WorldWideScience

Sample records for boron coated ion chambers

  1. Measuring the sensitivity of a boron-lined ion chamber

    International Nuclear Information System (INIS)

    Barton, D.M.

    1992-03-01

    Boron-lined ion chambers are used to monitor external neutron flux from fissionable materials assembled at the Los Alamos Critical Assembly Experiment Facility. The sensitivity of these chambers must be measured periodically in order to detect changes in filling gas and to evaluate other factors that may affect chamber performance. We delineate a procedure to measure ion chamber response using a particular neutron source ( 239 PuBe) in a particular moderating geometry of polyethylene. We also discuss use of the amplifier, high-voltage power supply, recorders, and scram circuits that comprise the complete ion chamber monitoring system

  2. Method and apparatus for coating thin foil with a boron coating

    Science.gov (United States)

    Lacy, Jeffrey L.

    2018-01-16

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.

  3. Feasibility study of Boron Nitride coating on Lithium-ion battery casing

    International Nuclear Information System (INIS)

    Saw, L.H.; Ye, Y.; Tay, A.A.O.

    2014-01-01

    Increasing in public awareness about global warming and exhaustion of energy resources has led to a flourishing electric vehicle industry that would help realize a zero-emission society. The thermal management of battery packs, which is an essential issue closely linked to a number of challenges for electric vehicles including cost, safety, reliability and lifetime, has been extensively studied. However, relatively little is known about the thermal effect of polymer insulation on the Lithium-ion battery casing. This study investigates the feasibility of replacing the polymer insulation with a Boron Nitride coating on the battery casing using the Taguchi experimental method. The effect of casing surface roughness, coating thickness and their interaction were examined using orthogonal array L 9 (3 4 ). Nominal the best is chosen for the optimization process to achieve optimum adhesion strength. In addition, the thermal improvements of the coating as compared to conventional polymer insulator on the battery are further investigated. - Highlights: • We studied the Boron Nitride coating on battery casing using Taguchi method. • We investigated the effect of surface roughness and coating thickness on adhesion strength. • We compared the effect of coating and polymer insulator in heat transfer. • The Boron Nitride coating could enhance the thermal management of the battery

  4. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  5. Ion-stimulated gas desorption yields of coated (Au, Ag, Pd) stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator (LINAC 3), has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting on different accelerator-type vacuum chambers. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, and palladium-coated 316LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 10**4 molecules/ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble metal coating by up to 2 orders of magnitude. In addition, the effectiveness of beam scrubbing with heavy ions and the consequence of a subsequent venting on the desorption yields of a beam-scrubbed vacuum chamber are described. Practical consequences for the vacuum system of the future Low Energy Ion Ring (LEIR) are discussed.

  6. Operation and Applications of the Boron Cathodic Arc Ion Source

    International Nuclear Information System (INIS)

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-01-01

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  7. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  8. High-rate and ultralong cycle-life LiFePO_4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Jinpeng; Wang, Youlan

    2016-01-01

    Highlights: • B-doped carbon decorated LiFePO_4 has been fabricated for the first time. • The LiFePO_4@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO_4@C. • The LiFePO_4@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO_4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO_4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO_4@B_0_._4-C can reach 164.1 mAh g"−"1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g"−"1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g"−"1 and can be maintained at 124.5 mAh g"−"1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO_4@B-C composite for high-performance lithium-ion batteries.

  9. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  10. High-rate and ultralong cycle-life LiFePO{sub 4} nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jinpeng, E-mail: goldminer@sina.com; Wang, Youlan

    2016-12-30

    Highlights: • B-doped carbon decorated LiFePO{sub 4} has been fabricated for the first time. • The LiFePO{sub 4}@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO{sub 4}@C. • The LiFePO{sub 4}@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO{sub 4}. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO{sub 4} is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO{sub 4}@B{sub 0.4}-C can reach 164.1 mAh g{sup −1} at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g{sup −1}). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g{sup −1} and can be maintained at 124.5 mAh g{sup −1} after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO{sub 4}@B-C composite for high-performance lithium-ion batteries.

  11. Heavy-ion induced desorption of a TiZrV coated vacuum chamber bombarded with 5 MeV/u Ar8+ beam at grazing incidence

    International Nuclear Information System (INIS)

    Hedlund, E.; Malyshev, O. B.; Westerberg, L.; Krasnov, A.; Semenov, A. S.; Leandersson, M.; Zajec, B.; Kollmus, H.; Bellachioma, M. C.; Bender, M.; Kraemer, A.; Reich-Sprenger, H.

    2009-01-01

    TiZrV nonevaporable getter (NEG) coated vacuum chambers is a new vacuum technology which is already used in many particle accelerators worldwide. This coating is also of interest for heavy-ion accelerator vacuum chambers. Heavy-ion desorption yields from an activated as well as a CO saturated NEG coated tube have been measured with 5 MeV/u Ar 8+ beam. The sticking probability of the NEG film was obtained by using the partial pressure ratios on two sides of the NEG coated tube. These ratios were compared to results of modeling of the experimental setup with test particle Monte Carlo and angular coefficient methods. The partial pressures inside the saturated NEG coated tube bombarded with heavy ions were up to 20 times larger than those inside the activated one. However, the partial pressure of methane remained the same. The value of the total desorption yield from the activated NEG coated tube is 2600 molecules/ion. The desorption yields after saturation for CH 4 , H 2 , and CO 2 were found to be very close to the yields measured after the activation, while CO increased by up to a factor of 5. The total desorption yield for the saturated tube is up to 7000 molecules/ion. The large value of the desorption yield of the activated NEG coated tube, an order of magnitude higher than the desorption yield from a stainless steel tube at normal incident angle, could be explained by the grazing incident angle

  12. ICRF boronization. A new technique towards high efficiency wall coating for superconducting tokamak reactors

    International Nuclear Information System (INIS)

    Li Jiangang; Zhao Yan Ping; Gu Xue Mao

    1999-01-01

    A new technique for wall conditioning that will be especially useful for future larger superconducting tokamaks, such as ITER, has been successfully developed and encouraging results have been obtained. Solid carborane powder, which is non-toxic and non-explosive, was used. Pulsed RF plasma was produced by a non-Faraday shielding RF antenna with RF power of 10 kW. The ion temperature was about 2 keV with a toroidal magnetic field of 1.8 T and a pressure of 3x10 -1 Pa. Energetic ions broke up the carborane molecules, and the resulting boron ions struck and were deposited on the first wall. In comparison with glow discharge cleaning boronization, the B/C coating film shows higher adhesion, more uniformity and longer lifetime during plasma discharges. The plasma performance was improved after ICRF boronization. (author). Letter-to-the-editor

  13. Selection of boron based tribological hard coatings using multi-criteria decision making methods

    International Nuclear Information System (INIS)

    Çalışkan, Halil

    2013-01-01

    Highlights: • Boron based coating selection problem for cutting tools was solved. • EXPROM2, TOPSIS and VIKOR methods were used for ranking the alternative materials. • The best coatings for cutting tool were selected as TiBN and TiSiBN. • The ranking results are in good agreement with cutting test results in literature. - Abstract: Mechanical and tribological properties of hard coatings can be enhanced using boron as alloying element. Therefore, multicomponent nanostructured boron based hard coatings are deposited on cutting tools by different methods at different parameters. Different mechanical and tribological properties are obtained after deposition, and it is a difficult task to select the best coating material. In this paper, therefore, a systematic evaluation model was proposed to tackle the difficulty of the material selection with specific properties among a set of available alternatives. The alternatives consist of multicomponent nanostructured TiBN, TiCrBN, TiSiBN and TiAlSiBN coatings deposited by magnetron sputtering and ion implantation assisted magnetron sputtering at different parameters. The alternative coating materials were ranked by using three multi-criteria decision-making (MCDM) methods, i.e. EXPROM2 (preference ranking organization method for enrichment evaluation), TOPSIS (technique for order performance by similarity to ideal solution) and VIKOR (VIšekriterijumsko KOmpromisno Rangiranje), in order to determine the best coating material for cutting tools. Hardness (H), Young’s modulus (E), elastic recovery, friction coefficient, critical load, H/E and H 3 /E 2 ratios were considered as material selection criteria. In order to determine the importance weights of the evaluation criteria, a compromised weighting method, which composes of the analytic hierarchy process and Entropy methods, were used. The ranking results showed that TiBN and TiSiBN coatings deposited at given parameters are the best coatings for cutting tools

  14. Construction and use of small chambers for boron trifluoride

    International Nuclear Information System (INIS)

    Caillat, R.; Lallemant, C.; Valladas, G.

    1949-01-01

    The fabrication of the chambers (the materials used, the fabrication of the parts and their assembly), and their final testing are described in a first part. Then, the preparation of crude boron fluoride, the storing of the crude, the purification of BF 3 by sublimation and condensation, the pumping, drying and filling up of the chambers, their finishing and sealing are described in a second part. The last part describes the use of the chambers for the counting of slow neutrons: amplification system, pulses discrimination and neutrons counting, accuracy. The characteristics of the amplification circuit used with the chamber are described in the appendix. (J.S.)

  15. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  16. Ion-stimulated Gas Desorption Yields of Electropolished, Chemically Etched, and Coated (Au, Ag, Pd, TiZrV) Stainless Steel Vacuum Chambers and St707 Getter Strips Irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator LINAC 3, has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting under grazing incidence on different accelerator-type vacuum chambers. Desorption yields for H2, CH4, CO, and CO2, which are of fundamental interest for future accelerator applications, are reported for different stainless steel surface treatments. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, palladium-, and getter-coated 316 LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 104 molecules/Pb53+ ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble-metal coating by up to 2 orders of magnitude. In addition, pressure rise measurements, the effectiveness of beam scrubbing with le...

  17. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  18. Ion implantation and ion assisted coatings for wear resistance in metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The implantation of electrically accelerated ions of chosen elements into the surface of material provides a method for improving surface properties such as wear resistance. High concentrations of nitrogen implanted into metals create obstacles to dislocation movement, and certain combinations of metallic and non-metallic species will also strengthen the surface. The process is best applied to situations involving mild abrasive wear and operating temperatures that are not too high. Some dramatic increases in life have been reported under such favourable conditions. A more recent development has been the combination of a thin coating with reactive ion bombardment designed to enhance adhesion by ion mixing at the interface and so provide hardness by the formation of finely dispersed nitrides, including cubic boron nitride. These coatings often possess vivid and decorative colours as an added benefit. Developments in the equipment for industrial ion implantation now offer more attractive costs per unit area and a potentially greater throughput of work. A versatile group of related hard vacuum treatments is now emerging, involving the use of intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (author)

  19. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  20. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, G [Department of Chemical Engineering, Middle East Technical Univ., Ankara (Turkey); Uslu, I; Tore, C; Tanker, E [Turkiye Atom Enerjisi Kurumu, Ankara (Turkey)

    1997-08-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs.

  1. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    International Nuclear Information System (INIS)

    Gunduz, G.; Uslu, I.; Tore, C.; Tanker, E.

    1997-01-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs

  2. Double chamber ion source

    International Nuclear Information System (INIS)

    Uman, M.F.; Winnard, J.R.; Winters, H.F.

    1978-01-01

    The ion source is comprised of two discharge chambers one of which is provided with a filament and an aperture leading into the other chamber which in turn has an extraction orifice. A low voltage arc discharge is operated in an inert gas atmosphere in the filament chamber while an arc of higher voltage is operated in the second ionization chamber which contains a vapor which will give the desired dopant ion species. The entire source is immersed in an axial magnetic field parallel to a line connecting the filament, the aperture between the two chambers and the extraction orifice. (author)

  3. 75 MeV boron ion irradiation studies on Si PIN photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakara Rao, Y.P.; Praveen, K.C. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India); Rejeena Rani, Y. [Integrated Circuits Division, Bharat Electronics Limited, Bangalore 560013, Karnataka (India); Tripathi, Ambuj [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Gnana Prakash, A.P., E-mail: gnanap@hotmail.com [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India)

    2013-12-01

    The highly sensitive silicon PIN photodiodes were fabricated to use in radiation environments. The Si PIN photodiodes are coated with 150 nm silicon dioxide (SiO{sub 2}) as anti-reflective (AR) coating. The presence of AR coating on the performance of irradiated PIN photodiodes is studied up to a total dose of 10 Mrad. The effects of 75 MeV boron (B{sup 5+}) ions and {sup 60}Co gamma radiation on the I–V, C–V and spectral responses of PIN photodiodes were studied systematically to understand the radiation tolerance of the devices. The 75 MeV B{sup 5+} irradiation results are compared with {sup 60}Co gamma irradiated results in the same dose range for 1 mm × 1 mm and 10 mm × 10 mm active area PIN photodiodes. The irradiation results show that the ion irradiated PIN photodiodes show more degradation when compared {sup 60}Co gamma irradiated devices. The irradiation results are presented in this paper and the possible mechanism behind the degradation of photodiodes is also discussed in the paper.

  4. NEG coating of the non-standard LSS vacuum chambers

    CERN Document Server

    Costa-Pinto, P

    2005-01-01

    The vacuum chambers of nearly all the warm magnets of the LHC (MBXW, MQW, MSI, MSD, etc…) will be coated with a Ti-Zr-V thin film by magnetron sputtering. The NEG coating is necessary to provide uniform pumping speed along the chambers and to suppress electron cloud instabilities and dynamic outgassing. The about 300 chambers will be coated using the existing facility, developed for the production of the standard LSS chambers, after minor modifications mainly due to the different cross sections. In order to cope with the present installation schedule, the production planning will allow processing of different families of chambers in parallel by using two or three coating systems simultaneously. After a brief introduction to the Ti-Zr-V characteristics and performances, the coating facility and strategy will be illustrated as well as the possible conflicts due to uncertainties in the planning of the experimental beam pipes and the standard LSS chambers.

  5. Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels

    International Nuclear Information System (INIS)

    Ji, Chang Wook; Lee, Hyun Ju; Kim, Yang Do; Jo, Il Guk; Choi, Il Dong; Park, Yeong Do

    2014-01-01

    Aluminum-silicon-based and zinc-based metallic coatings have been widely used for hot-stamped boron steel in automotive applications. In this study, resistance spot weldability was explored by investigating the effects of the properties of metallic coating layers on heat development and nugget growth during resistance spot welding. In the case of the aluminum-silicon-coated hot-stamped boron steel, the intermetallic coating transformed into a liquid film that covered the faying interface. A wide, weldable current range was obtained with slow heat development because of low contact resistance and large current passage. In the case of the zinc-coated hot-stamped boron steel, a buildup of liquid and vapor formation under large vapor pressure was observed at the faying interface because of the high contact resistance and low vaporization temperature of the intermetallic layers. With rapid heat development, the current passage was narrow because of the limited continuous layer at the faying interface. A more significant change in nugget growth was observed in the zinc coated hot-stamped boron steel than in the aluminum-silicon-coated hot-stamped boron steel.

  6. Influence of boron oxide on protective properties of zinc coating on steel

    International Nuclear Information System (INIS)

    Alimov, V.I.; Berezin, A.V.

    1986-01-01

    The authors study the properties of zinc coating when boron oxide is added to the melt for galvanization. The authors found that a rise in the degree of initial deformation of the steel leads to the production of varying thickness of the zinc coating. The results show the favorable influence of small amounts of added boron oxide on the corrosion resistance of a zinc coating on cold-deformed high-carbon steel; this influence is also manifested in the case of deformation of the zinc coating itself

  7. Chamber with punches made from polycrystal cubic boron nitrides for Moessbauer study at high hydrostatic pressure

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1978-01-01

    The design of a high hydrostatic pressure chamber with polycrystallic boron nitride dies weakly absorbing gamma radiation with energies of more than 14 keV is described. The use of this material permits to investigate single- and polycrystal bodies using the Moessbauer effect when the geometry of the experiment remains unchanged and the hydrostatic pressure is up to 70 kbar. The basic units of the chamber are a teflon capsule placed in a container made of a pressed boron and epoxide resin mixture, electric inputs and a die of polycrystal cubic boron nitride. The pressure is transferred to the sample tested through a liquid (petrol or the 4 to 1 mixture of methanole and ethanole) which does not become solid at a pressure below 37 kbar. Basic dimensions of the chamber are given and the dependence of the pressure in the capsule on the force applied to the chamber is also presented

  8. Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes

    Science.gov (United States)

    Bogdanowicz, Robert; Sobaszek, Michał; Ficek, Mateusz; Kopiec, Daniel; Moczała, Magdalena; Orłowska, Karolina; Sawczak, Mirosław; Gotszalk, Teodor

    2016-04-01

    Fabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. B-NCD films were deposited using microwave plasma assisted chemical vapour deposition method. The variation in B-NCD morphology, structure and optical parameters was particularly investigated. The use of truncated cone-shaped substrate holder enabled to grow thin fully encapsulated nanocrystalline diamond film with a thickness of approx. 60 nm and RMS roughness of 17 nm. Raman spectra present the typical boron-doped nanocrystalline diamond line recorded at 1148 cm-1. Moreover, the change in mechanical parameters of silicon cantilevers over-coated with boron-doped diamond films was investigated with laser vibrometer. The increase of resonance to frequency of over-coated cantilever is attributed to the change in spring constant caused by B-NCD coating. Topography and electrical parameters of boron-doped diamond films were investigated by tapping mode AFM and electrical mode of AFM-Kelvin probe force microscopy (KPFM). The crystallite-grain size was recorded at 153 and 238 nm for boron-doped film and undoped, respectively. Based on the contact potential difference data from the KPFM measurements, the work function of diamond layers was estimated. For the undoped diamond films, average CPD of 650 mV and for boron-doped layer 155 mV were achieved. Based on CPD values, the values of work functions were calculated as 4.65 and 5.15 eV for doped and undoped diamond film, respectively. Boron doping increases the carrier density and the conductivity of the material and, consequently, the Fermi level.

  9. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    Directory of Open Access Journals (Sweden)

    Derbouz K.

    2013-09-01

    Full Text Available In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  10. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  11. Modeling of interstitial diffusion of ion-implanted boron

    International Nuclear Information System (INIS)

    Velichko, O.I.; Knyazheva, N.V.

    2009-01-01

    A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)

  12. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Bergueiro, J.; Igarzabal, M.; Suarez Sandin, J.C.; Somacal, H.R.; Thatar Vento, V.; Huck, H.; Valda, A.A.; Repetto, M.

    2011-01-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  13. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  14. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  15. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Thick boron carbide coatings for protection of tokamak first wall and divertor

    International Nuclear Information System (INIS)

    Buzhinskij, O.I.; Semenets, Yu.M.

    1999-01-01

    A review of characteristics of various types of boron carbide coatings considered as candidate materials for protection of tokamak inner surfaces against high energy heat fluxes is presented. Such coatings are produced by various methods: chemical vapor deposition by means of chloride and fluoride techniques, gas conversion, plasma spray and reaction-sintering. Contrary to pure carbon materials, B 4 C has much lower chemical and high-temperature sputtering, is capable to oxygen gettering and lower hydrogen recycling. In contrast to thin boronization films, the thick coatings can resist high heat fluxes such as in tokamak divertors. Comparative analysis shows that coatings produced by the diffusion methods, such as fluoride CVD and gas conversion, are more resistent to heat loads, and one of the most promising candidates are the fluoride CVD coatings. (orig.)

  17. Loss of ions in cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.; Tran, N.T.; Kim, E.; Marsoem, P.; Kurosawa, T.; Koyama, Y.

    2005-01-01

    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with 60 Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers

  18. Tribological behavior of duplex coating improved by ion implantation

    International Nuclear Information System (INIS)

    Kakas, D.; Skoric, B.; Rakita, M.

    2004-01-01

    In the present paper the tribological behavior of the coatings are discussed. Duplex coatings were applied on cold working steel 100Cr6. Samples were plasma nitrided at different thickness of plasma surface layers. TiN was deposited with a classic BALZERS PVD equipment and subsequent ion implantation. Ion implantation was provided with N 5+ ions. The other samples were produced with IBAD technology in DANFYSIK chamber. Wear resistance and exchanges of friction coefficient were measured with on-line test using special designed tribology equipment. Following the tests, the wear zone morphology and characteristics of surface layer structure as well as important properties were investigated by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Scratch adhesion testing was performed using commercially available equipment. Energy dispersive X-ray analysis (EDAX) of the wear-scars on pins provided essential information on the wear characteristics. In this paper some results related to influence of duplex coating production methodology on tribological behavior for cold working steel was presented

  19. boron nitride coating of uranium dioxide and uranium dioxide-gadolinium oxide fuels by chemical precipitation method

    International Nuclear Information System (INIS)

    Uslu, I.; Tanker, E.; Guenduez, G.

    1997-01-01

    In this research pure urania and urania-gadolinia (5 and 10 %) fuels were coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron tricloride BCl 3 ) and ammonia (NH 3 ) at 600 C.Boron tricloride and ammonia are carried to tubular furnace using hydrogen as carrier gas. The coated samples were sintered at 1600 K. The properties of the coated samples were observed using BET surface area analysis, infrared spectra (IR), X-Ray Diffraction and Scanning Electron Microscope (SEM) techniques

  20. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  1. Urea route to coat inorganic nanowires, carbon fibers and nanotubes by boron nitride

    International Nuclear Information System (INIS)

    Gomathi, A.; Ramya Harika, M.; Rao, C.N.R.

    2008-01-01

    A simple route involving urea as the nitrogen source has been employed to carry out boron nitride coating on carbon fibers, multi-walled carbon nanotubes and inorganic nanowires. The process involves heating the carbon fibers and nanotubes or inorganic nanowires in a mixture of H 3 BO 3 and urea, followed by a heat treatment at 1000 deg. C in a N 2 atmosphere. We have been able to characterize the BN coating by transmission electron microscopy as well as X-ray photoelectron spectroscopy. The urea decomposition route affords a simple method to coat boron nitride on one-dimensional nanostructures

  2. Tribo-mechanical and electrical properties of boron-containing coatings

    Science.gov (United States)

    Qian, Jincheng

    The development of new hard protective coatings with advanced performance is very important for progress in a variety of scientific and industrial fields. Application of hard protective coatings can significantly improve the performance of parts and components, extend their service life, and save energy in many industrial applications including aerospace, automotive, manufacturing, and other industries. In addition, the multifunctionality of protective coatings is also required in many other application fields such as optics, microelectronics, biomedical, magnetic storage media, etc. Therefore, protective coatings with enhanced tribo-mechanical and corrosion properties as well as other functions are in demand. The coating characteristics can be adjusted by controlling the microstructure at different scales. For example, films with nanostructures, such as superlattice, nanocolumn, and nanocomposite systems, exhibit distinctive characteristics compared to single-phase materials. They show superior tribo-mechanical properties due to the presence of strong interfaces, and different functions can be achieved due to the multi-phase characteristics. Boron-containing materials with their excellent mechanical properties and interesting electronic characteristics are good candidates for functional hard protective coatings. For instance, cubic boron nitride (c-BN), boron carbide (B1-xCx), and titanium diboride (TiB 2) are well known for their high hardness, high thermal stability, and high chemical inertness. An interesting example is the boron carbon nitride (BCN) compound that possesses many attractive properties because its structure is similar to that of carbon (graphite and diamond) and of boron nitride (BN in hexagonal and cubic phases). The main goal of this work is to further develop the family of Boron-containing films including B1-xCx, Ti-B-C, and BCN films fabricated by magnetron sputtering, and to enhance their performance by controlling their microstructure on

  3. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    International Nuclear Information System (INIS)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-01-01

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion

  4. DEVELOPMENT OF TITANIUM NITRIDE COATING FOR SNS RING VACUUM CHAMBERS

    International Nuclear Information System (INIS)

    HE, P.; HSEUH, H.C.; MAPES, M.; TODD, R.; WEISS, D.

    2001-01-01

    The inner surface of the ring vacuum chambers of the US Spallation Neutron Source (SNS) will be coated with ∼100 nm of Titanium Nitride (TiN). This is to minimize the secondary electron yield (SEY) from the chamber wall, and thus avoid the so-called e-p instability caused by electron multipacting as observed in a few high-intensity proton storage rings. Both DC sputtering and DC-magnetron sputtering were conducted in a test chamber of relevant geometry to SNS ring vacuum chambers. Auger Electron Spectroscopy (AES) and Rutherford Back Scattering (RBS) were used to analyze the coatings for thickness, stoichiometry and impurity. Excellent results were obtained with magnetron sputtering. The development of the parameters for the coating process and the surface analysis results are presented

  5. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  6. Ion implantation of boron in germanium

    International Nuclear Information System (INIS)

    Jones, K.S.

    1985-05-01

    Ion implantation of 11 B + into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of 11 B + into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10 11 /cm 2 to 1 x 10 14 /cm 2 ) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses ( 12 /cm 2 ). Three damage related hole traps are produced by ion implantation of 11 B + . Two of these hole traps have also been observed in γ-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures ( 0 C). Boron, from room temperature implantation of BF 2 + into Ge, is not substitutionally active prior to a post implant annealing step of 250 0 C for 30 minutes. After annealing additional shallow acceptors are observed in BF 2 + implanted samples which may be due to fluorine or flourine related complexes which are electrically active

  7. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Stoto, T.

    1987-03-01

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 1700 0 C was an important technical part of this work [fr

  8. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    Science.gov (United States)

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  9. Polarity effects and apparent ion recombination in microionization chambers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jessica R., E-mail: miller@humonc.wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Hooten, Brian D. [Standard Imaging, Middleton, Wisconsin 53562 (United States); Micka, John A.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2016-05-15

    Purpose: Microchambers demonstrate anomalous voltage-dependent polarity effects. Existing polarity and ion recombination correction factors do not account for these effects. As a result, many commercial microchamber models do not meet the specification of a reference-class ionization chamber as defined by the American Association of Physicists in Medicine. The purpose of this investigation is to determine the cause of these voltage-dependent polarity effects. Methods: A series of microchamber prototypes were produced to isolate the source of the voltage-dependent polarity effects. Parameters including ionization-chamber collecting-volume size, stem and cable irradiation, chamber assembly, contaminants, high-Z materials, and individual chamber components were investigated. Measurements were performed with electrodes coated with graphite to isolate electrode conductivity. Chamber response was measured as the potential bias of the guard electrode was altered with respect to the collecting electrode, through the integration of additional power supplies. Ionization chamber models were also simulated using COMSOL Multiphysics software to investigate the effect of a potential difference between electrodes on electric field lines and collecting volume definition. Results: Investigations with microchamber prototypes demonstrated that the significant source of the voltage-dependent polarity effects was a potential difference between the guard and collecting electrodes of the chambers. The voltage-dependent polarity effects for each prototype were primarily isolated to either the guard or collecting electrode. Polarity effects were reduced by coating the isolated electrode with a conductive layer of graphite. Polarity effects were increased by introducing a potential difference between the electrodes. COMSOL simulations further demonstrated that for a given potential difference between electrodes, the collecting volume of the chamber changed as the applied voltage was altered

  10. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1995-01-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (approx-lt 0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (approx-gt.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius (∼ 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity

  11. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  12. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  13. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1996-01-01

    Chamber transport is a key area of study for heavy ion fusion. Final focus and chamber transport are high leverage areas providing opportunities to decrease significantly the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (below about 0.003 Torr), ballistic or nearly ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (above about 0.1 Torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber and then transporting it at small radius (about 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity. (orig.)

  14. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  15. Comparison of boron and neon damage effects in boron ion-implanted resistors

    International Nuclear Information System (INIS)

    MacIver, B.A.

    1975-01-01

    Boron and neon damage implants were used in fabricating integrated-circuit resistors in silicon. Resistor properties were studied as functions of damaging ion species and dose. Sheet resistances in the 10 000 Ω/square range were obtained with low temperature and voltage sensitivities and d.c. isolation. (author)

  16. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  17. Monte Carlo modeling of ion chamber performance using MCNP.

    Science.gov (United States)

    Wallace, J D

    2012-12-01

    Ion Chambers have a generally flat energy response with some deviations at very low (2 MeV) energies. Some improvements in the low energy response can be achieved through use of high atomic number gases, such as argon and xenon, and higher chamber pressures. This work looks at the energy response of high pressure xenon-filled ion chambers using the MCNP Monte Carlo package to develop geometric models of a commercially available high pressure ion chamber (HPIC). The use of the F6 tally as an estimator of the energy deposited in a region of interest per unit mass, and the underlying assumptions associated with its use are described. The effect of gas composition, chamber gas pressure, chamber wall thickness, and chamber holder wall thicknesses on energy response are investigated and reported. The predicted energy response curve for the HPIC was found to be similar to that reported by other investigators. These investigations indicate that improvements to flatten the overall energy response of the HPIC down to 70 keV could be achieved through use of 3 mm-thick stainless steel walls for the ion chamber.

  18. An examination of medical linear accelerator ion-chamber performance

    International Nuclear Information System (INIS)

    Karolis, C.; Lee, C.; Rinks, A.

    1996-01-01

    Full text: The company ( Radiation Oncology Physics and Engineering Services Pty Ltd) provides medical physics services to four radiotherapy centres in NSW with a total of 6 high energy medical linear accelerators manufactured by three different companies. As part of the services, the stability of the accelerator ion chamber system is regularly examined for constancy and periodically for absolute calibration. Each accelerator ion chamber has exhibited undesirable behaviour from time to time, sometimes leading to its replacement. This presentation describes the performance of the ion chambers for some of the linacs over a period of 12-18 months and the steps taken by the manufacturer to address the problems encountered. As part of our commissioning procedure of new linacs, an absolute calibration of the accelerator output (photon and electron beams) is repeated several times over the period following examination of the physical properties of the radiation beams. These calibrations were undertaken in water using the groups calibrated ion chamber/electrometer system and were accompanied by constancy checks using an acrylic phantom and field instruments. Constancy checks were performed daily for a period of 8 weeks during the initial life of the accelerator and thereafter weekly. For one accelerator, the ion chamber was replaced 6 times in the first eighteen months of its life due to severe drifts in output, found to be due to pressure changes in one half of the chamber In another accelerator, erratic swings of 2% were observed for a period of nine months, particularly with the electron beams, before the manufacturer offered to change the chamber with another constructed from different materials. In yet another accelerator the ion chamber has shown consistent erratic behaviour, but this has not been addressed by the manufacturer. In another popular accelerator, the dosimetry was found to be very stable until some changes in the tuning were introduced resulting in small

  19. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

    2014-03-01

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  20. Electret ionization chamber: a new method for detection and dosimetry of thermal neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.

    1988-01-01

    An electret ionization chamber with boron coated walls is presented as a new method for detecting thermal neutrons. The efficiency of electret ionization chambers with different wall materials for the external electrode was inferred from the results. Detection of slow neutrons with discrimination against the detection of γ-rays and energetic neutrons was shown to depend on the selection of these materials. The charge stability over a long period of time and the charge decay owing to natural radiation were also studied. Numerical analysis was developed by the use of a micro-computer PC-XT. Both the experimental and numerical results show that the sensitivity of the electret ionization chamber for detection of thermal neutrons is comparable with that of the BF 3 ionization chamber and that new technologies for deposition of the boron layer will produce higher efficiency detectors. (author). 102 refs, 32 fig, 10 tabs

  1. Dose verification with different ion chambers for SRT/SBRT plans

    Science.gov (United States)

    Durmus, I. F.; Tas, B.; Okumus, A.; Uzel, O. E.

    2017-02-01

    Verification of patient plan is very important in stereotactic treatments. VMAT plans were prepared with 6MV-FFF or 10MV-FFF energies for 25 intracranial and extracranial stereotactic patients. Absolute dose was measured for dose verification in each plans. Iba® CC01, Iba® CC04, Iba® CC13 ion chambers placed at a depth of 5cm in solid phantom (RW3). Also we scanned this phantom with ion chambers by Siemens® Biograph mCT. QA plans were prepared by transferring twenty five patient plans to phantom assemblies for three ion chambers. All plans were performed separately for three ion chambers at Elekta® Versa HD linear accelerator. Statistical analysis of results were made by Wilcoxon signed-rank test. Difference between dose values were determined %1.84±3.4 (p: 0.001) with Iba CC13 ion chamber, %1.80±3.4 (p: 0.002) with Iba CC04 ion chamber and %0.29±4.6 (p: 0.667) with Iba CC01 ion chamber. In stereotactic treatments, dosimetric uncertainty increases in small areas. We determined more accurate results with small sized detectors. Difference between TPS calculations and all measurements were founded lower than %2.

  2. Boronic ionogel electrolytes to improve lithium transport for Li-ion batteries

    International Nuclear Information System (INIS)

    Lee, Albert S.; Lee, Jin Hong; Hong, Soon Man; Lee, Jong-Chan; Hwang, Seung Sang; Koo, Chong Min

    2016-01-01

    Boron containing ionogels were fabricated through chemical crosslinking of boron allyloxide with polyethylene glycol dimethacrylate in an ionic liquid electrolyte solution to obtain mechanically robust gels. Because of the relatively small concentration of crosslinking agent required to fully solidify the ionic liquid electrolyte, good characters of high ionic conductivity, high thermal stability, and good electrochemical stability were observed. A spectroscopic investigation of the boronic ionogels revealed that the lithium mobility was noticeably enhanced compared with ionogels fabricated without the boronic crosslinker, leading to promising Li-ion battery performance at elevated temperatures.

  3. Molecular desorption of stainless steel vacuum chambers irradiated with 42 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating) are reported in terms of the molecular desorption yields for H/sub 2 /, CH/sub 4/, CO, Ar, and CO/sub 2/. (16 refs).

  4. In situ measurement of ceramic vacuum chamber conductive coating quality

    International Nuclear Information System (INIS)

    Doose, C.; Harkay, K.; Kim, S.; Milton, S.

    1997-01-01

    A method for measuring the relative surface resistivity and quality of conductive coatings on ceramic vacuum chambers was developed. This method is unique in that it allows one to test the coating even after the ceramic chamber is installed in the accelerator and under vacuum; furthermore, the measurement provides a localized surface reading of the coating conductance. The method uses a magnetic probe is calibrated using the measured DC end-to-end resistance of the tube under test and by comparison to a high quality test surface. The measurement method has also been verified by comparison to high frequency impedance measurements. A detailed description, results, and sensitivity of the technique are given here

  5. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider (LHC) at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring (LEAR). These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow-discharges, non-evaporable getter coating) are reported in terms of the molecular desorption yields for H2, CH4, CO, Ar and CO2. Unexpected large values of molecular yields per incident ion up to 2 104 molecules/ion have been observed. The red...

  6. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Mingjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Jia; Liu, Shuan [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhang, Guangan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji, E-mail: qjxue@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-03-01

    Highlights: • Hexagonal boron nitride nanosheets were well dispersed by using water-soluble carboxylated aniline trimer as dispersant. • The best corrosion performance of waterborne epoxy coatings was achieved with the addition of 1 wt% h-BN. • The decrease of the pores and defects of coating matrix inhibits the diffusion and water absorption of corrosive medium in the coating. - Abstract: Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT{sup −}) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT{sup −}, as proved by Raman and UV–vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 10{sup 6} Ω cm{sup 2}) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  7. AUTOCATALYTIC REDUCTION AND CHARACTERISTICS OF BORON-CONTAINING COATINGS

    Directory of Open Access Journals (Sweden)

    V. Covaliov

    2013-06-01

    Full Text Available The research results of the plating conditions, chemical composition and properties of Ni-B coatings and Ni-Re-B, Ni-Mo-B and Ni-W-B alloys are given. It was shown that introduction of alloying elements (Re, Мо and W in the composition of Ni-containing coatings modifies the catalytic activity of the alloys’ surface, with regard to the parallel reactions of dimethylamino-borane (DMAB heterogeneous hydrolysis, Ni reduction and evolving of the molecular hydrogen. It was found that with the increase in concentration of alloying element, boron content in the coatings is decreased to the trace amounts. The effect of alloys composition on hydrogen evolving overvoltage was studied. Due to the low overvoltage of hydrogen evolving (HE on the alloy Ni-Re-B surface (11 at.% Re, it can be used as electrode for hydrogen generation from water in the electrolytic cell with novel design and improved technical-economic indicators.

  8. Study of the effects of focused high-energy boron ion implantation in diamond

    Science.gov (United States)

    Ynsa, M. D.; Agulló-Rueda, F.; Gordillo, N.; Maira, A.; Moreno-Cerrada, D.; Ramos, M. A.

    2017-08-01

    Boron-doped diamond is a material with a great technological and industrial interest because of its exceptional chemical, physical and structural properties. At modest boron concentrations, insulating diamond becomes a p-type semiconductor and at higher concentrations a superconducting metal at low temperature. The most conventional preparation method used so far, has been the homogeneous incorporation of boron doping during the diamond synthesis carried out either with high-pressure sintering of crystals or by chemical vapour deposition (CVD) of films. With these methods, high boron concentration can be included without distorting significantly the diamond crystalline lattice. However, it is complicated to manufacture boron-doped microstructures. A promising alternative to produce such microstructures could be the implantation of focused high-energy boron ions, although boron fluences are limited by the damage produced in diamond. In this work, the effect of focused high-energy boron ion implantation in single crystals of diamond is studied under different irradiation fluences and conditions. Micro-Raman spectra of the sample were measured before and after annealing at 1000 °C as a function of irradiation fluence, for both superficial and buried boron implantation, to assess the changes in the diamond lattice by the creation of vacancies and defects and their degree of recovery after annealing.

  9. Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope

    Science.gov (United States)

    Abraham, Nithin S.

    2017-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test

  10. Effects of heat treatment on the microstructure of amorphous boron carbide coating deposited on graphite substrates by chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Siwei; Zeng Bin; Feng Zude; Liu Yongsheng; Yang Wenbin; Cheng Laifei; Zhang Litong

    2010-01-01

    A two-layer boron carbide coating is deposited on a graphite substrate by chemical vapor deposition from a CH 4 /BCl 3 /H 2 precursor mixture at a low temperature of 950 o C and a reduced pressure of 10 KPa. Coated substrates are annealed at 1600 o C, 1700 o C, 1800 o C, 1900 o C and 2000 o C in high purity argon for 2 h, respectively. Structural evolution of the coatings is explored by electron microscopy and spectroscopy. Results demonstrate that the as-deposited coating is composed of pyrolytic carbon and amorphous boron carbide. A composition gradient of B and C is induced in each deposition. After annealing, B 4 C crystallites precipitate out of the amorphous boron carbide and grow to several hundreds nanometers by receiving B and C from boron-doped pyrolytic carbon. Energy-dispersive spectroscopy proves that the crystallization is controlled by element diffusion activated by high temperature annealing, after that a larger concentration gradient of B and C is induced in the coating. Quantified Raman spectrum identifies a graphitization enhancement of pyrolytic carbon. Transmission electron microscopy exhibits an epitaxial growth of B 4 C at layer/layer interface of the annealed coatings. Mechanism concerning the structural evolution on the basis of the experimental results is proposed.

  11. Field isolation for GaN MOSFETs on AlGaN/GaN heterostructure with boron ion implantation

    International Nuclear Information System (INIS)

    Jiang, Y; Wang, Q P; Wang, D J; Tamai, K; Li, L A; Ao, J-P; Ohno, Y; Shinkai, S; Miyashita, T; Motoyama, S-I

    2014-01-01

    We report the investigation of boron ion implantation as a device field isolation process for GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure. In the mesa isolation region of a bar-type MOSFET, a parasitic MOS-channel existed and widened the designed channel width, which would result in an overestimated mobility compared with a ring-type MOSFET. After boron ions implantation in the isolation region, the overestimation of field-effect mobility of bar-type MOSFETs was eliminated. The sub-threshold characteristics and on-state drain current of the bar-type MOSFETs coincide with the ring-type devices. Long-channel ring-type MOSFETs, with and without ion implantation, were fabricated on the recess region to evaluate the sub-threshold characteristics. The MOSFETs with boron ions implanted into the recess region showed a low drain current up to the gate bias of 10V. The result indicated that boron ion implantation prevented the formation of parasitic MOS-channel in the isolation region and achieved field isolation. The current–voltage characteristics of MOSFETs with the normal recess condition demonstrated no degradation of device performance after boron ions implanted into the isolation region. Boron ion implantation by further optimization can be a field isolation method for GaN MOSFETs. (paper)

  12. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings.

    Science.gov (United States)

    Lu, Xiang; Li, Kai; Xie, Youtao; Huang, Liping; Zheng, Xuebin

    2016-11-01

    In recent years, CaSiO 3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO 3 ceramic (Ca 11 Si 4 B 2 O 22 , B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO 3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca 11 Si 4 B 2 O 22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.

  13. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2  MeV/u lead ions

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2003-01-01

    Full Text Available In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2  MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating are reported in terms of the molecular desorption yields for H_{2}, CH_{4}, CO, Ar, and CO_{2}. Unexpected large values of molecular yields per incident ion up to 2×10^{4} molecules/ion have been observed. The reduction of the ion-induced desorption yield due to continuous bombardment with lead ions (beam cleaning has been investigated for five different stainless steel vacuum chambers. The implications of these results for the vacuum system of the future Low Energy Ion Ring and possible remedies to reduce the vacuum degradation are discussed.

  14. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    Science.gov (United States)

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and

  15. Design and construction of a 10B coated ion chamber for the measurement of a thermal neutron flux

    International Nuclear Information System (INIS)

    Vite T, M.

