation show that the coating consists of almost spherically shaped zinc particles point contacting with each other; the coatings are composed of zinc particles, aluminum particles, interstice, and tin; extra fine zinc powders and some smaller interspersed inclusions are positioned in the interstices. Porosity and thickness of the coating were tested by ferroxyl test and magnetic method. The corrosion resistance of coatings was studied by neutral salt spraying test(NSS) , immersion test and electrochemical polarization. It is found that the thickness of the coating dose lacks uniformity, with an uneven thickness distribution and an average variation of approximately 2-5μm; the coating can afford cathodic protection to the steel substrate; the corrosion resistance of Zn-Al coatings is better than that of the mechanically plated zinc coatings with same thickness. These conclusions can be applied to improve anti-corrosion performance by mechanically deposit Zn-Al coatings.

  19. Inorganic-organic thin implant coatings deposited by lasers.

    Science.gov (United States)

    Sima, Felix; Davidson, Patricia M; Dentzer, Joseph; Gadiou, Roger; Pauthe, Emmanuel; Gallet, Olivier; Mihailescu, Ion N; Anselme, Karine

    2015-01-14

    The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 μg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials.

  20. Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Nitin Padture

    2011-12-31

    Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

  1. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  2. Preparation of rutile TiO(2) coating by thermal chemical vapor deposition for anticoking applications.

    Science.gov (United States)

    Tang, Shiyun; Wang, Jianli; Zhu, Quan; Chen, Yaoqiang; Li, Xiangyuan

    2014-10-08

    To inhibit the metal catalytic coking and improve the oxidation resistance of TiN coating, rutile TiO2 coating has been directly designed as an efficient anticoking coating for n-hexane pyrolysis. TiO2 coatings were prepared on the inner surface of SS304 tubes by a thermal CVD method under varied temperatures from 650 to 900 °C. The rutile TiO2 coating was obtained by annealing the as-deposited TiO2 coating, which is an alternative route for the deposition of rutile TiO2 coating. The morphology, elemental and phase composition of TiO2 coatings were characterized by SEM, EDX and XRD, respectively. The results show that deposition temperature of TiO2 coatings has a strong effect on the morphology and thickness of as-deposited TiO2 coatings. Fe, Cr and Ni at.% of the substrate gradually changes to 0 when the temperature is increased to 800 °C. The thickness of TiO2 coating is more than 6 μm and uniform by metalloscopy, and the films have a nonstoichiometric composition of Ti3O8 when the deposition temperature is above 800 °C. The anticoking tests show that the TiO2 coating at a deposition temperature of 800 °C is sufficiently thick to cover the cracks and gaps on the surface of blank substrate and cut off the catalytic coke growth effect of the metal substrate. The anticoking ratio of TiO2 coating corresponding to each 5 cm segments is above 65% and the average anticoking ratio of TiO2 coating is up to 76%. Thus, the TiO2 coating can provide a very good protective layer to prevent the substrate from severe coking efficiently.

  3. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.; Kampmann, R.; Höche, D.; Lorenz, U.; Müller, M.; Schreyer, A. [Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht (Germany); Becker, H.-W. [RUBION-Zentrale Einrichtung für Ionenstrahlen und Radionuklide, Ruhr-Universität Bochum, 44780 Bochum (Germany); Haese-Seiller, M.; Moulin, J.-F.; Pomm, M. [Helmholtz-Zentrum Geesthacht, Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Randau, C. [Georg-August Universität Göttingen, Geowissenschaftliches Zentrum, 37077 Göttingen, Germany and Außenstelle an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Hall-Wilton, R. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden)

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.

  4. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  5. Effect of Precipitation on the Microhardness Distribution of Diode Laser Epitaxially Deposited IN718 Alloy Coating

    Institute of Scientific and Technical Information of China (English)

    Yaocheng Zhang; Zhuguo Li; Pulin Nie; Yixiong Wu

    2013-01-01

    The microhardness distribution of the diode laser epitaxially deposited IN718 alloy coating was investigated.The Laves concentration in different regions of the coating was measured by binarization processing.The strengthening phase of the coating was characterized by transmission electron microscopy (TEM).The results showed that the microhardness increased along the depth of the coating.Part of Laves dissolved into austenitic matrix during the successive laser deposition.A little amount of strengthening phase was precipitated in the bottom region of the coating.It was attributed to the heat effect from the thermal cycle of successive deposition on the microstructure in the bottom region of the epitaxially deposited coating.

  6. Interface behavior study of WC92-Co8 coating produced by electrospark deposition

    Science.gov (United States)

    Ruijun, Wang; Yiyu, Qian; Jun, Liu

    2005-02-01

    WC92-Co8 coating produced by electrospark deposition effectively improves the surface performance of the substrate. The behavior of the interface between the WC92-Co8 coating and the substrate is studied in this paper. The high-melting-point WC92-Co8 was deposited onto the surface of Ti alloy, and the coating was usually more than 50 μm thick. The surface of the coating is mainly composed of TiC and W 2C besides a small amount of W, and its micro hardness reaches HV1129. The coating dramatically improves the performance of the substrate.

  7. A Study on Medium Temperature Chemical Vapor Deposition (MT-CVD) Technology and Super Coating Materials

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; LI Jian-ping; ZENG Xiang-cai; MA Wen-cun

    2004-01-01

    In this paper, the dense and columnar crystalline TiCN coating layers with very good bonding strength between a layer and another layer was deposited using Medium Temperature Chemical Vapor Deposition (MT-CVD) where CH3CN organic composite with C/N atomic clusters etc. was utilized at 700 ~ 900 ℃. Effect of coating processing parameters, such as coating temperature, pressure and different gas flow quantity on structures and properties of TiCN coating layers were investigated. The super coating mechanis mand structures were analyzed. The new coating processing parameters and properties of carbide inserts with super coating layers were gained by using the improved high temperature chemical vapor deposition (HTCVD) equipment and HT-CVD, in combination with MT-CVD technology.

  8. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  9. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitride.

  10. Influence of the Discharge Voltage during Pulse-Plasma Process on the Durability of Edges coated with Superhard Coatings

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk

    2004-01-01

    In the paper the experimental results concerning the functional quality of thin, superhard coatings produced on cutting edges is described. Boron nitride coatings were deposited on insert cutting edges made cemented carbides by the pulse-plasma method. The comparative investigations of mentioned coatings have been concerned of tool life of edges during steel machining. In these investigations for the purpose of additional increase of coated edge durability an interfacial layers were applied. Presented investigations particularly pointed out to essential influence of the values of discharge voltage on the coating structure and durability of edges coated with boron nitfide.

  11. PARTICLE COATING BY CHEMICAL VAPOR DEPOSITION IN A FLUIDI7ED BED REACTOR

    Institute of Scientific and Technical Information of China (English)

    Gregor; Czok; Joachim; Werther

    2005-01-01

    Aluminum coatings were created onto glass beads by chemical vapor deposition in a fluidized bed reactor at different temperatures. Nitrogen was enriched with Triisobutylaluminum (TIBA) vapor and the latter was thermally decomposed inside the fluidized bed to deposit the elemental aluminum. To ensure homogeneous coating on the bed material, the fluidizing conditions necessary to avoid agglomeration were investigated for a broad range of temperatures.The deposition reaction was modeled on the basis of a discrete particle simulation to gain insight into homogeneity and thickness of the coating throughout the bed material. In particular, the take-up of aluminum was traced for selected particles that exhibited a large mass of deposited aluminum.

  12. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  13. Highly conductive boron doped micro/nanocrystalline silicon thin films deposited by VHF-PECVD for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, Sucheta; Sudhakar, S., E-mail: sudhakars@nplindia.org; Gope, Jhuma; Lodhi, Kalpana; Sharma, Mansi; Kumar, Sushil

    2015-09-15

    Graphical abstract: AFM images of boron doped micro/nanocrystalline silicon films at different diborane gas flow. - Highlights: • High deposition rate of 10 Å/s was achieved for boron doped silicon films. • Wide range of optical band gap from 1.32 eV to 1.84 eV observed for the deposited films. - Abstract: Boron doped hydrogenated micro/nanocrystalline silicon (μc/nc-Si:H) thin films have been deposited by plasma enhanced chemical vapor deposition technique (PECVD) using silane (SiH{sub 4}) diluted in argon. Diborane (B{sub 2}H{sub 6}) was used as the dopant gas and deposition was carried out at substrate temperature of 200 °C. The diborane flow (F{sub B}) varied in the range 0.00–0.30. Here, we report the effects of B{sub 2}H{sub 6} doping on electronic, optical and structural properties of hydrogenated micro/nanocrystalline silicon films. The structural properties were analyzed by atomic force microscopy (AFM) and X-ray diffraction (XRD). The doped micro/nano crystalline silicon films presented a crystallographic orientation preferentially in the (1 1 1) and (2 2 0) plane. We resolve the deposition parameters that lead to the formation of p-type micro/nanocrystalline silicon thin films with very high value of conductivity and lower optical band gap. Correlations between structural and electrical properties were also studied. Based on temperature dependent conductivity measurements, it has been observed that the room temperature dark conductivity varies in the range 1.45 × 10{sup −4} Ω{sup −1} cm{sup −1} to 2.02 Ω{sup −1} cm{sup −1} for the B-doped films. Meanwhile, the corresponding value of activation energies decreased to 0.06 eV for the B-doped films, which indicates the doped μc/nc-Si films with high conductivity can be achieved and these films prove to be a very good candidate for application in amorphous and micro/nano crystalline silicon solar cells as a p-type window layer.

  14. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  15. Microwave assisted apatite coating deposition on Ti6Al4V implants.

    Science.gov (United States)

    Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B

    2013-10-01

    In this work we report a novel microwave assisted technology to deposit a uniform, ultra-thin apatite coating without any cracks on titanium implants in minutes. This method comprises of conventional biomimetic coating in synergism with microwave irradiation to result in alkaline earth phosphate nucleation. The microwave assisted coating process mainly follows the initial stages of biomimetic coating until the step of the Ca-P nuclei formation. After that, due to microwave irradiation more Ca-P nuclei are formed to cover the whole surface of the implant instead of the growth of deposited Ca-P nuclei to Ca-P globules and coatings. It is interesting to note the doping of Mg(2+) to Ca-P apatite coating can significantly change the properties and performances of as-deposited coatings. The hydrophilicity, physical properties, bioactivity, cell adhesion, and growth capability of as-deposited microwave assisted coatings were investigated. The study shows that this coating technology has great potential in biomedical applications. Additionally, since biomimetic coating can be applied to series of implant materials such as polymer, metals and glass, it is expected this microwave assisted coating technology can also be applied to these materials if they can remains stable at 100 °C, the boiling point of water.

  16. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings

    NARCIS (Netherlands)

    Wang, Jiawei; Boer, de Jan; Groot, de Klaas

    2008-01-01

    Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the prolife

  17. Structural and interfacial analysis of WC92-Co8 coating deposited on titanium alloy by electrospark deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.J.; Qian, Y.Y.; Liu, J

    2004-04-30

    Electrospark deposition (ESD) is a promising process to produce hard and wear-resisting coatings on metallic substrates. In this paper, microstructure and interfacial characteristics of the WC92-Co8 coated-titanium are presented. A metallurgical bonding between the coating and substrate is obtained. The Ti element was found to distribute in WC92-Co8 at the metal pool, as well as the interface by diffusion. Some new phases were produced in the coating layer due to the chemical reaction during the ESD process. Experimental observation and thermodynamic analysis were utilized to study the mechanism of ESD.

  18. Structural and interfacial analysis of WC92 Co8 coating deposited on titanium alloy by electrospark deposition

    Science.gov (United States)

    Wang, R. J.; Qian, Y. Y.; Liu, J.

    2004-04-01

    Electrospark deposition (ESD) is a promising process to produce hard and wear-resisting coatings on metallic substrates. In this paper, microstructure and interfacial characteristics of the WC92-Co8 coated-titanium are presented. A metallurgical bonding between the coating and substrate is obtained. The Ti element was found to distribute in WC92-Co8 at the metal pool, as well as the interface by diffusion. Some new phases were produced in the coating layer due to the chemical reaction during the ESD process. Experimental observation and thermodynamic analysis were utilized to study the mechanism of ESD.

  19. First gaseous boronization during pulsed discharge cleaning

    Science.gov (United States)

    Ko, J.; Den Hartog, D. J.; Goetz, J. A.; Weix, P. J.; Limbach, S. T.

    2013-01-01

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  20. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  1. HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-qin; TAO Jie; WANG Ling; HE Ping-ting; WANG Tao

    2008-01-01

    Hydroxyapatite (HA) coating has been prepared on titanium substrate through an electrochemical deposition approach.In order to improve the bonding strength between HA coating and Ti substrate,a well oriented and uniform titanium oxide nanotube array on the surface of titanium substrate was applied by means of anodic oxidation pre-treatment.Then the calcium hydrogen phosphate (CaHPO4-2H2O,DCPD) coating,as the precursor of hydroxyapatite coating,was electrodeposited on the anodized Ti.At the initial stage of electro-deposition,the DCPD crystals,in nanometer precipitates,are anchored in and between the tubes.With increasing the deposition time,the nanometer DCPD crystals are connected together to form a continuous coating on titanium oxide nanotube array.Finally,the DCPD coating is converted into hydroxyapatite one simply by being immersed in alkaline solution.

  2. Electrolytic deposition and corrosion resistance of Zn–Ni coatings obtained from sulphate-chloride bath

    Indian Academy of Sciences (India)

    Katarzyna Wykpis; Magdalena Popczyk; Antoni Budniok

    2011-07-01

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, and are compared with that of metallic cadmium coating. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition of deposited coatings were studied using a scanning electron microscope (JEOL JSM-6480) with EDS attachment. Studies of electrochemical corrosion resistance were carried out in the 5% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the ground of these research, the possibility of deposition of Zn–Ni coatings contained 24–26% at. Ni was exhibited. It was stated, that surface morphology, chemical and phase composition of these coatings are practically independent on current density of deposition. On the basis of electrochemical investigations it was found that corrosion resistance of these Zn–Ni coatings is also independent of current density. These coatings are more corrosion resistant in 5% NaCl solution than metallic cadmium. It was suggested that the Zn–Ni coating may be used as a substitute for toxic cadmium.

  3. Development of coatings for ultrasonic additive manufacturing sonotrode using laser direct metal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Niyanth [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dehoff, Ryan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jordan, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    ORNL partnered with Fabrisonic, LLC to develop galling resistant hard facing coatings on sonotrodes used to fabricate 3D printed materials using ultrasonic additive manufacturing. The development and deployment of a coated sonotrode is expected to push the existing state of the art to facilitate the solidstate additive manufacturing of hard steels and titanium alloys. To this effect a structurally amorphous stainless steel material and cobalt chrome material were deposited on the sonotrode material. Both the deposits showed good adhesion to the substrate. The coatings made using the structurally amorphous steel materials showed cracking during the initial trials and cracking was eliminated by deposition on a preheated substrate. Both the coatings show hardness in excess of 600 HVN. Thus the phase 1 of this project has been used to identify suitable materials to use to coat the sonotrode. Despite the fact that successful deposits were obtained, the coatings need to be evaluated by performing detailed galling tests at various temperatures. In addition field tests are also necessary to test the stability of these coatings in a high cycle ultrasonic vibration mode. If awarded, phase 2 of the project would be used to optimize the composition of the deposit material to maximize galling resistance. The industrial partner would then use the coated sonotrode to fabricate builds made of austenitic stainless steel to test the viability of using a coated sonotrode.

  4. Microstructural Characterization and Wear Properties of Fe-Based Amorphous-Crystalline Coating Deposited by Twin Wire Arc Spraying

    Directory of Open Access Journals (Sweden)

    Ana Arizmendi-Morquecho

    2014-01-01

    Full Text Available Twin wire arc spraying (TWAS was used to produce an amorphous crystalline Fe-based coating on AISI 1018 steel substrate using a commercial powder (140MXC in order to improve microhardness and wear properties. The microstructures of coating were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM as well as the powder precursor. Analysis in the coating showed the formation of an amorphous matrix with boron and tungsten carbides randomly dispersed. At high amplifications were identified boron carbides at interface boron carbide/amorphous matrix by TEM. This kind of carbides growth can be attributed to partial crystallization by heterogeneous nucleation. These interfaces have not been reported in the literature by thermal spraying process. The measurements of average microhardness on amorphous matrix and boron carbides were 9.1 and 23.85 GPa, respectively. By contrast, the microhardness values of unmelted boron carbide in the amorphous phase were higher than in the substrate, approaching 2.14 GPa. The relative wear resistance of coating was 5.6 times that of substrate. These results indicate that the twin wire arc spraying is a promising technique to prepare amorphous crystalline coatings.

  5. Research on the boron contamination at the p/i interface of microcrystalline silicon solar cells deposited in a single PECVD chamber

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Dan; Sun Fu-He; Wei Chang-Chun; Sun Jian; Zhang De-Kun; Geng Xin-Hua; Xiong Shao-Zhen; Zhao Ying

    2009-01-01

    This paper studies boron contamination at the interface between the p and i layers of μc-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary Ion Mass Spectroscopy. It is found that the mixed-phase μc-Si:H materials with 40% crystalline volume fraction is easy to be affected by the residual boron in the reactor. The experimental results showed that a 500-nm thick μc-Si:H covering layer or a 30-seconds of hydrogen plasma treatment can effectively reduce the boron contamination at the p/i interface. However, from viewpoint of cost reduction, the hydrogen plasma treatment is desirable for solar cell manufacture because the substrate is not moved during the hydrogen plasma treatment.

  6. Evaluation of chemical and structural properties of germanium-carbon coatings deposited by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Hossein, E-mail: h.jamali@mut-es.ac.ir; Mozafarinia, Reza; Eshaghi, Akbar

    2015-10-15

    Germanium-carbon coatings were deposited on silicon and glass substrates by plasma enhanced chemical vapor deposition (PECVD) using three different flow ratios of GeH{sub 4} and CH{sub 4} precursors. Elemental analysis, structural evaluation and microscopic investigation of coatings were performed using laser-induced breakdown spectroscopy (LIBS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. Based on the results, the coatings exhibited a homogeneous and dense structure free of pores with a very good adhesion to substrate. The structural evaluation revealed that the germanium-carbon coatings were a kind of a Ge-rich composite material containing the amorphous and crystalline germanium and amorphous carbon with the mixture of Ge–Ge, Ge–C, C–C, Ge–H and C–H bonds. The result suggested that the amorphisation of the coatings could be increased with raising CH{sub 4}:GeH{sub 4} flow rate ratio and subsequently increasing C amount incorporated into the coating. - Highlights: • Germanium-carbon coatings were prepared by PECVD technique. • The germanium-carbon coatings were a kind of composite material. • The amorphisation of the coatings were increased with raising CH{sub 4}:GeH{sub 4} flow ratio.

  7. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings.

    Science.gov (United States)

    Boehm, Ryan D; Daniels, Justin; Stafslien, Shane; Nasir, Adnan; Lefebvre, Joe; Narayan, Roger J

    2015-03-02

    In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. Furthermore, an in vitro agar plating study was performed on the unmodified, vehicle-modified, and voriconazole-modified microneedles. Unlike the unmodified and vehicle-modified microneedles, the voriconazole-modified microneedles showed antifungal activity against Candida albicans. The unmodified, vehicle-modified, and voriconazole-modified microneedles did not show activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. The results indicate that piezoelectric inkjet printing may be useful for loading transdermal drug delivery devices such as polyglycolic acid microneedles with antifungal pharmacologic agents and other pharmacologic agents with poor solubility in aqueous solutions.

  8. Tantalum Coating of Steel, Copper, Aluminum, and Titanium by Thermal Chemical Vapor Deposition (CVD)

    DEFF Research Database (Denmark)

    Christensen, Erik; Bjerrum, Niels

    1998-01-01

    Tantalum coatings ranging from 0.5 to 120 mm has been deposited by CVD at 625-1000 C using tantalum pentachloride as precursor. Deposition rates range from 1 to 80mm/h and an activation energy of 103 kJ/mole is calculated. Well adhering deposits has been obtained on stainless steel, carbon steels...

  9. Microstructural characterization and chemical compatibility of pulsed laser deposited yttria coatings on high density graphite

    Energy Technology Data Exchange (ETDEWEB)

    Sure, Jagadeesh [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mishra, Maneesha [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Tarini, M. [SRM University, Kattankulathur-603 203 (India); Shankar, A. Ravi; Krishna, Nanda Gopala [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Kuppusami, P. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Mallika, C. [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mudali, U. Kamachi, E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India)

    2013-10-01

    Yttria coatings were deposited on high density (HD) graphite substrate by pulsed laser deposition method and subsequently annealing in vacuum at 1373 K was carried out to evaluate the thermal stability of the coatings. Yttria deposited on HD graphite samples were exposed to molten LiCl–KCl salt at 873 K for 3 h to evaluate the corrosion behavior of the coating for the purpose of pyrochemical reprocessing applications. The microstructure and the corrosion behavior of the yttria coating deposited on HD graphite in molten LiCl–KCl salt were evaluated by several characterization techniques. X-ray diffraction and Laser Raman patterns confirmed the presence of cubic phase of yttria in the coating. The surface morphology of yttria coating on HD graphite examined by scanning electron microscope and atomic force microscopy revealed the agglomeration of oxide particles and formation of clusters. After annealing at 1373 K, no appreciable grain growth of yttria particles could be observed. X-ray photoelectron spectroscopy analysis was carried out for elemental analysis before and after chemical compatibility test of the coated samples in molten LiCl–KCl salt to identify the corrosive elements present on the yttria coatings. The chemical compatibility and thermal stability of the yttria coating on HD graphite in molten LiCl–KCl salt medium have been established. - Highlights: • Y{sub 2}O{sub 3} coating was deposited on graphite by pulsed laser deposition method. • Chemical compatibility of Y{sub 2}O{sub 3} coating in LiCl–KCl salt at 873 K was studied. • Gibbs free energy change was positive for Y{sub 2}O{sub 3} reaction with Cl{sub 2}, U and UCl{sub 3}. • Y{sub 2}O{sub 3} coating exhibited better corrosion performance in molten LiCl–KCl salt.

  10. Chemical vapor deposition of ceramic coatings on metals and ceramic fibers

    Science.gov (United States)

    Nable, Jun Co

    2005-07-01

    The research presented in this study consists of two major parts. The first part is about the development of ceramic coatings on metals by chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD). Ceramics such as Al2O3 and Cr2O3, are used as protective coatings for materials used at elevated temperatures (>700°C). These metal oxides either exhibit oxidation resistance or have been used as environmental bond coats. Conventional methods of coating by chemical vapor deposition requires deposition temperatures of >950°C which could damage the substrate material during the coating process. Lower deposition temperatures (400 to 600°C) by MOCVD of these metal oxides were successful on Ni metal substrates. Surface modification such as pre-oxidation and etching were also investigated. In addition, a novel approach for the CVD of TiN on metals was developed. This new approach utilizes ambient pressure conditions which lead to deposition temperatures of 800°C or lower compared to conventional CVD of TiN at 1000°C. Titanium nitride can be used as an abrasive and wear coating on cutting and grinding tools. This nitride can also serve as a diffusion coating in metals. The second major part of this research involves the synthesis of interfacial coatings on ceramic reinforcing fibers for ceramic matrix composites. Aluminum and chromium oxides were deposited onto SiC, and Al2O3-SiO 2 fibers by MOCVD. The effects of the interface coatings on the tensile strength of ceramic fibers are also discussed. New duplex interface coatings consisting of BN or TiN together with Al2O3 or ZrO 2 were also successfully deposited and evaluated on SiC fibers.

  11. A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2004-01-01

    Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.

  12. Superior critical current density obtained in MgB2 bulks via employing carbon-coated boron and minor Cu addition

    Science.gov (United States)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-09-01

    High performance Cu doped MgB2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB2 grains, as well as a high level of homogeneous carbon doping in the MgB2 samples, which significantly enhance the Jc in both Cu doped and undoped bulks compared to MgB2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (Jc) at self fields and low fields (the best values are 7 × 105 A/cm2 at self fields, and 1 × 105 A/cm2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of Jc at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB2 bulks or wires with excellent Jc on an industrial scale.

  13. Investigation of coatings of austenitic steels produced by supersonic laser deposition

    Science.gov (United States)

    Gorunov, A. I.; Gilmutdinov, A. Kh.

    2017-02-01

    The structure and properties of stainless austenitic steel coatings obtained by the supersonic laser deposition are studied in the paper. Implantation of the powder particles into the substrate surface and simultaneous plastic deformation at partial melting improved the mechanical properties of the coatings - tensile strength limit was 650 MPa and adhesion strength was 105 MPa. It was shown that insufficient laser power leads to disruption of the deposition process stability and coating cracking. Surface temperature increase caused by laser heating above 1300 °C resulted in coating melting. The X-ray analysis showed that radiation intensifies the cold spray process and does not cause changes in the austenitic base structure.

  14. Microanalyses of the hydroxyl-poly-calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thin calcium phosphate coatings on titanium alloy substrates wereprepared by Ar+ ion beam assisted deposition (IBAD) from hydroxyl-poly-calciumsodium phosphate (HPPA) target. The coatings were analyzed by XRD, FTIR, XPS.These analyses revealed that the as-deposited films were amorphous or no apparentcrystallinity. No distinct absorption band of the hydroxyl group was observed in FTIRspectra of the coatings but new absorption bands were presented for CO3-2. Thecalcium to phosphorous ratio of these coatings in different IBAD conditions variedfrom 0.46 to 3.36.

  15. Kinetic Study of SiO2/S Coating Deposition by APCVD

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To alleviate catalytic coking on the inner surface of radiant tube for ethylene production in petrochemical plants,SiO2/S coatings were deposited on HP40 alloy specimens using dimethyldisulfide (DMDS) and tetraethoxysilane (TEOS) by atmospheric pressure chemical vapor deposition (APCVD). A two-dimension mathematical model was made to predict the growth rate of SiO2/S coating and to study the effects of deposition parameters on the deposition rate. The results show that the predicted deposition rate is in good agreement with the experimental one. The deposition rate mainly depends on the concentrations of precursors in the total gas flow, concentrations of intermediates on the deposition surface, total gas flow rate and deposition temperature. The weight of SiO2/S coating linearly increases with the deposition time. When the gas flow rate is below 0.3 m/s, the rate-limiting step of SiO2/S coating deposition is the diffusions of intermediates.However, the surface reactions of intermediates will be the rate-limiting step after the gas flow rate is above 0.3 m/s. When the deposition temperature is below 780℃, the rate-limiting step of SiO2/S coating deposition mainly depends on the surface reactions of intermediates. When the deposition temperature is above 780℃,the rate-limiting step depends on the diffusions of intermediates. The deposition rate increases with increasing the concentrations of the intermediates. However, when the partial pressures of the intermediates reach 8 Pa,the deposition rate keeps constant.

  16. Atomic layer deposited titanium dioxide coatings on KD-II silicon carbide fibers and their characterization

    Science.gov (United States)

    Cao, Shiyi; Wang, Jun; Wang, Hao

    2016-03-01

    To provide oxidation protection and/or to act as an interfacial coating, titanium oxide (TiO2) coatings were deposited on KD-II SiC fibers by employing atomic layer deposition (ALD) technique with tetrakis(dimethylamido)titanium (TDMAT) and water (H2O) as precursors. The average deposition rate was about 0.08 nm per cycle, and the prepared coatings were smooth, uniform and conformal, shielding the fibers entirely. The as-deposited coatings were amorphous regardless of the coating thickness, and changed to anatase and rutile crystal phase after annealing at 600 °C and 1000 °C, respectively. The oxidation measurement suggests that the TiO2 coating enhanced the oxidation resistance of SiC fibers obviously. SiC fibers coated with a 70-nm-thick TiO2 layer retained a relatively high tensile strength of 1.66 GPa even after exposition to air at 1400 °C for 1 h, and thick silica layer was not observed. In contrast, uncoated SiC fibers were oxidized dramatically through the same oxidation treatment, covered with a macro-cracked thick silica film, and the tensile strength was not measurable due to interfilament adhesion. The above results indicate that TiO2 films deposited by ALD are a promising oxidation resistance coating for SiC fibers.

  17. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  18. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yansheng [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tu, Rong, E-mail: turong@whut.edu.cn [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Goto, Takashi [Institute for Materials Research, Tohoku University, Aoba-ku, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  19. INKJET PRINTING OF ALUMOOXIDE SOL FOR DEPOSITION OF ANTIREFLECTING COATINGS

    Directory of Open Access Journals (Sweden)

    E. A. Eremeeva

    2017-01-01

    Full Text Available Subject of Research. This work describes for the first time the formation of antireflective coating on the base of boehmite phase of AlOOH with low refractive index (1.35 by inkjet printing on the nonporous substrate. This method gives the possibility to increase the contrast of colorful interfering images by 32% obtaining by inkjet printing of titanium dioxide sol. The usage of this technology enables to obtain patterns with wide viewing angle and makes them highly stable. Methods. Traditional sol-gel method with peptizing agents and heating for 90oC was applied for sol synthesis. Then the mixture was under sonic treatment for the obtaining of viscous sol. The viscosity was determined by Brookfield HA/HB viscometer, and the surface tension by Kyowa DY-700 tensiometer. Aluminum oxide ink was deposited on polished slides (26×76 mm2, Paul Marienfeld, Germany, over titanium oxide layer. To print titania ink, we use a desktop office printer Canon Pixma IP 2840 and Dimatix DMP-2831. The thickness of an inkjet AlOOH layer after drying in the air and removal of the solvents did not exceed 150 nm with an RI not less than 1.35 in the entire visible range. Results. The stable colloidal ink was obtained for the first time on the base of aluminum oxide matrix with neutral pH. The rheology was regulated by controlling parameters of sol-gel method in the system of aqueous titanium dioxide sol and by adding ethanol that affects the charge of double electrical layer of disperse phase. The controllable coalesce of drops enables to apply antireflection coating within the thickness accuracy of 10 nm. The morphology of particles and the topology of printed structures were analyzed by optical, scanning electron and atomic-force microscopes. Practical Relevance. We have proposed the approach to obtain colorful, interference patterns using two types of high refractive inks with different refractive indexes. The inkjet printing method opens new opportunities for

  20. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  1. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  2. Effect of Rare Earth Elements on Depositing Rate of Nickel Alloy Brush Plating Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.