    1979-01-01

    A model of an ionization chamber cover with 10 B, for the measurement of thermal neutron flux is presented, the developed chamber is made of a cylindrical vessel in which interior exist 7 aluminium electrodes which by electrodeposition were covered with a coat of 10 B with a thickness of 0.68 mg/cm 2 . Once the chamber is filled with N 2 to a pressure of 1.33 atm., it was exposed to a flux of thermal neutrons at the order 10 4 n/cm 2 -seg obtaining an ionization current of 10 -11 amp. which can be easily distinguished from the leak current which order is of 10 -12 amp. The conventional electronics associated to the chamber allows to process the ionization current in pulse form. The relation of noise to signal is approximately of 8, for which the pulses can be differentiated from the electronic noise without any problem. (author)

  16. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E.C. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil)]. E-mail: erica@las.inpe.br; Diniz, A.V. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Trava-Airoldi, V.J. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Ferreira, N.G. [CTA-Divisao de Materiais, Sao Jose dos Campos, SP 12228-904 (Brazil)

    2005-08-01

    Doped diamond films have been deposited on carbon fibers (felt) obtained from polyacrylonitrile at different levels of boron doping. For a successful coating of the fibers, an ultrasonic pretreatment in a bath of diamond powder dissolved in hexane was required. Films were grown on both sample sides, simultaneously, by hot filament-assisted chemical vapour deposition technique at 750 deg. C from a 0.5% H{sub 2}/CH{sub 4} mixture at a total pressure of 6.5 x 10{sup 3} Pa. Boron was obtained from H{sub 2} forced to pass through a bubbler containing B{sub 2}O{sub 3} dissolved in methanol. The doping level studied corresponds to films with acceptor concentrations in the range of 6.5 x 10{sup 18} to 1.5 x 10{sup 21} cm{sup -} {sup 3}, obtained from Mott-Schottky plots. Scanning electron microscopy analyses evidenced fibers totally covered with high quality polycrystalline boron-doped diamond film, also confirmed by Raman spectroscopy spectra. Diamond electrodes grown on carbon fibers demonstrated similar electrochemical behavior obtained from films on Si substrate, for ferri/ferrocyanide redox couple as a function of boron content. The boron content influences electrochemical surface area. A lower boron concentration provides a higher growth rate that results in a higher surface area.

  17. Stopping characteristics of boron and indium ions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, D. S., E-mail: DSVeselov@mephi.ru; Voronov, Yu. A. [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    The mean range and its standard deviation are calculated for boron ions implanted into silicon with energies below 10 keV. Similar characteristics are calculated for indium ions with energies below 200 keV. The obtained results are presented in tabular and graphical forms. These results may help in the assessment of conditions of production of integrated circuits with nanometer-sized elements.

  18. Perennial soybean seeds coated with high doses of boron and zinc ...

    African Journals Online (AJOL)

    The objective of this work was to study combinations of high doses of boron (B) and zinc (Zn) in the recoating of perennial soybean seeds, in order to provide these nutrients to the future plants. The physical, physiological and nutritional characteristics of the coated seeds and initial development of plants in a greenhouse ...

  19. Ion-recombination correction factor κsat for spherical ion chambers irradiated by continuous photom beams

    International Nuclear Information System (INIS)

    Piermattei, A.; Azario, L.; Arcovito, G.

    1996-01-01

    The large range of reference air kerma rates of brachytherapy sources involves the use of large-volume ionization chambers. When such ionization chambers are used the ion-recombination correction factor k sat has to be determined. In this paper three spherical ion chambers with volume ranging from 30 to 10 4 cm 3 have been irradiated by photons of a 192 Ir source to determine the k sat factors. The ionization currents of the ion chambers as a function of the applied voltage and the air kerma rate have been analysed to determine the contribution of the initial and general ion recombination. The k sat values for large-volume ionization chambers obtained by considering the general ion recombination as predominant (Almond's approach) are in disagreement with the results obtained using methods that consider both initial and general ion-recombination contributions (Niatel's approach). Such disagreement can reach 0.7% when high currents are measured for a high-activity source calibration in terms of reference air kerma rate. In this study a new 'two-voltage' method, independent of the voltage ratio given by a dosimetry system, is proposed for practical dosimetry of continuous x-and gamma-radiation beams. In the case where the Almond approach is utilized, the voltage ratio V 1 /V 2 should be less than 2 instead of Almond's limit of V 1 /V 2 <5. (Author)

  20. Description and calibration beamline SEM/Ion Chamber Current Digitizer

    International Nuclear Information System (INIS)

    Schoo, D.

    1994-05-01

    This report discusses the following on beamline SEM/ion chamber current digitizers: Module description; testing and calibration; common setup procedures; summary of fault indications and associated causes; summary of input and output connections; SEM conversion constant table; ion chamber conversion constant table; hexadecimal to decimal conversion table; and schematic diagram

  1. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  2. Performance optimization of 20 cm xenon ion thruster discharge chamber

    International Nuclear Information System (INIS)

    Chen Juanjuan; Zhang Tianping; Jia Yanhui; Li Xiaoping

    2012-01-01

    This paper describes the performance of the LIPS-200 ion thruster discharge chamber which was developed by Lanzhou Institute of Physics. Based on the discharge chamber geometric configuration and magnetic field, the completely self-consistent analytical model is utilized to discuss performance optimization of the discharge chamber of the LIPS-200. The thrust is enhanced from 40 mN up to 60 mN at rated impulse and efficiency. The results show that the 188.515 W/A beam ion production cost at a propellant flow rate of 2.167 × 10 17 m -3 requires that the thruster runs at a discharge current of 6.9 A to produce 1.2 A ion beam current. Also, during the process of LIPS-200 ion thruster discharge chamber performance optimization, the sheath potential is always within 3.80 ∼ 6.65 eV. (authors)

  3. Mechanical and Structural Properties of Fluorine-Ion-Implanted Boron Suboxide

    OpenAIRE

    Machaka, Ronald; Mwakikunga, Bonex W.; Manikandan, Elayaperumal; Derry, Trevor E.; Sigalas, Iakovos; Herrmann, Mathias

    2012-01-01

    Results on a systematic study on the effects of ion implantation on the near-surface mechanical and structural properties of boron suboxide (B 6O) prepared by uniaxial hot pressing are reviewed. 150keV fluorine ions at fluences of up to 5.0 × 10 16ions/cm 2 were implanted into the ultrahard ceramic material at room temperature and characterized using Raman spectroscopy, atomic force microscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Evidence of ion-beam-as...

  4. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  5. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    International Nuclear Information System (INIS)

    Subhash, Chandra

    2008-01-01

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  6. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  7. Ion chamber repairs in Bruce A

    International Nuclear Information System (INIS)

    Millard, J.; Edwards, T.; Kerker, J.; Pletch, R.; Edwards, T.

    2012-01-01

    This paper discusses identification and successful remediation of leakage of shield tank water on vertical and horizontal Ion Chambers in Bruce A. In doing so, it discusses real events moving from the initial investigation to understand the problem, through looking at options for solutions, and moving to site work and actual resolution.. In multiunit 900 MW class CANDU® reactors, the calandria vessel is suspended within a larger shield tank. Due to temperature changes or changes in moderator fluid levels in the calandria, the calandria can move relative to the shield tank and its reactivity deck. Thimbles which contain the reactivity sensors and controls connect the two vessels and allow the reactivity drives and controls connections to be placed on the deck structure on the top of the reactor assembly for RRS and SDS1 and horizontally for SDS2. These thimbles have expansion joints with metal bellows where they meet the deck structure or shield tank walls. The deck structure lies on a vault containment boundary. The horizontal ion chambers are not in the containment boundary as they connect the outside of the calandria and shield tank around mid plane in the reactor vault, but due to geometry difference provides a more challenging work environment. Bruce had a beetle alarm (1-63851-MIA2-ME30 in alarm state (vertical IC housing)) at the start of April 2012 on Unit 1 channel F vertical Ion chamber expansion joint at the deck connection. This occurred after the moderator levels had been raised after the several years long refurbishment outage and the expansion joint had a significant travel. The investigation showed shield tank water in the collection chamber at the beetle. In addition, Channel J of the horizontal ion chamber had a seized instrument, which on removal was found to relate to oxide build up as a result of minor water leakage into the site. Repairs in both cases were performed as part of the long Bruce 1 & 2 refurbishment outage to completely stop the

  8. Chamber transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted

  9. Construction and use of small chambers for boron trifluoride; Construction et utilisation de petites chambres au trifluorure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R; Lallemant, C; Valladas, G

    1949-07-01

    The fabrication of the chambers (the materials used, the fabrication of the parts and their assembly), and their final testing are described in a first part. Then, the preparation of crude boron fluoride, the storing of the crude, the purification of BF{sub 3} by sublimation and condensation, the pumping, drying and filling up of the chambers, their finishing and sealing are described in a second part. The last part describes the use of the chambers for the counting of slow neutrons: amplification system, pulses discrimination and neutrons counting, accuracy. The characteristics of the amplification circuit used with the chamber are described in the appendix. (J.S.)

  10. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  11. Boron-coated straws as a replacement for 3He-based neutron detectors

    International Nuclear Information System (INIS)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-01-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3 He gas. It is estimated that the annual demand of 3 He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3 He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10 B-enriched boron carbide ( 10 B 4 C). In addition to the high abundance of boron on Earth and low cost of 10 B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3 He-based detectors, and alternate technologies such as 10 BF 3 tubes and 10 B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3 He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3 He tube, 187 cm long, pressurized to 3 atm.

  12. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  13. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  14. Effect of Boron on Microstructure and Microhardness Properties of Mo-Si-B Based Coatings Produced Via TIG Process

    Directory of Open Access Journals (Sweden)

    Islak S.

    2016-09-01

    Full Text Available In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo–Si–B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the microstructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.

  15. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Science.gov (United States)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  16. Superior critical current density obtained in MgB_2 bulks via employing carbon-coated boron and minor Cu addition

    International Nuclear Information System (INIS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-01-01

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB_2 grain connectivity, leading to higher J_c at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J_c. - Abstract: High performance Cu doped MgB_2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB_2 grains, as well as a high level of homogeneous carbon doping in the MgB_2 samples, which significantly enhance the J_c in both Cu doped and undoped bulks compared to MgB_2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB_2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J_c) at self fields and low fields (the best values are 7 × 10"5 A/cm"2 at self fields, and 1 × 10"5 A/cm"2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J_c at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB_2 bulks or wires with excellent J_c on an industrial scale.

  17. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  18. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot

  19. Simulation of Chamber Transport for Heavy-Ion-Fusion Drivers

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Rose, D.V.; Welch, D.R.

    2003-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  20. Chamber-transport simulation results for heavy-ion fusion drivers

    International Nuclear Information System (INIS)

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2004-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  1. SIMULATION OF CHAMBER TRANSPORT FOR HEAVY-ION FUSION DRIVERS

    International Nuclear Information System (INIS)

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2004-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  2. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating – A molecular dynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Badjian, H.; Setoodeh, A.R., E-mail: setoodeh@sutech.ac.ir

    2017-02-15

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  3. Using the Nova target chamber for high-yield targets

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1987-01-01

    The existing 2.2-m-radius Nova aluminum target chamber, coated and lined with boron-seeded carbon shields, is proposed for use with 1000-MJ-yield targets in the next laser facility. The laser beam and diagnostic holes in the target chamber are left open and the desired 10 -2 Torr vacuum is maintained both inside and outside the target chamber; a larger target chamber room is the vacuum barrier to the atmosphere. The hole area available is three times that necessary to maintain a maximum fluence below 12 J/cm 2 on optics placed at a radius of 10 m. Maximum stress in the target chamber wall is 73 MPa, which complies with the intent of the ASME Pressure Vessel Code. However, shock waves passing through the inner carbon shield could cause it to comminute. We propose tests and analyses to ensure that the inner carbon shield survives the environment. 13 refs

  4. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  5. Determination Of The QUART Ion Chamber Stability By Using Medical Linear Accelerator

    International Nuclear Information System (INIS)

    Nasukha.

    1990-01-01

    The Quality Assurance Radiation Therapy (QUART) ion chamber was designed for quality assurance measurements of the medical linear accelerator at the Department of Radiation Oncology, Westmead Hospital in Sydney-Australia. The ion chamber has been calibrated by using the 6 MV medical linear accelerator against the farmer dosimeter. The Medical Physics Department Protocol, Westmead Hospital, Sydney (Australia) was used to check the stability of QUART ion chamber by determination of calibration factor for a period of time. It was found that the stability of the seven chambers were less than 2% for more than 125 days. (author). 4 refs, 7 figs

  6. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  7. Flash lamp annealing of ion implanted boron profiles

    International Nuclear Information System (INIS)

    Wieser, E.; Syhre, H.; Ruedenauer, F.G.; Steiger, W.

    1983-05-01

    The diffusion behaviour of ion implanted boron profiles (5x10E15 B/cm 2 , 50keV) in silicon at 800 0 C and 900 0 C has been compared for samples with and without foregoing flahs - lamp annealing of the radiation damage. The observed differences are discussed with respect to mechanisms of diffusion inhibition in the high concentration region. (Author) [de

  8. Boron-coated straws as a replacement for {sup 3}He-based neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey L., E-mail: jlacy@proportionaltech.com [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States); Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B. [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States)

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of {sup 3}He gas. It is estimated that the annual demand of {sup 3}He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on {sup 3}He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of {sup 10}B-enriched boron carbide ({sup 10}B{sub 4}C). In addition to the high abundance of boron on Earth and low cost of {sup 10}B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional {sup 3}He-based detectors, and alternate technologies such as {sup 10}BF{sub 3} tubes and {sup 10}B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed {sup 3}He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter {sup 3}He tube, 187 cm long, pressurized to 3 atm.

  9. DESIGN OF AN IMPROVED ION CHAMBER FOR THE SNS.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.L.; GASSNER,D.

    2002-05-06

    Ion chambers are in common use as beam loss monitors at many accelerators. A unit designed and used at FNAL and later at BNL was proposed for the SNS. Concerns about the ion collection times and low collection efficiency at high loss rates led to improvements to this unit and the design of an alternate chamber with better characteristics. Prototypes have been tested with pulsed beams. The design and test results for both detectors will be presented.

  10. Influence of some factors on kinetics of boron ions sorption by inorganic anion exchanger of MNG type

    International Nuclear Information System (INIS)

    Leont'eva, G.V.

    1991-01-01

    Consideration is given to the influence of particle size of anion exchanger and boron ion concentration on boron sorption from the solution of the following composition (kg/m 3 ): Na + -71.3; K + - 1.9; Ca 2+ - 43.8; Mg 2+ - 5.7; B 2 O 3 -0.32-1.50; Cl - - 204.6, SO 4 2- - 0.02, CO 3 2+ - 0.40; HCO 3 - - 1.74; pH=8.1; density - 1225 kg/m 3 . Increase of dispersivity of ion-exchange material promotes the elevation of sorption rate. Increase of boron ion concentration in the solution leads to exchange capacity growth and reduction of latent period of nucleation; this results to increase of sorption rate

  11. Ion collection efficiency of ionization chambers in electron beams

    International Nuclear Information System (INIS)

    Garcia, S.; Cecatti, E.R.

    1984-01-01

    When ionization chambers are used in pulsed radiation beams the high-density of ions produced per pulse permits ion recombination, demanding the use of a correction factor. An experimental technique using the charge collected at two different voltages permits the calculation of the ion collection efficiency. The ion collection efficiency of some common ionization chambers in pulsed electron beams were studied as a function of electron energy, dose rate and depth. Accelerators with magnetic scanning system, in which the instantaneous dose rate is much greater than the average dose rate, present a smaller collection efficiency than accelerators with scattering foil. The results lead to the introduction of a correction factor for ion recombination that is the reciprocal of the ion collection efficiency. It is also suggested a simple technique to connect an external variable DC power supply in a Baldwin Farmer dosemeter. (Author) [pt

  12. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    International Nuclear Information System (INIS)

    Hu, Jianwei; Croft, Stephen; McElroy, Robert Dennis

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non- 3 He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235 U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  13. Axial channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Setola, R.; Rimini, E.; Carnera, A.; Gasparotto, A.

    1992-01-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x10 11 and 1x10 15 atoms/cm 2 . The axial channeling concentration profiles of implanted B + were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, S c , was extracted from the experimental maximum ranges for the [100] and [110] axis. The energy dependence of the electronic stopping power is given by S e = KE p with p [100] = 0.469±0.010 and p [110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.)

  14. Performance of a dual-process PVD/PS tungsten coating structure under deuterium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Song, Jae-Min [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Jang, Changheui, E-mail: chjang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • D{sup +} irradiation performance of a dual-process PVD/PS W coating was evaluated. • Low-energy plasmas exposure of 100 eV D{sup +} with 1.17 × 10{sup 21} D/s{sup −1} m{sup 2} flux was applied. • After D ion irradiation, flakes were observed on the surface of the simple PS coating. • While, sub-μm size protrusions were observed for dual-process PVD/PS W coating. • Height of D spike in depth profile was lower for dual-process PVD/PS W coating. - Abstract: A dual-process coating structure was developed on a graphite substrate to improve the performance of the coating structure under anticipated operating condition of fusion devices. A thin multilayer W/Mo coating (6 μm) was deposited by physical vapor deposition (PVD) method with a variation of Mo interlayer thickness on plasma spray (PS) W coating (160 μm) of a graphite substrate panel. The dual-process PVD/PS W coatings then were exposed to 3.08 × 10{sup 24} D m{sup −2} of 100 eV D ions with a flux of 1.71 × 10{sup 21} D m{sup −2} s{sup −1} in an electron cyclotron resonance (ECR) chamber. After irradiation, surface morphology and D depth profiles of the dual-process coating were analyzed and compared to those of the simple PS W coating. Both changes in surface morphology and D retention were strongly dependent on the microstructure of surface coating. Meanwhile, the existence of Mo interlayer seemed to have no significant effect on the retention of deuterium.

  15. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  16. Superior critical current density obtained in MgB{sub 2} bulks via employing carbon-coated boron and minor Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Junming; Liu, Yongchang [State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Ma, Zongqing, E-mail: mzq0320@163.com [State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, Squires Way, North Wollongong, NSW 2500 (Australia); Shahriar Al Hossain, M. [Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, Squires Way, North Wollongong, NSW 2500 (Australia); Xin, Ying; Jin, Jianxun [Tianjin University – Futong Group Research Center of Applied Superconductivity, Tianjin University, Tianjin 300072 (China)

    2016-09-15

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB{sub 2} grain connectivity, leading to higher J{sub c} at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J{sub c}. - Abstract: High performance Cu doped MgB{sub 2} bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB{sub 2} grains, as well as a high level of homogeneous carbon doping in the MgB{sub 2} samples, which significantly enhance the J{sub c} in both Cu doped and undoped bulks compared to MgB{sub 2} bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB{sub 2} grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J{sub c}) at self fields and low fields (the best values are 7 × 10{sup 5} A/cm{sup 2} at self fields, and 1 × 10{sup 5} A/cm{sup 2} at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J{sub c} at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB{sub 2} bulks or wires with excellent J{sub c} on an industrial scale.

  17. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non-3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  18. "Diamond" over-coated Microstrip Gas Chambers for high rate operation

    CERN Document Server

    Barr, A J; Bouclier, Roger; Capéans-Garrido, M; Dominik, Wojciech; Hoch, M; Manzin, G; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1997-01-01

    We describe the recent developments on the diamond-like carbon (DLC) over-coated Microstrip Gas Chambers made on drawn glass substrates. MSGC surface coating with thin DLC layer of stable and controlled resistivity was proposed to overcome the limitation of detector operation due to surface charging-up under avalanches. This brings also advantages for the detector manufacturing technology. The thin layer, deposited on top of a manufactured MSGC (over-coating), demonstrates excellent mechanical properties and very good stability. We report on recent measurements with DLC over-coated MSGCs of various surface resistivities (ranging from 1013W/r to 1016W/r) on D-263 and AF45 glass substrates. Over-coated MSGCs exhibit good rate capability for the resistivity of the surface around 1015W/r. Stable operation up to 50 mC/cm of accumulated charge from avalanches has been demonstrated.

  19. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage.

    Science.gov (United States)

    Liu, Yuxin; Liu, Ping; Wu, Dongqing; Huang, Yanshan; Tang, Yanping; Su, Yuezeng; Zhang, Fan; Feng, Xinliang

    2015-03-27

    Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron-doped, carbon-coated SnO2 /graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core-shell architecture and B-doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium-ion batteries with a highly stable capacity of 1165 mA h g(-1) at 0.1 A g(-1) after 360 cycles and an excellent rate capability of 600 mA h g(-1) at 3.2 A g(-1), and thus outperforms most of the previously reported SnO2-based anode materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Procedure for coating objects by the use of an ion plasma

    International Nuclear Information System (INIS)

    Kovalsky, G.A.; Maishev, J.P.; Egorov, B.A.; Dmitriev, J.A.

    1978-01-01

    The arrangement for the coating of objects by means of an ion plasma, wherein a plasma current is developed by an electric field between an anode and a heated cathode in a vacuum chamber and is formed by a magnetic field developed between a magnetic system with a screen provided with at least one slot which is placed in the plasma current, which arrangement is further provided with an object holder and a target on which a sputtered area may be applied, wherein the object and the target are placed on opposite sides of the plasma stream is described. (G.C.)

  1. Recombination and photosensitivity centres in boron nitride irradiated with ions

    International Nuclear Information System (INIS)

    Kabyshev, A.; Konusov, F.; Lopatin, V.

    2001-01-01

    The physical-chemical processes, taking place during the irradiation of dielectrics with ions distort the electron structure of the compounds and generate additional localise state in the forbidden zone (FZ). Consequently, the semiconductor layer with the specific surface density of σ ≥ 10 -10 S/ forms on the surface of the dielectric. In addition to his, the high concentration of the radiation-induced defects changes the optical and photoelectric properties of the materials and also the energy characteristics. Analysis of the photoelectric properties indicates that the recombination processes take part in electric transport. These processes restricted the increase of the photosensitivity and changing the kinetics of relaxation of photo conductivity (σ hv ). The practical application of the boron nitride (BN) the in the thermonuclear systems (for example, Ref. 7), stimulates research into the reasons for the deceleration of its properties under the effect of radiation of various types. The conductivity of non-irradiated boron nitride is of the electron-hole nature with a large fraction of the activation component in exchange of the charge carriers between the levels of the defects and the forbidden zones. On the basis of the correlation of the energy and kinetic parameters of luminescence and , the authors of Ref. 8 constructed a model of electron transfers accompanying the electric transport of the boron nitride. In addition to ion-thermal modification, the conductivity of boron nitride is also of the electron-hole nature and is accompanied by luminescence. Examination of the characteristics of luminescence may be useful for obtaining more information on the transport mechanism. In this work, in order to clarify the main parameters of the forbidden band, detailed investigations were carried out into the spectrum of the electronic states of radiation defects which determine the photoelectric and luminescence properties of the modified boron nitride. The

  2. Study of shallow junction formation by boron-containing cluster ion implantation of silicon and two-stage annealing

    Science.gov (United States)

    Lu, Xin-Ming

    Shallow junction formation made by low energy ion implantation and rapid thermal annealing is facing a major challenge for ULSI (ultra large scale integration) as the line width decreases down to the sub micrometer region. The issues include low beam current, the channeling effect in low energy ion implantation and TED (transient enhanced diffusion) during annealing after ion implantation. In this work, boron containing small cluster ions, such as GeB, SiB and SiB2, was generated by using the SNICS (source of negative ion by cesium sputtering) ion source to implant into Si substrates to form shallow junctions. The use of boron containing cluster ions effectively reduces the boron energy while keeping the energy of the cluster ion beam at a high level. At the same time, it reduces the channeling effect due to amorphization by co-implanted heavy atoms like Ge and Si. Cluster ions have been used to produce 0.65--2keV boron for low energy ion implantation. Two stage annealing, which is a combination of low temperature (550°C) preannealing and high temperature annealing (1000°C), was carried out to anneal the Si sample implanted by GeB, SiBn clusters. The key concept of two-step annealing, that is, the separation of crystal regrowth, point defects removal with dopant activation from dopant diffusion, is discussed in detail. The advantages of the two stage annealing include better lattice structure, better dopant activation and retarded boron diffusion. The junction depth of the two stage annealed GeB sample was only half that of the one-step annealed sample, indicating that TED was suppressed by two stage annealing. Junction depths as small as 30 nm have been achieved by two stage annealing of sample implanted with 5 x 10-4/cm2 of 5 keV GeB at 1000°C for 1 second. The samples were evaluated by SIMS (secondary ion mass spectrometry) profiling, TEM (transmission electron microscopy) and RBS (Rutherford Backscattering Spectrometry)/channeling. Cluster ion implantation

  3. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-01

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g −1 at 100 mA g −1 after 30th cycles. At high current density value of 1 A g −1 , B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states

  4. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  5. The gridless plasma ion source (GIS) for plasma ion assisted optical coating

    International Nuclear Information System (INIS)

    You Dawei; Li Xiaoqian; Wang Yu; Lin Yongchang

    2004-01-01

    High-quality optical coating is a key technology for modern optics. Ion-assisted deposition technology was used to improve the vaporized coating in 1980's. The GIS (gridless ion source), which is an advanced plasma source for producing a high-quality optical coating in large area, can produce a large area uniformity>1000 mm (diameter), a high ion current density ∼0.5 mA/cm 2 , 20 eV-200 eV energetic plasma ions and can activate reactive gas and film atoms. Now we have developed a GIS system. The GIS and the plasma ion-assisted deposition technology are investigated to achieve a high-quality optical coating. The GIS is a high power and high current source with a power of 1 kW-7.5 kW, a current of 10 A- 70 A and an ion density of 200 μA/cm 2 -500 μA/cm 2 . Because of the special magnetic structure, the plasma-ion extraction efficiency has been improved to obtain a maximum ion density of 500 μA/cm 2 in the medium power (∼4 kW) level. The GIS applied is of a special cathode structure, so that the GIS operation can be maintained under a rather low power and the lifetime of cathode will be extended. The GIS has been installed in the LPSX-1200 type box coating system. The coated TiO 2 , SiO 2 films such as antireflective films with the system have the same performance reported by Leybold Co, 1992, along with a controllable refractive index and film structure. (authors)

  6. Equipment upgrade - Accurate positioning of ion chambers

    International Nuclear Information System (INIS)

    Doane, Harry J.; Nelson, George W.

    1990-01-01

    Five adjustable clamps were made to firmly support and accurately position the ion Chambers, that provide signals to the power channels for the University of Arizona TRIGA reactor. The design requirements, fabrication procedure and installation are described

  7. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  8. Research of boron conversion coating in neutron detector with boron deposited GEM

    International Nuclear Information System (INIS)

    Ye Di; Sun Zhijia; Zhou Jianrong; Wang Yanfeng; Yang Guian; Xu Hong; Chen Yuanbai; Xiao Yu; Diao Xungang

    2014-01-01

    GEM is a flourishing new gas detector and nowadays its technology become more mature. It has outstanding properties, such as excellent position resolution, high counting rate, radiation resistance, simple and flexible signal readout, can be large-area detector, wide application range. Detector with boron deposited GEM uses multilayer GEM with deposited boron film as neutron conversion carrier which reads out the information of neutron shot from the readout electrode with gas amplification from every GEM layer. The detector is high performance which can meet the demands of neutron detector of a new generation. Boron deposited neutron conversion electrode with boron deposited cathode and GEM included is the core part of the detector. As boron is a high-melting-point metalloid (> 2 000 ℃), electroplating and thermal evaporation are inappropriate ways. So finding a way to deposit boron on electrode which can meet the demands become a key technology in the development of neutron detector with boron deposited GEM. Compared with evaporation, sputtering has features such as low deposition temperature, high film purity, nice adhesive, thus is appropriate for our research. Magnetron sputtering is a improved way of sputtering which can get lower sputtering air pressure and higher target voltage, so that we can get better films. Through deposit process, the research uses magnetron sputtering to deposit pure boron film on copper electrode and GEM film. This method can get high quality, nice adhere, high purity, controllable uniformity, low cost film with high speed film formation. (authors)

  9. A comparative study of 30MeV boron4+ and 60MeV oxygen8+ ion irradiated Si NPN BJTs

    International Nuclear Information System (INIS)

    Kumar, M. Vinay; Krishnaveni, S.; Yashoda, T.; Dinesh, C. M.; Krishnakumar, K. S.; Jayashree, B.; Ramani

    2015-01-01

    The impact of 30MeV boron 4+ and 60MeV oxygen 8+ ion irradiation on electrical characteristics of 2N3773 Si NPN Bipolar junction transistors (BJTs) is reported in the present study. The transistors were decapped and irradiated at room temperature. Gummel characteristics, DC current gain and Capacitance-voltage (C-V) characteristics were studied before and after irradiation at different fluences. DC current gain has decreased significantly in both boron and oxygen ion irradiation. Also the value of capacitance decreased 3-4 times with increase in fluence. Both 30MeV boron ion and 60MeV oxygen ion induced similar extent of degradation in electrical characteristics of the transistor

  10. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  11. Study of ion plating parameters, coating structure, and corrosion protection for aluminum coatings on uranium

    International Nuclear Information System (INIS)

    Egert, C.M.; Scott, D.G.

    1987-01-01

    A study of ion-plating parameters (primarily deposition rate and substrate bias voltage), coating structure, and the corrosion protection provided by aluminum coatings on uranium is presented. Ion plating at low temperatures yields a variety of aluminum coating structures on uranium. For example, aluminum coatings produced at high deposition rates and low substrate bias voltages are columnar with voids between columns, as expected for high-rate vapor deposition at low temperatures. On the other hand, low deposition rate and high bias voltage produce a modified coating with a dense, noncolumnar structure. These results are not in agreement with other studies that have found no relationship between deposition rate and coating structure in ion plating. This discrepancy is probably due to the high deposition rates used in these studies. An accelerated, water vapor corrosion test indicates that the columnar aluminum coatings provide some corrosion protection despite their porous nature; however, the dense noncolumnar coatings provide significantly greater protection. These results indicate that ion-plated aluminum coatings produced at low deposition rates and high substrate bias voltages creates dense coating structures that are most effective in protecting uranium from corrosion

  12. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-09

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  13. Ion irradiation and thermal cycling tests of TiC coatings

    International Nuclear Information System (INIS)

    Yamanaka, S.; Ohara, H.; Son, P.; Miyake, M.

    1984-01-01

    Ion irradiation of TiC coatings prepared by diffusion annealing was performed with 20-40 keV He + ions for different doses at room temperature. The polished TiCsub(0.99) coatings irradiated with 40 keV He + ions showed the surface damage and erosion due to blistering and exfoliation above a dose of 1.8x10 17 ions/cm 2 , whereas no change in the surface morphology could be detected for the as-prepared coatings up to a dose of 1.4x10 18 ions/cm 2 . The results suggested that surface erosion due to blistering can be effectively reduced on the rough surface of the as-prepared TiC coating. The average blister diameter in the polished TiCsub(0.99) coating increased with increasing projectile energy. For the 40 keV He + ion irradiation of the polished TiCsub(0.5) coatings, general features in blisters were similar to those observed for the TiCsub(0.99) coatings, but the critical dose for blistering shifted to a higher value in comparison with the polished TiCsub(0.99) coating. Thermal cycling between 500 and 1200 0 C caused serious surface damage for the TiCsub(0.99) coating irradiated with 40 keV He + ions below the critical dose for blistering, while the coating with surface damage due to blistering showed no significant change in the surface topography after thermal cycling. (orig.)

  14. Development of a parallel plate ion chamber for radiation protection level

    International Nuclear Information System (INIS)

    Bottaro, Marcio; Landi, Mauricio; Moralles, Mauricio

    2011-01-01

    A new parallel plate vented ion chamber is proposed in this paper. The application of this chamber was primarily intended to the measurement of stray radiation in interventional procedures, but the energy response of about 2.6%, which was obtained in the first prototype, on the range from 40 to 150 kV using ISO 4037-1 narrow qualities, provided the possibility of a wide modality application on radiation protection. Primary studies with Maxwell 2D electromagnetic field simulator revealed an optimized model regarding effective volume and saturation voltage levels, which conferred to the ion chamber a dual entrance window feature. The development of this ion chamber has the main contribution of Monte Carlo calculations as a support tool to the establishment of the effective volume of the chamber and determination of the best materials for housing mounting and conductive elements, such as guard rings, electrode, and windows. Even the composition of the conductive layers, which would be neglected due to their very small thicknesses (about 35 μm), had important influence on the results and could be better understood with Monte Carlo N-Particle Transport Code System (MCNP) simulations. (author)

  15. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  16. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    Science.gov (United States)

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High-intensity positive beams extracted from a compact double-chamber ion source

    International Nuclear Information System (INIS)

    Huck, H.; Somacal, H.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; Di Paolo, H.; Reinoso, M.

    2005-01-01

    This work presents the design and development of a simple ion source, the associated ion extraction optics, and the beam transport of a low-energy and high-current proton accelerator. In its actual version, the ion source can deliver positive proton currents up to 100 mA. This rather high beam current is achieved by adding a small ionization chamber between the discharge chamber containing the filament and the extraction electrode of the ion source. Different parameters of the ion source and the injection beam line are evaluated by means of computer simulations to optimize the beam production and transmission

  18. Development of new type boron-coating proportional counter and its experimental investigation and simulation calculation

    International Nuclear Information System (INIS)

    Zhang Zixia; Wei Zhiyong; Fang Meihua; Qiang Peng; Zhu Li; Chen Guoyun

    2015-01-01

    Three materials wherein suitable proportion of isotope enriched 10 B powder, 1, 2-ethylene dichloride and formvar resin were blended to make 10 B neutron sensitive coating by oneself. A new type proportional counter that coated with 10 B neutron sensitive coating was made. Furthermore, in order to increase the character and quality of the neutron detector, a set of 14 annulus epoxy sheets which were sided with 10 B film were placed in the tube. A series performance tests were done by 241 Am-Be neutron source. The tests of 3.7 × 10 9 Bq 211 Am-Be neutron source show that the plateau length of detector is 150 V from 750 V to 900 V, while the plateau slope is 8.2%/100 V. When the working voltage is 800 V, the count rate of new type boron-coating proportional counter is 50 s -1 . The level of sensitivity is 0.71 cm 2 . Compared with the detector only coated with 10 B film in the inner walls of detector, neutron sensitivity area of the new detector increases to 3.15 times. The results show that the plateau length increases from 80 V to 150 V, and the plateau slope is improved from 12.4%/100 V to 7.58%/100 V, while the neutron sensitivity increases to 2.63 times. Using Geant4 software based on Monte Carlo method, this paper presented the response and detection efficiency of new type boron-coating proportional counter, which was covered with φ55 mm × 250 mm cylinder high density polyethylene moderator material. The simulation results of Geant4 are in agreement with the results of 241 Am-Be neutron source experiment. It shows the reliability of simulation application. (authors)

  19. Sliding behavior of boron ion-implanted 304 stainless steel

    International Nuclear Information System (INIS)

    Shrivastava, S.; Jain, A.; Singh, C.

    1995-01-01

    The authors have studied the influence of boron ion implantation on the friction and wear behavior of 304 stainless steel. The authors find an increase in microhardness following implantation. The authors also observed a reduction in wear and coefficient of friction. They have measured the microhardness, inside the wear tracks and have found a large increase in the values in the unimplanted specimens and only a small increase in the implanted specimens. These observations have thrown light on the change in the wear mechanism between the two cases. The authors have also used Scanning Electron Microscopy and Energy Dispersive Analysis of X-rays, to characterize the differences in the mode of wear. The change in wear behavior is brought about by the ability of boron to prevent the surface from transforming into a hard brittle layer during wear

  20. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  1. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  2. Improvement in energy release properties of boron-based propellant by oxidant coating

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Daolun; Liu, Jianzhong, E-mail: jzliu@zju.edu.cn; Chen, Binghong; Zhou, Junhu; Cen, Kefa

    2016-08-20

    Highlights: • NH{sub 4}ClO{sub 4}, KNO{sub 3}, KClO{sub 4} and HMX coated B were used to prepare propellant samples. • FTIR, XRD and SEM were used for the microstructure analysis of the prepared B. • Thermal oxidation and combustion characteristics of the propellants were studied. • HMX coating was the most beneficial to the energy release of the samples. - Abstract: The energy release properties of a propellant can be improved by coating boron (B) particles with oxidants. In the study, B was coated with four different oxidants, namely, NH{sub 4}ClO{sub 4}, KNO{sub 3}, LiClO{sub 4}, and cyclotetramethylenetetranitramine (HMX), and the corresponding propellant samples were prepared. First, the structural and morphological analyses of the pretreated B were carried out. Then, the thermal analysis and laser ignition experiments of the propellant samples were carried out. Coating with NH{sub 4}ClO{sub 4} showed a better performance than mechanical mixing with the same component. Coating with KNO{sub 3} efficiently improved the ignition characteristics of the samples. Coating with LiClO{sub 4} was the most beneficial in reducing the degree of difficulty of B oxidation. Coating with HMX was the most beneficial in the heat release of the samples. The KNO{sub 3}-coated sample had a very high combustion intensity in the beginning, but then it rapidly became weak. Large amounts of sparks were ejected during the combustion of the LiClO{sub 4}-coated sample. The HMX-coated sample had the longest self-sustaining combustion time (4332 ms) and the highest average combustion temperature (1163.92 °C).

  3. Development of industrial ion implantation and ion assisted coating processes: A perspective

    International Nuclear Information System (INIS)

    Legg, K.O.; Solnick-Legg, H.

    1989-01-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes. (orig.)

  4. Electret ionization chamber: a new method for detection and dosimetry of thermal neutrons; Camara de ionizacao de eletretos: um novo metodo para deteccao e dosimetria de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Ghilardi, A J.P.

    1988-12-31

    An electret ionization chamber with boron coated walls is presented as a new method for detecting thermal neutrons. The efficiency of electret ionization chambers with different wall materials for the external electrode was inferred from the results. Detection of slow neutrons with discrimination against the detection of {gamma}-rays and energetic neutrons was shown to depend on the selection of these materials. The charge stability over a long period of time and the charge decay owing to natural radiation were also studied. Numerical analysis was developed by the use of a micro-computer PC-XT. Both the experimental and numerical results show that the sensitivity of the electret ionization chamber for detection of thermal neutrons is comparable with that of the BF{sub 3} ionization chamber and that new technologies for deposition of the boron layer will produce higher efficiency detectors. (author). 102 refs, 32 fig, 10 tabs.

  5. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Yilmaz, M. Tolga; Kocakerim, M. Muhtar

    2005-01-01

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions

  6. Study of ion implantation in grown layers of multilayer coatings under ion-plasma vacuum deposition

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Erokhin, A.L.

    1993-01-01

    The model of ion implantation into growing layers of a multilayer coating produced with vacuum ion-plasma deposition was developed. The model takes into account a possibility for ions to pass through the growing layer and alloys to find the distribution of implanted atoms over the coating thickness. The experimental vitrification of the model was carried out on deposition of Ti and TiN coatings

  7. Monte Carlo simulation of boron-ion implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.

    1991-01-01

    A physically based Monte Carlo boron implantation model developed comprehends previously neglected but important implant parameters such as native oxide layers, wafer temperature, beam divergence, tilt angle, rotation (twist) angle, and dose, in addition to energy. This model uses as its foundation the MARLOWE Monte Carlo simulation code developed at Oak Ridge National Laboratory for the analysis of radiation effects in materials. This code was carefully adapted for the simulation of ion implantation, and a number of significant improvements have been made, including the addition of atomic pair specific interatomic potentials, the implementation of a newly developed local electron concentration dependent electronic stopping model, and the implementation of a newly developed cumulative damage model. This improved version of the code, known as UT-MARLOWE, allows boron implantation profiles to be accurately predicted as a function of energy, tilt angle, rotation angle, and dose. This code has also been used in the development and implementation of an accurate and efficient two-dimensional boron implantation model

  8. Ultimate pressures achieved in TiZrV sputter-coated vacuum chambers

    CERN Document Server

    Benvenuti, Cristoforo; Ruzinov, V

    2001-01-01

    Two metre long, cylindrical vacuum chambers of diameter ranging from 34 to 100 mm, coated with TiZrV getter films by sputtering, have been baked for about 24 h at temperatures from 120 to 250 degrees C. The ultimate pressures achieved after bakeout were found to correspond to the ratio of the pressure gauge degassing to the effective pumping speed provided by the chamber at the location of the gauge. The results covering a pressure range from 10/sup -11/ Torr down to 10 /sup -13/ Torr are presented and discussed. (6 refs).

  9. Development of an Ion Chamber for Monitoring the Containment of a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae-Yung; Kim, Han-Soo; Park, Se-Hwan; Ha, Jang-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Nuclear power plants need many different types of radiation detectors for different purposes. Neutron detectors are installed inside and outside of the core to check the neutron flux. Scintillation detectors are used to check the fission products included in the liquids and gases of plant system. Geiger-Mueller counters are used for the area radiation monitoring. In addition to the above-mentioned detectors, ion chambers are installed to monitor radiation level of the containment. A few ion chambers are located within the reactor containment to monitor radiation level of an accident case. Therefore, the ion chamber should be capable of monitoring high level radiation dose up to 10{sup 7} R/h. Korea Atomic Energy Research Institute (KAERI) developed an ion chamber for monitoring the radiation dose inside the containment.

  10. Electrodeposited tungsten-nickel-boron: A replacement for hexavalent chromium

    International Nuclear Information System (INIS)

    Steffani, C.; Meltzer, M.

    1995-04-01

    Chromium, deposited from acidic solutions of its hexavalent ion, has been the rule for wear resistant, corrosion resistant coatings for many years. Although chromium coatings are durable, the plating process generates air emissions, effluent rinse waters, and process solutions that are toxic, suspected carcinogens, and a risk to human health and the environment. Tungsten-nickel-boron (W-Ni-B) alloy deposition is a potential substitute for hexavalent chrome. It has excellent wear, corrosion, and mechanical properties and also may be less of an environmental risk. This study examines the electroplating process and deposit properties of W-Ni-B and compares them with those of hexavalent chrome

  11. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  12. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  13. Effect of radiation induced defects and incompatibility elastic stresses on the diffusion of ion implantated boron in silicon at the pulse annealing

    International Nuclear Information System (INIS)

    Stel'makh, V.F.; Suprun-Belevich, Yu.R.; Chelyadinskij, A.R.

    1987-01-01

    For determination of radiation defects effect on diffusion of the implanted boron in silicon at the pulse annealing, silicon crystals, implanted with boron, preliminary irradiated by silicon ions of different flows for checked defects implantation, were investigated. Silicon crystals additionally implanted by Ge + ions were investigated to research the effect of the incompatibility elastic stresses, emerging in implanted structures due to lattice periods noncoincidence in matrix and alloyed layers, on implanted boron diffusion. It is shown, that abnormally high values of boron diffusion coefficients in silicon at the pulse annealing are explained by silicon interstitial atom participation in redistribution of diffusing boron atoms by two diffusion channels - interstitial and vacation - and by incompatibility elastic stresses effect on diffusion

  14. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Science.gov (United States)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  15. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux; Depots electrophoretiques de bore sur plaques de duralumin destines a des mesures de flux de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Magnier, P; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    Preparation of boron thin film deposits of around 1 mg per cm{sup 2} on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  16. 2π proportional counting chamber for large-area-coated β sources

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. 2 π proportional counting chamber for large-area-coated β sources ... A provision is made for change ofthe source and immediate measurement of source activity. These sources are used to calibrate the efficiency of contamination monitors at radiological ...

  17. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    International Nuclear Information System (INIS)

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH 4 (10%) and He-C 2 H 6 (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C 2 H 6 (50%) and Ar-C 2 H 6 (50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability

  18. Relationship between ion transport and the failure behavior of epoxy resin coatings

    International Nuclear Information System (INIS)

    Dong, Yuhua; Zhou, Qiong

    2014-01-01

    Highlights: •An epoxy resin-Q345 system with a sandwich structure was prepared. •Cl − ions permeated into epoxy resin coating prior to K + ions. •Free volume size and PAL increased when the coating was immersed into the solution. -- Abstract: An epoxy resin coating with a sandwich structure was prepared to investigate ion transport behavior in the coating. The macro- and micro- appearance of the coating immersed in 5 wt.% KCl solutions was observed by stereomicroscopy, scanning electron microscopy equipped with an energy dispersive spectrometer. The electrochemical property of the coating was characterized by electrochemical impedance spectroscopy, and change of free volume after immersion was characterized by positron annihilation lifetime spectroscopy. The results indicated that Cl − ions permeated into the coating prior to K + ions, the free volume size and positron annihilation lifetime of the coating increased during immersion

  19. Boron profiles in doped amorphous-silicon solar cells formed by plasma ion deposition

    International Nuclear Information System (INIS)

    Stoddart, C.T.H.; Hunt, C.P.; Coleman, J.H.

    1979-01-01

    Amorphous silicon p-n junction solar cells of large area (100 cm 2 ) and having a quantum efficiency approaching 100% in the blue region have been prepared by plasma ion-plating, the p layer being formed from diborane and silane gases in a cathode glow-discharge. Surface secondary ion mass spectrometry combined with ion beam etching was found to be a very sensitive method with high in-depth resolution for obtaining the initial boron-silicon profile of the solar cell p-n junction. (author)

  20. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-04-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  1. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-02-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  2. Realistic modeling of chamber transport for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Grote, D.P.; Callahan, D.A.; Tabak, M.; Henestroza, E.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.

    2003-01-01

    Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions

  3. Large area diamond-like carbon coatings by ion implantation

    International Nuclear Information System (INIS)

    McCabe, A.R.; Proctor, G.; Jones, A.M.; Bull, S.J.; Chivers, D.J.

    1993-01-01

    Diamond-like Carbon (DLC) coatings have been deposited onto large geometry components in the Harwell Blue Tank ion implantation facility. To modify the substrate surface and to crack the low vapour pressure oil which is evaporated and condensed onto the surface, a 40 Kev nitrogen ion bucket ion source is used. The coating of areas up to 1 metre in diameter is common and with component manipulation larger areas may be coated. Since the component temperature never exceeds 80 o C during the process, a wide range of materials may be coated including specialist tool steels and even certain high density polymers. In order to produce hard wear resistant coatings with extremely low coefficients of friction (0.02-0.15) and a range of mechanical and electrical properties, various oil precursors have been investigated. The production and assessment of such coatings, including measurements of their tribiological performance, is presented. Applications for wear resistance, corrosion protection and electrically conducting coatings are discussed with examples drawn from engineering, electronics and biomedicine. (7 figures, 13 references). (UK)

  4. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    Science.gov (United States)

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-05-01

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Deposition and Characterization of the Titanium-Based Coating by a Multi-Chamber Detonation Sprayer

    Directory of Open Access Journals (Sweden)

    Arseenko M.Yu.

    2015-01-01

    Full Text Available This work introduces some of the aspects of the deposition of titanium-based coating (80-120 μm thick on aluminium samples using a multi-chamber detonation sprayer (MCDS. The characteristic feature of MCDS is that the powder is accelerated by using combustion products that are formed in MCDS chambers and are converged before entering the nozzle, where they interact with the two-phase gas-powder cloud. The microstructures and properties of the coating were characterized with the use of scanning electronic microscopes (SEM, optical microscope (OM, X-ray Diffraction (XRD techniques, and Vickers hardness tester with a 50 g test load. Wear tests were carried out using a computer controlled pin-on-disc type tribometer. It was established that MCDS has provided the conditions for formation of a dense titanium-based coating with a porosity of less than 1.0%, microhardness 810±250 HV0.05 and a specific wear rate of 2.077∙10-4 mm3(m∙N-1.

  6. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  7. Improving the electrochemical properties of nanosized LiFePO4-based electrode by boron doping

    International Nuclear Information System (INIS)

    Trócoli, Rafael; Franger, Sylvain; Cruz, Manuel; Morales, Julián; Santos-Peña, Jesús

    2014-01-01

    Highlights: • Thermal treatment of boron phosphate with LiFePO 4 provides electrode materials with high performance in lithium half-cells: 160 mAh·g -1 (90% of theoretical capacity) under C/5 rate • The products are composites containing boron-modified LiFePO 4 , FePO 4 and an amorphous phase with ionic diffusion properties • The boron treatment affects textural, conductive and lithium diffusivity of the electrode material leading to higher performance • A limited boron-doping of the phospholivine structure is observed - Abstract: Electrode materials with homogeneous distribution of boron were obtained by heating mixtures of nanosized carbon-coated lithium iron phosphate and BPO 4 in 3-9% weight at 700 °C. The materials can be described as nanocomposites containing i) LiFePO 4 , possibly doped with a low amount of boron, ii) FePO 4 and iii) an amorphous layer based on Li 4 P 2 O 7 -derived material that surrounds the phosphate particles. The thermal treatment with BPO 4 also triggered changes in the carbon coating graphitic order. Galvanostatic and voltammetric studies in lithium half-cells showed smaller polarisation, higher capacity and better cycle life for the boron-doped composites. For instance, one of the solids, called B 6 -LiFePO 4 , provided close to 150 and 140 mAhg -1 (87% and 81% of theoretical capacity, respectively) under C/2.5 and C regimes after several cycles. Improved specific surface area, carbon graphitization, conductivity and lithium ion diffusivity in the boron-doped phospholivine network account for this excellent rate performance. The properties of an amorphous layer surrounding the phosphate particles also account for such higher performance

  8. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  9. Special design issues. Ion beam driver-reaction chamber interfaces

    International Nuclear Information System (INIS)

    Moir, R.W.; Peterson, R.R.; Kessler, G.

    1995-01-01

    Design issues of the interface between ion beam drivers and the reaction chamber for heavy ion beam and light ion beam inertial fusion drivers are discussed. The interface must provide for radiation protection of final focusing magnets, pumping of evaporated material and non-condensable gas that enter the beam ports, thermal insulation, heat removal, a.o.. Beam ports and focal magnets must be protected by neutronically thick shielding between the beam path and the magnet conductor. The required thickness of the shielding determines the minimum spacing between individual beams in a cluster of beams. The cone angle of this cluster can affect target performance. The beamlines are subjected to evaporated material, debris, and rapidly moving droplets. The reaction chambers used here are HYLIFE-II for indirect, HIBALL-II for direct drive. The light ion beam interface is based on the LIBRA and LIBRA-LiTE studies. In the case of HYLIFE-II, liquid jets must be demonstrated with a thickness of 0.5 m and with an edge that comes to within 10 mm of the beam edges to protect the ports. Design of compact focal arrays with enough shielding to give magnets an adequate lifetime must be achieved. As shielding is added the size of the beam array will grow and the target will drop. For HIBALL neutron shielding of the focal magnets provides an adequate lifetime. Replaceable special INPORT units will have to be developed in the region of the beam ports. For light ions transport issues have led to structures being placed close enough to the target that they experience a higher neutron damage rate and must be replaced once or twice a year, which would require remote maintenance. Light ion concepts could greatly benefit from a self-pinched transport scheme, though the details are unclear and the effect on availability is uncertain. Light and heavy ions have similar problems in keeping the gas in the drivers at a low density. Both will require active means to preserve this low density, while

  10. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Peterson, P.L.; Winters, J.

    1992-01-01

    A system has been added to the DIII-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose f the boron film is to reduce the levels of impurity atoms in the DIII-D plasmas. Experiments following the application of the boron film in DIII-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime

  11. The development of pulsed ion sources with explosive ions emission for deposition of films and coatings with ion and electron mixing

    International Nuclear Information System (INIS)

    Korenev, S.

    1998-01-01

    The development of pulsed ion sources with explosive ion emission for deposition of films and coatings with ion and electron mixing is considered in the report. The deposition of films and coatings with high hardness and high resistance on the basis using this source on the working voltage 50--100 kV is presented. The deposition of TiB(2), W and other films is discussed and comparison with other results. The experimental results of pulsed electron/ion mixing are considered. The main characteristics of these films and coating are considered. The cluster mechanism of deposition of films and coatings are discussed. The main question of structure of these films on the basis of surface cluster fractal structure is suggested and discussed. The study of structure of these films showed the new kind of structure of these films and coatings

  12. Rate-dependent performance of ion chambers for particle-ID at the GSI fragment separator

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, Jan-Paul; Allred, Timothy; Enders, Joachim [Institut fuer Kernphysik, TU Darmstadt (Germany); Gernhaeuser, Roman; Maurus, Steffen [Physik Department, TU Muenchen (Germany); Nociforo, Chiara; Pietri, Stephane; Prochazka, Andrej [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany)

    2015-07-01

    At the GSI Fragment Separator (FRS), multi-sampling ion chambers (MUSIC) employing a Frisch grid are used for charge identification of secondary ion beams. At the FAIR Super-FRS, higher rates are expected, and an event-by-event determination of the charge of secondary ions will be needed at rates of several 100000 events per second. The comparison of results from test measurements for the MUSIC performance with that of a recently constructed tilted-electrode gas ion chamber (TEGIC), which was designed similar to the one discussed, is presented.

  13. Imaging with a multiplane multiwire proportional chamber using heavy ion beams

    International Nuclear Information System (INIS)

    Chu, W.T.; Alonso, J.R.; Tobias, C.A.

    1982-01-01

    A 16-plane multiwire proportional chamber has been developed to accurately map intensity profiles of heavy ion beams at the Bevalac. The imaging capability of the system has been tested for reconstruction of 3-dimensional representation of a canine thorax region using heavy ion beams

  14. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  15. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  16. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  18. Scratch-resistant transparent boron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Dekempeneer, E.H.A.; Kuypers, S.; Vercammen, K.; Meneve, J.; Smeets, J. [Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol (Belgium); Gibson, P.N.; Gissler, W. [Joint Research Centre of the Commission of the European Communities, Institute for Advanced Materials, Ispra (Vatican City State, Holy See) (Italy)

    1998-03-01

    Transparent boron nitride (BN) coatings were deposited on glass and Si substrates in a conventional capacitively coupled RF PACVD system starting from diborane (diluted in helium) and nitrogen. By varying the plasma conditions (bias voltage, ion current density), coatings were prepared with hardness values ranging from 2 to 12 GPa (measured with a nano-indenter). Infrared absorption measurements indicated that the BN was of the hexagonal type. A combination of glancing-angle X-ray diffraction measurements and simulations shows that the coatings consist of hexagonal-type BN crystallites with different degrees of disorder (nanocrystalline or turbostratic material). High-resolution transmission electron microscopy analysis revealed the presence of an amorphous interface layer and on top of this interface layer a well-developed fringe pattern characteristic for the basal planes in h-BN. Depending on the plasma process conditions, these fringe patterns showed different degrees of disorder as well as different orientational relationships with respect to the substrate surface. These observations were correlated with the mechanical properties of the films. (orig.) 14 refs.

  19. Determination of boron in Jabroc wood used as a shielding material in nuclear reactors

    International Nuclear Information System (INIS)

    Kamble, Granthali S.; Manisha, V.; Venkatesh, K.

    2015-01-01

    Jabroc are non-impregnated, densified wood laminates developed commercially for a wide range of industrial applications. Jabroc can be used with other neutron shielding materials such as Lead to form complex shielding structures. Its relative light weight and cleanliness in handling are additional features that make it a suitable candidate for the standard design of neutron shielding equipment. Jabroc can also be impregnated with Boron up to a maximum of 4% to be used in areas where Gamma radiation produced on Neutron capture reaches unacceptable dose rates. Boron impregnated Jabroc wood finds application in TAPS 3 and 4 as a shielding material for the Ion Chambers and the Horizontal Flux Units (HFU). The shielding property of this material is optimized by incorporating requisite amount of boron in wood. Boron content in this material has to be determined accurately prior to its use in the nuclear reactors. In this work a method was standardized to determine boron in Jabroc wood samples to check for conformance to specifications. The wood sample flakes were wetted with saturated barium hydroxide solution and dries under IR. The sample was ashed in a muffle furnace at 600℃ for 2 h

  20. Performance characteristics of selected integrating ion chambers

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Liberace, R.

    1977-01-01

    Certain types of integrating ion chambers have been identified as acceptable equipment for a nationwide medical X-ray exposure survey program. In this study, Victoreen 2.5, 5 and 10 R condenser R-chambers, the Victoreen 666 Diagnostic Probe (used in the integrating mode) and the Bendix 200 mR and 5 R low energy dosimeters were evaluated for recombination losses and for energy dependence. Recombination losses were determined for exposure rates ranging from 0.3 to 80 R/sec. Energy dependence was determined for X-ray beam qualities ranging from 45 kVp and 0.83 mm Al first half value layer to 125 kVp and 4.8 mm Al first half value layer. The data enable selection of instruments so that errors from recombination losses and energy dependence can be minimized. (author)

  1. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Petersen, P.I.; Winter, J.

    1991-09-01

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  2. Evidence of amorphisation of B{sub 4}C boron carbide under slow, heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: dominique.gosset@cea.fr [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Miro, S. [CEA, DEN, DMN-SRMP-JANNUS, F-91191 Gif/Yvette (France); Doriot, S. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Victor, G. [CNRS-IN2P3-IPNL, F-69622 Villeurbanne (France); Motte, V. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France)

    2015-12-15

    Boron carbide is widely used either as armor-plate or neutron absorber. In both cases, a good structural stability is required. However, a few studies have shown amorphisation may occur in severe conditions. Hard impacts lead to the formation of amorphous bands. Some irradiations in electronic regime with H or He ions have also shown amorphisation of the material. Most authors however consider the structure is not drastically affected by irradiations in the ballistic regime. Here, we have irradiated at room temperature dense boron carbide pellets with Au 4 MeV ions, for which most of the damage is in the ballistic regime. This study is part of a program devoted to the behavior of boron carbide under irradiation. Raman observations have been performed after the irradiations together with transmission electron microscopy (TEM). Raman observations show a strong structural damage at moderate fluences (10{sup 14}/cm{sup 2}, about 0.1 dpa), in agreement with previous studies. On the other hand, TEM shows the structure remains crystalline up to 10{sup 15}/cm{sup 2} then partially amorphises. The amorphisation is heterogeneous, with the formation of nanometric amorphous zones with increasing density. It then appears short range and long range disorder occurs at quite different damage levels. Further experiments are in progress aiming at studying the structural stability of boron carbide and isostructural materials (α-B, B{sub 6}Si,…).

  3. Variations in the microstructure of nickel-based alloy coatings with the metalloids boron and silicon as a function of deposition parameters in a dual beam ion system

    International Nuclear Information System (INIS)

    Panitz, J.K.G.

    1986-01-01

    We have deposited coatings using a dual beam ion source system with two different targets as sputtering sources; (i) a predominantly amorphous Ni/sub 63.5/Cr/sub 12.3/Fe/sub 3.5/Si/sub 7.9/B/sub 12.8/ foil and (ii) a crystalline Ni/sub 55.3/Cr/sub 16.9/Si/sub 7.2/B/sub 21.6/ slab from a casting. Amorphous coatings were produced by the foil for all conditions studied. The coatings that were deposited from the slab target that were less than 400 nm in thickness which were deposited at rates from 8--50 nm/min appeared to be amorphous. The thicker (>400 nm) coatings and the extremely low deposition rate (2 nm/min) coatings produced by the slab comprised both partially polycrystalline and amorphous material. All of the coatings studied exhibited inferior wear and erosion resistance properties compared to iron-based amorphous metal coatings containing Ti, C, or N, which have been studied by other groups. However, the corrosion resistance to 4 N HCl is good, ranging from less than 0.01 to 0.22 mm/yr as a function of deposition rate, concurrent ion bombardment conditions, and coating thickness

  4. Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen, Lina; Qin, Xue; Meng, Wei; Cao, Ning; Song, Zhonghai

    2016-01-01

    Highlights: • B_2O_3–SnO_2/G anode material is prepared by chemical heat solvent method for LIBs. • B_2O_3–SnO_2/G shows much improved cycling performance and rate capability. • B_2O_3 plays an important role in improving the performance. - Abstract: B_2O_3–SnO_2/graphene (B_2O_3–SnO_2/G) composite is fabricated via a chemical heat solvent method and utilized as anode material for lithium ion batteries. The added B_2O_3 dramatically improves the electrochemical performance of lithium ion batteries compared to the SnO_2/G composite. The B_2O_3–SnO_2/G composites as anode show an outstanding discharge capacity of 1404.9 mAh g"−"1 at 500 mA g"−"1 after 200 cycles and an excellent rate capacity, which apparently outperforms the previously reported SnO_2-based anode material. These improved electrochemical performance characteristics are due to the B_2O_3 played a buffering role, which are easily beneficial for accommodating the volume change during the lithium ions insertion/extraction processes. Furthermore, boron atoms can accept electrons for its electron-deficient nature and boron ions could release electrons, which lead to electrons' increased density and conductivity are increased. The results indicate that the B_2O_3–SnO_2/G composite is a promising anode material for lithium ion batteries.

  5. Mobilities of positive ions in gas ionization chambers

    International Nuclear Information System (INIS)

    Kusumegi, Asao

    1990-01-01

    Observed ion mobilities of organic molecules in Ar are compared with a complete polarization model to examine the performance of the model, and its applicability is discussed. In spite of its simplicity, the polarization model (small sphere limit) is found to agree satisfactorily with observed mobilities in the case of alkali ions in Ar. However, the model fails to account for the mobility of Ar + in Ar due to a resonant charge transfer interaction between the ion and the parent gas. On the other hand, the values of k, a parameter which depends on the kinetic and the potential energy of the relevant ion, derived from observed ion mobilities of organic molecules in Ar and in the parent gas are found to be close to each other. Except for few cases, it appears that the complete polarization model gives a reasonable approximation for the positive ion mobilities of organic molecules in Ar, though the importance of the ion mass identification is significant in considering the applicability of the model to the positive ion mobility of those organic molecules in Ar used in a gas ionization chamber. (N.K.)

  6. X-ray diffraction of residual stresses in boron nitride coated on steel substrate

    International Nuclear Information System (INIS)

    Hamzah, E.; Ramdan, R.D.; Venkatesh, V.C.; Hamid, N.H.B.

    2002-01-01

    Cubic boron nitride (cBN) is a promising coating material for cutting tools especially for applications that have contact with ferrous metals. This is because of its extreme hardness, chemical stability at high temperature and inertness with ferrous metals. However applications of cBN as coating material has not been used extensively due to the poor adhesion between cBN and its substrate. High stress level in the film is considered to be the main factor for the delamination of cBN films after deposition. Thus the present research concentrates on residual stress analysis of cBN films by x-ray diffraction method. Fourier transform infra-red (FTIR) spectroscopy analysis was also performed on the samples to study the structure of the deposited films. Based on the present experimental results and previous literature study, a new theoretical model for cBN film growth was proposed. (Author)

  7. Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel

    International Nuclear Information System (INIS)

    Veit, R.; Kolleck, R.; Hofmann, H.; Sikora, S.

    2011-01-01

    Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating.In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.

  8. Methods for separating boron from borated paraffin wax and its determination by ion chromatography

    International Nuclear Information System (INIS)

    Jeyakumar, S.

    2015-01-01

    Boron compounds are found to be useful in shielding against high-energy neutrons. In radiotherapy treatments, in order to protect occupational workers and patients from the undesirable neutron and gamma doses, paraffin wax containing B 4 C/boric acid is used. Low-level borate wastes generated from the nuclear power plants have been immobilized with paraffin wax using a concentrate waste drying system (CWDS). Borated paraffin waxes are prepared by mixing calculated amounts of either boric acid or boron carbide with the molten wax. This necessitates the determination of boron at different locations in order to check the homogeneous distribution of B over the borated wax. The determination of boron in nuclear materials is inevitable due to its high neutron absorption cross section. For the determination of boron in borated waxes, not many methods have been reported. A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H 3 BO 3 and B 4 C. The B 4 C optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U 3 O 8 , which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O 2 at 950℃ for 60 and 90 min for wax with H 3 BO 3 and wax with B 4 C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H 3 BO 3 . In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N=3). The reproducibility was better than 5% (RSD)

  9. Ion chamber-electrometer measurement system for radiation protection tests in X-ray equipment for interventional procedures

    International Nuclear Information System (INIS)

    Bottaro, Marcio

    2012-01-01

    A new parallel plate ionization chamber with volume of 500 cc and an electrometer with digital interface for data acquisition, configuring an ion chamber electrometer measurement system, were developed to comply with specific requirements for compulsory radiation protection tests in interventional X-ray equipment. The ion chamber has as main characteristics: low cost, mechanical strength and response variation with beam energy of less than 5% in the 40 kV to 150 kV range. The electrometer has a high gain (5x10 8 V/A) transimpedance amplifier circuit and a data acquisition and control system developed in LabVIEW ® platform, including an integrated power supply for the ion chamber bias with adjustable DC voltage output from O to 1000 V and an air density correction system. Electric field calculations, laboratory measurements in standard beams and computational simulations of radiation interactions in chamber volume with Monte Carlo Method were employed in the elaborated methodology of the ion chamber development, which was tested and validated. It was also developed a simplified methodology for electrometer calibration that assures metrological trustworthiness of the measurement system. Tests for the system performance evaluation as environmental influence response, energy response, angular dependency, linearity and air kerma and air kerma rate dependency were performed according to international standards and requirements. Additionally, for a detailed evaluation of the developed ion chamber, simulations with various scattered radiation spectra were performed. The system was applied in leakage radiation, residual radiation and scattered radiation tests, being compared with other reference systems and validated for laboratorial test routine. (author)

  10. RESEARCH OF PROCESS OF AN ALLOYING OF THE FUSED COATINGS RECEIVED FROM THE SUPERFICIAL ALLOYED WIRE BY BORON WITH IN ADDITIONALLY APPLIED ELECTROPLATED COATING OF CHROME AND COPPER

    Directory of Open Access Journals (Sweden)

    V. A. Stefanovich

    2015-01-01

    Full Text Available Researches on distribution of chrome and copper in the fused coating received from the superficial alloyed wire by boron with in additionally applied electroplated coating of chrome and copper were executed. The structure of the fused coating consists of dendrites on which borders the boride eutectic is located. It is established that the content of chrome in dendrites is 1,5– 1,6 times less than in the borid; distribution of copper on structure is uniformed. Coefficients of digestion of chrome and copper at an argon-arc welding from a wire electrode with electroplated coating are established. The assimilation coefficient for chrome is equal to 0,9–1,0; for copper – 0,6–0,75.

  11. Performance tests of a special ionization chamber for X-rays in mammography energy range

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.O., E-mail: jonas.silva@ufg.br [Universidade Federal de Goiás (UFG), Goiânia (Brazil). Instituto de Física; Caldas, L.V.E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP (Brazil). Centro de Metrologia das Radiações

    2017-07-01

    A special mammography homemade ionization chamber was developed to be applied for mammography energy range dosimetry. This chamber has a total sensitive volume of 6 cm{sup 3} and is made of a PMMA body and graphite coated collecting electrode. Performance tests as saturation, ion collection efficiency, linearity of chamber response versus air kerma rate and energy dependence were determined. The results obtained with this special homemade ionization chamber are within the limits stated in international recommendations. This chamber can be used in quality control programs of mammography energy range. All measurements were carried out at the Calibration Laboratory of IPEN. (author)

  12. Modification of structure and properties of tin – fullerite films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2013-01-01

    By methods of raster electronic, atomic force and electronic force microscopy and X-ray diffraction the research of change of structure, phase composition and local electronic properties of the tin - fullerite films, subjected to implantation by B + ions (E = 80 keV, F = 5×10 17 ions/cm 2 ) are submitted. It is established, that as a result of boron ion implantation of two-layered tin - fullerite films, tin and fullerite interfusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with heterogeneous local electric properties. (authors)

  13. The Use of the Molecular Adsorber Coating Technology to Mitigate Vacuum Chamber Contamination During Pathfinder Testing for the James Webb Space Telescope

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.

    2016-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  14. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  15. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  16. Development of a Novel Contamination Resistant Ion Chamber for Process Tritium Measurement and Use in the JET First Trace Tritium Experiment

    International Nuclear Information System (INIS)

    Worth, L.B.C.; Pearce, R.J.H.; Bruce, J.; Banks, J.; Scales, S.

    2005-01-01

    The accuracy of process measurements of tritium with conventional ion chambers is often affected by surface tritium contamination. The measurement of tritium in the exhaust of the JET torus is particularly difficult due to surface contamination with highly tritiated hydrocarbons. JET's first unsuccessful attempt to overcome the contamination problem was to use an ion chamber, with a heating element as the chamber wall so that it could be periodically decontaminated by baking. The newly developed ion chamber works on the principle of minimising the surface area within the boundary of the anode and cathode.This paper details the design of the ion chamber, which utilises a grid of 50-micron tungsten wire to define the ion chamber wall and the collector electrode. The effective surface area which, by contamination, is able to effect the measurement of tritium within the process gas has been reduced by a factor of ∼200 over a conventional ion chamber. It is concluded that the new process ion chamber enables sensitive accurate tritium measurements free from contamination issues. It will be a powerful new tool for future tritium experiments both to improve tritium tracking and to help in the understanding of tritium retention issues

  17. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  18. Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Lina [Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Qin, Xue, E-mail: qinxue@tju.edu.cn [Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Meng, Wei; Cao, Ning; Song, Zhonghai [Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2016-11-15

    Highlights: • B{sub 2}O{sub 3}–SnO{sub 2}/G anode material is prepared by chemical heat solvent method for LIBs. • B{sub 2}O{sub 3}–SnO{sub 2}/G shows much improved cycling performance and rate capability. • B{sub 2}O{sub 3} plays an important role in improving the performance. - Abstract: B{sub 2}O{sub 3}–SnO{sub 2}/graphene (B{sub 2}O{sub 3}–SnO{sub 2}/G) composite is fabricated via a chemical heat solvent method and utilized as anode material for lithium ion batteries. The added B{sub 2}O{sub 3} dramatically improves the electrochemical performance of lithium ion batteries compared to the SnO{sub 2}/G composite. The B{sub 2}O{sub 3}–SnO{sub 2}/G composites as anode show an outstanding discharge capacity of 1404.9 mAh g{sup −1} at 500 mA g{sup −1} after 200 cycles and an excellent rate capacity, which apparently outperforms the previously reported SnO{sub 2}-based anode material. These improved electrochemical performance characteristics are due to the B{sub 2}O{sub 3} played a buffering role, which are easily beneficial for accommodating the volume change during the lithium ions insertion/extraction processes. Furthermore, boron atoms can accept electrons for its electron-deficient nature and boron ions could release electrons, which lead to electrons' increased density and conductivity are increased. The results indicate that the B{sub 2}O{sub 3}–SnO{sub 2}/G composite is a promising anode material for lithium ion batteries.

  19. Structure-phase composition and nano hardness of chrome-fullerite-chrome films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2015-01-01

    By methods of atomic force microscopy, X-ray diffraction and nano indentation the research of change of structure phase composition and nano hardness of the chrome - fullerite - chrome films, subjected to implantation by B + ions (E = 80 keV, F = 5*10 17 ions/cm 2 ) are submitted. It is established, that as a result of Boron ion implantation of the chrome - fullerite - chrome films, chrome and fullerite inter fusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with increased nano hardness. (authors)

  20. Internal stress control of boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M. [Osaka Univ., Suita (Japan). Graduate Sch. of Eng.

    1998-09-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s{sup -1} and substrate temperature of 300 C. (orig.) 12 refs.

  1. Internal stress control of boron thin film

    International Nuclear Information System (INIS)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M.

    1998-01-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s -1 and substrate temperature of 300 C. (orig.)

  2. A study on the boron injection initiation temperature curve of BWR

    International Nuclear Information System (INIS)

    Wang, S.-J.; Chien, C.-S.; Fann, S.-Y.; Chiang, S.-C.

    2007-01-01

    Boron injection initiation temperature (BIIT) provides important information for the safe shutdown of the reactor using boron injection system during anticipated transient without scram (ATWS). The purpose of this paper is to study BIIT curve of boiling water reactor owners' group (BWROG). The unreasonable and non-conservative parts of BIIT are pointed out and suggested modifications are made. The starting reactor power of BIIT is increased in order to meet the actual application. The lower limit of suppression pool temperature of BIIT is revised for conservative operation during ATWS conditions. Analysis of the effects of maximum temperature capacity of the suppression chamber and concentration of boron in standby liquid control tank shows that BIIT is decreased by adopting a more conservative value of maximum temperature capacity of the suppression chamber. Consequently, early boron injection is anticipated. For system with automatic boron injection system, BIIT is not required

  3. TH-AB-201-08: Ion Chamber Dose Measurements - Problems with the Temperature-Pressure Correction Factor

    Energy Technology Data Exchange (ETDEWEB)

    Bourgouin, A [Carleton University, Ottawa, Ontario (Canada); McEwen, M [National Research Council, Ottawa, ON (Canada)

    2016-06-15

    Purpose: To investigate the behavior of ionization chambers over a wide pressure range. Methods: Three cylindrical and two parallel-plate designs of ion chamber were investigated. The ion chambers were placed in vessel where the pressure was varied from atmospheric (101 kPa) down to 5 kPa. Measurements were made using 60Co and high-energy electron beams. The pressure was measured to better than 0.1% and multiple data sets were obtained for each chamber at both polarities to investigate pressure cycling and dependency on the sign of the charge collected. Results: For all types of chamber, the ionization current, corrected using the standard PTP, showed a similar behaviour. Deviations from the standard theory were generally small for Co-60 but very significant for electron beams, up to 20 % below P = 10 kPa. The effect was found to be always larger when collecting negative charge, suggesting a dependence on free-electron collection. The most likely source of such electrons is low-energy electrons emitted from the electrodes. This signal would be independent of air pressure within the chamber cavity. The data was analyzed to extract this signal and it was found to be a non-negligible component of the ionization current at atmospheric pressure. In the case of the parallel plate chambers, the effect was approximately 0.25 %. For the cylindrical chambers the effect was larger - up to 1.2 % - and dependent on the chamber type, which would be consistent with electron emission from different wall materials. For the electron beams, the correction factor was dependent on the electron energy and approximately double that observed in 60Co. Conclusion: Measurements have indicated significant deviations of the standard pressure correction that are consistent with electron emission from chamber electrodes. This has implications for both primary standard and reference ion chamber-based dosimetry.

  4. Effect of the Die Temperature and Blank Thickness on the Formability of a Laser-Welded Blank of a Boron Steel Sheet with Removing Al-Si Coating Layer

    Directory of Open Access Journals (Sweden)

    M. S. Lee

    2014-05-01

    Full Text Available Reducing carbon emissions has been a major focus in the automobile industry to address various environmental issues. In particular, studies on parts comprised of high strength sheets and light car bodies are ongoing. Accordingly, this study examined the use of boron steel, which is commonly used in high strength sheets. Boron steel is a type of sheet used for hot stamping parts. Although it has high strength, the elongation is inferior, which reduces its crash energy absorption capacity. To solve this problem, two sheets of different thickness were welded so the thin sheet would absorb crash energy and the thick sheet would work as a support. Boron steel, however, may show weakening at the welding spot due to the Al-Si coating layer used to prevent oxidation from occurring during the welding process. Therefore, a certain part of the coating layer of a double-thickness boron steel sheet that is welded in the hot stamping process is removed through laser ablation, and the formability of the hot-work was examined.

  5. Boron nitride stamp for ultra-violet nanoimprinting lithography fabricated by focused ion beam lithography

    International Nuclear Information System (INIS)

    Altun, Ali Ozhan; Jeong, Jun-Ho; Rha, Jong-Joo; Kim, Ki-Don; Lee, Eung-Sug

    2007-01-01

    Cubic boron nitride (c-BN) is one of the hardest known materials (second after diamond). It has a high level of chemical resistance and high UV transmittance. In this study, a stamp for ultra-violet nanoimprint lithography (UV-NIL) was fabricated using a bi-layered BN film deposited on a quartz substrate. Deposition of the BN was done using RF magnetron sputtering. A hexagonal boron nitride (h-BN) layer was deposited for 30 min before c-BN was deposited for 30 min. The thickness of the film was measured as 160 nm. The phase of the c-BN layer was investigated using Fourier transform infrared (FTIR) spectrometry, and it was found that the c-BN layer has a 40% cubic phase. The deposited film was patterned using focused ion beam (FIB) lithography for use as a UV-NIL stamp. Line patterns were fabricated with the line width and line distance set at 150 and 150 nm, respectively. The patterning process was performed by applying different currents to observe the effect of the current value on the pattern profile. The fabricated patterns were investigated using AFM, and it was found that the pattern fabricated by applying a current value of 50 picoamperes (pA) has a better profile with a 65 nm line depth. The UV transmittance of the 160 nm thick film was measured to be 70-86%. The hardness and modulus of the BN was measured to be 12 and 150 GPa, respectively. The water contact angle of the stamp surface was measured at 75 0 . The stamp was applied to UV-NIL without coating with an anti-adhesion layer. Successful imprinting was proved via scanning electron microscope (SEM) images of the imprinted resin

  6. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  7. Chamber transport of ''foot'' pulses for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-02-20

    Indirect-drive targets for heavy-ion fusion must initially be heated by ''foot'' pulses that precede the main heating pulses by tens of nanoseconds. These pulses typically have a lower energy and perveance than the main pulses, and the fusion-chamber environment is different from that seen by later pulses. The preliminary particle-in-cell simulations of foot pulses here examine the sensitivity of the beam focusing to ion-beam perveance, background-gas density, and pre-neutralization by a plasma near the chamber entry port.

  8. Low energy implantation of boron with decaborane ions

    Science.gov (United States)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  9. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  10. Fail-safe ion chamber errant beam detector tailored for personnel protection

    International Nuclear Information System (INIS)

    Plum, M.A.; Browman, A.A.; Brown, D.; Lee, D.M.; McCabe, C.W.

    1989-01-01

    This fail-safe ion chamber system is designed to be part of the personnel safety system (PSS) for the Los Alamos neutron Scattering Center (LANSCE) at the Los Alamos National Laboratory. Its job is to protect the occupants of the experimental areas from large radiation doses caused by errant beam conditions during beam transport from the Proton Storage Ring (PSR) to the LANSCE neutron spallation target. Due to limited shielding between the beam transport line and the experimental area only if the beam losses in the transport line are very low. The worst case beam spill scenario is calculated to result in a personnel exposure of about 0.01 Gys/s (1 rad/s). Although the preferred solution is to increase the bulk shielding between the beam line and the experimental area, the physical dimensions of the site do not permit an adequate amount of shielding to be added. The solution adopted is a layered system of three types of highly reliable detector systems: a current limiter system located in the beam line, a neutron detector system located in the experimental areas, and an ion chamber system located on the walls of the beam line tunnels. The ion chamber system is capable of shutting off the beam in less than 0.5 s, resulting in a worst case personnel exposure of 0.005 Gys (0.5 rad). 4 figs

  11. High rate operation of micro-strip gas chambers on diamond-coated glass

    CERN Document Server

    Bouclier, Roger; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Temmel, T; Cooke, R A; Donnel, S; Sastri, S A; Sonderer, N

    1996-01-01

    Very high rate operation of micro­strip gas chambers can be achieved using slightly conducting substrates. We describe preliminary measurements realized with detectors manufactured on boro-silicate glass coated, before the photo-lithographic processing, with a diamond layer having a surface resistivity of around 1014 ‡/o. Stable medium-term operation, and a rate capability largely exceeding the one obtained with identical plates manufactured on uncoated glass are demonstrated. If these results are confirmed by long-term measurements the diamond coating technology appears very attractive since it allows, with a moderate cost overhead, to use thin, commercially available glass with the required surface quality for the large-scale production of gas micro-strip detectors.

  12. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    Science.gov (United States)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  13. Fine-tuning the nucleophilic reactivities of boron ate complexes derived from aryl and heteroaryl boronic esters.

    Science.gov (United States)

    Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert

    2015-02-23

    Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ion beam sputter coatings for laser technology

    Science.gov (United States)

    Ristau, Detlev; Gross, Tobias

    2005-09-01

    The initial motivation for the development of Ion Beam Sputtering (IBS) processes was the need for optical coatings with extremely low optical scatter losses for laser gyros. Especially, backscattering of the gyro-mirrors couples the directional modes in the ring resonator leading to the lock in effect which limits the sensitivity of the gyro. Accordingly, the first patent on IBS was approved for an aircraft company (Litton) in 1978. In the course of the rapid development of the IBS-concept during the last two decades, an extremely high optical quality could be achieved for laser coatings in the VIS- and NIR-spectral region. For example, high reflecting coatings with total optical losses below 1 ppm were demonstrated for specific precision measurement applications with the Nd:YAG-laser operating at 1.064 μm. Even though the high quality level of IBS-coatings had been confirmed in many applications, the process has not found its way into the production environment of most optical companies. Major restrictions are the relatively low rate of the deposition process and the poor lateral homogeneity of the coatings, which are related to the output characteristics of the currently available ion sources. In the present contribution, the basic principles of IBS will be discussed in the context of the demands of modern laser technology. Besides selected examples for special applications of IBS, aspects will be presented for approaches towards rapid manufacturing of coatings and the production of rugate filters on the basis of IBS-techniques.

  15. Electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-Ion Battery Applications.

    Science.gov (United States)

    Sood, Parveen; Kim, Ki Chul; Jang, Seung Soon

    2018-03-19

    The high electron affinity of fullerene C 60 coupled with the rich chemistry of carbon makes it a promising material for cathode applications in lithium-ion batteries. Since boron has one electron less than carbon, the presence of boron on C 60 cages is expected to generate electron deficiency in C 60 , and thereby to enhance its electron affinity. By using density functional theory (DFT), we studied the redox potentials and electronic properties of C 60 and C 59 B. We have found that doping C 60 with one boron atom results in a substantial increase in redox potential from 2.462 V to 3.709 V, which was attributed to the formation of an open shell system. We also investigated the redox and electronic properties of C 59 B functionalized with various redox-active oxygen containing functional groups (OCFGs). For the combination of functionalization with OCFGs and boron doping, it is found that the enhancement of redox potential is reduced, which is mainly attributed to the open shell structure being changed to a closed-shell one. Nevertheless, the redox potentials are still higher than that of pristine C 60 . From the observation that the lowest unoccupied molecular orbital of closed-shell OCFG- functionalized C 59 B is correlated well with the redox potential, it was confirmed that the spin state is crucial to be considered to understand the relationship between electronic structure and redox properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Destruction of C60 films by boron ion bombardment

    International Nuclear Information System (INIS)

    Ren Zhongmin; Du Yuancheng; Ying Zhifeng; Xiong Xiaxing; Li Fuming

    1995-01-01

    C 60 films are bombarded by 100 keV boron ion beams at doses ranging from 3x10 14 to 1x10 16 /cm 2 . The bombarded films are analyzed using Fourier transform infrared spectroscopy (FTIR), Raman spectra and X-ray diffraction (XRD) measurements. Most C 60 soccer-balls in the implanted region in the films are found to be broken at a dose over 1x10 15 /cm 2 , while at a dose less than 6x10 14 /cm 2 a few C 60 molecules remain undestroyed and maintain some crystal structure. The results of the analyses suggest a complete disintegration of a C 60 molecule under B + bombardment. ((orig.))