  3. Electroless Deposition of Composite Nickel-Phosphorous Coatings with Diamond Dispersoid

    Directory of Open Access Journals (Sweden)

    Petrova M.

    2016-06-01

    Full Text Available The composite Ni-P coating with diamond particles (D deposited on the flexible substrates of pressed polyethylene terephthalate material (PET was obtained, to be used in the development of efficient, flexible grinding and polishing tools. The optimal conditions of the hydrodynamic regime, deposition time and temperature were found. The influence of the concentration and size of the D particles (3/7 ÷ 225/300 μm on the coating thickness and number of co-deposited particles were studied. By Scanning Electron Microscopy (SEM images were defined the morphology of dispersion coatings and number of co-deposited particles in them, and Energy Dispersive Spectroscopy (EDS/INCA was used to determine the elemental chemical composition of the composite coatings.

  4. NiCrSiB Coatings Deposited by Plasma Transferred Arc on Different Steel Substrates

    Science.gov (United States)

    Reinaldo, P. R.; D'Oliveira, A. S. C. M.

    2013-02-01

    Colmonoy 6 (NiCrSiB) is a Ni-based alloy recognized for its superior mechanical properties, attributed to the presence of a dispersion of hard carbides and borides, which is strongly dependent on processing technique. This work gathered microstructure data from the literature and analyzed Colmonoy 6 coatings deposited by plasma transferred arc hardfacing. The aim of the study was to determine the influence of PTA deposition parameters and substrate chemical composition on NiCrSiB coating characteristics. Coatings were characterized in terms of their hardness, dilution, and microstructure, as well as mass loss during abrasive sliding wear tests. The results showed that coating performance is strongly dependent on the chemical composition of the substrate. Carbon steel substrate yielded coatings with greater wear resistance. Processing parameters also alter the performance of coatings, and the lower current and lower travel speed result in reduced mass loss.

  5. Photocatalytic Properties of Doped TiO2 Coatings Deposited Using Reactive Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Parnia Navabpour

    2017-01-01

    Full Text Available Mechanically robust photocatalytic titanium oxide coatings can be deposited using reactive magnetron sputtering. In this article, we investigate the effect of doping on the activity of reactively sputtered TiO2. Silver, copper and stainless steel targets were used to co-deposit the dopants. The films were characterised using XRD, SEM and EDX. Adhesion and mechanical properties were evaluated using scratch testing and nano-indentation, respectively, and confirmed that the coatings had excellent adhesion to the stainless steel substrate. All coatings showed superhydrophilicity under UV irradiation. A methylene blue degradation test was used to assess their photocatalytic activity and showed all coatings to be photoactive to varying degrees, dependent upon the dopant, its concentration and the resulting coating structure. The results demonstrated that copper doping at low concentrations resulted in the coatings with the highest photocatalytic activity under both UV and fluorescent light irradiation.

  6. Characterization of Environmental Stability of Pulsed Laser Deposited Oxide Ceramic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, THADM

    2004-03-02

    A systematic investigation of candidate hydrogen permeation materials applied to a substrate using Pulsed Laser Deposition has been performed. The investigation focused on application of leading permeation-resistant materials types (oxide, carbides, and metals) on a stainless steel substrate. and evaluation of the stability of the applied coatings. Type 304L stainless steel substrates were coated with aluminum oxide, chromium oxide, and aluminum. Characterization of the coating-substrate system adhesion was performed using scratch adhesion testing and microindentation. Coating stability and environmental susceptibility were evaluated for two conditions-air at 350 degrees Celsius and Ar-H2 at 350 degrees Celsius for up to 100 hours. Results from this study have shown the pulsed laser deposition process to be an extremely versatile technology that is capable of producing a sound coating/substrate system for a wide variety of coating materials.

  7. Characterisation of the TiO2 coatings deposited by plasma spraying

    Science.gov (United States)

    Benea, M. L.; Benea, L. P.

    2016-02-01

    Plasma spraying of materials such as ceramics and non-metals, which have high melting points, has become a well-established commercial process. Such coatings are increasingly used in aerospace, automobile, textile, medical, printing and electrical industries to impart proprieties such as corrosion resistance, thermal resistance, wear resistance, etc. One of the most important characteristics of thermal barrier coatings is the ability to undergo fast temperature changes without failing, the so called thermal shock resistance. The formation of residual stresses in plasma sprayed ceramic and metallic coatings is a very complex process. Several factors, such as substrate material, substrate thickness, physical properties of both the substrate and the coating material, deposition rate, relative velocity of the plasma torch, etc. determine the final residual stress state of the coating at room temperature. Our objective is to characterize the titanium oxide and aluminium oxide coatings deposited by plasma spraying in structural terms, the resistance to thermal shock and residual stresses.

  8. Characterization of microstructure and mechanical behavior of sputter deposited Ti-containing amorphous carbon coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Cao, D. M.; Meng, W. J.; Xu, J.; Tittsworth, R. C.; Rehn, L. E.; Baldo, P. M.; Doll, G. L.; Materials Science Division; Louisiana State Univ.; The Timken Company

    2001-12-03

    We report on the characterization of microstructure and mechanical properties of sputter deposited Ti-containing amorphous carbon (Ti-aC) coatings as a function of Ti composition. Ti-aC coatings have been deposited by unbalanced magnetron sputter deposition, in an industrial-scale four-target coating deposition system. The composition and microstructure of the Ti-aC coatings have been characterized in detail by combining the techniques of Rutherford backscattering spectrometry (RBS) and hydrogen elastic recoil detection (ERD), transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. At Ti compositions <4at.%, Ti atoms dissolve in an amorphous carbon (a-C) matrix. The dissolution limit of Ti atoms in an a-C matrix is determined to be between 4 and 8 at.%. At Ti compositions >8 at.%, XANES and EXAFS data indicate that the average Ti atomic bonding environment in Ti-aC coatings resembles that in cubic B1-TiC, consistent with TEM observation of precipitation of TiC nanocrystallites in the a-C matrix. Beyond the Ti dissolution limit, the Ti-aC coatings are nanocomposites with nanocrystalline TiC clusters embedded in an a-C matrix. A large scale, quasi one-dimensional composition modulation in the Ti-aC coatings was observed due to the particular coating deposition geometry. Elastic stiffness and hardness of the Ti-aC coatings were measured by instrumented nanoindentation and found to vary systematically as a function of Ti composition. Unlubricated friction coefficient of Ti-aC coatings against WC-Co balls was found to increase as the Ti composition increases. As Ti composition increases, the overall mechanical behavior of the Ti-aC coatings becomes more TiC-like.

  9. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  10. Preparation of Cubic Boron Nitride Coating on WC-Co Substrate by Micro/Nanocrystalline Diamond Film Interlayer%基于微纳米金刚石过渡层的cBN刀具涂层制备

    Institute of Scientific and Technical Information of China (English)

    徐锋; 左敦稳; 张旭辉; 户海峰; 张骋; 王珉

    2013-01-01

    Cubic Boron Nitride(cBN) is a super-hard material, of which hardness is only less than diamond. But it has excellent chemical stability, especially no chemical reaction with ferrous materials. The cBN coating has irreplaceable function in the application of modern cutting tools. Research is carried out on the preparation of cBN coating on YG6 by micro/nanocrystalline diamond (M/NCD) film inter-layer. The micro/nanocrystalline diamond film is deposited in hot filament chemical vapor deposition system and cBN is deposited in radio frequency magnetron sputtering system. The scanning electron microscopy (SEM), Raman, atomic force microscopy(AFM), Fourier transferred infrared(FTIR) and in-denter are used to investigate the content, morphology and adhesion of the coating. The results show that the adhesion of cBN coating on WC-Co by micro/nanocrystalline diamond interlayer is much higher than that by nano diamond interlayer. The moderate bias voltage is important for the cBN film deposition in the magnetron sputtering process.%立方氮化硼(Cubic Boron Nitride,cBN)是仅次于金刚石的超硬材料,比金刚石具有更高的化学稳定性,可以胜任铁系金属的加工.本文在YG6硬质合金上基于微纳米金刚石过渡层开展cBN涂层的制备研究.本文在热丝化学气相沉积系统中制备微纳米金刚石过渡层(Micro/nanocrystalline diamond,M/NCD),在射频磁控溅射系统中制备cBN涂层,并对M/NCD与cBN涂层进行了成分、微观形貌与结合性能的研究.研究结果发现,在硬质合金基体上,M/NCD过渡层的结合性能明显优于NCD过渡层.磁控溅射制备cBN涂层过程中,存在适合cBN沉积的衬底偏压阈值,过高或过低的衬底偏压均不利于cBN含量的提高.

  11. Pyrolytic deposition of nanostructured titanium carbide coatings on the surface of multiwalled carbon nanotubes

    Science.gov (United States)

    Kremlev, K. V.; Ob"edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Tatarskii, D. A.; Yunin, P. A.

    2016-05-01

    Nanostructured titanium carbide coatings have been deposited on the surface of multiwalled carbon nanotubes (MWCNTs) by the MOCVD method with bis(cyclopentadienyl)titanium dichloride precursor. The obtained TiC/MWCNT hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is established that a TiC coating deposits onto the MWCNT surface with the formation of a core-shell (MWSNT-TiC) type structure.

  12. Functionalization and Area-Selective Deposition of Magnetic Carbon-Coated Iron Nanoparticles from Solution

    Directory of Open Access Journals (Sweden)

    Erika Widenkvist

    2011-01-01

    Full Text Available A route to area-selective deposition of carbon-coated iron nanoparticles, involving chemical modification of the surface of the particles, is described. Partial oxidative etching of the coating introduces carboxylic groups, which then are esterified. The functionalized particles can be selectively deposited on the Si areas of Si/SiO2 substrates by a simple dipping procedure. Nanoparticles and nanoassemblies have been analyzed using SEM, TEM, and XPS.

  13. Advances in PSII Deposited Diamond-Like Carbon Coatings for Use as a Barrier to Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Lillard, R.S.; Butt, D.P.; Baker, N.P.; Walter, K.C.; Nastasi, M.

    1998-10-01

    Plasma source ion implantation (PSII) is a non line of sight process for implanting complex shaped targets without the need for complex fixturing. The breakdown initiation of materials coated with diamond-like carbon (DLC) produced by PSII occurs at defects in the DLC which expose the underlying material. To summarize these findings, a galvanic couple is established between the coating and exposed material at the base of the defect. Pitting and oxidation of the base and metal leads to the development of mechanical stress in the coating and eventually spallation of the coating. This paper presents our current progress in attempting to mitigate the breakdown of these coatings by implanting the parent material prior to coating with DLC. Ideally one would like to implant the parent material with chromium or molybdenum which are known to improve corrosion resistance, however, the necessary organometallics needed to implant these materials with PSII are not yet available. Here we report on the effects of carbon, nitrogen, and boron implantation on the susceptibility of PSII-DLC coated mild steel to breakdown.

  14. Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics

    OpenAIRE

    L.A. Dobrzański; M. Staszuk; J. Konieczny; W. Kwaśny; M. Pawlyta

    2009-01-01

    Purpose: The aim of this paper was investigated structure of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings TiBN type deposited by cathodes arc evaporation process (CAE-PVD).Design/methodology/approach: Observation of fracture and topography studied coatings were done by scanning electron microscope. Chemical composition was determine by energy dispersive spectrometry (EDS) method. Thin foils of substrates and coatings by transmission electron micr...

  15. Preparation of pyrite-coated sand grains for research on roll-type uranium deposits

    Science.gov (United States)

    Gent, Carol A.

    1977-01-01

    Ordinary quartz sand grains can be coated with pyrite for use in laboratory experiments on the genetic geochemistry of roll-type uranium deposits. The sand is first added to a ferric chloride solution. The slow addition of sodium hydroxide to the mixture gives the sand grains an iron oxide coating. This coating is then converted to pyrite by reaction with hydrogen sulfide, thus yielding a product suitable for experimental use.

  16. Dual Bath Electrodeposition of Alternate Multilayer Coatings of Zinc and Nickel Deposits

    Institute of Scientific and Technical Information of China (English)

    XINWen-li; FEIJing-yin; LIANGGuo-zheng

    2004-01-01

    The synthesis of zinc and nickel alternate multilayer coatings produced by successive deposition from dual baths containing a revised zinc sulphate electrolyte and a new developed nickel bath has been investigated. Smooth and uniform zinc-nickel compositionally modulated multilayered (CMM) coatings with different multilayer configurations were obtained. The surface and cross-sectional morphologies of samples were examined using scanning electron microscopy (SEM). Cross-sectional morphology showed the layered structure of the coatings clearly.

  17. Atomic layer deposition (ALD) as a coating tool for reinforcing fibers.

    Science.gov (United States)

    Roy, A K; Baumann, W; König, I; Baumann, G; Schulze, S; Hietschold, M; Mäder, T; Nestler, D J; Wielage, B; Goedel, W A

    2010-03-01

    Layers of alumina were deposited on to bundled carbon fibers in an atomic layer deposition (ALD) process via sequential exposure to vapors of aluminium chloride and water, respectively. Scanning electron microscopic (SEM) images of the coated fibers revealed that each individual fiber within a bundle was coated evenly and separately, fibers are not bridged by the coating. SEM and transmission electron microscopic (TEM) images indicate that the coating was uniform and conformal with good adhesion to the fiber surface. Average deposition rate, measured from SEM images, was 0.06 nm per cycle at 500 °C. SEM also revealed that at deposition temperatures of 500 °C few of the fibers were damaged. At temperatures of 300 °C, no damaged fibers were observed, the average deposition rate decreased down to 0.033 nm per cycle. Oxidation resistance of the alumina-coated fibers was characterized by thermogravimetric analysis (TGA). The alumina coating improved oxidation resistance of the carbon fiber significantly. Oxidation onset temperature was 600 °C for fibers coated with a 45 nm thick alumina. Uncoated fibers, on the other hand, started to oxidize at temperatures as low as 250 °C.

  18. Synthesis of photocatalytic TiO2 nano-coatings by supersonic cluster beam deposition

    NARCIS (Netherlands)

    Fraters, B.D.; Cavaliere, E; Mul, G.; Gavioli, L.

    2014-01-01

    In this paper we report on the photocatalytic behavior in gas phase propane oxidation of well-defined TiO2 nanoparticle (NP) coatings prepared via Supersonic Cluster Beam Deposition (SCBD) on Si-wafers and quartz substrates. The temperature dependent crystal phase of the coatings was analyzed by Ram

  19. Deformation Behavior of Nanostructured Ceramic Coatings Deposited by Thermal Plasma Spray

    Institute of Scientific and Technical Information of China (English)

    Xianliang JIANG; Eric Jordan; Leon Shaw; Maurice Gell

    2004-01-01

    Al2O3-13 wt pct TiO2 coating deposited by direct current plasma spray consists of nanostructured region and microlamellae. Bend test shows that the ceramic coating can sustain some deformation without sudden failure. The deformation is achieved through the movement of nano-particles in the nanostructured region under tensile stress.

  20. Influence of deposition parameters on the structure and mechanical properties of nanocomposite coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y. T.; De Hosson, J. Th. M.

    2006-01-01

    Nanocomposite coatings based on TiC nanoparticles embedded in an amorphous hydrocarbon (a-C:H) matrix are deposited via reactive closed field unbalanced magnetron sputtering, employing Ti targets and acetylene gas as material precursors. The composition of the coatings is varied by changing the acet

  1. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    NARCIS (Netherlands)

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    2007-01-01

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the

  2. Advanced TiC/a-C : H nanocomposite coatings deposited by magnetron sputtering

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing subs

  3. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; De Hosson, JTM

    2002-01-01

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack resis

  4. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system.

    Science.gov (United States)

    Dembele, Amidou; Rahman, Mahfujur; Reid, Ian; Twomey, Barry; MacElroy, J M Don; Dowling, Denis P

    2011-10-01

    The objective of this study is to investigate the influence of alcohol addition on the incorporation of metal oxide nanoparticles into nm thick siloxane coatings. Titanium oxide (TiO2) nanoparticles with diameters of 30-80 nm were incorporated into an atmospheric plasma deposited tetramethylorthosilicate (TMOS) siloxane coating. The TMOS/TiO2 coating was deposited using the atmospheric plasma jet system known as PlasmaStream. In this system the liquid precursor/nanoparticle mixture is nebulised into the plasma. It was observed that prior to being nebulised the TiO2 particles agglomerated and settled over time in the TMOS/TiO2 mixture. In order to obtain a more stable nanoparticle/TMOS suspension the addition of the alcohols methanol, octanol and pentanol to this mixture was investigated. The addition of each of these alcohols was found to stabilise the nanoparticle suspension. The effect of the alcohol was therefore assessed with respect to the properties of the deposited coatings. It was observed that coatings deposited from TMOS/TiO2, with and without the addition of methanol were broadly similar. In contrast the coatings deposited with octanol and pentanol addition to the TMOS/TiO2 mixture were significantly thicker, for a given set of deposition parameters and were also more homogeneous. This would indicate that the alcohol precursor was incorporated into the plasma polymerised siloxane. The incorporation of the organic functionality from the alcohols was confirmed from FTIR spectra of the coatings. The difference in behaviour with alcohol type is likely to be due to the lower boiling point of methanol (65 degrees C), which is lower than the maximum plasma temperature measured at the jet orifice (77 degrees C). This temperature is significantly lower than the 196 degrees C and 136 degrees C boiling points of octanol and pentanol respectively. The friction of the coatings was determined using the Pin-on-disc technique. The more organic coatings deposited with

  5. Electrochemical deposition and evaluation of electrically conductive polymer coating on biodegradable magnesium implants for neural applications.

    Science.gov (United States)

    Sebaa, Meriam A; Dhillon, Shan; Liu, Huinan

    2013-02-01

    In an attempt to develop biodegradable, mechanically strong, biocompatible, and conductive nerve guidance conduits, pure magnesium (Mg) was used as the biodegradable substrate material to provide strength while the conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) was used as a conductive coating material to control Mg degradation and improve cytocompatibility of Mg substrates. This study explored a series of electrochemical deposition conditions to produce a uniform, consistent PEDOT coating on large three-dimensional Mg samples. A concentration of 1 M 3,4-ethylenedioxythiophene in ionic liquid was sufficient for coating Mg samples with a size of 5 × 5 × 0.25 mm. Both cyclic voltammetry (CV) and chronoamperometry coating methods produced adequate coverage and uniform PEDOT coating. Low-cost stainless steel and copper electrodes can be used to deposit PEDOT coatings as effectively as platinum and silver/silver chloride electrodes. Five cycles of CV with the potential ranging from -0.5 to 2.0 V for 200 s per cycle were used to produce consistent coatings for further evaluation. Scanning electron micrographs showed the micro-porous structure of PEDOT coatings. Energy dispersive X-ray spectroscopy showed the peaks of sulfur, carbon, and oxygen, indicating sufficient PEDOT coating. Adhesion strength of the coating was measured using the tape test following the ASTM-D 3359 standard. The adhesion strength of PEDOT coating was within the classifications of 3B to 4B. Tafel tests of the PEDOT coated Mg showed a corrosion current (I(CORR)) of 6.14 × 10(-5) A as compared with I(CORR) of 9.08 × 10(-4) A for non-coated Mg. The calculated corrosion rate for the PEDOT coated Mg was 2.64 mm/year, much slower than 38.98 mm/year for the non-coated Mg.

  6. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition.

    Science.gov (United States)

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C P; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-07-11

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC).

  7. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Sanja Erakovic

    2014-07-01

    Full Text Available Hydroxyapatite (HAP is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC.

  8. Effect of Heat Treatment on Wear Resistance of Nickel Aluminide Coatings Deposited by HVOF and PTA

    Science.gov (United States)

    Benegra, M.; Santana, A. L. B.; Maranho, O.; Pintaude, G.

    2015-08-01

    This study aims to compare the wear resistance of nickel aluminide coatings deposited using plasma transferred arc (PTA) and high-velocity oxygen fuel (HVOF) processes. Wear resistance was measured in rubber wheel abrasion tests. In both deposition processes, the same raw material (nickel aluminide powder) was atomized and deposited on a 316L steel plate substrate. After deposition, specimens were subjected to thermal cycling, aiming solubilization and precipitation. Coatings deposited using PTA developed different microstructures as a result of the incorporation of substrate elements. However, despite the presence of these microstructures, they performed better than coatings processed using HVOF before the heat treatment. After thermal cycling, the superficial hardness after the wear tests for both processes was similar, resulting in similar mass losses.

  9. Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Amini, S. [School of Materials Science and Engineering. Nanyang Technological University, 50 Nanyang Avenue, Singapore (Singapore); Khosravian, N.; Cheong, J.Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Tay, B.K. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore)

    2013-06-30

    A series of physical vapour deposition titanium aluminum silicon nitride nanocomposite coating with a different (Al + Si)/Ti atomic ratio, with a thickness of around 2.5 μm were deposited on stainless steel substrate by a lateral rotating cathode arc process in a flowing nitrogen atmosphere. The composition and microstructure of the as-deposited coatings were analyzed by energy dispersive X-ray spectroscopy, and X-ray diffraction, and cross-sectional scanning electron microscopy observation. The titanium nitride (TiN) coating shows a clear columnar structure with a predominant (111) preferential orientation. With the incorporation of Al and Si, the crystallite size in the coatings decreased gradually, and the columnar structure and (111) preferred orientation disappeared. Thermal conductivity of the as-deposited coating samples at room temperature was measured by using pulsed photothermal reflectance technique. Thermal conductivity of the pure TiN coating is about 11.9 W/mK. With increasing the (Al + Si)/Ti atomic ratio, the coatings' thermal conductivity decreased monotonously. This reduction of thermal conductivity could be ascribed to the variation of coatings' microstructure, including the decrease of grain size and the resultant increase of grain boundaries, the disruption of columnar structure, and the reduced preferential orientation. - Highlights: • A series of titanium aluminum silicon nitride with different (Al + Si)/Ti atomic ratio were deposited on Fe304. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the samples was measured by pulsed photothermal reflectance. • With increasing the (Al + Si)/Ti atomic ratio, thermal conductivity decreased. • Reduction of thermal conductivity is ascribed to the variation of its microstructure.

  10. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2016-11-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  11. Microstructure and corrosion behavior of electroless deposited Ni-P/CeO2 coating

    Institute of Scientific and Technical Information of China (English)

    Hui Ming Jin; Shi Hang Jiang; Lin Nan Zhang

    2008-01-01

    Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition,and its microstructure and corrosive property were compared with its CeO2-free counterpart.Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) spectrometer were used to examine surface morphology and structure of the as-plated coating.Differential scanning calorimeter (DSC) and transmission electronic microscopy (TEM) were used to study the coating's phase change at high temperature.The coating's corrosive behavior in 3%NaCI + 5%H2SO4 solution was also investigated.The results showed that Ni-P coating had partial amorphous structure mixed with nano-crystals,while the Ni-P/CeO2 coating had perfect amorphous structure.In high-temperature condition,Ni3P precipitation and Ni crystallization took place in both coatings but at different temperatures,while the Ni-P/CeO2 coating had sintered phase of NiCe2O4 spinels.The anti-corrosion property was better in the CeO2-containing coating,and this was due to its less liability to undergo local-cell corrosion than its CeO2-free counterpart.Ni-P/CeO2 coating's pure amorphous structure was the result of Ni's hindered crystal-typed deposition and P's promoted deposition.

  12. Structure and properties of protective coatings produced by vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Leontiev, S.A. [Leningradsky Metallitchesky Zavod, St. Petersburg (Russian Federation); Kuznetsov, V.G. [Machine Research Problems Institute, Russian Academy of Sciences V.O., Bolshoy pr. 61, 199178 St. Petersburg (Russian Federation); Rybnikov, A.I. [Polzunov Central Boiler and Turbine Institute (NPO TsKTI), Polytechnicheskaya 24, 194021 St. Petersburg (Russian Federation); Burov, I.V. [Machine Research Problems Institute, Russian Academy of Sciences V.O., Bolshoy pr. 61, 199178 St. Petersburg (Russian Federation)

    1995-11-01

    CoCrAlY, NiCrWTi and CoCrAlY/ZrO{sub 2}+8wt.%Y{sub 2}O{sub 3} coatings were deposited by vacuum arc evaporation. Coatings were deposited onto specimens for metallographic analysis, corrosion resistance testing, thermal fatigue testing, high-frequency fatigue and onto gas turbine blades. It has been shown by testing that the developed procedures ensure gas turbine blade coatings of high quality comparable with those manufactured by electron beam procedures. (orig.)

  13. In vivo evaluation of titanium implants coated with bioactive glass by pulsed laser deposition.

    Science.gov (United States)

    Borrajo, Jacinto P; Serra, Julia; González, Pío; León, Betty; Muñoz, Fernando M; López, M

    2007-12-01

    During the past years, different techniques, like chemical treatment, plasma spraying, sputtering, enamelling or sol-gel; and materials, like metals, hydroxylapatite, calcium phosphates, among others, have been applied in different combinations to improve the performance of prostheses. Among the techniques, Pulsed Laser Deposition (PLD) is very promising to produce coatings of bioactive glass on any metal alloy used as implant. In this work the biocompatibility of PLD coatings deposited on titanium substrates was examined by implantation in vivo. Different coating compositions were checked to find the most bioactive that was then applied on titanium and implanted into paravertebral muscle of rabbit.

  14. Characterization of the chemically deposited hydroxyapatite coating on a titanium substrate.

    Science.gov (United States)

    Zavgorodniy, Alexander V; Borrero-López, Oscar; Hoffman, Mark; Legeros, Racquel Z; Rohanizadeh, Ramin

    2011-01-01

    Bioactive hydroxyapatite (HA) coating on titanium (Ti) implant can be used as a drug delivery device. A controlled release of drug around the implant requires the incorporation of drug into the coating material during the coating process. HA coating was prepared using a two-step procedure in conditions suitable for simultaneous incorporation of the protein-based drug into the coating material. Monetite coating was deposited on Ti substrate in acidic condition followed by the transformation of the monetite coating to HA. X-ray diffraction (XRD) confirmed the formation of the monetite phase at the first step of the coating preparation, which was transformed into HA at the second step. Fourier transform infrared spectroscopy demonstrated typical bands of a crystallized carbonated HA with A- and B-type substitution, which was confirmed by the XRD refinement of the structural parameters. Scanning electron microscope was used to observe the morphology of monetite and HA coatings. Adhesion of the coatings was measured using a scratch tester. The critical shearing stress was found to be 84.20 ± 1.27 MPa for the monetite coating, and 44.40 ± 2.39 MPa for the HA coating.

  15. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  16. Fluorocarbon coatings deposited on micron-sized particles by atmospheric PECVD

    NARCIS (Netherlands)

    Abadjieva, E.; Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Ommen, J.R. van

    2012-01-01

    Fluorocarbon coatings have been deposited on micron-sized silica particles by means of atmospheric pressure plasma-enhanced chemical vapor deposition (PECVD). The silica particles have a diameter in the range between 40 and 70 ?m. They are fluidized at atmospheric pressure in a circulating fluidized

  17. Chitosan-coated boron nitride nanospheres enhance delivery of CpG oligodeoxynucleotides and induction of cytokines

    Directory of Open Access Journals (Sweden)

    Zhang H

    2013-05-01

    Full Text Available Huijie Zhang,1,2 Song Chen,3 Chunyi Zhi,4 Tomohiko Yamazaki,1,2 Nobutaka Hanagata1,2,5 1Graduate School of Life Science, Hokkaido University, Sapporo, Japan; 2Biomaterials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki, Japan; 3Japanese Society for the Promotion of Science, Tokyo, Japan; 4Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People’s Republic of China; 5Nanotechnology Innovation Station, Ibaraki, Japan Background: Cytosine-phosphate-guanine (CpG oligodeoxynucleotides activate Toll-like receptor 9, leading to induction of proinflammatory cytokines, which play an important role in induction and maintenance of innate and adaptive immune responses. Previously, we have used boron nitride nanospheres (BNNS as a carrier for delivery of unmodified CpG oligodeoxynucleotides to activate Toll-like receptor 9. However, because CpG oligodeoxynucleotides and BNNS are both negatively charged, electrostatic repulsion between them is likely to reduce the loading of CpG oligodeoxynucleotides onto BNNS. Therefore, the efficiency of uptake of CpG oligodeoxynucleotides is also limited and does not result in induction of a robust cytokine response. To ameliorate these problems, we developed a CpG oligodeoxynucleotide delivery system using chitosan-coated BNNS as a carrier. Methods: To facilitate attachment of CpG oligodeoxynucleotides onto the BNNS and improve their loading capacity, we prepared positively charged BNNS by coating them with chitosan preparations of three different molecular weights and used them as carriers for delivery of CpG oligodeoxynucleotides. Results: The zeta potentials of the BNNS-CS complexes were positive, and chitosan coating improved their dispersity and stability in aqueous solution compared with BNNS. The positive charge of the BNNS-CS complexes greatly improved the loading capacity and cellular uptake efficiency of Cp

  18. Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK.