  17. Performance of a Boron-Coated-Straw-Based HLNCC for International Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Angela T. [ORNL; Croft, Stephen [ORNL; McElroy, Robert Dennis [ORNL; Sun, Liang [Proportional Technologies Inc.; Hayward, Jason P. [ORNL

    2017-08-01

    3He gas has been used in various scientific and security applications for decades, but it is now in short supply. Alternatives to 3He detectors are currently being integrated and tested in neutron coincidence counter designs, of a type which are widely used in nuclear safeguards for nuclear materials assay. A boron-coated-straw-based design, similar to the High-Level Neutron Coincidence Counter-II, was built by Proportional Technologies Inc., and has been tested by the Oak Ridge National Laboratory (ORNL) at both the JRC in Ispra and ORNL. Characterization measurements, along with nondestructive assays of various plutonium samples, have been conducted to determine the performance of this coincidence counter replacement in comparison with other similar counters. This paper presents results of these measurements.

  18. Heavy-ion induced desorption yields of amorphous carbon films bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M

    2011-01-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2 Me...

  19. Ion-plasma diffusion aluminide coatings for gas turbine blades (structure and properties)

    International Nuclear Information System (INIS)

    Muboyadzhyan, S.A.; Budinovskij, S.A.; Terekhova, V.V.

    2003-01-01

    A consideration is given to the ion-plasma method of heart resisting alloy diffusion coating with alloyed aluminides offering some advantages over routine techniques. Specific features of ion-plasma diffusion coatings production at the surface of heart resisting alloys using one- and multistage techniques are studied. The process of formation of coatings (Al-Si-Y, Al-Si-Ni-B, Al-Si-Cr-Y) along with coating effects on long-term heat resistance of nickel base alloys (ZhS6U, VZhL12U, ZhS26VNK) is investigated. The advantages of the new method of diffusion aluminide coatings are reported [ru

  20. Investigation of the hot ductility of a high-strength boron steel

    International Nuclear Information System (INIS)

    Güler, Hande; Ertan, Rukiye; Özcan, Reşat

    2014-01-01

    In this study, the high-temperature ductility behaviour of an Al–Si-coated 22MnB5 sheet was investigated. The mechanical properties of Al–Si-coated 22MnB5 boron steel were examined via hot tensile tests performed at temperatures ranging from 400 to 900 °C at a strain rate of 0.083 s −1 . The deformation and fracture mechanisms under hot tensile testing were considered in relation to the testing data and to the fracture-surface observations performed via SEM. The hot ductility of the tested boron steel was observed as a function of increasing temperature and the Al–Si-coated 22MnB5 boron steel exhibited a ductility loss at 700 °C

  1. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  2. Absorbed dose beam quality factors for cylindrical ion chambers: Experimental determination at 6 and 15 MV photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Caporali, C; Guerra, A S; Laitano, R F; Pimpinella, M [ENEA-Casaccia, Inst. Nazionale di Meterologia delle Radiazioni Ionizzanti, Rome (Italy). Dipt. Ambiente

    1996-08-01

    Ion chambers calibrated in terms of absorbed dose to water need an additional factor conventionally designed by k{sub Q} in order to determine the absorbed dose. The quantity k{sub Q} depends on beam quality and chamber characteristics. Rogers and Andreo provided calculations of the k{sub Q} factors for most commercially available ionization chambers for clinical dosimetry. Experimental determinations of the k{sub Q} factors for a number of cylindrical ion chambers have been made and are compared with the calculated values so far published. Measurements were made at 6 MV and 15 MV clinical photon beams at a point in water phantom where the ion chambers and a Fricke dosimeter were alternatively irradiated. The uncertainty on the experimental k{sub Q} factors resulted about {+-} 0.6%. The theoretical and experimental k{sub Q} values are in fairly good agreement. (author). 12 refs, 3 tabs.

  3. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  4. Simulations of intense heavy ion beams propagating through a gaseous fusion target chamber

    International Nuclear Information System (INIS)

    Welch, D.R.; Rose, D.V.; Oliver, B.V.; Genoni, T.C.; Clark, R.E.; Olson, C.L.; Yu, S.S.

    2002-01-01

    In heavy-ion inertial confinement fusion (HIF), an ion beam is transported several meters through the reactor chamber to the target. This standoff distance mitigates damage to the accelerator from the target explosion. For the high perveance beams and millimeter-scale targets under consideration, the transport method is largely determined by the degree of ion charge and current neutralization in the chamber. This neutralization becomes increasingly difficult as the beam interacts with the ambient chamber environment and strips to higher charge states. Nearly complete neutralization permits neutralized-ballistic transport (main-line HIF transport method), where the ion beam enters the chamber at roughly 3-cm radius and focuses onto the target. In the backup pinched-transport schemes, the beam is first focused outside the chamber before propagating at small radius to the target. With nearly complete charge neutralization, the large beam divergence is contained by a strong magnetic field resulting from roughly 50-kA net current. In assisted-pinched transport, a preformed discharge channel provides the net current and the discharge plasma provides nearly complete charge and current neutralization of the beam. In self-pinched transport, the residual net current results solely from the beam-driven breakdown of the ambient gas. Using hybrid particle-in-cell simulation codes, the behavior of HIF driver-scale beams in these three transport modes is examined. Simulations of neutralized ballistic transport, at a few-mTorr flibe pressure, show excellent neutralization given a preformed or photoionized (from the heated target) plasma. Two- and three-dimensional simulations of assisted-pinch transport in roughly 1-Torr Xe show the importance of attaining >1-μs magnetic diffusion time to limit self-field effects and achieve good transport efficiency. For Xe gas pressures ranging from 10-150 mTorr, calculations predict a robust self-magnetic force sufficient for self

  5. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  6. Separation of boron isotopes by ion exchange chromatography: studies with Duolite-162, a type-II resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Balasubramanian, R.; Mathur, P.K.

    1994-01-01

    The selection of resin plays an important role in the process of separation of boron isotopes by ion exchange chromatography. The determination of (i) ion exchange capacity of Duolite-162 resin for hydroxyl - chloride exchange, (ii) hydroxyl - borate exchange, (iii) isotopic exchange separation factor by batch method and (iv) effect of concentration of boric acid on isotopic exchange separation factor to test the suitability of the above resin for this process are discussed in this report. (author)

  7. Development of a multi-layer ion chamber for measurement of depth dose distributions of heavy-ion therapeutic beam for individual patients

    International Nuclear Information System (INIS)

    Shimbo, Munefumi; Futami, Yasuyuki; Yusa, Ken; Matsufuji, Naruhiro; Kanai, Tatsuaki; Urakabe, Eriko; Yamashita, Haruo; Akagi, Takashi; Higashi, Akio

    2000-01-01

    In heavy-ion radiotherapy, an accelerated beam is modified to realize a desired dose distribution in patients. The set-up of the beam-modifying devices in the irradiation system is changed according to the patient, and it is important to check the depth dose distributions in the patient. In order to measure dose distributions realized by an irradiation system for heavy-ion radiotherapy, a multi-layer ionization chamber (MLIC) was developed. The MLIC consists of 64 ionization chambers, which are stacked mutually. The interval between each ionization chamber is about 4.1 mm water. There are signal and high voltage plates in the MLIC, which are used as electrodes of the ionization chambers and phantom. Depth dose distribution from 5.09 mm to 261.92 mm water can be measured in about 30 seconds using this MLIC. Thus, it is possible to check beam quality in a short amount of time. (author)

  8. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. Multi-wire chamber system for heavy ion beam monitoring at the Bevalac

    International Nuclear Information System (INIS)

    Cuperus, J.; Morgado, R.

    1975-03-01

    Horizontal and vertical integrated beam-current profiles are generated by a system of multi-wire chambers (32 wires/profile) operating in either the ionization or proportional mode. Sixteen distinct displays (1024 words) are digitally stored and any four may be simultaneously displayed. A new display can be generated at 64 ms intervals. A central control unit selects the mode of operation, the amount of delay after an appropriate trigger, the chamber integration time, and the particular chambers to be displayed. Operating in the proportional mode, the system can detect relativistic heavy-ion beam intensities as low as 10 4 charges cm -2 sec -1 . (U.S.)

  11. Modeling of long-range migration of boron interstitials

    International Nuclear Information System (INIS)

    Velichko, O.I.; Burunova, O.N.

    2009-01-01

    A model of the interstitial migration of ion-implanted dopant in silicon during low-temperature thermal treatment has been formulated. It is supposed that the boron interstitials are created during ion implantation or at the initial stage of annealing. During thermal treatment a migration of these impurity interstitials to the surface and in the bulk of a semiconductor occurs. On this basis, a simulation of boron redistribution during thermal annealing for 35 minutes at a temperature of 800 0 C has been carried out. The calculated boron profile agrees well with the experimental data. A number of the parameters describing the interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 0.092 μm at a temperature of 800 0 C. To carry out modeling of ion-implanted boron redistribution, the analytical solutions of nonstationary diffusion equation for impurity interstitials have been obtained. The case of Dirichlet boundary conditions and the case of reflecting boundary on the surface of a semiconductor have been considered. (authors)

  12. Effect of ion implantation on thin hard coatings

    International Nuclear Information System (INIS)

    Auner, G.; Hsieh, Y.F.; Padmanabhan, K.R.; Chevallier, J.; Soerensen, G.

    1983-01-01

    The surface mechanical properties of thin hard coatings of carbides, nitrides and borides deposited by r.f. sputtering were improved after deposition by ion implantation. The thickness and the stoichiometry of the films were measured by Rutherford backscattering spectrometry and nuclear reaction analysis before and after ion bombardment. The post ion bombardment was achieved with heavy inert ions such as Kr + and Xe + with an energy sufficient to penetrate the film and to reach the substrate. Both the film adhesion and the microhardness were consistently improved. In order to achieve a more detailed understanding, Rb + and Ni + ions were also used as projectiles, and it was found that these ions were more effective than the inert gas ions. (Auth.)

  13. Use of water as displacing agent in ion exchange chromatographic separation of isotope of boron using weak base ion exchange resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Mohanakrishnan, G.; Anand Babu, C.; Krishna Prabhu, R.

    2008-01-01

    Experiments were undertaken to study the feasibility of using weakly basic anion exchange resin for enrichment of isotopes of boron by ion exchange chromatography and water as eluent. The results of experiments carried out to determine total chloride capacity (TCC), strong base capacity (SBC) of the resin at different concentrations of boric acid and enrichment profiles are reported in this paper. (author)

  14. Experimental study of asymmetric boron dilution at VVER-1000 of Kudankulam NPP and its simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, Sergey V.; Kotsarev, Alexander V.; Baykov, Alexander V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    The Kudankulam NPP units contain additional and unique for VVER Quick Boron Injection System (QBIS) for beyond-design-basis accident management without scram. During the physical start-up stage at hot zero power of both Kudankulam units, special tests were performed to assess the efficiency of the system. In the course of test three out of four QBIS tanks had been promptly opened and it led to the asymmetrical injection of boric acid into the core. The scenario of the tests may address to the inhomogeneous boron dilution process that is now an essential part of safety analysis of pressurised water reactors. The simulation of the process, including ex-core ion chambers readings, has been accomplished using ATHLET/BIPR-VVER code. Behaviour of some reactor parameters in the course of the test and some results of the simulation are discussing in the paper. Authors believe the process of the asymmetrical injection of boric acid may be useful for verification and validation of coupled neutronic and thermo-hydraulic codes widely used for safety analysis, including analysis of boron dilution accident.

  15. Boron removal from aqueous solutions by ion-exchange resin: Column sorption-elution studies

    International Nuclear Information System (INIS)

    Koese, T. Ennil; Oztuerk, Nese

    2008-01-01

    A column sorption-elution study was carried out by using a strong base anion-exchange resin (Dowex 2 x 8) for the removal of boron from aqueous solutions. The breakthrough curve was obtained as a function of feed flow rate and the total and breakthrough capacity values of the resin were calculated. The boron on the resin was quantitatively eluted with 0.5 M HCl solution at different flow rates. Three consecutive sorption-elution-washing-regeneration-washing cycles were applied to the resin in order to investigate the reusability of the ion-exchange resin. Total capacity values remained almost the same after three sorption-elution-regeneration cycles. The Thomas and the Yoon-Nelson models were applied to experimental data to predict the breakthrough curves and to determine the characteristic column parameters required for process design. The results proved that the models would describe the breakthrough curves well

  16. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    International Nuclear Information System (INIS)

    Deng, Min-Jen; Tsai, Du-Cheng; Ho, Wen-Hsien; Li, Ching-Fei; Shieu, Fuh-Sheng

    2013-01-01

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO 4 solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  17. Microhardness of boron, titanium, and nitrogen implanted steel

    International Nuclear Information System (INIS)

    Sowa, M.; Szyszko, W.; Sielanko, J.; Glusiec, L.

    1989-01-01

    Mechanically polished steel (1H18N9T) and (15GTM) samples are implanted with boron, titanium, and nitrogen ions, with dose ranging from 10 16 to 10 17 ions/cm 2 . The implantation energy varied from 100 to 250 keV. Implanted samples are heat-treated at 400 to 800 0 C in vacuum. The microhardness of implanted samples is measured by using a Hanneman tester with loads ranging from 2 to 40 g. The influence of annealing temperature on microhardness of the implanted layers is determined. The diffusion of boron from the implanted layers is also investigated by using the secondary ion mass spectrometer. The diffusion coefficients of boron in steel are determined. (author)

  18. High-resolution ion pulse ionization chamber with air filling for the {sup 222}Rn decays detection

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilyuk, Yu.M.; Gangapshev, A.M.; Gezhaev, A.M.; Etezov, R.A.; Kazalov, V.V.; Kuzminov, V.V. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation); Panasenko, S.I. [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Ratkevich, S.S., E-mail: ssratk@gmail.com [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Tekueva, D.A.; Yakimenko, S.P. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation)

    2015-11-21

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the {sup 222}Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented. - Highlights: • The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. • The chamber is intended to register alpha-particles from {sup 222}Rn and its daughter's decays in the filled air sample. • The detector is less sensitive to electromagnetic pick-ups and mechanical noises. • An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure have been investigated and the results are presented.

  19. Composite films prepared by plasma ion-assisted deposition (IAD) for design and fabrication of antireflection coatings in visible and near-infrared spectral regions

    Science.gov (United States)

    Tsai, Rung-Ywan; Ho, Fang C.

    1994-11-01

    Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.

  20. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  1. Surface microhardening by ion implantation

    International Nuclear Information System (INIS)

    Singh, Amarjit

    1986-01-01

    The paper discusses the process and the underlying mechanism of surface microhardening by implanting suitable energetic ions in materials like 4145 steel, 304 stainless steel, aluminium and its 2024-T351 alloy. It has been observed that boron and nitrogen implantation in materials like 4145 steel and 304 stainless steel can produce a significant increase in surface hardness. Moreover the increase can be further enhanced with suitable overlay coatings such as aluminium (Al), Titanium (Ti) and carbon (C). The surface hardening due to implantation is attributed to precipitation hardening or the formation of stable/metastable phase or both. The effect of lithium implantation in aluminium and its alloy on microhardness with increasing ion dose and ion beam energy is also discussed. (author)

  2. Development of the ERC cold-cathode ion source for use on the PR-30 ion-implantation system

    International Nuclear Information System (INIS)

    Bird, H.M.B.; Flemming, J.P.

    1978-01-01

    The ERC cold-cathode ion source has been in routine production use on several PR-30 systems for the past three years. This source has been further developed to improve target current, lifetime, and stability. The ion-optical lens has been changed from circular to elliptical geometry in order to provide an asymmetric beam for entry into the PR-30 analyzing magnet. This measure, as well as the use of higher extraction voltages, provides higher beam currents on the PR-30 target wafers. Beam steering in the nondispersive direction has been provided to correct the effects of minor machine misalignments, further enhancing target current. The discharge chamber has been modified to increase source lifetime. A new gas-feed control system and a new method of oven temperature control have been devised to provide good source and ion beam stability. The source operates with only occasional attention by unskilled personnel, and has been used principally for boron and arsenic implants. Target currents of 1-mA boron and 4-mA arsenic can be obtained routinely. Lifetimes are of the order of 40--80 h, depending on ion species. The source has also been used to provide 5-mA phosphorus, 4-mA argon, 3-mA helium and neon, and 0.3-mA nickel and palladium ion beams

  3. Tool wear of (Ti, Al) N-coated polycrystalline cubic boron nitride compact in cutting of hardened steel

    Science.gov (United States)

    Wada, Tadahiro; Hanyu, Hiroyuki

    2017-11-01

    Polycrystalline cubic boron nitride compact (cBN) is effective tool material for cutting hardened steel. In addition to coated high speed steel and coated cemented carbide that has long been used for cutting materials, more recently, coated cBN has also been used. In this study, to verify the effectiveness of the (Ti,Al)N-coated cBN, which is formed on the substrate of cBN by the physical vapor deposition method, the hardened steel was turned with the (Ti,Al)N-coated cBN tool at a cutting speed of 3.33, 5.00 m/s, a feed rate of 0.3 mm/rev and a depth of cut of 0.1 mm. Furthermore, the uncoated cBN, which was the substrate of the (Ti,Al)N-coated, was also used. The tool wear of the cBN tools was experimentally investigated. The following results were obtained: (1) The contact area between the rake face and the chip of the (Ti,.Al)N-coated cBN tool was smaller than that of the uncoated cBN tool. (2) The tool wear of the (Ti,Al)N-coated cBN was smaller than that of uncoated cBN. (3) The wear progress of the (Ti,Al)N-coated cBN with the main element phase of the TiCN-Al, was slower than that of the (Ti,Al)N-coated cBN with the main element phase of the TiN-Al. (4) In the case of the high cutting speed of 5.00 m/s, the tool wear of the (Ti,Al)N-coated cBN was also smaller than that of uncoated cBN. The above results clarify that the (Ti,Al)N-coated cBN can be used as a tool material in high feed cutting of hardened steel.

  4. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  5. Cubic boron nitride coatings for innovative applications; Schichten aus kubischem Bornitrid (cBN) fuer innovative Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Keunecke, M.; Bewilogua, K. [Fraunhofer Inst. fuer Schicht- und Oberflaechentechnik (Germany)

    2001-08-01

    Coatings of cubic boron nitride (cBN), the second hardest of all known materials, were prepared using a sputter process. A new coating design, based on a special B-C-N layer system, allows to deposit thick (> 2 {mu}m) cBN films, however so far only on silicon substrates. The properties of the coatings are quite similar to those of bulk cBN. Promising experiments were performed with respect to a transfer of this application relevant layer system to cemented carbide and steel substrates. First measurements of the mechanical and tribological properties confirmed the outstanding properties and the high potential of such cBN based coating systems. (orig.) [German] Schichten aus kubischem Bornitrid (cBN), dem nach Diamant zweithaertesten aller bekannten Materialien, wurden mit einem Sputter-Prozess hergestellt. Ein neuartiger Schichtaufbau, der auf einem speziellen B-C-N-Schichtsystem basiert, ermoeglicht die Abscheidung von cBN-Schichten mit ueber 2 {mu}m Dicke, allerdings bisher nur auf Siliciumsubstraten. Die Eigenschaften der Schichten sind denen von massivem cBN sehr aehnlich. Es wurden vielversprechende Experimente zur Uebertragung dieses fuer Werkzeugbeschichtungen und vielfaeltige andere Anwendungen interessanten Schichtsystems auf Werkzeugsubstrate durchgefuehrt. Erste Untersuchungen der mechanisch-tribologischen Eigenschaften der auf Hartmetall- und Stahlsubstraten abgeschiedenen Schichten belegen das aussergewoehnlich hohe Potential der cBN-basierten Schichtsysteme. (orig.)

  6. Calibration of PKA meters against ion chambers of two geometries

    International Nuclear Information System (INIS)

    Almeida Junior, Jose N.; Terini, Ricardo A.; Pereira, Marco A.G.; Herdade, Silvio B.

    2011-01-01

    Kerma-area product (KAP or PKA) is a quantity that is independent of the distance to the X-ray tube focal spot and that can be used in radiological exams to assess the effective dose in patients. Clinical KAP meters are generally fixed in tube output and they are usually calibrated on-site by measuring the air kerma with an ion chamber and by evaluating the irradiated area by means of a radiographic image. Recently, a device was marketed (PDC, Patient Dose Calibrator, Radcal Co.), which was designed for calibrating clinical KAP meters with traceability to a standard laboratory. This paper presents a metrological evaluation of two methods that can be used in standard laboratories for the calibration of this device, namely, against a reference 30 cc ionization chamber or a reference parallel plates monitor chamber. Lower energy dependence was also obtained when the PDC calibration was made with the monitor chamber. Results are also shown of applying the PDC in hospital environment to the cross calibration of a clinical KAP meter from a radiology equipment. Results confirm lower energy dependence of the PDC relatively to the tested clinical meter. (author)

  7. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  8. Prototype development or multi-cavity ion chamber for depth dose measurement

    International Nuclear Information System (INIS)

    Nayak, M.K.; Sahu, T.K.; Haridas, G.; Bandyopadhyay, Tapas; Tripathi, R.M.; Nandedkar, R.V.

    2016-01-01

    In high energy electron accelerators, when the electrons interact with vacuum chamber or surrounding structural material, Bremsstrahlung x-rays are produced. It is having a broad spectrum extending up to the electron energies. Dose measured as a function of depth due to electromagnetic cascade will give rise to depth dose curve. To measure the online depth dose profile in an absorber medium, when high energy electron or Bremsstrahlung is incident, a prototype Multi-Cavity Ion Chamber (MCIC) detector is developed. The paper describes the design and development of the MCIC for measurement of depth dose profile

  9. Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.

    Science.gov (United States)

    Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao

    2017-10-24

    The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.

  10. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    Science.gov (United States)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  11. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    Science.gov (United States)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  12. Construction of a scattering chamber for ion-beam analysis of environmental materials in undergraduate physics research

    Energy Technology Data Exchange (ETDEWEB)

    LaBrake, Scott M.; Vineyard, Michael F.; Turley, Colin F.; Moore, Robert D.; Johnson, Christopher [Department of Physics and Astronomy Union College, Schenectady, NY 12308 (United States)

    2013-04-19

    We have developed a new scattering chamber for ion-beam analysis of environmental materials with the 1.1-MV Pelletron accelerator at the Union College Ion-Beam Analysis Laboratory. The chamber was constructed from a ten-inch, Conflat, multi-port cross and includes a three-axis target manipulator and target ladder assembly, an eight-inch turbo pump, an Amptek X-ray detector, and multiple charged particle detectors. Recent projects performed by our undergraduate research team include proton induced X-ray emission (PIXE) and Rutherford backscattering (RBS) analyses of atmospheric aerosols collected with a nine-stage cascade impactor in Upstate New York. We will describe the construction of the chamber and discuss the results of some commissioning experiments.

  13. Electrophoretic deposition of boron-10 in neutron detectors electrodes

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Vieira, J.M.

    1990-01-01

    Process of boron-10 electrophoresis on large area of aluminum substrates was developed with the aim of using them in the construction of neutron detectors. After definition and optimization of the boron electrophoresis parameters, depositions of boron-10 on aluminum cylinders were performed and used as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. These prototypes were designed and builded at IPEN-CNEN-SP, and submited for characterization tests at IEA-R1 reactor, and they fulfil the technical specifications of the project. (author) [pt

  14. Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions

    CERN Document Server

    Bellwied, R; Bernardo, V; Caines, H; Christie, W; Costa, S; Crawford, H J; Cronqvist, M; Debbe, R; Dinnwiddie, R; Engelage, J; Flores, I; Fuzesy, R Z; Greiner, L; Hallman, T; Hoffmann, G; Huang, H Z; Jensen, P; Judd, E G; Kainz, K; Kaplan, M; Kelly, S; Lindstrom, P J; Llope, W J; Lo Curto, G; Longacre, R; Milosevich, Z; Mitchell, J T; Mitchell, J W; Mogavero, E; Mutchler, G S; Paganis, S; Platner, E; Potenza, R; Rotondo, F; Russ, D; Sakrejda, I; Saulys, A; Schambach, J; Sheen, J; Smirnoff, N; Stokely, C L; Tang, J; Trattner, A L; Trentalange, S; Visser, G; Whitfield, J P; Witharm, F; Witharm, R; Wright, M

    2002-01-01

    This report describes a multi plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGS E896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 T magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10 sup 6 Au ions per second.

  15. Employment of an ion implantation technique for catalyst coating on various substrates

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Chattha, J.A.; Zlobin, V.N.; Vasilve, I.P.; Cherkasov, J.A.; Gawrilenko, P.N.

    2001-01-01

    Catalysts are widely used in the chemical industry as well as in the production of vehicle catalytic converters. Precious metals are employed increasingly as catalytic materials. Traditional methods of coating, such as impregnation, are thought to reduce the porosity and specific area of catalyst thus reducing the catalytic efficiency. Apart from that, impregnation technology leads to the high expense of precious metals. To reduce the content of noble metals in catalysts the ion implantation method of coating has been investigated. Several samples of catalysts on various substrates were prepared by ion implantation technique and tested. New catalysts have shown high nitric oxides (NO/sub x/) and carbon monoxide (CO) conversion efficiency, with the content of noble metals reduced substantially. Experiment has also shown that specific area of substrates coated by an ion implantation had not decreased. Schematic of an ion implanter and experimental results are provided. (author)

  16. Boronization on NSTX using Deuterated Trimethylboron

    International Nuclear Information System (INIS)

    Blanchard, W.R.; Gernhardt, R.C.; Kugel, H.W.; LaMarche, P.H.

    2002-01-01

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in the execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described

  17. Ions irradiation on bi-layer coatings

    Science.gov (United States)

    Tessarolo, Enrico; Corso, Alain Jody; Böttger, Roman; Martucci, Alessandro; Pelizzo, Maria G.

    2017-09-01

    Future space missions will operate in very harsh and extreme environments. Optical and electronics components need to be optimized and qualified in view of such operational challenges. This work focuses on the effect of low alpha particles irradiation on coatings. Low energy He+ (4 keV and 16 keV) ions have been considered in order to simulate in laboratory the irradiation of solar wind (slow and fast components) alpha particles. Mono- and proper bi-layers coatings have been investigated. The experimental tests have been carried out changing doses as well as fluxes during the irradiation sessions. Optical characterization in the UV-VIS spectral range and superficial morphological analysis have performed prior and after irradiation.

  18. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    Science.gov (United States)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  19. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Jang, S. H.; Hwang, D. Y.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-09-15

    Carbon coating approach is used to prepare carbon-doped MgB{sub 2} bulk samples using low-cost naphthalene (C{sub 10}H{sub 8}) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at 120 degrees C and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with carbon. As compared to un-doped MgB{sub 2}, a systematic enhancement in Jc(H) properties with increasing carbon doping level was observed for naphthalene-derived C-doped MgB{sub 2} samples. The substantial enhancement in Jc is most likely due to the incorporation of C into MgB{sub 2} lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

  20. Ion implantation artifacts observed in depth profiling boron in silicon by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Chi, P.; Simons, D.S.

    1987-01-01

    A comparison study of depth profiling by secondary ion mass spectrometry (SIMS) and neutron depth profiling (NDP) was recently conducted. The specimens were portions of 5 cm diameter single crystal silicon slices in which B-10 had been implanted at various fluences and energies. NDP measurements were made on a 13 mm diameter area at the center of the wafers. SIMS measurements were taken from a 60 μm diameter area approximately 16 mm from the center of the wafer. One observation that emerged from this work was an apparent discrepancy between the profiles of B-10 measured by DNP and SIMS. The peaks of the SIMS profiles were typically deeper than those of NDP by as much as 30 nm, which is 10% of the projected range for a 70 keV implant. Moreover, the profiles could not be made to coincide by either a constant shift or a proportional change of one depth scale with respect to the other. The lateral inhomogeneity of boron that these experiments have demonstrated arises from the variable contribution of ion channeling during implantation

  1. Recoil implantation of boron into silicon by high energy silicon ions

    Science.gov (United States)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  2. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    Science.gov (United States)

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  3. Influence of boronization on operation with high-Z plasma facing components in Alcator C-Mod

    International Nuclear Information System (INIS)

    Lipschultz, B.; Lin, Y.; Marmar, E.S.; Whyte, D.G.; Wukitch, S.; Hutchinson, I.H.; Irby, J.; LaBombard, B.; Reinke, M.L.; Terry, J.L.; Wright, G.

    2007-01-01

    We report the results of operation of Alcator C-Mod with all high-Z molybdenum plasma facing component (PFC) surfaces. Without boron-coated PFCs energy confinement was poor (H ITER,89 ∼ 1) due to high core molybdenum (n Mo /n e ≤ 0.1%) and radiation. After applying boron coatings, n Mo /n e was reduced by a factor of 10-20 with H ITER,89 approaching 2. Results of between-discharge boronization, localized at various major radii, point towards important molybdenum source regions being small, outside the divertor, and due to RF-sheath-rectification. Boronization also has a significant effect on the plasma startup phase lowering Z eff , radiation, and lowering the runaway electron damage. The requirement of low-Z coatings over at least a fraction of the Mo PFCs in C-Mod for best performance together with the larger than expected D retention in Mo, give impetus for further high-Z PFC investigations to better predict the performance of un-coated tungsten surfaces in ITER and beyond

  4. Structural modifications induced by ion irradiation and temperature in boron carbide B4C

    Science.gov (United States)

    Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.

    2015-12-01

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.

  5. Wall attenuation and scatter corrections for ion chambers: measurements versus calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D W.O.; Bielajew, A F [National Research Council of Canada, Ottawa, ON (Canada). Div. of Physics

    1990-08-01

    In precision ion chamber dosimetry in air, wall attenuation and scatter are corrected for A{sub wall} (K{sub att} in IAEA terminology, K{sub w}{sup -1} in standards laboratory terminology). Using the EGS4 system the authors show that Monte Carlo calculated A{sub wall} factors predict relative variations in detector response with wall thickness which agree with all available experimental data within a statistical uncertainty of less than 0.1%. They calculated correction factors for use in exposure and air kerma standards are different by up to 1% from those obtained by extrapolating these same measurements. Using calculated correction factors would imply increases of 0.7-1.0% in the exposure and air kerma standards based on spherical and large diameter, large length cylindrical chambers and decreases of 0.3-0.5% for standards based on large diameter pancake chambers. (author).

  6. Design and manufacture of multi-electrode ion chamber for absolute photon-flux measurements of soft x-rays

    International Nuclear Information System (INIS)

    Yoshigoe, Akitaka; Teraoka, Yuden

    2001-03-01

    In order to measure the absolute photon-flux of soft x-rays at the photon energy region from 500 eV to 1500 eV, a sealed gas ion chamber with multi-electrodes was designed and manufactured. Actually we succeeded in measuring the photon-flux at the soft x-ray beamline, BL23SU, in the SPring-8. This report concretely describes the design and the adjustment of the sealed gas ion chamber with multi-electrodes. (author)

  7. Evaluation of a plane-parallel ionization chamber for low-energy radiotherapy beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E.

    2014-01-01

    A plane-parallel ionization chamber, with a sensitive volume of 6.3 cm 3 , developed at the Calibration Laboratory of IPEN (LCI), was utilized to verify the possibility of its application in low-energy X-ray beam qualities for radiotherapy (T-qualities). This homemade ion chamber was manufactured using polymethyl methacrylate (PMMA) coated with graphite, and co-axial cables. In order to evaluate the performance of this ionization chamber, some characterization tests were performed: short- and medium-term stability, leakage current, saturation, ion collection efficiency, polarity effect and linearity of response. The maximum value obtained in the short-term stability test was 0.2%, in accordance with the limit value of 0.3% provided by the IEC 60731 standard. The saturation curve was obtained varying the applied voltage from -400 V to +400 V, in steps of 50 V, using the charge collecting time of 20 s. From the saturation curve two other characteristics were analyzed: the polarity effect and the ion collection efficiency, with results within the international recommendations. The leakage current of the ionization chamber was measured in time intervals of 20 minutes, before and after its irradiations, and all the results obtained were in agreement with the IEC 60731 standard. The linearity of response was verified utilizing the T-50(b) radiation quality, and the ionization chamber was exposed to different air kerma rates. The response of the ionization chamber presented a linear behavior. Therefore, all results were considered satisfactory, within international recommendations, indicating that this homemade ionization chamber presents potential routine use in dosimetry of low-energy radiotherapy beams. (author)

  8. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Palmans, H [Ghent Univ. (Belgium). Dept. of Biomedical Physics; Verhaegen, F

    1995-12-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire`s multiple scattering theory and Vavilov`s energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program`s accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented.

  9. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    International Nuclear Information System (INIS)

    Palmans, H.; Verhaegen, F.

    1995-01-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire's multiple scattering theory and Vavilov's energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program's accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented

  10. Coating and functionalization of high density ion track structures by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mättö, Laura [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111 (Hungary); MTA-BME Technical Analytical Research Group, Szent Gellért tér 4, Budapest H-1111 (Hungary); Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Ritala, Mikko; Leskelä, Markku [Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland)

    2016-10-01

    In this study flexible TiO{sub 2} coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO{sub 2} films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti({sup i}OPr){sub 4} and water as precursors at 250 °C. The TiO{sub 2} films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils. - Highlights: • Porous Kapton membranes were obtained by ion track technology and chemical etching. • TiO{sub 2} films were deposited by ALD into the pores of the Kapton membranes. • TiO{sub 2} nanotube array was prepared by removing the polymer core. • MCP structures were obtained from the coated membranes. • Electron multiplication was achieved using the ALD-coated Kapton foils.

  11. Methods and apparatus for cleaning objects in a chamber of an optical instrument by generating reactive ions using photon radiation

    Science.gov (United States)

    Klebanoff, Leonard E.; Delgado, Gildardo R.; Hollenshead, Jeromy T.; Umstadter, Karl R.; Starodub, Elena; Zhuang, Guorong V.

    2015-10-13

    An optical instrument, including a chamber, an object exposed to an interior of the chamber, a source of low-pressure gas, the gas comprising at least one of low-pressure molecular hydrogen gas, low-pressure molecular oxygen and a low-pressure noble gas, the source of low pressure gas being fluidly coupled to the chamber, a low voltage source electrically coupled between the object and a remaining portion of the instrument that is exposed to the interior of the chamber so as to maintain the object at a low voltage relative to the remaining portion, and an EUV/VUV light source adapted to direct EUV/VUV light through the low pressure gas in the chamber onto the object. In such a system, when the EUV/VUV light source is activated ions of the low-pressure gas are formed and directed to the object. The ions may be ions of Hydrogen, Oxygen or a noble gas.

  12. Design of a prototype tri-electrode ion-chamber for megavoltage X-ray imaging

    International Nuclear Information System (INIS)

    Samant, Sanjiv S.; Gopal, Arun; Jain, Jinesh; Xia Junyi; DiBianca, Frank A.

    2007-01-01

    High-energy (megavoltage) X-ray imaging is widely used in industry (e.g., aerospace, construction, material sciences) as well as in health care (radiation therapy). One of the fundamental problems with megavoltage imaging is poor contrast and spatial resolution in the detected images due to the dominance of Compton scattering at megavoltage X-ray energies. Therefore, although megavoltage X-rays can be used to image highly attenuating objects that cannot be imaged at kilovoltage energies, the former does not provide the high image quality that is associated with the latter. A high contrast and spatial resolution detector for high-energy X-ray fields called the kinestatic charge detector (KCD) is presented here. The KCD is a tri-electrode ion-chamber based on highly pressurized noble gas. The KCD operates in conjunction with a strip-collimated X-ray beam (for high scatter rejection) to scan across the imaging field. Its thick detector design and unique operating principle provides enhanced charge signal integration for high quality imaging (quantum efficiency ∼50%) despite the unfavorable implications of high-energy X-ray interactions on image quality. The proposed design for a large-field prototype KCD includes a cylindrical pressure chamber along with 576 signal-collecting electrodes capable of resolving at 2 mm -1 . The collecting electrodes are routed out of the chamber through the flat end-cap, thereby optimizing the mechanical strength of the chamber. This article highlights the simplified design of the chamber using minimal components for simple assembly. In addition, fundamental imaging measurements and estimates of ion recombination that were performed on a proof-of-principle test chamber are presented. The imaging performance of the prototype KCD was found to be an order-of-magnitude greater than commercial phosphor screen based flat-panel systems, demonstrating the potential for high-quality megavoltage imaging for a variety of industrial applications

  13. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    Science.gov (United States)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  14. First-wall-coating candidates for ICF reactor chambers using dry-wall protection only

    International Nuclear Information System (INIS)

    Sink, D.A.

    1983-01-01

    Twenty pure metals were considered as potential candidates for first-wall coatings of ICF reactor chambers. Seven were found to merit further consideration based on the results of computer-code calculations of figures-of-merit. The seven are rhenium, iridium, molybdenum, chromium, tungsten, tantalum, and niobium (listed in order of decreasing values of figures-of-merit). The calculations are based on mechanical, thermal, and vacuum vaporization engineering constraints. A number of alloys of these seven metals are suggested as additional candidates

  15. Amorphisation of boron carbide under slow heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: Dominique.gosset@cea.fr [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Miro, S. [CEA Saclay, DEN, DANS, DMN, SRMP, Laboratoire JANNUS, Université Paris-Saclay, 91191, Gif/Yvette (France); Doriot, S. [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Moncoffre, N. [CNRS/IN2P3/IPNL, 69622, Villeurbanne (France)

    2016-08-01

    Boron carbide B{sub 4}C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B{sub 4}C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10{sup −2} displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  16. H2 Equilibrium Pressure with a Neg-Coated Vacuum Chamber as a Function of Temperature and H2 Concentration

    CERN Document Server

    Rossi, Adriana

    2006-01-01

    Non Evaporable Getter (NEG) coating is used in the Large Hadron Collider (LHC) room-temperature sections to ensure a low residual gas pressure for its properties of distributed pumping, low outgassing and desorption under particle bombardment; and to limit or cure electron cloud build-up due to its low secondary electron emission. In certain regions of the LHC, and in particular close to the beam collimators, the temperature of the vacuum chamber is expected to rise due to energy deposition from particle losses. Hydrogen molecules are pumped by the NEG via dissociation on the surface, sorption at the superficial sites and diffusion into the NEG bulk. In the case of hydrogen, the sorption is thermally reversible, causing the dissociation pressure to increase with NEG temperature and amount of H2 pumped. Measurements were carried out on a stainless steel chamber coated with TiZrV NEG as a function of the H2 concentration and the chamber temperature, to estimate the residual gas pressure in the collimator region...

  17. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. Surface structure of Cr0.5 Ti0.5N coatings after heavy ions irradiation and annealing

    International Nuclear Information System (INIS)

    Kislitsin, Sergey; Gorlachev, Igor; Uglov, Vladimir

    2015-01-01

    Results of surface structure investigations of TiCrN coating on carbon steel after irradiation by helium, krypton and xenon heavy ions are reported in the present publication. The series of Cr50Ti50N coatings on carbon steel with thickness of 50,..., 300 nm were formed by vacuum arc deposition techniques. Specimens with TiCrN coating on carbon steel were irradiated by low energy 4 He +1 (22 keV) and 4 He +2 (40 keV) ions and high energy Xe +18 and Kr +14 ions with energy of 1.5 MeV/nucleon. Fluence of He ions was 1.0x10 17 ion.cm -2 , fluence of Xe and Kr ions was 5x10 14 -1.0x10 15 ion.cm -2 , irradiation temperature did not exceed 150 deg. C. Study of surface structure was performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Methods of Roentgen diffractometry and Rutherford backscattering was applied for determination of structure and thickness of coating. In case of irradiation with Xe +18 and Kr +14 ions an investigation of surface morphology and structure was done after successive two hours vacuum annealing of irradiated samples at temperatures 400 deg. C, 500 deg. C and 600 deg. C. It was shown that after irradiation by Xe and Kr ions on the surface of coating convexities appear, surface density of which correlates with ion flux. In the case of Xe, ions irradiation generated convexities of spherical and elongated shape with dimensions ranging from ten to hundreds nm. In the case of Kr ions, only spherical globules were generated, dimensions of which are 10-30 nm. The most likely explanation of observed surface damage is that: convexities on the surface are generated at ion bombardment of specimens with coating. Convexities are the traces of ions passing through coating and they are due to structural reconstruction at energy release along a trajectory of ions braking. Convexities of elongated shape represent overlapping traces from two passing ions. When the projective range of Xe and Kr ions exceeds coating thickness, damage

  19. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    Science.gov (United States)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  20. Black Carbon Aging from SOA Coatings and Coagulation with Diesel BC Emissions during SAAS at the PNNL Environmental Chamber

    Science.gov (United States)

    Aiken, A. C.; Liu, S.; Dubey, M. K.; Zaveri, R. A.; Shilling, J. E.; Gourihar, K.; Pekour, M. S.; Subramanian, R.; Zelenyuk, A.; Wilson, J. M.; Mazzoleni, C.; China, S.; Sharma, N.

    2014-12-01

    Black carbon (BC) is considered to be potentially the 2nd most important global warming factor behind CO2 (Bond et al., 2013). Uncertainties exist due to BC morphology and mixing state on the extent of the warming that it causes, e.g. Cappa et al., 2012. Core-shell BC is expected to enhance absorption by up to a factor of 2, but has yet to be observed to this extent from ambient data. Experiments were conducted during the Soot Aerosol Aging Study (SAAS) Laboratory Campaign at Pactific Northwest National Laboratory's Environmental Chamber in the winter of 2013-2014 to investigate the relationship between coatings and enhancements from diesel emissions. Direct on-line measurements were made with the single particle soot photometer (SP2) from fresh and aged BC from coating and coagulation experiments with secondary organic aerosol (SOA) formed in the chamber. BC measurements are coupled with photoactoustic measurements spanning the visible region to probe BC enhancements when mixed with SOA. Here we focus on the enhancements at 781 nm, that are tracked throughout SOA growth on BC, as determined from SP2 coating thicknesses. Thermal denuder (TD) experiments are conducted and enhancements are calculated from two different methods that agree well with each other, confirming the observed results. BC measurements are also compared with co-located measurements from SPLAT-II and filter analysis using SEM and TEM. BC coagulated with SOA produces minimal absorption enhancement values, whereas coatings are observed to have significant enhancement values at 300 degrees C, e.g. 1.3 for thickly coated BC. BC particles were coagulated with SOA in the chamber since this morphology has been observed in wildfire emissions (Sedlacek et al., 2012). Since we did not observe appreciable enhancements for the coagulated BC, we expect that ambient emissions dominated by this particle type to have enhancements due to other sources, such as brown carbon (BrC) that is often co-emitted (Saleh et

  1. Properties of TiN coatings deposited by the method of condensation with ion bombardment accompanied by high-energy ion beam

    International Nuclear Information System (INIS)

    Obrezkov, O.I.; Vershok, B.A.; Dormashev, A.B.; Margulev, I.Ya.; Molchanova, S.A.; Andreev, E.S.; Dervuk, V.V.

    2002-01-01

    Vacuum-sputtering adapted commercial facility based coating of stainless steel with titanium nitride followed two procedures: ion bombardment condensation (IBC) and IBC under simultaneous effect of ion beam (IB). The deposition rate was equal to 0.1 μm min -1 ; the investigated coatings were characterized by 2.5 μm depth. Comparison analysis of features and characteristics of the specimens, as well as, full-scale tests of a coated cutting tool enabled to make conclusions about advantages of application of IB assisted IBC technology in contrast to the reference IBC technology [ru

  2. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  3. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.

    Science.gov (United States)

    Wang, Linlin; Zhang, Huacheng; Yang, Zhe; Zhou, Jianjun; Wen, Liping; Li, Lin; Jiang, Lei

    2015-03-07

    Heterogeneous nanochannel materials that endow new functionalities different to the intrinsic properties of two original nanoporous materials have wide potential applications in nanofluidics, energy conversion, and biosensors. Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics. The heterogeneous nanochannel devices were constructed by selectively coating the tip side, base side, or both sides of a single conical nanochannel membrane with thin agar hydrogel layers. The tunable ion current rectification of the nanochannels in the three different coating states was systematically demonstrated by current-voltage (I-V) curves. The asymmetric ionic transport property of the conical nanochannel was further strengthened in the tip-coating state and weakened in the base-coating state, whereas the conical nanochannel showed nearly symmetric ionic transport in the dual-coating state. Repeated experiments presented insight into the good stability and reversibility of the three coating states of the hydrogel-nanochannel-integrated systems. This work, as an example, may provide a new strategy to further design and develop multifunctional gel-nanochannel heterogeneous smart porous nanomaterials.

  4. Urinary catheter with polyurethane coating modified by ion implantation

    International Nuclear Information System (INIS)

    Kondyurina, I.; Nechitailo, G.S.; Svistkov, A.L.; Kondyurin, A.; Bilek, M.

    2015-01-01

    A low friction urinary catheter that could be used without a lubricant is proposed in this work. A polyurethane coating was synthesised on the surface of a metal guide wire catheter. Ion implantation was applied to surface modify the polyurethane coating. FTIR ATR, wetting angle, AFM and friction tests were used for analysis. Low friction was found to be provided by the formation of a hard carbonised layer on the polyurethane surface

  5. The Impedance of Multi-layer Vacuum Chambers

    CERN Document Server

    Vos, L

    2003-01-01

    Many components of the LHC vacuum chamber have multi-layered walls : the copper coated cold beam screen, the titanium coated ceramic chamber of the dump kickers, the ceramic chamber of the injection kickers coated with copper stripes, only to name a few. Theories and computer programs are available for some time already to evaluate the impedance of these elements. Nevertheless, the algorithm developed in this paper is more convenient in its application and has been used extensively in the design phase of multi-layer LHC vacuum chamber elements. It is based on classical transmission line theory. Closed expressions are derived for simple layer configurations, while beam pipes involving many layers demand a chain calculation. The algorithm has been tested with a number of published examples and was verified with experimental data as well.

  6. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber.

    Science.gov (United States)

    Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude

    2017-03-01

    The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2  ≤ mean dose rate ≤ 10 3 Gy/s, 10 2  ≤ mean dose rate within pulse ≤ 10 7  Gy/s, 10 -4  ≤ dose-per-pulse ≤ 10 1  Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1  Gy, respectively). An empirical

  7. SU-E-T-172: Evaluation of the Exradin A26 Ion Chamber in Megavoltage Photon Beams as a Reference Class Instrument

    International Nuclear Information System (INIS)

    McEwen, M

    2014-01-01

    Purpose: The Exradin A26 is a new design of micro-ionization ion chamber that externally resembles the Exradin A16 model but has significant internal changes to address measurement issues reported in the literature for the A16. This project involved the characterization of two versions of the A26 chamber in high energy x-rays with particular reference to the performance specification laid out in the imminent Addendum to TG-51. Methods: The Exradin A26 was investigated in a range of megavoltage photon beams (6–25 MV). Investigations looked at chamber settling, ion recombination and polarity. Since it has been previously shown that non-ideal performance is most easily identified through ion recombination measurements, the focus was on the determination of Pion. Results: i) Chamber settling - the chamber response stabilizes very quickly (within 3 minutes), even after a large change in the polarizing voltage.ii) The polarity correction was found to be small (within 0.2% of unity)iii) The chamber showed linear behavior for a Jaffe plot (1/reading vs 1/polarizing voltage) for applied voltages ≤ 200 V.iv) The recombination correction showed a linear variation with the doseper- pulse, was not significantly dependent on the polarity of the collecting voltage and was consistent with the chamber dimensions (i.e. agreed with Boag theory). Conclusion: An initial investigation of the Exradin A26 micro chamber suggests that although its performance exceeds the AAPM specification for a reference-class ion chamber for use in megavoltage photon beams it is a significant improvement over the previous A16 design. Further work is required to evaluate long-term stability and determine kQ factors

  8. Laboratory scale development of coating for improving characteristics of candidate materials for fusion reactor

    International Nuclear Information System (INIS)

    Agarwala, R.P.

    1989-01-01

    Application of coatings of refractory low atomic number materials on to different components of Tokamak type controlled thermonuclear reactor are expected to provide a degree of design flexibility. The project envisages to deal with the challenging problem on laboratory scale. Coatings investigated include carbon, beryllium, boron, titanium carbide and alumina and substrates chosen have been 304, 316 stainless steels, monel-400, molybdenum, copper, graphite, etc. For their deposition, different techniques (e.g. evaporation, sputtering and their different variants) have been tried, appropriate ones chosen and their parameters optimized. The coating composition has been analyzed using X-ray diffraction (XRD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering analysis (RBS) and secondary ions mass spectroscopy (SIMS). Surface morphology has been studied using scanning electron microscopy (SEM). Sebastian coating adherence tester has been used for adhesion measurement and Wilson's Tukon microhardness tester for their microhardness measurement. The coatings have been subjected to pulses from YAG laser to evaluate their thermal cycling behaviour. Deuterium ion bombardment (Energy: 20-120 keV; doses: 10 19 -9.3x10 20 ions/cm 2 ) behaviour has also been studied. In general, adherent and hard coatings capable of withstanding thermal cycling could be deposited. Out of the coatings studied, titanium carbide shows best results. The following pages are reprints and not mircrofiched: p. 25-32, 39-41, 57-81. Bibliographic description is on page 13

  9. Detector Characterization Report, Response Related to Linear Movement and Radiation Levels for an Oak Ridge National Laboratory (ORNL)-Developed Ion Chamber and a Commercial Ion Chamber

    International Nuclear Information System (INIS)

    Chiaro, P.J.

    2001-01-01

    Recent activities regarding the safeguarding of radioactive material have indicated there is a need to use radiation sensors to monitor intentional or unintentional material movement. Existing radiation detection systems were not typically designed for this type of operation since most of their use accounted for monitoring material while the material is stationary. To ensure that a radiation monitoring system is capable of detecting the movement of radioactive material, a series of tests were needed. These tests would need to be performed in known radiological conditions, under controlled environmental conditions, and at known movement speeds. The Radiation Effects Facility (REF), located at the Radiation Calibration Laboratory, provided the necessary capabilities to perform these tests. This report provides a compilation of the results from a characterization of two different sensors--a simple, air ionization chamber-based sensor developed at ORNL that consists of an ion chamber connected to a separate amplifier, and an Eberline model RO-7-LD. The RO-7-LD is also an air ionization chamber-based sensor, but the electronics are in the same physical package

  10. Adhesion Strength of TiN Coatings at Various Ion Etching Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    Science.gov (United States)

    Ali, Mubarak; Hamzah, Esah; Ali, Nouman

    Titanium nitride (TiN) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium (Ti) and chromium (Cr) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. The coatings deposited with Cr ion etching showed poor adhesion compared with the coatings deposited with Ti ion etching. Scratch test measurements showed that the coating deposited with titanium ion etching for 16 min is the most stable coating and maintained even at the critical load of 66 N. The curve obtained via penetration depth along the scratch trace is linear in the case of HSS, whereas is slightly flexible in the case of D2 tool steel. The coatings deposited on HSS exhibit better adhesion compared with those on D2 tool steel.

  11. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  13. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. Structural modifications induced by ion irradiation and temperature in boron carbide B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Victor, G., E-mail: g.victor@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pipon, Y.; Bérerd, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); CEA-DEN, Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Djourelov, N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, BG-1784 Sofia (Bulgaria); ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele (Romania); Miro, S. [CEA-DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Baillet, J. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pradeilles, N.; Rapaud, O.; Maître, A. [SPCTS, UMR CNRS 7315, Centre Européen de la céramique, University of Limoges (France); Gosset, D. [CEA, Saclay, DMN-SRMA-LA2M, 91191 Gif-sur-Yvette (France)

    2015-12-15

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B{sub 4}C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B{sub 4}C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (S{sub e} ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B{sub 4}C structure under irradiation.

  15. The ALICE time projection chamber - a technological challenge in LHC heavy ion physics

    CERN Document Server

    Bächler, J

    2004-01-01

    The Time Projection Chamber is the main tracking detector in the central region of the ALICE experiment. This paper addresses the specific technological challenges for the detector and the solutions adopted to cope with the extreme particle densities in LHC heavy ion collisions. We will present the major components of the detector with an outlook of its expected performance in the LHC heavy ion program, as well as recent results from the comprehensive ALICE TPC test facility. (3 refs).

  16. Ion assisted deposition of refractory oxide thin film coatings for improved optical and structural properties

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Bhattacharyya, D.; Das, N.C.

    1999-03-01

    Ion assisted deposition technique (IAD) has emerged as a powerful tool to control the optical and structural properties of thin film coatings. Keeping in view the complexity of the interaction of ions with the films being deposited, sophisticated ion sources have been developed that cater to the need of modern optical coatings with stringent spectral and environmental specifications. In the present work, the results of ion assisted deposition (IAD) of two commonly used refractory oxides, namely TiO 2 and ZrO 2 , using cold cathode ion source (CC-102R) are presented. Through successive feedback and calibration techniques, various ion beams as well as deposition parameters have been optimized to achieve the best optical and structural film properties in the prevalent deposition geometry of the coating system. It has been possible to eliminate the unwanted optical and structural inhomogeneities from these films using and optimized set of process parameters. Interference modulated spectrophotometric and phase modulated ellipsometric techniques have been very successfully utilized to analyze the optical and structural parameters of the films. Several precision multilayer coatings have been developed and are being used for laser and spectroscopic applications. (author)

  17. Absorbed dose measurement by using tissue equivalent ionization chamber (pair ionization chamber) in the Yayoi reactor

    International Nuclear Information System (INIS)

    Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki

    1998-01-01

    Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)

  18. A new approach for the evaluation of the effective electrode spacing in spherical ion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Maghraby, Ahmed M., E-mail: maghrabism@yahoo.com [National Institute of Standards (NIS), Ionizing Radiation Metrology Laboratory, Tersa Street 12211, Giza P.O. Box: 136 (Egypt); Shqair, Mohammed [Physics Department, Faculty of Science and Humanities, Sattam Bin Abdul Aziz University, Alkharj (Saudi Arabia)

    2016-10-21

    Proper determination of the effective electrode spacing (d{sub eff}) of an ion chamber ensures proper determination of its collection efficiency either in continuous or in pulsed radiation in addition to the proper evaluation of the transit time. Boag's method for the determination of d{sub eff} assumes the spherical shape of the internal electrode of the spherical ion chambers which is not always true, except for some cases, its common shape is cylindrical. Current work provides a new approach for the evaluation of the effective electrode spacing in spherical ion chambers considering the cylindrical shape of the internal electrode. Results indicated that d{sub eff} values obtained through current work are less than those obtained using Boag's method by factors ranging from 12.1% to 26.9%. Current method also impacts the numerically evaluated collection efficiency (f) where values obtained differ by factors up to 3% at low potential (V) values while at high V values minor differences were noticed. Additionally, impacts on the evaluation of the transit time (τ{sub i}) were obtained. It is concluded that approximating the internal electrode as a sphere may result in false values of d{sub eff}, f, and τ{sub i}.

  19. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shoudong; Yang Hengxiu; Li Jinlong; Huang Feng [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China); Song Zhenlun, E-mail: songzhenlun@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-04-15

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar{sup +} ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar{sup +} ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  20. Plasma and Ion Sources in Large Area Coatings: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  1. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-11-25

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  2. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Ciofani Gianni

    2008-01-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  3. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  4. Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots

    International Nuclear Information System (INIS)

    Chowdhury, S.; Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A.

    2008-01-01

    The present study compares structural and optical modifications of bare and silica (SiO 2 ) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni 12+ ion beam with fluences 10 12 to 10 13 ions/cm 2 . Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one

  5. Prediction of the performance of an ion chamber amplifier under γ radiation

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Sundarsingh, V.P.; Ramachandran, V.

    2005-01-01

    The ion chamber amplifier (ICA) plays a major role in the proper functioning of a nuclear reactor as it monitors the radiations from the nuclear reactor by measuring the ionic activity inside the ion chamber. The signal conditioning circuitry of the ICA detects and conditions the weak ionic currents coming from the ion chamber dome. Degradation in the performance of the semiconductor devices used in this part of the ICA, can lead to inaccurate monitoring of the reactor operation, resulting in a possible catastrophe due to malfunction. Further, the response of the ICA under irradiation also depends upon the strength of the input signal (ionic) current it is required to handle. The active devices used in the ICA under study are operational amplifiers (Op-Amps) such as DN8500A and OPA111, instrumentation amplifier INA101, transistor 2N2920A and a voltage reference device, AD584. Since these devices may be sensitive to radiation, one must know their radiation behaviour so that the performance of the ICA can be predicted. This paper examines the performance of the ICA by characterising the radiation profiles of its vital components, viz. the Op-Amps, instrumentation amplifiers, transistors, etc. by monitoring their parametric changes on-line, i.e. when the source is on, and the devices are biased. The simulation runs involve the simulation of the entire ICA circuitry using the changed values of the vital parameters such as input bias current and input offset voltage. The main advantage of this method is that it obviates irradiating the whole ICA circuit to study its irradiation performance, and simulates an environment of radiation leakage around the ICA. Based on this study, results are presented to predict the performance of the ICA

  6. Impact of impregnation with boron compounds on combustion ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... 2Gazi University, Industrial Arts Education Faculty, Department of ... security. Key words: Combustion, flame retardance, coatings, boron compounds, varnish. ..... attack in wood deterioration and its prevention by preservative.

  7. Preparation of fiber reinforced titanium diboride and boron carbide composite bodies

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Riley, R.E.; Sheinberg, H.; Valencia, F.A.; Wallace, T.C.

    1979-01-01

    A process is described for uniformly infiltrating woven carbon cloth with either titanium diboride or boron carbide at reduced pressure (15 to 25 torr). The effects of deposition temperature on the uniformity of penetration and on coating rate are described for temperatures from 750 to 1000 0 C and deposit loadings from 20 to 43 vol. %. For the boron carbides, boron composition is discussed and evidence is presented suggesting that propene is the dominant rate controlling reactant

  8. Boron Profile Sharpening in Ultra-Shallow p+-n Junction Produced by Plasma Immersion Ion Implantation from BF3 Plasma

    International Nuclear Information System (INIS)

    Lukichev, V.; Rudenko, K.; Orlikovsky, A.; Pustovit, A.; Vyatkin, A.

    2008-01-01

    We have investigated plasma immersion ion implantation (PI 3 ) of boron with energies of 500 eV (doses up to 2x10 15 cm -2 ) from BF 3 plasma with He pre-amorphizing implantation (PAI)(energy 3 keV, dose 5x10 16 cm -2 ). Implanted samples were subjected to RTA (T = 900 to 1050 deg. C, t = 2 to 24 sec and spike anneal). SIMS analysis of boron profiles revealed its anomalous behavior. For short RTA times the profile tail (below 5x10 19 cm -3 ) moves toward the surface and then, as in the usual diffusion, toward the bulk at longer annealing times.

  9. Operation of microstrip gas chambers manufactured on glass coated with high resistivity diamond-like layers

    CERN Document Server

    Boimska, B; Dominik, Wojciech; Hoch, M; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1997-01-01

    We describe recent observations and measurements realized with micro-strip gas chambers (MSGCs) manufactured on boro-silicate glass coated with a thin layer of diamond-like carbon (DLC) having a surface resistivity around 4.10$^{16}\\Omega/\\Box$. The role of the back-pla electrode configuration and potential in the detector performance has been studied. Even for this very high resistivity of the coatings, MSGCs operate differently from those manufactured on bare boro-silicate glass; the charge gain increases with the radiation flux for counting rates above 103 Hz/mm2, reaching a value 60% higher for 105 Hz/mm2. This behavior does not depend on the presence and potential of the back plane electrode; however, both maximum gain and rate capability are influenced by the drift field. From this study, compared with measurements realized previously with other detectors, we deduce that for stable high rate operation of MSGCs the resistivity of the coating should not exceed ~10$^{15}\\Omega/\\Box$.

  10. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  11. Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yizhu He

    2017-01-01

    Full Text Available High-entropy alloys (HEAs are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6 HEA coatings. The results show that laser rapid solidification effectively prevents brittle boride precipitation in the designed coatings. The main phase is a simple face-centered cubic (FCC matrix when the Al content is equal to 0.3. On the other hand, the matrix transforms to single bcc solid solution when x increases to 2.3. Increasing boron content improves the microhardness of the coatings, but leads to a high degree of segregation of Cr and Fe in the interdendritic microstructure. Furthermore, it is worth noting that CoCrFeNiAl0.3Cu0.7Si0.1B0.6 coatings with an FCC matrix and a modulated structure on the nanometer scale exhibit an ultrahigh hardness of 502 HV0.5.

  12. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals

    KAUST Repository

    Zhong, Bo; Liu, Wei; Yu, Yuanlie; Xia, Long; Zhang, Jiulin; Chai, Zhenfei; Wen, Guangwu

    2017-01-01

    We report herein the synthesis of a novel hexagonal boron nitride nanocrystal/graphite nanoflake (h-BNNC/GNF) composite through a wet-chemistry coating of graphite nanoflakes and subsequent in-situ thermal treatment process. The characterization results of X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrum, and X-ray photoelectron spectroscopy demonstrate that h-BNNCs with diameter of tens of nanometers are highly crystallized and anchored on the surfaces of graphite nanoflakes without obvious aggregation. The minimum reflection loss (RL) value of the h-BNNC/GNF based absorbers could reach −32.38dB (>99.99% attenuation) with the absorber thickness of 2.0mm. This result is superior to the other graphite based and some dielectric loss microwave absorption materials recently reported. Moreover, the frequency range where the RL is less than −10dB is 3.49-17.28GHz with the corresponding thickness of 5.0 to 1.5mm. This reveals a better electromagnetic microwave absorption performance of h-BNNC/GNFs from the X-band to the Ku-band. The remarkable enhancement of the electromagnetic microwave absorption properties of h-BNNC/GNFs can be assigned to the increase of multiple scattering, interface polarization as well as the improvement of the electromagnetic impedance matching of graphite nanoflakes after being coated with h-BNNCs.

  13. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals

    KAUST Repository

    Zhong, Bo

    2017-05-31

    We report herein the synthesis of a novel hexagonal boron nitride nanocrystal/graphite nanoflake (h-BNNC/GNF) composite through a wet-chemistry coating of graphite nanoflakes and subsequent in-situ thermal treatment process. The characterization results of X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrum, and X-ray photoelectron spectroscopy demonstrate that h-BNNCs with diameter of tens of nanometers are highly crystallized and anchored on the surfaces of graphite nanoflakes without obvious aggregation. The minimum reflection loss (RL) value of the h-BNNC/GNF based absorbers could reach −32.38dB (>99.99% attenuation) with the absorber thickness of 2.0mm. This result is superior to the other graphite based and some dielectric loss microwave absorption materials recently reported. Moreover, the frequency range where the RL is less than −10dB is 3.49-17.28GHz with the corresponding thickness of 5.0 to 1.5mm. This reveals a better electromagnetic microwave absorption performance of h-BNNC/GNFs from the X-band to the Ku-band. The remarkable enhancement of the electromagnetic microwave absorption properties of h-BNNC/GNFs can be assigned to the increase of multiple scattering, interface polarization as well as the improvement of the electromagnetic impedance matching of graphite nanoflakes after being coated with h-BNNCs.

  14. Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron

    Science.gov (United States)

    Hebbache, M.; Živković, D.

    Recently, we succeeded in synthesizing three osmium borides, i.e., OsB1.1, Os2B3 and OsB2. Up to date, almost nothing is known about the physical properties of these materials. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that it is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used for hard coatings. The β-rhombohedral polymorph of boron is the second hardest elemental crystal (H ≈ 33 GPa). It is also very light and a p-type semiconductor. In early 1970s, it has been shown that the doping of boron with 3d transition elements enhances its hardness by about 25%. We predict that, in general, heavily doped samples MBx, with x ≤ 31 or equivalently a dopant concentration larger than 3.2 at.%, should be ultrahard, i.e., H > 43 GPa. The relevant dopants M are Al, Cu, Sc, Mn, Mg and Li. In addition to these properties, boron-rich materials have a very low volatility, a high chemical inertness and high melting point. They are suitable for applications under extreme conditions and thermoelectric equipment.

  15. {sup 1}H and {sup 10}B NMR and MRI investigation of boron- and gadolinium-boron compounds in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, M., E-mail: marco.bonora@unipv.it [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Corti, M.; Borsa, F. [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S. [Nuclear and Theoretical Physics Department, University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [INFN Pavia (Italy); Zonta, C.; Clerici, A.M.; Cansolino, L.; Ferrari, C.; Dionigi, P. [Surgical Sciences Department, Experimental Surgery Laboratory, University of Pavia, Pavia (Italy); Porta, A.; Zanoni, G.; Vidari, G. [Organic Chemistry Department, University of Pavia, Via Taramelli 10, 27100 Pavia (Italy)

    2011-12-15

    {sup 10}B molecular compounds suitable for Boron Neutron Capture Therapy (BNCT) are tagged with a Gd(III) paramagnetic ion. The newly synthesized molecule, Gd-BPA, is investigated as contrast agent in Magnetic Resonance Imaging (MRI) with the final aim of mapping the boron distribution in tissues. Preliminary Nuclear Magnetic Resonance (NMR) measurements, which include {sup 1}H and {sup 10}B relaxometry in animal tissues, proton relaxivity of the paramagnetic Gd-BPA molecule in water and its absorption in tumoral living cells, are reported.

  16. Boron dose determination for BNCT using Fricke and EPR dosimetry

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ciesielski, B.

    1995-01-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to α and 7 Li charged particles resulting from a neutron capture by 10 B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient's dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here

  17. Systematic uncertainties in the Monte Carlo calculation of ion chamber replacement correction factors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. L. W.; La Russa, D. J.; Rogers, D. W. O. [Ottawa Carleton Institute of Physics, Carleton University, Campus Ottawa, Ottawa, Ontario KIS 5B6 (Canada)

    2009-05-15

    In a previous study [Med. Phys. 35, 1747-1755 (2008)], the authors proposed two direct methods of calculating the replacement correction factors (P{sub repl} or p{sub cav}p{sub dis}) for ion chambers by Monte Carlo calculation. By ''direct'' we meant the stopping-power ratio evaluation is not necessary. The two methods were named as the high-density air (HDA) and low-density water (LDW) methods. Although the accuracy of these methods was briefly discussed, it turns out that the assumption made regarding the dose in an HDA slab as a function of slab thickness is not correct. This issue is reinvestigated in the current study, and the accuracy of the LDW method applied to ion chambers in a {sup 60}Co photon beam is also studied. It is found that the two direct methods are in fact not completely independent of the stopping-power ratio of the two materials involved. There is an implicit dependence of the calculated P{sub repl} values upon the stopping-power ratio evaluation through the choice of an appropriate energy cutoff {Delta}, which characterizes a cavity size in the Spencer-Attix cavity theory. Since the {Delta} value is not accurately defined in the theory, this dependence on the stopping-power ratio results in a systematic uncertainty on the calculated P{sub repl} values. For phantom materials of similar effective atomic number to air, such as water and graphite, this systematic uncertainty is at most 0.2% for most commonly used chambers for either electron or photon beams. This uncertainty level is good enough for current ion chamber dosimetry, and the merits of the two direct methods of calculating P{sub repl} values are maintained, i.e., there is no need to do a separate stopping-power ratio calculation. For high-Z materials, the inherent uncertainty would make it practically impossible to calculate reliable P{sub repl} values using the two direct methods.

  18. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Koo, John, E-mail: john-koo@amat.com; Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James [Applied Materials, Inc., Varian Semiconductor Equipment Business Unit, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  19. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yersak, Alexander S.; Sharma, Kashish; Wallas, Jasmine M.; Dameron, Arrelaine A.; Li, Xuemin; Yang, Yongan; Hurst, Katherine E.; Ban, Chunmei; Tenent, Robert C.; George, Steven M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309

    2018-01-01

    Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALD were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery

  1. Bulk-boronized limiter operation in the Wendelstein 7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Brakel, R; Burhenn, R; Behrisch, R; Grigull, P; Hacker, H; Hildebrandt, D; Hofmann, J V; Mahn, C; Roth, J; Schneider, U; Weller, A [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany); Hirooka, Y [Inst. of Plasma Physics and Fusion Research, Univ. California, Los Angeles, CA (United States); W7-AS Team; NI Group; ECRH Group

    1992-12-01

    Bulk-boronized graphite (20% boron) has been tested as a limiter material in the Wendelstein 7-AS stellarator. The recycling behaviour and the plasma impurities are compared for the new material and the formerly used TiC-coated graphite with stainless steel and boronized walls. After conditioning the recycling and the oxygen and carbon levels are comparable for both materials. No significant impact of sputter boronization from the limiters on the oxygen level was observed. A drastical reduction of oxygen by about a factor of 10 was obtained only after additional gas boronization. In this case Z[sub eff] is primarily determined by carbon and boron. For ECF standard discharges Z[sub eff][approx equal]2 with P[sub rad]=6% of the input power was found as compared to Z[sub eff]< or approx.3 and P[sub rad]=10% before boronization and Z[sub eff][approx equal]4, P[sub rad]=20% with TiC-limiters. (orig.).

  2. Effect of Calcium Ions on the Disintegration of Enteric-Coated Solid Dosage Forms.

    Science.gov (United States)

    Al-Gousous, Jozef; Langguth, Peter

    2016-02-01

    To investigate the effect of calcium ions on the disintegration of enteric-coated dosage forms, disintegration testing was performed on enteric-coated aspirin tablets in the presence and absence of calcium in the test media. The results show that the presence of calcium ions retards the disintegration of enteric-coated dosage forms. This finding, which has not been reported in scientific literature, sheds light on the importance of conducting well-designed detailed investigations into the potential of calcium from dietary sources, calcium supplements, antacids, and/or phosphate binders affecting the absorption of drugs formulated into enteric-coated dosage forms. Moreover, it shows the necessity to investigate the potential of the occurrence of additional nutrient-excipient interactions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Influence of lithium and boron ions on calcium sulfo-aluminate cement hydration: application for the conditioning of boron ion exchange resins

    International Nuclear Information System (INIS)

    Dhoury, Melanie

    2015-01-01

    In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one. In this PhD study, the potential of calcium sulfo-aluminate cements (CSAC) to solidify/stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye-elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study. Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye-elimite is strongly slowed

  4. Novel composite cBN-TiN coating deposition method: structure and performance in metal cutting

    International Nuclear Information System (INIS)

    Russell, W.C.; Malshe, A.P.; Yedave, S.N.; Brown, W.D.

    2001-01-01

    Cubic boron nitride coatings are under development for a variety of applications but stabilization of the pure cBN form and adhesion of films deposited by PVD and ion-based methods has been difficult. An alternative method for depositing a composite cBN-TiN film has been developed for wear related applications. The coating is deposited in a two-stage process utilizing ESC (electrostatic spray coating) and CVI (chemical vapor infiltration). Fully dense films of cBN particles evenly dispersed in a continuous TiN matrix have been developed. Testing in metal cutting has shown an increase in tool life (turning - 4340 steel) of three to seven times, depending of machining parameters, in comparison with CVD deposited TiN films. (author)

  5. Tribological properties of nitrogen implanted and boron implanted steels

    International Nuclear Information System (INIS)

    Kern, K.T.

    1996-01-01

    Samples of a steel with high chrome content was implanted separately with 75 keV nitrogen ions and with 75 keV boron ions. Implanted doses of each ion species were 2-, 4-, and 8 x 10 17 /cm 2 . Retained doses were measured using resonant non-Rutherford Backscattering Spectrometry. Tribological properties were determined using a pin-on-disk test with a 6-mm diameter ruby pin with a velocity of 0.94 m/min. Testing was done at 10% humidity with a load of 377 g. Wear rate and coefficient of friction were determined from these tests. While reduction in the wear rate for nitrogen implanted materials was observed, greater reduction (more than an order of magnitude) was observed for boron implanted materials. In addition, reduction in the coefficient of friction for high-dose boron implanted materials was observed. Nano-indentation revealed a hardened layer near the surface of the material. Results from grazing incidence x-ray diffraction suggest the formation of Fe 2 N and Fe 3 N in the nitrogen implanted materials and Fe 3 B in the boron implanted materials. Results from transmission electron microscopy will be presented

  6. Product surface hardening in non-self-sustained glow discharge plasma before synthesis of superhard coatings

    International Nuclear Information System (INIS)

    Krasnov, P S; Metel, A S; Nay, H A

    2017-01-01

    Before the synthesis of superhard coating, the product surface is hardened by means of plasma nitriding, which prevents the surface deformations and the coating brittle rupture. The product heating by ions accelerated from plasma by applied to the product bias voltage leads to overheating and blunting of the product sharp edges. To prevent the blunting, it is proposed to heat the products with a broad beam of fast nitrogen molecules. The beam injection into a working vacuum chamber results in filling of the chamber with quite homogeneous plasma suitable for nitriding. Immersion in the plasma of the electrode and heightening of its potential up to 50–100 V initiate a non-self-sustained glow discharge between the electrode and the chamber. It enhances the plasma density by an order of magnitude and reduces its spatial nonuniformity down to 5–10%. When a cutting tool is isolated from the chamber, it is bombarded by plasma ions with an energy corresponding to its floating potential, which is lower than the sputtering threshold. Hence, the sharp edges are sputtered only by fast nitrogen molecules with the same rate as other parts of the tool surface. This leads to sharpening of the cutting tools instead of blunting. (paper)

  7. Separation of boron isotopes using NMG type anion exchange resin

    International Nuclear Information System (INIS)

    Itagaki, Takaharu; Kosuge, Masao; Fukuda, Junji; Fujii, Yasuhiko.

    1992-01-01

    Ion exchange separation of boron isotopes (B-10 and B-11) has been studied by using a special boron selective ion exchange resin; NMG (n-methyl glucamine)-type anion exchange resin. The resin has shown a large isotope separation coefficient of 1.02 at the experimental conditions of temperature, 80degC, and boric acid concentration, 0.2 M (mole/dm 3 ). Enriched B-10 (92%) was obtained after the migration of 1149 m by a recyclic operation of ion exchange columns in a merry-go-round method. (author)

  8. Ion chamber instrument

    International Nuclear Information System (INIS)

    Stephan, D.H.

    1975-01-01

    An electrical ionization chamber is described having a self-supporting wall of cellular material which is of uniform areal density and formed of material, such as foamed polystyrene, having an average effective atomic number between about 4 and about 9, and easily replaceable when on the instrument. (auth)

  9. Structure, properties and applications of TiN coatings produced by sputter ion plating

    International Nuclear Information System (INIS)

    Rickerby, D.S.

    1988-01-01

    The potential beneficial effects that wear-resistant coatings have on engineering surfaces depends upon their ability to remain adherent with the treated component. This paper concentrates on the process of sputter ion plating, a simple dc glow discharge sputtering system operating in soft vacuum, and relates the properties of titanium nitride coatings to the degree of ion polishing (substrate bias) which is utilised during deposition. Substrate bias was identified as the most important system parameter since it allowed for some stress relaxation within the coating via its influence on porosity levels in the coating microstructure. The influence that this has on coating adhesion is discussed. The internal stress is a combination of intrinsic growth stresses and thermal mismatch stresses with the latter tending to dominate as substrate bias is increased. In addition to substrate bias, the role that titanium interlayers and substrate cleaning play in improving the adhesion of titanium nitride coatings is discussed, and the potential benefits highlighted. In the last part of the paper some applications of titanium nitride coating are described -it will be shown that increase in component life is by no means the only criterion which should be considered when judging the success, or otherwise, of a coated component. (author)

  10. Improved dental implant drill durability and performance using heat and wear resistant protective coatings.

    Science.gov (United States)

    Er, Nilay; Alkan, Alper; İlday, Serim; Bengu, Erman

    2018-03-02

    Dental implant drilling procedure is an essential step for implant surgery and frictional heat appeared in bone during drilling is a key factor affecting the success of an implant. The aim of this study is to increase the dental implant drill lifetime and performance using heat- and wear-resistant protective coatings hence to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling procedure was performed on a bovine femoral cortical bone under the conditions mimicking clinical practice, where the tests were performed both under water-assisted cooling and under the conditions without any cooling was applied. Coated drill performances and durabilities were compared to that of three commonly used commercial drills which surfaces are made from namely; zirconia, black diamond and stainless steel. Protective coatings with boron nitride, titanium boron nitride and diamond-like carbon have significantly improved drill performance and durability. Especially boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even without any cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat and wear resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can reflect positively on surgical procedure and healing period afterwards. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  11. Effects of ionization chamber construction on dose measurements in a heterogeneity

    International Nuclear Information System (INIS)

    Mauceri, T.; Kase, K.

    1987-01-01

    Traditionally, measurements have been made in heterogeneous phantoms to determine the factors which should be applied to dose calculations, when calculating a dose to a heterogeneous medium. Almost all measurements have relied on relatively thin-walled ion chambers, with no attempt to match ion chamber wall material to the measuring medium. The recent AAPM dosimetry protocol has established that a mismatch between ion chamber wall and phantom material can have an effect on dose measurement. To investigate the affect of this mismatch of ion chamber wall material to phantom material, two parallel-plate ion chambers were constructed. One ion chamber from solid water, for measurements in a solid water phantom and the other from plastic lung material, for measurements in a plastic lung material phantom. Correction factors measured by matching ion chamber to media were compared to correction factors measured by using a thin-walled cavity ion chamber with no regard for matching wall and media for cobalt-60, 6-, 10- and 20-MV photon beams. The results demonstrated that the matching of ion chamber to measuring media can be ignored, provided that a small, approximately tissue-equivalent, thin-walled ion chamber is used for measuring the correction factors

  12. H-isotope retention and thermal/ion-induced release in boronized films

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Wampler, W.R.; Hays, A.K.

    1990-01-01

    Over the past decade, it has been clearly demonstrated that the composition of the very near surface (∼100nm) of plasma-interactive components plays a determinant role in most processes which occur in the plasma-edge of Tokamaks. Two very successful techniques to effect control of the plasma-wall interaction are (1) in-situ deposition of amorphous carbon or boron-carbon films and (2) the use of He/C conditioning discharges or He glow discharge cleaning to modify the near surface of bulk graphite components. We have deposited boronized layers into Si using plasma-assisted CVD and sputter deposition. The PCVD deposition conditions were as close as possible to those used in TFTR, and some films deposited in TFTR have also been studied. Using these two deposition techniques, B x CH y films have been produced with x varying from 1/2 -- 4, and y from ∼1 (sputtered) to ∼3 (PCVD). Most films also contained significant amounts of 0. Thermal and ion-induced release of H-isotopes from BC films is qualitatively similar to that measured for graphite. Implanted H saturates in these films at a H/host atom ratio of 0.7 which is considerably higher than that of graphite(∼0.4). As-deposited PCVD films are already saturated with H, while sputtered films are not. Sputtered BC films therefore possess an inherent H-pumping capability which could prove to be extremely beneficial to TFTR. 16 refs., 5 figs., 1 tab

  13. Impurity and particle recycling reduction by boronization in JT-60U

    International Nuclear Information System (INIS)

    Higashijima, S.; Sugie, T.; Kubo, H.; Tsuji, S.; Shimada, M.; Asakura, N.; Hosogane, N.; Kawano, Y.; Nakamura, H.; Itami, K.; Sakasai, A.; Shimizu, K.; Ando, T.; Saidoh, M.

    1995-01-01

    In JT-60U boronization using decaborane was carried out. Boronization reduced the oxygen impurity in OH discharges and shortened the wall conditioning after the vacuum vessel vent and consequently enabled JT-60U to produce clean plasmas easily except for NB heated plasmas. After boronization, particle recycling was reduced drastically in OH and NB discharges. High confinement plasmas were obtained including high β p mode and H-mode discharges. In the latest boronization part of divertor plates were replaced with B 4 C coated tiles with a B 4 C thickness similar 300 μm. After introducing B 4 C divertor tiles, an explosive generation of boron particles from the tiles was observed. By the combined effects of boronization with decaborane and boron generation from B 4 C tiles, oxygen impurity was so low that oxygen line signals were reduced to noise levels after the latest boronization. On the other hand, boron burst from the B 4 C tiles restricted the operation of JT-60U. ((orig.))

  14. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    Science.gov (United States)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  15. Formation of titanium diboride coatings during the anodic polarization of titanium in a chloride melt with a low boron oxide content

    Science.gov (United States)

    Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.

    2015-02-01

    The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.

  16. Arc-discharge and magnetron sputtering combined equipment for nanocomposite coating deposition

    International Nuclear Information System (INIS)

    Koval, N.N.; Borisov, D.P.; Savostikov, V.M.

    2005-01-01

    It is known that characteristics of nanocomposite coatings produced by reactive magnetron sputtering undergo an essential influence on the following parameters such as original component composition of targets being sputtered, as well as abundance ratio of such components in the coatings deposited, relative content of inert and reactionary gases in a gas mixture used and a value of operating pressure in a chamber, substrate temperature, and a value of substrate bias potential, determining energy of ionized atoms, ionized atoms flow density, i.e. ion current density on a substrate. The multifactor character of production process of nanocomposite coatings with certain physical and mechanical properties demands a purposeful and complex control on all above-mentioned parameters. To solve such a problem, an arc-discharge and magnetron sputtering combined equipment including a vacuum chamber of approximately ∼ 0.5 m 3 with a built-in low-pressure plasma generator made on the basis of non-self-sustained discharge with a thermal cathode and a planar magnetron combined with two sputtered targets has been created. Construction of such a complex set-up provides both an autonomous mode of operation and simultaneous operation of an arc plasma generator and magnetron sputtering system. Magnetron sputtering of either one or two targets simultaneously is provided as well. An arc plasma generator enables ions current density control on a substrate in a wide range due to discharge current varying from 1 to 100 A. Energy of ions is also being controlled in a wide range by a negative bias potential from 0 to 1000 V applied to a substrate. The wide control range of gas plasma density of a arc discharge of approximately 10 9 -10 11 cm -3 and high uniformity of its distribution over the total volume of an operating chamber (about 15% error with regard to the mean value) provides a purposeful and simultaneous control either of magnetron discharge characteristics (operating pressure of

  17. Numerical simulation of performance of heavy ion inertial confinement fusion target with ellipsoidal chamber

    International Nuclear Information System (INIS)

    Basin, A.A.; Vatulin, V.V.; Vakhlamova, L.L.; Vinokurov, P.A.; Dement'ev, Yu.A.; Eliseev, G.M.; Ermolovich, V.F.; Morenko, L.Z.; Morenko, A.I.; Remizov, G.N.; Romanov, Yu.A.; Ryabikina, N.A.; Skrypnik, S.I.; Skidan, G.I.; Tikhomirov, B.P.; Shagaliev, R.M.