    Science.gov (United States)

    Durham, John W; Rabiei, Afsaneh

    2016-09-15

    Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength.

  19. Long length coated conductor fabrication by inclined substrate deposition and evaporation

    Science.gov (United States)

    Prusseit, W.; Hoffmann, C.; Nemetschek, R.; Sigl, G.; Handke, J.; Lümkemann, A.; Kinder, H.

    2006-06-01

    The commercial development of coated conductors is rapidly progressing. As a result we present an economic route to produce second generation HTS tape from the initial substrate preparation to the final metal coating. The most important and technically challenging steps are the deposition of an oriented buffer layer and the superconductor film in a reel-to-reel configuration. New evaporation techniques have been developed to enable reliable, high rate tape coating. Highly oriented MgO - buffer layers are realized by inclined substrate deposition (ISD) and DyBCO is deposited by simple e-gun evaporation yielding critical currents beyond 200 A/cm. Coated conductors have been fabricated up to 40 m length and are currently tested in a variety of applications.

  20. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Science.gov (United States)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  1. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    Science.gov (United States)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  2. Deposition of dual-layer coating on Ti6Al4V

    Science.gov (United States)

    Hussain Din, Sajad; Shah, M. A.; Sheikh, N. A.

    2017-03-01

    Dual-layer diamond coatings were deposited on titanium alloy (Ti6Al4V) using a hot filament chemical vapour deposition technique with the anticipation of studying the structural and morphology properties of the alloy. The coated diamond films were characterized using scanning electron microscope, x-ray diffraction (XRD), and Raman spectroscopy. The XRD studies reveal that the deposited films are highly crystalline in nature, whereas morphological studies show that the films have a cauliflower structure. XRD analysis was used to calculate the structural parameters of the Ti6Al4V and CVD-coated Ti6Al4V. Raman spectroscopy was used to determine the nature and magnitude of the residual stress of the coatings.

  3. Tribological Performance of MoS2-based Coatings after Deposition and Storage in Humid Air

    Institute of Scientific and Technical Information of China (English)

    JINGYang; LUOJian-bin; PANGSi-qin

    2004-01-01

    MoS2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique the effects of processing parameters and working enwironments on the tribological properties of the coatings were examined by the drilling experiuments and XPS.the distances between substrate and Ti larget, Ti content and deposition pressure were varied in order to determine the optimun conditions for producing lubricious,long-lasting MoS2-based coatings,IT is found that the tribological performance of Tin-MoS2 roating decreases rqapidly in humid air but the humid resistant property of Tin-MoS2/Ti coating improves evidently it is indicated that the humid-resistantance property and the abrasion durability of MoS2-based coatings can be enhanced markedly by adding Ti with a certain contents.

  4. Nanoparticle dispersion-strengthened coatings and electrode materials for electrospark deposition

    Energy Technology Data Exchange (ETDEWEB)

    Levashov, E.A. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation)]. E-mail: levashov@shs.misis.ru; Vakaev, P.V. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Zamulaeva, E.I. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Kudryashov, A.E. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Pogozhev, Yu.S. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Shtansky, D.V. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Voevodin, A.A. [Air Force Research Laboratory, 2941 Hobson Way, Wright Patterson AFB, OH 45433 (United States); Sanz, A. [SKF Engineering and Research Centre, P.O. Box 2350 Kelvinbaan 16, 3430 DT Nieuwegein, 3439 MT Nieuwegein (Netherlands)

    2006-11-23

    Advanced electrode compositions were developed using self-propagating high-temperature synthesis (SHS). Electrospark deposition (ESD) was applied to produce tribological coatings which were disperse-strengthened by incorporation of nanosized particles. Nanostructured electrodes of cemented carbides were produced using powder metallurgy technologies. They allow increasing the coatings density, thickness, hardness, Young's modulus and wear resistance. Positive effects of the nanostructure of electrodes on the deposition process and structure and properties of the coatings are discussed. In that case the tungsten carbide phases become predominant in the coatings. A mechanism of the dissolution reaction of WC with Ni at the contact surface of electrode was proposed. It was shown that the formation of the coating structure starts on the electrode and is accomplished on the substrate.

  5. Status of Plasma Physics Techniques for the Deposition of Tribological Coatings

    Science.gov (United States)

    Spalvins, T.

    1984-01-01

    The plasma physics deposition techniques of sputtering and ion-plating are reviewed. Their characteristics and potentials are discussed in terms of synthesis or deposition of tribological coatings. Since the glow discharge or plasma generated in the conventional sputtering and ion-plating techniques has a low ionization efficiency, rapid advances have been made in equipment design to further increase the ionization efficiency. The enhanced ionization favorably affects the nucleation and growth sequence of the coating. This leads to improved adherence and coherence, higher density, favorable morphological growth, and reduced internal stresses in the coatings. As a result, desirable coating characteristics can be precision tailored. Tribological coating characteristics of sputtered solid film lubricants such as MoS2, ion-plated soft gold and lead metallic films, and sputtered and ion-plated wear-resistant refractory compound films such as nitrides and carbides are discussed.

  6. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  7. Preparation of Chromium Oxide Coatings on Aluminum Borate Whiskers by a Hydrothermal Deposition Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aluminum borate whiskers (9Al2O32B2O3) can be used to reinforce aluminum alloys to produce light and strong composites. However, the adverse interfacial reactions between the whiskers and the aluminum alloys inhibit their practical uses; therefore, a protective coating is needed on whiskers. In this work, aluminum borate whiskers were coated with chromium-coating deposits in a hydrothermal solution containing CrCl3, Na2C4H4O6, NaPH2O2, and H3BO3. The presence of the impurity P in the hydrothermal deposits can be avoided by reducing the amount of NaPH2O2 in the coating solution. Thermodynamic analysis was used to discuss the behavior of ions in the coating process. The subsequent heating of the hydrothermal products in air at 800 ℃ yielded smooth Cr2O3 films with a thickness of 0.060.07 μm.

  8. Coating and functionalization of high density ion track structures by atomic layer deposition

    Science.gov (United States)

    Mättö, Laura; Szilágyi, Imre M.; Laitinen, Mikko; Ritala, Mikko; Leskelä, Markku; Sajavaara, Timo

    2016-10-01

    In this study flexible TiO2 coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti(iOPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils.

  9. MCrA1Y/TaC Metal Matrix Composite Coatings Produced by Electrospark Deposition

    Institute of Scientific and Technical Information of China (English)

    Yujiang XIE; Yanhong YANG; Mingsheng WANG; Jian HOU

    2013-01-01

    MCrAlY/TaC metal matrix composite coatings with 10,20 and 30 wt.% TaC have been successfully produced by electrospark deposition (ESD).The effects of TaC content on microstructure,hardness and oxidation behavior of the composite coatings were studied.The results showed that the composite coatings were composed of superfine γ columnar dendrite and large TaC particles dispersedly distributed.The hardness was enhanced but oxidation resistance of the composite coatings was reduced with increasing TaC contents.

  10. Interface behavior study of WC92-Co8 coating produced by electrospark deposition

    Institute of Scientific and Technical Information of China (English)

    汪瑞军; 钱乙余; 刘军

    2004-01-01

    ESD (electrospark deposition) is a promising process to produce hard and wear-resisting coatings on metallic substrates. In this paper microstructure and interfacial characteristics of the WC92-Co8 coated on titanium and carbon steel are presented. A metallurgical bonding between the coating and substrate is obtained. The Ti element was found to distribute in WC92-Co8 at the metal pool, as well as the interface by diffusion. Some new phases were produced in the coating layer due to the chemical reaction during the ESD process. Experimental observation and thermodynamic analysis were utilized to study the mechanism of ESD.

  11. Dual Bath Electrodeposition of Alternate Multilayer Coatings of Zinc and Nickel Deposits

    Institute of Scientific and Technical Information of China (English)

    XIN Wen-li; FEI Jing-yin; LIANG Guo-zheng

    2004-01-01

    The synthesis of zinc and nickel alternate multilayer coatings produced by successive deposition from dual baths containing a revised zinc sulphate electrolyte and a new developed nickel bath has been investigated. Smooth and uniform zinc-nickel compositionally modulated multilayered (CMM) coatings with different multilayer configurations were obtained. The surface and cross-sectional morphologies of samples were examined using scanning electron microscopy (SEM). Cross-sectional morphology showed the layered structure of the coatings clearly.Key Words: multilayer coating, electrodeposited zinc and nickel, electrodeposition

  12. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values. It was round that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interracial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  13. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values.It was found that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interfacial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  14. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    Science.gov (United States)

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.

  15. Confined-plume chemical deposition: rapid synthesis of crystalline coatings of known hard or superhard materials on inorganic or organic supports by resonant IR decomposition of molecular precursors.

    Science.gov (United States)

    Ivanov, Borislav L; Wellons, Matthew S; Lukehart, Charles M

    2009-08-26

    A one-step process for preparing microcrystalline coatings of known superhard, very hard, or ultraincompressible ceramic compositions on either inorganic or organic supports is reported. Midinfrared pulsed-laser irradiation of preceramic chemical precursors layered between IR-transmissive hard/soft supports under temporal and spatial confinement at a laser wavelength resonant with a precursor vibrational band gives one-step deposition of crystalline ceramic coatings without incurring noticeable collateral thermal damage to the support material. Reaction plume formation at the precursor/laser beam interface initiates confined-plume, chemical deposition (CPCD) of crystalline ceramic product. Continuous ceramic coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of the Re-B single-source precursor, (B(3)H(8))Re(CO)(4), the dual-source mixtures, Ru(3)(CO)(12)/B(10)H(14) or W(CO)(6)/B(10)H(14), and the boron/carbon single-source precursor, o-B(10)C(2)H(12), confined between Si wafer or NaCl plates gives microcrystalline deposits of ReB(2), RuB(2), WB(4), or B(4)C, respectively. CPCD processing of Kevlar fabric wetted by (B(3)H(8))Re(CO)(4) produces an oriented, microcrystalline coating of ReB(2) on the Kevlar fabric without incurring noticeable thermal damage of the polymer support. Similarly, microcrystalline coatings of ReB(2) can be formed on IR-transmissive IR2, Teflon, or Ultralene polymer films.

  16. Piezoelectric film electro-deposition for optical fiber sensor with ZnO coating

    Institute of Scientific and Technical Information of China (English)

    Li Zhou; Ping Gu; Ya Zhou

    2008-01-01

    The piezoelectric film electro-deposition for optical fiber sensor with ZnO coating is studied. The zinc oxide plating film is made on the copper surface directly by cathodic electro-deposition in the Zn(NO3)2 single salt aqueous solution systems. The influences of main experimental conditions on the properties of ZnO thin film in the electro-deposition processes are analyzed and a stable, practical and economic technique is obtained.

  17. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Blanda, Giuseppe [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Piazza, Salvatore; Sunseri, Carmelo [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Inguanta, Rosalinda, E-mail: rosalinda.inguanta@unipa.it [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO{sub 4}·H{sub 2}O; HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO{sub 3}){sub 2}·4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  18. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  19. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  20. Influence of precursor solution parameters on chemical properties of calcium phosphate coatings prepared using Electrostatic Spray Deposition (ESD).

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Schoonman, J.; Jansen, J.A.

    2004-01-01

    A novel coating technique, referred to as Electrostatic Spray Deposition (ESD), was used to deposit calcium phosphate (CaP) coatings with a variety of chemical properties. The relationship between the composition of the precursor solutions and the crystal and molecular structure of the deposited coa

  1. Quantifying Friction Effects of Molybdenum Disulfide, Tungsten Disulfide, Hexagonal Boron Nitride, and Lubalox as Bullet Coating

    Science.gov (United States)

    2012-07-30

    also claims that these coatings eliminate copper fouling of the barrel. The Swedish ammunition company Norma Precision advertises friction reduction...Lubricant,” US Patent 6036996. [7] Norma , 2011. “ Norma Diamond Line.” http://www.norma.cc/en/Products/Our-Brands/ Norma - Diamond-Line/ Accessed

  2. Tribological and thermal stability study of nanoporous amorphous boron carbide films prepared by pulsed plasma chemical vapor deposition

    Science.gov (United States)

    Liza, Shahira; Ohtake, Naoto; Akasaka, Hiroki; Munoz-Guijosa, Juan M.

    2015-06-01

    In this work, the thermal stability and the oxidation and tribological behavior of nanoporous a-BC:H films are studied and compared with those in conventional diamond-like carbon (DLC) films. a-BC:H films were deposited by pulsed plasma chemical vapor deposition using B(CH3)3 gas as the boron source. A DLC interlayer was used to prevent the a-BC:H film delamination produced by oxidation. Thermal stability of a-BC:H films, with no delamination signs after annealing at 500 °C for 1 h, is better than that of the DLC films, which completely disappeared under the same conditions. Tribological test results indicate that the a-BC:H films, even with lower nanoindentation hardness than the DLC films, show an excellent boundary oil lubricated behavior, with lower friction coefficient and reduce the wear rate of counter materials than those on the DLC film. The good materials properties such as low modulus of elasticity and the formation of micropores from the original nanopores during boundary regimes explain this better performance. Results show that porous a-BC:H films may be an alternative for segmented DLC films in applications where severe tribological conditions and complex shapes exist, so surface patterning is unfeasible.

  3. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition

    Science.gov (United States)

    Park, Hamin; Kim, Tae Keun; Cho, Sung Woo; Jang, Hong Seok; Lee, Sang Ick; Choi, Sung-Yool

    2017-01-01

    Hexagonal boron nitride (h-BN) has been previously manufactured using mechanical exfoliation and chemical vapor deposition methods, which make the large-scale synthesis of uniform h-BN very challenging. In this study, we produced highly uniform and scalable h-BN films by plasma-enhanced atomic layer deposition, which were characterized by various techniques including atomic force microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The film composition studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy corresponded to a B:N stoichiometric ratio close to 1:1, and the band-gap value (5.65 eV) obtained by electron energy loss spectroscopy was consistent with the dielectric properties. The h-BN-containing capacitors were characterized by highly uniform properties, a reasonable dielectric constant (3), and low leakage current density, while graphene on h-BN substrates exhibited enhanced electrical performance such as the high carrier mobility and neutral Dirac voltage, which resulted from the low density of charged impurities on the h-BN surface.

  4. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  5. Coating and functionalization of high density ion track structures by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mättö, Laura [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111 (Hungary); MTA-BME Technical Analytical Research Group, Szent Gellért tér 4, Budapest H-1111 (Hungary); Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Ritala, Mikko; Leskelä, Markku [Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland)

    2016-10-01

    In this study flexible TiO{sub 2} coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO{sub 2} films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti({sup i}OPr){sub 4} and water as precursors at 250 °C. The TiO{sub 2} films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils. - Highlights: • Porous Kapton membranes were obtained by ion track technology and chemical etching. • TiO{sub 2} films were deposited by ALD into the pores of the Kapton membranes. • TiO{sub 2} nanotube array was prepared by removing the polymer core. • MCP structures were obtained from the coated membranes. • Electron multiplication was achieved using the ALD-coated Kapton foils.

  6. Zirconia coatings deposited by novel plasma-enhanced aerosol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Miszczak, Sebastian; Pietrzyk, Bozena; Kucharski, Daniel [Institute of Materials Science and Engineering, Lodz University of Technology (Poland)

    2016-05-15

    The sol-gel technique is well known and widely used for manufacturing coatings. An aerosol-gel method is a modification of the classic sol-gel process. Preparation of coatings by this technique involves the formation of an aerosol and its deposition on the coated surfaces, where the aerosol droplets merge into a continuous layer. In this work, an aerosol-gel routine, enhanced with a low-temperature plasma discharge, was used to produce zirconia coatings on different substrates. Low-temperature plasma was used for preactivation of substrate surfaces prior to the sol deposition, and for treatment of deposited layers. The obtained coatings were characterized using optical, electron (SEM), and atomic force (AFM) microscopes, a contact-angle device, a scratch tester, a grazing-incidence X-ray diffractometer (GIXRD), and an infrared spectrometer (FTIR). The results showed a significant influence of substrate plasma pretreatment on the formation and morphology of zirconia thin films. A noticeable effect of low-temperature plasma treatment on the structure and properties of the obtained coatings was also presented. These results allow possible applications of this method for the preparation of zirconia coatings on temperature-sensitive substrates to be predicted. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  8. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    Science.gov (United States)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  9. Stress Analysis in Polymeric Coating Layer Deposited on Rigid Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Soon Lee [Korea University of Technology and Education, School of Mechatronics Engineering, Chonan (Korea, Republic of)

    2015-08-15

    This paper presents an analysis of thermal stress induced along the interface between a polymeric coating layer and a steel substrate as a result of uniform temperature change. The epoxy layer is assumed to be a linear viscoelastic material and to be theromorheologically simple. The viscoelastic boundary element method is employed to investigate the behavior of interface stresses. The numerical results exhibit relaxation of interface stresses and large stress gradients, which are observed in the vicinity of the free surface. Since the exceedingly large stresses cannot be borne by the polymeric coating layer, local cracking or delamination can occur at the interface corner.

  10. ZrO(2)/hydroxyapatite coating on titanium by electrolytic deposition.

    Science.gov (United States)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Yang, Chih-Hsiung; Ho, Wen-Fu

    2009-02-01

    In this study, hydroxyapatite (HA) was coated on a titanium (Ti) substrate over a ZrO(2) layer by the electrolytic deposition method, this double layer coating was then compared with a single layer coating of HA. The HA layer was used to increase the bioactivity and osteoconductivity of the Ti substrate, and the ZrO(2) layer was intended to improve the bonding strength between the HA layer and Ti substrate, and to prevent the corrosion of the Ti substrate. The electrolytic deposition formed an HA layer with a thicknesses of approximately 20 mum, which adhered tightly to the Ti substrate. The bonding strength of the HA/ZrO(2) double layer coating on Ti was markedly improved when compared to that of the HA single coating on Ti. The improvement in bonding strength with the use of a ZrO(2) base layer was attributed to the resulting increase in chemical affinity of the ZrO(2) to the HA layer and to the Ti substrate. The osteoblast-like cells cultured on the HA/ZrO(2) coating surface, proliferated in a similar manner to those on the HA single coating and on the pure Ti surfaces. At the same time, the corrosion resistance of Ti was improved by the presence of the ZrO(2) coating, as shown by a potentiodynamic polarization test.

  11. Preparation and mechanical properties of two nickel base alloy coatings achieved by electrospark deposition

    Institute of Scientific and Technical Information of China (English)

    Ping ZHANG; Lin MA; Zhijie LIANG; Junjun ZHAO

    2011-01-01

    Ni398 and Ni818 base alloy coatings were deposited on 1045 steel by electrospark deposition technique (ESD).Forming properties,thickness,microhardness and wear resistance of the coatings were investigated.The chemical composition and crosssection morphology were analyzed through energy dispersive spectrum (EDS) and metalloscope.The results show that the technological parameter window of Ni398 is larger than that of Ni818 electrode.However,other properties of the Ni818 coating,such as thickness and microhardness,were better than those of the Ni398 coating.Especially the wornout volume of Ni818 coating is only 1/6 of that for 1045 steel and 1/3 for Ni398 coating.Chemical composition analysis indicated that the addition of Mo promoted grain refinement of nickel alloy.Metallographic analysis shows that the molten droplets of Ni398 coatings have an average structure thickness of 20-40 μm while the microstructure of Ni818 coatings is flat with width of 5-20 μm.

  12. Thermal Cycling Behavior of Quasi-Columnar YSZ Coatings Deposited by PS-PVD

    Science.gov (United States)

    Yang, Jiasheng; Zhao, Huayu; Zhong, Xinghua; Shao, Fang; Liu, Chenguang; Zhuang, Yin; Ni, Jinxing; Tao, Shunyan

    2017-01-01

    Columnar-structured thermal barrier coatings, owing to their high strain tolerance, are expected for their potential possibilities to substantially extend turbine lives and improve engine efficiencies. In this paper, plasma spray-physical vapor deposition (PS-PVD) process was used to deposit yttria partially stabilized zirconia (YSZ) coatings with quasi-columnar structures. Thermal cyclic tests on burner rigs and thermal shock tests by heating and water-quenching method were involved to evaluate the thermal cycling and thermal shock behaviors of such kind of structured thermal barrier coatings (TBCs). Evolution of the microstructures, phase composition, residual stresses and failure behaviors of quasi-columnar YSZ coatings before and after the thermal tests was investigated. The quasi-columnar coating obtained had an average life of around 623 cycles when the spallation area reached about 10% of the total coating surface during burner rig tests with the coating surface temperature of 1250 °C. Failure of the coating is mainly due to the break and pull-out of center columnar segments.

  13. The atmospheric chemical vapour deposition of coatings on glass

    CERN Document Server

    Sanderson, K D

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In sub 2 O sub 3 films with a resistivity of 1.1 - 3x10 sup - sup 3 OMEGA cm were obtained with ln(thd) sub 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) sub 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstr...

  14. Chemical vapor deposition fabrication and characterization of silica-coated carbon fiber ultramicroelectrodes.

    Science.gov (United States)

    Zhao, G; Giolando, D M; Kirchhoff, J R

    1995-08-01

    Carbon fiber disk ultramicroelectrodes (UMEs) with well-defined geometries were prepared by chemical vapor deposition techniques. Transparent silica films with thicknesses from 1 to 600 microns were deposited on the cylindrical length of 5 and 10 microns carbon fibers from a SiCl4, H2, and O2 ternary precursor system at 850-1150 degrees C or sequential deposition from Si(OEt)4 as a single source precursor at 700 degrees C followed by the SiCl4, H2, and O2 precursor system. Film thickness, film adhesion to the fiber substrate, and the overall dimensions of the silica-coated carbon fiber were studied and found to be a function of the precursor system, precursor concentrations, fiber diameter, deposition time, and fiber temperature. The silica films were found to be free of microcracks and characterized by a quality seal between the carbon fiber and the coating. As a result, the silica-coated disk UME exhibits an excellent electrochemical response without the need to use an epoxy sealant at the electrode tip. Furthermore, the deposition of hard and inert ceramic materials imparts durability to fragile carbon fibers and facilitates the handling of UMEs in microenvironments. Finally, the advantage of concentric deposition about the fibers to produce a disk UME in the center of an insulating plane was used to examine the effect of the thickness of the insulating coating on the limiting current response.

  15. 涂硼GEM中子束流监测器物理过程的蒙特卡罗模拟%Monte Carlo Simulation Study on the Physical Process of the Boron-coated GEM Neutron Beam Monitor

    Institute of Scientific and Technical Information of China (English)

    王拓; 周健荣; 孙志嘉; 吴冲; 王艳凤; 杨桂安; 陈元柏

    2014-01-01

    基于硼转换的GEM (Gas Electron Multiplier)探测器性能突出,计数率高达10 MHz以上,耐辐射,信号读出方式简单、灵活,位置与时间分辨率高,是下一代中子束流监测器极具优势的候选者。这种新型中子束流监测器主要由硼中子转换层、气体电离粒子放大的GEM以及二维读出电极组成。通过Geant4程序包对探测器物理过程进行蒙特卡罗(Monte Carlo)模拟,主要研究了硼中子转换层转换效率与厚度及中子波长的关系、出射粒子的能谱、不同气体比分不同气体厚度中的能量沉积、以及γ的能量沉积,计算比较了不同厚度GEM膜对快中子产生的影响。模拟结果表明,出射粒子在漂移区的能量沉积几乎与气体比分无关,硼层厚度取0.1µm以下,漂移区厚度6 mm时,可以确保出射粒子在漂移区能量完全沉积,同时具有最佳n/γ区分能力。%The performance of a boron-coated GEM (Gas Electron Multiplier) neutron beam monitor is outstanding, with the counting rate up to 10 MHz, radiation resistance, flexible readout patterns, high resolution in position and time, which is considered as a good candidate for the next generation of neutron beam monitor. This new kind of neutron beam monitor mainly consists of boron convertor, GEM and two-dimensional readout electrode. In this paper, the Monte Carlo simulation on the physical process of the detector has been carried out by using Geant4 package, including the conversion efficiency of the boron layer influenced by the thickness and the neutron wavelength, the spectrum of emitted ions, and the energy deposition of the ions and the gamma in the different gas thickness of several gas volume ratio. Besides, the effect by the fast neutrons with GEM foils has also been calculated. The results show that the ions energy deposited in the drift region is almost independent of the gas volume ratio, the thickness 6 mm of the drift region is

  16. lectrolytic deposition of lithium into calcium phosphate coatings

    NARCIS (Netherlands)

    Wang, Jiawei; Groot, de Klaas; Blitterswijk, van Clemens; Boer, de Jan

    2009-01-01

    Objectives: Lithium ions stimulate the Wnt signaling pathway and the authors previously demonstrated that lithium enhances the proliferation of tissue cultured human mesenchymal stem cells. The aim of this study was to prepare and characterize a calcium phosphate/lithium coating by means of electrol

  17. Effects of boron addition on a-Si90Ge10:H films obtained by low frequency plasma enhanced chemical vapour deposition

    Science.gov (United States)

    Pérez, Arllene M.; Renero, Francisco J.; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-01

    Optical, structural and electric properties of (a-(Si90Ge10)1-yBy:H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10-3 to 101 Ω-1 cm-1 when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  18. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    Cobalt oxide films were grown by Pulsed Injection Metal Organic Chemical Vapour Deposition (PI-MOCVD) using Co(acac)(3) (acac=acetylacetonate) precursor dissolved in toluene. The structure, morphology and growth rate of the layers deposited on silicon substrates were studied as a function...... of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects...

  19. Some features of ion mixing during simultaneous ion implantation and deposition of metallic coatings

    CERN Document Server

    Pogrebnyak, A D; Mikhalev, A D; Shablya, V T; Yanovskij, V P

    2001-01-01

    The results on the Ta, Cu ions implantation into the aluminium substrate by simultaneous deposition of these ions in the form of coatings are presented. The complex structure of these coatings from the given elements in the substrate, as well as the increase in the microhardness, adhesion and corrosion resistance growth are determined. It is shown on the basis of the results of the secondary ions energy distribution, that intermetallic phases are formed in the substrate surface layer

  20. Structural and corrosion protection properties of electrochemically deposited nano-sized Zn–Ni alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tozar, A., E-mail: tozarali@gmail.com; Karahan, İ.H.

    2014-11-01

    Highlights: • Nano-sized, compact and bright deposits were obtained galvanostatically. • Deposition of zinc–nickel alloys has been materialized in domination of zinc-rich ∂-(Ni{sub 3}Zn{sub 22}) and γ-(Ni{sub 5}Zn{sub 22}) phases. • Sodium citrate (Na{sub 3}C{sub 6}H{sub 5}O{sub 7}) has been used together with boric acid (H{sub 3}BO{sub 3}) for inhibition of instantaneous deposition of zinc and accordingly increasing the relative amount of nickel. • Corrosion protection performances of the deposits were increased with increasing deposition current density and nickel amount. • Crystal defects have been increased with decreasing crystallite size. - Abstract: Zn–Ni alloy coatings were fabricated galvanostatically by applying varied current densities from 10 to 30 mA cm{sup −2}. Surface morphology of the coatings was examined with SEM. Crystal structure of the coatings was studied with X-ray diffraction spectroscopy (XRD). Compositions of the coatings were determined by atomic absorption spectroscopy (AAS). Corrosion protection properties studied using open circuit potential (OCP) measurements, potentiodynamic polarization measurements (Tafel), electrochemical impedance spectroscopy (EIS). Deposited alloy coatings were compact and nano-sized. Crystallite sizes of the coatings were varying from 26 nm to 36 nm. Nickel content of the samples were increased by increasing current densities and varied from 6.7 to 18.9 wt.%. Best corrosion protection performance was seen on the sample obtained at 30 mA cm{sup −2}. Our results are considerably encouraging for protection of mild steel against corrosion by obtained Zn–Ni alloys.

  1. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  2. Nano-structured yttria-stabilized zirconia coating by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maleki-Ghaleh, H., E-mail: H_Maleki@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Rekabeslami, M. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shakeri, M.S. [Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Siadati, M.H. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Javidi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Talebian, S.H. [Faculty of Petroleum Engineering, Universiti Technologi Petronas, Perak (Malaysia); Aghajani, H. [Department of Materials Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-09-01

    The most important role of thermal barrier coatings is to reduce the temperature of the substrate in high temperature applications. Nanoparticle zirconia might be a suitable choice for improving the efficiency of thermal barrier coatings. Nanostructured coatings have lower thermal conduction, higher thermal expansion and lower dimensional variations at higher temperatures in comparison with the microstructured coatings. Electrophoretic deposition has been preferred for thermal barrier coatings due to its simplicity, controllability and low cost. In the present study, three different suspensions of ZrO{sub 2}–8 wt%Y{sub 2}O{sub 3} (40 nm) made with ethanol, acetone and acetyl acetone were used. Electrophoretic deposition was conducted at a fixed voltage of 60 V for 120 s on aluminized Inconel 738-LC, and then heat treated at 1100{sup o}C for 4 h in air atmosphere. The coating morphology and elemental distribution were studied using scanning electron microscopy. It was observed that suspension media have an important effect on the quality of the final product. Acetyl acetone showed better dispersion of particles than the other two media. Consequently, deposition from acetyl acetone resulted in uniform and crack-free layers while those from ethanol and acetone were completely non-uniform due to agglomeration and low viscosity, respectively.

  3. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating.

    Science.gov (United States)

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-12-09

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts.

  4. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    Science.gov (United States)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance.

  5. Characterization and formation mechanism of nano-structured hydroxyapatite coatings deposited by the liquid precursor plasma spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yi; Song Lei; Huang Tao; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Wu Fang; Gu Zhongwei, E-mail: fangwu0808@yahoo.co [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)

    2010-10-01

    Nano-structured hydroxyapatite (HA) coatings were deposited on the Ti-6Al-4V alloy substrate by the liquid precursor plasma spraying (LPPS) process. The thermal behavior of the HA liquid precursor was analyzed to interpret the phase change and structure transformation during the formation process of the nano-structured HA coatings. The phase composition, structure and morphology of the nano-structured HA coatings were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. The XRD spectra showed that the coatings deposited by the LPPS process mainly consisted of the HA phase and the crystallite size was measured to be 56 nm. The SEM observation showed that the as-deposited LPPS coatings had small splat size, and nano-scale HA particles were found in certain regions of the coating surface. The FTIR spectroscopy showed the strong presence of the OH{sup -} group in the as-deposited LPPS coatings, indicating a superior structural integrity. In addition, the coatings deposited by the LPPS process were also carbonated HA coatings. The results indicate that the LPPS process is a promising plasma spraying technique for depositing nano-structured HA coatings with unique microstructural features that are desirable for improving the biological performance of the HA coatings.

  6. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  7. Quantitative Image Analysis of Ni-P Coatings Deposited on Carbon Fibers

    Science.gov (United States)

    Kozera, R.; Bucki, J. J.; Sałacińska, A.; Bieliński, J.; Boczkowska, A.

    2015-09-01

    In this work, polyacrylonitrile (PAN)-based carbon fibers coated with different thicknesses of Ni-P coatings were studied. The coatings were deposited by electroless metallization lasting from 3 to 22 min and consisted of approximately 3 wt.% phosphorous. Computer quantitative image analysis was used to characterize the surface features and thickness of the coatings as a function of the time of metallization. The results showed that quantitative image analysis is a useful technique for the measurement of the coating thickness and can be used as a tool for obtaining an innovative description of the Ni-P coating morphology. The morphology of the coatings and their thicknesses were investigated by scanning electron microscopy. The image analyses were performed using the proprietary software Micrometer, developed at the Faculty of Materials Science and Engineering, Warsaw University of Technology. The observations revealed that a specific feature of the coating topography is the hemispherical bulge of a diameter ranging from 0.1 to 10 μm. The thickness of the coatings increases linearly with the metallization time. The obtained results indicated that the methodology proposed in the present work can be successfully applied and possesses several advantages over the traditionally used weight measurements technique.

  8. Microstructure evolution of cold-sprayed coating during deposition and through post-spraying heat treatment

    Institute of Scientific and Technical Information of China (English)

    LI Chang-jiu; LI Wen-ya

    2004-01-01

    The microstructural features of cold-sprayed coatings were investigated using Cu, Ti and Zn feedstocks by optical microscopy, scanning electron microscopy and transmission electron microscopy to reveal the microstructure evolution mechanisms in cold spray. Four typical effects including tamping, refinement, impact-induced fusion and annealing were examined on microstrueture. It is found that the microstructure of cold spray coating is remarkably influenced by spray materials. Ti coatings consist of evident porous layer and Cu coatings present a limited porous layer only near the surface. It is clear that the successive tamping effect and dynamic refinement of grains significantly influence the microstructure evolution of cold-sprayed coating. The tamping effect leads to the densification of porous coating layer gradually and the refinement effect leads to the formation of fine microstructure. It is considered that the large difference in the formation of porous layer is attributed to the dynamic impact pressure and hardenability of materials. It is also found that the impact-induced fusion during deposition of Zn coating can also modify the interfacial microstructure between particles in cold spray coating. Moreover, the nanocrystalline phase can be formed at the interfaces among particles resulting from the localized melting of the interfaces and tamping effect. Furthermore, the annealing treatment can modify the microstructure and property of a cold-sprayed coating.

  9. Anodisation of sputter deposited aluminium–titanium coatings: Effect of microstructure on optical characteristics

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Junker-Holst, Andreas; Vestergaard Nielsen, Daniel;

    2014-01-01

    -ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipitation of Al3Ti phases. The reflectance of the anodised surfaces...... decreasedwith titaniumcontent in the as-deposited, and heat-treated states, and after anodisation of the as-deposited coatings. Specimens turned grey or blackwhen anodising after heat treatment. Partially anodised Al3Ti phaseswere found in the anodised layer, and the interface between substrate and anodised...

  10. Preparation and characterization of YBCO coating on metallic RABiT substrates by pulsed laser deposition

    Science.gov (United States)

    Gonal, M. R.; Prajapat, C. L.; Igalwar, P. S.; Maji, B. C.; Singh, M. R.; Krishnan, M.

    2016-05-01

    Superconducting YBCO films are coated on metallic Rolling Assisted Bi-axially Textured Substrates (RABiTS) Ni-5wt % W (NiW) (002) substrate using pulsed laser deposition (PLD) system. Targets of YBa2Cu3O7-δ (YBCO) and buffer layers of Ceria and 8 mole % Yttria Stabilized Zirconia (YSZ) of high density are synthesized. At each stage of deposition coatings are characterized by XRD. Transport studies show superconducting nature of YBCO only when two successive buffer layers of YSZ and CeO2 are used.

  11. Microanalyses of the hydroxyl—poly—calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Yang; WANGChang-Xing; 等

    2002-01-01

    Thin calcium phosphate catings on titanium alloy substrates were prepared by Ar+ ion beam assisted deposition(IBAD) from hydroxyl-poly-calcium sodium phosphate(HPPA) target.The coatings were analyzed by XRD,FTIR,XPS,These analyses revealed that the as-deposited films were amorphous or no apparent crystallinity.No distinct absorption band of the hydroxyl group was observed in FTIR spectra of the coatings but new absorption bands were presented for CO3-2,The calcium to phosphorous ratio of these catings in different IBAD conditions varied from 0.46 to 3.36.

  12. Optimized plasma-deposited fluorocarbon coating for dry release and passivation of thin SU-8 cantilevers

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Häfliger, Daniel; Boisen, Anja

    2008-01-01

    release of SU-8 cantilevers and membranes with thicknesses down to 2.3 and 1.7 mu m respectively, which is a considerable improvement to what has been achieved by dry release of all-polymer structures to date. Furthermore, chemical reaction of the SU-8 with the fluorocarbon coating during processing leads......Plasma-deposited fluorocarbon coatings are introduced as a convenient method for the dry release of polymer structures. In this method, the passivation process in a deep reactive ion etch reactor was used to deposit hydrophobic fluorocarbon films. Standard photolithography with the negative epoxy...

  13. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk; Adam Lejwoda; Przemyslaw Cieszkowski; Przemyslaw Libuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqvist's method for measurement of coating susceptibility to brittle cracking.

  14. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk; AdamLejwoda; PrzemyslawCieszkowski; PrzemyslawLibuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqyist's method for measurement of coating susceptibility to brittle cracking.

  15. Characterization of 1064nm laser-induced damage on antireflection coatings grown by atomic layer deposition

    Science.gov (United States)

    Liu, Zhichao; Wei, Yaowei; Chen, Songlin; Luo, Jin; Ma, Ping

    2011-12-01

    Damage tests were carried out to measure the laser resistance of Al2O3/TiO2 and Al2O3/HfO2 antireflection coatings at 1064nm grown by atomic layer deposition (ALD). The S-on-1 and R-on-1 damage results are given. It's interesting to find that ALD coatings damage performance seems closed to those grown by conventional e-beam evaporation process. For Al2O3/TiO2 coatings, the grown temperature will impact the damage resistance of thin films. Crystallization of TiO2 layer at higher temperature could play an importance role as absorption defects that reduced the LIDT of coatings. In addition, it is found that using inorganic compound instead of organic compound as precursors for ALD process can effective prevent residual carbon in films and will increase the LIDT of coatings.

  16. The electrochemical deposition of tin-nickel alloys and the corrosion properties of the coating

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Møller, Per

    2005-01-01

    electrodeposition. The alloy has unique corrosion properties and exhibits surface passivation like stainless steel. The coating is decorative and non-allergic to the skin, can replace decorative nickel and nickel-chromium coatings in many cases and decreases the risk for allergic contact dermatitis. A number......The electrodeposition of tin/nickel (65/35 wt%) is a unique coating process because of the deposition of an intermetallic phase of nickel and tin, which cannot be formed by any pyrometallurgical process. From thermodynamic calculations it can be shown that intermetallic phases can be formed through...... of electrochemical tests, including polarization curves, chronoamperometric studies and tribocorrosion tests have been performed to show the consequence of replacing nickel coatings with tin/nickel coatings....

  17. Fabrication of Nanosized Lanthanum Zirconate Powder and Deposition of Thermal Barrier Coating by Plasma Spray Process

    Science.gov (United States)

    Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.

    2016-07-01

    The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.

  18. The Influence of Process Parameters on Properties of Conversion Coatings Deposited on Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Karaś M.

    2016-03-01

    Full Text Available The effect of process parameters of conversion coatings on the corrosion resistance was investigated. To produce anodic coatings, the solutions of H2SO4 of 0.5 and 1 M concentrations and current densities of 0.5 and 1 A/dm2 were applied. The coatings were deposited by galvanostatic technique on titanium Grade 1. The result of the study was comparison of the corrosion resistance of coatings produced under varying parameters such as: the anodic current density, the electrolyte concentration, and the speed of reaching the preset voltage. Corrosion tests performed by potentiodynamic polarization test have shown that even nanometric anodic films of amorphous structure improve the corrosion resistance of titanium alloy. The lowest corrosion current and the corrosion potential of the most cathodic nature were observed in the sample with anodic coating produced at J = 1 A/dm2 in a 0.5 M H2SO4 electrolyte concentration.

  19. Characteristics of copper meshes coated with carbon nanotubes via electrophoretic deposition

    Science.gov (United States)

    Kim, Bu-Jong; Park, Jong-Seol; Hwang, Young-Jin; Park, Jin-Seok

    2016-09-01

    This study demonstrates the characteristics of a hybrid-type transparent electrode for touch screen panels, which was fabricated by coating carbon nanotubes (CNTs) via electrophoretic deposition (EPD) on copper (Cu)-meshes. The surface morphologies, visible-range transmittance and reflectance, and chromatic properties, such as yellowness and redness, of the fabricated CNTs-coated Cu mesh electrodes were characterized as functions of their dimensions (line-to-line spacing, line width, and electrode thickness) and compared with those of the Cu-mesh electrodes without coating of CNTs. The experimental results showed that the coating of CNTs substantially reduced the reflectance of the Cu-mesh electrodes and also improved their chromatic properties with their transmittance and sheet resistance only slightly changed, subsequently indicating that the CNTs-coated Cu-mesh electrodes possessed desirable characteristics for touch screen panels.

  20. The electrochemical deposition of tin-nickel alloys and the corrosion properties of the coating

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Møller, Per

    2005-01-01

    The electrodeposition of tin/nickel (65/35 wt%) is a unique coating process because of the deposition of an intermetallic phase of nickel and tin, which cannot be formed by any pyrometallurgical process. From thermodynamic calculations it can be shown that intermetallic phases can be formed through...... electrodeposition. The alloy has unique corrosion properties and exhibits surface passivation like stainless steel. The coating is decorative and non-allergic to the skin, can replace decorative nickel and nickel-chromium coatings in many cases and decreases the risk for allergic contact dermatitis. A number...... of electrochemical tests, including polarization curves, chronoamperometric studies and tribocorrosion tests have been performed to show the consequence of replacing nickel coatings with tin/nickel coatings....

  1. Preparation of superhydrophobic silver nano coatings with feather-like structures by electroless galvanic deposition

    Institute of Scientific and Technical Information of China (English)

    FENG XiaoJuan; SHI YanLong; WANG YongSheng; YUE GuoRen; YANG Wu

    2013-01-01

    Superhydrophobic silver nanocoatings with feather-like morphology are fabricated on copper substrates by electroless galvanic deposition.The coating exhibit superhydrophobicity with a contact angle of 156.4° and glide angle of 4° without any further surface modification.Scanning electron microscope (SEM),X-ray diffraction (XRD) and contact angle measurements are used to investigate the morphology,crystal structure and superhydrophobicity,respectively,of the coatings.The coatings exhibit high thermal stability; their water contact angle did not change when the coatings were heated to 200℃ for 2 h.The mechanism of superhydrophobicity of the silver coating is discussed based on the work of Amirfazli,Wenzel and Cassie.

  2. Studies on non-oxide coating on carbon fibers using plasma enhanced chemical vapor deposition technique

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Prajapati, K. K.; Vyas, M. M.; Batra, N. M.

    2016-05-01

    A new way of improving the oxidative behavior of carbon fibers coated with SiC through Plasma Enhanced Chemical Vapor Deposition technique. The complete study includes coating of SiC on glass slab and Stainless steel specimen as a starting test subjects but the major focus was to increase the oxidation temperature of carbon fibers by PECVD technique. This method uses relatively lower substrate temperature and guarantees better stoichiometry than other coating methods and hence the substrate shows higher resistance towards mechanical and thermal stresses along with increase in oxidation temperature.

  3. In Situ Synthesis and Characterization of Fe-Based Metallic Glass Coatings by Electrospark Deposition Technique

    Science.gov (United States)

    Burkov, Alexander A.; Pyachin, S. A.; Ermakov, M. A.; Syuy, A. V.

    2017-02-01

    Crystalline FeWMoCrBC electrode materials were prepared by conventional powder metallurgy. Metallic glass (MG) coatings were produced by electrospark deposition onto AISI 1035 steel in argon atmosphere. X-ray diffraction and scanning electron microscopy verified the amorphous structure of the as-deposited coatings. The coatings have a thickness of about 40 microns and a uniform structure. The results of dry sliding wear tests against high-speed steel demonstrated that Fe-based MG coatings had a lower friction coefficient and more than twice the wear resistance for 20 km sliding distance with respect to AISI 1035 steel. High-temperature oxidation treatment of the metal glass coatings at 1073 K in air for 12 h revealed that the oxidation resistance of the best coating was 36 times higher than that for bare AISI 1035 steel. These findings are expected to broaden the applications of electrospark Fe-based MG as highly protective and anticorrosive coatings for mild steel.

  4. [An investigation of HAP/organic polymer composite coatings prepared by electrochemical co-deposition technique].

    Science.gov (United States)

    Hu, Haobing; Lin, Changjian; Leng, Yang

    2003-03-01

    An electrochemical co-deposition technique has been developed to prepare a hydroxyapatite (HAP)/organic polymer composite coatings on Ti surface as new biomaterial of hard tissue. The composite coating of organic polymer and calcium phosphate is formed by adding a water soluble polymer of the ethylene series to NH4H2PO4-Ca (NO3)2 solution when conducting an appropriate electrochemical co-deposition experiment. The XRD, SEM, XPS, SIMS and nano indent measurements were performed to characterize the morphology, composition, structure and surface stiffness of the composite coating. It was found that the morphology and surface hardness of the coatings showed a remarkable modification when introducing a minor polymer to HAP coating, and the bonding force between the coating and metal substrate was distinctly increased. The incorporation of minor organic polymer into the HAP compound at molecular level will improve the mechanical properties and morphology of the composite coatings, and this may be helpful to raising its bio-activity.

  5. Aluminizing Coating and Aluminizing-Y2O3 Coating Deposited by Pulsed Spark

    Institute of Scientific and Technical Information of China (English)

    何业东; 黄祖芬; 王德仁; 齐惠滨; 高 高唯

    2001-01-01

    Aluminizing coating and aluminizing-dispersed Y2O3 composite coating were prepared on 20 steel specimens by pulsed spark technique, which exhibited a micro-crystallized structure with grain size in the range of several ten to several hundred nanometers. It is shown that, after oxidation at 600 ℃ in air for 100 h, these two kinds of coatings have excellent resistance to high temperature oxidation and scale spallation, and the aluminizing-dispersed Y2O3 composite coating has even better property than the aluminizing coating. AFM, SEM, EDS and XRD were applied to analyze the surface morphology, composition and phases structure of these coatings and the oxide scale formed in oxidation. The mechanism for these coatings that how to enhance the oxidation resistance and scale spallation resistance was discussed by considering the factors, such as Al concentration on the selective oxidation of Fe-Al alloy, the effect of micro-crystallization, reactive element effect (REE) caused by dispersed Y2O3, etc.

  6. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  7. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  8. Lithographic deposition of patterned metal-organic framework coatings using a photobase generator.

    Science.gov (United States)

    Keitz, Benjamin K; Yu, Chung Jui; Long, Jeffrey R; Ameloot, Rob

    2014-05-26

    A photobase generator was used to induce metal-organic framework (MOF) nucleation upon UV irradiation. This method was further developed into a simple, one-step method for depositing patterned MOF films. Furthermore, the ability of our method to coat a single substrate with MOF films having different chemical compositions is illustrated. The method is an important step towards integrating MOF deposition with existing lithographic techniques and the incorporation of these materials into sensors and other electronic devices.

  9. TiOxNy coatings grown by atmospheric pressure metal organic chemical vapor deposition

    OpenAIRE

    Maury, Francis; Duminica, Florin-Daniel

    2010-01-01

    International audience; Titanium oxynitride coatings were deposited on various substrates by an original atmospheric pressure metal organic chemical vapor deposition (MOCVD) process using titanium tetra-iso-propoxide as titanium and oxygen precursors and hydrazine as a nitrogen source. The films composition was monitored by controlling the N2H4 mole fraction in the initial reactive gas phase. The variation of the N content in the films results in significant changes in morphological, structur...

  10. New Approach to Depositing Yttria-Stabilized Zirconia Buffer Layers for Coated Conductors (Postprint)

    Science.gov (United States)

    2012-02-01

    YBa2Cu3O7− ( YBCO ) cannot be deposited directly onto the tapes due to tape oxidation and chemical interdiffu- sion issues,5 so buffer layers must be used... YBCO can be deposited. Control of the biaxial texture of the final YBCO superconducting layer is critical to the success of the YBCO -coated conductor...Misorientation at YBCO grain boundaries, both [100]-tilt and [100]-twist, have a significant impact on critical cur- rent density (Jc); nearly an

  11. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  12. Synergistic effect between nano-ceramic lubricating additives and electroless deposited Ni-W-P coating

    Science.gov (United States)

    Chen, Min; Cheng, Wushan; Zhao, Zuxin; Huang, Xiaobo

    2013-01-01

    The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.

  13. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Science.gov (United States)

    Sun, Ningbo; Zhang, Yingchun; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-01

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na2WO4-WO3 molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  14. Corrosion Behavior of Cold Sprayed Titanium Coatings and Free Standing Deposits

    Science.gov (United States)

    Hussain, T.; McCartney, D. G.; Shipway, P. H.; Marrocco, T.

    2011-01-01

    Cold gas dynamic spraying can be used to deposit oxygen-sensitive materials, such as titanium, without significant chemical degradation of the powder. The process is thus believed to have potential for the deposition of corrosion-resistant barrier coatings. However, to be effective, a barrier coating must not allow ingress of a corrosive liquid and hence must not have interconnected porosity. This study investigated the effects of porosity on the corrosion behavior of cold sprayed titanium coatings onto carbon steel and also of free standing deposits. For comparative purposes, a set of free standing deposits was also vacuum heat-treated to further decrease porosity levels below those in the as-sprayed condition. Microstructures were examined by optical and scanning electron microscopy. Mercury intrusion porosimetry (MIP) was used to characterize the interconnected porosity over a size range of micrometers to nanometers. Open circuit potential (OCP) measurements and potentiodynamic polarization scans in 3.5 wt.% NaCl were used to evaluate the corrosion performance. The MIP results showed that in cold sprayed deposits a significant proportion of the porosity was sub-micron and so could not be reliably measured by optical microscope based image analysis. In the case of free standing deposits, a reduction in interconnected porosity resulted in a lower corrosion current density, a lower passive current density, and an increase in OCP closer to that of bulk titanium. For the lowest porosity level, ~1.8% achieved following vacuum heat treatment, the passive current density was identical to that of bulk titanium. However, electrochemical measurements of the coatings showed significant substrate influence when the interconnected porosity of the coating was 11.3 vol.% but a decreased substrate influence with a porosity level of 5.9 vol.%. In the latter case, the OCP was still around 250 mV below that of bulk Ti. Salt spray tests confirmed these electrochemical findings and

  15. LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Jungk, John Michael (University of Minnesota); Dugger, Michael Thomas; George, Steve M. (University of Colorado); Prasad, Somuri V.; Grubbs, Robert K.; Moody, Neville Reid; Mayer, Thomas Michael; Scharf, Thomas W.; Goeke, Ronald S.; Gerberich, William W. (University of Minnesota)

    2005-10-01

    Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surface chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.

  16. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Pharmaceutical Research Institute in Heilongjiang Province, Jiamusi University, Jiamusi 154007 (China); Wen, Zhaohui, E-mail: wenzhaohui1968@163.com [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhao, Meng [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Guozhong, E-mail: hydlgz1962@163.com [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-01

    CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. - Highlights: • CaP/chitosan/CNTs coating on AZ91D was prepared. • The addition of CNTs could improve the performance of CaP/chitosan coating. • A new method of loading gentamicin by EPD was proposed.

  17. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  18. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr.

    Science.gov (United States)

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation.

  19. Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Ho [School of Medicine, China Medical University, Taichung, 404 Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin, Taiwan (China); Huang, Heng-Li [School of Dentistry, China Medical University, Taichung, Taiwan (China); Kao, Ho-Yi [Department of Materials Science and Engineering, Mingdao University, Changhua, Taiwan (China)

    2011-12-30

    Titanium (Ti)-based materials have been used for dental/orthopedic implants due to their excellent biological compatibility, superior mechanical strength and high corrosion resistance. The osseointegration of Ti implants is related to their composition and surface treatment. Better biocompatibility and anti-bacterial performances of Ti implant are beneficial for the osseointegration and for avoiding the infection after implantation surgery. In this study, nanocomposite ZrCN/amorphous carbon (a-C) coatings with different carbon contents were deposited on a bio-grade pure Ti implant material. A cathodic-arc evaporation system with plasma enhanced duct equipment was used for the deposition of ZrCN/a-C coatings. Reactive gas (N{sub 2}) and C{sub 2}H{sub 2} activated by the zirconium plasma in the evaporation process were used to deposit the ZrCN/a-C coatings. To verify the susceptibility of implant surface to bacterial adhesion, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), one of the major pathogen frequently found in the dental implant-associated infections, was chosen for in vitro anti-bacterial analyses. In addition, the biocompatibility of human gingival fibroblast (HGF) cells on coatings was also evaluated by a cell proliferation assay. The results suggested that the ZrCN/a-C coatings with carbon content higher than 12.7 at.% can improve antibacterial performance with excellent HGF cell compatibility as well.

  20. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß, Sigrid

    2012-03-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles and PEEK microparticles for EPD were prepared in ethanol. PEEK-TiO 2 composite coatings were optimized using suspensions containing 6wt% PEEK-TiO 2 in ethanol with a 3:1 ratio of PEEK to TiO 2 in weight and by applying a potential difference of 30 V for 1 minute. A heat-treatment process of the optimized PEEK-TiO 2 composite coatings was erformed at 335°C for 30 minutes with a heating rate of 10°Cmin -1 to densify the deposits. The EPD coatings were microstructurally evaluated by scanning electron microscopy (SEM). It was demonstrated that EPD is a convenient and rapid method to fabricate PEEK/TiO 2 coatings on stainless steel which are interesting for biomedical applications. © (2012) Trans Tech Publications, Switzerland.

  1. Microstructural Evolution of (Ti,W,CrB2 Coatings Deposited on Steel Substrates during Annealing

    Directory of Open Access Journals (Sweden)

    Aleksandra Newirkowez

    2014-05-01

    Full Text Available The topic of the present experiments are transition metal diboride coatings of composition (Ti0.49W0.51B2 and (Ti0.44W0.30Cr0.26B2. The coatings were deposited on steel substrates using dc magnetron sputtering. We investigated how annealing in argon at elevated temperatures modifies microstructure. The as-deposited films are amorphous. Annealing between 700 and 1100 °C results in the formation of nano-crystalline precipitates with average grain diameters of about 10–50 nm. A TiC phase (Fm-3m; a ≈ 4.3 Å is observed as the dominating precipitate phase. In addition, small amounts (10%–20% of a Cr23C6 phase (Fm-3m; a ≈ 10.6 Å are observed. In contrast to literature data on the same coatings deposited on silicon substrates, the formation of boride precipitate phases is strongly suppressed here. From investigations with X-ray diffractometry, electron microscopy and secondary ion mass spectrometry we conclude that the nanostructure of the coatings is formed by reactive phase formation of the boride coating with the carbon containing steel substrate.

  2. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    Science.gov (United States)

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  3. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers

    Science.gov (United States)

    2016-01-01

    We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411

  4. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process.

    Science.gov (United States)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti-6Al-4V are necessary for biomedical applications. Together, HAP and Ti-6Al-4V are biocompatible and bioactive. The challenges of depositing HAP on Ti-6Al-4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti-6Al-4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic-ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications.

  5. Mechanical stability of two-step chemically deposited hydroxyapatite coating on Ti substrate: effects of various surface pretreatments.

    Science.gov (United States)

    Zavgorodniy, Alexander V; Borrero-López, Oscar; Hoffman, Mark; LeGeros, Racquel Z; Rohanizadeh, Ramin

    2011-10-01

    The success of implants in orthopaedic and dental load-bearing applications crucially depends on the initial biological fixation of implants in surrounding bone tissues. Using hydroxyapatite (HA) coating on Ti implant as carrier for bone morphogenetic proteins (BMPs) may promote the osteointegration of implants; therefore, reduce the risk of implant failure. The goal of this study was to develop an HA coating method in conditions allowing the incorporation of protein-based drugs into the coating materials, while achieving a mechanical stable coating on Ti implant. HA coatings were deposited on six different groups of Ti surfaces: control (no pretreatment), pretreated with alkali, acid, heat at 800°C, grit blasted with Al₂O₃, and grit blasted followed by heat treatment. HA coating was prepared using a two-step procedure. First step was the chemical deposition of a monetite coating on Ti substrate in acidic condition at 75°C and the second step was the hydrolysis of the monetite coating to HA. Coatings were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The roughness of substrates and coatings was measured using profilometry technique. The mechanical stability of the coatings deposited on the pretreated substrates was assessed using scratch test. The coatings deposited on the grit-blasted Ti surface demonstrated superior adhesive properties with critical shearing stress 131.6 ± 0.2 MPa.

  6. Electrophoretic deposition of a bioactive Si, Ca-rich glass coating on 316L stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    H. H. Rodríguez

    2011-12-01

    Full Text Available This work consisted in the development and characterization of a vitroceramic coating on 316L stainless steel bymeans of electrophoretic deposition (EPD. This vitroceramic coating was obtained through a Si-, Ca-rich glas coating crystallization. The electrophoretic deposition tests were performed on 316L stainless steel mechanically polished substrates. The results suggest that the electrophoretic coatings adhered well to the metallic surfaces. Theresults demonstrate that the crystallized coatings are potentially bioactive, because a dense and homogeneous apatite layer, similar to a bone, makes up.

  7. Toughening mechanism for Ni-Cr-B-Si-C laser deposited coatings

    NARCIS (Netherlands)

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    2013-01-01

    Laser deposited coatings were made from Colmonoy 69 Ni-Cr-B-Si-C alloy and Nb-modified Colmonoy 69 using laser cladding with powder injection. Addition of Nb was done to decrease the structural scale of Cr boride precipitates by providing Nb-rich nucleation agents. The purpose of the study was to ev

  8. CHEMICALLY DEPOSITED SILVER FILM USED AS A SERS-ACTIVE OVER COATING LAYER FOR POLYMER FILM

    Institute of Scientific and Technical Information of China (English)

    Xiao-ning Liu; Gi Xue; Yun Lu; Jun Zhang; Fen-ting Li; Chen-chen Xue; Stephen Z.D. Cheng

    2001-01-01

    When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surfaceenhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of liquid crystal film were successfully performed without disturbing the surface morphology.

  9. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    Science.gov (United States)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  10. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara;

    2014-01-01

    The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al–Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result in th...