    1996-01-01

    To solve the design problem of an inertial thermonuclear fusion facility requires the united efforts of scientists in various countries. In the field of heavy ion fusion a collaboration between scientists in Germany and Russia is under successful development. VNIIEF possesses advanced software for numerical simulation of the processes in thermonuclear target operation. This paper describes a target design suggested and being studied by scientists of Frankfurt University and GSI which is based on 2D non-stationary calculation of the X-ray energy transport and capsule compression. The target consists of a spherical capsule with DT fuel and an ellipsoidal chamber containment. The ion beam energy is released in two fixed converters located on the chamber axis symmetricall with respect to the capsule. The X-ray field is formed on the capsule surface with a set of special shields. The basic aim of our research is to estimate the effect of gas dynamic expansion of the chamber walls, shields and capsule on the target operation. To increase the reliability of the obtained results and the assessment of probable errors in predicting radiation field parameters and the capsule state, the calculations were accomplished in a kinetic arrangement with various techniques. (orig.)

  18. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  19. Front and back side SIMS analysis of boron-doped delta-layer in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Pinault-Thaury, M.-A., E-mail: marie-amandine.pinault-thaury@uvsq.fr [Groupe d’Etude de la Matière Condensée, CNRS, University of Paris Saclay, University of Versailles St Quentin, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France); Jomard, F. [Groupe d’Etude de la Matière Condensée, CNRS, University of Paris Saclay, University of Versailles St Quentin, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France); Mer-Calfati, C.; Tranchant, N.; Pomorski, M.; Bergonzo, P.; Arnault, J.-C. [CEA, LIST, Diamond Sensors Laboratory, 91191 Gif-sur-Yvette (France)

    2017-07-15

    Highlights: • Front and back side SIMS analysis of delta-layer boron-doped is a first for diamond. • Combination of front and back side depth profiling improves delta-layer analyses. • Sharp interfaces are evidenced on both sides of the delta-layer boron-doped diamond. • The growth of delta-layer boron doped diamond is now well controlled. - Abstract: Nowadays the availability of very thin diamond layers in the range of nanometers as well as the possibility to characterize such delta-layer structures are required for the field of photonics and spintronics, but also for the development of next generation high power devices involving boron doping. The fabrication of diamond structures with abrupt interfaces such as superlattices and quantum wells has been recently improved. A very accurate characterization is then essential even though the analysis of such structures is arduous and challenging. SIMS analyses are commonly used to obtain depth profiles of dopants. However, below 10 nm in thickness, SIMS induced ion mixing effects which are no longer negligible. Then the raw SIMS profile might differ from the real dopant profile. In this study, we have analyzed a diamond structure containing a thin boron epilayer, especially synthesized to achieve SIMS analysis on both sides and to overcome the effects of ion mixing. We evidence the ion mixing induced by primary ions. Such a structure is a delta diamond layer, comparable to classical boron-doped delta-layer in silicon. Our results show that the growth of boron-doped delta-layer in diamond is now well controlled in terms of thickness and interfaces.

  20. Multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Crawford, H.J.; Flores, I.

    1987-04-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon /sup 40/Ar and 0.30e fwhm for 1.08 GeV/nucleon /sup 139/La and /sup 139/La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with sigmaapprox. =100 ..mu..m.

  1. Investigation on Nano-Self-Lubricant Coating Synthesized by Laser Cladding and Ion Sulfurization

    Directory of Open Access Journals (Sweden)

    Meiyan Li

    2015-01-01

    Full Text Available The composite processing between laser cladding and low temperature (300°C ion sulfurization was applied to prepare wear resistant and self-lubricating coating. The microstructure, morphology, phase composition, valence states, and wear resistance of the composite coating were investigated by scanning electron microscopy (SEM, atomic force microscope (AFM, X-ray diffraction (XRD, X-ray photoelectron spectroscope (XPS, and friction and wear apparatus. The results indicate that the laser cladding Ni-based coatings and the maximum hardness of 46.5 HRC were obtained when the percent of pure W powder was 10%, composed of columnar dendrites crystals and ultrafine dendritic structure. After ion sulfurization at 300°C for 4 h, the loose and porous composite coating is formed with nanograins and the granularity of all grains is less than 100 nm, which consists of γ-(Fe, Ni, M23C6 carbides, FeS, FeS2, and WS2. Furthermore, the wear resistance of the composite coating is better than the laser cladding Ni55 + 10%W coating, and the friction coefficient and mass losses under the conditions of dry and oil lubrication are lower than those of laser cladding Ni55 + 10%W coating.

  2. Growth and characterization of thick cBN coatings on silicon and tool substrates

    International Nuclear Information System (INIS)

    Bewilogua, K.; Keunecke, M.; Weigel, K.; Wiemann, E.

    2004-01-01

    Recently some research groups have achieved progress in the deposition of cubic boron nitride (cBN) coatings with a thickness of 2 μm and more, which is necessary for cutting tool applications. In our laboratory, thick cBN coatings were sputter deposited on silicon substrates using a boron carbide target. Following a boron carbide interlayer (few 100 nm thick), a gradient layer with continuously increasing nitrogen content was prepared. After the cBN nucleation, the process parameters were modified for the cBN film growth to a thickness of more than 2 μm. However, the transfer of this technology to technically relevant substrates, like cemented carbide cutting inserts, required some further process modifications. At first, a titanium interlayer had to be deposited followed by a more than 1-μm-thick boron carbide layer. The next steps were identical to those on silicon substrates. The total coating thickness was in the range of 3 μm with a 0.5- to nearly 1-μm-thick cBN top layer. In spite of the enormous intrinsic stress, both the coatings on silicon and on cemented carbide exhibited a good adhesion and a prolonged stability in humid air. Oxidation experiments revealed a stability of the coating system on cemented carbide up to 700 deg. C and higher. Coated cutting inserts were tested in turning operations with different metallic workpiece materials. The test results will be compared to those of well-established cutting materials, like polycrystalline cubic boron nitride (PCBN) and oxide ceramics, considering the wear of coated tools

  3. Ussing Chamber

    NARCIS (Netherlands)

    Westerhout, J.; Wortelboer, H.; Verhoeckx, K.

    2015-01-01

    The Ussing chamber system is named after the Danish zoologist Hans Ussing, who invented the device in the 1950s to measure the short-circuit current as an indicator of net ion transport taking place across frog skin (Ussing and Zerahn, Acta Physiol Scand 23:110-127, 1951). Ussing chambers are

  4. Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries

    Science.gov (United States)

    Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae

    Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.

  5. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  6. Boron determination in U3O8

    International Nuclear Information System (INIS)

    Ogura, Nadia S.; Sarkis, Jorge E.S.; Rosa, Daniele S.; Ulrich, Joao C.

    2009-01-01

    There exist specifications of the concentration as far the limit of impurities in the used uranium compounds is concerned. Among those impurities the boron element is detached. that in the uranium compounds acts as neutron absorber in nuclear reactions. Therefore, the determination of this element in uranium compounds, it is fundamental for the quality and performance of the nuclear fuels. However, the determination of this element is many times prejudiced by the presence of the uranium. For solving this problem, it is performed a chemical separation of the uranium (matrix) out of the interest. The most used methods to accomplish that separation are the solvent extraction and the ion exchange. In this work, the boron concentration will be done through the ion exchange technique, using polypropylene columns and Dowex AG 50W - X8 100-200 mesh cation resin in chloricide medium 0.25 M. The boron concentration will be determined through high resolution inductive coupling plasma mass spectrometry (HRICP-MS)

  7. Improved tribological behavior of boron implanted Ti-6Al-4V

    International Nuclear Information System (INIS)

    Baker, N.P.; Walter, K.C.; Nastasi, M.

    1998-03-01

    Boron implanted of Ti6Al4V has been conducted at combinations of 32 and 40 keV to supplement that done previously at 75 keV. Shallower boron depth profiles with higher B-concentrations in the Ti64 surface have been obtained by tailoring the combinations of ion energy and dose. This work used three different ion energy and dose combinations of 4 x 10 17 B-at/cm 2 at 40 keV plus 2 x 10 17 B-at/cm 2 at 32 keV, 4 x 10 17 B-at/cm 2 at 40 keV, and 4 x 10 17 B-at/cm 2 at 32 keV plus 2 x 10 17 B-at/cm 2 at 40 keV. Comparisons are made between Ti6Al4V with a shallow implanted boron depth profile, Ti6Al4V with a deeper boron depth profile and nitrogen implanted using a plasma source ion implantation process. It has been previously shown that while boron implanted Ti64 has a ∼ 30% higher surface hardness than nitrogen implanted Ti64, the N-implantation reduced the wear coefficient of Ti64 by 25--120x, while B-implantation reduced the wear coefficient by 6.5x or less. The results show that no significant improvement is made in the wear resistance of boron implanted Ti6Al4V by increasing the concentration of boron at the surface from approximately 10% to 43%. Transmission electron microscopy (TEM) and selected area diffraction (SAD) indicated the formation of crystalline TiB in the implanted surface layer. Shallower depth profiles result in reductions of the Ti6Al4V wear coefficient by 6.5x or less which is the same result obtained earlier with the deeper boron depth profile. Surface hardness of Ti6Al4V with shallower boron depth profiles was improved approximately 10% compared to the results previously acquired with deeper boron depth profiles

  8. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  9. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  10. Recombination methods for boron neutron capture therapy dosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Tulik, P.; Zielczynski, M.

    2003-01-01

    The radiation effects of boron neutron capture therapy (BNCT) are associated with four-dose-compartment radiation field - boron dose (from 10 B(n,α) 7 Li) reaction), proton dose from 14 N(n,p) 14 C reaction, neutron dose (mainly fast and epithermal neutrons) and gamma-ray dose (external and from capture reaction 1 H(n,γ) 2 D). Because of this the relation between the absorbed dose and the biological effects is very complex and all the above mentioned absorbed dose components should be determined. From this point of view, the recombination chambers can be very useful instruments for characterization of the BNCT beams. They can be used for determination of gamma and high-LET dose components for the characterization of radiation quality of mixed radiation fields by recombination microdosimetric method (RMM). In present work, a graphite high-pressure recombination chamber filled with nitrogen, 10 BF 3 and tissue equivalent gas was used for studies on application of RMM for BNCT dosimetry. The use of these gases or their mixtures opens a possibility to design a recombination chamber for determination of the dose fractions due to gamma radiation, fast neutrons, neutron capture on nitrogen and high LET particles from (n, 10 B) reaction in simulated tissue with different content of 10 B. (author)

  11. Ion production from LiF-coated field emitter tips

    International Nuclear Information System (INIS)

    Pregenzer, A.L.; Bieg, K.W.; Olson, R.E.; Panitz, J.A.

    1990-01-01

    Ion emission has been obtained from a LiF-coated tungsten field-emitter tip. Ion formation is thought to be caused by the high electric field experienced by the LiF. At the time of emission the electric field at the surface of the LiF is calculated to be on the order of 100 MV/cm. Inside the LiF the field is on the order of 10 MV/cm. These fields exceed the value needed to produce bulk dielectric breakdown in LiF. The surface field is of sufficient magnitude to produce ion emission by field evaporation from the crystal surface. Even prior to dielectric breakdown, precursor processes can lead to ion formation. Electric-field-stress fragmentation of the LiF layer is thought to occur, followed by ionization of the fragments

  12. In situ boron doping during heteroepitaxial growth of diamond on Ir/YSZ/Si

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Andre F.; Fischer, Martin; Gsell, Stefan; Schreck, Matthias [Universitaet Augsburg, Institut fuer Physik, 86135 Augsburg (Germany)

    2012-09-15

    In situ boron doping of heteroepitaxial diamond films grown by microwave plasma chemical vapor deposition on Ir/YSZ/Si (001) is investigated. The study comprises the analysis of the gas phase by optical emission spectroscopy (OES) and measurements of B doped films by secondary ion mass spectroscopy (SIMS), cathodoluminescence (CL), and X-ray diffraction (XRD). The OE intensity of BH species scales linearly with the concentration of the boron precursor trimethylboron (TMB) in the feed gas. Addition of CO{sub 2} as an oxygen source causes a proportional reduction of the BH signal. At a ratio C:O = 1, a reduction factor of {proportional_to}50 is obtained. It is shown for two diamond samples that the boron incorporation drops nearly identical to the BH emission intensity. We conclude that the influence of oxygen on boron incorporation is a pure gas phase effect. In contrast, CN and BH emission indicate a negligible interaction between N{sub 2} and TMB added to the feed gas. At the same time, preliminary growth rate measurements show that the boron background pressure in the chamber after growth with TMB completely cancels the growth acceleration by nitrogen up to N{sub 2} concentrations of 100 ppm which points to the dominance of surface processes. Heteroepitaxial diamond films grown on Ir at 50 mbar between 720 and 900 C contain high intrinsic stress that varies from -2.2 GPa compressive at the lowest to slightly tensile at the highest deposition temperature. The observed behavior is similar to former work at 200 mbar in which effective climb of dislocations was suggested as responsible mechanism. Addition of boron rather enhances the stress formation than causing a relaxation. The B concentration in the heteroepitaxial films is deduced by SIMS, CL, and XRD and correlated with the TMB concentration in the gas phase. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  14. Formation of a glassy phase in ceramic-like coatings

    International Nuclear Information System (INIS)

    Sazonova, M.V.; Gorbatova, G.N.

    1986-01-01

    The authors investigate the synthesis directly in coatings of a borosilicate melt that could fill the role of glassy matrix, thereby avoiding fusion and processing of the glassy material. The effect of added boron on the formation of coatings based on molybdenum disilicide and tungsten disilicide in air at 900 degrees C is presented. Without an additive no coating forms; there is no adhesion to the graphite and a continuous film does not form. As a result of boron oxidation an easily fused glassy matrix forms, which bonds the molybdenum disilicide or tungsten disilicide particles together and ensures adhesion to the graphite

  15. Experimental demonstration of ion extraction from magnetic thrust chamber for laser fusion rocket

    Science.gov (United States)

    Saito, Naoya; Yamamoto, Naoji; Morita, Taichi; Edamoto, Masafumi; Nakashima, Hideki; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi; Mori, Yoshitaka; Johzaki, Tomoyuki

    2018-05-01

    A magnetic thrust chamber is an important system of a laser fusion rocket, in which the plasma kinetic energy is converted into vehicle thrust by a magnetic field. To investigate the plasma extraction from the system, the ions in a plasma are diagnosed outside the system by charge collectors. The results clearly show that the ion extraction does not strongly depend on the magnetic field strength when the energy ratio of magnetic field to plasma is greater than 4.3, and the magnetic field pushes back the plasma to generate a thrust, as previously suggested by numerical simulation and experiments.

  16. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    International Nuclear Information System (INIS)

    Peters, A.M.; He, X.M.; Trkula, M.; Nastasi, M.

    2001-01-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6 ] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700 deg. C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8x10 -6 mm 3 /Nm and contact angles ranged from 156 deg. to 127 deg

  17. Segregation and Microstructure in the Fusion zones of Laser joints of Al-10%Si coated Boron Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Min-Suck [Hyundai Hysco Co., Ltd, Ulsan (Korea, Republic of); Kang, Chung-Yun [Pusan National University, Busan (Korea, Republic of)

    2016-01-15

    During laser welding of Al-10 wt%Si coated boron steel, which is used in the automotive industry, Al and Si, which are elements of the coated layer, are diluted in the fusion zone; then, the concentration of Al and Si is distributed randomly. The segregation can be roughly classified into two types. The first forms along the fusion boundary in a long comet shape in the depth direction of the fusion zone. The Al concentration of this comet shape is Fe3(Al, Si)and the material is composed of a single phase. This segregation phase is formed at the same time as the melting of the base metal and the diluting of the coated layer of Fe(Al, Si), without reaction of the molten metal. Then, a static dissolution reaction of the diluted coated layer occurs, scarcely stirring the molten metal; the concentration of Al and Si is reduced to 1/2. The second type of segregation is formed by martensite and bainte in the fusion zone of the segregated zone; the composition of Al is 1.28⁓0.48 wt%. Considering the results of the analysis of the Fe(Si,C, Mn,Cr)-xwt%Al quasi binary phase diagram, performed using Thermo-Calc, segregated zones are solidified in the form “L→L+α→γ”. Also, and as a result, it was found that the phase transformation from γ under-cooling results in the solid phase, which undergoes bainite transformation and is transformed to martensite.

  18. Segregation and Microstructure in the Fusion zones of Laser joints of Al-10%Si coated Boron Steel

    International Nuclear Information System (INIS)

    Kwon, Min-Suck; Kang, Chung-Yun

    2016-01-01

    During laser welding of Al-10 wt%Si coated boron steel, which is used in the automotive industry, Al and Si, which are elements of the coated layer, are diluted in the fusion zone; then, the concentration of Al and Si is distributed randomly. The segregation can be roughly classified into two types. The first forms along the fusion boundary in a long comet shape in the depth direction of the fusion zone. The Al concentration of this comet shape is Fe3(Al, Si)and the material is composed of a single phase. This segregation phase is formed at the same time as the melting of the base metal and the diluting of the coated layer of Fe(Al, Si), without reaction of the molten metal. Then, a static dissolution reaction of the diluted coated layer occurs, scarcely stirring the molten metal; the concentration of Al and Si is reduced to 1/2. The second type of segregation is formed by martensite and bainte in the fusion zone of the segregated zone; the composition of Al is 1.28⁓0.48 wt%. Considering the results of the analysis of the Fe(Si,C, Mn,Cr)-xwt%Al quasi binary phase diagram, performed using Thermo-Calc, segregated zones are solidified in the form “L→L+α→γ”. Also, and as a result, it was found that the phase transformation from γ under-cooling results in the solid phase, which undergoes bainite transformation and is transformed to martensite.

  19. Determination of Boron in soils and plants samples using spectrophotometric method

    International Nuclear Information System (INIS)

    Stas, J.; Hariri, Z.

    2011-10-01

    In this work, the concentration of boron in soil and plant samples was determined with UV-vis spectrophotometer by using azomethine-H as a complex reagent. The calibration curve for boron determination in the range of (0μ3 g.mL - 1) was constructed by plotting the measured absorption of the yellow azomethine-H-B complex at λmax = 412.6 nm against boron concentration in the aqueous phase. The detection limit, repeatability limit, intermediate precision, accuracy, and recovery coefficient of this method were calculated and found to be 0.021 μg.mL - 1, 0.335% , 0.81%, 2.93%, (98.4-101.5)% respectively. The influence of some foreign ions on the determination of boron were also investigated in detail, most of the studied ions, like iron, iodide, and calcium can be tolerated within the ranges of (20-35μg.mL-1), (3000-5000μg.mL - 1) , (15000-30000μg.mL - 1) respectively. This is due to the fact, that ascorbic acid and EDTA in the buffer masking reagent reaction system can be very effective in masking these ions. This method was found to be economic and suitable for boron determination in standard and local samples (soil, plant) and requires small amount of sample (1g). This method can also be applied for boron determination in water samples (drinking and industrial waste water).(author)

  20. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    Science.gov (United States)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  1. The fraction of substitutional boron in silicon during ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Caturla, M.J.; Johnson, M.D.; Diaz de la Rubia, T.

    1998-01-01

    We present results from a kinetic Monte Carlo simulation of boron transient enhanced diffusion (TED) in silicon. Our approach avoids the use of phenomenological fits to experimental data by using a complete and self-consistent set of values for defect and dopant energetics derived mostly from ab initio calculations. The results predict that, during annealing of 40 keV B-implanted Si at 800 degree C, there exists a time window during which all the implanted boron atoms are substitutional. At earlier or later times, the interactions between free silicon self-interstitials and boron atoms drive the growth of boron clusters and result in an inactive boron fraction. The results show that the majority of boron TED takes place during the growth period of interstitial clusters and not during their dissolution. copyright 1998 American Institute of Physics

  2. Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Penache, D.; Tauschwitz, A.; Rosmej, F.B.; Neff, S.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Yu, S.S.; Sharp, W.M.; Ponce, D.M.; Hoffmann, D.H.H.

    2002-01-01

    The final beam transport in the reactor chamber for heavy ion fusion in preformed plasma channels offers many attractive advantages compared to other transport modes. In the past few years, experiments at the Gesellschaft fuer Schwerionenforschung (GSI) accelerator facility have addressed the creation and investigation of discharge plasmas, designed for the transport of intense ion beams. Stable, self-standing channels of 50 cm length with currents up to 55 kA were initiated in low-pressure ammonia gas by a CO 2 -laser pulse along the channel axis before the discharge is triggered. The channels were characterized by several plasma diagnostics including interferometry and spectroscopy. We also present first experiments on laser-guided intersecting discharges

  3. Effect of Boronization on Ohmic Plasmas in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Maingi, R.; Wampler, W.R.; Blanchard, W.; Bell, M.; Bell, R.; LeBlanc, B.; Gates, D.; Kaye, S.; LaMarche, P.; Menard, J.; Mueller, D.; Na, H.K.; Nishino, N.; Paul, S.; Sabbagh, S.; Soukhanovskii, V.

    2001-01-01

    Boronization of the National Spherical Torus Experiment (NSTX) has enabled access to higher density, higher confinement plasmas. A glow discharge with 4 mTorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B+C areal density of 10 to the 18 (B+C) cm to the -2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by x15, carbon emission reduced by two and copper reduced to undetectable levels. After boronization, the plasma current flattop time increased by 70% enabling access to higher density, higher confinement plasmas

  4. Neutron/gamma dose separation by the multiple-ion-chamber technique

    International Nuclear Information System (INIS)

    Goetsch, S.J.

    1983-01-01

    Many mixed n/γ dosimetry systems rely on two dosimeters, one composed of a tissue-equivalent material and the other made from a non-hydrogenous material. The paired chamber technique works well in fields of neutron radiation nearly identical in spectral composition to that in which the dosimeters were calibrated. However, this technique is drastically compromised in phantom due to the degradation of the neutron spectrum. The three-dosimeter technique allows for the fall-off in neutron sensitivity of the two non-hydrogenous dosimeters. Precise and physically meaningful results were obtained with this technique with a D-T source in air and in phantom and with simultaneous D-T neutron and 60 Co gamma ray irradiation in air. The MORSE-CG coupled n/γ three-dimensional Monte Carlo code was employed to calculate neutron and gamma doses in a water phantom. Gamma doses calculated in phantom with this code were generally lower than corresponding ion chamber measurements. This can be explained by the departure of irradiation conditions from ideal narrow-beam geometry. 97 references

  5. RF H-minus ion source development in China spallation neutron source

    Science.gov (United States)

    Chen, W.; Ouyang, H.; Xiao, Y.; Liu, S.; Lü, Y.; Cao, X.; Huang, T.; Xue, K.

    2017-08-01

    China Spallation Neutron Source (CSNS) phase-I project currently uses a Penning surface plasma H- ion source, which has a life time of several weeks with occasional sparks between high voltage electrodes. To extend the life time of the ion source and prepare for the CSNS phase-II, we are trying to develop a RF negative hydrogen ion source with external antenna. The configuration of the source is similar to the DESY external antenna ion source and SNS ion source. However several changes are made to improve the stability and the life time. Firstly, Si3N4 ceramic with high thermal shock resistance, and high thermal conductivity is used for plasma chamber, which can endure an average power of 2000W. Secondly, the water-cooled antenna is brazed on the chamber to improve the energy efficiency. Thirdly, cesium is injected directly to the plasma chamber if necessary, to simplify the design of the converter and the extraction. Area of stainless steel exposed to plasma is minimized to reduce the sputtering and degassing. Instead Mo, Ta, and Pt coated materials are used to face the plasma, which makes the self-cleaning of the source possible.

  6. Tuning the Colors of the Dark Isomers of Photochromic Boron Compounds with Fluoride Ions: Four-State Color Switching.

    Science.gov (United States)

    Mellerup, Soren K; Rao, Ying-Li; Amarne, Hazem; Wang, Suning

    2016-09-02

    Combining a three-coordinated boron (BMes2) moiety with a four-coordinated photochromic organoboron unit leads to a series of new diboron compounds that undergo four-state reversible color switching in response to stimuli of light, heat, and fluoride ions. Thus, these hybrid diboron systems allow both convenient color tuning/switching of such photochromic systems, as well as visual fluoride sensing by color or fluorescent emission color change.

  7. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  8. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...

  9. Scattering chamber for the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Goodman, C.D.; Corum, J.E.

    1977-09-01

    A conceptual design is presented for a 62-in.-diam. general purpose scattering chamber to be used for nuclear research with heavy ions. The detector rotation mechanism is based on large diameter (approx. 58 in.) peripherally driven rings. This leaves the central region open for detectors and other apparatus and permits the use of a perpendicular ring for rotating a detector out of the reaction plane. A precision target slide with provisions for removing the entire slide under vacuum is part of the design. Access and viewing ports on the dished top and in the reaction plane will be provided. Cryogenic pumping will be used to keep the vacuum free from hydrocarbon vapors, water vapor, and oxygen

  10. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  11. Multilayer stacks obtained by ion assisted EB PVD aimed at thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Lyutovich, A. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA)

    2010-07-01

    Thermal Barrier Coating (TBC) using Electron Beam Physical Vapour Deposition (EB PVD) is widely implemented, especially for aero-engine turbine blades. Generally, multilayer stacks are used for these aims. For the additional improvement of intermediate layers with graded transitions to the initial Ni-based alloy, the use of accelerated ions in the EBPVD-process is advantageous. The effect of the substrate bias potential, ion current density and deposition temperature on the structure and properties of Ti and Zr intermediate layers are investigated. The morphology of the films is studied using optical microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). It is found that the surface morphology becomes smoother with rising bias potential and decreasing ion current density. Measurements of Vicker's micro-hardness performed on these coatings have shown its increase with higher values of the bias and its reduction with the growing temperature. This effect is caused by the observed decrease in grain size and higher porosity of the films. A multilayer coating system Ni (based substrate)-Si-Si{sub x}Al{sub y}-Al with graded transitions between the layers is obtained using ion assisted EBPVD. Architecture of a multilayer stack for TBC with graded transitions is proposed. (orig.)

  12. Chitosan-coated magnetite nanoparticles as adsorbent for the removal of molybdenum ions

    International Nuclear Information System (INIS)

    Sousa, Jose S.; Egute, Nayara S.; Yamaura, Mitiko; Freitas, Antonio A.; Holland, Helber; Lugao, Ademar B.

    2011-01-01

    Metal ions in wastewater, even at low concentrations, affect a large number of organisms due to their high degree of toxicity. Research has developed some alternative methods for metal removal from the wastewater, as adsorption using a bio sorbent of combined chitosan with magnetic particles. Chitosan is a natural bio polymer, which has a highly reactive active sites in its structure, composed of amino and hydroxyl groups with affinity to bind to metal ions. In this study, magnetic nanoparticles of coated magnetite with chitosan as an adsorbent of molybdenum(Vi) ions in aqueous medium was investigated. The adsorption experiments were performed varying the time contact from 5 to 150 min, the p H from 0.5 to 11 and the molybdenum concentrations in nitric solutions. All molybdenum analyses were carried out by gamma spectroscopy using a Hp Ge detector and 99 Mo as radioactive tracer. Results showed that the chitosan-coated magnetite particles are good adsorbent for Mo ions from aqueous medium in the range of p H from 0.5 to 9 with a removal higher than 99%. Among the studied isotherm models, the Freundlich model fitted best the equilibrium adsorption isotherm of Mo(VI) ions. (author)

  13. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Science.gov (United States)

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries. PMID:28347087

  14. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  15. The effect of ion implantation on the oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jie [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhao Huayu; Zhou Xiaming [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Tao Shunyan, E-mail: shunyantao@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Ding Chuanxian [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We used ion implantation to improve the oxidation resistance of CoNiCrAlY coating. Black-Right-Pointing-Pointer The oxidation process of CoNiCrAlY coating at 1100 Degree-Sign C for 1000 h was studied. Black-Right-Pointing-Pointer The Nb ion implanted coating exhibited better oxidation resistance. Black-Right-Pointing-Pointer The influences of Nb and Al ion implantation into CoNiCrAlY coatings were evaluated. - Abstract: CoNiCrAlY coatings prepared by vacuum plasma spraying (VPS) were implanted with Nb and Al ions at a fluence of 10{sup 17} atoms/cm{sup 2}. The effects of ion implantation on the oxidation resistance of CoNiCrAlY coatings were investigated. The thermally grown oxide (TGO) formed on each specimen was characterized by XRD, SEM and EDS, respectively. The results showed that the oxidation process of CoNiCrAlY coatings could be divided into four stages and the key to obtaining good oxidation resistance was to remain high enough amount of Al and promote the lateral growth of TGO. The implantation of Nb resulted in the formation of continuous and dense Al{sub 2}O{sub 3} scale to improve the oxidation resistance. The Al implanted coating could form Al{sub 2}O{sub 3} scale at the initial stage, however, the scale was soon broken and TGO transformed to non-protective spinel.

  16. Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations.

    Science.gov (United States)

    Limited research has been conducted on the interactive effects of salinity and boron stresses on plants despite their common occurrence in natural systems. The purpose of this research was to determine and quantify the interactive effects of salinity, salt composition and boron on broccoli (Brassica...

  17. Using the thermal diffusion cloud chamber to study the ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    Wu, Yefei.

    1991-01-01

    Thermal diffusion cloud chamber is steady-state device and has been extensively used for nucleation research. In order to study the ion-induced nucleation by radon decay, a new chamber was designed with improved both upper and bottom plates, the system of circulating fluid, the gasketting, the temperature measurement and the insulation. An alternative method of using oxygen as carrier gas was examined. Therefore, the heavy carrier gas including nitrogen, oxygen, neon, argon and air can be used to study radon radiolysis-induced nucleation for the water or organic compounds in the TDCC. The effects of the pressure and temperature ranges on the density, supersaturation, temperature and partial pressure profile for the water-oxygen-helium in the TDCC have been examined. Based on the classical theory, the rate profile of ion-induced nucleation by radon decays was calculated and compared with the homogeneous nucleation. From measured indoor concentrations of Volatile Organic Compounds (VOC), thermodynamic theory models were used to assess the possibility that these compounds will form ultrafine particles in indoor air by ion-induced nucleation. The energy, number of molecules and equilibrium radius of clusters have been calculated based on Such and Thomson theories. These two sets of values have been compared. Ion cluster radii corresponding to 1--3 VOC molecules are in range of 3--5 x 10 -8 cm. 43 refs., 18 figs., 5 tabs

  18. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility.

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices.

  19. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance.

    Science.gov (United States)

    Kose, Nusret; Otuzbir, Ali; Pekşen, Ceren; Kiremitçi, Abdurrahman; Doğan, Aydin

    2013-08-01

    Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants. We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses. We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits' knees. Before implantation, 5 × 10(2) colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation. Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses. Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants. Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.

  20. Deep reactive ion etching of fused silica using a single-coated soft mask layer for bio-analytical applications

    International Nuclear Information System (INIS)

    Ray, Tathagata; Zhu, Haixin; Meldrum, Deirdre R

    2010-01-01

    In this note, we present our results from process development and characterization of reactive ion etching (RIE) of fused silica using a single-coated soft masking layer (KMPR® 1025, Microchem Corporation, Newton, MA). The effects of a number of fluorine-radical-based gaseous chemistries, the gas flow rate, RF power and chamber pressure on the etch rate and etching selectivity of fused silica were studied using factorial experimental designs. RF power and pressure were found to be the most important factors in determining the etch rate. The highest fused silica etch rate obtained was about 933 Å min −1 by using SF 6 -based gas chemistry, and the highest etching selectivity between the fused silica and KMPR® 1025 was up to 1.2 using a combination of CF 4 , CHF 3 and Ar. Up to 30 µm deep microstructures have been successfully fabricated using the developed processes. The average area roughness (R a ) of the etched surface was measured and results showed it is comparable to the roughness obtained using a wet etching technique. Additionally, near-vertical sidewalls (with a taper angle up to 85°) have been obtained for the etched microstructures. The processes developed here can be applied to any application requiring fabrication of deep microstructures in fused silica with near-vertical sidewalls. To our knowledge, this is the first note on deep RIE of fused silica using a single-coated KMPR® 1025 masking layer and a non-ICP-based reactive ion etcher. (technical note)

  1. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    International Nuclear Information System (INIS)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Sann, H.; Young, J.C.

    1987-01-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon 40 Ar and 0.30e fwhm for 1.08 GeV/nucleon 139 La and 139 La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with σ≅100 μm. (orig.)

  2. Investigation of tungsten coatings on graphite and CFC

    International Nuclear Information System (INIS)

    Neu, R; Maier, H; Gauthier, E; Greuner, H; Hirai, T; Hopf, Ch; Likonen, J; Maddaluno, G; Matthews, G F; Mitteau, R; Philipps, V; Piazza, G; Ruset, C

    2007-01-01

    In the frame of JET's ITER-like wall (ILW) project tungsten coatings on carbon fibre reinforced carbon substrates will be used in the divertor and highly loaded areas in the main chamber. Fourteen different types of samples were produced by physical or chemical vapour deposition and vacuum plasma spray (VPS) with coating thickness of 4, 10 and 200 μm. Similarly, three different VPS W coatings (200 μm) on two different graphite substrates, were produced for use at the strike-point regions of ASDEX Upgrade. All coatings were subjected to thermal screening and thermal cycling tests in the ion beam facility GLADIS. Additionally, the coatings intended for the ILW project were exposed to edge localized mode (ELM)-like thermal loads in the electron beam facility JUDITH. A general failure mode with the CFC substrate is crack formation upon cool-down, whereas the coatings on graphite do not show any crack formation. Additionally, metallographic investigations, x-ray diffraction measurements, adhesion testing as well as measurements on the contents of light impurities were performed

  3. Measurements of ion mobility and GEM discharge studies for the upgrade of the ALICE time projection chamber

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00507268

    2018-02-20

    ALICE is one of the four experiments at the Large Hadron Collider (LHC). The quark-gluon plasma, which is predominantly produced in lead-lead collisions at LHC, is of particular interest for ALICE. After the long shut-down 2 (2019-2021) the LHC will provide lead-lead collisions at an increased interaction rate of 50 kHz. In order to examine every event at this interaction rate the ALICE Time Projection Chamber (TPC) needs to be upgraded. The TPC’s ReadOut Chambers (ROCs) are currently multi-wire proportional chambers. To prevent space charge build-up of slow ions, drifting from the ROCs into the TPC, a gating grid is used. The corresponding closure time imposes a dead time on the TPC read out, which prohibits data taking at a readout rate higher than 3 kHz. New ROCs have therefore been designed, relying on stacks of Gas Electron Multiplier (GEM) foils for the gas amplification, allowing for continuous readout. With the new ROCs, a certain fraction of ions will be drifting at all time into the TPC. Knowing t...

  4. Ion-assisted functional monolayer coating of nanorod arrays in hydrogen plasmas

    International Nuclear Information System (INIS)

    Tam, E.; Levchenko, I.; Ostrikov, K.; Keidar, M.; Xu, S.

    2007-01-01

    Uniformity of postprocessing of large-area, dense nanostructure arrays is currently one of the greatest challenges in nanoscience and nanofabrication. One of the major issues is to achieve a high level of control in specie fluxes to specific surface areas of the nanostructures. As suggested by the numerical experiments in this work, this goal can be achieved by manipulating microscopic ion fluxes by varying the plasma sheath and nanorod array parameters. The dynamics of ion-assisted deposition of functional monolayer coatings onto two-dimensional carbon nanorod arrays in a hydrogen plasma is simulated by using a multiscale hybrid numerical simulation. The numerical results show evidence of a strong correlation between the aspect ratios and nanopattern positioning of the nanorods, plasma sheath width, and densities and distributions of microscopic ion fluxes. When the spacing between the nanorods and/or their aspect ratios are larger, and/or the plasma sheath is wider, the density of microscopic ion current flowing to each of the individual nanorods increases, thus reducing the time required to apply a functional monolayer coating down to 11 s for a 7-μm-wide sheath, and to 5 s for a 50-μm-wide sheath. The computed monolayer coating development time is consistent with previous experimental reports on plasma-assisted functionalization of related carbon nanostructures [B. N. Khare et al., Appl. Phys. Lett. 81, 5237 (2002)]. The results are generic in that they can be applied to a broader range of plasma-based processes and nanostructures, and contribute to the development of deterministic strategies of postprocessing and functionalization of various nanoarrays for nanoelectronic, biomedical, and other emerging applications

  5. Boron and chlorine isotopic signatures of seawater in the Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Xiao, Y.K.; Hai, L.

    (CIR). Boron and chlorine isotopic measurements were made using positive thermal ionization mass spectrometry (TIMS) of Cs2BO4 + and Cs2Cl+ ions respectively, mainly to understand their isotopic behaviours to elucidate the consistency of boron...

  6. Nanosilver coated orthodontic brackets: in vivo antibacterial properties and ion release.

    Science.gov (United States)

    Metin-Gürsoy, Gamze; Taner, Lale; Akca, Gülçin

    2017-02-01

    Silver nanoparticles are currently utilized in the fields of dentistry. The aim of this study was to evaluate the antibacterial properties and ion release of nanosilver coated orthodontic brackets compared to conventional brackets. Nanosilver coating process was applied to standard orthodontic brackets placed on the mandibular incisors of Wistar Albino rats in the study group and conventional brackets in the control group. Dental plaque, mucosal vestibular smears, saliva, and blood samples were collected from rats at various days. The amounts of nanosilver ions in blood and saliva were measured and microbiological evaluation was made for Streptococcus mutans. For testing cariogenicity, all rats were sacrificed at the end of 75 days under anaesthesia. Teeth were stained using a caries indicator, then the caries ratio was assessed. Nanosilver coated orthodontic bracket favoured the inhibition of S.mutans on Day 30 and reduction of caries on the smooth surfaces. The nanosilver amounts in the saliva and serum samples were significantly higher in the study group on Day 7. It is suggested that nanosilver coated orthodontic brackets, as an antibacterial agent without patient compliance, could be helpful for the prevention of white spot lesions during fixed orthodontic treatment. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam

    Science.gov (United States)

    Hu, Changmin; Yu, Le; Wei, Mei

    2018-06-01

    A biomimetic bone-like collagen-hydroxyapatite (Col-HA) composite coating was formed on a surface-treated Ti-6Al-4V alloy substrate via simultaneous collagen self-assembly and hydroxyapatite nucleation. The coating process has been carried out by immersing sand-blasted, acid-etched and UV irradiated Ti-6Al-4V alloy in type I collagen-containing modified simulated body fluid (m-SBF). The surface morphology and phase composition of the coating were characterized using various techniques. More importantly, dual-beam FIB/SEMs with either gallium ion source (GFIB) or xenon plasma ion source (PFIB) were used to investigate the cross-sectional features of the biomimetic Col-HA composite coating in great details. As a result, the cross-sectional images and thin transmission electron microscopy (TEM) specimens were successfully obtained from the composite coating with no obvious damages or milling ion implantations. Both the cross-sectional SEM and TEM results have confirmed that the Col-HA coating demonstrates a similar microstructure to that of pure HA coating with homogeneously distributed elements across the whole cross section. Both coatings consist of a uniform, crack-free gradient structure with a dense layer adjacent to the interface between the Ti-6Al-4V substrate and the coating facilitating a strong bonding, while a porous structure at the coating surface aiding cell attachment.

  8. Lateral boron distribution in polycrystalline SiC source materials

    DEFF Research Database (Denmark)

    Linnarsson, M. K.; Kaiser, M.; Liljedahl, R.

    2013-01-01

    . The materials are co-doped materials with nitrogen and boron to a concentration of 1x1018 cm-3 and 1x1019 cm-3, respectively. Depth profiles as well as ion images have been recorded. According to ocular inspection, the analyzed poly-SiC consists mainly of 4H-SiC and 6H-SiC grains. In these grains, the boron...

  9. a-Si:H/μc-Si:H solar cells prepared by the single-chamber processes—minimization of phosphorus and boron cross contamination

    Energy Technology Data Exchange (ETDEWEB)

    Merdzhanova, Tsvetelina, E-mail: t.merdzhanova@fz-juelich.de; Zimmermann, Thomas; Zastrow, Uwe; Gordijn, Aad; Beyer, Wolfhard

    2013-07-01

    Single-chamber processes for the deposition of high efficiency thin-film silicon tandem cells of an a-Si:H p-i-n (top cell)/μc-Si:H p-i-n (bottom cell) structure involving short fabrication time are reported. An industry relevant reactor and an excitation frequency of 13.56 MHz were used. The conversion efficiency is found to be highly sensitive to dopant cross contamination into the μc-Si:H i-layer of the bottom cell and within the n/p-interface of the tunnel recombination junction (TRJ). Different reactor treatments at the p/i-interfaces of the top and bottom cells and at the n/p-interface of the TRJ were applied, aiming to prevent dopant cross contamination. The phosphorus and the boron concentrations were evaluated by secondary ion mass spectrometry measurements. Phosphorus cross contamination after TRJ n-layer deposition is found to result in significant n-type doping of the μc-Si:H i-layer of the bottom cell if no reactor treatment is applied. In situ reactor treatment via an Ar flush and pumping step of 15 min applied at the n/p-interface of TRJ results in reduction of the μc-Si:H i-layer phosphorus concentration to values below 10{sup 17} cm{sup −3}. A conversion efficiency of 11.8% for such tandem cells is demonstrated. Shorter interface treatment time with phosphorus concentrations in the μc-Si:H i-layer of about 5 × 10{sup 17} cm{sup −3} results in lower conversion efficiencies of 10.6%, mainly due to the decrease of open-circuit voltage and fill factor. - Highlights: • Single-chamber process for a-Si:H/μc-Si:H solar cell is developed. • P- and B-contaminations at n/p interface and μc-Si:H i-layer are quantified by SIMS. • Reactor treatment is required at n/p interface for minimum dopant cross contamination. • Ar-flush pumping of reactor reduces P concentration in μc-Si:H i-layer to 10{sup 17} cm{sup −3}{sub .} • Conversion efficiency of 11.4% is reached at reactor treatment time of 17 min.