  11. Brushite coatings on titanium for orthopedic implants: Studies on deposition and transformation

    Science.gov (United States)

    Kumar, Mukesh

    Hydroxyapatite (HA, Ca5(PO4)3OH) coating on the metallic substrate is expected to assist bone growth and implant integration. However, HA is quite stable in physiological solution and the use of other more reactive calcium phosphate ceramics (CPC) could induce faster bone growth by providing calcium and phosphate ions to the interacting physiological solution. This study utilized a non-line of sight electrodeposition process to achieve brushite (CaHPO4.2H2O) coatings. The uses of potassium or sodium chloride as a conducting electrolyte in the depositing bath enhanced deposition rates and altered the morphology of the coatings. Analysis suggested a strained deposit with sight specific substitution of cations from the conducting electrolyte. Such a deposit (modified brushite) was determined to have CaHPO 4.2H2O and CaY2(1-x)HPO4•2H 2O (x ˜0.95) with Y as Na0 or K. Whereas normal brushite was obtained from unsupported baths. The deposited mass of brushite increased with charge consumed and bonding to the substrate decreased with increasing deposition time. Though inconclusive. in-situ studies on electrodeposition did not rule out the possibility of ionic species responsible for the deposit. Transformations of both forms of brushite were investigated in calcium free Hank's type simulated body fluid. Modified brushite showed periodic appearance of freshly precipitated, but poorly crystalline HA, without the benefit of monetite (CaHPO4) as an intermediate. However, normal brushite transformation showed nonstoichiometric HA with monetite as an intermediate. Normal brushite demonstrated a slower transformation to HA when compared to the transformation kinetics of modified brushite. It is shown that lattice strain due to localized ion incorporation could be used to after the properties of brushite coatings to adjust the kinetics of transformation and indirectly the amount of calcium and phosphate ions released into the surrounding.

  12. Electrolytic deposition of hydroxyapatite coating on thermal treated Ti-40Zr.

    Science.gov (United States)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Lin, Chih-Hung; Ho, Wen-Fu

    2009-09-01

    In this study, hydroxyapatite (HA) was coated on both thermal treated and untreated Ti-40Zr substrates by means of electrolytic deposition. It was predicted that the HA layer would increase the bioactivity and osteoconductivity of the Ti-40Zr substrate, and a thermal treatment would improve the bonding strength between the HA layer and Ti-40Zr substrate, and prevent the corrosion of the Ti-40Zr substrate. First, the Ti-40Zr samples were annealed at various temperatures (200, 300, 400, 500 and 600 degrees C respectively). After annealing, samples were immersed in a Ca(NO(3))(2).4H(2)O and (NH(4))(3)PO(4).3H(2)O solution for the electrolytic deposition of the HA coating. Various analyses of the coating were conducted, including surface morphology, phase structure, corrosion resistance, biocompatibility, and bond strength between HA and Ti-40Zr. Experimental results indicated that the bonding strength of the HA coating on the thermal treated Ti-40Zr was markedly improved when compared to that of the HA coating on an untreated Ti-40Zr alloy. The corrosion resistance of Ti-40Zr was also improved by the use of the thermal treatment, as shown by a potentiodynamic polarization test. Finally, osteoblast-like cells cultured on the HA coating surface were found to have proliferated on all samples.

  13. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sunny, S; Vogel, N; Howell, C; Vu, TL; Aizenberg, J

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.

  14. Sealing of hard CrN and DLC coatings with atomic layer deposition.

    Science.gov (United States)

    Härkönen, Emma; Kolev, Ivan; Díaz, Belén; Swiatowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe; Fenker, Martin; Toth, Lajos; Radnoczi, György; Vehkamäki, Marko; Ritala, Mikko

    2014-02-12

    Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes.

  15. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    Energy Technology Data Exchange (ETDEWEB)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A [Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ovsianikov, A; Chichkov, B N [Laser Zentrum Hannover, Hollerithallee 8, 30419 Hannover (Germany); Stafslien, S; Chisholm, B, E-mail: roger_narayan@msn.co [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States)

    2009-12-15

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  16. Performance properties of electro-spark deposited carbide-ceramic coatings modified by laser beam

    Science.gov (United States)

    Radek, Norbert; Bartkowiak, Konrad

    The work presented in this paper determines the influence of the laser treatment process on the properties of electrospark coatings. The properties after laser treatment were examined by microstructure analysis, microhardness, roughness and adhesion tests. The studies were conducted using WC-Co-Al2O3 electrodes produced by sintering nanostructural powders. The anti-wear coatings were first deposited by an EIL-8A apparatus on C45 carbon steel and then laser melted within various process parameters. In this case Nd:YAG laser (BLS 720 model) was applied. The electro-spark deposited coatings are very promising to improve abrasive wear resistance of tools and machine parts, which was indicated by tribological tests.

  17. Phase evolution and thermal properties of yttria-stabilized hafnia nano-coatings deposited on alumina

    Science.gov (United States)

    Rubio, Ernesto Javier

    High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results

  18. Fast deposition of hydroxyapatite coating on titanium to modify cell affinity of corneal fibroblast in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoping; MA Xiao; WANG Leyun; DU Xuan; HUANG Yifei; CUI Fuzhai

    2007-01-01

    By two step acid-alkali pretreatment and lmmersing into supersaturated calcification solution,hydroxyapatite (HA)coating was deposited on titanium(Ti)discs.The composition,surface morphology and cross-section of the coating were analyzed by X-ray diffraction(XRD)and scanning electron microscopy (SEM).Fibroblasts of rabbit cornea were seeded on HA coated Ti disc,pure Ti disc and glass.Cell adhesion,proliferation and morphology were detected at 24,48 and 72h,respectively.It is shown for the first time that HA coating can significantly enhance the adhesion and proliferation of rabbit corneal fibroblast in comparison with that of pure Ti.

  19. Structure and Surface Characterization of Nanostructured Tio2 Coatings Deposited Via HVOF Thermal Spray Processes

    Directory of Open Access Journals (Sweden)

    Maryamossadat Bozorgtabar

    2015-01-01

    Full Text Available Titanium dioxide coatings were deposited by high velocity oxy-fuel spraying (HVOF with the use of agglomerated P25/20 nano-powder and different spraying parameters (e.g. fuel/flow ratio to determine their influence on the microstructure, crystalline structure and surface feature of the coatings. The microstructure of as-sprayed TiO2 coatings was characterized by scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction (XRD. Surface features were investigated by Fourier transform infrared (FT-IR and X-ray photoelectron spectroscopy (XPS. The results showed that the fuel and oxygen flow ratio have an important influence on the microstructure, anatase content, surface chemical state and surface feature of the TiO2 coatings

  20. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Hassan, M A; Ghani, S A C; Buyong, Z

    2016-04-01

    New promising techniques for depositing biocompatible hydroxyapatite-based coatings on biocompatible metal substrates for biomedical applications have continuously been exploited for more than two decades. Currently, various experimental deposition processes have been employed. In this review, the two most frequently used deposition processes will be discussed: a sol-gel dip coating and an electrochemical deposition. This study deliberates the surface morphologies and chemical composition, mechanical performance and biological responses of sol-gel dip coating as well as the electrochemical deposition for two different sample conditions, with and without coating. The review shows that sol-gel dip coatings and electrochemical deposition were able to obtain the uniform and homogeneous coating thickness and high adherent biocompatible coatings even in complex shapes. It has been accepted that both coating techniques improve bone strength and initial osseointegration rate. The main advantages and limitations of those techniques of hydroxyapatite-based coatings are presented. Furthermore, the most significant challenges and critical issues are also highlighted.

  1. Influences of H+ Implantation on the Boron-Doped Synthesized by Chemical Vapor Deposition Diamond Films

    Institute of Scientific and Technical Information of China (English)

    WANG Shuang-Bao

    2000-01-01

    Diamond films (DF) were preliminarily B doped in situ during chemical vapor deposition. Subsequently, the films were implanted with 120keV H+ to dose of 5 × 1014 ~ 5 × 1016cm-2. After the implantation, the B doped DF become insulating and Raman measurements indicate that the implantation has amorphous carbon and graphite etched. It is known that the formation of H-B pairs plays an important pole in property changes. However, for larger dose cases, the electrical resistance of DF is influenced by radiation damage and/or non-diamond phases. In addition to them, annealing makes the specimens conducting again. This phenomenon maybe has potential for application in designing DF device.

  2. High strain amount in recessed junctions induced by selectively deposited boron-doped SiGe layers

    Energy Technology Data Exchange (ETDEWEB)

    Radamson, H.H. [School of Information and Communication Technology, KTH (Royal Institute of Technology) Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)], E-mail: rad@kth.se; Kolahdouz, M.; Ghandi, R.; Ostling, M. [School of Information and Communication Technology, KTH (Royal Institute of Technology) Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)

    2008-12-05

    This work presents the selective epitaxial growth (SEG) of Si{sub 1-x}Ge{sub x} (x = 0.15-0.315) layers with high amount of boron (1 x 10{sup 20}-1 x 10{sup 21} cm{sup -3}) in recessed or unprocessed (elevated) openings for source/drain applications in CMOS has been studied. The influence of the growth rate and strain on boron incorporation has been studied. A focus has been made on the strain distribution and boron incorporation in SEG of SiGe layers.

  3. Microstructure and mechanical properties of nanocomposite coatings deposited by cathodic arc evaporation

    Directory of Open Access Journals (Sweden)

    K. Lukaszkowicz

    2010-09-01

    Full Text Available Purpose: The main aim of the this research was the investigation of the structure and the mechanical properties of the nanocomposite TiAlSiN, CrAlSiN, AlTiCrN coatings deposited by cathodic arc evaporation method onto hot work tool steel substrate.Design/methodology/approach: The surfaces’ topography and the structure of the PVD coatings were observed on the scanning electron microscopy. Diffraction and thin film structure were tested with the use of the transmission electron microscopy. The microhardness tests were made on the dynamic ultra-microhardness tester. Tests of the coatings’ adhesion to the substrate material were made using the scratch test.Findings: It was found that the structure of the PVD coatings consisted of fine crystallites, while their average size fitted within the range of 11-25 nm, depending on the coating type. The coatings demonstrated columnar structure and dense cross-section morphology as well as good adhesion to the substrate. The critical load LC2 lies within the range of 46-54 N, depending on the coating and substrate type. The coatings demonstrate a high hardness (~40 GPa.Practical implications: In order to evaluate with more detail the possibility of applying these surface layers in tools, further investigations should be concentrated on the determination of the thermal fatigue resistance of the coatings. The very good mechanical properties of the nanocomposite coatings make them suitable in industrial applications.Originality/value: The investigation results will provide useful information to applying the nanocomposite coatings for the improvement of mechanical properties of the hot work tool steels.

  4. Growth of MgB2 Thin Films by Chemical Vapour Deposition Using B2H6 as a boron Source

    Institute of Scientific and Technical Information of China (English)

    王淑芳; 朱亚彬; 刘震; 周岳亮; 张芹; 陈正豪; 吕惠宾; 杨国桢

    2003-01-01

    Superconducting MgB2 thin films were grown on single crystal Al2O3 (0001) by chemical vapour deposition using B2H6 as a boron source. MgB2 film was then accomplished by annealing the boron precursor films in the presence of high-purity magnesium bulk at 890℃ in vacuum. The as-grown MgB2 films are smooth and c-axis-oriented.The films exhibit a zero-resistance transition of about 38K with a narrow transition width of 0.2 K. Magnetic hysteresis measurements yield the critical current density of 1.9 × 107 A/cm2 at 10 K in zero field.

  5. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    Directory of Open Access Journals (Sweden)

    Sigrid Seuss

    2014-07-01

    Full Text Available Alternating current (AC electrophoretic deposition (EPD was used to produce multifunctional composite coatings combining bioactive glass (BG particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA forming ability in simulated body fluid (SBF for up to 21 days. Fourier transform infrared (FTIR spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings.

  6. Thermal conductivities of nanostructured magnesium oxide coatings deposited on magnesium alloys by plasma electrolytic oxidation.

    Science.gov (United States)

    Shen, Xinwei; Nie, Xueyuan; Hu, Henry

    2014-10-01

    The resistances of magnesium alloys to wear, friction and corrosion can be effectively improved by depositing coatings on their surfaces. However, the coatings can also reduce the heat transfer from the coated components to the surroundings (e.g., coated cylinder bores for internal combustion of engine blocks). In this paper, nanostructured magnesium oxides were produced by plasma electrolytic oxidation (PEO) process on the magnesium alloy AJ62 under different current densities. The guarded comparative heat flow method was adopted to measure the thermal conductivities of such coatings which possess gradient nanoscale grain sizes. The aim of the paper is to explore how the current density in the PEO process affects the thermal conductivity of the nanostructured magnesium coatings. The experimental results show that, as the current density rises from 4 to 20 A/mm2, the thermal conductivity has a slight increase from 0.94 to 1.21 W/m x K, which is significantly smaller than that of the corresponding bulk magnesium oxide materials (29.4 W/m x K). This mostly attributed to the variation of the nanoscale grain sizes of the PEO coatings.

  7. Lubrication analysis of the nanometric coating film deposited during gravure printing

    Science.gov (United States)

    Ceyhan, Umut; Kitsomboonloha, Rungrot; Morris, S. J. S.; Subramanian, Vivek

    2012-11-01

    We report the importance of doctor blade-tip's geometry and wettability on the formation of coating film of thickness 1-10 nm after wiping of the excess ink used for gravure printing of electronics. Several authors have worked on the blade coating problem, addressing elastohydrodynamic effects; however, the coating film deposited during gravure printing is about 3 orders of magnitude thinner than micrometer scale created in blade coating. The blade-tip radius is consequently large compared with the film and gap thickness, allowing the blade tip to be approximated by a parabola. Hydrodynamic forces are concentrated within this inner region. In the gap entry, streamlines converge making the pressure large and positive; downstream, streamlines diverge making pressure large, but negative. This large negative pressure affects the coating film thickness by tending to draw the meniscus back into the narrow gap. Gap thickness and coating film thickness are determined as part of the solution of a free-boundary problem: we couple lubrication analysis of the gap flow in the gap to Landau-Levich analysis of the film flow. The resultant hydrodynamic force and couple exerted within the inner region are compared with those exerted on the outer portion of the blade and parameters affecting the solution of the problem on the coating film formation are examined in detail.

  8. Structure and sliding wear behavior of 321 stainless steel/Al composite coating deposited by high velocity arc spraying technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-xiong; XU Bin-shi; LIU Yan; LIANG Xiu-bing; XU Yi

    2008-01-01

    A typical 321 stainless steel/aluminum composite coating (321/Al coating) was prepared by high velocity arc spraying technique (HVAS) with 321 stainless steel wire as the anode and aluminum wire as the cathode.The traditional 321 stainless steel coating was also prepared for comparison.Tribological properties of the coatings were evaluated with the ring-block wear tester under different conditions.The structure and worn surface of the coatings were analyzed by scanning electron microscopy (SEM),X-ray diffractometry (XRD) and energy dispersion spectroscopy (EDS).The results show that,except for aluminum phase addition in tne 321/Al coating,no other phases are created compared with the 321 coating.However,due to the addition of aluminum,the 321/Al coating forms a type of "ductile/hard phases inter-deposited" structure and performs quite different tribological behavior.Under the dry sliding condition,the anti-wear property of 321/Al coating is about 42% lower than that of 321 coating.Butunder the oil lubricated conditions with or without 32h oil-dipping pretreatment,the anti-wear property of 321/Al coating is about 9% and 5% higher than that of 321 coating,respectively.The anti-wear mechanism of the composite coating is mainly relevant to the decrease of oxide impurities and the strengthening action resulted from the "ductile/hard phases inter-deposited" coating structure.

  9. Analysis on Residual Stress in Electron Beam-Physical Vapor Deposited Thermal Barrier Coating using Hard Synchrotron X-Rays

    OpenAIRE

    鈴木, 賢治; 松本, 一秀; 久保, 貴博; 町屋, 修太郎; 田中, 啓介; 秋庭, 義明; SUZUKI, Kenji; MATSUMOTO, Kazuhide; Kubo, Takahiro; Machiya, Syutaro; Tanaka, Keisuke; Akiniwa, Yoshiaki

    2005-01-01

    The distribution of the residual stress in the thermal barrier coating, which was made by an electron beam-physical vapor deposition (EB-PVD) method, was determined using X-ray stress measurements. As the bond coating, NiCoCrAlY was low-pressure plasma sprayed on the substrate of austenitic stainless steel. The 8 mass% Y_2O_3-ZrO_2 was coated on the bond coating using the EB-PVD method as the top coating. The top coating had the preferred orientation with the axis direction perpendicular to ...

  10. Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: formation, characterization and biofunctional evaluation.

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    Full Text Available Polydopamine (PDA coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices. In the present study, a practical method for preparation of rapidly-deposited PDA coating was developed using a uniquely designed device, and the kinetics of dopamine self-polymerization was investigated by QCM sensor system. It was found that high temperature and vigorous stirring could dramatically speed up the formation of PDA film on QCM chip surface. Surface characterization, BSA binding study, cell viability assay and antibacterial test demonstrates that the polydopamine coating after polymerization for 30 min by our approach exhibits similar properties to those of 24 h counterpart. The method has a great potential for rapid-deposition of polydopamine films to modify biomaterial surfaces.

  11. Recent Advances in the Deposition of Diamond Coatings on Co-Cemented Tungsten Carbides

    Directory of Open Access Journals (Sweden)

    R. Polini

    2012-01-01

    Full Text Available Co-cemented tungsten carbides, namely, hard metals are largely used to manufacture high wear resistant components in several manufacturing segments. Coating hard metals with superhard materials like diamond is of utmost interest as it can further extend their useful lifespan. The deposition of diamond coatings onto WC-Co can be extremely complicated as a result of poor adhesion. This can be essentially ascribed to (i the mismatch in thermal expansion coefficients between diamond and WC-Co, at the typical high temperatures inside the chemical vapour deposition (CVD chamber, generates large residual stresses at the interface; (ii the role of surface Co inside the WC-Co matrix during diamond CVD, which promotes carbon dissolution and diffusion. The present investigation reviews the techniques by which Co-cemented tungsten carbides can be treated to make them prone to receive diamond coatings by CVD. Further, it proposes interesting ecofriendly and sustainable alternatives to further improve the diamond deposition process as well as the overall performance of the coated hard metals.

  12. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    Science.gov (United States)

    2015-04-24

    relatively weak emission intensity compared to the atomic emission, and can be further masked by intense peaks of ionized boron at 345.1 nm and the second...become thermalized, reducing the concentration of ionized boron. From the maxi - mum locations in time of flight data in Figure 5(a), kinetic ve- locity...quickly transitioning from a high intensity and directional plume shape to a relatively weak and strongly confined distribution, which is mostly

  13. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J, E-mail: antonia.terriza@icmse.csic.es

    2010-11-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF{sub X}). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  14. Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Clem, Paul Gilbert; Siegal, Michael P.; Holesinger, Terry A. (Los Alamos National Laboratory, Los Alamos, NM); Voigt, James A.; Richardson, Jacob J.; Dawley, Jeffrey Todd

    2004-11-01

    A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.

  15. Corrosion and wear behaviours of a reactive-sputter-deposited Ta2O5 nanoceramic coating

    Science.gov (United States)

    Hu, Wei; Xu, Jiang; Lu, Xiaolin; Hu, Dongsheng; Tao, Hongliang; Munroe, Paul; Xie, Zong-Han

    2016-04-01

    In order to improve the wear and corrosion resistance of Ti-6Al-4V, a novel β-Ta2O5 nanoceramic coating was synthesised using reactive sputter deposition enabled by double glow discharge plasma technique. The surface topography, chemical composition, and microstructure of the newly developed coating were characterised by a variety of surface analytical techniques. The coating microstructure was found to exhibit a compact striated pattern extending in a direction perpendicular to coating surface, which is composed of equiaxed β-Ta2O5 grains with an average grain size of ∼20 nm, well adhered to the Ti-6A1-4V substrate. The hardness and the Young's modulus of the as-deposited coating were obtained by nanoindentation, and the adhesion strength between the coating and substrate was determined by a scratch tester. The dry sliding wear behaviours of the coating were investigated at room temperature against Si3N4 ceramic balls at room temperature under applied loads ranging from 2.3 N to 5.3 N using a ball-on-disc tribometer. The specific wear rates of the coating exhibited only a slight increase with applied normal load, and were shown to be two orders of magnitude lower than that for Ti-6Al-4V under the same loading condition. Furthermore, the electrochemical behaviour of the coating immersed in 3.5 wt.% NaCl solution was systematically examined by using a range of complementary electrochemical techniques including potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis as well as potential of zero charge (PZC). The results showed that the corrosion resistance of the β-Ta2O5 nanoceramic coating was better than that of Ti-6Al-4V alloy in 3.5 wt.% NaCl solution. Hence, by possessing higher mechanical properties and good wear and corrosion resistance, the β-Ta2O5 nanoceramic coating is considered to be a promising candidate for protection of engineering components operating under harsh conditions.

  16. Deposition and properties of high-velocity-oxygen-fuel and plasma-sprayed Mo-Mo2C composite coatings

    Science.gov (United States)

    Prchlik, L.; Gutleber, J.; Sampath, S.

    2001-12-01

    Molybdenum thermal-spray coatings, dispersion strengthened by molybdenum oxides and molybdenum carbides, play an important role in industrial tribological applications. Traditionally, they have been prepared by plasma and wire flame spraying. High porosity and lower cohesion strength limit their application in situations where both galling and abrasion wear is involved. In this study, high-velocity-oxygen-fuel (HVOF) deposition of molybdenum and molybdenum carbide coatings was attempted. Deposition was achieved for all powders used. Composition, microstructure, mechanical, and wear properties of the HVOF synthesized coatings were evaluated and compared with plasma-sprayed counterparts. The HVOF coatings possessed a very good abrasion resistance, whereas plasma deposits performed better in dry sliding tests. Measurements showed a close relationship between the coating surface hardness and its abrasion resistance. Results also suggested correlation between molybdenum carbide distribution in the molybdenum matrix and the sliding friction response of Mo-Mo2C coatings.

  17. XPS, SIMS and FTIR-ATR characterization of boronized graphite from the thermonuclear plasma device RFX-mod

    Science.gov (United States)

    Ghezzi, F.; Laguardia, L.; Caniello, R.; Canton, A.; Dal Bello, S.; Rais, B.; Anderle, M.

    2015-11-01

    In this paper the characterization of a thin (tens of nanometers) boron layer on fine grain polycrystalline graphite substrate is presented. The boron film is used as conditioning technique for the full graphite wall of the Reversed Field eXperiment-modified (RFX-mod) experiment, a device for the magnetic confinement of plasmas of thermonuclear interest. Aim of the present analysis is to enlighten the chemical structure of the film, the trapping mechanism that makes it a getter for oxygen and hydrogen and the reason of its loss of effectiveness after exposure to about 100 s of hydrogen plasma. X-ray Photoelectron Spectroscopy (XPS), Secondary Ions Mass Spectrometry (SIMS) and Fourier Transform Infra Red spectroscopy in combination with the Attenuated Total Reflectance (FTIR-ATR) were used to obtain the structure and the chemical composition of graphitic samples as coated or coated and subsequently exposed to hydrogen plasma after boron deposition. The boron layers on the only coated samples were found to be amorphous hydrogenated boron carbide plus a variety of bonds like B-B, B-H, B-O, B-OH, C-C, C-H, C-O, C-OH. Both the thickness and the homogeneity of the layers were found to depend on the distance of the sample from the anode during the deposition. The samples contained oxygen along the layer thickness, at level of 5%, bound to boron. The gettering action of the boron is therefore already active during the deposition itself. The exposure to plasma caused erosion of the boron film and higher content of H and O bound to boron throughout the whole thickness. The interaction of the B layer with plasma is therefore a bulk phenomenon.

  18. Residual stresses in boron/tungsten and boron/carbon fibers

    Science.gov (United States)

    Behrendt, D. R.

    1977-01-01

    Longitudinal residual stress distribution is determined for 102-micron diam B/W and B/C fibers. The 102-micron diam B/W fibers are deposited on a 12.7-micron diam tungsten wire resistively heated in a BCl3-H2 reactor. The 102-micron diam B/C fibers are made by deposition of boron on a pyrolytic graphite-coated carbon fiber. The longitudinal residual stress distribution is calculated from measurements of the change in length of the fiber produced by removal of the surface through electropolishing. It is found that for both types of fibers, the residual stress vary from a compressive stress at the surface to a tensile stress in the boron near the core. Closer to the core and in the core, significant differences in the residual stresses are observed for the B/W and B/C fibers.

  19. CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability.

    Science.gov (United States)

    Zhang, Chao; Ou, Yang; Lei, Wen-Xi; Wan, Ling-Shu; Ji, Jian; Xu, Zhi-Kang

    2016-02-24

    Mussel-inspired polydopamine (PDA) deposition offers a promising route to fabricate multifunctional coatings for various materials. However, PDA deposition is generally a time-consuming process, and PDA coatings are unstable in acidic and alkaline media, as well as in polar organic solvents. We report a strategy to realize the rapid deposition of PDA by using CuSO4/H2O2 as a trigger. Compared to the conventional processes, our strategy shows the fastest deposition rate reported to date, and the PDA coatings exhibit high uniformity and enhanced stability. Furthermore, the PDA-coated porous membranes have excellent hydrophilicity, anti-oxidant properties, and antibacterial performance. This work demonstrates a useful method for the environmentally friendly, cost-effective, and time-saving fabrication of PDA coatings.

  20. Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO{sub 2} structures: Corrosion and sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Mona; Batmanghelich, Farhad, E-mail: farhad.batmanghelich@rockets.utoledo.edu; Afshar, Abdollah; Dolati, Abolghasem; Mortazavi, Golsa

    2014-05-01

    Highlights: • HA nanoparticles were deposited on TiO{sub 2} nanotubular surface by EPD. • Nanotubular TiO{sub 2} structure enhances HA coating adhesion formed by EPD process. • Vacuum sintered coatings offered enhanced corrosion protection. • HA particles over TiO{sub 2} nanotubes decrease corrosion protection compared to their absence. - Abstract: Hydroxyapatite (HA) coatings in and onto anodized TiO{sub 2} nanotube arrays were presented and prepared by electrophoretic deposition technique (EPD). Coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). EPD proved to be an innovative and versatile technique to coat HA on and into nanotubular structures of TiO{sub 2} with enhanced adhesion between nanotubes and HA particles provided by mechanical interlocking. After EPD of HA on TiO{sub 2} layer, samples were sintered at 400 °C, 600 °C and 800 °C for 2 h in an Ar atmosphere. Effect of EPD processing parameters on thickness of the deposits and rate of deposition was elucidated for HA coatings on the nanotubular TiO{sub 2} structures. It was shown that higher applied voltages increase deposition rate and thickness of the coatings. Potentiodynamic polarization measurements proved corrosion protection caused by both HA coating and nanotubular TiO{sub 2} structure in simulated body fluid (SBF). Effect of sintering temperature on adhesion strength of HA coatings on TiO{sub 2} nanotubes and their composition were also studied.

  1. High-frequency electropulse deposition of microcrystallized MGH754 ODS alloy coatings

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A simple but more efficient technique--high-frequency electropulse deposition--was developed to produce microcrystallized MGH754 ODS alloy coatings on the 1Cr18Ni9Ti stainless steel substrate. The coating has a very fine grain size of 30-300 nm and metallurgical bonding with the substrate. Isothermal oxidation in air at 1 000℃ for 100 h shows that micro-crystallisation and dispersed oxide particles promote the selective oxidation of Cr greatly to form a protective and continuous Cr2O3 scale and also improve the scale spallation resistance dramatically, thus increasing the oxidation resistance of 1Cr18Ni9Ti.

  2. Thermal/residual stress in an electron beam physical vapor deposited thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Jordan, E.H.; Barber, B.; Gell, M. [Univ. of Connecticut, Storrs, CT (United States)

    1998-10-09

    Elastic-plastic finite element models are used to define the thermal/residual stress state responsible for the observed failure behavior of an electron beam physical vapor deposited yttria stabilized zirconia thermal barrier coating on a Pt-Al bond coat. The failures were observed to start at grain boundary ridges, some of which evolved into oxide filled cavities. Finite element models are made of the actual interface geometries through the use of metallographic sectioning and imaging processing. There is a one to one correspondence of calculated tension in the oxide layer and the observed localized damage. Purely elastic analysis failed to show some important tensile regions associated with the observed failure.

  3. Ion-Bombardment of X-Ray Multilayer Coatings - Comparison of Ion Etching and Ion Assisted Deposition

    NARCIS (Netherlands)

    Puik, E. J.; van der Wiel, M. J.; Zeijlemaker, H.; Verhoeven, J.

    1991-01-01

    The effects of two forms of ion bombardment treatment on the reflectivity of multilayer X-ray coatings were compared: ion etching of the metal layers, taking place after deposition, and ion bombardment during deposition, the so-called ion assisted deposition. The ion beam was an Ar+ beam of 200 eV,

  4. Multi-Length Scale Tribology of Electrophoretically Deposited Nickel-Diamond Coatings

    Science.gov (United States)

    Awasthi, Shikha; Goel, Sneha; Pandey, Chandra Prabha; Balani, Kantesh

    2017-02-01

    Electrophoretically deposited (EPD) nickel and its composite coatings are widely used to enhance the life span of continuous ingot casting molds in the steel, aerospace and automotive industries. This article reports the effect of different concentrations of diamond particles (2.5-10 g/L) on the wear mechanism of EPD Ni. The distribution of diamond particles in the Ni matrix was observed using Voronoi tessellation. Variation in COF was observed by a fretting wear test to be 0.51 ± 0.07 for Ni, which decreases to 0.35 ± 0.03 for the Ni-diamond coatings. The wear volume of the coatings with 7.5 g/L concentration of diamond was observed to be a minimum (0.051 ± 0.02 × 10-3 mm3) compared with other composite coatings. Further, the micro-scratch testing of the coatings also exhibited a reduced COF (0.03-0.12) for 7.5 g/L diamond concentration compared with Ni (0.08-0.13). Higher wear resistance of the diamond-added coatings (optimum 7.5 g/L concentration) is due to the balance between the dispersion strengthening mechanism and the enhancement of the load-bearing capacity due to the incorporation of diamond particles. Thus, these composites can be used for applications in automotive and aerospace industries.

  5. Microstructures and Wear Performance of PTAW Deposited Ni-Based Coatings with Spherical Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Dewei Deng

    2015-10-01

    Full Text Available The Ni-based coatings with different content of spherical tungsten carbide were deposited by plasma transfer arc welding (PTAW method on 304 austenitic stainless steel sheets in this study. The microstructure and wear property of spherical tungsten carbide particle reinforced composite coatings were investigated by means of optical microscope, scanning electron microscope (SEM, X-ray diffraction (XRD, electron probe microanalysis (EPMA and sliding wear test. It is shown that the fraction of spherical tungsten carbides has an important influence on microstructure of Ni-based overlay. The Ni40 overlay consists of γ-Ni dendrites with interdendritic Ni-based eutectics, borides and carbides improving the wear resistance. In the case of composite coatings with different content of tungsten carbide, many new phases are observed, such as Ni2W4C and NiW. In addition, there are a large number of irregular structures in composite coatings, such as acicular structure and irregular stripe organization. The results of sliding wear test indicate that the mass loss of coatings is influenced by the content of tungsten carbide. The mass loss decreases with the increase of tungsten carbide fraction. At high load, the abrasive resistance of composite coating with 60 wt. % tungsten carbide is improved about 50-fold compared to that of Ni40 overlay.

  6. SiO{sub 2} coating of silver nanoparticles by photoinduced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Boies, Adam M; Girshick, Steven L [Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 (United States); Roberts, Jeffrey T [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane, E-mail: jtrob@umn.ed, E-mail: slg@umn.ed [Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO{sub 2}) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO{sub 2} precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO{sub 2} coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 {sup 0}C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10{sup 7} particles cm{sup -3}.

  7. Preparation of Ti6Al4V/BG/HA graded coating by electrophoresis deposition in absolute alcohol medium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A codeposition of bioglass (BG) and hydroxyapatite (HA) on the substrate Ti6Al4V is realized in a nonaqueous solution system by inducing crystallization of HA on surface of the BG grain and electrophoresis deposition (EPD), and then a bioactive graded ceramic coating was obtained after sintering of the coating. This technique is a new method for making bioactive graded coating. The adhesive strength between the coating and the substrate reaches 18?MPa, and the better electrophoresis depositing parameters and optimal sintering procedure are obtained.

  8. Microstructure and tribological properties of cobalt-based Stellite 6 alloy coating by electro-spark deposition

    OpenAIRE

    QiFeng Jing; YeFa Tan

    2013-01-01

    The cobalt-based Stellite 6 coating with a thickness of 0.5 mm was deposited onto 45 carbon steel by electro-spark deposition technology. Microstructure, chemical composition, phase composition, microhardness distribution and wear resistance of the coating were researched by a series of experiments. The results indicate that, the coating with refined and compact microstructure is mainly composed of Co, Cr7C3, Co6W6C and CrCo. The coating makes metallurgical bonding interface with the substrat...

  9. Low Temperature Coating of Anatase Thin Films on Silica Glass Fibers by Liquid Phase Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Shun; LIU Jiachen; FENG Tiecheng

    2007-01-01

    Uniform crystalline TiO2 thin films were coated on silica glass fibers by liquid phase deposition from aqueous solution of ammonium hexafluorotitanate at low temperature. TiO2 thin films and nanopowders were prepared by adding H3BO3 into (NH4)2TiF6 solution supersaturated with anatase nano-crystalline TiO2 at 40 ℃. The effects of the deposition conditions on the surface morphology, section morphology, thickness of the deposited TiO2 thin films were investigated. The results indicate that the growth rate and particle size of the thin films were controlled by both the deposition conditions and the amount of anatase nano-crystalline TiO2.

  10. Application of design of experiment on electrophoretic deposition of glass-ceramic coating materials from an aqueous bath

    Indian Academy of Sciences (India)

    Someswar Datta

    2000-04-01

    A process for application of abrasion- or corrosion-resistant glass-ceramic coating materials on metal substrate by electrophoretic deposition technique in an aqueous medium has been described. The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH of the suspension and concentration of the polymeric dispersant on the deposition efficiency have been studied. The process has been studied using a 23-factorial design technique of three independent variables; i.e. coating material concentration, applied current, and the time taken to achieve the best combination. The regression equation obtained explains the experimental results satisfactorily.

  11. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Bogota Colombia (Colombia); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico)], E-mail: muhl@servidor.unam.mx

    2008-10-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN{sub x} films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N{sub 2} ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV{sub 0.025}. While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV{sub 0.025}. The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics.

  12. Physical chemistry of WC-12 %Co coatings deposited by thermal spraying at different standoff distances

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Muhammad; Ahmed, Furqan; Anwar, Muhammad Yousaf; Ali, Liaqat; Ajmal, Muhammad [Univ. of Engineering and Technology, Metallurgical and Materials Engineering, Lahore (Pakistan); Khan, Aamer Nusair [Institute of Industrial and Control System, Rawalpindi (Pakistan)

    2015-09-15

    In the present research, WC-12 %Co cermet coatings were deposited on AISI-321 stainless steel substrate using air plasma spraying. During the deposition process, the standoff distance was varied from 80 to 130 mm with 10 mm increments. Other parameters such as current, voltage, time, carrier gas flow rate and powder feed rate etc. were kept constant. The objective was to study the effects of spraying distance on the microstructure of as-sprayed coatings. The microscopic analyses revealed that the band of spraying distance ranging from 90 to 100 mm was the threshold distance for optimum results, provided that all the other spraying parameters were kept constant. In this range of threshold distance, minimum percentages of porosity and defects were observed. Further, the formation of different phases, at six spraying distances, was studied using X-ray diffraction, and the phase analysis was correlated with hardness results.

  13. Modelling and analysis of sputter deposited ZrN coating by CFD

    Science.gov (United States)

    Kapopara, Jaydeep M.; Mengar, Akshaykumar R.; Chauhan, Kamlesh V.; Patel, Nicky P.; Rawal, Sushant K.

    2016-09-01

    The objective of the present work is to investigate the effect of various sputtering parameters such as velocity, mass flow rate on velocity profiles, pressure profiles, density profiles and concentration distribution of the process gases (argon and nitrogen) of zirconium nitride films deposited on glass and silica substrate by RF magnetron sputtering. A three dimensional Computational Fluid Dynamics (CFD) study has been carried out using Fluent-ANSYS commercial code to visualize the mixing behavior of process gases inside the deposition chamber. The results show that the location of gas inlet port has a greater influence on gas distribution inside the chamber where reactive gas will form coating. By having this information, one can able to modify the reactor geometry and gas flow openings along with its positions for better gas flow over the substrate which in turns gives an indirect indication of coating from the composition point of view.

  14. Wet and dry atmospheric deposition on TiO{sub 2} coated glass

    Energy Technology Data Exchange (ETDEWEB)

    Chabas, Anne, E-mail: anne.chabas@lisa.univ-paris12.f [Laboratoire Interuniversitaire des Systemes Atmospheriques, Universite Paris 12, Universite Paris 7, CNRS, 61 avenue du General de Gaulle, 94010 Creteil (France); Gentaz, Lucile; Lombardo, Tiziana; Sinegre, Romain [Laboratoire Interuniversitaire des Systemes Atmospheriques, Universite Paris 12, Universite Paris 7, CNRS, 61 avenue du General de Gaulle, 94010 Creteil (France); Falcone, Roberto [Stazione Sperimentale del Vetro, Calle Briati 10, 30141 Murano, Venezia (Italy); Verita, Marco [Laboratorio di Analisi dei Materiali Antichi LAMA, Universita IUAV di Venezia, S. Polo 2648, 30125 Venezia (Italy); Cachier, Helene [Laboratoire des Sciences du Climat et de l' Environnement, CNRS-CEA, Orme des Merisiers, bat 701, 91191Gif sur Yvette (France)

    2010-12-15

    To prevent the soiling of glass window used in the built environment, the use TiO{sub 2} coated products appears an important application matter. To test the cleaning efficiency and the sustainability of self-cleaning glass, a field experiment was conducted under real life condition, on a site representative of the background urban pollution. Samples of float glass, used as reference, and commercialized TiO{sub 2} coated glasses were exposed to dry and wet atmospheric deposition during two years. The crossed optical, chemical and microscopic evaluations performed, after withdrawal, allowed highlighting a sensible difference between the reference and the self-cleaning substrate in terms of accumulation, nature, abundance and geometry of the deposit. This experiment conducted in real site emphasized on the efficacy of self-cleaning glass to reduce the maintenance cost. - This paper evaluates the self-cleaning glass efficiency highlighting its ability to prevent soiling and to be used as a mean of remediation.

  15. Standard specification for pyrolytic and vacuum deposition coatings on flat glass

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers the optical and aesthetic quality requirements for coatings applied to glass for use in building glazing. 1.2 The coatings covered are applied to the glass using either pyrolytic or vacuum (sputtering) deposition methods and are typically applied to control solar heat gain, energy performance, comfort level, and condensation and enhance the aesthetic of the building. 1.3 This specification addresses blemishes related to the coating only. It does not address glass blemishes, applied ceramic frits, and organic films. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

  16. Characterization of highly hydrophobic coatings deposited onto pre-oxidized silicon from water dispersible organosilanes

    Energy Technology Data Exchange (ETDEWEB)

    Almanza-Workman, A. Marcia; Raghavan, Srini; Petrovic, Slobodan; Gogoi, Bishnu; Deymier, Pierre; Monk, David J.; Roop, Ray

    2003-01-01

    The formation and quality of highly hydrophobic coatings deposited from water dispersible organosilanes onto pre-oxidized single crystal silicon were studied using atomic force microscopy, ellipsometry, dynamic contact angle measurements and electrochemical impedance spectroscopy (EIS). Highly hydrophobic films of a commercially available water dispersible silane and two different cationic alkoxysilanes were prepared by dip coating. It was found using atomic force microscopy that, in general, the structure of these highly hydrophobic films is a continuous film with some particulates attributed to bulk polymerization of the precursor molecule in water. Film defects were quantified using EIS by the value of charge transfer resistance at the hydrofluoric acid/silicon interface. Potential applications of this type of coatings include reduction/elimination of stiction in micro-electromechanical systems, contact printing in materials microfabrication, inhibition of corrosion and oxidation, prevention of water wetting, lubrication and protein adsorption.

  17. An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

    2010-04-01

    Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

  18. 等离子喷涂B4C涂层的抗辐射性能研究%Anti-radiation behavior of plasma sprayed boron carbide coatings

    Institute of Scientific and Technical Information of China (English)

    李龙根; 徐志勇; 钱浩

    2009-01-01

    目的 研究用等离子技术喷涂的碳化硼(B4C)涂层的抗辐射能力.方法 将0.1 mm厚度B4C涂在16号锰钢上,研究它对加速器产生的6、10、15 MV高能射线,6、9、12、15 MeV高能电子线,60Co γ线和快中子辐射的防护作用.同时将0.1 mm B4C涂在纸板上,研究它对深部X线机的X线辐射的防护作用.结果 等离子喷涂制备B4C涂层对高能X线和60Co γ线没有防护作用.对电子线有一定防护作用,且随深度的增加有增大趋势,但作用不大.对快中子有较大防护作用.对深部X线机X线有防护作用,防护能力较强.0.1 mm厚的涂层就可带来15%的衰减.结论 用等离子技术喷涂的B4C涂层可在医学领域用来防护千伏级射线.%Objective To study anti-radiation behavior of plasma sprayed boron carbide coatings. Methods The anti-radiation capacity of 16Mn steel which was coated with 0.1 mm plasma sprayed boron carbide were studied. The irradiation beams were 6,10,15 MY X-ray and 6,9,12,15 MeV electron emitted by accelerator, X-ray emitted by 60Co machine,fast neutron, and X-ray emitted by kilovoltage X-ray ma-chine. Results Anti-radiation capacity of plasma sprayed boron carbide coatings was not found for X-ray beams emitted by accelerator and 60Co machine. For electron beams,the anti-radiation capacity were found. The deeper of location, the stronger was anti-radiation. However, the anti-radiation capacity was not good. For fast neutron,the anti-radiation capacity was good. For X-ray emitted by kilovoltage X-ray machine,the anti-radiation was good,and only 0.1 nun plasma sprayed boron carbide had 15% attenuation. Conclusions The plasma sprayed boron carbide coatings have the anti-radiation capacity for X-ray emitted by kilovoltage X-ray machine in medical field.

  19. Mechanical and tribological properties of the TiC-TiB2 composite coating deposited on 40Cr-steel by electro spark deposition

    Science.gov (United States)

    Tang, Jingming

    2016-03-01

    In the present investigation, TiC-TiB2 composite coating was deposited by electrical discharge hardening onto the surface of 40Cr steel with a TiC-TiB2 composite rod as electrode. The composite coating structure and phase compositions were characterized by SEM and XRD, the hardness and its distribution along coating were measured on micro-hardness machine. Wear resistance of composite coating was evaluated on MM-200 wear experiment machine. The results suggest that the major phases of the composite coating are TiB2, TiC and Fe3C. The micro hardness distribution along depth of composite coating is inhomogeneous, the micro hardness value of the composite coating is about 4 times of the substrate. The wear mechanism of 40Cr steel is mainly attributed to micro-cutting and adhesive wear, but the wear mechanism of composite coating is mainly attributed to micro-cutting, scratch and fatigue abrasion. The results show that the change of wear mechanism between the samples because of the hard particles and higher hardness of composite coating. Compared with the substrate, wear resistance of composite coating is 5 times higher than that of the substrate, friction coefficient of the coating decreased by 0.12-0.17 under the same wear environment. The erosion mechanism of the TiC-TiB2 composite coating is ploughing and cutting at low impact angles, but it failure in fatigue cracking and spalling at high impact angles.

  20. Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Faure Joel

    2013-11-01

    Full Text Available In this work, the 45S5 bioactive glass has been prepared by the sol-gel process using an organic acid catalyst instead of nitric acid usually used. The physico-chemical and structural characterizations confirmed and validated the elemental composition of the resulting glass. In addition, the 45S5 bioactive glass powder thus obtained was successfully used to elaborate by electrophoretic deposition a prosthetic coating on titanium alloy Ti6Al4V.

  1. Synthesis of photocatalytic TiO{sub 2} nano-coatings by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fraters, Bindikt D. [Photo Catalytic Synthesis Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Cavaliere, Emanuele [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics (i-Lamp), Università Cattolica del Sacro Cuore, Via dei Musei 41, Brescia 25121 (Italy); Mul, Guido [Photo Catalytic Synthesis Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Gavioli, Luca, E-mail: luca.gavioli@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics (i-Lamp), Università Cattolica del Sacro Cuore, Via dei Musei 41, Brescia 25121 (Italy)

    2014-12-05

    Graphical abstract: - Highlights: • Synthesis of well-defined TiO{sub 2} coatings by supersonic cluster beam deposition. • Morphology is studied for samples annealed at 500, 650 and 800 °C by HR-SEM. • Anatase (500, 650 °C) and Rutile (800 °C) are observed by Raman spectroscopy. • Quartz support improved the coating activity by factor 4–6 compared to Si-wafer. • Silicon is detrimental for photocatalytic activity promoting charge recombination. - Abstract: In this paper we report on the photocatalytic behavior in gas phase propane oxidation of well-defined TiO{sub 2} nanoparticle (NP) coatings prepared via Supersonic Cluster Beam Deposition (SCBD) on Si-wafers and quartz substrates. The temperature dependent crystal phase of the coatings was analyzed by Raman spectroscopy, and the morphology by High Resolution-Scanning Electron Microscopy. SCBD deposition in the presence of oxygen enables the in situ synthesis of TiO{sub 2} layers of amorphous NP at room temperature. Adapting the deposition temperature to 500 °C or 650 °C leads to Anatase crystals of variable size ranges, and layers showing significant porosity. At 800 °C mainly Rutile is formed. Post annealing by wafer heating of the amorphous NP prepared at room temperature results in comparable temperature dependent phases and morphologies. Photocatalytic activity in propane oxidation was dependent on the morphology of the samples: the activity decreases as a function of increasing particle size. The presence of water vapor in the propane feed generally increased the activity of the wafer-heated samples, suggesting OH groups are not profoundly present on SCBD synthesized layers. In addition, a remarkable effect of the substrate (Si or Quartz) was observed: strong interaction between Si and TiO{sub 2} is largely detrimental for photocatalytic activity. The consequences of these findings for the application of SCBD to synthesize samples for fundamental (spectroscopic) study of photocatalysis are

  2. Photocatalytic Activity of Reactively Sputtered Titania Coatings Deposited Using a Full Face Erosion Magnetron

    OpenAIRE

    Farahani, Nick; Kelly, Peter,; West, Glen; Hill, Claire; Vishnyakov, Vladimir

    2013-01-01

    Titanium dioxide (titania) is widely used as a photocatalyst for its moderate band gap, high photoactivity, recyclability, nontoxicity, low cost and its significant chemical stability. The anatase phase of titania is known to show the highest photocatalytic activity, however, the presence of this phase alone is not sufficient for sustained activity. In this study TiO2 coatings were deposited onto glass substrates by mid-frequency pulsed magnetron sputtering from metallic targets in reactive m...

  3. Mechanism of spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Vaidyanathan, K.; Barber, B.; Cheng, J.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1999-02-01

    The spallation failure of a commercial thermal barrier coating (TBC), consisting of a single-crystal RENE N5 superalloy, a platinum aluminide (Pt-Al) bond coat, and an electron beam-deposited 7 wt pct yttria-stabilized zirconia ceramic layer (7YSZ), was studied following cyclic furnace testing. In the uncycled state and prior to deposition of the ceramic, the Pt-Al bond-coat surface contains a cellular network of ridges corresponding to the underlying bond-coat grain-boundary structure. With thermal cycling, the ridges and associated grain boundaries are the sites of preferential oxidation and cracking, which results in the formation of cavities that are partially filled with oxide. Using a fluorescent penetrant dye in conjunction with a direct-pull test, it is shown that, when specimens are cycled to about 80 pct of life, these grain-boundary regions show extensive debonding. The roles of oxidation and cyclic stress in localized grain boundary region spallation are discussed. The additional factors leading to large-scale TBC spallation are described.

  4. Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ugur

    2004-07-15

    There are a lot of technologically interesting characteristics of niobium carbide coating deposited by pack method which is the production of hard, wear-resistant, oxidation and corrosion resistant coating layer on the steel substrates. In the present study, the growth kinetics of niobium carbide layer deposited by thermo-reactive diffusion techniques in a solid medium on steel samples was reported. Niobium carbide coating treatment was performed on AISI 1040 steels in the powder mixture consisting of ferro-niobium, ammonium chloride and alumina at 1073, 1173 and 1273 K for 1-4 h. The presence of NbC and Nb{sub 2}C phases formed on the surface of the steel substrates was confirmed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analyses. Niobium carbide layer thickness ranges from 3.42{+-}0.52 to 11.78{+-}2.29 {mu}m depending upon the treatment time and temperature. Layer growth kinetics was analyzed by measuring the depth of niobium carbide layer as a function of time and temperature. The kinetics of niobium carbide coating by pack method shows a parabolic relationship between carbide layer thickness and treatment time, and the activation energy for the process is estimated to be 91.257 kJ mol{sup -1}. Moreover, an attempt was made to investigate the possibility of predicting the contour diagram of niobium carbide layer variation and to establish some empirical relationships between process parameters and niobium carbide layer thickness.

  5. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    Science.gov (United States)

    Vital, Alexane; Vayer, Marylène; Tillocher, Thomas; Dussart, Rémi; Boufnichel, Mohamed; Sinturel, Christophe

    2017-01-01

    In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  6. Studies on Nanostructure Aluminium Thin Film Coatings Deposited using DC magnetron Sputtering Process

    Science.gov (United States)

    Singh M, Muralidhar; G, Vijaya; MS, Krupashankara; Sridhara, B. K.; Shridhar, T. N.

    2016-09-01

    Nanostructured thin film metallic coatings has become an area of intense research particularly in applications related solar, sensor technologies and many other optical applications such as laser windows, mirrors and reflectors. Thin film metallic coatings were deposited using DC magnetron sputtering process. The deposition rate was varied to study its influence on optical behavior of Aluminum thin films at a different argon flow rate. Studies on the optical response of these nanostructure thin film coatings were characterized using UV-VIS-NIR spectrophotometer with integrating sphere in the wavelength range of (250-2500nm) and Surface morphology were carried out using atomic force microscope with roughness ranging from 2 to 20nm and thickness was measured using Dektak measuring instrument. The reflection behavior of aluminium coatings on polycarbonate substrates has been evaluated. UV-VIS-NIR Spectrophotometer analysis indicates higher reflectance of 96% for all the films in the wavelength range of 250 nm to 2500 nm. Nano indentation study revealed that there was a considerable change in hardness values of the films prepared at different conditions.

  7. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  8. The effect of magnetic field on electrochemically deposited calcium phosphate/collagen coatings.

    Science.gov (United States)

    Zhao, Xueni; He, Jianpeng; Zhang, Jing; Wang, Xudong; Wang, Wanying

    2014-01-01

    Nanostructured calcium phosphate/collagen (CaP/COL) coatings were deposited on the carbon/carbon (C/C) composites through electrochemical deposition (ECD) under magnetic field. The effect of magnetic fields with different orientations on the morphology and composition was investigated. Both the morphology and composition of the coatings could be altered by superimposed magnetic field. Under zero magnetic field and magnetic field, three-dimensional network structure consisting of collagen fibers and CaP were formed on the C/C substrate. The applied magnetic field in the electric field helped to form nanostructured and plate-like CaP on collagen fibers. For the ECD under magnetic field, the Ca/P molar ratio of the coatings was lower than the one under B=0. This may be contributed to the decreased electrical resistance or the increased electrical conductivity of electrolyte solutions under magnetic field. The nanosized CaP/COL coatings exhibited the similar morphology to the human bone and could present excellent cell bioactivity and osteoblast functions.

  9. Recent progress in optical coating technology: low-voltage ion plating deposition

    Science.gov (United States)

    Guenther, Karl H.

    1990-08-01

    After fairly extensive discussions of the advantages and disadvantages of low energy and high energy ion beam bombardment of a growing film, we review briefly a number of experimental results obtained with various samples made with low voltage reactive ion plating deposition. The availability of a state-of-the-art high vacuum coating machine specifically equipped for this process is the foundation for a major leap toward achieving near-perfect optical coatings. The high density of ion plated thin films makes them impermeable to water vapor and corrosive solutions. This has been demonstrated with protected aluminum mirrors, polarizers, and infrared anti-reflection coatings. An indication of the high packing density is the substantially higher refractive index than that of comparable layers deposited with either conventional electron beam evaporation or ion assisted deposition. The spectral transmittance of multilayer stacks of oxide thin films is lower than expected from theoretical predictions which assume absorption-free dielectrics. The observed absorption is primarily of an interface nature rather than a volume effect and occurs predominantly in combinations of Ti02 and Si02 thin films.

  10. Natural Deposit Coatings on Steel during Cathodic Protection and Hydrogen Ingress

    Directory of Open Access Journals (Sweden)

    Wayne R. Smith

    2015-11-01

    Full Text Available The calcareous coating formed during cathodic protection (CP in seawater is known to reduce the current demand by hindering the transport of species required to support the cathodic reactions and, thereby, improve the economic performance of CP systems. There is, however, uncertainty as to whether the coating reduces hydrogen uptake or indeed enhances it. To ascertain this, two sets of samples were polarized at −1.1 V (standard calomel electrode, SCE in 3.5% w/v NaCl and synthetic seawater (ASTM D1141 at 20 °C and the diffusible hydrogen content measured over a period of 530 h. Under such conditions reports suggest a deposit with two distinct layers, comprising an initial brucite layer followed by an aragonite layer. Contrary to other findings, a fine initial layer containing Ca and Mg followed by a brucite layer was deposited with a few specks of Ca-containing zones in synthetic seawater. The hydrogen uptake was found to occur within the initial 100 h of exposure in synthetic seawater whilst it continued without the benefit of a deposit coating, i.e., in 3.5 wt % NaCl solution.

  11. The Formation of Nanocrystalline Diamond Coating on WC Deposited by Microwave Assisted Plasma CVD

    Science.gov (United States)

    Toff, M. R. M.; Hamzah, E.; Purniawan, A.

    2010-03-01

    Diamond is one form of carbon structure. The extreme hardness and high chemical resistant of diamond coatings determined that many works on this area relate to coated materials for tribological applications in biomedicine, as mechanical seals or cutting tools for hard machining operations. In the work, nanocrystalline diamond (NCD) coated tungsten carbide (WC) have been deposited by microwave assisted plasma chemical vapor deposition (MAPCVD) from CH4/H2 mixtures. Morphology of NCD was investigated by using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The quality of NCD is defined as ratio between diamond and non diamond and also full width at half maximum (FWHM) was determined using Raman spectra. The result found that the NCD structure can be deposited on WC surface using CH4/H2 gas mixture with grain size ˜20 nm to 100 nm. Increase %CH4 concentration due to increase the nucleation of NCD whereas decrease the quality of diamond. Based on Raman spectra, the quality of NCD is in the range ˜98.82-99.01% and 99.56-99.75% for NCD and microcrystalline (MCD), respectively. In addition, FWHM of NCD is high than MCD in the range of 8.664-62.24 cm-1 and 4.24-5.05 cm-1 for NCD and MCD respectively that indicate the crystallineity of NCD is smaller than MCD.

  12. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology

    Science.gov (United States)

    Razza, Stefano; Castro-Hermosa, Sergio; Di Carlo, Aldo; Brown, Thomas M.

    2016-09-01

    To bring perovskite solar cells to the industrial world, performance must be maintained at the photovoltaic module scale. Here we present large-area manufacturing and processing options applicable to large-area cells and modules. Printing and coating techniques, such as blade coating, slot-die coating, spray coating, screen printing, inkjet printing, and gravure printing (as alternatives to spin coating), as well as vacuum or vapor based deposition and laser patterning techniques are being developed for an effective scale-up of the technology. The latter also enables the manufacture of solar modules on flexible substrates, an option beneficial for many applications and for roll-to-roll production.

  13. Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process.

    Science.gov (United States)

    Chen, Dianying; Jordan, Eric H; Gell, Maurice; Wei, Mei

    2008-05-01

    A dense titania (TiO2) coating was deposited from an ethanol-based solution containing titanium isopropoxide using the solution precursor plasma spray (SPPS) process. XRD and Raman spectrum analyses confirmed that the coating is exclusively composed of rutile TiO2. SEM micrographs show the as-sprayed coating is dense with a uniform thickness and there are no coarse splat boundaries. The as-sprayed coating was chemically treated in 5M NaOH solution at 80 degrees C for 48 h. The bioactivity of as-sprayed and alkaline-treated coatings was investigated by immersing the coatings in simulated body fluid (SBF) for 14-28 days, respectively. After 28 days immersion, there is a complete layer of carbonate-containing apatite formed on the alkaline-treated TiO2 coating surface, but none formed on the as-sprayed coating.

  14. A comparative machining study of diamond-coated tools made by plasma torch, microwave, and hot filament techniques

    Indian Academy of Sciences (India)

    C E Bauer; A Inspektor; E J Oles

    2003-10-01

    An effective metal-cutting tool is usually a combination of a hard coating and a tough substrate. The successful deposition of diamond outside its thermodynamic stability range has stimulated the development of a new class of cutting tools: those with diamond-coated inserts of any desired style and edge geometry. The successful implementation of diamond coatings also expedited similar research in the deposition of cubic boron nitride. This paper presents superhard coating tools, with emphasis on diamond-coated WC–Co tools, the corresponding deposition of technologies and the foreseen metal-cutting applications.

  15. Cathodic micro-arc electro-deposition of ZrO2 coatings in an aqueous solution containing colloidal particles

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By a novel technique-cathodic micro-arc electro-deposition (CMED), ZrO2 coatings were deposited on an FeCrAl alloy. Experimental results show that the necessary conditions for obtaining ZrO2 coatings are to apply a pulse peak voltage over a critical value and add moderate amounts of ZrO2 colloidal particles and Zr(NO3)4 in the aqueous solution. The as-deposited coatings are porous because hydrogen, water, and other vapors are generated and released from the coatings to the solution during the spark reaction. The coatings contain monoclinic and tetragonal crystalline ZrO2with certain degree of amorphous structure. The processing parameters and mechanism of CMED were discussed.

  16. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  17. Synthesis and Deposition of TiC-Fe Coatings by Oxygen-acetylene Flame Spraying

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simpler and more convenient method for producing wear-resistant, TiC-reinforced coatings were investigated in this study. It consists of the simultaneous synthesis and deposition of TiC-Fe materials by oxyacetylene flame spraying.Solid reagents bound together to form a single particle are injected into the flame stream where an in-situ reaction occurs. The reaction products are propelled onto a substrate to form a coating. Microstructural analyses reveal that TiC and Fe are the dominant phases in the coatings. The reaction between Ti and C happens step by step along with the reactive spray powder flight, and TiC-Fe materials were mainly synthesized where the spray distance is 125~170 mm. The TiC-Fe coatings are composed of alternate TiC-rich and TiC-poor lamellae with different microhardness of 11.9~13.7 and 3.0~6.0 Gpa, respectively. Submicron and round TiC particles are dispersed within a ductile metal matrix. The peculiar microstructure is thought to be responsible for its good wear resistance, which is better nearly five times than WC-reinforced cermet coatings obtained by traditional oxyacetylene flame spray.