  10. An enhanced production of highly charged ions in the ECR ion sources

    International Nuclear Information System (INIS)

    Schaechter, L.; Dobrescu, S.; Badescu- Singureanu, Al.I.; Stiebing, K.E.; Runkel, S.; Hohn, O.; Schmidt, L.; Schempp, A.; Schmidt - Boecking, H.

    2000-01-01

    The electron cyclotron resonance (ECR) ion source (ECRIS) are the ideal sources of highly charged heavy ions. Highly charged heavy ions are widely used in atomic physics research where they constitute a very efficient tool due to their very high electric potential of collision. The highly charged ions are also used in fusion plasma physics studies, in solid state surface physics investigations and are very efficient when injected in particle accelerators. More than 50 ECR ion sources are presently working in the whole world. Stable and intense highly charged heavy ions beams are extracted from ECR ion sources, in a wide range of ion species. RECRIS, the Romanian 14 GHz ECR Ion Source, developed in IFIN-HH, designed as a facility for atomic physics and materials studies, has been recently completed. The research field concerning the development of advanced ECRIS and the study of the physical processes of the ECR plasma are presently very dynamical , a fact well proved by the great number of scientific published works and the numerous dedicated international conferences and workshops. It is well established that the performance of ECRIS can substantially be enhanced if special techniques like a 'biased disk' or a special wall coating of the plasma chamber are employed. In the frame of a cooperation project between IFIN-HH ,Bucharest, Romania and the Institut fuer Kernphysik of the J. W. Goethe University, Frankfurt/Main, Germany we developed, on the basis of previous research carried out in IFIN-HH, a new method to strongly increase the intensity of the ion beams extracted from the 14.4 GHz ECRIS in Frankfurt. In our method a special metal-dielectric structure (MD cylinder) was introduced in the ECRIS plasma chamber. In the experiment analyzed beams of Ar 16+ ions were increased in intensity by a factor of 50 as compared to the standard set up with stainless steel chamber. These results have been communicated at the International Conference on Ion Sources held at

  11. A comparative machining study of diamond-coated tools made by ...

    Indian Academy of Sciences (India)

    The successful implementation of diamond coatings also expedited similar research in the deposition of cubic boron nitride. This paper presents superhard coating tools, with emphasis on diamond-coated WC–Co tools, the corresponding deposition of technologies and the foreseen metal-cutting applications.

  12. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  13. Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.

    Science.gov (United States)

    Vítová, Lada; Fojt, Lukáš; Vespalec, Radim

    2014-04-18

    3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  15. Surface modification of commercial tin coatings by carbon ion implantation

    International Nuclear Information System (INIS)

    Liu, L.J.; Sood, D.K.; Manory, R.R.

    1993-01-01

    Commercial TiN coatings of about 2 μm thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10 17 - 8x10 17 ions cm -2 . Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs

  16. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L J; Sood, D K; Manory, R R [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  17. Defects in boron ion implanted silicon

    International Nuclear Information System (INIS)

    Wu, W.K.

    1975-05-01

    The crystal defects formed after post-implantation annealing of B-ion-implanted Si irradiated at 100 keV to a moderate dose (2 x 10 14 /cm 2 ) were studied by transmission electron microscopy. Contrast analysis and annealing kinetics show at least two different kinds of linear rod-like defects along broken bracket 110 broken bracket directions. One kind either shrinks steadily remaining on broken bracket 110 broken bracket at high temperatures (greater than 850 0 C), or transforms into a perfect dislocation loop which rotates toward broken bracket 112 broken bracket perpendicular to its Burgers vector. The other kind shrinks steadily at moderate temperatures (approximately 800 0 C). The activation energy for shrinkage of the latter (3.5 +- 0.1 eV) is the same as that for B diffusion in Si, suggesting that this linear defect is a boron precipitate. There also exist a large number of perfect dislocation loops with Burgers vector a/2broken bracket 110 broken bracket. The depth distribution of all these defects was determined by stereomicroscopy. The B precipitates lying parallel to the foil surfaces are shown to be at a depth of about 3500 +- 600 A. The loops are also at the same depth, but with a broader spread, +-1100 A. Si samples containing B and samples containing no B (P-doped) were irradiated in the 650-kV electron microscope. Irradiation at 620 0 C resulted in the growth of very long linear defects in the B-doped samples but not in the others, suggesting that at 620 0 C Si interstitials produced by the electron beam replace substitutional B some of which precipitates in the form of long rods along broken bracket 110 broken bracket. (DLC)

  18. X-ray diffraction study of stress relaxation in cubic boron nitride films grown with simultaneous medium-energy ion bombardment

    International Nuclear Information System (INIS)

    Abendroth, B.; Gago, R.; Eichhorn, F.; Moeller, W.

    2004-01-01

    Relaxation of the intrinsic stress of cubic boron nitride (cBN) thin films has been studied by x-ray diffraction (XRD) using synchrotron light. The stress relaxation has been attained by simultaneous medium-energy ion bombardment (2-10 keV) during magnetron sputter deposition, and was confirmed macroscopically by substrate curvature measurements. In order to investigate the stress-release mechanisms, XRD measurements were performed in in-plane and out-of-plane geometry. The analysis shows a pronounced biaxial state of compressive stress in the cBN films grown without medium-energy ion bombardment. This stress is partially released during the medium-energy ion bombardment. It is suggested that the main path for stress relaxation is the elimination of strain within the cBN grains due to annealing of interstitials

  19. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Zhao, Peng; Yang, Hui; Liu, Borui; Zhang, Jiguang; Cui, Yi; Yu, Guihua; Zhang, Sulin; Wang, Chong M.

    2015-10-01

    One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemo-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemo-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ~ 150 nm for bare SiNPs to ~ 380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.

  20. Poster - Thurs Eve-09: Evaluation of a commercial 2D ion-chamber array for intensity modulated radiation therapy dose measurements.

    Science.gov (United States)

    Mei, X; Bracken, G; Kerr, A

    2008-07-01

    Experimental verification of calculated dose from a treatment planning system is often essential for quality assurance (QA) of intensity modulated radiation therapy (IMRT). Film dosimetry and single ion chamber measurements are commonly used for IMRT QA. Film dosimetry has very good spatial resolution, but is labor intensive and absolute dose is not reliable. Ion chamber measurements are still required for absolute dose after measurements using films. Dosimeters based on 2D detector arrays that can measure 2D dose in real-time are gaining wider use. These devices provide a much easier and reliable tool for IMRT QA. We report the evaluation of a commercial 2D ion chamber array, including its basic performance characteristics, such as linearity, reproducibility and uniformity of relative ion chamber sensitivities, and comparisons between measured 2D dose and calculated dose with a commercial treatment planning system. Our analysis shows this matrix has excellent linearity and reproducibility, but relative sensitivities are tilted such that the +Y region is over sensitive, while the -Y region is under sensitive. Despite this behavior, our results show good agreement between measured 2D dose profiles and Eclipse planned data for IMRT test plans and a few verification plans for clinical breast field-in-field plans. The gamma values (3% or 3 mm distance-to-agreement) are all less than 1 except for one or two pixels at the field edge This device provides a fast and reliable stand-alone dosimeter for IMRT QA. © 2008 American Association of Physicists in Medicine.

  1. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  2. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  3. Ionization efficiency of a COMIC ion source equipped with a quartz plasma chamber

    International Nuclear Information System (INIS)

    Suominen, P.; Stora, T.; Sortais, P.; Medard, J.

    2012-01-01

    Increased ionization efficiencies of light noble gases and molecules are required for new physics experiments in present and future radioactive ion beam facilities. In order to improve these beams, a new COMIC-type ion source with fully quartz made plasma chamber was tested. The beam current stability is typically better than 1 % and beams are easily reproducible. The highest efficiency for xenon is about 15 %. However, the main goal is to produce molecular beam including radioactive carbon (in CO or CO 2 ), in which case the efficiency was measured to be only about 0.2%. This paper describes the experimental prototype and its performance and provides ideas for future development. This paper is followed by the associated poster. (authors)

  4. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  5. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  7. An ionization-chamber type of focal-plane detector for heavy ions

    International Nuclear Information System (INIS)

    Erskine, J.R.; Braid, T.H.; Stolfzfus, J.C.

    1976-01-01

    A focal-plane detector for heavy ions is described in which energy loss and total energy are measured with a gridded ionization chamber, and position along the focal plane and angle of incidence are measured with two resistive-wire proportional counters. The clean geometry of the detector makes it especially attractive for use with heavy ions of high specific ionization. Typical position resolutions of 1.0-1.5mm (fwhm) were observed over a 50 cm length of the detector in the focal plane of a split-pole magnetic spectrograph. Special tests were made which suggest that the limiting position resolution is 0.76 mm or better. The resolution of the energy-loss signal was typically 4.5% (fwhm). The resolution of the total energy signal was 1.0-1.5% (fwhm) for small entrance apertures of the spectrograph, although 0.7% resolution was observed under special circumstances. The angle of incidence was measured with an uncertainty of about 1.2% (fwhm). The availability of the many parameters needed for particle identification makes this detector especially useful for the study of weak reaction channels in heavy-ion-induced reactions. (Auth.)

  8. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries

    Science.gov (United States)

    Suharto, Yustian; Lee, Yongho; Yu, Ji-Sang; Choi, Wonchang; Kim, Ki Jae

    2018-02-01

    Finding an alternative to glass fiber (GF) separators is a crucial factor for the fast commercialization of sodium-ion batteries (SIBs), because GF separators are too thick for use in SIBs, thereby decreasing the volumetric and gravimetric energy density. Here we propose a microporous composite separator prepared by introducing a polymeric coating layer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP co-polymer) with ZrO2 nanoparticles to a polyethylene (PE) separator. The coated separator efficiently enhances the cell performance of SIBs. The ZrO2 nanoparticles, finely dispersed on the polymeric coating layer, induce the formation of many micropores on the polymeric coating layer, suggesting that micropore formation on the coating layer renders the composite separator more open in structure. An ethylene carbonate/propylene carbonate liquid electrolyte for SIBs is not absorbed by PE separators even after 1 h of electrolyte droplet testing, while the proposed separator with many micropores is completely wetted by the electrolyte. Sodium ion migration across the composite separator is therefore effectively enhanced by the formation of ion transfer pathways, which improve ionic conductivity. As a result, the microporous composite separator affords stable cycle performances and excellent specific capacity retention (95.8%) after 50 cycles, comparable to those offered by a SIB with a GF separator.

  9. Separation of boron isotopes by ion exchange chromatography: studies on regeneration of strong base anion exchange resins

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Mathur, P.K.

    1994-01-01

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography where the hydroxyl form of an anion exchange resin is equilibrated with boric acid solution containing mannitol as a complexing reagent. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. (author)

  10. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries

    Directory of Open Access Journals (Sweden)

    Jianmin Feng

    2018-04-01

    Full Text Available The poor cycling stability of antimony during a repeated sodium ion insertion and desertion process is the key issue, which leads to an unsatisfactory application as an anode material in a sodium-ion battery. Addressed at this, we report a facile two-step method to coat antimony nanoparticles with an ultrathin carbon layer of few nanometers (denoted Sb@C NPs for sodium-ion battery anode application. This carbon layer could buffer the volume change of antimony in the charge-discharge process and improve the battery cycle performance. Meanwhile, this carbon coating could also enhance the interfacial stability by firmly connecting the sodium alginate binders through its oxygen-rich surface. Benefitted from these advantages, an improved initial discharge capacity (788.5 mA h g−1 and cycling stability capacity (553 mA h g−1 after 50 times cycle have been obtained in a battery using Sb@C NPs as anode materials at 50 mA g−1. Keywords: Sodium-ion battery, Antimony, Sodium alginate, Liquid-phase reduction, Carbon coating

  11. The role of ions in new particle formation in the CLOUD chamber

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2017-12-01

    Full Text Available The formation of secondary particles in the atmosphere accounts for more than half of global cloud condensation nuclei. Experiments at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets chamber have underlined the importance of ions for new particle formation, but quantifying their effect in the atmosphere remains challenging. By using a novel instrument setup consisting of two nanoparticle counters, one of them equipped with an ion filter, we were able to further investigate the ion-related mechanisms of new particle formation. In autumn 2015, we carried out experiments at CLOUD on four systems of different chemical compositions involving monoterpenes, sulfuric acid, nitrogen oxides, and ammonia. We measured the influence of ions on the nucleation rates under precisely controlled and atmospherically relevant conditions. Our results indicate that ions enhance the nucleation process when the charge is necessary to stabilize newly formed clusters, i.e., in conditions in which neutral clusters are unstable. For charged clusters that were formed by ion-induced nucleation, we were able to measure, for the first time, their progressive neutralization due to recombination with oppositely charged ions. A large fraction of the clusters carried a charge at 1.5 nm diameter. However, depending on particle growth rates and ion concentrations, charged clusters were largely neutralized by ion–ion recombination before they grew to 2.5 nm. At this size, more than 90 % of particles were neutral. In other words, particles may originate from ion-induced nucleation, although they are neutral upon detection at diameters larger than 2.5 nm. Observations at Hyytiälä, Finland, showed lower ion concentrations and a lower contribution of ion-induced nucleation than measured at CLOUD under similar conditions. Although this can be partly explained by the observation that ion-induced fractions decrease towards lower ion concentrations, further investigations

  12. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  13. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  14. Depth resolved investigations of boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  15. High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries

    International Nuclear Information System (INIS)

    Ge, Yeqian; Jiang, Han; Zhu, Jiadeng; Lu, Yao; Chen, Chen; Hu, Yi; Qiu, Yiping; Zhang, Xiangwu

    2015-01-01

    Highlights: • Titanium oxide nanopaticles were modified by carbon coating from pyrolyzing of PVP. • Carbon coating gave rise to excellent cycling ability of TiO 2 for sodium-ion batteries. • The reversible capacity of carbon-coated TiO 2 reached 242.3 mAh g −1 at 30 mA g −1 . • Good rate performance of carbon-coated TiO 2 was presented up to 800 mA g −1 . - Abstract: Owing to the merits of good chemical stability, elemental abundance and nontoxicity, titanium dioxide (TiO 2 ) has drawn increasing attraction for use as anode material in sodium-ion batteries. Nanostructured TiO 2 was able to achieve high energy density. However, nanosized TiO 2 is typically electrochemical instable, which leads to poor cycling performance. In order to improve the cycling stability, carbon from thermolysis of poly(vinyl pyrrolidone) was coated onto TiO 2 nanoparticles. Electronic conductivity and electrochemical stability were enhanced by coating carbon onto TiO 2 nanoparticles. The resultant carbon-coated TiO 2 nanoparticles exhibited high reversible capacity (242.3 mAh g −1 ), high coulombic efficiency (97.8%), and good capacity retention (87.0%) at 30 mA g −1 over 100 cycles. By comparison, untreated TiO 2 nanoparticles showed comparable reversible capacity (237.3 mAh g −1 ) and coulombic efficiency (96.2%), but poor capacity retention (53.2%) under the same condition. The rate performance of carbon-coated TiO 2 nanoparticles was also displayed as high as 127.6 mAh g −1 at a current density of 800 mA g −1 . The improved cycling performance and rate capability were mostly attributed to protective carbon layer helping stablize solid electrolyte interface formation of TiO 2 nanoparticles and improving the electronic conductivity. Therefore, it is demonstrated that carbon-coated TiO 2 nanoparticles are promising anode candidate for sodium-ion batteries

  16. Mechanical properties of chemical vapor deposited coatings for fusion reactor application

    International Nuclear Information System (INIS)

    Mullendore, A.W.; Whitley, J.B.; Pierson, H.O.; Mattox, D.M.

    1980-01-01

    Chemical vapor deposited coatings of TiB 2 , TiC and boron on graphite substrates are being developed for application as limiter materials in magnetic confinement fusion reactors. In this application severe thermal shock conditions exist and to do effective thermo-mechanical modelling of the material response it is necessary to acquire elastic moduli, fracture strength and strain to fracture data for the coatings. Four point flexure tests have been conducted from room temperature to 2000 0 C on TiB 2 and boron coated graphite with coatings in tension and compression and the mechanical properties extracted from the load-deflection data. In addition, stress relaxation tests from 500 to 1150 0 C were performed on TiB 2 and TiC coated graphite beams to assess the low levels of plastic deformation which occur in these coatings. Significant differences have been observed between the effective mechanical properties of the coatings and literature values of the bulk properties

  17. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  18. The application of ion-exchanged clay as corrosion inhibiting pigments in organic coatings

    Science.gov (United States)

    Chrisanti, Santi

    High strength aluminum alloys are used in aerospace industry and are normally coated to prevent corrosion. The corrosion protection of the coatings is mainly provided by pigmented-primer layer. Strontium chromate pigments are widely used, but they are toxic and carcinogenic. The objective of the current study is to develop and characterize the ion exchange compounds bentonite and hydrotalcite as corrosion inhibiting pigments. These compounds were synthesized with different cations and anions, and were used either alone or in mixtures as particulate additive in organic coatings. In coating applications as well as bulk solution, the inhibitor release mechanism is based on ion exchange. To evaluate corrosion inhibition, pigments extract solutions were used in potentiodynamic polarization as well as electrochemical impedance spectroscopy (EIS) experiments on bare aluminum alloy 2024-T3. Cathodic polarization showed that zinc- and cerium-containing filtrate solutions modestly inhibited cathodic current density. These solutions also decreased the extent of pitting damage formed on the surface, as compared to uninhibited 0.5 M NaCl solution. Pigments were also added as primer additives, and painted on AA2024-T3. The coated panels were then subjected to salt spray exposure testing. The possibility of sensing inhibitor exhaustion by means of X-ray diffraction interrogation of the pigment in a coating is demonstrated and discussed on cerium bentonite-pigmented coatings. Although cerium bentonite-pigmented coatings did not show behavior indicative of self-healing, the combination of bentonite and hydrotalcite that released Ce3+, Zn 2+, and PO43- showed potent scribe protection even after 3000 h exposure in salt spray. Promising self-healing was also demonstrated by pigments that consisted of decavanadate-hydrotalcite and zinc pyrovanadate, as indicated by a shiny scribed area after 1000h exposure in salt spray. When these pigments are used, blistering is minimized.

  19. Design innovations in neutron and gamma detectors

    International Nuclear Information System (INIS)

    Prasad, K.R.

    2003-01-01

    Neutron and gamma radiation needs to be monitored in most nuclear installations since it is highly penetrating. On-line monitoring of these radiations is very important for the safe and controlled operation of nuclear reactors, accelerators etc. Several design innovations have been carried out on gas ionisation detectors such as boron-lined proportional counters and ion chambers, fission detectors, gamma ion chambers as well as self-powered detectors. The use of additional structures within boron-lined detectors has enhanced their neutron sensitivity without a corresponding increase in the unwanted gamma sensitivity. The neutron sensitivity of fission counters can be enhanced by designing them as transmission line devices. Ion chambers with two and six pairs of electrodes have been developed for monitoring pulsed x-ray background at accelerator areas. Ion chambers have been employed at gamma fields up to 80 kR/h by deriving the exposure levels on-line using microcontroller devices programmed on the basis of theoretical and empirical formulas. The use of gas electron multiplier foils is proposed for charge multiplication in ion chambers. Self-powered detectors with new emitter materials like Hi, Ni and Inconel have been developed. (author)

  20. Effect of Metal Ion Etching on the Tribological, Mechanical and Microstructural Properties of TiN-COATED d2 Tool Steel Using Cae Pvd Technique

    Science.gov (United States)

    Ali, Mubarak; Hamzah, Esah Binti; Hj. Mohd Toff, Mohd Radzi

    A study has been made on TiN coatings deposited on D2 tool steel substrates by using commercially available cathodic arc evaporation, physical vapor deposition technique. The goal of this work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness, coefficient of friction and surface roughness of TiN coating deposited on tool steel, which is vastly use in tool industry for various applications. A pin-on-disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating at various ion etching rates. The tribo-test showed that the minimum value recorded for friction coefficient was 0.386 and 0.472 with standard deviation of 0.056 and 0.036 for the coatings deposited at zero and 16 min ion etching. The differences in friction coefficient and surface roughness was mainly associated with the macrodroplets, which was produced during etching stage. The coating deposited for 16 min metal ion etching showed the maximum hardness, i.e., about five times higher than uncoated one and 1.24 times to the coating deposited at zero ion etching. After friction test, the wear track was observed by using field emission scanning electron microscope. The coating deposited for zero ion etching showed small amounts of macrodroplets as compared to the coating deposited for 16 min ion etching. The elemental composition on the wear scar were investigated by means of energy dispersive X-ray, indicate no further TiN coating on wear track. A considerable improvement in TiN coatings was recorded as a function of various ion etching rates.

  1. On the mechanism of boron transfer through the cation-exchange membrane MK-40

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Varvaruk, L.A.; Grebenyuk, V.D.; Trachevskij, V.V.

    1985-01-01

    Proceses of boron electromigration in solutions with different pH values are investigated. It is shown, that boron transfer through ion-exchange membranes is determined by pH of solution. Phenomenon of boron transfer (existing in the solution in the form of boric acid) through cation-exchange membrane MK-40 has been detected and described for the first time. The process of boron (3) complexing with sulfate groups of the membrane by means of competing reversible substitution of hydroxoligands is the basis of the phenomenon

  2. Determination of Nd3+ Ions in Solution Samples by a Coated Wire Ion-Selective Sensor

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2012-01-01

    Full Text Available A new coated wire electrode (CWE using 5-(methylsulfanyl-3-phenyl-1H-1,2,4-triazole (MPT as an ionophore has been developed as a neodymium ion-selective sensor. The sensor exhibits Nernstian response for the Nd3+ ions in the concentration range of 1.0×10−6-1.0×10−2 M with detection limit of 3.7×10−7 M. It displays a Nernstian slope of 20.2±0.2 mV/decade in the pH range of 2.7–8.1. The proposed sensor also exhibits a fast response time of ∼5 s. The sensor revealed high selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions, including members of the lanthanide family other than Nd3+. The electrode was used as an indicator electrode in the potentiometric titration of Nd(III ions with EDTA. The electrode was also employed for the determination of the Nd3+ ions concentration in water solution samples.

  3. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    Science.gov (United States)

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  4. Photostructured coating on a voltage degrader for a Time Projection Chamber (TPC)

    CERN Document Server

    Manaranche, C; Loquet, J L; Serdiouk, V; Scandurra, M; Zucchelli, P

    2002-01-01

    Fibreglass-reinforced epoxy (Stesalit) tubes and rods were coated with a photostructured metal layer system of copper, nickel and gold for a voltage degrader built in a particle detector at CERN, Geneva. The metal layers were applied with galvanotechnical processes involving an original photolithographic exposure in three dimensions to produce a complex electrical circuit design able to provide the correct potential to 420 different conductors. The Stesalit substrate material, even after a first layer of electroless copper, is electrically quite resistive, creating problems for the electrodeposition of the subsequent nickel layer. A mathematical simulation of the plating thickness distribution showed that the electrolytic nickel deposition was suitable for short rods but electroless nickel was needed for the long rods. The functional properties of the metallized Stesalit components are satisfactory: no degradation of the gas quality within the Time Projection Chamber is observed; the potential distribution al...

  5. Surface engineering by ion implantation

    International Nuclear Information System (INIS)

    Nielsen, Bjarne Roger

    1995-01-01

    Awidespread commercial applica tion iof particle accelerators is for ion implantation. Accelerator beams are used for ion implantation into metals, alloying a thin surface layer with foreign atoms to concentrations impossible to achieve by thermal processes, making for dramatic improvements in hardness and in resistance to wear and corrosion. Traditional hardening processes require high temperatures causing deformation; ion implantation on the other hand is a ''cold process'', treating the finished product. The ionimplanted layer is integrated in the substrate, avoiding the risk of cracking and delamination from normal coating processes. Surface properties may be ''engineered'' independently of those of the bulk material; the process does not use environmentally hazardous materials such as chromium in the surface coating. The typical implantation dose required for the optimum surface properties of metals is around 2 x 10 17 ion/cm 2 , a hundred times the typical doses for semiconductor processing. When surface areas of more than a few square centimetres have to be treated, the implanter must therefore be able to produce high beam currents (5 to 10 mA) to obtain an acceptable treatment time. Ion species used include nitrogen, boron, carbon, titanium, chromium and tantalum, and beam energies range from 50 to 200 keV. Since most components are three dimensional, it must be possible to rotate and tilt them in the beam, and control beam position over a large area. Examples of industrial applications are: - surface treatment of prostheses (hip and knee joints) to reduce wear of the moving parts, using biocompatible materials; - ion implantation into high speed ball bearings to protect against the aqueous corrosion in jet engines (important for service helicopters on oil rigs); - hardening of metal forming and cutting tools; - reduction of corrosive wear of plastic moulding tools, which are expensive to produce

  6. Au{sup 3+} ion implantation on FTO coated glasses: Effect on structural, electrical, optical and phonon properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Bindu; Dey, Ranajit; Bajpai, P.K., E-mail: bajpai.pk1@gmail.com

    2017-06-01

    Highlights: • Effects of 11.00 MeV Au{sup 3+} ions implanted in FTO coated (thickness ≈300 nm) silicate glasses at varying fluence. • Metal clustering near the surface and subsurface region below glass-FTO interface changes electrical and optical properties significantly. • Ion implantation does not affect the crystalline structure of the coated films; however, the tetragonal distortion increases with increasing ion fluence. • Significant surface reconstruction takes place with ion beam fluence; The average roughness also decreases with increasing fluence. • The sheet resistivity increases with increasing fluence. • Raman analysis also corroborates the re-crystallization process inducing due to ion implantation. • Optical properties of the implanted surfaces changes significantly. - Abstract: Effects of 11.00 MeV Au{sup 3+} ions implanted in FTO coated (thickness ≈300 nm) silicate glasses on structural, electrical optical and phonon behavior have been explored. It has been observed that metal clustering near the surface and sub-surface region below glass-FTO interface changes electrical and optical properties significantly. Ion implantation does not affect the crystalline structure of the coated films; however, the unit cell volume decreases with increase in fluence and the tetragonal distortion (c/a ratio) also decreases systematically in the implanted samples. The sheet resistivity of the films increases from 11 × 10{sup −5} ohm-cm (in pristine) to 7.5 × 10{sup −4} ohm-cm for highest ion beam fluence ≈10{sup 15} ions/cm{sup 2}. The optical absorption decreases with increasing fluence whereas, the optical transmittance as well as reflectance increases with increasing fluence. The Raman spectra are observed at ∼530 cm{sup −1} and ∼1103 cm{sup −1} in pristine sample. The broad band at 530 cm{sup −1} shifts towards higher wave number in the irradiated samples. This may be correlated with increased disorder and strain relaxation in

  7. Radiation detectors for the control of PWR nuclear boilers

    International Nuclear Information System (INIS)

    Duchene, J.

    1977-01-01

    The neutronic control in French PWR is effected by: 2 channels of measurement of intermediate power using γ'-compensated boron-coated ionization chambers 4 channels of measurement of high power with 'long' boron chambers also used in axial off-set measurement. A movable in-core measuring system is used for the fuel management and the power distribution monitoring. The instrumentation of start-up and intermediate power is conventional; the chambers of the axial off-set measurement and the in-core system are special for this type of power plant, they are discussed in details. The essential properties of the various types of detector, their major advantages or drawbacks, their comparative adaptation to the functions to be performed in the plant are summarized in a table. The 'long chambers' (on use in Fessenheim I and II, and soon in Bugey II) are boron coated current ionization chambers, without γ compensation, intended for power measurement. In-core measurements first involved activation methods - movable wires giving flux profiles, -or activable nuts (the Aeroball System at Trino Vercellese, Chooz...). In on-line neutron detectors, used at fixed positions, the electric signal is generated from: ionization the gas filling fission ionization chambers and γ ionization chambers; direct collection of the charged particles emitted from the convertor element in self-powered neutron detectors (rhodium, silver or vanadium) or self-powered γ detectors (cobalt); or thermoelectric effect in neutron and γ thermometers. The in-core measurement unit developped by Framatome is a movable miniaturized fission chamber system (at Tihange), every French exported power plant being now equipped with it [fr

  8. Dosimetric comparison of water phantoms, ion chambers, and data acquisition modes for LINAC characterization

    International Nuclear Information System (INIS)

    Cruz, Wilbert; Narayanasamy, Ganesh; Papanikolaou, Niko; Stathakis, Sotirios

    2015-01-01

    Purpose: In this study a dosimetric comparison utilizing continuous data acquisition and discrete data acquisition is examined using IBA Blue Phantom (IBA Dosimetry, Schwarzenbruck, Germany) and PTW (PTW, Freiberg, Germany) MP3-M water tanks. The tanks were compared according to several factors including set up time, ease of use, and data acquisition times. A tertiary objective is to study the response of several ionization chambers in the two tanks examined. Methods: Measurements made using a Varian 23EX LINAC (Varian Medical Systems, Palo Alto, CA) include PDDs and beam profiles for various field sizes with IBA CC13, PTW Semiflex 31010, PTW Pinpoint N31016, and PTW 31013 ion chambers for photons (6, 18 MV) and electrons (6, 9, 12, 15, and 18 MeV). Radial and transverse profile scans were done at depths of maximum dose, 5 cm, 10 cm, and 20 cm using the same set of tanks and detectors for the photon beams. Radial and transverse profile scans were done at depth of maximum dose for the electron beams on the same tanks and chambers. Data processing and analysis was performed using PTW's MEPHYSTO Navigator software and IBA's OmniPro Accept version 6.6 for the respective water tank systems. Results: PDD values agree to within 1% and dmax to within 1 mm for the PTW MP3-M tank using PTW 31010 and Blue Phantom using IBA CC13 chamber, respectively and larger discrepancy with the PTW PinPoint N31016 chamber at 6 MV. With respect to setup time the PTW MP3-M and IBA Blue phantom tank took about 20 and 40 min, respectively. Scan times were longer by 5–15 min per field size in the PTW MP3-M tank for the square field sizes from 1 cm to 40 cm as compared to the IBA Blue phantom. However, data processing times were higher by 7 min per field size with the IBA system. Conclusions: Tank measurements showed little deviation with the higher energy photons as compared to the lower energy photons with regards to the PDD measurements. Chamber construction as well as tank

  9. Ion sources for medical accelerators

    Science.gov (United States)

    Barletta, W. A.; Chu, W. T.; Leung, K. N.

    1998-02-01

    Advanced injector systems for proton synchrotrons and accelerator-based boron neutron capture therapy systems are being developed at the Lawrence Berkeley National Laboratory. Multicusp ion sources, particularly those driven by radio frequency, have been tested for these applications. The use of a radio frequency induction discharge provides clean, reliable, and long-life source operation. It has been demonstrated that the multicusp ion source can provide good-quality positive hydrogen ion beams with a monatomic ion fraction higher than 90%. The extractable ion current densities from this type of source can meet the injector requirements for both proton synchrotron and accelerator-based boron neutron capture therapy projects.

  10. Polymer Coatings Reduce Electro-osmosis

    Science.gov (United States)

    Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.

    1989-01-01

    Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.

  11. Defect and dopant depth profiles in boron-implanted silicon studied with channeling and nuclear reaction analysis

    NARCIS (Netherlands)

    Vos, M.; Boerma, D.O.; Smulders, P.J.M.; Oosterhoff, S.

    1986-01-01

    Single crystals of silicon were implanted at RT with 1 MeV boron ions to a dose of 1 × 1015 ions/cm2. The depth profile of the boron was measured using the 2060-keV resonance of the 11B(α, n)14N nuclear reaction. The distribution of the lattice disorder as a function of depth was determined from

  12. Chemical erosion of sintered boron carbide due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.

    1990-06-01

    The production of hydrocarbons and boron hydrides due to H + bombardment of sintered B 4 C has been investigated as a function of sample temperature and incident ion energy. While hydrocarbon production was observed, the yields were approximately two orders of magnitude smaller than observed for graphite. There was no evidence to indicate the production of any volatile boron-containing compounds. (3 figs., 11 refs.)

  13. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Science.gov (United States)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  14. The effect of ion irradiation and elevated temperature on the microstructure and the properties of C/W/C/B multilayer coating

    Energy Technology Data Exchange (ETDEWEB)

    Vlcak, Petr, E-mail: petr.vlcak@fs.cvut.cz

    2016-03-01

    Graphical abstract: - Highlights: • C/W/C/B multilayer PVD coating was treated by 45 keV nitrogen ion irradiation. • The effect of ion irradiation and elevated temperature on microstructure was analyzed. • Formation of new compounds and degradation of carbon fraction were observed. • The causes of the observed changes in surface properties were discussed. - Abstract: C/W/C/B multi-layer PVD coating with a layer period of 10 nm and 500 nm in thickness was irradiated with 45 keV N ions at fluence of 1 × 10{sup 17} cm{sup −2}. Ion irradiation was performed at room temperature or at an elevated temperature of 500 °C. The microstructure was investigated by X-ray diffraction, by X-ray photoelectron spectroscopy, and by Raman spectroscopy. The results showed that implanted N ions bond both with W atoms and with C atoms. N ion irradiation induced the formation of WC and WC{sub 1−x} phases. The energetic ions transformed the C bonds in defect sp{sup 2} and defect sp{sup 3} hybridizations, resulting in graphitization of the carbon fraction in the multilayer coating. Ion irradiation reduced the cohesive strength of the monolayers, reduced hardness of the C/W/C/B coating, increased its surface roughness and increased its friction coefficient. An elevated temperature during ion irradiation caused a better arrangement of the WC phase and further graphitization of the carbon fraction, in comparison with a coating treated by ion irradiation at room temperature. There is discussion of the causes of the observed changes in surface properties.

  15. Investigations on photoelectrochemical performance of boron doped ZnO nanorods synthesized by facile hydrothermal technique

    Science.gov (United States)

    Sharma, Akash; Chakraborty, Mohua; Thangavel, R.

    2018-05-01

    Undoped and 10% Boron (B)-doped Zinc Oxide nanorods (ZnO NRs) on Tin doped Indium Oxide (ITO) coated glass substrates were synthesized using facile sol-gel, spin coating and hydrothermal method. The impact of adding Boron on the structural, optical properties, surface morphology and photoelectrochemical (PEC) performances of the ZnO NRs have been investigated. The XRD pattern confirmed the formation of pure hexagonal phase with space group P63mc (186). The same can also be clearly observed form the FESEM images. The UV-Vis study shows the narrowing in band gap from 3.22 eV to 3.19 eV with incorporation of Boron in ZnO matrix. The B-doped ZnO NRs sample shows an enhanced photocurrent density of 1.31 mA/cm2 at 0.5 V (vs. Ag/AgCl), which is more than 171% enhancement compared to bare ZnO NRs (0.483 mA/cm2) in 0.1 M Na2SO4 aqueous solution. The results clearly indicates that the boron doped ZnO NRs can be used as an efficient photoelectrode material for photoelectrochemical cell.

  16. Ion-induced desorption from stainless-steel vacuum chambers has been studied with a view to improving the dynamic pressure in the future LEIR ion accumulator ring for the LHC.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    This picture shows part of a vacuum chamber fully equipped with St707 non-evaporable getter (NEG) strips which were bombarded in Linac3 with lead ions at 4.2 MeV/u. A change of the surface morphology is visible where the Pb53+ ions impacted under grazing incidence onto the NEG.

  17. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  18. Plasma potentials and performance of the advanced electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.

    1994-01-01

    The mean plasma potential was measured on the LBL advanced electron cyclotron resonance (AECR) ion source for a variety of conditions. The mean potentials for plasmas of oxygen, argon, and argon mixed with oxygen in the AECR were determined. These plasma potentials are positive with respect to the plasma chamber wall and are on the order of tens of volts. Electrons injected into the plasma by an electron gun or from an aluminum oxide wall coating with a very high secondary electron emission reduce the plasma potential as does gas mixing. A lower plasma potential in the AECR source coincides with enhanced production of high charged state ions indicating longer ion confinement times. The effect of the extra electrons from external injection or wall coatings is to lower the average plasma potential and to increase the n e τ i of the ECR plasma. With sufficient extra electrons, the need for gas mixing can be eliminated or reduced to a lower level, so the source can operate at lower neutral pressures. A reduction of the neutral pressure decreases charge exchange between ions and neutrals and enhances the production of high charge state ions. An aluminum oxide coating results in the lowest plasma potential among the three methods discussed and the best source performance

  19. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  20. A simple chip free-flow electrophoresis for monosaccharide sensing via supermolecule interaction of boronic acid functionalized quencher and fluorescent dye.

    Science.gov (United States)

    Yin, Xiao-Yang; Dong, Jing-Yu; Wang, Hou-Yu; Li, Si; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-08-01

    Here, a simple micro free-flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο-BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion-exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion-exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο-BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10(-11) M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A pressurized ion chamber monitoring system for environmental radiation measurements utilizing a wide-range temperature-compensated electrometer

    International Nuclear Information System (INIS)

    Stevenick, W. Van

    1994-01-01

    The performance of a complete pressurized ion chamber (PIC) radiation monitoring system is described. The design incorporates an improved temperature-compensated electrometer which is stable to ±3 · 10 -16 A over the environmental range of temperature (-40 to +40 C). Using a single 10 11 Ω feed-back resistor, the electrometer accurately measures currents over a range from 3 · 10 -15 A to 3 · 10 -11 A. While retaining the sensitivity of the original PIC system (the instrument responds readily to small background fluctuations on the order of 0.1 μR h -1 ), the new system measures radiation levels up to the point where the collection efficiency of the ion chamber begins to drop off, typically ∼27 pA at 1 mR h -1 . A data recorder and system controller was designed using the Tattletale trademark Model 4A computer. Digital data is stored on removable solid-state, credit-card style memory cards

  2. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Jiang, Shuwen; Jiang Bin; Li Yan; Li Yanrong; Yin Guangfu; Zheng Changqiong

    2004-01-01

    DLC gradient coatings had been deposited on Ti6Al4V alloy substrate by plasma source ion implantation-ion beam enhanced deposition method and their friction and wear behavior sliding against ultra high molecular weight polyethylene counterpart were investigated. The results showed that DLC gradient coated Ti6Al4V had low friction coefficient, which reduced 24, 14 and 10% compared with non-coated Ti6Al4V alloy under dry sliding, lubrication of bovine serum and 0.9% NaCl solution, respectively. DLC gradient coated Ti6Al4V showed significantly improved wear resistance, the wear rate was about half of non-coated Ti6Al4V alloy. The wear of ultra high molecular weight polyethylene counterpart was also reduced. High adhesion to Ti6Al4V substrate of DLC gradient coatings and surface structure played important roles in improved tribological performance, serious oxidative wear was eliminated when DLC gradient coating was applied to the Ti6Al4V alloy

  3. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    Science.gov (United States)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity

  4. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  5. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Aida, Masao; Okamoto, Makoto; Kakihana, Hidetake

    1980-01-01

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  6. The effect of low-energy electrons on the response of ion chambers to ionizing photon beams

    Science.gov (United States)

    La Russa, Daniel J.

    Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the

  7. A parallel plate avalanche chamber for relativistic heavy ions

    International Nuclear Information System (INIS)

    Burgei, R.

    1989-01-01

    In order to determine the interaction point of relativistic heavy ions in the Diogene target, we have built and tested an X-Y low pressure parallel plate avalanche chamber. It uses three thin metallized foils and is filled with isobutane. A preliminary study shows that it is the only detector with the required specifications: efficiency, accurate position determination and a small uniform amount of material for the particle beam to go through. The electronics system is designed for reliability, easy adjustments and high stability. The interaction point is given on delay-line read-out. This represents the optimum compromise between low price and good performance. Laboratory measurements of gain, efficiency and position accuracy are done with an alpha-particle source. Two of these detectors are working at the Saturne National Laboratory. They allow the trajectory of several tens of particles (among a million per second) to be reconstructed. With an argon beam at 400 MeV per nucleon, the position uncertainty in the target has been measured to be 0.5 mm (standard deviation). This uncertainty is 0.3 mm for each detector, with an efficiency of 94 per cent. Our set-up, which is now operational, improves the accuracy of the results and speed of analysis of Diogene experiments devoted to the study of central collisions between heavy ions [fr

  8. Enhanced ECR ion source performance with an electron gun

    International Nuclear Information System (INIS)

    Xie, Z.; Lyneis, C.M.; Lam, R.S.; Lundgren, S.A.

    1991-01-01

    An electron gun for the advanced electron cyclotron resonance (AECR) source has been developed to increase the production of high charge state ions. The AECR source, which operates at 14 GHz, is being developed for the 88-in. cyclotron at Lawrence Berkeley Laboratory. The electron gun injects 10 to 150 eV electrons into the plasma chamber of the AECR. With the electron gun the AECR has produced at 10 kV extraction voltage 131 e μA of O 7+ , 13 e μA of O 8+ , 17 e μA of Ar 14+ , 2.2 e μA of Kr 25+ , 1 e μA of Xe 31+ , and 0.2 e μA of Bi 38+ . The AECR was also tested as a single stage source with a coating of SiO 2 on the plasma chamber walls. This significantly improved its performance compared to no coating, but direct injection of electrons with the electron gun produced the best results

  9. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate–borax

    International Nuclear Information System (INIS)

    Shen, M.J.; Wang, X.J.; Zhang, M.F.