  18. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites.

  19. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  20. Thermodynamics of electrodeposited Ni-B-SiC composite coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The φ-pH diagram of Ni-B-H2O system was drawn, and the mechanism of electrodepositing Ni-B-SiC composite coatings was discussed. The results show that the deposition of Ni and B occurs prior to that of H2 because of the over-potential of H2 evolution on the Fe substrate. Boron can not singly deposit in aqueous solution. Nickel and boron can co-deposit in the form of Ni4B3 without evolution of hydrogen when the cathodical potential is kept to be -1.415~-1.700?V.

  1. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance

    Energy Technology Data Exchange (ETDEWEB)

    Gudla, Visweswara Chakravarthy [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Canulescu, Stela [Department of Photonics Engineering, Technical University of Denmark, DK-4000 Roskilde (Denmark); Shabadi, Rajashekhara [Unité Matériaux et Transformations, Université Lille1, 59655 Villeneuve ‘Ascq (France); Rechendorff, Kristian [Tribology Centre, Danish Technological Institute, DK-8000 Århus C (Denmark); Dirscherl, Kai [Danish Fundamental Metrology, DK-2800 Kgs., Lyngby (Denmark); Ambat, Rajan, E-mail: ram@mek.dtu.dk [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2014-10-30

    Highlights: • Microstructure of magnetron sputtered Al–Zr coatings on AA6060 under as coated and heat treated condition. • Effect of heat treatment and precipitation of Al–Zr–Si (τ{sub 1}) phase on optical appearance of anodized layer. • Partial oxidation of τ{sub 1} precipitates after anodizing and relation to darkening of the anodized layer. • Oxidized region of τ{sub 1} precipitates was amorphous while unoxidized region retained crystallinity. • Unoxidized metallic τ{sub 1} in amorphous anodic alumina acts as light absorption centres and causes darkening after anodizing. - Abstract: The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al–Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550 °C for 4 h in order to evolve Al–Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acid at 18 °C with an intention to study the effect of anodizing on the Al–Zr based precipitates in the coating. Detailed microstructural characterization of the coating and anodized layer was carried out using high resolution scanning and transmission electron microscopy, grazing incidence X-ray diffraction analysis, glow discharge optical emission spectroscopy, and optical appearance using spectrophotometry. The evolution of microstructure in the anodized layer as a function of anodizing parameters and their influence on the interaction of light is investigated and the results in general are applicable to discolouration of anodized layer on

  2. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca{sup 2+}, PO{sub 4}{sup 3−} and SiO{sub 3}{sup 2−} ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO{sub 4}{sup 4−} groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO{sub 4}{sup 4−} groups in the Si-HA coating.

  3. Properties of amorphous SiC coatings deposited on WC-Co substrates

    Directory of Open Access Journals (Sweden)

    A.K. Costa

    2003-01-01

    Full Text Available In this work, silicon carbide films were deposited onto tungsten carbide from a sintered SiC target on a r.f. magnetron sputtering system. Based on previous results about the influence of r.f. power and argon pressure upon the properties of films deposited on silicon substrates, suitable conditions were chosen to produce high quality films on WC-Co pieces. Deposition parameters were chosen in order to obtain high deposition rates (about 30 nm/min at 400 W rf power and acceptable residual stresses (1.5 GPa. Argon pressure affects the energy of particles so that films with higher hardness (30 GPa were obtained at low pressures (0.05 Pa. Wear rates of the coated pieces against a chromium steel ball in a diamond suspension medium were found to be about half of the uncoated ones. Hardness and wear resistance measurements were done also in thermally annealed (200-800 °C samples revealing the effectiveness of SiC coatings to protect tool material against severe mechanical degradation resulting of high temperature (above 500 °C oxidation.

  4. Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Arias, L.; Cabanas-Polo, S.; Goudouri, O.M. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany); Misra, S.K. [Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Ahmedabad 382424 (India); Gilabert, J. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Valsami-Jones, E. [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanchez, E. [Institute of Ceramics Materials (ITC), University Jaume I, Avenida Vicent SosBaynat, 12006 Castellon (Spain); Virtanen, S. [Institute for Surface Science and Corrosion (LKO, WW4), Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen (Germany); Boccaccini, A.R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen (Germany)

    2015-10-01

    Two organic/inorganic composite coatings based on alginate, as organic matrix, and zinc oxide nanoparticles (n-ZnO) with and without bioactive glass (BG), as inorganic components, intended for biomedical applications, were developed by electrophoretic deposition (EPD). Different n-ZnO (1–10 g/L) and BG (1–1.5 g/L) contents were studied for a fixed alginate concentration (2 g/L). The presence of n-ZnO was confirmed to impart antibacterial properties to the coatings against gram-negative bacteria Escherichia coli, while the BG induced the formation of hydroxyapatite on coating surfaces thereby imparting bioactivity, making the coating suitable for bone replacement applications. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings. Polarization curves of the coated substrates made in cell culture media at 37 °C confirmed the corrosion protection function of the novel organic/inorganic composite coatings. - Highlights: • Organic–inorganic nanocomposite coatings fabricated by electrophoretic deposition • nZnO and bioactive glass containing alginate coatings exhibit antibacterial effect. • Bioactive character and anticorrosion function of coatings demonstrated.

  5. Effect of structure and deposition technology on tribological properties of DLC coatings alloyed with VIA group metals

    Science.gov (United States)

    Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.

    2016-07-01

    The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).

  6. Investigation of physical vapor deposition techniques of conformal shell coating for core/shell structures by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cansizoglu, H., E-mail: hxis@ualr.edu; Yurukcu, M.; Cansizoglu, M.F.; Karabacak, T.

    2015-05-29

    Vertically aligned core/shell nanowire (nanorod) arrays are favorable candidates in many nano-scale devices such as solar cells, detectors, and integrated circuits. The quality of the shell coating around nanowire arrays is as crucial as the quality of the nanowires in device applications. For this reason, we worked on different physical vapor deposition (PVD) techniques and conducted Monte Carlo simulations to estimate the best deposition technique for a conformal shell coating. Our results show that a small angle (≤ 45°) between incoming flux of particles and the substrate surface normal is necessary for PVD techniques with a directional incoming flux (e.g. thermal or e-beam evaporation) for a reasonable conformal coating. On the other hand, PVD techniques with an angular flux distribution (e.g. sputtering) can provide a fairly conformal shell coating around nanowire arrays without a need of small angle deposition. We also studied the shape effect of the arrays on the conformality of the coating and discovered that arrays of the tapered-top nanorods and the pyramids can be coated with a more conformal and thicker coating compared to the coating on the arrays of flat-top nanowires due to their larger openings in between structures. Our results indicate that conventional PVD techniques, which offer low cost and large scale thin film fabrication, can be utilized for highly conformal and uniform shell coating formation in core/shell nanowire device applications. - Highlights: • We examined the shell coating growth in core/shell nanostructures. • We investigated the effect of physical vapor deposition method on the conformality of the shell. • We used Monte Carlo simulations to simulate the shell growth on nanowire templates. • Angular atomic flux (i.e., sputtering at high pressure) leads to conformal and uniform coatings. • A small angle (< 45°) to the directional flux needs to be introduced for conformal coatings.

  7. Effects of boron addition on a-Si{sub 90}Ge{sub 10}:H films obtained by low frequency plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Arllene M [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa Maria Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Universidad Popular Autonoma del Estado de Puebla (UPAEP), 21 Sur 1103 Colonia Santiago, CP 72160, Puebla, Puebla (Mexico); Renero, Francisco J [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa Maria Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Zuniga, Carlos [Instituto Nacional de AstrofIsica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa MarIa Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Torres, Alfonso [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa MarIa Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Santiago, Cesar [Universidad Politecnica de Tulancingo, Prolongacion Guerrero 808 Colonia Caltengo, CP 43626, Tulancingo, Hidalgo (Mexico)

    2005-06-29

    Optical, structural and electric properties of (a-(Si{sub 90}Ge{sub 10}){sub 1-y}B{sub y}:H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10{sup -3} to 10{sup 1} {omega}{sup -1} cm{sup -1} when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  8. The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings

    NARCIS (Netherlands)

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    2011-01-01

    Shorter processing time has given impetus to laser cladding technology and therefore in this research the AISI 431 martensitic stainless steel coatings are laser deposited at high cladding speeds, i.e. up to 117 mm/s. The analysis of phase constitution and functional properties of the coatings are p

  9. Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.

    Science.gov (United States)

    Berni, M; Lopomo, N; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Visani, A; Pavan, P; Russo, A; Marcacci, M

    2016-05-01

    One of the most important issues leading to the failure of total joint arthroplasty is related to the wear of the plastic components, which are generally made of ultra high molecular weight polyethylene (UHMWPE). Therefore, the reduction of joint wear represents one of the main challenges the research in orthopedics is called to address nowadays. Surface treatments and coatings have been recognized as innovative methods to improve tribological properties, also in the orthopedic field. This work investigated the possibility to realize hard ceramic coatings on the metal component of a prosthesis, by means of Pulsed Plasma Deposition, in order to reduce friction and wear in the standard coupling against UHMWPE. Ti6Al4V substrates were coated with a 2 μm thick yttria-stabilized zirconia (YSZ) layer. The mechanical properties of the YSZ coatings were assessed by nanoindentation tests performed on flat Ti6Al4V substrates. Tribological performance was evaluated using a ball-on-disk tribometer in dry and lubricated (i.e. with fetal bovine serum) highly-stressing conditions, up to an overall distance of 10 km. Tribology was characterized in terms of coefficient of friction (CoF) and wear rate of the UHMWPE disk. After testing, specimens were analyzed through optical microscopy and SEM images, in order to check the wear degradation mechanisms. Progressive loading scratch tests were also performed in dry and wet conditions to determine the effects of the environment on the adhesion of the coating. Our results supported the beneficial effect of YSZ coating on metal components. In particular, the proposed solution significantly reduced UHMWPE wear rate and friction. At 10 km of sliding distance, a wear rate reduction of about 18% in dry configuration and of 4% in presence of serum, was obtained by the coated group compared to the uncoated group. As far as friction in dry condition is concerned, the coating allowed to maintain low CoF values until the end of the tests, with an

  10. Bioactivity response of Ta1-xOx coatings deposited by reactive DC magnetron sputtering.

    Science.gov (United States)

    Almeida Alves, C F; Cavaleiro, A; Carvalho, S

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft-hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar+O2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates.

  11. Cathodic electrophoretic deposition of bismuth oxide (Bi{sub 2}O{sub 3}) coatings and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaogang [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Li, Xueming, E-mail: xueminglicqu@126.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Lai, Chuan [School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000 (China); Li, Wulin [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Optoelectronic Technology and Systems (Education Ministry of China), Chongqing University, 400044 (China); Zhang, Daixiong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Xiong, Zhongshu [School of Foreign Languages and Literature, Chongqing Normal University, Chongqing 401331 (China)

    2015-03-15

    Graphical abstract: Bismuth oxide (Bi{sub 2}O{sub 3}) coating has been prepared by cathodic electrophoretic deposition method and exhibits high photocatalytic activities for the degradation of Rhodamine B. - Highlights: • The nano-Bi{sub 2}O{sub 3} coatings have been firstly successfully fabricated by EPD method. • The EPD deposition mechanism of Bi{sub 2}O{sub 3} coatings is firstly given. • Deposition dynamics are investigated by regulating different deposition times and applied field strengths in detail. • Obtained coating show great photocatalytic activities for the degradation of Rhodamine B. - Abstract: In this study, cathodic electrophoretic deposition (EPD), a low cost, one-step and flexible method, has been successfully developed to prepare bismuth oxide (Bi{sub 2}O{sub 3}) coatings. Stable suspensions consisted of isopropyl alcohol and trace additive-polyethyleneimine. Deposition was achieved on the cathode at applied field strengths of 5–25 V mm{sup −1} using a total solids loading of 0.5–2 g L{sup −1} at ambient temperature and pressure. The deposition mechanism of Bi{sub 2}O{sub 3} coatings was firstly given, and deposition kinetics were investigated in detail. The deposits were characterized qualitatively by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) observation, atomic force microscope (AFM), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis, respectively. Moreover, the photocatalytic activities of obtained coatings were evaluated through degradation of Rhodamine B under ultraviolet and visible light irradiation.

  12. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films.

    Science.gov (United States)

    Jiang, Jinhong; Zhu, Liping; Zhu, Lijing; Zhu, Baoku; Xu, Youyi

    2011-12-06

    This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials.

  13. Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS

    Science.gov (United States)

    Ma, Quansheng; Li, Liuhe; Xu, Ye; Gu, Jiabin; Wang, Lei; Xu, Yi

    2017-01-01

    TiAlSiN nanocomposite coatings were deposited onto cemented carbide (WC-10 wt.%, Co) substrates by high power impulse magnetron sputtering (HiPIMS). The effect of substrate bias voltage on plasma discharge characterization of HiPIMS, element concentration, deposition rate, microstructure, surface/cross-sectional morphology, hardness and adhesion strength of coatings were studied. Compared with those deposited with direct current magnetic sputtering (DCMS), HiPIMS-deposited TiAlSiN coatings show improvements in some properties, including the surface roughness, the grain size, the hardness and adhesion strength, but a decrease in the deposition rate. When the bias voltage increases, the discharge current rose up from 118A to 165A. HiPIMS-deposited TiAlSiN coatings show a shift of the preferred crystallographic orientation from (220) to (200) and decreases in surface roughness from 14.1 nm down to 7.4 nm and grain size from 10.5 nm to 7.4 nm. Meanwhile, a change in crystal morphology from columnar to equiaxial and a grain refinement, as well as an increase of hardness from 30 GPa up to 42 GPa of those TiAlSiN coatings were observed with the increasing bias voltage and a decrease in adhesion strength from HF2 to HF5 of those coatings were revealed by indentation adhesion test.

  14. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  15. Corrosion resistance of monolayer hexagonal boron nitride on copper

    Science.gov (United States)

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-02-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating.

  16. Structure property relationships of nitride superlattice hard coatings prepared by pulsed laser deposition

    Science.gov (United States)

    Patel, Nitin

    Today, more than 40% of all cutting tools used in machining applications are covered with coatings. Coatings improve wear resistance, increase tool life, enable use at higher speed, and broaden the application range. Superlattices, where thin layers (typically deposited in an alternating fashion, are widely used commercially. Importantly, the hardness value of a superlattice (e.g. TiN/AlN) can significantly exceed the rule of mixture value. Superlattice coatings built from crystallographically dissimilar materials are not widely studied but hold promise for improvements in performance by allowing for both hardness and toughness to be simultaneously optimized. This is what this thesis is concerned with: a structure-property comparison of isostructural superlattices with corresponding non-isostructural superlattices. In order to grow both isostructural and non-isostructural superlattices from the same set of materials, it is necessary to grow monolithic films in different phases. Towards this end, the synthesis of different phases of AlN, (Ti,Al)N, TaN, and TiN was investigated. Films were grown by pulsed laser deposition in two different chambers that had different base pressures to study the effect of background gases on the phases and orientations of the films. Growth of AlN and (Ti,Al)N films is strongly affected in a chamber that had a base pressure of 10-6 Torr, but the films adopt their stable nitride structures in a chamber with the lower base pressure of 10-8 Torr. TaN adopts either the cubic rock salt structure or its stable hexagonal structure, depending on the growth temperature, while TiN grows as rock salt in all conditions. Single crystal epitaxial superlattices were then grown with different compositions, periodicities, and crystallographic orientations to compare the effect of chemistry, nanostructure, and crystallographic texture on hardness. Finally, the structure-property relationships of non-isostructural (cubic/hexagonal) superlattices are

  17. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition.

    Science.gov (United States)

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  18. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Chen-Long; Liu, Xiao; Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Shan, Bin, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

    2015-07-15

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas–solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al{sub 2}O{sub 3} films on spherical SiO{sub 2} NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  19. Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling.

    Science.gov (United States)

    Yang, Wen Jing; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Rittschof, Daniel

    2012-09-10

    "Click" chemistry-enabled layer-by-layer (LBL) deposition of multilayer functional polymer coatings provides an alternative approach to combating biofouling. Fouling-resistant azido-functionalized poly(ethylene glycol) methyl ether methacrylate-based polymer chains (azido-poly(PEGMA)) and antimicrobial alkynyl-functionalized 2-(methacryloyloxy)ethyl trimethyl ammonium chloride-based polymer chains (alkynyl-poly(META)) were click-assembled layer-by-layer via alkyne-azide 1,3-dipolar cycloaddition. The polymer multilayer coatings are resistant to bacterial adhesion and are bactericidal to marine Gram-negative Pseudomonas sp. NCIMB 2021 bacteria. Settlement of barnacle ( Amphibalanus (= Balanus ) amphitrite ) cyprids is greatly reduced on the multilayer polymer-functionalized substrates. As the number of the polymer layers increases, efficacy against bacterial fouling and settlement of barnacle cyprids increases. The LBL-functionalized surfaces exhibit low toxicity toward the barnacle cyprids and are stable upon prolonged exposure to seawater. LBL click deposition is thus an effective and potentially environmentally benign way to prepare antifouling coatings.

  20. Influence of Pre-Heated Al 6061 Substrate Temperature on the Residual Stresses of Multipass Al Coatings Deposited by Cold Spray

    Science.gov (United States)

    Rech, Silvano; Trentin, Andrea; Vezzù, Simone; Legoux, Jean-Gabriel; Irissou, Eric; Guagliano, Mario

    2011-01-01

    In this work, the influence of the substrate temperature on the deposition efficiency, on the coating properties and residual stress was investigated. Pure Al coatings were deposited on Al 6061 alloy substrates using a CGT Kinetics 3000 cold spray system. The substrate temperature was in a range between 20 (room temperature) and 375 °C and was kept nearly constant during a given deposition while all the other deposition parameters were unchanged. The deposited coatings were quenched in water (within 1 min from the deposition) and then characterized. The residual stress was determined by Almen gage method, Modified Layer Removal Method, and XRD in order to identify both the mean coating stress and the stress profile through the coating thickness from the surface to the coating-substrate interface. The residual stress results obtained by these three methods were compared and discussed. The coating morphology and porosity were investigated using optical and scanning electron microscopy.

  1. Bright prospects for boron

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  2. Electrochemical deposition of Ni–TiN nanocomposite coatings and the effect of sodium dodecyl sulphate surfactant on the coating properties

    Indian Academy of Sciences (India)

    NAFISE PARHIZKAR; ABOLGHASEM DOLATI; ROYA AGHABABAZADEH; ZAHRA LALEGANI

    2016-08-01

    Ni–TiN nanocomposite coatings were prepared by using electrochemical deposition in a Watt’s bath containing TiN particles to increase the hardness of Ni. The effects of deposition current density, electrolyte agitation speed and the number of particles in the solution on the amount of incorporated particles in the coating process were investigated. The optimum deposition current density of 4 A dm$^{−2}$ and agitation speed of 450 rpm were obtained. The effect of sodium dodecyl sulphate (SDS) anionic surfactant on the amount of particles in the coatings was investigated. It was observed that the maximum amount of incorporated particles, with a value of 7.5% by volume, was created in the current density of 4 A dm$^{−2}$, stirring rate of 450 rpm, 30 g l$^{−1}$ TiN particles and in the presence of 0.6 g l$^{−1}$ SDS anionic surfactant.

  3. TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Devia, D.M. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Caldas (Colombia); Laboratorio de Materiales, Universidad Nacional de Colombia Sede Medellin, Sede Medellin, Antioquia (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Caldas (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Caldas (Colombia); Tschiptschin, A.P. [Escola Politecnica da Universidade de Sao Paulo, Depto. de Engenharia Metalurgica e de Materiais, Sao Paulo, SP (Brazil); Velez, J.M. [Laboratorio de Materiales, Universidad Nacional de Colombia Sede Medellin, Sede Medellin, Antioquia (Colombia)

    2011-05-01

    TiAlN films were deposited on AISI O1 tool steel using a triode magnetron sputtering system. The bias voltage effect on the composition, thickness, crystallography, microstructure, hardness and adhesion strength was investigated. The coatings thickness and elemental composition analyses were carried out using scanning electron microscopy (SEM) together with energy dispersive X-ray (EDS). The re-sputtering effect due to the high-energy ions bombardment on the film surface influenced the coatings thickness. The films crystallography was investigated using X-ray diffraction characterization. The X-ray diffraction (XRD) data show that TiAlN coatings were crystallized in the cubic NaCl B1 structure, with orientations in the {l_brace}1 1 1{r_brace}, {l_brace}2 0 0{r_brace} {l_brace}2 2 0{r_brace} and {l_brace}3 1 1{r_brace} crystallographic planes. The surface morphology (roughness and grain size) of TiAlN coatings was investigated by atomic force microscopy (AFM). By increasing the substrate bias voltage from -40 to -150 V, hardness decreased from 32 GPa to 19 GPa. Scratch tester was used for measuring the critical loads and for measuring the adhesion.

  4. Thickness Measurement Methods for Physical Vapor Deposited Aluminum Coatings in Packaging Applications: A Review

    Directory of Open Access Journals (Sweden)

    Martina Lindner

    2017-01-01

    Full Text Available The production of barrier packaging materials, e.g., for food, by physical vapor deposition (PVD of inorganic coatings such as aluminum on polymer substrates is an established and well understood functionalization technique today. In order to achieve a sufficient barrier against gases, a coating thickness of approximately 40 nm aluminum is necessary. This review provides a holistic overview of relevant methods commonly used in the packaging industry as well as in packaging research for determining the aluminum coating thickness. The theoretical background, explanation of methods, analysis and effects on measured values, limitations, and resolutions are provided. In industrial applications, quartz micro balances (QCM and optical density (OD are commonly used for monitoring thickness homogeneity. Additionally, AFM (atomic force microscopy, electrical conductivity, eddy current measurement, interference, and mass spectrometry (ICP-MS are presented as more packaging research related methods. This work aims to be used as a guiding handbook regarding the thickness measurement of aluminum coatings for packaging technologists working in the field of metallization.

  5. Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings

    Directory of Open Access Journals (Sweden)

    Storey Dan

    2007-01-01

    Full Text Available AbstractBioactive coatings are in high demand to control cellular functions for numerous medical devices. The objective of this in vitro study was to characterize for the first time fibroblast (fibrous scar tissue forming cells adhesion and proliferation on an important polymeric biomaterial (silicone coated with titanium using a novel ionic plasma deposition (IPD process. Fibroblasts are one of the first anchorage-dependent cells to arrive at an implant surface during the wound healing process. Persistent excessive functions of fibroblasts have been linked to detrimental fibrous tissue formation which may cause implant failure. The IPD process creates a surface-engineered nanostructure (with features usually below 100 nm by first using a vacuum to remove all contaminants, then guiding charged metallic ions or plasma to the surface of a medical device at ambient temperature. Results demonstrated that compared to currently used titanium and uncoated silicone, silicone coated with titanium using IPD significantly decreased fibroblast adhesion and proliferation. Results also showed competitively increased osteoblast (bone-forming cells over fibroblast adhesion on silicone coated with titanium; in contrast, osteoblast adhesion was not competitively increased over fibroblast adhesion on uncoated silicone or titanium controls. In this manner, this study strongly suggests that IPD should be further studied for biomaterial applications in which fibrous tissue encapsulation is undesirable (such as for orthopedic implants, cardiovascular components, etc..

  6. Atomic Layer Deposited Coatings on Nanowires for High Temperature Water Corrosion Protection.

    Science.gov (United States)

    Yersak, Alexander S; Lewis, Ryan J; Liew, Li-Anne; Wen, Rongfu; Yang, Ronggui; Lee, Yung-Cheng

    2016-11-30

    Two-phase liquid-cooling technologies incorporating micro/nanostructured copper or silicon surfaces have been established as a promising thermal management solution to keep up with the increasing power demands of high power electronics. However, the reliability of nanometer-scale features of copper and silicon in these devices has not been well investigated. In this work, accelerated corrosion testing reveals that copper nanowires are not immune to corrosion in deaerated pure hot water. To solve this problem, we investigate atomic layer deposition (ALD) TiO2 coatings grown at 150 and 175 °C. We measured no difference in coating thickness for a duration of 12 days. Using a core/shell approach, we grow ALD TiO2/Al2O3 protective coatings on copper nanowires and demonstrate a preservation of nanoengineered copper features. These studies have identified a critical reliability problem of nanoscale copper and silicon surfaces in deaerated, pure, hot water and have successfully demonstrated a reliable solution using ALD TiO2/Al2O3 protective coatings.

  7. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth current pulse

    Indian Academy of Sciences (India)

    S Yogesha; A Chitharanjan Hegde

    2011-12-01

    Micro/nanostructured multilayer coatings of Zn–Co alloy were developed periodically on mild steel from acid chloride bath. Composition modulated multilayer alloy (CMMA) coatings, having gradual change in composition (in each layer) were developed galvanostatically using saw-tooth pulses through single bath technique (SBT). CMMA coatings were developed under different conditions of cyclic cathode current densities (CCCDs) and number of layers, and their corrosion resistances were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) method. Optimal configuration, represented as (Zn–Co)2.0/4.0/300 was found to exhibit ∼ 89 times better corrosion resistance compared to monolithic (Zn–Co)3.0 alloy deposited for same time, from same bath. The better corrosion resistance of CMMA coatings was attributed to changed interfacial dielectric properties, evidenced by dielectric spectroscopy. Improved corrosion resistance was attributed to formation of -type semiconductor film at the interface, supported by the Mott–Schottky plot. Further, the formation of multilayer and corrosion mechanism was analysed using scanning electron microscopy (SEM).

  8. Reinforced Pulsed Laser-Deposited Hydroxyapatite Coating on 316 Stainless Steel

    Science.gov (United States)

    Bajpai, Shubhra; Gupta, Ankur; Pradhan, Siddhartha Kumar; Mandal, Tapendu; Balani, Kantesh

    2014-10-01

    Hydroxyapatite (HA) is a widely used bioceramic known for its chemical similarity with that of bone and teeth (Ca/P ratio of 1.67). But, owing to its extreme brittleness, α-Al2O3 is reinforced with HA and processed as a coating via pulsed laser deposition (PLD). Reinforcement of α-Al2O3 (50 wt.%) in HA via PLD on 316L steel substrate has shown modulus increase by 4% and hardness increase by 78%, and an improved adhesion strength of 14.2 N (improvement by 118%). Micro-scratching has shown an increase in the coefficient-of-friction from 0.05 (pure HA) to 0.17 (with 50 wt.% Al2O3) with enhancement in the crack propagation resistance (CPR) up to 4.5 times. Strong adherence of PLD HA-Al2O3 coatings (~4.5 times than that of HA coating) is attributed to efficient release of stored tensile strain energy (~17 × 10-3 J/m2) in HA-Al2O3 composites, making it a potential damage-tolerant bone-replacement surface coating.

  9. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Khosravian, N. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Amin-Ahmadi, B. [Electron Microscopy for materials Science (EMAT), Department of Physics, University of Antwerpen, Groenenborgerlan 171, B-2020 Antwerpen (Belgium); Yi, Yang [Data Storage Institute, A*STAR (Agency for Science, Technology and Research), 117608 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Neyts, E.C.; Bogaerts, A. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Tay, B.K. [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-03-02

    A series of [TiN/TiAlN]{sub n} multilayer coatings with different bilayer numbers n = 5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEM imaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces. - Highlights: • TiN/TiAlN multilayer coatings with different bilayer number were deposited on SS. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the coatings was measured by pulsed photothermal reflectance. • Thermal conductivity depends on the coatings' microstructure and number of layers. • With increasing the bilayer number, thermal conductivity decreased.

  10. Thin films and coatings deposited by vacuum techniques; Capas delgadas y recubrimientos obtenidos mediante tecnicas de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Albella, J. M.; Endrino, J. L.

    2010-07-01

    This paper gives an overview of the various aspects associated with the development of coatings and thin films in all its aspects, from the preparation techniques to the technological applications. It addresses such important issues, such as the comparison of some techniques with others, or the choice of a deposition method to achieve certain characteristics in the deposited layer. (Author) 8 refs.

  11. Adhesion improvement of carbon-based coatings through a high ionization deposition technique

    Science.gov (United States)

    Broitman, E.; Hultman, L.

    2012-06-01

    The deposition of highly adherent carbon nitride (CNx) films using a pretreatment with two high power impulse magnetron sputtering (HIPIMS) power supplies in a master-slave configuration is reviewed. SKF3 (AISI 52100) steel substrates were pretreated in the environment of a high ionized Cr+Ar plasma in order to sputter clean the surface and implant Cr metal ions. CNx films were subsequently deposited at room temperature by DC magnetron sputtering from a high purity C target in a N2/Ar plasma discharge. All processing was done in an industrial-scale CemeCon CC800 coating system. A series of depositions were obtained with samples pretreated at different bias voltages (DC and pulsed). The adhesion of CNx films, evaluated by the Daimler-Benz Rockwell-C test, reaches strength quality HF1. Adhesion results are correlated to high resolution transmission electron microscopy observations confirming the formation of an optimal interfacial mixing layer of Cr and steel. The throwing power increase for HIPIMS coatings is associated to the higher ionization in the plasma discharge.