    2012-01-01

    Highlights: ► The MgO ceramic coating has been prepared on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation in the borax-doped silicate system. ► Boron element exists in the PEO films in the form of noncrystal. ► The microhardness and compactness of doped ceramic coating are much higher than that of the substrate and undoped ceramic coating, and this doped coated sample shows better wear-resisting property. - Abstract: A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  10. Boronized steels with corundum-baddeleyite coatings

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Kolísko, J.; Bouška, P.; Brožek, Vlastimil; Kubatík, Tomáš František; Mastný, L.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 341-344 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : Bobororonized steel * corundum-baddeleyite coating * anti-corrosion properties * plasma spraying Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  11. Boronized steels with corundum-baddeleyite coatings

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Kolísko, J.; Bouška, P.; Brožek, Vlastimil; Kubatík, Tomáš František; Mastný, L.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 341-344 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : Bobororonized steel * corundum-baddeleyite coating * anti- corrosion properties * plasma spraying Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  12. Pre-irradiation effects on ionization chambers used in radiation therapy

    International Nuclear Information System (INIS)

    McCaffrey, J P; Downton, B; Shen, H; Niven, D; McEwen, M

    2005-01-01

    Dosimetry protocols recommend that ionization chambers used in radiation therapy be pre-irradiated until they 'settle', i.e., until a stable reading is obtained. Previous reports have claimed that a lack of pre-irradiation could result in errors up to several per cent. Recently, data collected for a large number of commonly used ion chambers at the Institute for National Measurement Standards, NRC, Canada, have been collated and analysed, with additional data contributed by the National Physical Laboratory, UK. With this data set, it was possible to relate patterns of ion chamber behaviour to design parameters. While several mechanisms seem to contribute to this behaviour, the most obvious correlations implicate the type of insulator surrounding the central collector electrode, the extent of collector electrode shielding and possibly the area of the insulator exposed at the base of the active air volume. The results show that ion chambers with electrode connections guarded up to the active air volume settle quickly (∼9 min) and the change in response is small (less than ∼0.2%). For ion chambers where the guard connection surrounding the central collector does not extend up to the active air volume, settling times of 15-20 min and an associated change in response of up to 1% are typical. For some models of ion chambers, the irradiation rate may also play a role in settling behaviour. Settling times for the ion chambers studied here were found to be independent of beam quality. (note)

  13. Electrodeposited Ni-B coatings: Formation and evaluation of hardness and wear resistance

    International Nuclear Information System (INIS)

    Krishnaveni, K.; Sankara Narayanan, T.S.N.; Seshadri, S.K.

    2006-01-01

    The formation of electrodeposited Ni-B alloy coatings using a dimethylamine borane (DMAB) modified Watt's nickel bath and evaluation of their structural characteristics, hardness and wear resistance are discussed. The boron content in the electrodeposited Ni-B alloy coating is determined by the ratio of rate of reduction of nickel and rate of decomposition of DMAB. The boron content of the electrodeposited Ni-B coating decreases as the current density increased from 0.4 to 4 A dm -2 . XRD diffraction pattern of electrodeposited Ni-B coatings in their as-plated condition exhibits the presence of Ni (1 1 1) (2 0 0) and (2 2 0) reflections with (1 1 1) texture. Heat treatment at 400 deg. C for 1 h has resulted in the formation of nickel boride phases, which results in an increase in hardness and wear resistance. The mechanism of wear in electrodeposited Ni-B coatings is intensive plastic deformation of the coating due to the ploughing action of the hard counter disk

  14. Boron isotope fractionation in column chromatography with glucamine type fibers

    International Nuclear Information System (INIS)

    Sonoda, Akinari; Makita, Yoji; Hirotsu, Takahiro

    2008-01-01

    Glucamine type polymers have specific affinity toward boric acid and borate ion. Among them, Chelest Fiber GRY-L showed larger fractionation for boron isotopes than other polymers in our previous study. For this study, we used Chelest Fibers with different fiber lengths (1.0 mm, 0.5 mm, and 0.3 mm) as column packing materials to perform chromatographic separation of boron isotopes. The shorter fiber has larger packing density when packed into the column using a dry method. The 0.3-mm-long fiber has a larger backpressure than fibers of other lengths. Boron adsorption capacities were measured using the breakthrough operation. At this time, the 0.5-mm-long fiber showed the highest capacity. When we measured the isotope ratio profile for fibers of different length using column chromatography, 0.5-mm-long fibers displayed the highest boron isotope fractionation. The 0.5-mm-long fiber is promising as a packing material of column chromatography for boron isotope separation. We also changed operation methods. The lower eluent concentration and the slower flow rate are suitable for boron isotope separation. (author)

  15. Development of multi-layer ionization chamber for heavy-ion therapy

    International Nuclear Information System (INIS)

    Yajima, Kaori; Kusano, Yohsuke; Shimojyu, Takuya; Kanai, Tatsuaki

    2007-01-01

    In heavy-ion radiotherapy, depth dose distributions measured in water phantom are applied to estimate the dose distributions in a patient body. In order to obtain depth dose distributions in water phantom easily and rapidly, Multi-Layer Ionization Chamber (MLIC) was developed and had been adapted as a field dosimeter at NIRS since 2002. Production cross section of fragments in high Z material of the MLIC, however, is very different from those in water material. Then, empirical correction should be required. In order to obtain depth dose distributions with high accuracy, we have to use low Z material as a phantom, which are thought to produce similar fragments with water phantom. From this point of view, we have developed a new MLIC made up of low Z materials, PMMA and graphite film. (author)

  16. TH-E-BRE-03: A Novel Method to Account for Ion Chamber Volume Averaging Effect in a Commercial Treatment Planning System Through Convolution

    International Nuclear Information System (INIS)

    Barraclough, B; Li, J; Liu, C; Yan, G

    2014-01-01

    Purpose: Fourier-based deconvolution approaches used to eliminate ion chamber volume averaging effect (VAE) suffer from measurement noise. This work aims to investigate a novel method to account for ion chamber VAE through convolution in a commercial treatment planning system (TPS). Methods: Beam profiles of various field sizes and depths of an Elekta Synergy were collected with a finite size ion chamber (CC13) to derive a clinically acceptable beam model for a commercial TPS (Pinnacle 3 ), following the vendor-recommended modeling process. The TPS-calculated profiles were then externally convolved with a Gaussian function representing the chamber (σ = chamber radius). The agreement between the convolved profiles and measured profiles was evaluated with a one dimensional Gamma analysis (1%/1mm) as an objective function for optimization. TPS beam model parameters for focal and extra-focal sources were optimized and loaded back into the TPS for new calculation. This process was repeated until the objective function converged using a Simplex optimization method. Planar dose of 30 IMRT beams were calculated with both the clinical and the re-optimized beam models and compared with MapCHEC™ measurements to evaluate the new beam model. Results: After re-optimization, the two orthogonal source sizes for the focal source reduced from 0.20/0.16 cm to 0.01/0.01 cm, which were the minimal allowed values in Pinnacle. No significant change in the parameters for the extra-focal source was observed. With the re-optimized beam model, average Gamma passing rate for the 30 IMRT beams increased from 92.1% to 99.5% with a 3%/3mm criterion and from 82.6% to 97.2% with a 2%/2mm criterion. Conclusion: We proposed a novel method to account for ion chamber VAE in a commercial TPS through convolution. The reoptimized beam model, with VAE accounted for through a reliable and easy-to-implement convolution and optimization approach, outperforms the original beam model in standard IMRT QA

  17. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Luo, Ruiying [School of Science, Beihang University, Beijing 100083 (China); Yoon, Seong-Ho; Mochida, Isao [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-03-15

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g{sup -1} and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by ''molecular bridging'' between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper. (author)

  18. A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters

    Science.gov (United States)

    Beattie, J. R.; Garvin, H. L.

    1982-01-01

    The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.

  19. Effect of aluminium concentration and boron dopant on environmental embrittlement in FeAl aluminides

    International Nuclear Information System (INIS)

    Liu, C.T.; George, E.P.

    1991-01-01

    This paper reports on the room-temperature tensile properties of FeAl aluminides determined as functions of aluminum concentration (35 to 43 at. % Al), test environment, and surface (oil) coating. The two lower aluminum alloys containing 35 and 36.5% Al are prone to severe environmental embrittlement, while the two higher aluminum alloys with 40 and 43% Al are much less sensitive to change in test environment and surface coating. The reason for the different behavior is that the grain boundaries are intrinsically weak in the higher aluminum alloys, and these weak boundaries dominate the low ductility and brittle fracture behavior of the 40 and 43% Al alloys. When boron is added to the 40% Al alloy as a grain-boundary strengthener, the environmental effect becomes prominent. In this case, the tensile ductility of the boron-doped alloy, just like that of the lower aluminum alloys, can be dramatically improved by control of test environment (e.g. dry oxygen vs air). Strong segregation of boron to the grain boundaries, with a segregation factor of 43, was revealed by Auger analyses

  20. Time resolved observation of the erosion of boron containing protective coatings on wall elements of TEXTOR-94 by means of colorimetry

    International Nuclear Information System (INIS)

    Wienhold, P.; Esser, H.G.; Winter, J.

    1997-01-01

    The paper describes the investigation of the progressive erosion of an a-B:D coated test piece during 22 pulses in the SOL of TEXTOR-94. Time resolved observations by colorimetry reveal that the erosion proceeds in steps: during an intermediate phase the rates do not exceed ∼-1.5 nm/s. Thereafter they jump to about -6 nm/s. This is due to carbon incorporation and triggered when the concentration approaches ∼40%. The changing composition may influence the ratio of the BII/CII emission near the surface. The process ends with a carbon rich layer on the remnants of the boron film. Combination of different investigations (AES, NRA, EPMA) results in a preliminary model description. (orig.)

  1. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Dietzel, W.

    2010-01-01

    The electrochemical degradation of a silicate- and a phosphate-based plasma electrolytic oxidation (PEO) coated AM50 magnesium alloy obtained using a pulsed DC power supply was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in NaCl solutions of different chloride ion concentrations viz., 0.01 M, 0.1 M, 0.5 M and 1 M. The surface of the PEO coated specimens after 50 h of immersion/EIS testing was examined by optical microscopy and scanning electron microscopy. The results showed that the corrosion deterioration of PEO coated magnesium alloy in NaCl solutions was significantly influenced by chloride ion concentration. The silicate-based coating was found to offer a superior corrosion resistance to the magnesium substrate than the phosphate-based coatings in lower chloride ion concentration NaCl solutions (0.01 M and 0.1 M NaCl). On the other hand both these PEO coatings were found to be highly susceptible to localized damage, and could not provide an effective corrosion protection to Mg alloy substrate in solutions containing higher chloride concentrations (0.5 M and 1 M). The extent of localized damage was observed to be more with increase in chloride concentration in both the cases.

  2. Boron toxicity causes multiple effects on Malus domestica pollen tube growth

    Directory of Open Access Journals (Sweden)

    Kefeng eFang

    2016-02-01

    Full Text Available Boron is an essential micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this stress is not known. This study aimed to evaluate the effect of boron stress on Malus domestica pollen tube growth and its possible regulatory pathway. Our results show that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron stress could decrease [Ca2+]c and induce the disappearance of the [Ca2+]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron stress. Immuno-localization and fluorescence labeling, together with Fourier-transform infrared analysis (FTIR, suggested that boron stress influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca2+]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

  3. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth.

    Science.gov (United States)

    Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling

    2016-01-01

    Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca(2+)]c and induce the disappearance of the [Ca(2+)]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca(2+)]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

  4. Ions behaviour in a wilson chamber with internal self-command; Comportement des ions dans une chambre de wilson a autocommande interne

    Energy Technology Data Exchange (ETDEWEB)

    Laboulaye, H de; Tzara, C; Studinovski, J [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    Study, with the help of a self-commanded chamber, of ions behaviors created in this one by a {alpha} particle. The authors put in evidence the phenomenon of multiplication and recover the required conditions for the working of the proportional counters. They verify that the ions reach quickly a steady aggregation state in their gas-steam mixture. These aggregations have a middle mobility of about 0,9 cm{sup 2}.V{sup -1}.sec{sup -1}. They signal an unexpected phenomenon that they assign at a thermodynamic reason. (author) [French] Etude, a l'aide d'une chambre autocommandee, du comportement des ions crees dans celle-ci par une particule {alpha}. Les auteurs mettent en evidence le phenomene de multiplication et retrouvent les conditions requises pour le fonctionnement des compteurs proportionnels. Ils verifient que les ions atteignent rapidement un etat d'agregat stable dans leur melange gaz-vapeur. Ces agregats ont une mobilite moyenne d'environ 0,9 cm{sup 2}.V{sup -1}.sec{sup -1}. Ils signalent un phenomene inattendu qu'ils attribuent a une cause thermodynamique. (auteur)

  5. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  6. Erratum to: Influence of boron doping on mechanical and tribological ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Erratum to: Influence of boron doping on mechanical and tribological properties in multilayer CVD-diamond coating systems. SAJAD HUSSAIN DIN M A SHAH N A SHEIKH K A NAJAR K RAMASUBRAMANIAN S BALAJI M S RAMACHANDRA RAO. Volume 39 Issue 7 December 2016 pp 1763-1763 ...

  7. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  8. Optimization of spherical ionization chambers for neutron diagnostics in Tokamak plants

    International Nuclear Information System (INIS)

    Hoenen, F.

    1983-05-01

    For the investigation of neutron emission from fusion plasmas Pulse-Ion-Chamber are favored because of their high temporal resolution, the availability of results immedately after the discharge and their insensitivity to hard X-rays. However to measure ion temperatures below 2 keV with the aid of neutron spectroscopy the detectors have to be improved. Difficulties arise from the fact that in Pulse-Ion-Chambers the pulse height is a function of the position in the chamber where the ion pairs are produced (Induction effect). It will be shown that the induction effect is smaller in spherical ionisation chambers than in cylindrical ones. This means an increase in energy resolution so that neutrons from the D(D,n) 3 He reaction can be analysed with an energy resolution of better than 3% in spherical chambers. (orig./HP) [de

  9. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    Federgrun, L.; Abrao, A.

    1976-01-01

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF - 4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF - 4 -MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF 4 . To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th 4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed [pt

  10. Low cost solar array project: Cell and module formation research area. Process research of non-CZ silicon material

    Science.gov (United States)

    1983-01-01

    Meniscus coates tests, back junction formation using a new boron containing liquid, tests of various SiO2 and boron containing liquids, pelletized silicon for replenishment during web growth, and ion implantation compatibility/feasibility study are discussed.

  11. Implementation of TiAIN and CrN coatings and ion implantation in the modern plastics moulding industry

    International Nuclear Information System (INIS)

    Bienk, E.J.; Mikkelsen, N.J.

    1997-01-01

    Two methods of surface improvement widely used in the modern plastics industry are compared, with a view to improving productivity and product quality. Ion implantation of plastics and physical vapour deposition coatings both offer surface engineering advantages. Each method is described and evaluated with reference to plastics moulding. TiAIN coatings are used to protect hard bulk materials, subjected to evenly distributed loads. The more ductile CrN coatings are used for softer materials which give less support to the coatings. (UK)

  12. Production of AlN films: ion nitriding versus PVD coating

    International Nuclear Information System (INIS)

    Figueroa, U.; Salas, O.; Oseguera, J.

    2004-01-01

    The properties of AlN render this material very attractive for optical, electronic, and tribological applications; thus, a great interest exists for the production of thin AlN films on a variety of substrates. Many methods have been developed for this purpose where two processes stand out: plasma-assisted nitriding (PAN) and PVD coating. In the present paper, we compare the processing advantages and disadvantages of both methods in terms of the characteristics of the layers formed. AlN production by ion nitriding is very sensitive to presputtering cleaning and working pressure. Layers several micrometers thick can be produced in a few hours, which are formed by a fine mixture of Al+AlN. The surface morphology of the layers is rather rough. On the other hand, formation of PVD AlN coatings by DC reactive magnetron sputtering is more readily performed and better controlled than in ion nitriding. PVD results in macroscopically smoother AlN films and with similar thickness than the ion nitrided layers but produced in shorter processing times. The morphology of the PVD AlN layers is columnar with a fairly flat surface. Mechanisms for the formation of both types of AlN layers are proposed. One of the main differences between the two processes that explain the different AlN layer morphologies is the energy of the particles that arrive at the substrate. Considering only the processing advantages and the morphology of the AlN layers formed, PVD performs better than PAN processing

  13. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  14. Microstructure and properties of nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhiwen [University of Science and Technology Liaoning, Anshan 114051 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Chen, Qiang, E-mail: 2009chenqiang@163.com [Southwest Technique and Engineering Research Institute, Chongqing 400039 (China); Chen, Tian [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Gao, Xu; Yu, Xiaoguang; Song, Hua; Feng, Yongjun [University of Science and Technology Liaoning, Anshan 114051 (China)

    2015-06-15

    The novel nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings are fabricated on the AM60 magnesium alloys. The microstructure, tribological and electrochemical properties of the duplex coatings are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, nano-indenter, electrochemical corrosion and wear tester. These studies reveal that the MoS{sub 2}-phenolic resin coating has a two-phase microstructure crystalline MoS{sub 2} particles embedded in the amorphous phenolic resin matrix. The single-layer MoS{sub 2}-phenolic resin enhances the corrosion resistance of magnesium alloys, but shows poor wear resistance due to the low substrate's load bearing capacity. The addition of nitrogen ion implantation/AlN/CrAlN interlayer in the MoS{sub 2}-phenolic resin/substrate system greatly enhances the substrate's load bearing capacity. The AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coating with a high load bearing capacity demonstrates super wear resistance (i.e., long wear life and low friction coefficient). In addition, the nitrogen ion implantation/AlN interlayer greatly depresses the effect of galvanic corrosion because its potential is close to that of the magnesium alloys, but the nitrogen ion implantation/AlN/CrAlN interlayer is inefficient in reducing the galvanic corrosion due to the large potential difference between the CrN phase and the substrate. As a result, the nitrogen ion implantation/AlN/MoS{sub 2}-phenolic resin duplex coating shows a better corrosion resistance compared to the nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin. - Highlights: • Ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings were presented. • Ion implantation/AlN/CrAlN interlayer greatly enhanced the load bearing capacity. • Ion implantation/AlN interlayer greatly depressed the effect of galvanic corrosion. • The

  15. A comparative study of the work involved in measuring profiles using ion chambers, a linear diode array and film

    International Nuclear Information System (INIS)

    Rykers, K.L.; RMIT University, Melbourne, VIC; Royal North Shore Hospital, St Leonards, NSW; Geso, M.; Brown, G.M.; Olilver, L.D.

    1996-01-01

    depth and -0.04 to 0.09 cm at 12.5 cm depth. Film profiles measured with the Scanditronix and Wellhoefer systems were essentially indistinguishable. Film profiles compared with ion chamber profiles agreed well in terms of field size, position, height of maximum and profile shape. Film profiles deviated most from ion chamber profiles in the post-penumbra regions. LDA measured profiles agreed well with the ion chamber profiles in the post-penumbra regions, field size and general profile shape but gave maximums with marginally greater amplitudes. Dynamic wedge profiles measured with film and the LDA exhibited the same trend in agreement as observed for physical wedge profiles. The method described for taking profile measurements with film held in solid water allows for the generation of data which is comparable with that measured with an ion chamber in real water. Film requires only one delivery of the wedged field to generate an infinite number of highly resolved profiles. The time needed to measure LDA profiles is significantly greater than that required when measuring with film. The 25 mm spacing of the diodes on the LDA requires it to be moved repeatedly with many measurements taken to give a single high resolution profile. The need to take multiple exposures to achieve high resolution profiles would also be a requirement of a multi channel ion chamber array

  16. Monte Carlo correction factors for a Farmer 0.6 cm3 ion chamber dose measurement in the build-up region of the 6 MV clinical beam

    International Nuclear Information System (INIS)

    Pena, J; Sanchez-Doblado, F; Capote, R; Terron, J A; Gomez, F

    2006-01-01

    Reference dosimetry of photon fields is a well-established subject and currently available protocols (such as the IAEA TRS-398 and AAPM TG-51) provide methods for converting the ionization chamber (IC) reading into dose to water, provided reference conditions of charged particle equilibrium (CPE) are fulfilled. But these protocols cannot deal with the build-up region, where the lack of CPE limits the applicability of the cavity theorems and so the chamber correction factors become depth dependent. By explicitly including the IC geometry in the Monte Carlo simulations, depth-dependent dose correction factors are calculated for a PTW 30001 0.6 cm 3 ion chamber in the build-up region of the 6 MV photon beam. The corrected percentage depth dose (PDD) agrees within 2% with that measured using the NACP 02 plane-parallel ion chamber in the build-up region at depths greater than 0.4 cm, where the Farmer chamber wall reaches the phantom surface

  17. Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment

    International Nuclear Information System (INIS)

    Li, J.J.; Qian, Y.H.; Niu, D.; Zhang, M.M.; Liu, Z.M.; Li, M.S.

    2012-01-01

    Highlights: ► Cr 2 AlC coating was prepared by arc ion plating combined with post annealing. ► The coating deposited by arc ion plating without heating was amorphous. ► Amorphous coating transformed to crystalline Cr 2 AlC after annealing at 620 °C in Ar. - Abstract: Due to the excellent oxidation and hot corrosion resistance and matched thermal expansion coefficient to normal alloys, Cr 2 AlC has potential applications as high-temperature protective coating. In the present work, the preparation of Cr 2 AlC coating has been achieved through cathodic arc deposition method combined with heat post-treatment. It was found that the coating, deposited from Cr 2 AlC compound target in the unintentional heating condition, was amorphous. After annealing at 620 °C in Ar for 20 h, the amorphous Cr–Al–C coating happened to crystallize and transformed to crystalline Cr 2 AlC as the major phase. It is obvious that the formation temperature of Cr 2 AlC was decreased from about 1050 °C for sintered bulk to around 620 °C for the as-deposited coating, resulting from the homogeneous mixture of the Cr, Al and C at atomic level in the Cr–Al–C coating. Apart from crystalline Cr 2 AlC, the annealed coating also contained AlCr 2 and little Cr 7 C 3 . AlCr 2 formed due to the loss of C during deposition, and little Cr 7 C 3 always existed in the sintered Cr 2 AlC compound target as impurity phase.

  18. A new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.; Park, C.; Yang, S.; Morris, S.; Do, V.; Tasch, F.

    1992-01-01

    We have developed a new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon. This paper reports that this new model is based on the dual Pearson semi-empirical implant depth profile model and the UT-MARLOWE Monte Carlo boron ion implantation model. This new model can predict with very high computational efficiency two-dimensional as-implanted boron profiles as a function of energy, dose, tilt angle, rotation angle, masking edge orientation, and masking edge thickness

  19. Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance

    KAUST Repository

    Fang, Jason; Kelarakis, Antonios; Lin, Yueh-Wei; Kang, Chi-Yun; Yang, Ming-Huan; Cheng, Cheng-Liang; Wang, Yue; Giannelis, Emmanuel P.; Tsai, Li-Duan

    2011-01-01

    We report a simple, scalable approach to improve the interfacial characteristics and, thereby, the performance of commonly used polyolefin based battery separators. The nanoparticle-coated separators are synthesized by first plasma treating the membrane in oxygen to create surface anchoring groups followed by immersion into a dispersion of positively charged SiO 2 nanoparticles. The process leads to nanoparticles electrostatically adsorbed not only onto the exterior of the surface but also inside the pores of the membrane. The thickness and depth of the coatings can be fine-tuned by controlling the ζ-potential of the nanoparticles. The membranes show improved wetting to common battery electrolytes such as propylene carbonate. Cells based on the nanoparticle-coated membranes are operable even in a simple mixture of EC/PC. In contrast, an identical cell based on the pristine, untreated membrane fails to be charged even after addition of a surfactant to improve electrolyte wetting. When evaluated in a Li-ion cell using an EC/PC/DEC/VC electrolyte mixture, the nanoparticle-coated separator retains 92% of its charge capacity after 100 cycles compared to 80 and 77% for the plasma only treated and pristine membrane, respectively. © the Owner Societies 2011.

  20. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  1. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  2. Structural and mechanical properties of hydroxyapatite coatings formed by ion-beam assisted deposition

    Science.gov (United States)

    Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.; Donkov, N.; Ghaemi, M. H.; Szkodo, M.; Antoszkiewicz, M.; Szyfelbain, M.; Czaban, A.

    2018-03-01

    The ion-beam assisted deposition (IBAD) is an advanced method capable of producing crystalline coatings at low temperatures. We determined the characteristics of hydroxyapatite Ca10(PO4)6(OH)2 target and coatings formed by IBAD using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX). The composition of the coatings’ cross-section and surface was close to those of the target. The XPS spectra showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p3/2), and O 1s levels are related to the hydroxyapatite phase. The coatings demonstrate an optimal H/E ratio, and a good resistance to scratch tests.

  3. Characterization of boron nitride thin films prepared from a polymer precursor

    International Nuclear Information System (INIS)

    Chan, V.Z.; Rothman, J.B.; Palladino, P.; Sneddon, L.G.; Composto, R.J.

    1996-01-01

    Excellent quality boron nitride (BN) thin films on silicon have been produced by a simple procedure involving spincoating solutions of the open-quote open-quote single-source close-quote close-quote polymeric-precursor polyborazylene, (B 3 N 3 H ∼4 ) x , on a silicon substrate, followed by pyrolysis at 900 degree C. Rutherford backscattering spectrometry (RBS) indicates that the B/N ratios are 1.37 and 1.09 for conversions carried out in a vacuum oven at 900 and 1250 degree C, respectively. Forward recoil spectrometry (FRES) showed that the atomic percent of residual hydrogen is 10 and 9%, respectively. Plain-view and cross-sectional scanning electron microscopy (SEM) studies showed that the samples annealed at 900 degree C were clean and uniform in thickness. A thickness of 800x10 15 atoms/cm 2 was determined by ion scattering. Films annealed to 1250 degree C likewise showed a continuous unbroken boron nitride layer, but also exhibited morphological features resulting from reactions of the underlying silicon oxide-silicon interface in the substrate. Auger electron spectroscopy and atomic force microscopy showed that the BN coating produced at this higher temperature remained unbroken but had a surface area of ∼15% covered by dimples 2 endash 7 nm in depth. Compared to typical films made by chemical vapor deposition, BN films produced from this open-quote open-quote single-source close-quote close-quote method have lower hydrogen and carbon concentrations. copyright 1996 Materials Research Society

  4. Boronate esters: Synthesis, characterization and molecular base receptor analysis

    Science.gov (United States)

    Gómez-Jaimes, Gelen; Barba, Victor

    2014-10-01

    The synthesis of three boronate esters obtained by reacting 4-fluorophenylboronic (1), 4-iodophenylboronic (2) and 3,4-chlorophenylboronic (3) acids with 2,4,5-trihidroxybenzaldehyde is reported. The structural characterization was determined by spectroscopic and spectrometric techniques. The boron atom was evaluated to acts as Lewis acid center in the reaction with pyridine (Py), triethylamine (TEA) and fluoride anion (F-). The titration method was followed by UV-Vis and 11B NMR spectroscopy; results indicate the good interaction with the fluoride ion but poor coordination towards pyridine in solution.

  5. Ions behaviour in a wilson chamber with internal self-command; Comportement des ions dans une chambre de wilson a autocommande interne

    Energy Technology Data Exchange (ETDEWEB)

    Laboulaye, H. de; Tzara, C.; Studinovski, J. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    Study, with the help of a self-commanded chamber, of ions behaviors created in this one by a {alpha} particle. The authors put in evidence the phenomenon of multiplication and recover the required conditions for the working of the proportional counters. They verify that the ions reach quickly a steady aggregation state in their gas-steam mixture. These aggregations have a middle mobility of about 0,9 cm{sup 2}.V{sup -1}.sec{sup -1}. They signal an unexpected phenomenon that they assign at a thermodynamic reason. (author) [French] Etude, a l'aide d'une chambre autocommandee, du comportement des ions crees dans celle-ci par une particule {alpha}. Les auteurs mettent en evidence le phenomene de multiplication et retrouvent les conditions requises pour le fonctionnement des compteurs proportionnels. Ils verifient que les ions atteignent rapidement un etat d'agregat stable dans leur melange gaz-vapeur. Ces agregats ont une mobilite moyenne d'environ 0,9 cm{sup 2}.V{sup -1}.sec{sup -1}. Ils signalent un phenomene inattendu qu'ils attribuent a une cause thermodynamique. (auteur)

  6. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  7. Facility for continuous CVD coating of ceramic fibers

    International Nuclear Information System (INIS)

    Moore, A.W.

    1992-01-01

    The development of new and improved ceramic fibers has spurred the development and application of ceramic composites with improved strength, strength/weight ratio, toughness, and durability at increasingly high temperatures. For many systems, the ceramic fibers can be used without modification because their properties are adequate for the chosen application. However, in order to take maximum advantage of the fiber properties, it is often necessary to coat the ceramic fibers with materials of different composition and properties. Examples include (1) boron nitride coatings on a ceramic fiber, such as Nicalon silicon carbide, to prevent reaction with the ceramic matrix during fabrication and to enhance fiber pullout and increase toughness when the ceramic composite is subjected to stress; (2) boron nitride coatings on ceramic yarns, such as Nicalon for use as thermal insulation panels in an aerodynamic environment, to reduce abrasion of the Nicalon and to inhibit the oxidation of free carbon contained within the Nicalon; and (3) ceramic coatings on carbon yarns and carbon-carbon composites to permit use of these high-strength, high-temperature materials in oxidizing environments at very high temperatures. This paper describes a pilot-plant-sized CVD facility for continuous coating of ceramic fibers and some of the results obtained so far with this equipment

  8. Finite element modelling of stress development during deposition of ion assisted coatings

    International Nuclear Information System (INIS)

    Ward, D.J.; Arnell, R.D.

    2002-01-01

    Ion assisted physical vapour deposited (IAPVD) films typically have a high state of residual stress. This residual stress comprises two components: a thermal stress, which forms as the system cools to room temperature; and an intrinsic stress which is caused by the processes of deposition. Much work has been published on the tribology and mechanical behaviour of surface coatings without consideration of the residual stress. It was therefore considered desirable to develop a finite element (FE) simulation to be used either as a precursor to any realistic mechanical study of the behaviour of such surface coatings, or to be used as a tool to study the effects of varying the deposition parameters. Previous experimental work has shown that the residual stress is related to deposition parameters, such as incident ion and atom fluxes and energies, and recent molecular dynamics studies have indicated that trapped inert gas species may play a major role in the mechanism for creation of the intrinsic stress. The FE simulation assumes that the processes of ion bombardment and material deposition are consecutive, but as the analysis time step tends to zero this assumption approximates the simultaneity of the processes. Suitable mathematical descriptions are employed in the bombarded region of the growing coating to simulate the macroscopic effects of the microscopic atomic collision phenomena and diffusion processes. Two finite element simulations are presented. The first is based on an analytical model, which has gained popular acceptance and this was presented in a previous year at this conference. The second builds on this to simulate wider aspects of known behaviour and is presented in this follow-up paper. The predicted trends of mean stress and its distribution are similar to those observed in published experimental work

  9. On plasma ion beam formation in the Advanced Plasma Source

    International Nuclear Information System (INIS)

    Harhausen, J; Foest, R; Hannemann, M; Ohl, A; Brinkmann, R P; Schröder, B

    2012-01-01

    The Advanced Plasma Source (APS) is employed for plasma ion-assisted deposition (PIAD) of optical coatings. The APS is a hot cathode dc glow discharge which emits a plasma ion beam to the deposition chamber at high vacuum (p ≲ 2 × 10 −4 mbar). It is established as an industrial tool but to date no detailed information is available on plasma parameters in the process chamber. As a consequence, the details of the generation of the plasma ion beam and the reasons for variations of the properties of the deposited films are barely understood. In this paper the results obtained from Langmuir probe and retarding field energy analyzer diagnostics operated in the plasma plume of the APS are presented, where the source was operated with argon. With increasing distance to the source exit the electron density (n e ) is found to drop by two orders of magnitude and the effective electron temperature (T e,eff ) drops by a factor of five. The parameters close to the source region read n e ≳ 10 11 cm −3 and T e,eff ≳ 10 eV. The electron distribution function exhibits a concave shape and can be described in the framework of the non-local approximation. It is revealed that an energetic ion population leaves the source region and a cold ion population in the plume is build up by charge exchange collisions with the background neutral gas. Based on the experimental data a scaling law for ion beam power is deduced, which links the control parameters of the source to the plasma parameters in the process chamber. (paper)

  10. 1020 steel coated with Ti/TiN by Cathodic Arc and Ion Implantation

    International Nuclear Information System (INIS)

    Bermeo, F; Quintana, J P; Kleiman, A; Márquez, A; Sequeda, F

    2017-01-01

    TiN coatings have been widely studied in order to improve mechanical properties of steels. In this work, thin Ti/TiN films were prepared by plasma based immersion ion implantation and deposition (PBII and D) with a cathodic arc on AISI 1020 steel substrates. Substrates were exposed to the discharge during 1 min in vacuum for the deposition of a Tiunderlayer with the aim of improving the adhesion to the substrate. Then, a TiN layer was deposited during 6 min in a nitrogen environment at a pressure of 3xl0 -4 mbar. Samples were obtained at room temperature and at 300 °C, and with or without ion implantation in order to analyze differences between the effects of each treatment on the tribological properties. The mechanical and tribological properties of the films were characterized. The coatings deposited by PBII and D at 300 °C presented the highest hardness and young modulus, the best wear resistance and corrosion performance. (paper)

  11. Determination of boron in borosilicate glasses by neutron capture prompt gamma-ray activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Jr, J E; Lindstrom, R M

    1987-01-01

    Major levels of boron in borosilicate glasses were determined nondestructively by neutron activation analysis. The effects of neutron self-shielding by boron (1 to 8% by weight) are examined. Results of the analysis of a series of glasses with increasing boron composition are 1.150 +- .005% and 7.766 +- .035% for the low and high members of the series. Once analyzed, the glasses are useful as secondary standards for alpha track counting, and also ion and electron microprobe analyses of glasses. 12 refs.; 3 tables.

  12. Surface modification of TiO2 coatings by Zn ion implantation for ...

    Indian Academy of Sciences (India)

    ions such as silver (Ag), zinc (Zn) and copper (Cu) have been developed to improve ... nism of Ag raises concerns about their potential cytotoxicity. [20–22]. ... circulating water to keep the sample temperature at 25◦C. 2.3 Coating .... S. aureus and the effect is obvious and dose dependent. The ... In this work, the mechanisms.

  13. Image timing and detector performance of a matrix ion-chamber electronic portal imaging device

    International Nuclear Information System (INIS)

    Greer, P.

    1996-01-01

    The Oncology Centre of Auckland Hospital recently purchased a Varian PortalVision TM electronic portal imaging device (EPID). Image acquisition times, input-output characteristics and contrast-detail curves of this matrix liquid ion-chamber EPID have been measured to examine the variation in imaging performance with acquisition mode. The variation in detector performance with acquisition mode has been examined. The HV cycle time can be increased to improve image quality. Consideration should be given to the acquisition mode and HV cycle time used when imaging to ensure adequate imaging performance with reasonable imaging time. (author)

  14. Boron diffusion into nitrogen doped silicon films for P{sup +} polysilicon gate structures

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, Farida; Mahamdi, Ramdane; Jalabert, Laurent; Temple-Boyer, Pierre

    2003-06-23

    This paper deals with the study of the boron diffusion in nitrogen doped silicon (NIDOS) deposited from disilane Si{sub 2}H{sub 6} and ammonia NH{sub 3} for the development of P{sup +} polysilicon gate metal oxide semiconductor (MOS) devices. NIDOS films with varied nitrogen content have been boron implanted, then annealed and finally analysed by secondary ion mass spectroscopy (SIMS). In order to simulate the experimental SIMS of boron concentration profiles in the NIDOS films, a model adapted to the particular conditions of the samples elaboration, i.e. the very high boron concentration and the nitrogen content, has been established. The boron diffusion reduction in NIDOS films with increasing nitrogen rates has been evidenced by the profiles as well as by the obtained diffusion coefficients, which shows that the nitrogen incorporation reduces the boron diffusion. This has been confirmed by capacitance-voltage (C-V) measurements performed on MOS capacitors: the higher the nitrogen content, the lower the flat-band voltage. Finally, these results demonstrate that the improvement of the gate oxide quality occurs with the suppression of the boron penetration.

  15. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Mark J., E-mail: msowa@ultratech.com [Ultratech/Cambridge NanoTech, 130 Turner Street, Building 2, Waltham, Massachusetts 02453 (United States)

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  16. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Qingcai Xu

    2015-01-01

    Full Text Available Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰ with a mean value of 2.61±11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  17. Iron oxide shell coating on nano silicon prepared from the sand for lithium-ion battery application

    Science.gov (United States)

    Furquan, Mohammad; Vijayalakshmi, S.; Mitra, Sagar

    2018-05-01

    Elemental silicon, due to its high specific capacity (4200 mAh g-1) and non-toxicity is expected to be an attractive anode material for Li-ion battery. But its huge expansion volume (> 300 %) during charging of battery, leads to pulverization and cracking in the silicon particles and causes sudden failure of the Li-ion battery. In this work, we have designed yolk-shell type morphology of silicon, prepared from carbon coated silicon nanoparticles soaked in aqueous solution of ferric nitrate and potassium hydroxide. The soaked silicon particles were dried and finally calcined at 800 °C for 30 minutes. The product obtained is deprived of carbon and has a kind of yolk-shell morphology of nano silicon with iron oxide coating (Si@Iron oxide). This material has been tested for half-cell lithium-ion battery configuration. The discharge capacity is found to be ≈ 600 mAh g-1 at a current rate of 1.0 A g-1 for 200 cycles. It has shown a stable performance as anode for Li-ion battery application.

  18. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry

    International Nuclear Information System (INIS)

    Kirby, Daniel; Parker, David; Green, Stuart; Hugtenburg, Richard; Wojnecki, Cecile; Palmans, Hugo

    2010-01-01

    Dosimetry using a PMMA phantom was performed in 15 and 29 MeV proton beams from the Birmingham cyclotron, with a Markus parallel-plate ionization chamber and GafChromic EBT and MD-V2-55 film. Simulations of the depth-dose curves were performed with FLUKA 2008.3 and MCNPX 2.5.0, which agreed almost perfectly with each other in range and only differed by 2% in the Bragg peak (BP) region. FLUKA was also used to calculate k Q factors for Markus chamber measurements as an improvement to the IAEA TRS-398 values in low-energy beams. FLUKA depth-dose simulations overestimate the BP height measured by ion chamber by about 10%, where the initial proton energy spread was estimated by fitting to the slope of the measured BP distal edge. Both GafChromic films showed an under-response in the BP compared to ion chamber; however, EBT exhibits this effect at lower energies than MD-V2-55. A possible reason for this is attributed to the shape and arrangement of the monomer particles being different in the active components of EBT and MD-V2-55. Relative effectiveness (RE) of both films is presented as functions of residual range R res in water and peak proton energy determined by FLUKA, with considerations for the spatial separation of the two active layers in each film. The proton energies at which RE reduces to 90% of maximum film response are 6.7 and 3.2 MeV for MD-V2-55 and EBT, respectively. Additionally, a beam quality correction factor (g Q,Q 0 ) is suggested for both GafChromic films, involving water-to-film stopping power ratios evaluated using ICRU recommendations, and a polymer yield factor G Q 0 /G Q . RE in this work is equated to the reciprocal of the polymer yield factor. The calculated values of (s w,film ) Q /(s w,film ) Q 0 are constant within 2.1% and 1.2% across the proton energy range of 1-300 MeV for EBT and MD-V2-55, respectively, so it is concluded that the polymer yield factor is the dominant factor causing the LET quenching effect.

  19. Investigation of the ageing effects on phenol-urea-formaldehyde binder and alkanol amine-acid anhydride binder coated mineral fibres

    DEFF Research Database (Denmark)

    Zafar, Ashar; Schjødt-Thomsen, Jan; Sodhi, R.

    2013-01-01

    -ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to identify the chemical changes occurring in the PUF binder coated mineral fibres and alkanol amine-acid anhydride binder coated mineral fibres during that ageing. The samples were aged in a climate......Phenol-Urea-Formaldehyde (PUF) binder coated mineral fibres' mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while alkanol amine-acid anhydride binder based mineral fibres exhibited better ageing properties for same duration of ageing. X...... chamber for 7 days at 70 °C and 95% relative humidity. In the case of the PUF binder coated fibres, quantitative XPS measurements showed some significant changes in the atomic composition of the PUF binder coated mineral fibres after ageing, including decreased urea and carbonyl groups concentrations...

  20. Multiply charged carbon-ion production for medical application

    International Nuclear Information System (INIS)

    Kitagawa, A.; Muramatsu, M.; Sasaki, N.; Takasugi, W.; Wakaisami, S.; Biri, S.; Drentje, A. G.

    2008-01-01

    Over 3000 cancer patients have already been treated by the heavy-ion medical accelerator in Chiba at the National Institute of Radiological Sciences since 1994. The clinical results have clearly verified the effectiveness and safety of heavy-ion radiotherapy. The most important result has been to establish that the carbon ion is one of the most effective radiations for radiotherapy. The ion source is required to realize a stable beam with the same conditions for daily operation. However, the deposition of carbon ions on the wall of the plasma chamber is normally unavoidable. This causes an ''anti-wall-coating effect,'' i.e., a decreasing of the beam, especially for the higher charge-state ions due to the surface material of the wall. The ion source must be required to produce a sufficiently intense beam under the bad condition. Other problems were solved by improvements and maintenance, and thus we obtained enough reproducibility and stability along with decreased failures. We summarize our over 13 years of experience, and show the scope for further developments