  12. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  13. Application of Taguchi Method to the Optimization of a-C:H Coatings Deposited Using Ion Beam Assisted Physical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    W. H. Kao

    2015-02-01

    Full Text Available The Taguchi design method is used to optimize the adhesion, hardness, and wear resistance properties of a-C:H coatings deposited on AISI M2 steel substrates using the ion beam assisted physical vapor deposition method. The adhesion strength of the coatings is evaluated by means of scratch tests, while the hardness is measured using a nanoindentation tester. Finally, the wear resistance is evaluated by performing cyclic ball-on-disc wear tests. The Taguchi experimental results show that the optimal deposition parameters are as follows: a substrate bias voltage of 90 V, an ion beam voltage of 1 kV, an acetylene flow rate of 21 sccm, and a working distance of 7 cm. Given these optimal processing conditions, the a-C:H coating has a critical load of 99.8 N, a hardness of 25.5 GPa, and a wear rate of 0.4 × 10−6 mm3/Nm.

  14. Corrosion Behavior of Electrodepositing Ni/Al2O3 Composite Coatings under the Presence of NaCl Deposit

    Institute of Scientific and Technical Information of China (English)

    Xie Danyang; Liu Lin

    2007-01-01

    The morphology and corrosion behavior of Ni/Al2O3 composite coatings prepared using double-pulsed electrodepositing technique after oxidized under 800℃ NaCl deposit in air environment were analyzed by scanning electrical microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectrum (EDS). The results showed that the corrosion of all composite coatings was accelerated under NaCl deposits, and the corrosion products were rather porous with poor adherence to the matrix. Al2)O3 particles in the coatings can refine the grain size and improve the high temperature corrosion resistance of the coatings. Within the test scope, the more Al2O3 particles in the coatings, the lower corrosion rates could be obtained, and the corrosion mechanism was also discussed.

  15. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.

  16. EFFECT OF La2O3 ADDITION ON MICROSTRUCTURE AND WEAR BEHAVIOR OF ELECTROSPARK DEPOSITED Ni-BASED COATINGS

    OpenAIRE

    GAO YUXIN; YI JIAN

    2013-01-01

    La2O3 doped Ni-based coatings have been prepared by electrospark deposition technique. The effect of La2O3 on the microstructure, hardness and wear behavior of the as-prepared Ni-based coatings is investigated by using X-ray diffractometer, scanning electron microscope, wear tribometer and Vickers hardness tester. Results indicates that the microstructure, hardness and wear resistance of La2O3 doped Ni-based coatings are effectively improved as compared to the undoped one, and the coating wit...

  17. Optimal conditions for the deposition of novel anticorrosive coatings by RF magnetron sputtering for aluminum alloy AA6082

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti-Sibaja, S.B. [Instituto Politécnico Nacional, Postgraduate Student of CICATA-Unidad Altamira (Mexico); Instituto Tecnológico de Cd. Madero, Cd. Madero, Tamaulipas (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [CICATA-Altamira, Instituto Politécnico Nacional, IPN Km 14.5 Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamaulipas (Mexico); Rodil, S.E. [Universidad Nacional Autónoma de México, IIM, D.F. (Mexico); Torres-Huerta, A.M. [CICATA-Altamira, Instituto Politécnico Nacional, IPN Km 14.5 Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamaulipas (Mexico)

    2014-12-05

    Highlights: • Non-conventional technique for improving the corrosion resistance of aluminum alloys. • Effect of the deposition parameters: power, substrate temperature and deposition time. • Changes in the crystallinity of the coatings are observed with the temperature. • The structure of these coatings is found to be dependent on the nature of the substrate. • La coatings can provide a better physical barrier to inhibit the corrosion attack. - Abstract: Cerium and lanthanum coatings were deposited on glass, silicon (1 0 0), and aluminum alloy by RF magnetron sputtering in which several experimental conditions such as power, substrate temperature, and deposition time were varied, using pure CeO{sub 2} and La{sub 2}O{sub 3} targets. The effect of deposition parameters on the bonding structure, surface morphology and properties against corrosion of rare earth (RE) coatings formed on metallic substrate was reported. The microstructure and chemistry of the thin film were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and X-ray photoelectron spectroscopy (XPS); whereas their use as corrosion resistant coatings was studied in aqueous NaCl solution (3.0 wt%) by using polarization curves. Variations in these properties were observed by increasing the substrate temperature which modifies the crystallinity of the rare earth coatings. XRD and XPS findings indicate that the cerium coatings are composed by CeO{sub 2} and a significant quantity of Ce{sub 2}O{sub 3} due to oxygen deficiency in the sputtering chamber, whereas La{sub 2}O{sub 3}/La(OH){sub 3} and some La intermetallic compounds are detected in the lanthanum films. Variations in the E{sub corr} and I{sub corr} were found as a function of the thickness, texture, and morphology of the as-prepared coatings.

  18. Chemical and boron isotope microanalysis of tourmalines as a guide to fluid-rock interaction in the Habachtal emerald deposit, Tauern Window, Austria

    Science.gov (United States)

    Trumbull, R. B.; Krienitz, M.-S.; Grundmann, G.; Wiedenbeck, M.

    2009-04-01

    Tourmalines from the Habachtal emerald deposit in the Eastern Alps formed together with emerald in a ductile shear zone during blackwall metasomatism between pelitic country rocks and a serpentinite body. Electron microprobe and secondary ion mass spectrometric (SIMS) analyses provide a record of chemical and B-isotope variations in tourmalines which represent an idealized profile from metapelites into the blackwall sequence of biotite and chlorite schists. Tourmaline is intermediate schorl-dravite in the country rock and become increasingly dravitic in the blackwall zones, while F and Cr contents increase and Al drops. Metasomatic tourmaline from blackwall zones is typically zoned optically and chemically, with rim compositions rich in Mg, Ti, Ca and F compared with the cores. The total range in delta-11B values is -13.8 to -5.1 permil and the within-sample variations are typically 3 to 5 permil. Both of these ranges are beyond the reach of closed-system fractionation at the estimated 500-550C conditions of formation, and at least two boron components with contrasting isotopic composition are indicated. A key observation from tourmaline core analyses is a systematic shift in delta-11B from the country rock (-14 to -10 permil) to the inner blackwall zones (-9 to -5 permil). We suggest that two separate fluids were channeled and partially mixed in the Habachtal shear zone during blackwall alteration and tourmaline-emerald mineralization. A regional metamorphic fluid carried isotopically light boron as observed in the metapelite country rocks. The other fluid is derived from the serpentinite association and has isotopically heavier boron typical for MORB or altered oceanic crust.

  19. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Montelongo, J., E-mail: jacobo.hernandez@uam.es [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gallach, D.; Naveas, N.; Torres-Costa, V. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Climent-Font, A. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Madrid 28049 (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 (Spain); Manso-Silvan, M. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  20. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  1. Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharifalhoseini, Zahra [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Entezari, Mohammad H., E-mail: entezari@um.ac.ir [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of)

    2015-10-01

    Graphical abstract: Enhancement of the corrosion protection of electroless Ni–P layer by ZnO nanoparticles deposition and the comparison with the classical and sonochemical Ni–P coatings. - Highlights: • Unique effects of ultrasound were investigated on the anticorrosive performance of electroless Ni–P coating. • Sonoynthesis of ZnO NPs and its deposition were performed on the surface of Ni–P coating. • ZnO as an anticorrosive has a critical role in the multifunctional surfaces. • Electrochemical properties of all fabricated samples were compared with each other. - Abstract: Ni–P coatings were deposited through electroless nickel plating in the presence and absence of ultrasound. The simultaneous synthesis of ZnO nanoparticle and its deposition under ultrasound were also carried out on the surface of Ni–P layer prepared by the classical method. The morphology of the surfaces and the chemical composition were determined by scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS), respectively. Electrochemical techniques were applied for the corrosion behavior studies. The Ni–P layer deposited by ultrasound showed a higher anticorrosive property than the layer deposited by the classical method. The ZnO nanoparticles deposited on the surface of Ni–P layer significantly improved the corrosion resistance.

  2. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings.

    Science.gov (United States)

    Wang, Jiawei; de Boer, Jan; de Groot, Klaas

    2009-09-01

    Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the proliferation and differentiation of mouse osteoblast-like MC3T3-E1 cells. It was found that MC3T3-E1 cells cultured on the biomimetically deposited carbonate apatite coating demonstrated the greatest proliferation rate and the highest differentiation potential. Cells on the biomimetically deposited octacalcium phosphate coating had lower proliferation rate before day 7, but higher after that, than those on the electrolytically deposited carbonate apatite coating. There was no difference on the expression of early differentiation markers, that is, alkaline phosphatase activity and collagen content, between biomimetically deposited octacalcium phosphate and electrolytically deposited carbonate apatite coatings. However, higher expression of late differentiation markers, that is, osteocalcin and bone sialoprotein mRNA, was found on the biomimetically deposited octacalcium phosphate coating on day 14. These results suggest that the difference in in vitro osteoblast cell performance of calcium phosphate coatings might relate to their physicochemical properties. Biomimetic carbonate apatite coating is the most favorable surface for the proliferation and differentiation of MC3T3-E1 cells.

  3. Controllable preparation of a nano-hydroxyapatite coating on carbon fibers by electrochemical deposition and chemical treatment.

    Science.gov (United States)

    Wang, Xudong; Zhao, Xueni; Wang, Wanying; Zhang, Jing; Zhang, Li; He, Fuzhen; Yang, Jianjun

    2016-06-01

    A nano-hydroxyapatite (HA) coating with appropriate thickness and morphology similar to that of human bone tissue was directly prepared onto the surfaces of carbon fibers (CFs). A mixed solution of nitric acid, hydrochloric acid, sulfuric acid, and hydrogen peroxide (NHSH) was used in the preparation process. The coating was fabricated by combining NHSH treatment and electrochemical deposition (ECD). NHSH treatment is easy to operate, produces rapid reaction, and highly effective. This method was first used to induce the nucleation and growth of HA crystals on the CF surfaces. Numerous O-containing functional groups, such as hydroxyl (-OH) and carboxyl (-COOH) groups, were grafted onto the CF surfaces by NHSH treatment (NHSH-CFs); as such, the amounts of these groups on the functionalized CFs increased by nearly 8- and 12-fold, respectively, compared with those on untreated CFs. After treatment, the NHSH-CFs not only acquired larger specific surface areas but retained surfaces free from serious corrosion or breakage. Hence, NHSH-CFs are ideal depositional substrates of HA coating during ECD. ECD was successfully used to prepare a nano-rod-like HA coating on the NHSH-CF surfaces. The elemental composition, structure, and morphology of the HA coating were effectively controlled by adjusting various technological parameters, such as the current density, deposition time, and temperature. The average central diameter of HA crystals and the coating density increased with increasing deposition time. The average central diameter of most HA crystals on the NHSH-CFs varied from approximately 60 nm to 210 nm as the deposition time increased from 60 min to 180 min. Further studies on a possible deposition mechanism revealed that numerous O-containing functional groups on the NHSH-CF surfaces could associate with electrolyte ions (Ca(2+)) to form special chemical bonds. These bonds can induce HA coating deposition and improve the interfacial bonding strength between the HA

  4. Deposition of electroless Ni-P/Ni-W-P duplex coatings on AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electroless Ni-P/Ni-W-P duplex coatings were deposited directly on AZ91D magnesium alloy by all acid-sulfate nickel bath.Nickel suitIhate and sodium tungstate were used as metal ion sources and sodium hypophosphite was used as reducing agent.The coating was characterized for its structure,morphologies,microhardness and corrosion properties.The presence of dense and coarse nodules in the duplex coatings Was observed by SEM and EDS.Tungsten content in Ni-P/Ni-W-P alloy is about 0.65%(mass fraction)and the phosphorus content is 8.1 8%(mass fraction).The microhardness of the coatings is 622 VHN.The coating shows good adhesion to the substrate.The results of electrochemical analysis,the porosity and the immersion test show that Ni-P/Ni-W-P duplex coatings possess noble anticorrosion properties to protect the AZ91D magnesium alloy.

  5. The Tribological Behaviors of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition

    Science.gov (United States)

    Wang, Song; Liao, Zhenhua; Liu, Yuhong; Liu, Weiqiang

    2015-11-01

    Three thin films (DLC, a-C, and TiN) were performed on Ti6Al4V by chemical vapor deposition. Carbon ion implantation was pretreated for DLC and a-C films while Ti transition layer was pretreated for TiN film to strengthen the bonding strength. X-ray diffraction, Raman measurement, nano-hardness and nano-scratch tester, and cross-section etching by FIB method were used to analyze film characteristics. Tribological behaviors of these coatings were studied by articulation with both ZrO2 and UHMWPE balls using ball-on-disk sliding. The thickness values reached ~0.46, ~0.33, and ~1.67 μm for DLC, a-C, and TiN film, respectively. Nano-hardness of the coatings compared with that of untreated and bonding strength (critical load in nano-scratch test) values of composite coatings compared with that of monolayer film all increased significantly, respectively. Under destructive test (ZrO2 ball conterface) in bovine serum lubrication, TiN coating revealed the best wear resistance while DLC showed the worst. Film failure was mainly attributed to the plowing by hard ZrO2 ball characterized by abrasive and adhesive wear. Under normal test (UHMWPE ball conterface), all coatings showed significant improvement in wear resistance both in dry sliding and bovine serum lubrication. Both DLC and a-C films showed less surface damage than TiN film due to the self-lubricating phenomenon in dry sliding. TiN film showed the largest friction coefficient both in destructive and normal tests, devoting to the big TiN grains thus leading to much rougher surface and then a higher value. The self-lubricating film formed on DLC and a-C coating could also decrease their friction coefficients. The results indicated that three coatings revealed different wear mechanisms, and thick DLC or a-C film was more promising in application in lower stress conditions such as artificial cervical disk.

  6. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2013-01-01

    Full Text Available ZnO colloidal nanoparticles were synthesized, the average size of these nanoparticles is around 25 nm with hexagonal form. It was noted that stabilization depends directly on the purifying process; in this work we do not change the nature of the solution as a difference from Meulekamp's method, and we do not use any alkanes to remove the byproducts; only a centrifuge to remove those ones was used, thereby the stabilization increases up to 24 days. It is observed from the results that only three times of washing is enough to prevent the rapid aging process. The effect of annealing process on the composition, size, and geometrical shape of ZnO nanoparticles was studied in order to know whether the annealing process affects the crystallization and growth of the nanoparticles. After the synthesis, the colloidal nanoparticles were deposited by spin coating technique showing that the formed nanoparticles have no uniformly deposition pattern. But is possible to deposit those ones in glass substrates. A possible deposition process of the nanoparticles is proposed.

  7. Electrophoretic deposition and characterization of HA/chitosan nanocomposite coatings on Ti6Al7Nb alloy

    Science.gov (United States)

    Moskalewicz, Tomasz; Kot, Marcin; Seuss, Sigrid; Kędzierska, Aleksandra; Czyrska-Filemonowicz, Aleksandra; Boccaccini, Aldo R.

    2015-01-01

    Nano-hydroxyapatite/chitosan (nc-HA/chitosan) composite coatings were produced on two phase (α+β) Ti6Al7Nb titanium alloy substrates by electrophoretic deposition (EPD). The microstructure of the coatings was examined by scanning- and transmission electron microscopy methods as well as by X-ray diffractometry. The coatings, 770 nm-800 nm thick, were uniform, without any cracks or presence of large voids and they exhibited good adhesion to the titanium alloy substrate. The microstructure of the coatings consisted of nc-HA needle-like particles homogeneously embedded in a chitosan matrix. The deposited coatings exhibited good adhesion to the substrate. The best adhesion to the titanium alloy was determined for the coating deposited from suspensions containing 4 g/L of HA at 10 V during 240 s. The results confirm EPD as a convenient method to develop uniform and crack-free nanoscale organic-inorganic composite coatings on two phase titanium alloy substrates with potential application in orthopedic and dental implants.

  8. Fabrication and Characterization of YBCO Coated Conductors by Inclined Substrate Deposition

    Science.gov (United States)

    Ma, B.; Balachandran, U.; Xu, Y.; Bhattacharya, R.

    2006-03-01

    Inclined substrate deposition (ISD) is an effective method for rapid fabrication of high-quality template layers for YBCO-coated conductors. We have deposited biaxially textured ISD-MgO films on flexible metallic tapes in a reel-to-reel system by electron-beam evaporation at rapid deposition rates, 2-10 nmṡs-1. Strontium ruthenium oxide (SRO) buffer and YBCO films were grown by pulsed laser deposition (PLD). Pole figure analysis of a meter-long ISD-MgO tape was carried out by X-ray diffraction using a Bruker's D8 DISCOVER equipped with GADDS (general area detection diffraction system). The c-axis of the ISD-MgO film was tilted away from substrate normal. A full-width at half maximum (FWHM) of ≈10° was observed from the φ-scan of the MgO (002) diffraction measured on samples deposited with 35° inclination angle. Surface morphology measured by atomic force microscopy revealed a roof-tile shaped structure for the ISD-MgO films. Through the use of the SRO buffer, biaxial alignment in the YBCO film deposited on the ISD-MgO template was improved. The φ-scan FWHM was 5.8° for the YBCO (005) diffraction. We have measured the critical transition temperature Tc = 91 K and transport critical current density Jc >1.6×106 Aṡcm-2 at 77 K in self-field on a SRO-buffered YBCO film grown with ISD-MgO architecture.

  9. Characterisation Studies of the Structure and Properties of As-Deposited and Annealed Pulsed Magnetron Sputtered Titania Coatings

    Directory of Open Access Journals (Sweden)

    John A. Ridealgh

    2013-09-01

    Full Text Available Titanium dioxide thin films are durable, chemically stable, have a high refractive index and good electro/photochemical proprieties. Consequently, they are widely used as anti-reflective layers in optical devices and large area glazing products, dielectric layers in microelectronic devices and photo catalytic layers in self-cleaning surfaces. Titania coatings may have amorphous or crystalline structures, where three crystalline phases of TiO2 can be obtained: anatase, rutile and brookite, although the latter is rarely found. It is known, however, that the structure of TiO2 coatings is sensitive to deposition conditions and can also be modified by post-deposition heat treatments. In this study, titania coatings have been deposited onto soda-lime glass substrates by reactive sputtering from a metallic target. The magnetron was driven in mid-frequency pulsed DC mode. The as-deposited coatings were analysed by micro Raman spectroscopy, X-ray diffraction (XRD, atomic force microscopy (AFM and scanning electron microscopy (SEM. Selected coatings were annealed at temperatures in the range 200–700 °C and re-analysed. Whilst there was weak evidence of a nanocrystallinity in the as-deposited films, it was observed that these largely amorphous low temperature structures converted into strongly crystalline structures at annealing temperatures above 400 °C.

  10. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  11. Conversion of Induction Heating Deposited Monetite Coating to Hydroxyapatite Coating on Ht-C Composites by Hydrothermal Treatment in KOH Aqueous/ammonia Solution

    Science.gov (United States)

    Li, Dong-Mei; Xiong, Xin-Bo; Zeng, Xie-Rong; Zou, Chun-Li; Zou, Ji-Zhao

    Carbon/carbon composites with hydroxyapatite coatings are one of the attractive materials in the dental and orthopedic fields. In this study, hydrothermal treatment, in KOH aqueous and ammonia solutions, was used to convert an induction-heating-deposited monetite coating to an adherent HA coating on H2O2 treated C/C composites. The structure, morphology and chemical composition of the as-received HA coatings were characterized by XRD, FTIR, SEM and EDS. A scratch test was conducted to measure the adhesion of HA coatings to HT-C/C substrate. The results show that well-crystallized carbonate hydroxyapatite coatings could be achieved under the two reaction mediums. However, the as-obtained HA coatings after KOH hydrothermal treatment have higher crystallinity and Ca/P ratio than those after ammonia hydrothermal treatment, and reveal an average critical load of 29 N which is more than two times as high as that for HA coatings after ammonia hydrothermal treatment.

  12. Humid environment stability of low pressure chemical vapor deposited boron doped zinc oxide used as transparent electrodes in thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, Jerome, E-mail: jerome.steinhauser@oerlikon.com [Institute of Microtechnology (IMT), University of Neuchatel, CH-2000 Neuchatel (Switzerland); Meyer, Stefan; Schwab, Marlene; Fay, Sylvie; Ballif, Christophe [Institute of Microtechnology (IMT), University of Neuchatel, CH-2000 Neuchatel (Switzerland); Kroll, U.; Borrello, D. [Oerlikon Solar-Lab, 2000 Neuchatel (Switzerland)

    2011-10-31

    The stability in humid environment of low pressure chemical vapor deposited boron doped zinc oxide (LPCVD ZnO:B) used as transparent conductive oxide in thin film silicon solar cells is investigated. Damp heat treatment (exposure to humid and hot atmosphere) induces a degradation of the electrical properties of unprotected LPCVD ZnO:B layers. By combining analyses of the electrical and optical properties of the films, we are able to attribute this behavior to an increase of electron grain boundary scattering. This is in contrast to the intragrain scattering mechanisms, which are not affected by damp heat exposure. The ZnO stability is enhanced for heavily doped films due to easier tunneling through potential barrier at grain boundaries.

  13. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide. III. Electrochemical behaviour in molten carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, M.J.; Gonzalez-Ayuso, T. [Dpto. Energia, CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Ringuede, A.; Cassir, M. [Ecole Nationale Superieure de Chimie de Paris, Laboratoire d' Electrochimie et de Chimie Analytique, UMR 7575 CNRS, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Daza, L. [Dpto. Energia, CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid (Spain)

    2007-09-27

    A cobalt oxide coating was deposited on porous nickel by a potentiostatic electrochemical technique and studied in molten (Li{sub 0.52}Na{sub 0.48}){sub 2}CO{sub 3} eutectics at 650 C under an atmosphere of CO{sub 2}:Air (30:70). The structural and morphological characteristics of this coating before and after immersion in the molten electrolyte were described in a previous paper, showing that the initial Co{sub 3}O{sub 4} layer is rapidly transformed into LiCoO{sub 2} and afterwards probably into LiCo{sub 1-y}Ni{sub y}O{sub 2}. In the present part, the electrical and electrochemical behaviour of this promising novel MCFC cathode material was thoroughly analysed during 50 h by impedance spectroscopy. A porous nickel cathode was tested in the same conditions and taken as a reference. The oxidation and lithiation reactions are accelerated by the presence of cobalt. The charge transfer resistance is higher with the coated cathode but the diffusion resistance through this new material is lower in comparison with the state-of-the-art cathode. (author)

  14. Deposition and Characterization of the Titanium-Based Coating by a Multi-Chamber Detonation Sprayer

    Directory of Open Access Journals (Sweden)

    Arseenko M.Yu.

    2015-01-01

    Full Text Available This work introduces some of the aspects of the deposition of titanium-based coating (80-120 μm thick on aluminium samples using a multi-chamber detonation sprayer (MCDS. The characteristic feature of MCDS is that the powder is accelerated by using combustion products that are formed in MCDS chambers and are converged before entering the nozzle, where they interact with the two-phase gas-powder cloud. The microstructures and properties of the coating were characterized with the use of scanning electronic microscopes (SEM, optical microscope (OM, X-ray Diffraction (XRD techniques, and Vickers hardness tester with a 50 g test load. Wear tests were carried out using a computer controlled pin-on-disc type tribometer. It was established that MCDS has provided the conditions for formation of a dense titanium-based coating with a porosity of less than 1.0%, microhardness 810±250 HV0.05 and a specific wear rate of 2.077∙10-4 mm3(m∙N-1.

  15. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections.

    Science.gov (United States)

    Cooper, Ian Richard; Pollini, Mauro; Paladini, Federica

    2016-12-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection.

  16. Effect of Al Enrichment by Pack Cementation of FeCr Coatings Deposited by HVOF

    Science.gov (United States)

    Bellucci, A.; Bellini, S.; Pileggi, R.; Stocchi, D.; Tuurna, S.

    2015-01-01

    A great contribution to CO2 emissions comes from coal fired power generation. Combination of carbon capture sequestering technologies with sustainable biomass conversion constitutes a decisive boost in limiting rise in global temperature. Co-firing alternative materials with pulverized coal and using oxy-fuel combustion conditions (oxy-fuel co-combustion) is a very attractive process for power industry. Materials with both high mechanical properties and high environmental resistance are required by such advanced combustion systems. One approach to improve high-temperature oxidation/corrosion resistance is to apply protective coatings. In the present work, low and high Cr content Fe-based alloys have been deposited in order to investigate the influence of Cr content on coating protective performance in oxy-fuel co-combustion conditions. Grade 91 steel has been assumed as reference substrate. Effect of Al enrichment on coating environmental resistance has also been analyzed. Activities have been performed within the framework of Macplus Project (Integrated Project co-founded by the European Commission under the 7th Framework Program in the Energy area).

  17. Tribological and Corrosion Properties of Nickel/TiC Bilayered Coatings Produced by Electroless Deposition and PACVD

    Science.gov (United States)

    Shanaghi, Ali; Chu, Paul K.

    2016-10-01

    Ni/TiC bilayered coatings are deposited on hot-working steel (H11) by plasma-assisted chemical vapor deposition and electroless technique. The TiC layer is deposited at 490 °C using a gas mixture of TiCl4, CH4, H2, and Ar, and a dense nanostructured TiC coating with minimum excessive carbon phases and low chlorine concentration is produced. The effects of the Ni intermediate layer on the microstructure, tribology, and corrosion behavior of the nanostructured TiC coating are investigated. The friction coefficient of the Ni/TiC bilayered coating (Ni thickness = 4 µm) at 500 cycles is much smaller than that of the coating without the Ni intermediate layer. The smallest friction coefficient is about 0.2, and the hardness values of the Ni/TiC bilayered samples with three different Ni layer thicknesses of 2, 4, and 6 µm are 2534, 3070, and 2008 Hv, respectively. The wear mechanism of the Ni/TiC bilayered coatings is abrasive induced by plastic deformation and fatigue during the sliding process. The smaller groove width on the 4-µm electroless nickel-Ni3P/TiC bilayered coating correlates with the larger H/E ratio and the 4-µm nickel/TiC bilayered sample shows the better wear resistance. The polarization resistance of the 6-µm electroless nickel-Ni3P/TiC coating in 0.05 M NaCl and 0.5 M H2SO4 increases by about 8 and 15 times, respectively. The Ni intermediate layer increases the toughness of the coating and adhesion between the hard coating and steel substrate thereby enhancing the tribological properties and corrosion resistance.

  18. Tribological and Corrosion Properties of Nickel/TiC Bilayered Coatings Produced by Electroless Deposition and PACVD

    Science.gov (United States)

    Shanaghi, Ali; Chu, Paul K.

    2016-11-01

    Ni/TiC bilayered coatings are deposited on hot-working steel (H11) by plasma-assisted chemical vapor deposition and electroless technique. The TiC layer is deposited at 490 °C using a gas mixture of TiCl4, CH4, H2, and Ar, and a dense nanostructured TiC coating with minimum excessive carbon phases and low chlorine concentration is produced. The effects of the Ni intermediate layer on the microstructure, tribology, and corrosion behavior of the nanostructured TiC coating are investigated. The friction coefficient of the Ni/TiC bilayered coating (Ni thickness = 4 µm) at 500 cycles is much smaller than that of the coating without the Ni intermediate layer. The smallest friction coefficient is about 0.2, and the hardness values of the Ni/TiC bilayered samples with three different Ni layer thicknesses of 2, 4, and 6 µm are 2534, 3070, and 2008 Hv, respectively. The wear mechanism of the Ni/TiC bilayered coatings is abrasive induced by plastic deformation and fatigue during the sliding process. The smaller groove width on the 4-µm electroless nickel-Ni3P/TiC bilayered coating correlates with the larger H/ E ratio and the 4-µm nickel/TiC bilayered sample shows the better wear resistance. The polarization resistance of the 6-µm electroless nickel-Ni3P/TiC coating in 0.05 M NaCl and 0.5 M H2SO4 increases by about 8 and 15 times, respectively. The Ni intermediate layer increases the toughness of the coating and adhesion between the hard coating and steel substrate thereby enhancing the tribological properties and corrosion resistance.

  19. Super Large Lithium and Boron Deposit in Jadar Basin,Serbia%塞尔维亚贾达尔盆地超大型锂硼矿床

    Institute of Scientific and Technical Information of China (English)

    赵元艺; 符家骏; 李运

    2015-01-01

    锂和硼有着广泛的用途,我国常年大量进口锂和硼矿石。近些年在塞尔维亚贾达尔盆地中发现一个特殊的超大型锂硼矿床,与Rio Tinto、Pan Global Resources和Ultra Lithium等公司一样,我国地勘单位正在这一矿区进行勘查工作,因此对该地区的锂硼矿床地质特征进行总结和报道很有必要。该矿床的矿石矿物是世界独有的既含锂也含硼的羟硼硅钠锂石(Jadarite)[LiNaSiB3 O7(OH)],其含B2 O347.2%,含Li2 O 7.3%,密度2.46g/cm3。已有资料显示,找矿标志层为中新统湖相沉积岩中的凝灰岩层,矿体具有电阻率小于4.4Ω·m和重力异常值小于-15 mGal的特征。该矿床设施齐全,且选矿和化工处理简便,短期内可获得硼和锂产品。%Lithium and boron are widely used,and our country import ore perennially.Recently,a special world-class lithium and boron deposit was found in Serbia Jadar basin.Like Rio Tinto,Pan Global Resources and Ultra Lithium,Chinese geological prospecting institute will doing exploration work in it,so it's necessary to report the geological characteristics of t